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Abstract
Motivated by an analysis on the well-posedness of the initial boundary value problem for
the motion of an inextensible hanging string, we first consider an initial boundary value prob-
lem for one-dimensional degenerate hyperbolic systems with a localized term and show its
well-posedness in weighted Sobolev spaces. We then consider the linearized system for the
motion of an inextensible hanging string. Well-posedness of its initial boundary value problem
is demonstrated as an application of the result obtained in the first part.

1. Introduction

The present paper consists of two parts. In the first part, motivated by an analysis on
the well-posedness of the initial boundary value problem for the motion of an inextensible
hanging string, we consider the initial boundary value problem

i = (A(s,u’) + O(s,u’(1,1) + f(s,1) in (0,1)x(0,7),
(1.1) u=>0 on {s=1}x(0,7),

(ua u)lf:() = (ui)n9 uiln) in (O’ l)a

where u is a R -valued unknown function of (s, 7) € [0, 1] X [0, 7], while f, u{', and u}" are
RN -valued given functions, and A and Q are N X N matrix valued given functions. Here, i
and u’ denote derivatives of u with respect to ¢ and s, respectively. Moreover, we assume
that A(s, 7) is symmetric and satisfies A(s, ) ~ sId, where Id is an identity matrix. Therefore,
the coefficient matrix A(s, ) degenerates at one end s = 0 of the interval, so that the first
equation in (1.1) is a linear degenerate hyperbolic system with a localized term. Due to this
degeneracy, we do not need to impose any boundary conditions on this end s = 0. The
first objective in this paper is to establish the well-posedness of this initial boundary value
problem.

One of difficulties of this problem comes from the degeneracy of the coefficient matrix
A(s, 1). This type of degenerate hyperbolic systems in the analysis of the motion of strings
has already been analyzed by several authors, for example, Koshlyakov, Gliner, and Smilnov
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[5], Reeken [14, 15], Yamaguchi [18], Preston [12], and Takayama [17], and the difficulty
has been overcome by using appropriate weighted Sobolev spaces. In the present paper,
we adopt the weights used by Reeken [14, 15] and Takayama [17]. We note that weighted
Sobolev spaces have been efficiently used also in the analysis of degenerate hyperbolic sys-
tems appearing in the fluid mechanics, for example, in the analysis of the nonlinear shallow
water and Green—Naghdi equations by Lannes and Métivier [6] for the motion of water sur-
face near the shoreline where the depth of the water vanishes, and in the analysis of the
Euler—Poisson equations by Makino [9] for the motion of a gaseous star surrounded by a
free surface where the density and the pressure of the gas vanish. Another difficulty of the
problem comes from the localized term Q(s, #)u’(1, t), which cannot be regarded as a lower
order term. However, as we will see in this paper, by introducing an appropriate energy
functional we obtain an a priori energy estimate for the solution #. Although such an energy
estimate is crucial to show the well-posedness of the problem, it does not imply directly the
existence of the solution. Our idea showing the existence of the solution is to regularize the
hyperbolic system as

it = (A(s,pu’) + Q(s,Hu’(1,t) + esi’ + f(s,t) in (0,1)x(0,7),
(1.2) u=>0 on {s=1}x(0,T),
()]0 = (", ™) in (0, 1),

where € > 0 is a regularizing parameter and the initial data (uion’g, uiln’g) should be modified
from the original initial data (', u}") so that the corresponding compatibility conditions are
satisfied. Thanks to the regularized term esu’, the solution to this regularized problem has an
additional boundary regularity so that the localized term Q(s, f)u’(1, f) can be regarded as a
lower order term. As a result, to show the existence of the solution u* for € > 0 it is sufficient
to consider the case Q(s, 1) = O. In such a case, we can follow the idea used by Takayama
[17], that is, we transform the problem on the one-dimensional interval (0, 1) into a problem
on the two-dimensional unit disc D by the transformation uﬁ(xl, X2, 1) = u(xf + x%, t). Then,
the transformed two-dimensional problem forms a non-degenerate hyperbolic system so that
the standard theory of hyperbolic systems can be applicable to show the existence of the
solution u? to the regularized problem for € > 0. Then, passing to the limit ¢ — +0 we
obtain the solution u to the problem (1.1). To the best of our knowledge, there is no existing
result on initial boundary value problems for hyperbolic systems with this type of a localized
term. Instead, we mention Fukuda and Suzuki [2] and Okada and Fukuda [11], where an
initial boundary value problem for a semilinear parabolic equation with a localized term has
been studied.

The problem (1.1) arises in the analysis on the well-posedness of the initial boundary
value problem for the motion of an inextensible hanging string of finite length under the
action of the gravity. The model of the motion consists of the initial boundary value problem

i—-(x) =g in (0,1)x(0,T),
(1.3) x=0 on {s=1}x(0,7),
(X, ®)l=0 = (x", x") in (0,1)

for the position vector x of the string coupled with the two-point boundary value problem
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" +|x"Pr=x? in (0,1)x(0,7),
(1.4) =0 on {s=0}x(0,T),
T =—qg-Xx on {s=1}x(0,T)

for the tension 7 of the string, where g is the acceleration of gravity vector assumed to be
constant. For more details on this model, we refer to Iguchi and Takayama [4], where a
priori estimates for the solution (x, 7) were obtained in weighted Sobolev spaces. In the
second part of this paper, we consider a linearized system of this problem. Let us linearize
the problem around (x,7) and denote the variations by (y,v). Then, the linearized system
has the form

g=(y')Y +0x)Y+f in (0,1)x(0,T),
(1.5) y=0 on {s=1}x(0,T),

@-Ph-o = @g.y?)  in O, 1),

and

V" +|x"Pv=2%"§ -2x" -y )»r+h in (0,1)x(0,T),
(1.6) v=0 on {s=0}x(0,T),

Vi=-g-y on {s=1}x(0,7),
where f and & can be regarded as given functions. Here, we note that under appropriate
assumptions on (x, T), once y is given, the above two-point boundary value problem for v
can be solved uniquely.

The second objective in this paper is to establish the well-posedness of the problem (1.5)
and (1.6) in weighted Sobolev spaces by applying the result in the first part of this paper
on the well-posedness of the problem (1.1). To this end, we need to figure out the principal
term of v in terms of y explicitly because the term (vx’)" in (1.5) cannot be regarded as a
lower order term. As we will see later, we decompose v as a sum of a principal part v, and
a lower order part v|. Moreover, the principal part can be written explicitly as

(1.7 vp(s, 1) = =((g + 2tx")(1, 1) - y'(1,0)¢(s, 1),
where ¢ is a unique solution to the two-point boundary value problem
—¢” +|x"F¢=0 in (0,1)x(0,7),
(1.8) =0 on {s=0}x(0,7),
¢ =1 on f{s=1}x(0,7).
Plugging the decomposition v = v, + v; into (1.5), we obtain
jy=Ay)Y +0y'(1,n+(x’) +f in (0,1)x(0,7),
(1.9) y=0 on {s=1}x(0,7),
. Pl-o = gy} in (0, 1),

where A(s,1) = 7(s,0)Id and Q(s, 1) = —(¢x") (s,1) ® (g + 27x”)(1,¢). This problem has
the same form as (1.1) so that we can apply the result of the first part. However, in order
to guarantee that the term (vx’) is in fact of lower order, we need a detailed analysis on a
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two-point boundary value problem for v;.

The contents of this paper are as follows. In Section 2 we begin with introducing weighted
Sobolev spaces X and Y™ for non-negative integers m. These spaces play an important role
in the problems. We then state our main results in this paper: well-posedness of the problem
(1.1) in Theorem 2.3 and that of the problem (1.5) and (1.6) in Theorem 2.8. In Section 3
we present basic properties of the weighted Sobolev spaces and related calculus inequalities.
We consider the initial boundary value problem (1.1) in Sections 4-6, which are the first part
of this paper. In Section 4 we evaluate initial values for time derivatives of u in terms of the
initial data (u})", uiI“) and the forcing term f and state precisely the compatibility conditions
on the data. In Section 5 we derive a basic energy estimate in Proposition 5.2 and a higher
order energy estimate in Proposition 5.4 for the solution to the regularized problem (1.2)
including the case € = 0. In Section 6 we prove Theorem 2.3. To this end, we first show the
well-posedness of the regularized problem in the case Q(s, ) = O and & > 0 by transforming
the problem on the interval (0, 1) into a problem for a non-degenerate hyperbolic system on
the unit disc D. We also derive an additional boundary regularity of the solution. We then
show the well-posedness of the problem with a non-zero localized term Q(s,Hu’(1,¢) in
the case € > 0 by the standard Picard iteration. Thanks to the energy estimate obtained in
Section 5 we can pass to the limit & — +0 and obtain a solution u of the original problem
(1.3). We then consider the initial boundary value problem (1.5) and (1.6) in Sections 7—
9, which are the second part of this paper. In Section 7 we analyze two-point boundary
value problems related to (1.6) and (1.8), especially, derive estimates for the solution ¢ of
(1.8) and those for the lower order part v; of v in terms of time dependent norms. These
estimates guarantee that the term (v;x’)’ in (1.9) is of lower order. In Section 8 we evaluate
initial values for time derivatives of (y, v) in terms of the initial data (y})“, yiln) and the forcing
terms (f, h) and state precisely the compatibility conditions on the data. In Section 9 we
prove Theorem 2.8. To show the existence of the solution, we use the method of successive
approximation. In each steps, we apply Theorem 2.3.

Notation. For 1 < p < oo, we denote by L the Lebesgue space on the open interval
(0, 1). For non-negative integer m, we denote by H" the L?> Sobolev space of order m on
(0, 1). The norm of a Banach space B is denoted by || - ||z. The inner product in L? is denoted
by (-,)r2. We put 0, = g and 05 = %. The norm of a weighted L space with a weight s
is denoted by ||s®ul|.», so that ||s“u||€,, = fol s®Plu(s)|Pds for 1 < p < oo. It is sometimes
denoted by ||oc®ul|Lr, too. This would cause no confusion. |P,Q] = PQ — QP denotes the
commutator. We denote by C(ay,a, ...) a positive constant depending on a,a,.... f < g
means that there exists a non-essential positive constant C such that f < Cg holds. f ~ g
means that f < gand g < f hold. ay V a, = max{a;, ay}.

