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Abstract
Motivated by an analysis on the well-posedness of the initial boundary value problem for

the motion of an inextensible hanging string, we first consider an initial boundary value prob-
lem for one-dimensional degenerate hyperbolic systems with a localized term and show its
well-posedness in weighted Sobolev spaces. We then consider the linearized system for the
motion of an inextensible hanging string. Well-posedness of its initial boundary value problem
is demonstrated as an application of the result obtained in the first part.

1. Introduction

1. Introduction
The present paper consists of two parts. In the first part, motivated by an analysis on

the well-posedness of the initial boundary value problem for the motion of an inextensible
hanging string, we consider the initial boundary value problem

(1.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ü = (A(s, t)u′)′ + Q(s, t)u′(1, t) + f (s, t) in (0, 1) × (0, T ),

u = 0 on {s = 1} × (0, T ),

(u, u̇)|t=0 = (uin
0 , u

in
1 ) in (0, 1),

where u is a RN-valued unknown function of (s, t) ∈ [0, 1] × [0, T ], while f , uin
0 , and uin

1 are
R

N-valued given functions, and A and Q are N × N matrix valued given functions. Here, u̇
and u′ denote derivatives of u with respect to t and s, respectively. Moreover, we assume
that A(s, t) is symmetric and satisfies A(s, t) � sId, where Id is an identity matrix. Therefore,
the coefficient matrix A(s, t) degenerates at one end s = 0 of the interval, so that the first
equation in (1.1) is a linear degenerate hyperbolic system with a localized term. Due to this
degeneracy, we do not need to impose any boundary conditions on this end s = 0. The
first objective in this paper is to establish the well-posedness of this initial boundary value
problem.

One of difficulties of this problem comes from the degeneracy of the coefficient matrix
A(s, t). This type of degenerate hyperbolic systems in the analysis of the motion of strings
has already been analyzed by several authors, for example, Koshlyakov, Gliner, and Smilnov
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[5], Reeken [14, 15], Yamaguchi [18], Preston [12], and Takayama [17], and the difficulty
has been overcome by using appropriate weighted Sobolev spaces. In the present paper,
we adopt the weights used by Reeken [14, 15] and Takayama [17]. We note that weighted
Sobolev spaces have been efficiently used also in the analysis of degenerate hyperbolic sys-
tems appearing in the fluid mechanics, for example, in the analysis of the nonlinear shallow
water and Green–Naghdi equations by Lannes and Métivier [6] for the motion of water sur-
face near the shoreline where the depth of the water vanishes, and in the analysis of the
Euler–Poisson equations by Makino [9] for the motion of a gaseous star surrounded by a
free surface where the density and the pressure of the gas vanish. Another difficulty of the
problem comes from the localized term Q(s, t)u′(1, t), which cannot be regarded as a lower
order term. However, as we will see in this paper, by introducing an appropriate energy
functional we obtain an a priori energy estimate for the solution u. Although such an energy
estimate is crucial to show the well-posedness of the problem, it does not imply directly the
existence of the solution. Our idea showing the existence of the solution is to regularize the
hyperbolic system as

(1.2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ü = (A(s, t)u′)′ + Q(s, t)u′(1, t) + εsu̇′ + f (s, t) in (0, 1) × (0, T ),

u = 0 on {s = 1} × (0, T ),

(u, u̇)|t=0 = (uin,ε
0 , u

in,ε
1 ) in (0, 1),

where ε > 0 is a regularizing parameter and the initial data (uin,ε
0 , u

in,ε
1 ) should be modified

from the original initial data (uin
0 , u

in
1 ) so that the corresponding compatibility conditions are

satisfied. Thanks to the regularized term εsu̇′, the solution to this regularized problem has an
additional boundary regularity so that the localized term Q(s, t)u′(1, t) can be regarded as a
lower order term. As a result, to show the existence of the solution uε for ε > 0 it is sufficient
to consider the case Q(s, t) = O. In such a case, we can follow the idea used by Takayama
[17], that is, we transform the problem on the one-dimensional interval (0, 1) into a problem
on the two-dimensional unit disc D by the transformation u�(x1, x2, t) = u(x2

1 + x2
2, t). Then,

the transformed two-dimensional problem forms a non-degenerate hyperbolic system so that
the standard theory of hyperbolic systems can be applicable to show the existence of the
solution uε to the regularized problem for ε > 0. Then, passing to the limit ε → +0 we
obtain the solution u to the problem (1.1). To the best of our knowledge, there is no existing
result on initial boundary value problems for hyperbolic systems with this type of a localized
term. Instead, we mention Fukuda and Suzuki [2] and Okada and Fukuda [11], where an
initial boundary value problem for a semilinear parabolic equation with a localized term has
been studied.

The problem (1.1) arises in the analysis on the well-posedness of the initial boundary
value problem for the motion of an inextensible hanging string of finite length under the
action of the gravity. The model of the motion consists of the initial boundary value problem

(1.3)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẍ − (τx′)′ = g in (0, 1) × (0, T ),

x = 0 on {s = 1} × (0, T ),

(x, ẋ)|t=0 = (xin
0 , x

in
1 ) in (0, 1)

for the position vector x of the string coupled with the two-point boundary value problem
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(1.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−τ′′ + |x′′|2τ = |ẋ′|2 in (0, 1) × (0, T ),

τ = 0 on {s = 0} × (0, T ),

τ′ = −g · x′ on {s = 1} × (0, T )

for the tension τ of the string, where g is the acceleration of gravity vector assumed to be
constant. For more details on this model, we refer to Iguchi and Takayama [4], where a
priori estimates for the solution (x, τ) were obtained in weighted Sobolev spaces. In the
second part of this paper, we consider a linearized system of this problem. Let us linearize
the problem around (x, τ) and denote the variations by (y, ν). Then, the linearized system
has the form

(1.5)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ÿ = (τy′)′ + (νx′)′ + f in (0, 1) × (0, T ),

y = 0 on {s = 1} × (0, T ),

(y, ẏ)|t=0 = (yin
0 , y

in
1 ) in (0, 1),

and

(1.6)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−ν′′ + |x′′|2ν = 2ẋ′ · ẏ′ − 2(x′′ · y′′)τ + h in (0, 1) × (0, T ),

ν = 0 on {s = 0} × (0, T ),

ν′ = −g · y′ on {s = 1} × (0, T ),

where f and h can be regarded as given functions. Here, we note that under appropriate
assumptions on (x, τ), once y is given, the above two-point boundary value problem for ν
can be solved uniquely.

The second objective in this paper is to establish the well-posedness of the problem (1.5)
and (1.6) in weighted Sobolev spaces by applying the result in the first part of this paper
on the well-posedness of the problem (1.1). To this end, we need to figure out the principal
term of ν in terms of y explicitly because the term (νx′)′ in (1.5) cannot be regarded as a
lower order term. As we will see later, we decompose ν as a sum of a principal part νp and
a lower order part νl. Moreover, the principal part can be written explicitly as

(1.7) νp(s, t) = −((g + 2τx′′)(1, t) · y′(1, t))φ(s, t),

where φ is a unique solution to the two-point boundary value problem

(1.8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−φ′′ + |x′′|2φ = 0 in (0, 1) × (0, T ),

φ = 0 on {s = 0} × (0, T ),

φ′ = 1 on {s = 1} × (0, T ).

Plugging the decomposition ν = νp + νl into (1.5), we obtain

(1.9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ÿ = (Ay′)′ + Qy′(1, t) + (νlx′)′ + f in (0, 1) × (0, T ),

y = 0 on {s = 1} × (0, T ),

(y, ẏ)|t=0 = (yin
0 , y

in
1 ) in (0, 1),

where A(s, t) = τ(s, t)Id and Q(s, t) = −(φx′)′(s, t) ⊗ (g + 2τx′′)(1, t). This problem has
the same form as (1.1) so that we can apply the result of the first part. However, in order
to guarantee that the term (νlx′)′ is in fact of lower order, we need a detailed analysis on a
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two-point boundary value problem for νl.
The contents of this paper are as follows. In Section 2 we begin with introducing weighted

Sobolev spaces Xm and Ym for non-negative integers m. These spaces play an important role
in the problems. We then state our main results in this paper: well-posedness of the problem
(1.1) in Theorem 2.3 and that of the problem (1.5) and (1.6) in Theorem 2.8. In Section 3
we present basic properties of the weighted Sobolev spaces and related calculus inequalities.
We consider the initial boundary value problem (1.1) in Sections 4–6, which are the first part
of this paper. In Section 4 we evaluate initial values for time derivatives of u in terms of the
initial data (uin

0 , u
in
1 ) and the forcing term f and state precisely the compatibility conditions

on the data. In Section 5 we derive a basic energy estimate in Proposition 5.2 and a higher
order energy estimate in Proposition 5.4 for the solution to the regularized problem (1.2)
including the case ε = 0. In Section 6 we prove Theorem 2.3. To this end, we first show the
well-posedness of the regularized problem in the case Q(s, t) = O and ε > 0 by transforming
the problem on the interval (0, 1) into a problem for a non-degenerate hyperbolic system on
the unit disc D. We also derive an additional boundary regularity of the solution. We then
show the well-posedness of the problem with a non-zero localized term Q(s, t)u′(1, t) in
the case ε > 0 by the standard Picard iteration. Thanks to the energy estimate obtained in
Section 5 we can pass to the limit ε → +0 and obtain a solution u of the original problem
(1.3). We then consider the initial boundary value problem (1.5) and (1.6) in Sections 7–
9, which are the second part of this paper. In Section 7 we analyze two-point boundary
value problems related to (1.6) and (1.8), especially, derive estimates for the solution φ of
(1.8) and those for the lower order part νl of ν in terms of time dependent norms. These
estimates guarantee that the term (νlx′)′ in (1.9) is of lower order. In Section 8 we evaluate
initial values for time derivatives of (y, ν) in terms of the initial data (yin

0 , y
in
1 ) and the forcing

terms ( f , h) and state precisely the compatibility conditions on the data. In Section 9 we
prove Theorem 2.8. To show the existence of the solution, we use the method of successive
approximation. In each steps, we apply Theorem 2.3.

Notation. For 1 ≤ p ≤ ∞, we denote by Lp the Lebesgue space on the open interval
(0, 1). For non-negative integer m, we denote by Hm the L2 Sobolev space of order m on
(0, 1). The norm of a Banach space B is denoted by ‖ · ‖B. The inner product in L2 is denoted
by (·, ·)L2 . We put ∂t =

∂
∂t and ∂s =

∂
∂s . The norm of a weighted Lp space with a weight sα

is denoted by ‖sαu‖Lp , so that ‖sαu‖pLp =
∫ 1

0 sαp|u(s)|pds for 1 ≤ p < ∞. It is sometimes
denoted by ‖σαu‖Lp , too. This would cause no confusion. [P,Q] = PQ − QP denotes the
commutator. We denote by C(a1, a2, . . .) a positive constant depending on a1, a2, . . .. f � g
means that there exists a non-essential positive constant C such that f ≤ Cg holds. f � g
means that f � g and g � f hold. a1 ∨ a2 = max{a1, a2}.

2. Main results

2. Main results
In order to state our main results, we first introduce function spaces that we are going to

use in this paper. For a non-negative integer m, following Reeken [14, 15], Takayama [17],
and Iguchi and Takayama [4], we define a weighted Sobolev space Xm as a set of all function
u = u(s) ∈ L2 equipped with a norm ‖ · ‖Xm defined by
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(2.1) ‖u‖2Xm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖u‖2Hk +

k∑
j=1

‖s j∂
k+ j
s u‖2L2 for m = 2k,

‖u‖2Hk +

k+1∑
j=1

‖s j− 1
2 ∂

k+ j
s u‖2L2 for m = 2k + 1.

For a function u = u(s, t) depending also on time t and for integers m and l satisfying
0 ≤ l ≤ m, we introduce a norm |||·|||m,l and the space X m,l

T by

|||u(t)|||2m,l =
l∑

j=0

‖∂ j
t u(t)‖2Xm− j , X m,l

T =

l⋂
j=0

C j([0, T ], Xm− j),

and put |||·|||m = |||·|||m,m, |||·|||m,∗ = |||·|||m,m−1, X m
T = X m,m

T , and X m,∗
T = X m,m−1

T . We use a
notational convention |||·|||0,∗ = 0.

For a non-negative integer m, we define another weighted Sobolev space Ym as the set of
all function u = u(s) defined in the open interval (0, 1) equipped with a norm ‖ · ‖Ym defined
by

‖u‖2Ym =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖s 1
2 u‖2L2 for m = 0,

‖u‖2Hk +

k+1∑
j=1

‖s j∂
k+ j
s u‖2L2 for m = 2k + 1,

‖u‖2Hk +

k+2∑
j=1

‖s j− 1
2 ∂

k+ j
s u‖2L2 for m = 2k + 2.

This norm is introduced so that ‖u‖2Xm+1 = ‖u‖2L2 + ‖u′‖2Ym holds for m = 0, 1, 2, . . .. For a
function u = u(s, t) depending also on time t and for a non-negative integer m, we introduce
a norm |||·|||†m and the space Y m

T by

|||u(t)|||†m =
m∑

j=0

‖∂ j
t u(t)‖Ym− j , Y m

T =

m⋂
j=0

C j([0, T ]; Ym− j).

We use a notational convention |||·|||†−1 = 0.
For a function u = u(t) of time t, following Iguchi and Lannes [3], we use weighted norms

with an exponential function e−γt for γ > 0 defined by

|u|Lp
γ (0,t) =

(∫ t

0
e−pγt′ |u(t′)|pdt′

) 1
p

, |u|Hm
γ (0,t) =

( m∑
j=0

|∂ j
t u|2L2

γ(0,t)

) 1
2

,

and put

Iγ,t(u) = sup
0≤t′≤t

e−γt
′ |u(t′)| + √γ|u|L2

γ(0,t).

