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ABSTRACT
While the clinical outcome for patients with resectable solid tumors has improved in recent years, the risk of postoperative recur-
rence underscores the need for effective monitoring in cancer patients. Molecular residual disease (MRD) refers to the presence 
of microscopic cancer that remains undetectable on conventional imaging or pathology. Because of the rapid advancement in 
circulating tumor DNA (ctDNA) analysis using next-generation sequencing technology, MRD testing using ctDNA has demon-
strated significant potential for predicting recurrence in various types of cancer. Similar data are found in genitourinary (GU) 
cancer, and pivotal research has gradually shed light on the importance of MRD in predicting tumor recurrence. To address these 
critical advancements in MRD testing in GU cancers, we conducted a review of the clinical utility of MRD testing for GU can-
cers. In this review, we provide an overview of the potential utility of ctDNA-based MRD detection for GU cancers and highlight 
several ongoing clinical trials for the development of MRD-guided treatments with ctDNA. ctDNA-based MRD testing has the 
potential to personalize cancer precision medicine in GU cancers, guiding adjuvant therapy decisions, improving early detection 
of recurrence, and refining surveillance.

1   |   Introduction

Genitourinary (GU) cancers are a group of malignancies that 
affect the urinary and reproductive systems, including the kid-
ney, bladder, prostate, testicles, and genital organs [1]. Recently, 
a number of genomic and molecular characterizations have 
provided insight into the carcinogenesis and progression of GU 
cancers [2–5]. Although localized GU cancers are generally cur-
able with definitive treatments including surgery, the clinical 
prognosis of patients with distance metastasis is grim, with the 

5-year survival rates between 18% and 51% [6], and is dictated by 
the location and the number of metastases. Considering above, 
early detection of recurrence can improve the clinical prognosis 
of GU cancer patients, with the need to develop novel, noninva-
sive biomarkers for predicting tumor recurrence after surgery-
based treatment.

Liquid biopsy is becoming an essential resource for providing 
information on the biological characteristics of cancer with 
minimum invasiveness, enabling longitudinal and real-time 
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monitoring compared to cancer tissue-based tests in oncology 
[7–9]. With the advancement of next-generation sequencing 
(NGS) technology, circulating tumor DNA (ctDNA) receives 
plenty of attention, which consists of DNA fragments released 
by tumor cells into the bloodstream and can be used to de-
tect cancer-related genomic alterations in the peripherblood 
[10, 11]. ctDNA analysis offers several advantages over tradi-
tional tissue biopsies, including noninvasiveness, real-time 
information, and the ability to capture tumor heterogeneity 
[12–15]. Additionally, several studies have shown that ctDNA 
analysis can predict treatment response, monitor disease pro-
gression, and guide targeted therapies for various types of can-
cer [16].

Recently, several studies revealed that postoperative ctDNA-
guided detection of molecular residual disease (MRD) is useful 
for the prediction of recurrence risk in various types of cancer 
because ctDNA has shown high sensitivity and specificity in 
detecting genetic mutations, potentially enabling early-stage 
cancer detection and improving current diagnostic methods 
[10, 17]. Moreover, several clinical trials have indicated that ad-
juvant therapy can improve clinical outcomes in cancer patients, 
including GU cancers [18–22]. However, predicting the popula-
tion that can benefit from additional adjuvant therapy remains 
challenging, leading to overtreatment of patients with systemic 
therapies. Notably, this unmet clinical need has created a bur-
geoning field of solid tumor oncology.

In this review, considering the rapid development of NGS-based 
ctDNA analysis, we aim to summarize the current evidence on 
MRD testing on GU cancers and potential challenges for further 
application of ctDNA-guided MRD testing as a measure of ther-
apeutic intervention in clinical studies of GU cancers.

2   |   Search Strategy

We established a working group to develop a position paper on 
the appropriate clinical use of MRD Testing under the direc-
tion of the Japan Society of Clinical Oncology (JSCO). In this 
review, we updated the information on GU cancers: prostate 
cancer (PC), bladder cancer (BC), upper urinary tract carcinoma 
(UTUC), renal cell carcinoma (RCC), and kidney cancer (KC).

We performed a search in PubMed using the keywords PC, BC/
UTUC, and RCC/KC in combination with circulating tumor 
DNA and surgery for each of them yielded 8, 21, and 12 reports, 
respectively, as of December 2024. Two reviewers (T. K. and H. 
M.) screened all titles and abstracts.