2. Main results

In order to state our main results, we first introduce function spaces that we are going to
use in this paper. For a non-negative integer m, following Reeken [14, 15], Takayama [17],
and Iguchi and Takayama [4], we define a weighted Sobolev space X as a set of all function
u = u(s) € L? equipped with a norm || - ||x» defined by
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k
2 j ak+j 112
i+ Y IS5 Uz, for m =2k,
2 =1
(21) ”u”X"ﬂ = /]<+l
0
By + > 15205 w2, for m =2k + 1.
j=1
For a function u = u(s,t) depending also on time ¢ and for integers m and [ satisfying
0 < < m, we introduce a norm ||-[|,,,; and the space %Tm’l by

! 1
2 j 2 A j -
laIR, = > Nu@, 25 = () CI10,T1, X",
=0 =0
§ J* Jm—1

and put [Il,, = Wllwsws Wl = Wlnors 27" = 27", and 27" = 27", We use a
notational convention ||-[lp.. = O.

For a non-negative integer m, we define another weighted Sobolev space Y as the set of

all function u = u(s) defined in the open interval (0, 1) equipped with a norm || - ||y» defined
by

1
||S5u||iz for m=0,
k+1 .
el + > 1705 U2, for m=2k+1,
2 H s L
el = =
k+2
) A
el + Y s2 0 ul?,  for m o= 2k + 2.
H L
j=1
This norm is introduced so that ||u||§(m+1 = ||u||i2 + 1e||?., holds for m = 0,1,2,.... Fora

function u# = u(s, t) depending also on time ¢ and for a non-negative integer m, we introduce
anorm |-}, and the space 27" by

lull, = Z 187 u(t)lyn-s o = ﬂ Ci([0. T]: Y ).
J=0 j=0

‘We use a notational convention |||-|||7_1 =0.
For a function u = u(t) of time ¢, following Iguchi and Lannes [3], we use weighted norms
with an exponential function e for y > 0 defined by

1
1 » "o 2
_ -py! - ul?
|u|L§(OJ)_( fo e |u<r')|l’dt') : |u|H;n<o,t>-(Z |a,u|L3(o,,)),
J=0

and put

Ly, () = sup 7" |u(?")] + VYlul 20,

0<r<t

We denote by S;J(-) its dual norm for the L%(O, 1) scalar product, that is,

(2.2) Sy () = sup{ f e 2" u(t (1 )dr’
¢ UJo

L) < 1}.

From this definition, we get directly the following upper bounds
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. . 1 1
(2.3) Sy,,(u) < |u|L;(O,,) and S%,(u) < Wlulq(o,,) < ;Iy,,(u).

In order to state our result on the well-posedness of the problem (1.1), we need to impose
precise assumptions on the coefficient matrices A and Q.

Assumption 2.1. Let My and M, be positive constants. For any (s,t) € (0,1) x (0,T),
A(s, 1) is symmetric and it holds that

M;'s1d < A(s, 1) < Mosld,

A (s, 1)] + 521Q(s, D] + 1QDII 2 < Mo,
10,4 (s, 0] + IO, < M.

These assumptions guarantee a basic energy estimate for the solution of the problem
(1.1) and the following assumptions guarantee higher order energy estimates together with
the existence of the solution.

Assumption 2.2. Let m > 2 be an integer, T, My, and M, be positive constants.
() A" e 22N 27" and Q e 21,
(i) 9" 1A, @120 € L™(0,T; L*) and ?A” € L=(0,T; X").

(iii) In the case m > 3, for any t € (0, T) it holds that

A" @l + A" Ol + NQDMn—2 < Mo,
a7~ A" D)ll2 + 1107~ Q)2 + IFA (Dl < M.

The following theorem is one of main results in this paper and gives a well-posedness of
the problem (1.1) in the weighted Sobolev space X™.

Theorem 2.3. Let m > 2 be an integer, T > 0, and assume that Assumptions 2.1 and 2.2
are satisfied with positive constants My and M,. Then, for any data ui)n e X", uiln e X",
and f € ,%”T’"‘Z satisfying 0"\ f € LY(0, T; L?) and the compatibility conditions up to order
m — 1 in the sense of Definition 4.2 below, there exists a unique solution u € 2" to the
initial boundary value problem (1.1). Moreover, the solution satisfies the estimate

Q@4 L) < Co{lludlixn + Pl + Ly Oll-z) + 85,3107 FOll2))

forany t € [0,T] and any v > 1, where Cy > 0 depends only on m and My and y; > 0
depends also on M.

ReEmARK 2.4. In view of (2.3) we see that the solution obtained in Theorem 2.3 satisfies

t
C i i -1
et < Coe ‘t(”ubnﬂxm+||u11n||xm1+ sup I (1 ll-2 + f A f(t’)IIdet’)
0

0<r<t

for any ¢ € [0, T], where C| > 0 depends only on m, My, and M.

We proceed to consider the linearized system (1.5) and (1.6). In order to state our result
on the well-posedness of the problem (1.5) and (1.6), we need to impose precise assumptions
on x and 7. We recall that the coefficient matrices A and Q in the linearized problem (1.9)
are given by A(s, 1) = (s, H)Id and Q(s, 1) = —(¢x") (s, 1)®(g+27x"")(1, t). In order that these
coeflicient matrices satisfy Assumptions 2.1 and 2.2, we impose the following assumptions.
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Assumption 2.5. Let m > 2 be an integer, T, My, and M, be positive constants.
(1) Forany (s,t) € (0,1) x (0, T), it holds that
Mals < 1(s,t) < Mys,
suPo<;<7 (17", 7))l + I, X)(D)l4) < 0.
(i1) In the case m = 2, for any t € (0, T) it holds that
ITOllz= + lx@llx> < Mo,
1T Ol + lx@llxs + IX@llx: < M.
(iii) In the case m = 3, for any t € (0, T) it holds that
I Ol + lx®lls < Mo,
17" Ol + x@lls < M.
(iv) In the case m > 4, for any t € (0, T) it holds that
=" Oz + NG, )OI, < Mo,
I Oz + 1XDOM,, < M.

In order to guarantee that the term (v;x”)" in (1.9) is of lower order, in addition to As-
sumption 2.5, we impose the following assumptions.

Assumption 2.6. Let m > 2 be an integer, T, My, and M, be positive constants.
(1) In the case m = 2, for any t € (0, T) it holds that

"Dl + [ (@llx2 < Mo,
1" Dl + [ @Dllx2 < M.

(ii) In the case m = 3, x € C'([0, T1; X*) and |x(t)||x+ < Mo for0 <t <T.

In order to obtain an optimal regularity of v relative to y, in addition to Assumptions 2.5
and 2.6, we impose the following assumptions.

Assumption 2.7. Let T and M be positive constants. In the case m = 2, x € C'([0, T1;
X4 and ||(x, %)(lys < Mo for0<t<T.

The following theorem is another main result in this paper and gives a well-posedness of
the problem (1.5) and (1.6) in the weighted Sobolev space X™.

Theorem 2.8. Let m > 2 be an integer, T > 0, and assume that Assumptions 2.5 and
2.6 are satisfied with positive constants My and M. Suppose that the data yg‘ e X", yiln €
X" f € 272, and hosatisfy 8 f € LNO,T; L?), 5207 *h € C°([0, TT; L"), 533" 'h €
L'((0,1) x (0, T)). In the case m > 3, assume also that h € @T’"‘3. In addition, suppose that
the data satisfy the compatibility conditions up to order m — 1 in the sense of Definition 8.2
below. Then, there exists a unique solution (y,v) to the problem (1.5) and (1.6) in the class
ye 2" andv' € %‘Tm—Z. Moreover, the solution satisfies the estimate

2.5) Ly My Ollw + 1V Oll—2) < Colllgg'llxn + g llxn-
o Ly Ol + WAOW_y + 152920l
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+ 85,10 FOll)} + €185 ls28 ™ ROl

foranyt € [0,T] and any y > vy, where Cy > 0 depends only on m and My and C1,y; > 0
depend also on M. Furthermore, if we assume additionally Assumption 2.7 and h € g/Tm—2’
then we have v' € %Tm_l’* and

(2.6) 1Y Oll1. < CollgOll, + 1V Ol + RO )
foranyte[0,T].

Remark 2.9. Although the map (x,7) — (y,v) reveals loss of twice derivatives, by a
standard procedure of a quasilinearization we can construct a unique solution (x, 7) to the
nonlinear problem (1.3) and (1.4) in the case m > 6. However, a priori estimates for the
solution were obtained in the case m > 4 by Iguchi and Takayama [4], so that it is natural
to expect that the well-posedness of the problem holds also in the case m = 4, 5. In order to
show this, we need detailed analysis on compatibility conditions to the initial data, which do
not have any standard form due to a nonlocal property caused by the tension 7. Therefore,
we postpone this well-posedness part to the nonlinear problem (1.3) and (1.4) in our future
work.

3. Basic properties of the weighted Sobolev spaces

In this preliminary section, we present basic properties of the weighted Sobolev spaces
X" and Y and related calculus inequalities. Many of them are proved in Takayama [17]
and Iguchi and Takayama [4]. Let D be the unit disc in R? and H™(D) the L? Sobolev
space of order m on D. For a function u defined in the open interval (0, 1), we define
uﬁ(xl, Xp) = u(x% + x%) which is a function on D.

Lemma 3.1 ([17, Proposition 3.2]). Let m be a non-negative integer. The map X™ > u
ut e H"™(D) is bijective and it holds that ||u||x» =~ ||Mﬁ||Hm(D) forany u € X™.

Lemma 3.2 ([4, Lemma 4.3]). For any € > 0 there exists a positive constant C. = C(€)
such that for any u € X' we have ||s€ullp~ < Cellullx:.