We denote by S∗γ,t(·) its dual norm for the L2
γ(0, t) scalar product, that is,

(2.2) S∗γ,t(u) = sup
ϕ

{∣∣∣∣∣
∫ t

0
e−2γt′u(t′)ϕ(t′)dt′

∣∣∣∣∣ ; Iγ,t(ϕ) ≤ 1
}
.

From this definition, we get directly the following upper bounds
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(2.3) S∗γ,t(u) ≤ |u|L1
γ(0,t) and S∗γ,t(u) ≤ 1√

γ
|u|L2

γ(0,t) ≤
1
γ

Iγ,t(u).

In order to state our result on the well-posedness of the problem (1.1), we need to impose
precise assumptions on the coefficient matrices A and Q.

Assumption 2.1. Let M0 and M1 be positive constants. For any (s, t) ∈ (0, 1) × (0, T ),
A(s, t) is symmetric and it holds that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M−1
0 sId ≤ A(s, t) ≤ M0sId,

|A′(s, t)| + s
1
2 |Q(s, t)| + ‖Q(t)‖L2 ≤ M0,

|∂tA′(s, t)| + |||Q(t)|||1 ≤ M1.

These assumptions guarantee a basic energy estimate for the solution of the problem
(1.1) and the following assumptions guarantee higher order energy estimates together with
the existence of the solution.

Assumption 2.2. Let m ≥ 2 be an integer, T , M0, and M1 be positive constants.

(i) A′ ∈X m−2
T ∩X 2,∗

T and Q ∈X m−2∨1
T .

(ii) ∂m−1
t A′, ∂m−1∨2

t Q ∈ L∞(0, T ; L2) and ∂2
t A′ ∈ L∞(0, T ; X1).

(iii) In the case m ≥ 3, for any t ∈ (0, T ) it holds that⎧⎪⎪⎨⎪⎪⎩
|||A′(t)|||m−2 + |||A′(t)|||2,∗ + |||Q(t)|||m−2 ≤ M0,

‖∂m−1
t A′(t)‖L2 + ‖∂m−1

t Q(t)‖L2 + ‖∂2
t A′(t)‖X1 ≤ M1.

The following theorem is one of main results in this paper and gives a well-posedness of
the problem (1.1) in the weighted Sobolev space Xm.

Theorem 2.3. Let m ≥ 2 be an integer, T > 0, and assume that Assumptions 2.1 and 2.2
are satisfied with positive constants M0 and M1. Then, for any data uin

0 ∈ Xm, uin
1 ∈ Xm−1,

and f ∈ X m−2
T satisfying ∂m−1

t f ∈ L1(0, T ; L2) and the compatibility conditions up to order
m − 1 in the sense of Definition 4.2 below, there exists a unique solution u ∈ X m

T to the
initial boundary value problem (1.1). Moreover, the solution satisfies the estimate

(2.4) Iγ,t(|||u(·)|||m) ≤ C0

{
‖uin

0 ‖Xm + ‖uin
1 ‖Xm−1 + Iγ,t(||| f (·)|||m−2) + S∗γ,t(‖∂m−1

t f (·)‖L2 )
}

for any t ∈ [0, T ] and any γ ≥ γ1, where C0 > 0 depends only on m and M0 and γ1 > 0
depends also on M1.

Remark 2.4. In view of (2.3) we see that the solution obtained in Theorem 2.3 satisfies

|||u(t)|||m ≤ C0eC1t
(
‖uin

0 ‖Xm + ‖uin
1 ‖Xm−1 + sup

0≤t′≤t
||| f (t′)|||m−2 +

∫ t

0
‖∂m−1

t f (t′)‖L2dt′
)

for any t ∈ [0, T ], where C1 > 0 depends only on m, M0, and M1.

We proceed to consider the linearized system (1.5) and (1.6). In order to state our result
on the well-posedness of the problem (1.5) and (1.6), we need to impose precise assumptions
on x and τ. We recall that the coefficient matrices A and Q in the linearized problem (1.9)
are given by A(s, t) = τ(s, t)Id and Q(s, t) = −(φx′)′(s, t)⊗(g+2τx′′)(1, t). In order that these
coefficient matrices satisfy Assumptions 2.1 and 2.2, we impose the following assumptions.
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Assumption 2.5. Let m ≥ 2 be an integer, T , M0, and M1 be positive constants.

(i) For any (s, t) ∈ (0, 1) × (0, T ), it holds that⎧⎪⎪⎨⎪⎪⎩
M−1

0 s ≤ τ(s, t) ≤ M0s,

sup0≤t≤T
(|||(τ′, τ̇′)(t)|||2,∗ + |||(x, ẋ)(t)|||4) < ∞.

(ii) In the case m = 2, for any t ∈ (0, T ) it holds that⎧⎪⎪⎨⎪⎪⎩
‖τ′(t)‖L∞ + ‖x(t)‖X3 ≤ M0,

‖τ̇′(t)‖L∞ + ‖x(t)‖X4 + ‖ẋ(t)‖X3 ≤ M1.

(iii) In the case m = 3, for any t ∈ (0, T ) it holds that⎧⎪⎪⎨⎪⎪⎩
|||τ′(t)|||2,∗ + |||x(t)|||4 ≤ M0,

|||τ̇′(t)|||2,∗ + |||ẋ(t)|||4 ≤ M1.

(iv) In the case m ≥ 4, for any t ∈ (0, T ) it holds that⎧⎪⎪⎨⎪⎪⎩
|||τ′(t)|||m−2 + |||(x, ẋ)(t)|||m ≤ M0,

|||τ̇′(t)|||m−2 + |||ẍ(t)|||m ≤ M1.

In order to guarantee that the term (νlx′)′ in (1.9) is of lower order, in addition to As-
sumption 2.5, we impose the following assumptions.

Assumption 2.6. Let m ≥ 2 be an integer, T , M0, and M1 be positive constants.

(i) In the case m = 2, for any t ∈ (0, T ) it holds that⎧⎪⎪⎨⎪⎪⎩
‖x′(t)‖L∞ + ‖ẋ(t)‖X2 ≤ M0,

‖ẋ′(t)‖L∞ + ‖ẍ(t)‖X2 ≤ M1.

(ii) In the case m = 3, x ∈ C1([0, T ]; X4) and ‖ẋ(t)‖X4 ≤ M0 for 0 ≤ t ≤ T.

In order to obtain an optimal regularity of ν relative to y, in addition to Assumptions 2.5
and 2.6, we impose the following assumptions.

Assumption 2.7. Let T and M0 be positive constants. In the case m = 2, x ∈ C1([0, T ];
X4) and ‖(x, ẋ)(t)‖X4 ≤ M0 for 0 ≤ t ≤ T.

The following theorem is another main result in this paper and gives a well-posedness of
the problem (1.5) and (1.6) in the weighted Sobolev space Xm.

Theorem 2.8. Let m ≥ 2 be an integer, T > 0, and assume that Assumptions 2.5 and
2.6 are satisfied with positive constants M0 and M1. Suppose that the data yin

0 ∈ Xm, yin
1 ∈

Xm−1, f ∈ X m−2
T , and h satisfy ∂m−1

t f ∈ L1(0, T ; L2), s
1
2 ∂m−2

t h ∈ C0([0, T ]; L1), s
1
2 ∂m−1

t h ∈
L1((0, 1) × (0, T )). In the case m ≥ 3, assume also that h ∈ Y m−3

T . In addition, suppose that
the data satisfy the compatibility conditions up to order m − 1 in the sense of Definition 8.2
below. Then, there exists a unique solution (y, ν) to the problem (1.5) and (1.6) in the class
y ∈X m

T and ν′ ∈X m−2
T . Moreover, the solution satisfies the estimate

Iγ,t(|||y(·)|||m + |||ν′(·)|||m−2) ≤ C0
{‖yin

0 ‖Xm + ‖yin
1 ‖Xm−1(2.5)

+ Iγ,t(||| f (·)|||m−2 + |||h(·)|||†m−3 + ‖s
1
2 ∂m−2

t h(·)‖L1 )
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+ S∗γ,t(‖∂m−1
t f (·)‖L2 )

}
+C1S∗γ,t(‖s

1
2 ∂m−1

t h(·)‖L1 )

for any t ∈ [0, T ] and any γ ≥ γ1, where C0 > 0 depends only on m and M0 and C1, γ1 > 0
depend also on M1. Furthermore, if we assume additionally Assumption 2.7 and h ∈ Y m−2

T ,
then we have ν′ ∈X m−1,∗

T and

(2.6) |||ν′(t)|||m−1,∗ ≤ C0
(|||y(t)|||m + |||ν′(t)|||m−2 + |||h(t)|||†m−2

)
for any t ∈ [0, T ].

Remark 2.9. Although the map (x, τ) �→ (y, ν) reveals loss of twice derivatives, by a
standard procedure of a quasilinearization we can construct a unique solution (x, τ) to the
nonlinear problem (1.3) and (1.4) in the case m ≥ 6. However, a priori estimates for the
solution were obtained in the case m ≥ 4 by Iguchi and Takayama [4], so that it is natural
to expect that the well-posedness of the problem holds also in the case m = 4, 5. In order to
show this, we need detailed analysis on compatibility conditions to the initial data, which do
not have any standard form due to a nonlocal property caused by the tension τ. Therefore,
we postpone this well-posedness part to the nonlinear problem (1.3) and (1.4) in our future
work.

3. Basic properties of the weighted Sobolev spaces

3. Basic properties of the weighted Sobolev spaces
In this preliminary section, we present basic properties of the weighted Sobolev spaces

Xm and Ym and related calculus inequalities. Many of them are proved in Takayama [17]
and Iguchi and Takayama [4]. Let D be the unit disc in R2 and Hm(D) the L2 Sobolev
space of order m on D. For a function u defined in the open interval (0, 1), we define
u�(x1, x2) = u(x2

1 + x2
2) which is a function on D.

Lemma 3.1 ([17, Proposition 3.2]). Let m be a non-negative integer. The map Xm � u �→
u� ∈ Hm(D) is bijective and it holds that ‖u‖Xm � ‖u�‖Hm(D) for any u ∈ Xm.

Lemma 3.2 ([4, Lemma 4.3]). For any ε > 0 there exists a positive constant Cε = C(ε)
such that for any u ∈ X1 we have ‖sεu‖L∞ ≤ Cε‖u‖X1 .

Lemma 3.3 ([4, Lemma 4.5]). For a non-negative integer m, we have ‖su′‖Xm ≤ ‖u‖Xm+1 ,
‖u′‖Xm ≤ ‖u‖Xm+2 , and ‖∂m

s u‖L∞ � ‖u‖X2m+2 .

Lemma 3.4 ([4, Lemma 4.6]). For a positive integer k there exists a positive constant C
such that for any p ∈ [2,∞] we have⎧⎪⎪⎨⎪⎪⎩

‖s j− 1
2− 1

p ∂
k+ j−1
s u‖Lp ≤ C‖u‖X2k for j = 1, 2, . . . , k,

‖s j− 1
p ∂

k+ j
s u‖Lp ≤ C‖u‖X2k+1 for j = 1, 2, . . . , k.

Lemma 3.5 ([4, Lemma 4.7]). For a non-negative integer m, we have ‖uv‖L2 � ‖u‖X1‖v‖X1

and ‖uv‖Xm � ‖u‖Xm∨2‖v‖Xm.

Lemma 3.6 ([4, Lemma 4.8]). Let m be a non-negative integer, Ω an open set in RN, and
F ∈ Cm(Ω). There exists a positive constant C = C(m,N) such that if u ∈ Xm takes its value
in a compact set K in Ω, then we have ‖F(u)‖Xm ≤ C‖F‖Cm(K)(1 + ‖u‖Xm)m. If, in addition, u
depends also on time t, then we have also
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⎧⎪⎪⎨⎪⎪⎩
|||F(u(t))|||m ≤ C‖F‖Cm(K)(1 + |||u(t)|||m)m,

|||F(u(t))|||m,∗ ≤ C‖F‖Cm(K)(1 + |||u(t)|||m,∗)m.

Lemma 3.7 ([4, Lemma 4.9]). Let j be a non-negative integer. It holds that

‖s j
2 [∂ j+1

s , u]v‖L2 �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min{‖u′‖L∞‖v‖L2 , ‖u′‖L2‖v‖L∞} for j = 0,

min{‖u′‖X2‖v‖X1 , ‖u′‖X1‖v‖X2} for j = 1,

‖u′‖X j‖v‖X j for j ≥ 2.

Lemma 3.8 ([4, Lemma 9.1]). If a|s=0, then we have

‖(au′)′‖Xm �

⎧⎪⎪⎨⎪⎪⎩
min{‖a′‖L∞‖u‖X2 , ‖a′‖X1‖u‖X3} for m = 0,

min{‖a′‖Xm∨2‖u‖Xm+2 , ‖a′‖Xm‖u‖Xm+2∨4} for m = 0, 1, 2, . . . .

Lemma 3.9. Let m and j be integers such that 1 ≤ j ≤ m. If a|s=0, then we have

|||(au′)′(t)|||m, j �
⎧⎪⎪⎨⎪⎪⎩

min{|||a′(t)|||1|||u(t)|||4,1, |||a′(t)|||2,1|||u(t)|||3,1} for m = 1,

|||a′(t)|||m, j|||u(t)|||m+2, j for m = 2, 3, . . . .