3   |   Overview for MRD Using ctDNA Analysis

The detection of ctDNA in patients with early-stage solid tumors 
who have completed curative-intent definitive therapies, includ-
ing surgery or radiation therapy, defined here as MRD to dif-
ferentiate detection by ctDNA in solid tumors from “minimal” 
residual disease in hematologic malignancies [23]. Although the 
clinical benefit of ctDNA analysis using comprehensive genomic 
profiling in advanced-stage patients has been demonstrated in 
numerous studies, the assays used in advanced-stage settings 

lack the sensitivity required to detect ctDNA in the early stage 
or postcurative-intent therapy settings [24]. Generally, NGS or 
other methods have a limit of detection (LOD) for the variant 
allele frequency (VAF) with 0.1%–11%, driving the adoption of 
novel sensitive assays for the detection of MRD in these settings. 
Droplet digital polymerase chain reaction (ddPCR) first emerged 
with high sensitivity and low cost, and obtaining the results in a 
short period. In the early period of MRD testing, ddPCR can per-
form a limited gene analysis using existing probe sets with LOD 
of 0.01%–0.1% [25, 26]. Several groups have subsequently proved 
the utility of ddPCR-based ctDNA analysis by means of individ-
ualized ddPCR probes corresponding to mutational profiles in 
a database [27, 28]. More recently, whole genome sequencing 
(WGS)-based MRD assays have demonstrated the ability to de-
tect ctDNA with an LOD of 0.0001% [29–31].

The detection rate of ctDNA varies widely across cancer types 
depending on tumor shedding characteristics, tumor burden, 
and location, which are closely related to the feasibility of MRD 
testing [17]. For instance, colorectal, nonsmall cell lung cancer, 
and BC have strong ctDNA shedding and have demonstrated 
that MRD positivity strongly correlates with recurrence, leading 
these cancers to the forefront of clinical trials and regulatory ap-
proval for MRD-guided therapy. On the other hand, in a subset 
of cancers, including RCC, pancreatic cancer, and glioma, the ef-
fectiveness of ctDNA assessment remains controversial because 
of the low rate of ctDNA shedding, leading to the necessity to 
develop a sensitive detection method for ctDNA in these cancers.

In general, NGS-based approaches with high-throughput ability 
and high sensitivity can classify MRD testing into two broad cate-
gories: tumor-naïve and tumor-informed approaches [23, 32, 33]. 
The tumor-naïve assay is a nonpersonalized testing approach 
that detects ctDNA in blood without requiring prior sequencing 
of the patient's tumor tissue, and is widely used in early cancer 
detection, genomic profiling for targeted therapy selection, and 
monitoring treatment response, especially when tumor tissue is 
unavailable [34–36]. In contrast, the tumor-informed assay is a 
personalized molecular testing approach designed based on the 
unique somatic mutations identified from a patient's own tumor 
tissue, which enables the reduction of false-positive findings and 
an increase in sensitivity compared to the tumor-naïve approach 
[37–39]. However, the tumor-informed approach definitely re-
quires tumor biopsy or surgical tissue for genotyping and may 
pose several limitations, such as longer turnaround time and 
potentially overlooking of subclones in distant metastases [40]. 
To date, the US Food and Drug Administration and European 
Medicines Agency have already approved some MRD assess-
ments, with the fact that MRD test results have affirmed clinical 
benefit in phase III trials. Importantly, several pivotal clinical 
trials have already been launched to evaluate ctDNA-based 
MRD-guided therapies in patients with colorectal cancer and 
bladder cancer, particularly to determine whether MRD test-
ing can guide adjuvant treatment decisions and improve patient 
outcomes.

4   |   Current MRD Assays in Prostate Cancer

PC remains a substantial global health challenge and is the sec-
ond most prevalent noncutaneous malignancy among men in 
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Japan [6]. The incidence of PC has increased significantly over 
the past few decades. In 2024, it is estimated that approximately 
91 800 new cases of PC will be diagnosed among Japanese men, 
making it the most commonly diagnosed cancer in this group 
[6]. For localized PC after prostatectomy, recurrence surveil-
lance is normally performed using the tumor-specific marker, 
prostate-specific antigen (PSA), which precisely reflects tumor 
recurrence. The recurrence rate of PC after prostatectomy is 
approximately 20%–400%, with many studies reporting bio-
chemical recurrence (BCR) (elevated PSA levels) in this range 
following radical prostatectomy for localized PC [41, 42]. To 
date, postoperative nomograms have been developed to predict 
the probability of recurrence by incorporating factors such as 
PSA level, Gleason grade, extracapsular extension, surgical mar-
gins, and lymph node involvement [43].