Lemma 3.3 ([4, Lemma 4.5]). For a non-negative integer m, we have ||su’||x» < ||ul|xm+1,
e[ xm < Nlutllxms2, and |05 ullro < [lullx2ms.

Lemma 3.4 ([4, Lemma 4.6]). For a positive integer k there exists a positive constant C
such that for any p € [2, co] we have

i1 1 i— .

s 270 Ul < Cllullxe for j=1,2,...,k
e _

Is” 20Ul < Cllullgzn  for j=1,2,... .k

Lemma 3.5 ([4, Lemma 4.7]). For a non-negative integer m, we have ||uv||r> < ||ullx:||v]|x:
and ||uvl|xn < ||z ||0]] .

Lemma 3.6 ([4, Lemma 4.8]). Let m be a non-negative integer, Q an open set in R, and
F € C"(Q). There exists a positive constant C = C(m, N) such that if u € X takes its value
in a compact set K in Q, then we have ||[F(u)||x» < CI|Fllcnxy(1 + |lullx-)". If, in addition, u
depends also on time t, then we have also
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IE @M < CllFllen (1 + lul)™,
IE @ < ClIFllema (1 + Nl 0™

Lemma 3.7 ([4, Lemma 4.9]). Let j be a non-negative integer. It holds that

min{|[u’||z= ol 2, W'l 2 Mlolle=} - for j =0,

I aj+l . .
lIs2[05", ulvllz> < yminlle’[[x2llvllxr, 1/ llxllollx2} for  j=1,

Il [1xs ol

Lemma 3.8 ([4, Lemma 9.1]). If als=, then we have

min{la’||z=lullx2, 1@’ ||x: |lullx:}

ll(au') llx» < {

Lemma 3.9. Let m and j be integers such that 1 < j < m. If als=¢, then we have

@’y Ol <
”{MWMMNMJ

Proof. By Lemma 3.8, we see that

for j=12.

for m=0,

min{(\’[|xmez |l g, & llnlltllxmee} for m=0,1,2,....

min{[la" Ol lu@lla,1» Nl Ol llw@Oll3 1} for m =1,
for m=2,3,....

@'Yy < llCaw’Yllxr + @i’y llz2 + ll(aw’Y'llz2

S N llxillullxs + lla”llxllédlxs + Nl 21l lxs

< el

and that

@'Yl < Nl llxellullxs + Nl llxelléellx> + Nl llxe

lullxs < Mo, Meells.y

These imply the first estimate of the lemma. We then consider the case m > 2.

MYy s Y. > 1@ @0 Y g

0<k<j k +ho=k

515

We evaluate I(ky, ko3 k) = [|(0¥ a)(@2u)'Y |lyns, where 0 < k < jand k; + k, = k. In the

following calculations, we use Lemma 3.8.
(i) The case k <m — 2.

k k
I(ky, ka; k) < 110" @ llxon+110; ullxemsa—+ < Nt W gt

(i) The case j=m — 1.
110] @1 el s
k k
10, &l x110; ullxs

< M W, Ml 2, -

I(ky, ks k) S{

(iii)) The case j = m.
107’ || 2 lue
I(ky, ko k) < 31107 @ |l 18l
16 @ llx2 1101 ull 2

for

for

for
for

for

ki = J,
ky<j-1
ki = J,
ki=j-1
k< j-2



516 T. IcucHr AND M. TAKAYAMA

S el leally -

These imply the second estimate of the lemma. |

As in Iguchi and Takayama [4], we will use an averaging operator .# defined by

(3.1) (A u)(s) = %LS u(o)do.

Lemma 3.10 ([4, Corollary 4.13]). Let j be non-negative integer, 1 < p < oo, and
p<j+1- % Then, we have

. 1 .
||S’88£(///M)||LP < ﬁllsﬁaﬁullm-

Iz
Farticularly, ||.# ul||x» < 2||ul|x» form =0,1,2,....

Lemma 3.11. Let m be a positive integer and assume that als—o = 0. Then, we have

@) 18,10, alw' Y ll> < (10, Nl + 162 o + X750 16 ll ) el
(1) 1067, alu' ) llxr < N et e Metllyns 2 m-1 + e’ [1x2)-
(iii) 10,07, gl (1, Dl < (75 10/l 2 et 2,

Proof. By Lemma 3.8, we see that

10,167, alu’Y'll 2

m+1
< (@)@ Y Nl + @)@y Iz + ) 1@ a)@;"™ )Yl
j=3
m+1 ) )
< 10, 19 ullxe + 107 a9l + N6 o™l
Jj=3

which implies (i).
Similarly, we have
-1
(A7, alu'Yllxr s ) (@)@, w)Y lIx1 + (8" Y lIx:-

J

3

Here, for 1 < j <m — 1 we see that
(@ a)@;uy Y llx < 18] I8 ullxs < M et Ml -1
As for the second term, in the case m > 2 we have,
107 @)Y lIx < 107 lIx llullxs < Na Wy s lletlls m—15

while in the case m = 1 we evaluate it as

(@Y llxs < 1157 (@) 2 + 1@y’ ll2

7"

_1 1
<lIs72dallr=llsu”llr2 + (ls28,a’ll~ + 10rall=)llu” |l 2

1
+lIs20,a” Izl ll + N10,a 2 lled” Ml
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Since d,als=9 = 0, we have d;a = s.#(d;a’) with the averaging operator .# defined by
(3.1). Therefore, by Lemmas 3.10 and 3.2 we obtain ||s‘%8,a||Loo = ||S%%((9;Cl/)”L°° <
252 9,d'||p= < 118;a Iy, so that

(3.2) (@@’ YlIx1 < N10:a Il [l |12

These estimates imply (ii).
In view of |8/u’(1,1)] < 10}ullx> < llullps2,, for O < j < m, the proof of (iii) is straightfor-

ward. O

Lemma 3.12 ([4, Lemma 4.10]). It holds that
’ ”Mllxm+2”l)||xm+2 fO}" m = 0’ 1’
llee"v"[ym <
”Mllxm+lv4”l)||xm+l for m = 0, 1, 2, e
Lemma 3.13. For a positive integer m, we have

Nee(Oll3, 1 lle@)ls.1 for m=1,

|||M(t)|||m+1V4,m|||v(t)|"m+l,m fOr m 2> 1.

mmwws{

Proof. By Lemma 3.12, we see that
I o YO < 110 llyr + 1BV llyo + Il Do) llyo
S lluellxslollxs + N18:ullx2lollx2 + [l x21107lx2
S Neells 1ol 1
and that
I o YON] < ullxs ol + NDrellxelollye + Nedlxs el < Noall 1 loll, -
These imply the desired estimates in the case m = 1. Similarly, we see that
o YO < 110 lly + 1Bea0) v llyr + Il Do) Iy
2 2
+ 1107wV llyo + 211(:u0)’ (B,0) llyo + llue’ (G 0) [l yo
S lluellxslfollxs + N10pullxsllollxs + el [x]| Ol x2
2 2
+ 167 ullxellvllx2 + 10,ullx2110:vllx2 + llual x41107 vl
< Neella 2M101l3 2

which implies the desired estimate in the case m = 2. We then consider the case m > 3.

IO, < >0 > 1@y @ o) Ny

0<jsm ji+j2=j

We evaluate I1(ji, jo;J) = ||(8't’.‘u)’(8't"zu)’||ymfj, where 0 < j < mand j; + j, = j. In the
following calculations, we use Lemma 3.12.

(i) The case j <m — 3.

1Gi1s Jos D) < 107" ull =107 vll x5 S Wil 0N 1 -
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(i1) The case j =m — 2.

1G1. s ) < ::Z,;f’”’l‘ly”" or =k
Vullxslloollxs for i < j-1
< Nl 1 0l 1
(iii) The case j=m — 1,m.
116l o1l o for ji =/
Gt jos ) < 3 el e 110 ol o5 for jo =
16 wll o s 100l for — ji, jo < j— 1

S |”u|"m+l,m |||U|"m+1,m'

These imply the desired estimate in the case m > 3. O

Lemma 3.14 ([4, Lemma 4.11]). If 7|;=0 = O, then we have

1771122 eell s ol xs for m=0,
" g [I7"[] L min{{ful|x|[vllx2, llullxs1lollxs}  for  m =0,
[lTu” v ||lym < ) , )
minf||’|| 2 {lullxs, |71 llullx: Hlollxs  for m =1,
1771 oo o= el gm0l sns2 for m>2.
Lemma 3.15. If 7|;-¢9 = O, then we have

(7" N + 107 M 22 )Meell4, 1 Ml0ll3 1 for m=1,
e v 15, < 1, At Mgz leally 1 Mol for m=1,

W07 I + W ey + 107 NIl ol for —m > 2.
Proof. By Lemma 3.14, we see that
lea oI} < e v llyr + 1lT@ ) 0" llyo + llru” (8,0) llyo + (D)’ llyo
S T Mz (lluel [ xellollxs + 0l 1ollxs + laallxsl10:0l x3)
+ 10,7 | 2 llual x|l 3

< (7l + 107 1) Naalla 1 ol

3,1
and that
lea”" oIy < 1112l llollxs + N0ulxs llollxs + lleelxe 10 vllx2)
+ 1107 Il 2 lleell s oll s
S NE S )z lully 1 lolly s,
which imply the desired estimate in the case m = 1. We then consider the case m > 2.
A S S [ e AN L 7
0<jsm jo+ji+j2=]

We evaluate I1(jo, ji» jo: j) = 1°7)(0! u)’(Bv)”|lyn-s, where 0 < j < mand jo+ ji + j» = J.
In the following calculations, we use Lemma 3.14.



DEGENERATE HYPERBOLIC SYSTEMS WITH LOCALIZED TERM 519

(i) The case j <m — 2.
1o, s j23 1) 1007 s 16 wll oo 107 ol gea-s
-2
S W07 Mz + W M OWetlp 2 N0 W25

where we used || fllz= < |1 flx2.
(i) The case j=m — 1.
I =0 ullsllollxe— for  ji = j,
1Gos j1sj2: ) S I NNl 0V ollys— for jo = j,
1077 12110 ull g0 vl for  ji, jo < j— 1
< Ul + I W Nt 2 002,

(iii)) The case j = m.