Proof. By Lemma 3.8, we see that

|||(au′)′|||1 ≤ ‖(au′)′‖X1 + ‖(au̇′)′‖L2 + ‖(ȧu′)′‖L2

� ‖a′‖X1‖u‖X4 + ‖a′‖X1‖u̇‖X3 + ‖ȧ′‖L2‖u‖X4

� |||a′|||1|||u|||4,1
and that

|||(au′)′|||1 � ‖a′‖X2‖u‖X3 + ‖a′‖X2‖u̇‖X2 + ‖ȧ′‖X1‖u‖X3 � |||a′|||2,1|||u|||3,1.
These imply the first estimate of the lemma. We then consider the case m ≥ 2.

|||(au′)′|||m, j �
∑

0≤k≤ j

∑
k1+k2=k

‖((∂k1
t a)(∂k2

t u)′)′‖Xm−k .

We evaluate I(k1, k2; k) = ‖((∂k1
t a)(∂k2

t u)′)′‖Xm−k , where 0 ≤ k ≤ j and k1 + k2 = k. In the
following calculations, we use Lemma 3.8.

(i) The case k ≤ m − 2.

I(k1, k2; k) � ‖∂k1
t a′‖Xm−k‖∂k2

t u‖Xm+2−k � |||a′|||m,k|||u|||m+2,k.

(ii) The case j = m − 1.

I(k1, k2; k) �

⎧⎪⎪⎨⎪⎪⎩
‖∂ j

t a
′‖X1‖u‖X4 for k1 = j,

‖∂k1
t a′‖X2‖∂k2

t u‖X3 for k1 ≤ j − 1

� |||a′|||m, j|||u|||m+2, j.

(iii) The case j = m.

I(k1, k2; k) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖∂ j

t a
′‖L2‖u‖X4 for k1 = j,

‖∂ j−1
t a′‖X1‖∂tu‖X3 for k1 = j − 1

‖∂k1
t a′‖X2‖∂k2

t u‖X2 for k1 ≤ j − 2
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� |||a′|||m, j|||u|||m+2, j.

These imply the second estimate of the lemma. �

As in Iguchi and Takayama [4], we will use an averaging operator M defined by

(3.1) (M u)(s) =
1
s

∫ s

0
u(σ)dσ.

Lemma 3.10 ([4, Corollary 4.13]). Let j be non-negative integer, 1 ≤ p ≤ ∞, and
β < j + 1 − 1

p . Then, we have

‖sβ∂ j
s(M u)‖Lp ≤ 1

j + 1 − β − 1
p

‖sβ∂ j
su‖Lp .

Particularly, ‖M u‖Xm ≤ 2‖u‖Xm for m = 0, 1, 2, . . ..

Lemma 3.11. Let m be a positive integer and assume that a|s=0 = 0. Then, we have

(i) ‖∂t([∂m
t , a]u′)′‖L2 �

(‖∂ta′‖L∞ + ‖∂2
t a′‖X1 +

∑m+1
j=3 ‖∂ j

t a
′‖L2

)|||u|||m+2,m.
(ii) ‖([∂m

t , a]u′)′‖X1 � ‖a′‖m+1,∗(|||u|||m+2,m−1 + ‖u′‖X2 ).
(iii) ‖∂t[∂m

t , q]u′(1, t)‖L2 �
(∑m+1

j=1 ‖∂ j
t q‖L2

)|||u|||m+2,m.

Proof. By Lemma 3.8, we see that

‖∂t([∂m
t , a]u′)′‖L2

� ‖((∂ta)(∂m
t u)′)′‖L2 + ‖((∂2

t a)(∂m−1
t u)′)′‖L2 +

m+1∑
j=3

‖((∂ j
t a)(∂m+1− j

t u)′)′‖L2

� ‖∂ta′‖L∞‖∂m
t u‖X2 + ‖∂2

t a′‖X1‖∂m−1
t u‖X3 +

m+1∑
j=3

‖∂ j
t a
′‖L2‖∂m+1− j

t u‖X4 ,

which implies (i).
Similarly, we have

‖([∂m
t , a]u′)′‖X1 �

m−1∑
j=1

‖((∂ j
t a)(∂m− j

t u)′)′‖X1 + ‖((∂m
t a)u′)′‖X1 .

Here, for 1 ≤ j ≤ m − 1 we see that

‖((∂ j
t a)(∂m− j

t u)′)′‖X1 � ‖∂ j
t a
′‖X2‖∂m− j

t u‖X3 � |||a′|||m+1,∗|||u|||m+2,m−1.

As for the second term, in the case m ≥ 2 we have,

‖((∂m
t a)u′)′‖X1 � ‖∂m

t a′‖X1‖u‖X4 � |||a′|||m+1,∗|||u|||m+2,m−1,

while in the case m = 1 we evaluate it as

‖((∂ta)u′)′‖X1 ≤ ‖s 1
2 ((∂ta)u′)′′‖L2 + ‖((∂ta)u′)′‖L2

≤ ‖s− 1
2 ∂ta‖L∞‖su′′′‖L2 + (‖s 1

2 ∂ta′‖L∞ + ‖∂ta‖L∞)‖u′′‖L2

+ ‖s 1
2 ∂ta′′‖L2‖u′‖L∞ + ‖∂ta′‖L2‖u′‖L∞ .



Degenerate Hyperbolic Systems with Localized Term 517

Since ∂ta|s=0 = 0, we have ∂ta = sM (∂ta′) with the averaging operator M defined by
(3.1). Therefore, by Lemmas 3.10 and 3.2 we obtain ‖s− 1

2 ∂ta‖L∞ = ‖s 1
2 M (∂ta′)‖L∞ ≤

2‖s 1
2 ∂ta′‖L∞ � ‖∂ta′‖X1 , so that

(3.2) ‖((∂ta)u′)′‖X1 � ‖∂ta′‖X1‖u′‖X2 .

These estimates imply (ii).
In view of |∂ j

t u
′(1, t)| � ‖∂ j

t u‖X2 ≤ |||u|||m+2,m for 0 ≤ j ≤ m, the proof of (iii) is straightfor-
ward. �

Lemma 3.12 ([4, Lemma 4.10]). It holds that

‖u′v′‖Ym �

⎧⎪⎪⎨⎪⎪⎩
‖u‖Xm+2‖v‖Xm+2 for m = 0, 1,

‖u‖Xm+1∨4‖v‖Xm+1 for m = 0, 1, 2, . . . .

Lemma 3.13. For a positive integer m, we have

|||(u′v′)(t)|||†m �
⎧⎪⎪⎨⎪⎪⎩
|||u(t)|||3,1|||v(t)|||3,1 for m = 1,

|||u(t)|||m+1∨4,m|||v(t)|||m+1,m for m ≥ 1.

Proof. By Lemma 3.12, we see that

|||(u′v′)(t)|||†1 ≤ ‖u′v′‖Y1 + ‖(∂tu)′v′‖Y0 + ‖u′(∂tv)′‖Y0

� ‖u‖X3‖v‖X3 + ‖∂tu‖X2‖v‖X2 + ‖u‖X2‖∂tv‖X2

� |||u|||3,1|||v|||3,1
and that

|||(u′v′)(t)|||†1 � ‖u‖X4‖v‖X2 + ‖∂tu‖X2‖v‖X2 + ‖u‖X4‖∂tv‖X1 � |||u|||4,1|||v|||2,1.
These imply the desired estimates in the case m = 1. Similarly, we see that

|||(u′v′)(t)|||†2 ≤ ‖u′v′‖Y2 + ‖(∂tu)′v′‖Y1 + ‖u′(∂tv)′‖Y1

+ ‖(∂2
t u)′v′‖Y0 + 2‖(∂tu)′(∂tv)′‖Y0 + ‖u′(∂2

t v)
′‖Y0

� ‖u‖X4‖v‖X3 + ‖∂tu‖X3‖v‖X3 + ‖u‖X4‖∂tv‖X2

+ ‖∂2
t u‖X2‖v‖X2 + ‖∂tu‖X2‖∂tv‖X2 + ‖u‖X4‖∂2

t v‖X1

� |||u|||4,2|||v|||3,2,
which implies the desired estimate in the case m = 2. We then consider the case m ≥ 3.

|||(u′v′)(t)|||†m �
∑

0≤ j≤m

∑
j1+ j2= j

‖(∂ j1
t u)′(∂ j2

t v)
′‖Ym− j .

We evaluate I( j1, j2; j) = ‖(∂ j1
t u)′(∂ j2

t v)
′‖Ym− j , where 0 ≤ j ≤ m and j1 + j2 = j. In the

following calculations, we use Lemma 3.12.
(i) The case j ≤ m − 3.

I( j1, j2; j) � ‖∂ j1
t u‖Xm+1− j‖∂ j2

t v‖Xm+1− j � |||u|||m+1,m|||v|||m+1,m.
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(ii) The case j = m − 2.

I( j1, j2; j) �

⎧⎪⎪⎨⎪⎪⎩
‖∂m−2

t u‖X3‖v‖X4 for j1 = j,

‖∂ j1
t u‖X4‖∂ j2

t v‖X3 for j1 ≤ j − 1

� |||u|||m+1,m|||v|||m+1,m.

(iii) The case j = m − 1,m.

I( j1, j2; j) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖∂ j

t u‖Xm+1− j‖v‖X4 for j1 = j,

‖u‖X4‖∂ j
t v‖Xm+1− j for j2 = j,

‖∂ j1
t u‖Xm+2− j‖∂ j2

t v‖Xm+2− j for j1, j2 ≤ j − 1

� |||u|||m+1,m|||v|||m+1,m.

These imply the desired estimate in the case m ≥ 3. �

Lemma 3.14 ([4, Lemma 4.11]). If τ|s=0 = 0, then we have

‖τu′′v′′‖Ym �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖τ′‖L2‖u‖X4‖v‖X3 for m = 0,

‖τ′‖L∞ min{‖u‖X4‖v‖X2 , ‖u‖X3‖v‖X3} for m = 0,

min{‖τ′‖L2‖u‖X4 , ‖τ′‖L∞‖u‖X3}‖v‖X4 for m = 1,

‖τ′‖L∞∩Xm−1‖u‖Xm+2‖v‖Xm+2 for m ≥ 2.

Lemma 3.15. If τ|s=0 = 0, then we have

|||τu′′v′′|||†m �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(‖τ′‖L∞ + ‖∂tτ

′‖L2 )|||u|||4,1|||v|||3,1 for m = 1,

‖(τ′, ∂tτ
′)‖L2 |||u|||4,1|||v|||4,1 for m = 1,

(‖∂m−2
t τ′‖L∞ + |||τ′|||m−1 + ‖∂m

t τ
′‖L2 )|||u|||m+2,m|||v|||m+2,m for m ≥ 2.

Proof. By Lemma 3.14, we see that

|||τu′′v′′|||†1 ≤ ‖τu′′v′′‖Y1 + ‖τ(∂tu)′′v′′‖Y0 + ‖τu′′(∂tv)′′‖Y0 + ‖(∂tτ)u′′v′′‖Y0

� ‖τ′‖L∞(‖u‖X4‖v‖X3 + ‖∂tu‖X3‖v‖X4 + ‖u‖X4‖∂tv‖X3 )

+ ‖∂tτ
′‖L2‖u‖X4‖v‖X3

� (‖τ′‖L∞ + ‖∂tτ
′‖L2 )|||u|||4,1|||v|||3,1

and that

|||τu′′v′′|||†1 � ‖τ′‖L2 (‖u‖X4‖v‖X4 + ‖∂tu‖X3‖v‖X3 + ‖u‖X4‖∂tv‖X2 )

+ ‖∂tτ
′‖L2‖u‖X4‖v‖X3

� ‖(τ′, ∂tτ
′)‖L2 |||u|||4,1|||v|||4,1,

which imply the desired estimate in the case m = 1. We then consider the case m ≥ 2.

|||τu′′v′′|||†m �
∑

0≤ j≤m

∑
j0+ j1+ j2= j

‖(∂ j0
t τ)(∂

j1
t u)′′(∂ j2

t v)
′′‖Ym− j .

We evaluate I( j0, j1, j2; j) = ‖(∂ j0
t τ)(∂

j1
t u)′′(∂ j2

t v)
′′‖Ym− j , where 0 ≤ j ≤ m and j0+ j1+ j2 = j.

In the following calculations, we use Lemma 3.14.
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(i) The case j ≤ m − 2.

I( j0, j1, j2; j) � ‖∂ j0
t τ
′‖L∞∩Xm−1− j‖∂ j1

t u‖Xm+2− j‖∂ j2
t v‖Xm+2− j

� (‖∂m−2
t τ′‖L∞ + |||τ′|||m−1)|||u|||m+2,m|||v|||m+2,m,

where we used ‖ f ‖L∞ � ‖ f ‖X2 .
(ii) The case j = m − 1.

I( j0, j1, j2; j) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖τ′‖L∞‖∂m−1

t u‖X3‖v‖X4 for j1 = j,

‖τ′‖L∞‖u‖X4‖∂m−1
t v‖X3 for j2 = j,

‖∂ j0
t τ
′‖L2‖∂ j1

t u‖X4‖∂ j2
t v‖X4 for j1, j2 ≤ j − 1

� (‖τ′‖L∞ + |||τ′|||m−1)|||u|||m+2,m|||v|||m+2,m.

(iii) The case j = m.

I( j0, j1, j2; j) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖τ′‖L∞‖∂m
t u‖X2‖v‖X4 for j1 = j,

‖τ′‖L∞‖u‖X4‖∂m
t v‖X2 for j2 = j,

‖τ′‖L∞‖∂ j1
t u‖X3‖∂ j2

t v‖X3 for j0 = 0, j1, j2 ≤ j − 1,

‖∂ j0
t τ
′‖L2‖∂ j1

t u‖X4‖∂ j2
t v‖X3 for j0 ≥ 1, j1 ≤ j2 ≤ j − 1,

‖∂ j0
t τ
′‖L2‖∂ j1

t u‖X3‖∂ j2
t v‖X4 for j0 ≥ 1, j2 ≤ j1 ≤ j − 1

� (‖τ′‖L∞ + |||τ′|||m−1 + ‖∂m
t τ
′‖L2 )|||u|||m+2,m|||v|||m+2,m.