Considering this feature of PC, there have been relatively 
few reports on MRD testing. However, with advancements 
in ctDNA analysis, several studies have shown that detecting 
ctDNA before surgery influences the biochemical recurrence-
free survival (RFS) of patients undergoing total prostatectomy 
for localized PC (Table  1) [44–46]. For instance, Pope et  al. 
demonstrated that both BCR survival (hazard ratio [HR], 
3.3 [95% CI: 1.4–8.1], p = 0.0001) and RFS (HR, 2.8 [95% CI: 
1.1–7.1], p = 0.0055) were significantly shorter in patients who 
tested positive for preoperative ctDNA compared to those who 
were ctDNA-negative with a tumor-informed preoperative 
ctDNA analysis using whole-genome sequencing to enhance 
sequencing depth [44]. Moreover, Fei et al. reported that the 
detection rate of ctDNA was 65.5% in preoperative blood sam-
ples, and 85.3% of patients with detectable ctDNA achieved 
biochemical recurrence [45]. Furthermore, they emphasized 
that patients with undetectable ctDNA experienced signifi-
cantly longer biochemical RFS compared with those who had 
detectable ctDNA (not available vs. 8.2 months; HR, 0.14 [95% 
CI: 0.09–0.24], p < 0.01), indicating preoperative ctDNA sta-
tus was a significant prognostic factor of disease recurrence. 
Considering that WGS can detect mutations with a VAF of 
0.0001% [47], further investigations are required to deter-
mine whether perioperative or postoperative MRD status with 
ctDNA is independently associated with RFS and other clini-
cal prognostic indicators, regardless of PSA levels.

5   |   Current MRD Assays in Urothelial Carcinoma

Urothelial carcinoma (UC) comprises BC and UTUC, ac-
counting for approximately 90% and 10% of UC cases, respec-
tively. Recurrence rates following radical cystectomy for BC 
vary widely, with local recurrence reported between 30% and 
544% and distant recurrence reported to be up to 50% [48, 49]. 
A Canadian multi-institutional study found a 40% cumulative 
incidence of pelvic relapse in patients with pT3/T4 UC, which 
deeply affects the clinical prognosis [50].

In BC, ctDNA is thought to be detectable in more than 75% of 
patients with advanced BC and is consistently shed more than 
in other types of tumors [51, 52], leading to accumulating evi-
dence in ctDNA analysis [53–56]. Christensen et al. first reported 
that activating hotspot mutations in FGFR3 and PIK3CA in urine 
and plasma samples may be useful for diagnosing progression 

and metastasis by means of targeted sequencing with ddPCR 
in patients with bc [57]. Recently, several clinical studies using 
Signatera, a tumor-informed assay, have shown the clinical ben-
efit of MRD detection after curative-intent radical cystectomy 
(Table  2). Birkenkamp-Demtröder and Christensen et  al. re-
ported that the postoperative MRD positivity rate was 26.6%, the 
overall recurrence rate in postoperative MRD-positive patients 
was 76% (13 of 17 patients), and the 12-month recurrence rate of 
59% (10 of 17 patients) [58]. In contrast, most significantly, the 
recurrence rate was 0% in MRD-negative patients, suggesting 
ctDNA status was a strong predictor of tumor RFS after radical 
cystectomy [58, 59]. Interestingly, the median time from MRD 
positivity to clinically confirmed recurrence during surveillance 
was 96 days. Ben-David et al. also showed that detectable ctDNA 
before surgery (HR, 4.5 [95% CI 1–19], p = 0.04) and detectable 
ctDNA at the postoperative period (HR, 9.9 [95% CI 2.6–37], 
p < 0.001) were predictive of disease recurrence [60]. These re-
sults implied that ctDNA assessment for early risk stratification 
and relapse detection in BC is feasible and provides a basis for 
clinical trials that evaluate early therapeutic interventions.