112 112110 ull 2 ol for ji =
112l el 1970l 2 for j»=J

1Gos jis oz ) S SN0 ulla 02 vllys— for jo =0, jiujo < j= 1,
1027 110 ullxs 10 vllxs for o> 1, ji < jo<j—1,

102 2107 ullxs 107 vllxs for o= 1, ja<ji<j—1

S (N + W7 W1 + 1077 N2 ) Netl 2.2,

By noting [|7']|z~ < IIGT‘ZT’II 1o+ 17’ [l,.—1, these imply the desired estimate in the case m > 2.

O
Lemma 3.16. If 7|;-¢ = O, then we have
1 .
lls27u”v" || < mind|[7’||z |[ullx2[ollxs, 17 2 ullx2 Mol 1712 ] xs ol 3
. . _1
Proof. It is sufficient to note that |[7(s)| < 5! P’ for 1 < p < oo m]

4. Estimates for initial values and compatibility conditions I

We consider the initial boundary value problem (1.1). Let # be a smooth solution to the
problem (1.1) and put uijn = (#u)|=o for j = 0,1,2,.... By applying &/ to the hyperbolic
system in (1.1) and putting ¢t = 0, we see that the {uij“} are calculated inductively by

@n o=y (,’(){((az‘kA>|t:o<u;f)'>' + O] Ql=o@Y (D} + @LNli=o
k=0

for j =0,1,2,.... Then, by applying 8{ to the boundary condition in (1.1) and putting ¢ = 0,
we obtain

(4.2) w(1) =0

for j = 0,1,2,.... These are necessary conditions that the data (uion,ui]“, f) should satisfy
for the existence of a regular solution to the problem (1.1) and are known as compatibility
conditions. To state the conditions more precisely, we need to evaluate the initial values
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{uij"}. Although it is sufficient to evaluate 6{ u only at time ¢ = 0, we will evaluate them at
general time ¢.

Lemma 4.1. Let m > 2 be an integer and assume that Assumptions 2.1 and 2.2 are
satisfied with a positive constant My and that f € %Tm—z. Then, there exists a positive
constant Cy depending only on m and My such that if u is a solution to (1.1), then we have

Nee (DN, < Colllee @M1 + N Oll—2)-
Proof. Let 0 < j < m — 2. It follows from (1.1) that
Neell 2 < el + NiEll,,—2,
< Neelly,1 + NCAZY Nz j + 1O (1, Dllyizj + WS M2, j-

We note that by Assumption 2.1 we have A|,—g = O. Therefore, by Lemmas 3.8 and 3.9 we
see that

A" ||~ lleell,,,; — for m =2,

A || x> leel,, for m=3,j=0,

A Mo, Neell; — for m=3,j=1,

WA W2, Ml ;- for —m

NCAwY -2, <

< Neell,, ;-

By the standard Sobolev embedding theorem, we see also that

J
k
10w (1, Doz j < QM2 Y I ullye < el
k=0

Therefore, we get ||ull,, j+> < llull,,; + Ifll,—> for O < j < m — 2. Using this inductively on
J, we obtain the desired estimate. m|

Under the same assumptions in Lemma 4.1, we see that if the initial data satisfy uijn €
X"/ for j = 0,1, then the initial values {uij“} satisfy uij“ € X"/ for j =0,1,...,m, so that
their boundary values uij“(l) are defined for j=0,1,...,m— 1.

DeriNiTiON 4.2, Let m > 1 be an integer. We say that the data (”2)“’ uil", J) for the initial
boundary value problem (1.1) satisfy the compatibility conditions up to order m — 1 if (4.2)
holds for any j =0,1,...,m— 1.

5. Energy estimates

Difficulties showing a well-posedness of the initial boundary value problem (1.1) is
caused not only by the degeneracy of the matrix A(s, ) at the end s = O but also by the
localized term Q(s,f)u’(1,¢). The first difficulty could be overcome by using weights in
the norm of Sobolev spaces, see Takayama [17], whereas the second one will be treated by
regularizing the hyperbolic system. In this paper, we adopt the regularized problem (1.2).
As we will see later, in the case € > 0 the regularized term esi’ makes the localized term
O(s, Hu’(1,1) to be of lower order. Before giving energy estimates for the solution, we recall
the following lemma.
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Lemma 5.1 ([4, Lemma 6.1]). Let My be a positive constant. There exists a constant
Co = C(My) > 1 such that if a symmetric matrix A(s) satisfies Mal sld < A(s) < Mysld and
|A’(s)| < My for s € [0, 1], then we have the equivalence

-1 2 2 2 2 2
Co (lsu”ll> + lle’ll2) < Aw'Y Il < Collsu”li, + llull5)-

The following proposition gives a basic energy estimate for the solution of the problem
(1.2).

Proposition 5.2. Let T, My, and M, be positive constants and suppose that Assumption
2.1 is satisfied and that f € C°([0, T1; L*) and 8,.f € L'(0, T; L?). Then, there exist positive
constants Cy = Co(My) and vy, = yi(My, M) such that the solutionu € ,%”TZ* to the problem
(1.2) satisfies an additional regularity u’|,—, € H'(0,T) and an energy estimate

(5.1)
Ly (e O)llp) + Vel (1, )0 < Co {|Iu(0)||X2 +[@(O)llxr + [LFOllz2 + S;,,(Ilﬁzf(-)llLZ)}

foranyte|[0,T], v >y, and e € [0,1].

Proof. In the following calculations, we simply denote by Cy the constant depending only
on M, and by C; the constant depending also on M. These constants may change from line
to line.

We first suppose that the solution u satisfies u € C2([0, T]; X?). Then, we see that

% (A i) + AWY L) - (@A) i) + 2@ AW'Y , (Au'Y ) 2)
= 2(Ad’,ii" )2 + 2((AR’Y, (Au') )2
= =2((Aa') it — (Au’)') 2
= =2((Aa"Y ,esi’ + Qu'(1,1) + f)r2,
where we used the boundary condition ii|;-; = 0. Here, by integration by parts we have
2((Ad’Y  su')2 = (@ - A1 — (@, (A = sADI) 2.
We see also that

((Aa")', Qu'(1,0) + )z = ((Ad'Y, sQu’ + f)r2 + (Ad")', Q' (1, 1) — su’));

= (AW, 50+ e~ (@AWY 50u + P
— ((AW'Y, 0,(sQu’ + )2 — (A, (Q(u' (1, 1) = su”)) )2
In view of these identities, we introduce an energy functional &>() by
Ea(1) = (AW, i)z + I(Aw') |I7 + 2((AuY, sQu’ + f)rz + A7, + lael30),

where A > 0 is a parameter. By Lemma 5.1, it is easy to check that there exists a sufficiently
large 1o = A(My) such that if we choose A = A, then we have

& (1) < Co(llu@®I, + IIF D),
eI, < Co(&(0) + IF D)

for 0 <t < T. Moreover, we have

(5.2)



522 T. IcucHr AND M. TAKAYAMA

d
3 A0 + 8@ - AW ey = (@AW i)z + 2@ AW, (AWY + 5Qu’ + )2
+2((Au’Y, 0,(sQu’ + )12 + 2(Ai’, (Q@’(1,1) — su)) )2
d
+e@, (A — sA )2 + AEqmniz + llull)

< Ci(lw@ll . + MOl I D122) + Collw @l N Dz

where we used Lemma 5.1 together with |0;A(s, )] < M;s, which comes directly from
Assumption 2.1. Therefore, for any y > 0 we have

%{e—”’&(z)} +2ye &) + eMy e ' (1, 1))
< e C (@I, + el JFOllz2) + Collw@ll I @l 2}

Integrating this with respect to ¢ and using (5.2), | f] 20 < y‘%ly,,( f),and

< LIS, (@),

‘ f e f( )t )dr'
0

we obtain
!
-2 2 2yt 2 . 2
e @R, +2y f &2 a3 A+ £l (1, g,
0 .

< Collle(OI3,, + L UFOllz)* + LUl DS (F Ol
+ 98, FON) + Cry ' Ll

As was shown by Iguchi and Lannes [3, Lemma 2.16], we have also

(5.3) S, AFOl2) < L AfOll2) < CAFOz + S5, UFOll2)),
' (1, Dl 20, < Cly 2w’ (1,0)] + y~ "l (1, Dz o)

, We

with an absolute constant C > 0. Therefore, by choosing y; so large that C 1)/1‘1 < %

obtain

L (Ol + Vel (1, . < Collw©l,. + £ Oz + S5 AF Ol

By using the hyperbolic system for u, we have |jii||;> < Co([lull,... + Ilfll;2). These estimates
imply the desired one.

In the case u € 3%”72’*, we use a mollifier pe* with respect to ¢ with a kernel p.(t) = %p(é)
satisfying p € C5’(R), suppp C (—1,0), and fR p(t)ds = 1. The procedure is standard so we
omit the details. ]

We then prepare estimates for the solution u to the problem (1.1), which convert spatial
derivatives into time derivatives by using the hyperbolic system in (1.1).

Lemma 5.3. Let T and My be positive constants and m > 2 an integer. Suppose that
Assumptions 2.1 and 2.2 are satisfied and that f € %Tm—z,* in the case m > 3. Then, there
exists a positive constant Cy = Co(m, My) such that the solution u € %Tm’* to the problem
(1.2) satisfies

e,y < Co(la;u®lly + M@y + If Oll—2..)
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forany t € [0, T], where we use a notational convention ||-|ly.. = 0.

Proof. It is sufficient to evaluate ||6't"_j u||y; for 3 < j < m. To this end, we use the identity

-2 -2 -2 L njam=j 112
(5.4) 137 ully, = 10, ully, + 110, w'lly, > + 1152050, ully,.