By noting ‖τ′‖L∞ � ‖∂m−2
t τ′‖L∞ + |||τ′|||m−1, these imply the desired estimate in the case m ≥ 2.

�

Lemma 3.16. If τ|s=0 = 0, then we have

‖s 1
2 τu′′v′′‖L1 � min{‖τ′‖L∞‖u‖X2‖v‖X3 , ‖τ′‖L2‖u‖X2‖v‖X4 , ‖τ′‖L2‖u‖X3‖v‖X3}.

Proof. It is sufficient to note that |τ(s)| ≤ s1− 1
p ‖τ′‖Lp for 1 ≤ p ≤ ∞. �

4. Estimates for initial values and compatibility conditions I

4. Estimates for initial values and compatibility conditions I
We consider the initial boundary value problem (1.1). Let u be a smooth solution to the

problem (1.1) and put uin
j = (∂ j

t u)|t=0 for j = 0, 1, 2, . . .. By applying ∂ j
t to the hyperbolic

system in (1.1) and putting t = 0, we see that the {uin
j } are calculated inductively by

(4.1) uin
j+2 =

j∑
k=0

(
j
k

){
((∂ j−k

t A)|t=0(uin
k )′)′ + (∂ j−k

t Q)|t=0(uin
k )′(1)

}
+ (∂ j

t f )|t=0

for j = 0, 1, 2, . . .. Then, by applying ∂ j
t to the boundary condition in (1.1) and putting t = 0,

we obtain

(4.2) uin
j (1) = 0

for j = 0, 1, 2, . . .. These are necessary conditions that the data (uin
0 , u

in
1 , f ) should satisfy

for the existence of a regular solution to the problem (1.1) and are known as compatibility
conditions. To state the conditions more precisely, we need to evaluate the initial values
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{uin
j }. Although it is sufficient to evaluate ∂ j

t u only at time t = 0, we will evaluate them at
general time t.

Lemma 4.1. Let m ≥ 2 be an integer and assume that Assumptions 2.1 and 2.2 are
satisfied with a positive constant M0 and that f ∈ X m−2

T . Then, there exists a positive
constant C0 depending only on m and M0 such that if u is a solution to (1.1), then we have
|||u(t)|||m ≤ C0(|||u(t)|||m,1 + ||| f (t)|||m−2).

Proof. Let 0 ≤ j ≤ m − 2. It follows from (1.1) that

|||u|||m, j+2 ≤ |||u|||m,1 + |||ü|||m−2, j

≤ |||u|||m,1 + |||(Au′)′|||m−2, j + |||Qu′(1, t)|||m−2, j + ||| f |||m−2, j.

We note that by Assumption 2.1 we have A|s=0 = O. Therefore, by Lemmas 3.8 and 3.9 we
see that

|||(Au′)′|||m−2, j �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖A′‖L∞|||u|||m, j for m = 2,

‖A′‖X2 |||u|||m, j for m = 3, j = 0,

|||A′|||2,1|||u|||m, j for m = 3, j = 1,

|||A′|||m−2, j|||u|||m, j for m ≥ 4

� |||u|||m, j.
By the standard Sobolev embedding theorem, we see also that

|||Qu′(1, t)|||m−2, j � |||Q|||m−2

j∑
k=0

‖∂k
t u‖X2 � |||u|||m, j.

Therefore, we get |||u|||m, j+2 � |||u|||m, j + ||| f |||m−2 for 0 ≤ j ≤ m − 2. Using this inductively on
j, we obtain the desired estimate. �

Under the same assumptions in Lemma 4.1, we see that if the initial data satisfy uin
j ∈

Xm− j for j = 0, 1, then the initial values {uin
j } satisfy uin

j ∈ Xm− j for j = 0, 1, . . . ,m, so that
their boundary values uin

j (1) are defined for j = 0, 1, . . . ,m − 1.

Definition 4.2. Let m ≥ 1 be an integer. We say that the data (uin
0 , u

in
1 , f ) for the initial

boundary value problem (1.1) satisfy the compatibility conditions up to order m − 1 if (4.2)
holds for any j = 0, 1, . . . ,m − 1.

5. Energy estimates

5. Energy estimates
Difficulties showing a well-posedness of the initial boundary value problem (1.1) is

caused not only by the degeneracy of the matrix A(s, t) at the end s = 0 but also by the
localized term Q(s, t)u′(1, t). The first difficulty could be overcome by using weights in
the norm of Sobolev spaces, see Takayama [17], whereas the second one will be treated by
regularizing the hyperbolic system. In this paper, we adopt the regularized problem (1.2).
As we will see later, in the case ε > 0 the regularized term εsu̇′ makes the localized term
Q(s, t)u′(1, t) to be of lower order. Before giving energy estimates for the solution, we recall
the following lemma.
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Lemma 5.1 ([4, Lemma 6.1]). Let M0 be a positive constant. There exists a constant
C0 = C(M0) > 1 such that if a symmetric matrix A(s) satisfies M−1

0 sId ≤ A(s) ≤ M0sId and
|A′(s)| ≤ M0 for s ∈ [0, 1], then we have the equivalence

C−1
0 (‖su′′‖2L2 + ‖u′‖2L2 ) ≤ ‖(Au′)′‖2L2 ≤ C0(‖su′′‖2L2 + ‖u′‖2L2 ).

The following proposition gives a basic energy estimate for the solution of the problem
(1.2).

Proposition 5.2. Let T , M0, and M1 be positive constants and suppose that Assumption
2.1 is satisfied and that f ∈ C0([0, T ]; L2) and ∂t f ∈ L1(0, T ; L2). Then, there exist positive
constants C0 = C0(M0) and γ1 = γ1(M0,M1) such that the solution u ∈X 2,∗

T to the problem
(1.2) satisfies an additional regularity εu′|s=1 ∈ H1(0, T ) and an energy estimate

Iγ,t(|||u(·)|||2) +
√
ε|u′(1, ·)|H1

γ(0,t) ≤ C0

{
‖u(0)‖X2 + ‖u̇(0)‖X1 + ‖ f (0)‖L2 + S∗γ,t(‖∂t f (·)‖L2 )

}(5.1)

for any t ∈ [0, T ], γ ≥ γ1, and ε ∈ [0, 1].

Proof. In the following calculations, we simply denote by C0 the constant depending only
on M0 and by C1 the constant depending also on M1. These constants may change from line
to line.

We first suppose that the solution u satisfies u ∈ C2([0, T ]; X2). Then, we see that

d
dt

{
(Au̇′, u̇′)L2 + ‖(Au′)′‖2L2

}
− {

((∂tA)u̇′, u̇′)L2 + 2(((∂tA)u′)′, (Au′)′)L2
}

= 2(Au̇′, ü′)L2 + 2((Au̇′)′, (Au′)′)L2

= −2((Au̇′)′, ü − (Au′)′)L2

= −2((Au̇′)′, εsu̇′ + Qu′(1, t) + f )L2 ,

where we used the boundary condition ü|s=1 = 0. Here, by integration by parts we have

2((Au̇′)′, su̇′)L2 = (u̇′ · Au̇′)|s=1 − (u̇′, (A − sA′)u̇′)L2 .

We see also that

((Au̇′)′,Qu′(1, t) + f )L2 = ((Au̇′)′, sQu′ + f )L2 + ((Au̇′)′,Q(u′(1, t) − su′))L2

=
d
dt

((Au′)′, sQu′ + f )L2 − (((∂tA)u′)′, sQu′ + f )L2

− ((Au′)′, ∂t(sQu′ + f ))L2 − (Au̇′, (Q(u′(1, t) − su′))′)L2 .

In view of these identities, we introduce an energy functional E2(t) by

E2(t) = (Au̇′, u̇′)L2 + ‖(Au′)′‖2L2 + 2((Au′)′, sQu′ + f )L2 + λ(‖u̇‖2L2 + ‖u‖2X1 ),

where λ > 0 is a parameter. By Lemma 5.1, it is easy to check that there exists a sufficiently
large λ0 = λ(M0) such that if we choose λ = λ0, then we have

(5.2)

⎧⎪⎪⎨⎪⎪⎩
E2(t) ≤ C0(|||u(t)|||22,∗ + ‖ f (t)‖2L2 ),

|||u(t)|||22,∗ ≤ C0(E2(t) + ‖ f (t)‖2L2 )

for 0 ≤ t ≤ T . Moreover, we have
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d
dt

E2(t) + ε(u̇′ · Au̇′)|s=1 = ((∂tA)u̇′, u̇′)L2 + 2(((∂tA)u′)′, (Au′)′ + sQu′ + f )L2

+ 2((Au′)′, ∂t(sQu′ + f ))L2 + 2(Au̇′, (Q(u′(1, t) − su′))′)L2

+ ε(u̇′, (A − sA′)u̇′)L2 + λ
d
dt

(‖u̇‖2L2 + ‖u‖2X1 )

≤ C1(|||u(t)|||22,∗ + |||u(t)|||2,∗‖ f (t)‖L2 ) +C0|||u(t)|||2,∗‖ ḟ (t)‖L2 ,

where we used Lemma 5.1 together with |∂tA(s, t)| ≤ M1s, which comes directly from
Assumption 2.1. Therefore, for any γ > 0 we have

d
dt
{e−2γtE2(t)} + 2γe−2γtE2(t) + εM−1

0 e−2γt|u̇′(1, t)|2

≤ e−2γt{C1(|||u(t)|||22,∗ + |||u(t)|||2,∗‖ f (t)‖L2 ) +C0|||u(t)|||2,∗‖ ḟ (t)‖L2}.
Integrating this with respect to t and using (5.2), | f |L2

γ(0,t) ≤ γ−
1
2 Iγ,t( f ), and∣∣∣∣∣∣

∫ t

0
e−2γt′ f (t′)ϕ(t′)dt′

∣∣∣∣∣∣ ≤ Iγ,t( f )S∗γ,t(ϕ),

we obtain

e−2γt|||u(t)|||22,∗ + 2γ
∫ t

0
e−2γt′ |||u(t′)|||22,∗dt′ + ε|u̇′(1, ·)|2L2

γ(0,t)

≤ C0{|||u(0)|||22,∗ + Iγ,t(‖ f (·)‖L2 )2 + Iγ,t(|||u(·)|||2,∗)S∗γ,t(‖ ḟ (·)‖L2 )}
+ γS∗γ,t(‖ f (·)‖L2 )2 +C1γ

−1Iγ,t(|||u(·)|||2,∗)2.

As was shown by Iguchi and Lannes [3, Lemma 2.16], we have also

(5.3)

⎧⎪⎪⎨⎪⎪⎩
γS∗γ,t(‖ f (·)‖L2 ) ≤ Iγ,t(‖ f (·)‖L2 ) ≤ C(‖ f (0)‖L2 + S∗γ,t(‖ ḟ (·)‖L2 )),

|u′(1, t)|L2
γ(0,t) ≤ C(γ−

1
2 |u′(1, 0)| + γ−1|u̇′(1, t)|L2

γ(0,t))

with an absolute constant C > 0. Therefore, by choosing γ1 so large that C1γ
−1
1 ≤ 1

2 , we
obtain

Iγ,t(|||u(·)|||2,∗) +
√
ε|u′(1, ·)|H1

γ(0,t) ≤ C0{|||u(0)|||2,∗ + ‖ f (0)‖L2 + S∗γ,t(‖ ḟ (·)‖L2 )}.
By using the hyperbolic system for u, we have ‖ü‖L2 ≤ C0(|||u|||2,∗ + ‖ f‖L2 ). These estimates
imply the desired one.

In the case u ∈ X 2,∗
T , we use a mollifier ρε∗ with respect to t with a kernel ρε(t) = 1

ε
ρ( t
ε
)

satisfying ρ ∈ C∞0 (R), supp ρ ⊂ (−1, 0), and
∫
R
ρ(t)dt = 1. The procedure is standard so we

omit the details. �

We then prepare estimates for the solution u to the problem (1.1), which convert spatial
derivatives into time derivatives by using the hyperbolic system in (1.1).

Lemma 5.3. Let T and M0 be positive constants and m ≥ 2 an integer. Suppose that
Assumptions 2.1 and 2.2 are satisfied and that f ∈ X m−2,∗

T in the case m ≥ 3. Then, there
exists a positive constant C0 = C0(m,M0) such that the solution u ∈ X m,∗

T to the problem
(1.2) satisfies

|||u(t)|||m ≤ C0
(|||∂m−2

t u(t)|||2 + |||u(t)|||m−1 + ||| f (t)|||m−2,∗
)
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for any t ∈ [0, T ], where we use a notational convention |||·|||0,∗ = 0.