The IMvigor011 trial is a global, randomized, double-blind 
Phase III study evaluating adjuvant atezolizumab versus placebo 
in high-risk muscle-invasive bladder cancer (MIBC) patients 
who are ctDNA-positive within 12–200 weeks postcystectomy 
(Table  3) [61, 62]. Eligible participants undergo serial ctDNA 
testing for up to 12 months; those who become ctDNA-positive 
without radiographic recurrence are randomized (2:1) to re-
ceive atezolizumab every 28 days for up to 1 year or matching 
placebo. The primary endpoint is disease-free survival in the 
ctDNA-positive population. ctDNA-negative patients remain 
on surveillance and are not randomized. This study was built 
on pivotal findings from IMvigor010 with MRD testing using 
Signatera. In this study, ctDNA-positive status identified patients 
with shorter overall survival (OS) and showed longer OS in those 
treated with atezolizumab group versus observation (HR: 0.59 
[95% CI: 0.41–0.86], p = 0.0024) [62]. Subsequently, interim re-
sults of IMvigor011 presented at the 2024 European Association 
of Urology annual meeting showed that 17 relapses occurred of 
171 patients with serially negative MRD status over a median fol-
low-up of 16 months, and the 18-month disease-free and OS rates 
were 88% and 98%, respectively. Preliminary findings from the 
TOMBOLA trial presented at the European Society for Medical 
Oncology Congress in 2024 also indicated that ctDNA testing 
could help identify patients with BC who may benefit from early 
postcystectomy immunotherapy (Table  3) [63]. Overall, 57% of 
the enrolled patients were ctDNA-positive after surgery, with 
75% detected within 4 months of surgery. The median lead time 
between ctDNA detection and visible metastases on CT scans 
was 43 days, with 20% of the ctDNA-positive patients eventually 
showing metastases. In contrast, only 3% of the ctDNA-negative 
patients developed metastases during the follow-up period. 
MODERN trial is a phase II/III trial assessing ctDNA-guided ad-
juvant therapy in patients with BC (Table 3). In cohort A, patients 
with detectable ctDNA following cystectomy are randomized to 
receive either adjuvant nivolumab alone or in combination with 
relatlimab, a LAG-3 inhibitor. In cohort B, patients without de-
tectable ctDNA are randomized to receive adjuvant nivolumab or 
undergo ctDNA-based surveillance. Collectively, these prospec-
tive trials may optimize clinical trial design and improve cost-
effectiveness by avoiding unnecessary treatments.
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There are only two reports on MRD in UTUC patients, which 
account for approximately 10% of UC [64, 65]. Tamura et al. re-
ported that all patients with intravesical recurrence after radical 
nephroureterectomy (RNU) were ctDNA-positive in the urine, 
which is a higher proportion of patients compared to that for 
positive cytology (60%) or CT (30%); additionally, positivity oc-
curred 60 days earlier than it did with cystoscopy. Moreover, in 
all metastatic cases, ctDNA was found in the plasma at the time 
of metastasis after RNU [64]. Nakano et al. also reported that 
preoperative ctDNA in 43 patients with localized UTUC was an 
independent risk factor for poor RFS (HR, 4.565 [95% CI: 1.433–
14.539], p = 0.00102); furthermore, early postoperative MRD 
positivity was significantly associated with poor RFS (HR, 8.027 
[95% CI: 2.347–27.454], p = 0.0009) in multivariate analysis [65].

Collectively, these results suggest that serial measurement of 
ctDNA following curative-intent surgery in UC is a highly spe-
cific method for identifying patients who might benefit from 
early intervention at the time of MRD, offering a promising 
strategy for personalizing care and improving outcomes, espe-
cially in high-risk patients.