Obviously, we have ||('):"_j ull;2 < |lull,—;- To evaluate the second term in the right-hand
side, we introduce a matrix valued function Ay(s,?) = %A(s, 1) = M (A'(-,))(s), which is
symmetric and satisfies

Malld < Ap(s, 1) < Myld,

A0 n—2 + A2, < 2Mo

for any (s,7) € (0,1) x (0,T), where we used Lemma 3.10 to derive the above estimates.
Therefore, by Lemma 3.6 we obtain [|Aj YOl + A, l(t)lllz,* < Cyp with a constant Cj

depending only on m and M,. Moreover, by the hyperbolic system in (1.2) we have u’ =
Aal.///F with F =it — (Qu'(1,1) + esi’ + f), so that by Lemmas 3.3, 3.5, and 3.10

|F||x: for m=j=3,
(5.5) 10, u'lIxi> < 310, Fllyr + ||.# F|x for m=4,j=3,

16" Flly= + IFll,—s for m>5j=30orm>j>4

-2 (=D
SN0 Pl + 107wl + Naellyy + W lon.ss

where we used the identity .# (sit") = &t — ./ to evaluate ||.# F||x: in the casem = 4, j = 3.
We proceed to evaluate the highest order term in (5.4). Applying 8. 28"/ to the hyper-
bolic system in (1.2), we obtain

SI010)ul < 1101, 19} w1900 Al |
+100720" (it — (Qu' (1, 1) + esit” + f))|.
Therefore, by Lemmas 3.7 we obtain
(5.6) Is20007 a2 < s’ (007", A10" 7w |2 + s 2[00, Al Y .2
+sT 820 - (Qu'(1,1) + esit” + [z
S Al 100 Iy + 1D, AT’ N2
+ 1100 (@ — (Qu'(1,0) + esit” + fllxr2

As for the second term in the right-hand side, it is sufficient to evaluate it in the case 3 < j <
m — 1. In the case m > 5 we see that

-J -J j1+1 j2+1
109, ATy s S @Y g+ > 1@ AXG )Yl
i+ ip=m=j=2
- ji+1 jr+1
SN0 A s+ > 18] A0l
Jitjp=m-j-2
o Y 1y

In the case m = 4 we may assume j = 3 so that by (3.2) we evaluate it as ||([8',"_j, Alu’Y ||xi-2
= |l((0:Au")|lx1 < l0:AlIx1|le’]lx2=- To evaluate ||u’|ly- we modify (5.5) slightly to get
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|l < ||8,2u||Xz + llzells + I fNl2.. The last term in (5.6) can be easily evaluated so that
we get

Jonjom—j —(j-2 —(j-1 —j
152020 ull2 < 107 P ull + 107 Dullyn + 100w g2 + el + 1 Npss-
Summarizing the above estimates, we obtain
m—j m—(j—2) m—(j—1)
18" ullxs < 162wl + 16" llxr + Nllyey + Uf lss

for 3 < j < m. Using this inductively, we finally obtain the desired estimate. m|

The following proposition gives higher order energy estimates for the solution of the
problem (1.2).

Proposition 5.4. Let T, M, and M, be positive constants and m > 2 an integer. Suppose
that Assumptions 2.1 and 2.2 are satisfied and that f € 2" and 9"'f € L'(0,T;L?).
Then, there exist positive constants Co = Co(m, My) and y; = y(m, My, My) such that
the solution u € 2,"" to the problem (1.2) satisfies an additional regularity eu'l,-; €
H" (0, T) and an energy estimate

(5.7) Ly (el + Vel (1, gm0
< Co {llu(O)llxn + 1@O)llyr + Ly FOll2) + 5,187 FOllz2)]
foranyte[0,T], y >y, and € € [0, 1].

Proof. In the following calculations, we simply denote by Cy the constant depending only
on My and by C| the constant depending also on M;. These constants may change from line
to line. Putting v = " ~2u, we see that v solves

(5.8) {v = (Av')Y + Qu(1,0H) +&sv’ + f, in (0,1)x(0,7T),

v=0 on f{s=1}x(0,T),
where f,, = 0" f + ([0" 2, Alu’Y + [0"2, Qlu’(1,1). Applying Proposition 5.2 we obtain
Ly (167 2u()ll) + Veldl'u' (1, ).
< Co {187 2u ()l + f o (O)llz + S5, 18, f Mz}

Here, by the first equation in (5.8) together with Lemmas 3.3 and 3.8 we get ||f,,(0)|l;2 <
Collu(O)ll,,. By Lemma 3.11 we get also ||8,f,,[l.> < 18" fll;2 + Cillull,,. These estimates
and Lemma 5.3 imply

Ly (e Oll) + Ve’ (1, s o,
<Co {IIIu(O)IIIm + Ly (L Oll—2) + Ly (Mt l—1) + S;,,(Ilain_lf (-)IILZ)} +C1S,,, (e (Hll,)-
As was shown by Iguchi and Lannes [3, Lemma 2.16], we have also
Ly (e ()ll-1) < Cle(O,, + S5, e ()
e’ (1, f)|H;"-2(0,;) < C()’_%"W(O)mm +y ' (l, f)|H§/"-'(o,t))

with an absolute constant C > 0. Since S;’,(Illu(-)lllm) < y‘lly’t(lllu(-)lllm), by choosing vy so
large that C 1)/1‘1 < 1 we obtain
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LMt + VeI (L gty < Co IO + La(F Olle) + S5, (107 FOlL2))

forany r € [0, T], ¥ > v1, and € € [0, 1]. This estimate and Lemma 4.1 give the desired one.
O

6. Existence of solutions I

In this section we prove Theorem 2.3. To this end, we first consider the initial boundary
value problem to the regularized system (1.2) in the case Q = O, that is,

it = (A(s,nu’Y +esi’ + f(s,t) in (0,1)x(0,7),
(6.1) u=>0 on {s=1}x(0,7),

(@, )= = (ug, u') in (0, 1),

with a degenerate but smooth coefficient A and a regularizing parameter € € R. The com-
patibility conditions for the data (ug‘, uil", f) can be defined similarly to Definition 4.2.

Proposition 6.1. Let m > 2 be an integer and assume that A € C*((0,1) x (0,7)) is
symmetric and satisfies MalsId < A(s,t) £ Mysld for any (s,t) € (0,1) X (0,T) with a
positive constant My. Then, for any data ui)“ e X" uiln e X" f e %Tm—z satisfying
am'f € LY0,T;L?) and the compatibility conditions up to order m — 1, there exists a
unique solution u € 27" to the initial boundary value problem (6.1). If, in addition, & > 0,
then the solution satisfies u'|=, € H" (0, T).

Proof. This proposition can be proved along with the proof of Takayama [17, Theorem
2.1] as follows. Let u be a solution to (6.1) and put U(x,?) = u*(x,t) = u(x? + x2,1) for
(x,1) € D x (0,T). Then, the problem (6.1) is transformed into the initial boundary value
problem

1 1
afv = Z (Zaxj(Ag(x, 10,,U) + Eax,-axja,v) +fﬁ(x, ) in Dx(0,T),
j=12

(6.2) U=0 on 8D x(0,T),

WU, 0,0)li=0 = (U, U in D,

where Ag(s,7) = 1A(s,0) = (AAC,D)(s) and U} = @™)F for j = 1,2. By Lemma
3.1, we see that UM € H™(D), UM € H" (D), f* € NE CI([0, T); H"27/(D)) satisty
ot fﬁ € L'(0,T; L*(D)) and compatibility conditions up to order m — 1. Since the coeffi-
cient matrix Aﬁ is strictly positive, it is classical to show the existence of a unique solution
U e ﬂf};o C/([0,T]; H" /(D)) to (6.2), which is radially symmetric; for a general theory
of initial boundary value problems of hyperbolic systems, see, for example, Benzoni and
Serre [1, Chapter 9], Métivier [10, Chapter 2], Rauch and Massey [13, Theorem 3.1], and
Schochet [16, Theorem A1]. Therefore, we can define u(s, t) by u® = U. Then, by Lemma

3.1 we see thatu € 27" and that u is a unique solution to (6.1). Moreover, by Proposition
5.4 wehaveu'(1,-) € H"1(0,T) if £ > 0. m]

We then consider the problem (1.2) with a localized term Q(s, H)u’(1,¢). We still assume
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that the coefficient matrices A and Q are both smooth. Here, € € (0, 1] is fixed so that we
denote the initial data by (”Z)H’ uiI“).

Proposition 6.2. Let m > 2 be an integer ¢ € (0,1] and assume that A,Q €
C>((0,1) x (0, 7)) and that A(s,t) is symmetric and satisfies MalsId < A(s, 1) < Mpsld
Jor any (s,1) € (0,1) X (0,T) with a positive constant My. Then, for any data ug € X",
uiln e X", fe %T’”_z satisfying "' f € LY(0, T; L) and the compatibility conditions up
to order m — 1, there exists a unique solution u € 2" to the initial boundary value problem
(1.2) satisfying w’|,—; € H™ (0, T).

Proof. We first consider the case where the data satisfy additional regularities ugl € X",
ul € X", and f € 2", Let u be a smooth solution to (1.2) and put ui;‘ = (0/u)\= for
j=0,1,...,m+ 1. Then, {ui].r‘};”:t)l are calculated from the data by a similar recurrence
formula to (4.1) and satisfy ui;l € X" =i for j=0,1,...,m+ 1. Therefore, we can construct
u® e 27! which satisfies U)o = uijn for j =0,1,...,m+ 1. Particularly, we have
Ou M=y € H™10,T). We proceed to construct a sequence of approximate solutions

{u™}> . Suppose that u™ € 2" is given so that

n=0"

6.3) {(a{u(m)u-o:u;n for j=0.1.....m

@u")s=1 € H"(0,T),
and consider the initial boundary value problem

b= (A(s, ') +esv’ + f(s,1) in (0,1) x (0, T),
v=0 on {s=1}x(0,T7),
©,0)l=0 = (g, u") in (0, 1),
where £ = Q(@u™|;1) + f. Ttis easy to see that f™ € 272, gm=1 ™ e L1(0,T; L?),
and that the data (ug‘, uiI“, ™) satisfy the compatibility conditions up to order m — 1. There-
fore, by Proposition 6.1 the above problem has a unique solution v € 27" satisfying (6.3).
Denoting this solution by #”*!, we have constructed the approximate solutlons ™}, In
order to see a convergence of these approximate solutions, we put 0™ = u"*D — ™ which
solves
5D = (A(s, oY + eso™ Y + O(s, o™’ (1,1) in (0,1) x (0, T),
o™ =0 on {s=1}x(0,T7),
@D, 5 D)o = (0,0) in (0, 1).