Proof. It is sufficient to evaluate ‖∂m− j
t u‖X j for 3 ≤ j ≤ m. To this end, we use the identity

‖∂m− j
t u‖2X j = ‖∂m− j

t u‖2L2 + ‖∂m− j
t u′‖2X j−2 + ‖s j

2 ∂
j
s∂

m− j
t u‖2L2 .(5.4)

Obviously, we have ‖∂m− j
t u‖L2 ≤ |||u|||m−1. To evaluate the second term in the right-hand

side, we introduce a matrix valued function A0(s, t) = 1
s A(s, t) = M (A′(·, t))(s), which is

symmetric and satisfies ⎧⎪⎪⎨⎪⎪⎩
M−1

0 Id ≤ A0(s, t) ≤ M0Id,

|||A0(t)|||m−2 + |||A0(t)|||2,∗ ≤ 2M0

for any (s, t) ∈ (0, 1) × (0, T ), where we used Lemma 3.10 to derive the above estimates.
Therefore, by Lemma 3.6 we obtain |||A−1

0 (t)|||m−2 + |||A−1
0 (t)|||2,∗ ≤ C0 with a constant C0

depending only on m and M0. Moreover, by the hyperbolic system in (1.2) we have u′ =
A−1

0 M F with F = ü − (Qu′(1, t) + εsu̇′ + f ), so that by Lemmas 3.3, 3.5, and 3.10

‖∂m− j
t u′‖X j−2 �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖F‖X1 for m = j = 3,

‖∂t F‖X1 + ‖M F‖X2 for m = 4, j = 3,

‖∂m− j
t F‖X j−2 + |||F|||m−3 for m ≥ 5, j = 3 or m ≥ j ≥ 4

(5.5)

� ‖∂m−( j−2)
t u‖X j−2 + ‖∂m−( j−1)

t u‖X j−1 + |||u|||m−1 + ||| f |||m−2,∗,

where we used the identity M (su̇′) = u̇−M u̇ to evaluate ‖M F‖X2 in the case m = 4, j = 3.
We proceed to evaluate the highest order term in (5.4). Applying ∂ j−2

s ∂
m− j
t to the hyper-

bolic system in (1.2), we obtain

s|∂ j
s∂

m− j
t u| � |[∂ j−1

s , A]∂m− j
t u′| + |∂ j−2

s ([∂m− j
t , A]u′)′|

+ |∂ j−2
s ∂

m− j
t (ü − (Qu′(1, t) + εsu̇′ + f ))|.

Therefore, by Lemmas 3.7 we obtain

‖s j
2 ∂

j
s∂

m− j
t u‖L2 � ‖s j−2

2 [∂ j−1
s , A]∂m− j

t u′‖L2 + ‖s j−2
2 ∂

j−2
s ([∂m− j

t , A]u′)′‖L2(5.6)

+ ‖s j−2
2 ∂

j−2
s ∂

m− j
t (ü − (Qu′(1, t) + εsu̇′ + f ))‖L2

� ‖A′‖X j−2∨2‖∂m− j
t u′‖X j−2 + ‖([∂m− j

t , A]u′)′‖X j−2

+ ‖∂m− j
t (ü − (Qu′(1, t) + εsu̇′ + f )‖X j−2 .

As for the second term in the right-hand side, it is sufficient to evaluate it in the case 3 ≤ j ≤
m − 1. In the case m ≥ 5 we see that

‖([∂m− j
t , A]u′)′‖X j−2 � ‖((∂m− j

t A)u′)′‖X j−2 +
∑

j1+ j2=m− j−2

‖((∂ j1+1
t A)(∂ j2+1

t u)′)′‖X j−2

� ‖∂m− j
t A′‖X j−2‖u‖X j∨4 +

∑
j1+ j2=m− j−2

‖∂ j1+1
t A′‖X j−2∨2‖∂ j2+1

t u‖X j

� |||A′|||m−2|||u|||m−1.

In the case m = 4 we may assume j = 3 so that by (3.2) we evaluate it as ‖([∂m− j
t , A]u′)′‖X j−2

= ‖((∂tA)u′)′‖X1 � ‖∂tA′‖X1‖u′‖X2 . To evaluate ‖u′‖X2 we modify (5.5) slightly to get
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‖u′‖X2 � ‖∂2
t u‖X2 + |||u|||3 + ||| f |||2,∗. The last term in (5.6) can be easily evaluated so that

we get

‖s j
2 ∂

j
s∂

m− j
t u‖L2 � ‖∂m−( j−2)

t u‖X j−2 + ‖∂m−( j−1)
t u‖X j−1 + ‖∂m− j

t u′‖X j−2 + |||u|||m−1 + ||| f |||m−2,∗.

Summarizing the above estimates, we obtain

‖∂m− j
t u‖X j � ‖∂m−( j−2)

t u‖X j−2 + ‖∂m−( j−1)
t u‖X j−1 + |||u|||m−1 + ||| f |||m−2,∗

for 3 ≤ j ≤ m. Using this inductively, we finally obtain the desired estimate. �

The following proposition gives higher order energy estimates for the solution of the
problem (1.2).

Proposition 5.4. Let T , M0, and M1 be positive constants and m ≥ 2 an integer. Suppose
that Assumptions 2.1 and 2.2 are satisfied and that f ∈ X m−2

T and ∂m−1
t f ∈ L1(0, T ; L2).

Then, there exist positive constants C0 = C0(m,M0) and γ1 = γ1(m,M0,M1) such that
the solution u ∈ X m,∗

T to the problem (1.2) satisfies an additional regularity εu′|s=1 ∈
Hm−1(0, T ) and an energy estimate

Iγ,t(|||u(·)|||m) +
√
ε|u′(1, ·)|Hm−1

γ (0,t)(5.7)

≤ C0

{
‖u(0)‖Xm + ‖u̇(0)‖Xm−1 + Iγ,t(||| f (·)|||m−2) + S∗γ,t(‖∂m−1

t f (·)‖L2 )
}

for any t ∈ [0, T ], γ ≥ γ1, and ε ∈ [0, 1].

Proof. In the following calculations, we simply denote by C0 the constant depending only
on M0 and by C1 the constant depending also on M1. These constants may change from line
to line. Putting u = ∂m−2

t u, we see that u solves

(5.8)

⎧⎪⎪⎨⎪⎪⎩
ü = (Au′)′ + Qu′(1, t) + εsu̇′ + f m in (0, 1) × (0, T ),

u = 0 on {s = 1} × (0, T ),

where f m = ∂
m−2
t f + ([∂m−2

t , A]u′)′ + [∂m−2
t ,Q]u′(1, t). Applying Proposition 5.2 we obtain

Iγ,t(|||∂m−2
t u(·)|||2) +

√
ε|∂m−2

t u′(1, ·)|H1
γ(0,t)

≤ C0

{
|||∂m−2

t u(0)|||2,∗ + ‖ f m(0)‖L2 + S∗γ,t(‖∂t f m(·)‖L2 )
}
.

Here, by the first equation in (5.8) together with Lemmas 3.3 and 3.8 we get ‖ f m(0)‖L2 ≤
C0|||u(0)|||m. By Lemma 3.11 we get also ‖∂t f m‖L2 ≤ ‖∂m−1

t f‖L2 + C1|||u|||m. These estimates
and Lemma 5.3 imply

Iγ,t(|||u(·)|||m) +
√
ε|∂m−2

t u′(1, ·)|H1
γ(0,t)

≤ C0

{
|||u(0)|||m + Iγ,t(||| f (·)|||m−2) + Iγ,t(|||u(·)|||m−1) + S∗γ,t(‖∂m−1

t f (·)‖L2 )
}
+C1S∗γ,t(|||u(·)|||m).

As was shown by Iguchi and Lannes [3, Lemma 2.16], we have also⎧⎪⎪⎨⎪⎪⎩
Iγ,t(|||u(·)|||m−1) ≤ C(|||u(0)|||m + S∗γ,t(|||u(·)|||m),

|u′(1, t)|Hm−2
γ (0,t) ≤ C(γ−

1
2 |||u(0)|||m + γ−1|u′(1, t)|Hm−1

γ (0,t))

with an absolute constant C > 0. Since S∗γ,t(|||u(·)|||m) ≤ γ−1Iγ,t(|||u(·)|||m), by choosing γ1 so
large that C1γ

−1
1 � 1 we obtain
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Iγ,t(|||u(·)|||m) +
√
ε|u′(1, ·)|Hm−1

γ (0,t) ≤ C0

{
|||u(0)|||m + Iγ,t(||| f (·)|||m−2) + S∗γ,t(‖∂m−1

t f (·)‖L2 )
}

for any t ∈ [0, T ], γ ≥ γ1, and ε ∈ [0, 1]. This estimate and Lemma 4.1 give the desired one.
�

6. Existence of solutions I

6. Existence of solutions I
In this section we prove Theorem 2.3. To this end, we first consider the initial boundary

value problem to the regularized system (1.2) in the case Q = O, that is,

(6.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ü = (A(s, t)u′)′ + εsu̇′ + f (s, t) in (0, 1) × (0, T ),

u = 0 on {s = 1} × (0, T ),

(u, u̇)|t=0 = (uin
0 , u

in
1 ) in (0, 1),

with a degenerate but smooth coefficient A and a regularizing parameter ε ∈ R. The com-
patibility conditions for the data (uin

0 , u
in
1 , f ) can be defined similarly to Definition 4.2.

Proposition 6.1. Let m ≥ 2 be an integer and assume that A ∈ C∞((0, 1) × (0, T )) is
symmetric and satisfies M−1

0 sId ≤ A(s, t) ≤ M0sId for any (s, t) ∈ (0, 1) × (0, T ) with a
positive constant M0. Then, for any data uin

0 ∈ Xm, uin
1 ∈ Xm−1, f ∈ X m−2

T satisfying
∂m−1

t f ∈ L1(0, T ; L2) and the compatibility conditions up to order m − 1, there exists a
unique solution u ∈ X m

T to the initial boundary value problem (6.1). If, in addition, ε > 0,
then the solution satisfies u′|s=1 ∈ Hm−1(0, T ).

Proof. This proposition can be proved along with the proof of Takayama [17, Theorem
2.1] as follows. Let u be a solution to (6.1) and put U(x, t) = u�(x, t) = u(x2

1 + x2
2, t) for

(x, t) ∈ D × (0, T ). Then, the problem (6.1) is transformed into the initial boundary value
problem

(6.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t U =

∑
j=1,2

(
1
4
∂x j(A

�
0(x, t)∂x jU) +

1
2
εx j∂x j∂tU

)
+ f �(x, t) in D × (0, T ),

U = 0 on ∂D × (0, T ),

(U, ∂tU)|t=0 = (Uin
0 ,U

in
1 ) in D,

where A0(s, t) = 1
s A(s, t) = (M A(·, t))(s) and Uin

j = (uin
j )� for j = 1, 2. By Lemma

3.1, we see that Uin
0 ∈ Hm(D), Uin

1 ∈ Hm−1(D), f � ∈ ⋂m−2
j=1 C j([0, T ]; Hm−2− j(D)) satisfy

∂m−1
t f � ∈ L1(0, T ; L2(D)) and compatibility conditions up to order m − 1. Since the coeffi-

cient matrix A�0 is strictly positive, it is classical to show the existence of a unique solution
U ∈ ⋂m

j=0 C j([0, T ]; Hm− j(D)) to (6.2), which is radially symmetric; for a general theory
of initial boundary value problems of hyperbolic systems, see, for example, Benzoni and
Serre [1, Chapter 9], Métivier [10, Chapter 2], Rauch and Massey [13, Theorem 3.1], and
Schochet [16, Theorem A1]. Therefore, we can define u(s, t) by u� = U. Then, by Lemma
3.1 we see that u ∈ X m

T and that u is a unique solution to (6.1). Moreover, by Proposition
5.4 we have u′(1, ·) ∈ Hm−1(0, T ) if ε > 0. �

We then consider the problem (1.2) with a localized term Q(s, t)u′(1, t). We still assume
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that the coefficient matrices A and Q are both smooth. Here, ε ∈ (0, 1] is fixed so that we
denote the initial data by (uin

0 , u
in
1 ).

Proposition 6.2. Let m ≥ 2 be an integer ε ∈ (0, 1] and assume that A,Q ∈
C∞((0, 1) × (0, T )) and that A(s, t) is symmetric and satisfies M−1

0 sId ≤ A(s, t) ≤ M0sId
for any (s, t) ∈ (0, 1) × (0, T ) with a positive constant M0. Then, for any data uin

0 ∈ Xm,
uin

1 ∈ Xm−1, f ∈ X m−2
T satisfying ∂m−1

t f ∈ L1(0, T ; L2) and the compatibility conditions up
to order m− 1, there exists a unique solution u ∈X m

T to the initial boundary value problem
(1.2) satisfying u′|s=1 ∈ Hm−1(0, T ).

Proof. We first consider the case where the data satisfy additional regularities uin
0 ∈ Xm+1,

uin
1 ∈ Xm, and f ∈ X m−1

T . Let u be a smooth solution to (1.2) and put uin
j = (∂ j

t u)|t=0 for
j = 0, 1, . . . ,m + 1. Then, {uin

j }m+1
j=0 are calculated from the data by a similar recurrence

formula to (4.1) and satisfy uin
j ∈ Xm+1− j for j = 0, 1, . . . ,m+1. Therefore, we can construct

u(0) ∈ X m+1
T which satisfies (∂ j

t u(0))|t=0 = uin
j for j = 0, 1, . . . ,m + 1. Particularly, we have

(∂su(0))|s=1 ∈ Hm−1(0, T ). We proceed to construct a sequence of approximate solutions
{u(n)}∞n=0. Suppose that u(n) ∈X m

T is given so that

(6.3)

⎧⎪⎪⎨⎪⎪⎩
(∂ j

t u(n))|t=0 = uin
j for j = 0, 1, . . . ,m,

(∂su(n))|s=1 ∈ Hm−1(0, T ),

and consider the initial boundary value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ü = (A(s, t)u′)′ + εsu̇′ + f (n)(s, t) in (0, 1) × (0, T ),

u = 0 on {s = 1} × (0, T ),

(u, u̇)|t=0 = (uin
0 , u

in
1 ) in (0, 1),

where f (n) = Q(∂su(n)|s=1) + f . It is easy to see that f (n) ∈ X m−2
T , ∂m−1

t f (n) ∈ L1(0, T ; L2),
and that the data (uin

0 , u
in
1 , f (n)) satisfy the compatibility conditions up to order m− 1. There-

fore, by Proposition 6.1 the above problem has a unique solution u ∈ X m
T satisfying (6.3).

Denoting this solution by u(n+1), we have constructed the approximate solutions {u(n)}∞n=0. In
order to see a convergence of these approximate solutions, we put u(n) = u(n+1) − u(n), which
solves ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ü(n+1) = (A(s, t)u(n+1)′)′ + εsu̇(n+1)′ + Q(s, t)u(n)′(1, t) in (0, 1) × (0, T ),

u(n+1) = 0 on {s = 1} × (0, T ),

(u(n+1), u̇(n+1))|t=0 = (0, 0) in (0, 1).