6   |   Current MRD Assays in Kidney Cancer

The global incidence of KC continues to increase, with 431,288 
new cases reported in 2020, representing 3% of all diagnosed 
cancers worldwide [66]. RCC is the most prevalent type of can-
cer, accounting for 90% of all KCs. Localized RCC is typically 
managed with surgical intervention, either partial or radical ne-
phrectomy. Although surgery remains the most effective treat-
ment option, disease recurrence occurs in 20%–400% of patients 
treated for localized RCC [67–69]. Predicting RCC recurrence 
after surgery is important for patient counseling and choosing 
postoperative surveillance strategies. To date, several clinico-
pathological parameters have been incorporated into scoring 
systems and have been proposed to provide additional predic-
tive ability. Specifically, the Leibovich score guides prognosti-
cation and selection in adjuvant clinical trials of patients with 
locally advanced RCC after nephrectomy [70, 71]. In 2022, pem-
brolizumab was first approved as an adjuvant treatment for pa-
tients with a high risk of recurrence after nephrectomy [18, 19]. 
Although 65% of patients in the pembrolizumab group did not 
have a recurrence at 4 years, the placebo group showed a 57% re-
currence rate. Therefore, ctDNA analysis may enable postsurgi-
cal risk stratification and adjuvant treatment decision-making.

In early landmark studies of advanced RCC, the detection rate 
was low, at approximately 50%, which led to the classification 
of RCC as a low-ctDNA malignancy [52]. Moreover, the absence 
of hotspot mutations complicates disease monitoring using 
ctDNA in RCC. Considering the above, the number of reports 
on MRD testing remains limited, with some studies focusing 
on perioperative methylation analysis of specific genes, consid-
ering the low levels of ctDNA (Table  1) [72–74]. For instance, 
the hypermethylated short stature homeobox gene 2 (SHOX2) 
within circulating cell-free DNA is a highly sensitive surrogate 
parameter for the presence of ctDNA in various types of cancer, 
including RCC, where it has high prognostic potential as a sur-
rogate for tumor burden prior to nephrectomy [74]. So far, many 
studies have evidenced the strong association between SHOX2 

hypermethylation and cancer progression [75–77]. Buttner et al. 
also focused on the hypermethylation of circulating SHOX2 and 
found that hypermethylated SHOX2-positive patients showed 
unfavorable OS (HR, 3.65 [95% CI: 1.41–9.46], p = 0.004) and 
RFS (HR, 5.89 [95% CI: 1.46–23.8], p = 0.005) [78].

Recent advances in NGS have enabled the detection of ctDNA 
at levels as low as 0.1%, revealing comprehensive genetic muta-
tions characteristic of tumors in the peripheral blood. Pal et al. 
analyzed ctDNA in 220 cases of metastatic RCC (mRCC) using 
Guardant360 [79, 80]. They reported that the detection rate of 
ctDNA mutations was 78.6% and that increased p53 and mech-
anistic target of rapamycin pathway (e.g., NF1 and PIK3CA) 
alterations in post-first-line patients with first-line vascular 
endothelial growth factor-directed therapy may underlie the 
mechanisms of resistance. Furthermore, Kato et al. found a high 
detection rate of ctDNA in 84.5% of patients with mRCC and 
that 46.8% of patients developed new ctDNA mutations during 
disease progression, which was significantly linked to a shorter 
time to progression (p = 0.046) [81]. This implies that routine 
ctDNA assessment during the clinical course of patients with 
mRCC may have therapeutic implications.

Based on the success of tumor-naïve assays in ctDNA analysis, 
tumor-informed assays are expected to increase ctDNA detec-
tion in localized RCC [82, 83]. Using customized cancer gene 
panels with 16 RCC-related genes, Park et  al. reported that 
ctDNA was detected at the time of surgery in 75% of patients in 
the pT3a group (10/12); conversely, only 2.8% of patients exhib-
ited pT1a (1/36) [84]. Based on radiological images, the detec-
tion of ctDNA was the only significant preoperative predictor of 
pT3a upstaging, especially in renal sinus fat invasion from cT1a. 
Considering that the WGS approach may detect gene alterations 
with a detection limit of 0.007% even in RCC [31], MRD testing 
may be useful for guiding the treatment of RCC after surgery for 
localized RCC.

Recently, several prospective studies have been reported for 
MRD monitoring in RCC (Table 3) [82, 85]. Basu et al. launched 
the MRD GATE RCC trial, in which ctDNA analysis was per-
formed before and/or after the intended curative treatment for 
localized RCC to predict MRD. In this trial, participants will 
receive standard-of-care pembrolizumab only when they have 
MRD [82]. Iisager et  al. also launched the KIDNEY-PAGER 
trial that applied WGS and cfMeDIP sequencing approaches to 
improve the sensitivity of detection. If patients are positive for 
ctDNA, they may benefit from a closer follow-up scheme, re-
gardless of the Leibovich score, or require immediate interven-
tion, such as adjuvant therapy [85]. As with the clinical trials in 
UC, these prospective trials may identify patients at high risk of 
relapse earlier than conventional imaging and avoid overtreat-
ment with the reduction of medical costs.