By Proposition 5.4, we see that

L (o™ D Oll) + Velo™ " (1, 10,7
$ LrUIQ@™ |s=Dllw-2) + S5, 7 (107 ( Q@™ s=1))llz2)

m—

Z L7 (180" (1, >|)+Z 8571870 (1, )

Jj=0
_1
<y ™, ')|Hgl-l(o,r),

where we used I, ,(|lu]) < C(Ju(0)] + S;J(lﬁ,ul) and (2.3); see [3, Lemma 2.16]. Therefore, by
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choosing vy so large that y‘% < /e we obtain

, 1
Lr ("™ Oll) + Velo™ " (1, o7 < Ex/glv(")/(l, Neg-10.7)

for any n = 0,1,.... This ensures that {u"™}*  and {u™’[.;}>, converge in 27" and
H™ (0, T), respectively, so that the limit u is the desired solution.

We then consider the case without any additional regularities on the data. By using the
method in [13] we can construct a sequence of approximate data {(ui)n("),uiln("), f("))}:f:l,
which satisfy the additional regularities uj'” € X"*!, u"™ e X™, f" e 27!, and com-
patibility conditions up to order m — 1, and converge to the original data (ug', u\", f) in the
corresponding spaces stated in the proposition. Then, for each n € N there exists a unique
solution u™ € 27" to the problem corresponding to the approximate data. By the linearity
of the problem and by Proposition 5.4, we see that {u(”)};’;o and {u(”)’lszl};’l":0 converge in

%T’" and H" (0, T), respectively, so that the limit u is the desired solution. O

We are ready to prove one of our main results in this paper, that is, Theorem 2.3.

Proof of Theorem 2.3.  Once a solution u € 27" to the problem (1.1) is obtained,
the energy estimate (2.4) follows from Proposition 5.4. Since Assumption 2.2 (iii) is just
imposed to exhibit how the constants Cy and vy, in (2.4) depends on norms of the coefficients
A and Q, it is sufficient to show the existence of a solution u € 27" under Assumptions 2.1
and 2.2 (i)—(ii). The proof consists of 4 steps and proceeds in a similar way as the proof of
[16, Theorem Al].

Step 1. We assume additionally that A,Q € C*((0,1) x (0,T)) and that the data satisfy
additional regularities u} € X™*!, u}® € X", f € 2", and compatibility conditions up to
order m to the problem (1.1). Let 0 < & < 1 and consider the regularized problem (1.2). We
note that the data (u})“, uiln, f) do not necessarily satisfy the compatibility conditions to the
regularized problem (1.2). However, by using the method in [13] we can construct initial
data (ugl’g,uiln"g) € X! x X™ of the problem (1.2) so that the modified data (ui)n’g, uiln"g, 1d)
satisfy compatibility conditions up to order m and that the modified initial data converge to
the original ones in X"*! x X" as & — +0. Then, by Proposition 6.2 there exists a unique
solution u® € %T’”” of the regularized problem (1.2). Moreover, by Proposition 5.4 the
solutions {#®}g<.<; satisfy the uniform bound [|u®(?)||,, < C for any ¢ € [0,T] and € € (0, 1]
with a constant C independent of # and €. In order to see the convergence of these solutions
as € — +0, we put v>" = u® — u’, which solves

oo = (A(s, o) + Q(s, v (1,6) + f5"(s,t) in (0,1)x(0,T),

vo =0 on {s=1}x(0,T),

W7, 0 ] = (g = ug" w1 —u™) in (0.1),

where f* = esu® — nsu™ . Therefore, by Proposition 5.4 and Lemma 3.3 we obtain

Lr(N@® = uOlly) < Nl = g llxn + 17 =™ xnr + L2 W Oll-r)

in, in, in, in,
< llug® = g xm + Nl = wllxnr + &Ly (6 Cll) + 0Ly 2 (e Ol

-0 as ¢gn—+0,
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which shows that {#®}o<.<; converges in %Tm and the limit u is the desired solution.

Step 2. We still assume that A, Q € C*((0, 1) X (0, T)) but do not assume any additional
regularities on the data (u})“, uiln, f). Then, as before we can construct a sequence of regular
approximate data {(ug’("), uiln("), f ("))}f;l, which satisfies the additional regularities stated in
Step 1 and converges to the original data in the corresponding spaces. Then, by the result in
Step 1, for each n € N there exists a unique solution u™ € 27" to the problem corresponding
to the approximate data. By the linearity of the problem and by Proposition 5.4, we see that

{u™}* ) converges in 27", so that the limit u is the desired solution.

Step 3. We will prove Theorem 2.3 in the case m > 3 without any additional regulari-
ties on the coeflicients and the data. We first approximate the coefficient matrices A and
Q by smooth ones {A™}  and {Q™}> |, which satisfy A®™, 0™ e C=((0,1) X (0,T)) and
conditions in Assumptions 2.1 and 2.2 with M, and M, replaced by 2M, and 2M,, respec-
tively. Moreover, {A™’ }>, and {Q(”)};’l":1 converge to A’ and Q in %T’"‘z n %TZ * and ,%”T’"‘Z,
respectively. We then consider the initial boundary value problem

it = (AW (s,ou’y + QW (s,u’'(1,£) + f(s,1) in (0,1)x (0,T),
(6.4) u=>0 on {s=1}x(0,7),

(w, @)=o = (™, u"™) in (0, 1),

where the initial data (ui)n("), uiln(")) € X™ x X" ! can be constructed so that the data (z""

0 >
uiln("), f) for the above problem satisfy the compatibility conditions up to order m — 1 and
converge to (ui)“,uiln) in X x X™ ! as n — oco. Then, by the result in Step 2, for each
n € N the above problem has a unique solution u™® € Z7". Moreover, by Proposition
5.4 these solutions satisfy the uniform bound le™ @), < C for any t € [0,7] and n € N
with a constant C independent of ¢ and n. On the other hand, by Lemma 3.1 we see that
the embedding X/*! < X/ is compact so that by the Aubin-Lions lemma the embedding
A > %T’”‘l is also compact. Therefore, {u(")}ff:] has a subsequence which converges u
in %T’”‘l. Obviously, u is a unique solution to (1.1); we note here that this is the only place
where the case m = 2 is excluded. As a result, without taking a subsequence, {u(”)};’l":1 itself
converges u in ,%”Tm". Moreover, by standard compactness arguments we have also

&u € L=(0,T; X"7) N Cy ([0, TT; X" )

for j = 0,1,...,m. It remains to show that this weak continuity in time can be replaced by
the strong continuity. To this end, we use the technique used by Majda [7, Chapter 2.1] and
Majda and Bertozzi [8, Chapter 3.2], that is, we make use of the energy estimate. For the
approximate solution #"”, we define an energy functional é",f,")(t) by

éarﬁln)(t) — (A(n)a;n—lu(n)/’ a;n—lu(n)/)L2 + ||(A(n)aitn—Zu(n)/)/”i2
+2((A"82u ™"y, sQM AP u ™ + £,
where f = @"2f + ([0, APy + [872, Q™ ]u™’(1,£). Then, as in the proof of
Propositions 5.2 and 5.4 we obtain 5,5,”)(0 = 5’,,(1")00) + ft( : F ,(,’,’)(t’)dt’, where F ,(,'f) satisfies

|Ff,'f)(t)| <C (||(('9’,"‘1 f, (9;"‘2 POz + 1) with a constant C independent of n and ¢. Passing
to the limit n — oo to this energy identity, we see that the corresponding energy functional
&n(t) for the solution u is continuous in z. This fact together with the weak continuity
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implies that 8" 'u € C([0, T]; X') and &"*u € C([0, T]; X*). Then, by using the hyperbolic
system we obtain #"u € C([0, T]; L?). Finally, as in the proof of Lemma 5.3 we can show
8;"7ju € C([0,T]; X/) inductively on j = 3,4,...,m.

Step 4. We will prove Theorem 2.3 in the case m = 2. We first note that the condi-
tions in Assumptions 2.1 and 2.2 (i)—(ii) in the cases m = 2 and m = 3 are exactly the
same. As before, we approximate the data (ug‘, uiI“, f) by a sequence of more regular data
{(ui)“("), uiln(”), S|, which satisfies the conditions in the case m = 3 and converges to the
original data in the corresponding spaces. Then, by the result in Step 3, for each n € N there
exists a unique solution u™ € 3&”73 to the problem corresponding to the approximate data.
By the linearity of the problem and by Proposition 5.2, we see that {u(”)},‘f’:o converges in
,%”TZ, so that the limit u is the desired solution. O

7. Two-point boundary value problem

We proceed to consider the linearized system (1.5) and (1.6) for the motion of an inex-
tensible hanging string. The solution v of the two-point boundary value problem (1.6) can
be decomposed as a sum of a principal part v, and a lower order part v;. The principal part
vp can be written explicitly as (1.7), so that the lower order part v| satisfies

=V +x Py =28 - 2(x" -y")r+h in (0,1)x(0,7),
(7.1) n=0 on {s=0}x(0,7),

v =-2x"-g+2(x" -yt on {s=1}x(0,T).
Note that from (1.7) and (1.8), the boundary condition of v; on {s = 1} X (0, T') is naturally
v] = 2(x” - y’)r. However, this boundary condition can be written as the last boundary
condition in (7.1), since y = 0 on {s = 1} X (0, T), which comes from (1.5). Here, we adopt
(7.1) to facilitate later analysis. In view of (7.1) and (1.8), we first consider the two-point
boundary value problem

V" +|x"Pv=h in (0,1),
(7.2)

v(0)=0, V() =a,
where £ is a given function and a is a constant.