By Proposition 5.4, we see that

Iγ,T (|||u(n+1)(·)|||m) +
√
ε|u(n+1)′(1, ·)|Hm−1

γ (0,T )

� Iγ,T (|||Q(u(n)′|s=1)|||m−2) + S∗γ,T (‖∂m−1
t (Q(u(n)′|s=1))‖L2 )

�
m−2∑
j=0

Iγ,T (|∂ j
t u

(n)′(1, ·)|) +
m−1∑
j=0

S∗γ,T (|∂ j
t u

(n)′(1, ·)|)

� γ−
1
2 |u(n)′(1, ·)|Hm−1

γ (0,T ),

where we used Iγ,t(|u|) ≤ C(|u(0)| + S∗γ,t(|∂tu|) and (2.3); see [3, Lemma 2.16]. Therefore, by
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choosing γ so large that γ−
1
2 � √ε we obtain

Iγ,T (|||u(n+1)(·)|||m) +
√
ε|u(n+1)′(1, ·)|Hm−1

γ (0,T ) ≤
1
2
√
ε|u(n)′(1, ·)|Hm−1

γ (0,T )

for any n = 0, 1, . . .. This ensures that {u(n)}∞n=0 and {u(n)′|s=1}∞n=0 converge in X m
T and

Hm−1(0, T ), respectively, so that the limit u is the desired solution.
We then consider the case without any additional regularities on the data. By using the

method in [13] we can construct a sequence of approximate data {(uin(n)
0 , uin(n)

1 , f (n))}∞n=1,
which satisfy the additional regularities uin(n)

0 ∈ Xm+1, uin(n)
1 ∈ Xm, f (n) ∈ X m−1

T , and com-
patibility conditions up to order m − 1, and converge to the original data (uin

0 , u
in
1 , f ) in the

corresponding spaces stated in the proposition. Then, for each n ∈ N there exists a unique
solution u(n) ∈ X m

T to the problem corresponding to the approximate data. By the linearity
of the problem and by Proposition 5.4, we see that {u(n)}∞n=0 and {u(n)′|s=1}∞n=0 converge in
X m

T and Hm−1(0, T ), respectively, so that the limit u is the desired solution. �

We are ready to prove one of our main results in this paper, that is, Theorem 2.3.

Proof of Theorem 2.3. Once a solution u ∈ X m
T to the problem (1.1) is obtained,

the energy estimate (2.4) follows from Proposition 5.4. Since Assumption 2.2 (iii) is just
imposed to exhibit how the constants C0 and γ1 in (2.4) depends on norms of the coefficients
A and Q, it is sufficient to show the existence of a solution u ∈ X m

T under Assumptions 2.1
and 2.2 (i)–(ii). The proof consists of 4 steps and proceeds in a similar way as the proof of
[16, Theorem A1].
Step 1. We assume additionally that A,Q ∈ C∞((0, 1) × (0, T )) and that the data satisfy
additional regularities uin

0 ∈ Xm+1, uin
1 ∈ Xm, f ∈ X m

T , and compatibility conditions up to
order m to the problem (1.1). Let 0 < ε ≤ 1 and consider the regularized problem (1.2). We
note that the data (uin

0 , u
in
1 , f ) do not necessarily satisfy the compatibility conditions to the

regularized problem (1.2). However, by using the method in [13] we can construct initial
data (uin,ε

0 , u
in,ε
1 ) ∈ Xm+1 × Xm of the problem (1.2) so that the modified data (uin,ε

0 , u
in,ε
1 , f )

satisfy compatibility conditions up to order m and that the modified initial data converge to
the original ones in Xm+1 × Xm as ε → +0. Then, by Proposition 6.2 there exists a unique
solution uε ∈ X m+1

T of the regularized problem (1.2). Moreover, by Proposition 5.4 the
solutions {uε}0<ε≤1 satisfy the uniform bound |||uε(t)|||m ≤ C for any t ∈ [0, T ] and ε ∈ (0, 1]
with a constant C independent of t and ε. In order to see the convergence of these solutions
as ε→ +0, we put uε,η = uε − uη, which solves⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

üε,η = (A(s, t)uε,η′)′ + Q(s, t)uε,η′(1, t) + f ε,η(s, t) in (0, 1) × (0, T ),

uε,η = 0 on {s = 1} × (0, T ),

(uε,η, u̇ε,η)|t=0 = (uin,ε
0 − uin,η

0 , u
in,ε
1 − uin,η

1 ) in (0, 1),

where f ε,η = εsu̇ε′ − ηsu̇η′. Therefore, by Proposition 5.4 and Lemma 3.3 we obtain

Iγ,T (|||(uε − uη)(·)|||m) � ‖uin,ε
0 − uin,η

0 ‖Xm + ‖uin,ε
1 − uin,η

1 ‖Xm−1 + Iγ,T (||| f ε,η(·)|||m−1)

� ‖uin,ε
0 − uin,η

0 ‖Xm + ‖uin,ε
1 − uin,η

1 ‖Xm−1 + εIγ,T (|||uε(·)|||m) + ηIγ,T (|||uη(·)|||m)

→ 0 as ε, η→ +0,
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which shows that {uε}0<ε≤1 converges in X m
T and the limit u is the desired solution.

Step 2. We still assume that A,Q ∈ C∞((0, 1) × (0, T )) but do not assume any additional
regularities on the data (uin

0 , u
in
1 , f ). Then, as before we can construct a sequence of regular

approximate data {(uin(n)
0 , uin(n)

1 , f (n))}∞n=1, which satisfies the additional regularities stated in
Step 1 and converges to the original data in the corresponding spaces. Then, by the result in
Step 1, for each n ∈ N there exists a unique solution u(n) ∈X m

T to the problem corresponding
to the approximate data. By the linearity of the problem and by Proposition 5.4, we see that
{u(n)}∞n=0 converges in X m

T , so that the limit u is the desired solution.

Step 3. We will prove Theorem 2.3 in the case m ≥ 3 without any additional regulari-
ties on the coefficients and the data. We first approximate the coefficient matrices A and
Q by smooth ones {A(n)}∞n=1 and {Q(n)}∞n=1, which satisfy A(n),Q(n) ∈ C∞((0, 1) × (0, T )) and
conditions in Assumptions 2.1 and 2.2 with M0 and M1 replaced by 2M0 and 2M1, respec-
tively. Moreover, {A(n)′}∞n=1 and {Q(n)}∞n=1 converge to A′ and Q in X m−2

T ∩X 2,∗
T and X m−2

T ,
respectively. We then consider the initial boundary value problem

(6.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ü = (A(n)(s, t)u′)′ + Q(n)(s, t)u′(1, t) + f (s, t) in (0, 1) × (0, T ),

u = 0 on {s = 1} × (0, T ),

(u, u̇)|t=0 = (uin(n)
0 , uin(n)

1 ) in (0, 1),

where the initial data (uin(n)
0 , uin(n)

1 ) ∈ Xm × Xm−1 can be constructed so that the data (uin(n)
0 ,

uin(n)
1 , f ) for the above problem satisfy the compatibility conditions up to order m − 1 and

converge to (uin
0 , u

in
1 ) in Xm × Xm−1 as n → ∞. Then, by the result in Step 2, for each

n ∈ N the above problem has a unique solution u(n) ∈ X m
T . Moreover, by Proposition

5.4 these solutions satisfy the uniform bound |||u(n)(t)|||m ≤ C for any t ∈ [0, T ] and n ∈ N
with a constant C independent of t and n. On the other hand, by Lemma 3.1 we see that
the embedding X j+1 ↪→ X j is compact so that by the Aubin–Lions lemma the embedding
X m

T ↪→ X m−1
T is also compact. Therefore, {u(n)}∞n=1 has a subsequence which converges u

in X m−1
T . Obviously, u is a unique solution to (1.1); we note here that this is the only place

where the case m = 2 is excluded. As a result, without taking a subsequence, {u(n)}∞n=1 itself
converges u in X m−1

T . Moreover, by standard compactness arguments we have also

∂
j
t u ∈ L∞(0, T ; Xm− j) ∩Cw([0, T ]; Xm− j)

for j = 0, 1, . . . ,m. It remains to show that this weak continuity in time can be replaced by
the strong continuity. To this end, we use the technique used by Majda [7, Chapter 2.1] and
Majda and Bertozzi [8, Chapter 3.2], that is, we make use of the energy estimate. For the
approximate solution u(n), we define an energy functional E (n)

m (t) by

E (n)
m (t) = (A(n)∂m−1

t u(n)′, ∂m−1
t u(n)′)L2 + ‖(A(n)∂m−2

t u(n)′)′‖2L2

+ 2((A(n)∂m−2
t u(n)′)′, sQ(n)∂m−2

t u(n)′ + f (n)
m )L2 ,

where f (n)
m = ∂m−2

t f + ([∂m−2
t , A(n)]u(n)′)′ + [∂m−2

t ,Q(n)]u(n)′(1, t). Then, as in the proof of
Propositions 5.2 and 5.4 we obtain E (n)

m (t) = E (n)
m (t0) +

∫ t
t0

F(n)
m (t′)dt′, where F(n)

m satisfies

|F(n)
m (t)| ≤ C(‖(∂m−1

t f , ∂m−2
t f )(t)‖L2 + 1) with a constant C independent of n and t. Passing

to the limit n → ∞ to this energy identity, we see that the corresponding energy functional
Em(t) for the solution u is continuous in t. This fact together with the weak continuity
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implies that ∂m−1
t u ∈ C([0, T ]; X1) and ∂m−2

t u ∈ C([0, T ]; X2). Then, by using the hyperbolic
system we obtain ∂m

t u ∈ C([0, T ]; L2). Finally, as in the proof of Lemma 5.3 we can show
∂

m− j
t u ∈ C([0, T ]; X j) inductively on j = 3, 4, . . . ,m.

Step 4. We will prove Theorem 2.3 in the case m = 2. We first note that the condi-
tions in Assumptions 2.1 and 2.2 (i)–(ii) in the cases m = 2 and m = 3 are exactly the
same. As before, we approximate the data (uin

0 , u
in
1 , f ) by a sequence of more regular data

{(uin(n)
0 , uin(n)

1 , f (n))}∞n=1, which satisfies the conditions in the case m = 3 and converges to the
original data in the corresponding spaces. Then, by the result in Step 3, for each n ∈ N there
exists a unique solution u(n) ∈ X 3

T to the problem corresponding to the approximate data.
By the linearity of the problem and by Proposition 5.2, we see that {u(n)}∞n=0 converges in
X 2

T , so that the limit u is the desired solution. �

7. Two-point boundary value problem

7. Two-point boundary value problem
We proceed to consider the linearized system (1.5) and (1.6) for the motion of an inex-

tensible hanging string. The solution ν of the two-point boundary value problem (1.6) can
be decomposed as a sum of a principal part νp and a lower order part νl. The principal part
νp can be written explicitly as (1.7), so that the lower order part νl satisfies

(7.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−ν′′l + |x′′|2νl = 2ẋ′ · ẏ′ − 2(x′′ · y′′)τ + h in (0, 1) × (0, T ),

νl = 0 on {s = 0} × (0, T ),

ν′l = −2ẋ′ · ẏ + 2(x′′ · y′)τ on {s = 1} × (0, T ).

Note that from (1.7) and (1.8), the boundary condition of νl on {s = 1} × (0, T ) is naturally
ν′l = 2(x′′ · y′)τ. However, this boundary condition can be written as the last boundary
condition in (7.1), since y = 0 on {s = 1} × (0, T ), which comes from (1.5). Here, we adopt
(7.1) to facilitate later analysis. In view of (7.1) and (1.8), we first consider the two-point
boundary value problem

(7.2)

⎧⎪⎪⎨⎪⎪⎩
−ν′′ + |x′′|2ν = h in (0, 1),

ν(0) = 0, ν′(1) = a,

where h is a given function and a is a constant.

Lemma 7.1 ([4, Lemma 3.7]). For any M > 0 there exists a constant C = C(M) > 0 such
that if ‖s 1

2 x′′‖L2 ≤ M, then the solution ν to the boundary value problem (7.2) satisfies

‖sαν′‖Lp ≤ C(|a| + ‖sα+ 1
p h‖L1 )

for any p ∈ [1,∞] and any α ≥ 0 satisfying α + 1
p ≤ 1.

The estimate in this lemma is not sufficient to guarantee that the solution νl of (7.1) is in
fact a lower order term. In order to show that νl is of lower order, we need to consider the
two-point boundary value problem

(7.3)

⎧⎪⎪⎨⎪⎪⎩
−ν′′ + |x′′|2ν = hI − h′II in (0, 1),

ν(0) = 0, ν′(1) = a + hII(1),

where hI and hII are given functions and a is a constant.
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Lemma 7.2. For any M > 0 there exists a constant C = C(M) > 0 such that if ‖s 1
2 x′′‖L2 ≤

M, then the solution ν to the boundary value problem (7.3) satisfies

‖ν′‖L2 ≤ C(|a| + ‖s 1
2 hI‖L1 ) + ‖hII‖L2 .

Proof. The estimate in the case hII = 0 comes from Lemma 7.1. Therefore, by the
linearity of the problem, it is sufficient to show the estimate in the case hI = 0 and a = 0.
Multiplying the first equation in (7.3) by ν and integrating it over [0, 1], we see that∫ 1

0
(|ν′(s)|2 + |x′′(s)|2|ν(s)|2)ds = ν′(1)ν(1) − ν′(0)ν(0) −

∫ 1

0
h′II(s)ν(s)ds

=

∫ 1

0
hII(s)ν′(s)ds,

where we used the boundary conditions. This implies ‖ν′‖L2 ≤ ‖hII‖L2 . �

Lemma 7.3. Let j be a positive integer and M > 0. There exists a constant C = C( j,M) >
0 such that if x satisfies

(i) |||x(t)|||3,1 ≤ M in the case j = 1;
(ii) |||x(t)|||4,2 ≤ M in the case j = 2;

(iii) |||x(t)||| j+1, j−1, ‖∂ j
t x(t)‖X2 ≤ M in the case j ≥ 3,

then the solution φ of (1.8) satisfies |||φ′(t)||| j ≤ C.