7   |   MRD Assays in Other GU Cancers

Most germ cell tumors are diagnosed as isolated testicular 
masses and managed surgically with radical orchiectomy [86]. 
Postorchiectomy surveillance is crucial for monitoring recur-
rence, especially in nonseminomatous germ cell tumors exhib-
iting high-risk features. Ben-David et al. evaluated the utility of 
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a personalized tumor-informed ctDNA assay for MRD detection 
and prognosis in stage I–III testicular cancer [87]. Among 35 pa-
tients, ctDNA positivity during postorchiectomy MRD and sur-
veillance periods was strongly associated with inferior RFS (HR 
11.8, 95% CI: 2.3–59.1, p = 0.003). ctDNA outperformed standard 
tumor markers in predicting outcomes, and multivariate analy-
sis identified ctDNA positivity as the only independent predictor 
of poor RFS, highlighting its potential as a valuable prognostic 
tool. Hassoun et al. also reported longitudinal, tumor-informed 
ctDNA monitoring in 55 patients with stage I–III testicular can-
cer [88]. ctDNA positivity during MRD and surveillance win-
dows was significantly associated with inferior RFS (HR 5.27, 
95% CI 1.22–22.71, p = 0.0026), whereas elevated serum tumor 
markers were not. Notably, none of the patients with undetect-
able ctDNA relapsed, while 50% with detectable ctDNA did. 
These early studies provide valuable initial evidence that high-
sensitivity ctDNA analysis may help guide treatment decisions 
and predict recurrence in patients with germ cell tumors.

Regarding other types of GU cancers, such as penile or adreno-
cortical cancer, there have been no reports, possibly due to the 
low number of cases.

8   |   Challenges and Future Directions

Despite the spread of promising results of MRD testing, MRD 
testing is not reimbursed in many countries, including Europe, 
the United States, and Japan, since there are still a limited 
number of prospective trials to confirm its utility (Table 3). In 
GU cancers, when we encounter final results of these prospec-
tive trials, treatment strategies can be adaptively refined using 
ctDNA-based MRD detection and postoperative monitoring. For 
instance, the IMvigor010 trial failed to demonstrate the efficacy 
of atezolizumab therapy in 809 postradical resection patients 
with UC, whereas the IMvigor011 trial screened 800 patients 
with postradical resection BC, among whom 495 MRD-positive 
patients were included in the trial and re-examined the efficacy 
of atezolizumab. The MRD GATE trial was also launched to 
assess whether MRD-positive patients truly benefit from ad-
juvant pembrolizumab therapy in patients with high-risk, re-
sected RCC while reducing overtreatment [82]. As seen from 
these features, selecting patients with a high risk of recurrence 
with ctDNA-based MRD assays encourages the development of 
new perioperative treatments by reducing sample size, the ob-
servational period for statistical testing, and development costs 
in various tumor types. Furthermore, MRD-guided treatments 
have the potential to reduce medical costs since they may avoid 
unnecessary treatment [89, 90].

Importantly, we are currently evaluating an ultrasensitive WGS-
based MRD assay in the MONSTAR-SCREEN-3 study to estab-
lish a comprehensive pan-cancer MRD platform that includes 
traditionally low-shedding tumors [29], supporting the promo-
tion of the development of new types of treatment.

9   |   Conclusion

In summary, there is a certain degree of general consensus that 
MRD testing holds clinical validity in GU cancers, especially 

in bladder cancer. With the advancement of NGS technology, 
ctDNA-based MRD testing holds significant potential to guide 
therapeutic decision-making in GU cancers. MRD-guided strat-
egies may also optimize clinical trial design and improve cost-
effectiveness by avoiding unnecessary treatment. However, 
regulatory challenges remain, including assay standardization, 
a lack of FDA-approved MRD companion diagnostics for solid 
tumors, and limited reimbursement frameworks. Integration 
into routine practice will require consensus on assay methods, 
interpretation criteria, and demonstration of improved patient 
outcomes. Further large prospective trials are needed to validate 
clinical utility.
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