Lemma 7.1 ([4, Lemma 3.7]). For any M > 0 there exists a constant C = C(M) > 0 such
that if IIS%x”H 12 < M, then the solution v to the boundary value problem (7.2) satisfies

15V llz» < Cllal + 15" hll 1)
for any p € [1,00] and any a > 0 satisfying a + % <L

The estimate in this lemma is not sufficient to guarantee that the solution v; of (7.1) is in
fact a lower order term. In order to show that v, is of lower order, we need to consider the
two-point boundary value problem

73 {—v” + Py =h =k, in (0,1),

v(0)=0, v'()=a+hy(l),

where h; and hy; are given functions and a is a constant.
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Lemma 7.2. For any M > O there exists a constant C = C(M) > 0 such that i]”lls%x”lle <
M, then the solution v to the boundary value problem (7.3) satisfies

1
VN2 < Clal + lIs2 hyllz) + ]2

Proof. The estimate in the case h;; = 0 comes from Lemma 7.1. Therefore, by the
linearity of the problem, it is sufficient to show the estimate in the case h; = 0 and a = 0.
Multiplying the first equation in (7.3) by v and integrating it over [0, 1], we see that

1 1
LOwaﬂfﬁWM@ﬁm=VHMD—VQMm—l:%UMSM

1
ifmwﬂm&
0

where we used the boundary conditions. This implies [|V'||;2 < [|ay]l;2- m]

Lemma 7.3. Let j be a positive integer and M > 0. There exists a constant C = C(j, M) >
0 such that if x satisfies

1) llx®lls; < M in the case j = 1;
(i) lx(Dlls> < M in the case j = 2;

(if1) O j1,j-1. 10Xl < M in the case j 23,
then the solution ¢ of (1.8) satisfies ||¢"(D; < C.

Proof. We first consider the case j = 1. By Lemma 7.1, under the condition |[x(?)||xs < 1
we have [|¢’ ()l < 1 so that [¢(s, 7)] < s. We note that [l¢"ll; < [I(¢",¢")llz> + 1I¢”[lyo. By
using the first equation in (1.8) and Lemma 3.14, the second term in the right-hand side can
be evaluated as [[¢”|lyo = [l¢px” - x"'||yo < ||¢’||Loo||x||§3. To evaluate ||¢’||;> we differentiate
(1.8) with respect to ¢ and obtain

—¢" +x"P¢ = =2¢x” - x” in (0,1),
#0,0) = ¢'(1,£) = 0.
Therefore, by Lemma 7.1 we get
77 L 1’ - /7 / 1 77 3 / 3
l¢'lle < lls2@px™ - 7ML < @Ml lls> x Ml llsxllze < Nl [1el]xs [l

These estimates give [|l¢’(?)[l; < 1.

We then consider the case j > 2. Let k be an integer such that 2 < k < j. We note that
o'l < 5o 110/ 1l + |||¢”|||Z_1. By Lemma 3.15, the second term in the right-hand side can
be evaluated as
llg Ml llell for k=2,

I MWl gy for k>3

gy = llpx” - x"}_, < {

S M =1
We proceed to evaluate ||6’;¢’|| 2. Differentiating (1.8) k-times with respect to f we obtain

{w%VHWW%@=4&uWM in (0, 1),
@ ¢)(0,1) = (85¢Y(1,1) = 0.
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Therefore, by Lemma 7.1 we get
1
1059 l122 < Is2 (85, 1" Pl < X Ik, ki, ko),

where I(ky, k1, ky) = ||s%(6f°¢)(6f‘x)” . (0f2x)”|| o and Y denotes the summation over all
(ko, k1, k) satisfying ko + ky + k, =k, ko < k— 1, and k; < k,. By Lemma 3.16, we see that

9/ =108 Xl 10 %l for  (ko, ki, k2) = (0,0,k),(0, 1,k — 1),

(ko ki, k2) < 111211l 10X x| for  (ko, k1, k2) = (1,0,k = 1),
109 121105 x|l |10 Xl s for ky < k-2
< 1+ 19 ey

Summarizing the above estimates we obtain ||¢'[l; < l¢'llx—; + 1 for 2 < k < j. Therefore,
we get [l¢']l; < 1. o

Lemma 7.4. Let j be a non-negative integer and M > 0. There exists a constant C =
C(j, M) > O such that if x and 7 satisfy 7(0,1) = 0, ||T'(?)||r> < M, and
@) llx@®lls; < M in the case j = 0;
1) Mx@lla2s 1" Oz, 1T (Dl 2 < M in the case j = 1;
(iii) (@)l Sy 105, 107 2@l 1/ Ol S 1057 Dl < M i the case
J=2,

then the solution v| to the boundary value problem (7.1) satisfies

C(IszhOll + llg@)ll2..) for j=0,

16V DIl < S ,
. C(X!_ s h®l + lyOllj1) for j=>1.

RemARk 7.5. If we impose an additional condition [|x(#)ll4 1, [1X'(*)llz~ < M in the case
J = 0, then we can improve the estimate as ||v;(?)||;> < C(||S%h(t)||y + lyOll,)-

Proof of Lemma 7.4. We first note that |7(s,#)] < Ms. By Lemmas 7.2 and 3.3, we see
that

1
Vil < 1@x” -yl + 1157 2X" - g = 2(x" - y")T + bl
. L. 1 1
< Il llyllxe + 1% 2l 2 + s> X7z llsy” Iz + s> Al
. . 1
< llxllxsllyllxe + Xl llgllxe + x|l llyllx> + {152 Al

This gives the desired estimate in the case j = 0.
We then consider the case j > 1. Let k be an integer such that 1 < k < j. Differentiating
the equations in (7.1) k-times with respect to ¢, we have

—(@w)” + X" @) = by =k, in (0,1)x(0,7),
(7.4) @) =0 on {s=0}x(0,7),
(O = ar + hes on {s=1}x(0,T),

where a; = =205, '] - ls=1 + 2(10}, 7% - Y )s=1, hss = 27(x”" - Bfy’) — 2%’ - /"'y, and
iy = 0fh+ 20105, %1 - i = [0F,7x"] - y") = [0, 1" I + 2((xx") - Oy’ — &7 - 9™ 'y).



532 T. IcucHr AND M. TAKAYAMA

Here, we see that
ki+1 ko+1
s Y 1L 016y, )
ky+ky=k,kr<k—1

T Lnla (Lol (L)
ko+ky+ka=k,kr<k—1

ki+1 ko+1 ki k k
< S el e+ > 1 eyl
ky+ky=k,kr<k—1 ko+ky+ky=k,kr<k—1
S Myl

and, by Lemma 3.4, that
1 L ok . k+1
Wi aillz < 152X ||zlls2 07y |12 + 1% || 1107 gl 2
k . k+1
< llxllxllozylix: + 1% = 116;" "yl 2
< Mylles -

We proceed to evaluate ||s%hk,11|| 11 term by term. We see that

l 17N\’ ’ - 17
sz ((zx") - 3y’ — %" - O 'yl

7

L ok L, k+1
S I Ne=lsx™ Nz + X7 2)Ns2 0y Ml + s x”112110;™ yll 2

k : k1
< IIxllxs 10yl + 1%l 110, gl 2

and that
Lok . . 1ok +2 ky+1
Is7 005 21l s . HIsT@ ) - @ )l
ki +ko=k—1
2 L ok L k43 ko+1
<02 lels* oyl + > ls?0 ¥ llallog ol

ky+ky=k—2
2 k 3 k+1 k—1
< o xllx:lloryllx: + 1107 x, ..., 07 Olx 10y, - .., 0 llxe,

where we used Lemma 3.3. We see also that
1 144 144 l 144 144
(PRI 0 B T SN PGS TGAR M N [
ko+ki+ko=k,kr<k—1
We evaluate I(kg, k1, k>) = IIS%(GI;OT)(OIIC‘ x)’- (8f2y)”||L1 , where ko +k; +k, = kand k, < k—1.
By Lemma 3.16, we see that
7112 110,131 gl 2 for (ko,ki,k2) = (0,1,k = 1),
10,7 |2l 16F " gl for (ko,ki,k2) = (1,0,k = 1),
I(ko, k1, k2) < 3 117|107 %l x2 11052y llxs for  (ko,k1,k2) = (0,2,k - 2),
1077 1|2 168 Xl 105 2ylle for Ky < 1, ko = k=2,
107 21108 xllx 102y llys  for ky <k =3,

so that ||s%[81;,7'x”] YNl < lyllis:- Finally, we see that

IO Phall s D IsT@ W@ - 0%

ko+ki+ky=k,ko<k—1
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We evaluate J(ko, k1, ky) = [|s2(8"v)(01 %) (8% x)"||1, where kg+k; +ky = kand ko < k—1.
By Lemma 3.16, we see that

[Ivillz2 el 116 X2 for ki =kork; =k,

J(ko, ki, k2) <
R {naﬁ‘w;uynaf]x||X3||a’;2x||X3 for ki ks <k-1,

1 — .. . .
so that ||s2 [Bf, Ix” Pl < Zf:ol ||c')§vi|| 2. Summarizing the above estimates, we obtain

k-1

1 L ok 1
Is? il < Ns*0fhll + 19V + gler-
1=0

Now, we apply Lemma 7.2 to the solution v, of (7.4) and obtain

k=1
k i [ 1ok
Nosvillze < lawl + s hyrllp + hinllze < Z l0villzz + lls2 07 Al + Myl -
1=0
Using this inductively on k = 1, 2,..., j, we obtain the desired estimate. m|