Proof. We first consider the case j = 1. By Lemma 7.1, under the condition ‖x(t)‖X3 � 1
we have ‖φ′(t)‖L∞ � 1 so that |φ(s, t)| � s. We note that |||φ′|||1 ≤ ‖(φ′, φ̇′)‖L2 + ‖φ′′‖Y0 . By
using the first equation in (1.8) and Lemma 3.14, the second term in the right-hand side can
be evaluated as ‖φ′′‖Y0 = ‖φx′′ · x′′‖Y0 � ‖φ′‖L∞‖x‖2X3 . To evaluate ‖φ̇′‖L2 we differentiate
(1.8) with respect to t and obtain⎧⎪⎪⎨⎪⎪⎩

−φ̇′′ + |x′′|2φ̇ = −2φx′′ · ẋ′′ in (0, 1),

φ̇(0, t) = φ̇′(1, t) = 0.

Therefore, by Lemma 7.1 we get

‖φ̇′‖L2 � ‖s 1
2φx′′ · ẋ′′‖L1 ≤ ‖φ′‖L∞‖s 1

2 x′′‖L2‖sẋ‖L2 ≤ ‖φ′‖L∞‖x‖X3‖ẋ‖X2 .

These estimates give |||φ′(t)|||1 � 1.
We then consider the case j ≥ 2. Let k be an integer such that 2 ≤ k ≤ j. We note that

|||φ′|||k ≤ ∑k
l=0 ‖∂l

tφ
′‖L2 + |||φ′′|||†k−1. By Lemma 3.15, the second term in the right-hand side can

be evaluated as

|||φ′′|||†k−1 = |||φx′′ · x′′|||†k−1 �

⎧⎪⎪⎨⎪⎪⎩
|||φ′|||1|||x|||24,1 for k = 2,

|||φ′|||k−1|||x|||2k+1,k−1 for k ≥ 3

� |||φ′|||k−1.

We proceed to evaluate ‖∂k
t φ
′‖L2 . Differentiating (1.8) k-times with respect to t we obtain⎧⎪⎪⎨⎪⎪⎩

−(∂k
t φ)
′′ + |x′′|2(∂k

t φ) = −[∂k
t , |x′′|2]φ in (0, 1),

(∂k
t φ)(0, t) = (∂k

t φ)
′(1, t) = 0.
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Therefore, by Lemma 7.1 we get

‖∂k
t φ
′‖L2 � ‖s 1

2 [∂k
t , |x′′|2]φ‖L1 �

∑′ I(k0, k1, k2),

where I(k0, k1, k2) = ‖s 1
2 (∂k0

t φ)(∂
k1
t x)′′ · (∂k2

t x)′′‖L1 and
∑′ denotes the summation over all

(k0, k1, k2) satisfying k0 + k1 + k2 = k, k0 ≤ k − 1, and k1 ≤ k2. By Lemma 3.16, we see that

I(k0, k1, k2) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖φ′‖L∞‖∂k1

t x‖X3‖∂k2
t x‖X2 for (k0, k1, k2) = (0, 0, k), (0, 1, k − 1),

‖φ̇′‖L2‖x‖X4‖∂k−1
t x‖X2 for (k0, k1, k2) = (1, 0, k − 1),

‖∂k0
t φ
′‖L2‖∂k1

t x‖X3‖∂k2
t x‖X3 for k2 ≤ k − 2

� 1 + |||φ′|||k−1.

Summarizing the above estimates we obtain |||φ′|||k � |||φ′|||k−1 + 1 for 2 ≤ k ≤ j. Therefore,
we get |||φ′||| j � 1. �

Lemma 7.4. Let j be a non-negative integer and M > 0. There exists a constant C =
C( j,M) > 0 such that if x and τ satisfy τ(0, t) = 0, ‖τ′(t)‖L∞ ≤ M, and

(i) |||x(t)|||3,1 ≤ M in the case j = 0;
(ii) |||x(t)|||4,2, ‖ẋ′(t)‖L∞ , ‖τ̇′(t)‖L2 ≤ M in the case j = 1;

(iii) ‖x(t)‖X4 ,
∑ j

k=1 ‖∂k
t x(t)‖X3 , ‖∂ j+1

t x(t)‖X1 , ‖ẋ′(t)‖L∞ ,∑ j
k=1 ‖∂k

t τ
′(t)‖L2 ≤ M in the case

j ≥ 2,

then the solution νl to the boundary value problem (7.1) satisfies

‖∂ j
t ν
′
l (t)‖L2 ≤

⎧⎪⎪⎨⎪⎪⎩
C
(‖s 1

2 h(t)‖L1 + |||y(t)|||2,∗) for j = 0,

C
(∑ j

k=0 ‖s
1
2 ∂k

t h(t)‖L1 + |||y(t)||| j+1
)

for j ≥ 1.

Remark 7.5. If we impose an additional condition |||x(t)|||4,1, ‖ẋ′(t)‖L∞ ≤ M in the case
j = 0, then we can improve the estimate as ‖ν′l (t)‖L2 ≤ C

(‖s 1
2 h(t)‖L1 + |||y(t)|||1).

Proof of Lemma 7.4. We first note that |τ(s, t)| ≤ Ms. By Lemmas 7.2 and 3.3, we see
that

‖ν′l‖L2 � |(τx′′ · y′)|s=1| + ‖s 1
2 (2ẋ′ · ẏ′ − 2(x′′ · y′′)τ + h)‖L1

� ‖x‖X3‖y‖X2 + ‖ẋ′‖L2‖s 1
2 ẏ′‖L2 + ‖s 1

2 x′′‖L2‖sy′′‖L2 + ‖s 1
2 h‖L1

� ‖x‖X3‖y‖X2 + ‖ẋ‖X2‖ẏ‖X1 + ‖x‖X3‖y‖X2 + ‖s 1
2 h‖L1 .

This gives the desired estimate in the case j = 0.
We then consider the case j ≥ 1. Let k be an integer such that 1 ≤ k ≤ j. Differentiating

the equations in (7.1) k-times with respect to t, we have

(7.4)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−(∂k

t νl)
′′ + |x′′|2(∂k

t νl) = hk,I − h′k,II in (0, 1) × (0, T ),

(∂k
t νl) = 0 on {s = 0} × (0, T ),

(∂k
t νl)

′ = ak + hk,II on {s = 1} × (0, T ),

where ak = −2([∂k
t , ẋ′] · ẏ)|s=1 + 2([∂k

t , τx′′] · y′)|s=1, hk,II = 2τ(x′′ · ∂k
t y
′) − 2ẋ′ · ∂k+1

t y, and

hk,I = ∂
k
t h + 2([∂k

t , ẋ
′] · ẏ′ − [∂k

t , τx
′′] · y′′) − [∂k

t , |x′′|2]νl + 2((τx′′)′ · ∂k
t y
′ − ẋ′′ · ∂k+1

t y).
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Here, we see that

|ak| �
∑

k1+k2=k,k2≤k−1

|∂k1+1
t x′(1, t)||∂k2+1

t y(1, t)|

+
∑

k0+k1+k2=k,k2≤k−1

|∂k0
t τ(1, t)||∂k1

t x′′(1, t)||∂k2
t y
′(1, t)|

�
∑

k1+k2=k,k2≤k−1

‖∂k1+1
t x‖X2‖∂k2+1

t y‖X1 +
∑

k0+k1+k2=k,k2≤k−1

‖∂k0
t τ
′‖L2‖∂k1

t x‖X3‖∂k2
t y‖X2

� |||y|||k+1

and, by Lemma 3.4, that

‖hk,II‖L2 � ‖s 1
2 x′′‖L∞‖s 1

2 ∂k
t y
′‖L2 + ‖ẋ′‖L∞‖∂k+1

t y‖L2

� ‖x‖X4‖∂k
t y‖X1 + ‖ẋ′‖L∞‖∂k+1

t y‖L2

� |||y|||k+1.

We proceed to evaluate ‖s 1
2 hk,II‖L1 term by term. We see that

‖s 1
2 ((τx′′)′ · ∂k

t y
′ − ẋ′′ · ∂k+1

t y)‖L1

� ‖τ′‖L∞(‖sx′′′‖L2 + ‖x′′‖L2 )‖s 1
2 ∂k

t y
′‖L2 + ‖s 1

2 ẋ′′‖L2‖∂k+1
t y‖L2

� ‖x‖X4‖∂k
t y‖X1 + ‖ẋ‖X3‖∂k+1

t y‖L2

and that

‖s 1
2 [∂k

t , ẋ
′] · ẏ′‖L1 �

∑
k1+k2=k−1

‖s 1
2 (∂k1+2

t x′) · (∂k2+1
t y′)‖L1

� ‖∂2
t x′‖L2‖s 1

2 ∂k
t y
′‖L2 +

∑
k1+k2=k−2

‖s 1
2 ∂k1+3

t x′‖L2‖∂k2+1
t y′‖L2

� ‖∂2
t x‖X2‖∂k

t y‖X1 + ‖(∂3
t x, . . . , ∂k+1

t x)‖X1‖(∂ty, . . . , ∂
k−1
t y)‖X2 ,

where we used Lemma 3.3. We see also that

‖s 1
2 [∂k

t , τx
′′] · y′′‖L1 �

∑
k0+k1+k2=k,k2≤k−1

‖s 1
2 (∂k0

t τ)(∂
k1
t x)′′ · (∂k2

t y)
′′‖L1 .

We evaluate I(k0, k1, k2) = ‖s 1
2 (∂k0

t τ)(∂
k1
t x)′′ ·(∂k2

t y)
′′‖L1 , where k0+k1+k2 = k and k2 ≤ k−1.

By Lemma 3.16, we see that

I(k0, k1, k2) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖τ′‖L∞‖∂t x‖X3‖∂k−1
t y‖X2 for (k0, k1, k2) = (0, 1, k − 1),

‖∂tτ
′‖L2‖x‖X4‖∂k−1

t y‖X2 for (k0, k1, k2) = (1, 0, k − 1),

‖τ′‖L∞‖∂2
t x‖X2‖∂k−2

t y‖X3 for (k0, k1, k2) = (0, 2, k − 2),

‖∂k0
t τ
′‖L2‖∂k1

t x‖X3‖∂k−2
t y‖X3 for k1 ≤ 1, k2 = k − 2,

‖∂k0
t τ
′‖L2‖∂k1

t x‖X2‖∂k2
t y‖X4 for k2 ≤ k − 3,

so that ‖s 1
2 [∂k

t , τx′′] · y′′‖L1 � |||y|||k+1. Finally, we see that

‖s 1
2 [∂k

t , |x′′|2]νl‖L1 �
∑

k0+k1+k2=k,k0≤k−1

‖s 1
2 (∂k0

t νl)(∂
k1
t x)′′ · (∂k2

t x)′′‖L1 .
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We evaluate J(k0, k1, k2) = ‖s 1
2 (∂k0

t νl)(∂
k1
t x)′′ ·(∂k2

t x)′′‖L1 , where k0+k1+k2 = k and k0 ≤ k−1.
By Lemma 3.16, we see that

J(k0, k1, k2) �

⎧⎪⎪⎨⎪⎪⎩
‖ν′l‖L2‖x‖X4‖∂k

t x‖X2 for k1 = k or k2 = k,

‖∂k0
t ν
′
l‖L2‖∂k1

t x‖X3‖∂k2
t x‖X3 for k1, k2 ≤ k − 1,

so that ‖s 1
2 [∂k

t , |x′′|2]νl‖L1 �
∑k−1

l=0 ‖∂l
tν
′
l‖L2 . Summarizing the above estimates, we obtain

‖s 1
2 hk,I‖L1 � ‖s 1

2 ∂k
t h‖L1 +

k−1∑
l=0

‖∂l
tν
′
l‖L2 + |||y|||k+1.

Now, we apply Lemma 7.2 to the solution νl of (7.4) and obtain

‖∂k
t ν
′
l‖L2 � |ak| + ‖s 1

2 hk,I‖L1 + ‖hk,II‖L2 �
k−1∑
l=0

‖∂l
tν
′
l‖L2 + ‖s 1

2 ∂k
t h‖L1 + |||y|||k+1.

Using this inductively on k = 1, 2, . . . , j, we obtain the desired estimate. �

Lemma 7.6. Let j be a positive integer and M > 0. There exists a constant C = C( j,M) >
0 such that if x and τ satisfy τ(0, t) = 0, ‖τ′(t)‖L∞ ≤ M, and

(i) ‖(x, ẋ)(t)‖X4 , ‖ẍ(t)‖X2 , ‖τ̇′(t)‖L2 ≤ M in the case j = 1;
(ii) |||(x, ẋ)(t)||| j+1∨4,∗, |||ẍ(t)||| j+1,∗, |||τ′(t)||| j−2, ‖(∂ j−1

t τ
′, ∂ j

t τ
′)(t)‖L2 ≤ M in the case j ≥ 2

and, in addition, ‖∂ j−3
t τ

′(t)‖L∞ ≤ M in the case j ≥ 4,

then the solution νl to the boundary value problem (7.1) satisfies

|||ν′l (t)||| j ≤ C
(
|||h(t)|||†j−1 + ‖s

1
2 ∂

j
t h(t)‖L1 + |||y(t)||| j+1

)
.

Proof. Let k be a positive integer such that k ≤ j. We note that |||ν′l (t)|||k ≤
∑k

l=0 ‖∂l
tν
′
l‖L2 +

|||ν′′l |||†k−1. By Lemma 7.4, the first term in the right-hand side can be evaluated as

k∑
l=0

‖∂l
tν
′
l‖L2 �

j∑
l=0

‖s 1
2 ∂l

th‖L1 + |||y||| j+1 � |||h|||†j−1 + ‖s
1
2 ∂

j
t h‖L1 + |||y||| j+1.

By using the first equation in (7.1), we have |||ν′′l |||†k−1 � |||h|||†j−1+ |||ẋ′ · ẏ′|||†j−1+ |||τ(x′′ ·y′′)|||†j−1+

|||νl(x′′ · x′′)|||†k−1. By Lemmas 3.12–3.15, we can check that |||ẋ′ · ẏ′|||†j−1 + |||τ(x′′ · y′′)|||†j−1 �
|||y||| j+1. Since νl|s=0 = 0, we see also that

|||νl(x′′ · x′′)|||†k−1 �

⎧⎪⎪⎨⎪⎪⎩
‖ν′l‖L2‖x‖2X4 for k = 1,

(‖ν′l‖L2 + ‖∂tν
′
l‖L2 )|||x|||24,1 for k = 2,

which is already evaluated. Therefore, we obtain the desired estimate in the case j = 1, 2.
Moreover, for 3 ≤ k ≤ j we have

|||νl(x′′ · x′′)|||†k−1 � (‖∂k−3
t ν

′
l‖L∞ + |||ν′l |||k−2 + ‖∂k−1

t ν
′
l‖L2 )|||x|||2k+1,k−1 � |||ν′l |||k−1,

so that |||ν′l (t)|||k � |||h(t)|||†j−1 + ‖s
1
2 ∂

j
t h(t)‖L1 + |||y(t)||| j+1 + |||ν′l (t)|||k−1. Using this inductively on

k = 3, 4, . . . , j, we obtain the desired estimate. �
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8. Estimates for initial values and compatibility conditions II

8. Estimates for initial values and compatibility conditions II
We consider the initial boundary value problem for the linearized system (1.5) and (1.6).

Let (y, ν) be a smooth solution to the problem and put yin
j = (∂ j

ty)|t=0 and νinj = (∂ j
t ν)|t=0.

Applying ∂ j
t to (1.5) and (1.6), we see that (yin

j , ν
in
j ) are determined inductively by

(8.1) yin
j+2 =

∑
j0+ j1= j

j!
j0! j1!

(
(∂ j0

t τ)|t=0(yin
j1 )
′ + νinj0 (∂

j1
t x′)|t=0

)′
+ (∂ j

t f )|t=0

and

(8.2)

⎧⎪⎪⎨⎪⎪⎩
−(νinj )′′ + |x′′|2νinj = hin

j in (0, 1),

νinj (0) = 0, (νinj )′(1) = −g · (yin
j )′(1)

for j = 0, 1, . . ., where

hin
j = 2

∑
j1+ j2= j

j!
j1! j2!

(∂ j1+1
t x′)|t=0 · (yin

j2+1)′ − 2
∑

j0+ j1+ j2= j

j!
j0! j1! j2!

(∂ j0
t τ)|t=0(∂ j1

t x′′)|t=0 · (yin
j2 )
′′

−
∑

j0+ j1+ j2= j, j0≤ j−1

j!
j0! j1! j2!

νinj0 (∂
j1
t x′′ · ∂ j2

t x′′)|t=0 + (∂ j
t h)|t=0.

In fact, once the initial data (yin
0 , y

in
1 ) are given, the two-point boundary value problem (8.2)

in the case j = 0 determines νin0 . Then, (8.1) with j = 0 determines yin
2 . Then, the two-point

boundary value problem (8.2) in the case j = 1 determines νin1 . Then, (8.1) with j = 1
determines yin

3 , and so on. On the other hand, by applying the boundary condition in (1.5)
on s = 0 and putting t = 0, we obtain

(8.3) yin
j (1) = 0

for j = 0, 1, 2, . . .. These are necessary conditions that the data (yin
0 , y

in
1 , f , h) should satisfy

for the existence of a regular solution to the problem (1.5) and (1.6), and are known as
compatibility conditions. To state the conditions more precisely, we need to evaluate the
initial values {yin

j }. Although it is sufficient to evaluate ∂ j
ty only at time t = 0, we will

evaluate them at general time t.

Lemma 8.1. Let m ≥ 2 be an integer and assume that Assumptions 2.5 and 2.6 are
satisfied with a positive constant M0 and that that f ∈ X m−2

T and s
1
2 ∂m−2

t h ∈ C0([0, T ]; L1).
In the case m ≥ 3, assume also that h ∈ Y m−3

T . Then, there exists a positive constant C0

depending only on m and M0 such that if (y, ν) is a solution to (1.5) and (1.6), then we have

|||y(t)|||m ≤ C0
(|||y(t)|||m,1 + ||| f (t)|||m−2 + |||h(t)|||†m−3 + ‖s

1
2 ∂m−2

t h(t)‖L1
)
,

where we used a notational convention |||·|||†−1 = 0.

Proof. As before, we decompose the solution ν as a sum of a principal part νp and a lower
order part νl, where νp is defined by (1.7) so that νl is a unique solution to the two-point
boundary value problem (7.1). Then, we see that y satisfies (1.9) with A(s, t) = τ(s, t)Id and
Q(s, t) = −(φx′)′(s, t) ⊗ (g + 2τx′′)(1, t). By Lemmas 3.4, 3.9, and 7.3, we can check easily
that these matrices A(s, t) and Q(s, t) satisfy the conditions in Assumptions 2.1 and 2.2 with
the constant M0 replaced by a constant C0 = C(m,M0). Therefore, we can apply Lemma 4.1
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to obtain |||y|||m � |||y|||m,1 + |||F|||m−2, where F = f + (νlx′)′. Here, by Lemmas 3.8, 3.9, 7.4,
and 7.6 we see that

|||(νlx′)′||| j � |||ν′l ||| j �
⎧⎪⎪⎨⎪⎪⎩
‖s 1

2 h‖L1 + |||y|||2,1 for j = 0,

|||h|||†j−1 + ‖s
1
2 ∂

j
t h‖L1 + |||y||| j+1 for j = 1, 2, . . . ,m − 2.

Using these estimates inductively on j, we obtain the desired estimate. �

Under the same assumptions in Lemma 8.1, we see that if the initial data satisfy yin
j ∈

Xm− j for j = 0, 1, then the initial values {yin
j } satisfy yin

j ∈ Xm− j for j = 0, 1, . . . ,m, so that
their boundary values yin

j (1) are defined for j = 0, 1, . . . ,m − 1.

Definition 8.2. Let m ≥ 1 be an integer. We say that the data (yin
0 , y

in
1 , f , h) for the initial

boundary value problem (1.5) and (1.6) satisfy the compatibility conditions up to order m−1
if (8.3) holds for any j = 0, 1, . . . ,m − 1.

9. Existence of solutions II

9. Existence of solutions II
In this last section we prove Theorem 2.8. In the following calculations, we simply denote

by C0 the constant depending only on M0 and by C1 the constant depending also on M1.
These constants may change from line to line. We assume that the data (yin

0 , y
in
1 , f , h) satisfy

the conditions in Theorem 2.8, define initial values {yin
j }mj=0 and {νinj }m−2

j=0 by (8.1) and (8.2),
and put

S m
T = {y ∈X m

T | (∂ j
ty)|t=0 = y

in
j for j = 0, 1, . . . ,m}.

By Lemma 8.1, we have yin
j ∈ Xm− j for j = 0, 1, . . . ,m so that it is standard to show S m

T � ∅.
We take y(1) ∈ S m

T arbitrarily and fix it. Given y(n) ∈ S m
T , let ν(n)

l be a unique solution to the
two-point boundary value problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ν(n)′′
l + |x′′|2ν(n)

l = 2ẋ′ · ẏ(n)′ − 2(x′′ · y(n)′′)τ + h in (0, 1) × (0, T ),

ν(n)
l = 0 on {s = 0} × (0, T ),

ν(n)′
l = −2ẋ′ · ẏ(n) + 2(x′′ · y(n)′)τ on {s = 1} × (0, T ).

By Lemmas 7.4, 7.6, 3.8, and 3.9, we have (ν(n)
l x′)′ ∈X m−2

T and

|||(ν(n)
l x′)′|||m−2 ≤

⎧⎪⎪⎨⎪⎪⎩
C0(‖s 1

2 h‖L1 + |||y(n)|||2,1) for m = 2,

C0(|||h|||†m−3 + ‖s
1
2 ∂m−2

t h‖L1 + |||y(n)|||m−1) for m ≥ 3,

‖∂m−1
t (ν(n)

l x′)′‖L2 ≤ C1

(
|||h|||†m−3 +

m−1∑
j=0

‖s 1
2 ∂

j
t h‖L1 + |||y(n)|||m

)
.

Then, we consider the initial boundary value problem

(9.1)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ÿ = (Ay′)′ + Qy′(1, t) + f (n) in (0, 1) × (0, T ),

y = 0 on {s = 1} × (0, T ),

(y, ẏ)|t=0 = (yin
0 , y

in
1 ) in (0, 1),
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where f (n) = f + (ν(n)
l x′)′, A(s, t) = τ(s, t)Id, and Q(s, t) = −(φx′)′(s, t) ⊗ (g + 2τx′′)(1, t),

and these matrices satisfy the conditions in Assumptions 2.1 and 2.2 with the constants M0

and M1 replaced by C0 and C1, respectively. Here, we have f (n) ∈ X m−2
T and ∂m−1

t f (n) ∈
L1(0, T ; L2). Moreover, it is straightforward to check that the data (yin

0 , y
in
1 , f (n)) satisfy the

compatibility conditions up to order m− 1. Therefore, by Theorem 2.3 there exists a unique
solution y ∈ X m

T to (9.1). We see also that y ∈ S m
T . Now, we define y(n+1) as this solution

y. In this way, we have constructed a sequence of approximate solutions {y(n)}∞n=1.
We proceed to show that {y(n)}∞n=1 converges in X m

T . Put u(n) = y(n+1) − y(n) and μ(n) =

ν(n+1)
l − ν(n)

l . Then, we see that u(n+1) solves
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ü(n+1) = (Au(n+1)′)′ + Qu(n+1)′(1, t) + (μ(n)x′)′ in (0, 1) × (0, T ),

u(n+1) = 0 on {s = 1} × (0, T ),

(u(n+1), u̇(n+1))|t=0 = (0, 0) in (0, 1),

and μ(n) solves⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−μ(n)′′ + |x′′|2μ(n) = 2ẋ′ · u̇(n)′ − 2(x′′ · u(n)′′)τ in (0, 1) × (0, T ),

μ(n) = 0 on {s = 0} × (0, T ),

μ(n)′ = −2ẋ′ · u̇(n) + 2(x′′ · u(n)′)τ on {s = 1} × (0, T ).

We note that (∂ j
tμ

(n))|t=0 = 0 for j = 0, 1, . . . ,m − 2. Therefore, by Propositions 5.2 and 5.4
we have

Iγ,T (|||u(n+1)(·)|||m)

≤
⎧⎪⎪⎨⎪⎪⎩

C0S∗γ,T (‖∂t(μ(n)x′)′(·)‖L2 ) for m = 2,

C0{Iγ,T (|||(μ(n)x′)′(·)|||m−2) + S∗γ,T (‖∂m−1
t (μ(n)x′)′(·)‖L2 )} for m ≥ 3.

Moreover, by Lemmas 7.4, 7.6, 3.8, and 3.9, we have⎧⎪⎪⎨⎪⎪⎩
|||(μ(n)x′)′(·)|||m−2 ≤ C0|||u(n)(·)|||m−1 for m ≥ 3,

‖∂m−1
t (μ(n)x′)′(·)‖L2 ≤ C1|||u(n)(·)|||m for m ≥ 2.

These estimates together with (5.3) imply

Iγ,T (|||u(n+1)(·)|||m) ≤ C1S∗γ,T (|||u(n)(·)|||m) ≤ C1γ
−1Iγ,T (|||u(n)(·)|||m).

Therefore, if we choose γ so large that 2C1 ≤ γ, then we see that {y(n)}∞n=1 converges in X m
T .

Let y ∈ X m
T be the limit. We see also that {ν(n)

l }∞n=1 converges to a νl such that ν′l ∈ X m−2
T .

Putting ν = νp+ νl with νp = −((g+2τx′′) ·y′)|s=1φ, we see that (y, ν) is the desired solution.
Moreover, the energy estimate (2.5) in Theorem 2.8 can be obtained similarly as above.

It remains to show (2.6) so that we assume also Assumption 2.7. Similar to the proof of
Lemma 7.6, by Lemmas 3.12–3.15 we see that

|||ν′l |||m−1,∗ ≤ |||ν′l |||m−2 + |||ν′′l |||†m−2

� |||ν′l |||m−2 + |||νlx′′ · x′′|||†m−2 + |||τx′′ · y′′|||†m−2 + |||ẋ′ · ẏ′|||†m−2 + |||h|||†m−2

� |||ν′l |||m−2 + |||y|||m + |||h|||†m−2.
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Moreover, by (1.7) and Lemma 7.3 we see also that

|||ν′p|||m−1,∗ � (1 + ‖(τ′, . . . , ∂m−2
t τ′)‖L2‖(x, . . . , ∂m−2

t x)‖X3 )|||y|||m|||φ′|||m−1,∗ � |||y|||m.
These estimates imply (2.6). The continuity in t, that is, ν′ ∈ X m−1,∗

T can be proved by
evaluating |||ν′(t1) − ν′(t2)|||m−1,∗ in the same way as above. The proof of Theorem 2.8 is
complete.
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