Lemma 7.6. Let j be a positive integer and M > 0. There exists a constant C = C(j, M) >
0 such that if x and t satisfy 7(0,t) = 0, ||T'(®)||z~ < M, and
@) [1Ce, )Dllx+, 1XOx2, 17Ol 2 < M in the case ji=L
(i) MG, R)OW i 1va,en WO 10 M7 O, 107, 0/ ) DNz < M in the case j > 2
and, in addition, ||(9{_3T'(t)||Loo < M in the case j > 4,

then the solution v| to the boundary value problem (7.1) satisfies
’ T Laj
Ol < C(Illh(t)lllj_l + 520/ h(0)llp + "|y(t)|||j+l)-

Proof. Let k be a positive integer such that k < j. We note that [lv{(0)|l, < Z?:o ||6£vl’|| 2+
|||v{’|||Z_l. By Lemma 7.4, the first term in the right-hand side can be evaluated as

k J

! 14l i Laj

D N0VIz < D ls> 0kl + gl jer < WA, + s> 0/Rlls + gl 1.
=0 =0

By using the first equation in (7.1), we have I/ ll}_, < IAI_ + 115/l + Ie(x” -yl +

[lvi(x" - x”)IIIZ_l. By Lemmas 3.12-3.15, we can check that [|x” - y"lll';:_1 + lr(x” - y”)|||j_1 <

ligll s Since wls=o = 0, we see also that

V112 1. for k=1,
2
(Il + 107l for & =2,

I - I, < {

which is already evaluated. Therefore, we obtain the desired estimate in the case j = 1,2.
Moreover, for 3 < k < j we have

T k-3 k—1 2
I - M-y < A0l + Mville—z + 107 villdWx i g oy < MVillss

so that [[V](Dllx < |I|h(t)lllj_1 +1Is2 3Rl + g @l j+1 F IV (Dll=1- Using this inductively on
k=3,4,...,J, we obtain the desired estimate. m]
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8. Estimates for initial values and compatibility conditions IT

We consider the initial boundary value problem for the linearized system (1.5) and' (1.6).
Let (y,v) be a smooth solution to the problem and put yijn = (0/y)li=o and vij“ S CAYY
Applying 6{ to (1.5) and (1.6), we see that (yi.“, vi.“) are determined inductively by

(8.1) o= > (@ Dleo@R) + VRO z0) + @ Plimo
= jolji!
Jo+tj1=]j
and
iny// s712.in _ pin
62) ~O) PV = B i (0,1)
YI0)=0, 1Y) =-g-@"Y(1)

for j=0,1,..., where

!
P =2 Z a"“x’)lfo Y, -2 Z 7|J — (@ Dli=0(@] M=o - G
Jitj= ] Jotji+j2= J il
1l
: Z — LG X 0P o + B R)imo.

17,.14,1 JO
jo+ji+inmhjosj-1 JOT T2

In fact, once the initial data (-’/o , yl ") are given, the two-point boundary value problem (8.2)
in the case j = 0 determines v'. Then, (8.1) with j = 0 determines y3'. Then, the two-point
boundary value problem (8.2) in the case j = 1 determines v1 Then, (8.1) with j = 1
determines y3', and so on. On the other hand, by applying the boundary condition in (1.5)
on s = 0 and putting ¢ = 0, we obtain

(8.3) Y1) =0

for j =0,1,2,.... These are necessary conditions that the data (y0 ,y1 , [ h) should satisfy
for the existence of a regular solution to the problem (1.5) and (1.6), and are known as
compatibility conditions. To state the conditions more precisely, we need to evaluate the
initial values {yij“}. Although it is sufficient to evaluate ny only at time ¢t = 0, we will
evaluate them at general time ¢.

Lemma 8.1. Let m > 2 be an integer and assume that Assumptions 2.5 and 2.6 are
satisfied with a positive constant My and that that f € %T’"_Q and 558;”_2}1 e C°([0,T1; LY.
In the case m > 3, assume also that h € @;"‘3. Then, there exists a positive constant Cy
depending only on m and My such that if (y,v) is a solution to (1.5) and (1.6), then we have

1 ame
Iyl < CollyOlls + IFOllez + WAON, 5 + 15237 RDlI1).
where we used a notational convention |||-|||+_1 =0.

Proof. As before, we decompose the solution v as a sum of a principal part v, and a lower
order part v;, where v, is defined by (1.7) so that v; is a unique solution to the two-point
boundary value problem (7.1). Then, we see that y satisfies (1.9) with A(s, ) = 7(s, )Id and
O(s, 1) = —(¢x") (s,1) @ (g + 27x"")(1,1). By Lemmas 3.4, 3.9, and 7.3, we can check easily
that these matrices A(s, #) and Q(s, ) satisfy the conditions in Assumptions 2.1 and 2.2 with
the constant M, replaced by a constant Cy = C(m, My). Therefore, we can apply Lemma 4.1
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to obtain [lyll,, < lyll,.1 + IFl,.—, where F = f + (vix’)’. Here, by Lemmas 3.8, 3.9, 7.4,
and 7.6 we see that

ls3hll + gl for j=0,

Ioax'Yll; < IVl < L .
! DTN + sz ORIl + gl for j=1,2,..m=2.

Using these estimates inductively on j, we obtain the desired estimate. m|

Under the same assumptions in Lemma 8.1, we see that if the initial data satisfy yi;l €
X" for j = 0,1, then the initial values {yij"} satisfy yij" e X"/ for j=0,1,...,m, so that
their boundary values yij“(l) are defined for j = 0,1,...,m— 1.

DeriniTioN 8.2. Let m > 1 be an integer. We say that the data (y0 , y1 , [, h) for the initial
boundary value problem (1.5) and (1.6) satisfy the compatibility conditions up to order m—1
if (8.3) holds for any j =0,1,...,m — 1.

9. Existence of solutions II

In this last section we prove Theorem 2.8. In the following calculations, we simply denote
by Cy the constant depending only on My and by C; the constant depending also on M.
These constants may change from line to line. We assume that the data (yo Y1, [, h) satisfy

o and { yinym-2 by (8.1) and (8.2),

the conditions in Theorem 2.8, define initial values {y”‘ fRi

and put

J=

M=y e X (0Yli=o = y" for j=0,1,....m}.

By Lemma 8.1, we have yij“ € X" for j=0,1,...,mso that it is standard to show ST # 0.

We take y» € .77 arbitrarily and fix it. Given g™ € .77, let »\"’ be a unique solution to the
two-point boundary value problem

(n)u

+ Py = 2% g =2 -y yr+ b in (0,1)X(0,T),
;n) -0 on {s=0}x(0,T),

Y = 22k g™ 4+ 2(x” -y )T on {s=1}x(0,T).
By Lemmas 7.4, 7.6, 3.8, and 3.9, we have (v(") Y € ELVT’”‘Z and

oY) Colllshllus + lly™ll) for m=2,
2 <
"\ Colll, s + 11707 2Rl + Wy ly)  for m

m-3
m—1
Iy %Yl < cl(mhm + > lis*alhll + |||y<">|||m).
j=0
Then, we consider the initial boundary value problem
j=Ay) +0y 1,0+ f" in (0,1)x(0,7),
9.1 y=0 on {s=1}x(0,7),
(y’ y)ll‘:O = (yi)n’ ylln in (0’ 1)’
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where ™ = f + (\"x'Y, A(s,1) = 7(s,0Id, and Q(s,1) = —(¢x") (5,1) ® (g + 27x"")(1,1),
and these matrices satisfy the conditions in Assumptions 2.1 and 2.2 with the constants M
and M, replaced by Cy and C, respectively. Here, we have f" ¢ 2% and 97! f e
L'(0,T; L?). Moreover, it is straightforward to check that the data (g, '™, f) satisfy the
compatibility conditions up to order m — 1. Therefore, by Theorem 2.3 there exists a unique
solution y € 2" to (9.1). We see also that y € .#}". Now, we define y"*! as this solution
y. In this way, we have constructed a sequence of approximate solutions {y(”)},‘;"zl.

We proceed to show that {y}*  converges in 27". Putu® = y"* —
(n+1) (n)
I TN

y™ and u® =
. Then, we see that u"*D solves
@D = AUy + QuOHY (1,0 + (%Y in (0,1)x (0, T),
u"™b =0 on {s=1}x(0,T),
@™, ")y = (0,0) in (0,1),
and u™ solves
O P = 25 @ = 2(x” - u™)r in (0,1)% (0,7),
4" =0 on {s=0}x(0,T),
U = 2% ™ 4 2(x" - u)r on {s=1}x(0,T).

We note that (8/u™)|,—o = 0 for j = 0, 1,...,m — 2. Therefore, by Propositions 5.2 and 5.4
we have

L (" P Ol,)

{cos;T<||a,<u<">x')'<-)||Lz) for m=2,
Cotly 7™ x"Y Ml-2) + S5 (17~ @™x"Y Oll2)} - for m = 3.

Moreover, by Lemmas 7.4, 7.6, 3.8, and 3.9, we have

%) Ollmz < Collt™Olly—y for m >3,
107~ W ™x"Y Ollz < Cillw®™ O, for m > 2.

<

These estimates together with (5.3) imply

Ll P Oll) < €Sy U™ Olln) < Cry™ L r (e Cll).

Therefore, if we choose vy so large that 2C; < v, then we see that {y(”)};": , converges in 27",
Lety € 27" be the limit. We see also that {vf”)},‘f’:l converges to a vi such that v| € ,%”T’"‘Z.
Putting v = v, +v; with v, = —((g +27x") - y’)|;=1 4, we see that (y, v) is the desired solution.
Moreover, the energy estimate (2.5) in Theorem 2.8 can be obtained similarly as above.

It remains to show (2.6) so that we assume also Assumption 2.7. Similar to the proof of
Lemma 7.6, by Lemmas 3.12-3.15 we see that

IVl < Wl + W,

F

SV lla + Wvix” - X + lex” g0, + - gl + A,

S T 7
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Moreover, by (1.7) and Lemma 7.3 we see also that
[ P I 1€ PN /e 21 [1€ /e 31 ) 171 7 M 7]

These estimates imply (2.6). The continuity in ¢, that is, v’ € %Tm_l’* can be proved by
evaluating [[v'(¢;) — V()1 . in the same way as above. The proof of Theorem 2.8 is
complete.
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