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Abstract
The purpose of this paper is to determine the ring structure of the graph equivariant coho-

mology of the GKM graph induced from the complex quadrics Q2n. We show that the graph
equivariant cohomology is generated by two types of subgraphs in the GKM graph, namely Mv

and ΔK , which are subject to four different types of relations. By utilizing this ring structure,
we establish the multiplicative relation for the generators ΔK of degree 2n and provide an alter-
native computation of the ordinary cohomology ring of Q2n, as previously computed by H. Lai.
Additionally, we provide a combinatorial explanation for why the square of the half-degree
generator x ∈ H2n(Q2n) vanishes when n is odd and is non-vanishing when n is even.

1. Introduction

1. Introduction
In the paper [8], Goresky, Kottwiz, and MacPherson established a framework for studying

the class of manifolds with a torus action, known as equivariantly formal, by using their fixed
points and one-dimensional orbits. These manifolds are now commonly referred to as GKM
manifold. Expanding on their work, Guillemin and Zara introduced the notion of an abstract
GKM graph in [11] as a combinatorial counterpart of GKM manifolds, thus initiating the
study of spaces with torus actions using the combinatorial structure of GKM graphs. Since
then, the research of GKM manifolds and GKM graphs, commonly known as GKM theory,
has been the subject of extensive research (e.g., [7, 9, 10, 15, 16, 22]).

One can view GKM theory as a methodology for computing equivariant cohomology
based on the combinatorial structure of a graph. For an equivariantly formal GKM man-
ifold, its equivariant cohomology is isomorphic to the graph equivariant cohomology of
its corresponding GKM graph, see (3.1). On the other hand, for abstract GKM graphs,
the graph equivariant cohomology can be defined independently of geometry, leading to its
study in various articles (e.g., [1, 5, 6, 7, 10, 18, 17, 22]). In particular, in [22], Maeda-
Masuda-Panov introduced the combinatorial counterpart of a torus manifold, where a torus
manifold is defined by a 2n-dimensional T n-manifold with fixed points. This combinatorial
object is called a torus graph, and its properties have been extensively studied. Notably,
they established that the graph equivariant cohomology of a torus graph is isomorphic to its
face ring, which is defined using the simplicial poset induced from the subgraphs of a torus
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graph, relying solely on algebraic and combinatorial arguments. The advantage of estab-
lishing such a result for abstract GKM graphs, without relying on geometry, is that it can be
applied to a wider class of equivariantly formal GKM manifolds (or spaces) that share the
same GKM graph. This enables us to compute the equivariant cohomology of equivariantly
formal GKM manifolds, even when well-known techniques for computing equivariant coho-
mology, such as certain methods in algebraic topology or Hamiltonian torus actions, cannot
be applied. Hence, the result in [22] can be regarded as a generalization of the computation
of the equivariant cohomology ring of torus manifolds presented in [23].

In our paper, we focus on the study of GKM graphs corresponding to even-dimensional
complex quadrics. An even-dimensional complex quadric Q2n is defined by

Q2n := {[z1 : · · · : z2n+2] ∈ CP2n+1 |
n+1∑
i=1

ziz2n+3−i = 0},

having the natural T n+1-action

[z1 : · · · : z2n+2] �→ [z1t1 : z2t2 : · · · zn+1tn+1 : t−1
n+1zn+2 : t−1

n zn+3 : · · · t−1
1 z2n+2],(1.1)

where (t1, . . . , tn+1) ∈ T n+1. Since Q2n � SO(2n+2)/SO(2n)×SO(2), this action is equivalent
to the restriction of the transitive SO(2n + 2)-action to the maximal torus T n+1-action. As
T n+1 is also a maximal torus of SO(2n) × SO(2) (i.e., SO(2n) × SO(2) is a maximal rank
subgroup of SO(2n+2)), it follows from [7] that the fixed points and one-dimensional orbits
of the T n+1-action have the structure of a graph. Therefore, the GKM graph of Q2n with the
T n+1-action (1.1) can be constructed by labeling the edges with tangential representations.
Although the action (1.1) has a finite kernel Z2 = {±1} ⊂ T n+1, we can obtain an effective
T n+1-action on Q2n by considering the quotient T n+1/Z2. In this paper, we denote by 2n

the GKM graph obtained from this effective T n+1-action, see Section 2.2.
On the other hand, the ordinary cohomology ring H∗(Q2n) of Q2n over the integer coef-

ficient was computed by H. Lai in [19, 20] (also see [3, Excercise 68.3] for H∗(Qm) as the
Chow ring1). In particular, we have the following isomorphisms.

H∗(Qm)�
{
Z[c, x]/〈c2n+1−2cx, x2−c2nx〉 if m=4n, where deg c=2, deg x=4n,
Z[c, x]/〈c2n+2−2cx, x2〉 if m=4n+2, where deg c=2, deg x=4n+2.

(1.2)

Using this formula, one can conclude that Hodd(Q2n) = 0 which means that Q2n is an equiv-
ariantly formal GKM manifold. Therefore, the equivariant cohomology H∗T n+1 (Q2n) of the
effective T n+1-action on Q2n can be computed by using the graph equivariant cohomology
of its GKM graph, denoted by 2n. The main goal of this paper is to determine the graph
equivariant cohomology H∗(2n) (see (3.1)) by explicitly describing its generators and
relations in terms of the subgraphs. As a consequence, we can compute the equivariant co-
homology ring of the effective T n+1-action on Q2n by generators and relations. The main
theorem of this paper, which is presented in Section 5 precisely, is as follows:

1Since Qm can also be regarded as the homogeneous space of the affine algebraic group SO(m+2,C), it follows
from [2, Appendix C.3.4] that its Chow ring is isomorphic to its cohomology ring, i.e., A∗(Qm) � H2∗(Qm;Z).
We also note that the rational cohomology ring of Q2n−1 is isomorphic to that of CP2n−1 (e.g. see [25]); however,
these two cohomologies are not isomorphic over integer coefficients (e.g. see [3, 12]).
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Theorem 1.1. There exist the following isomorphisms as a ring:

H∗T n+1 (Q2n) � H∗(2n) � Z[2n].

Since the complex quadric Q2n is equivariantly formal, the Serre spectral sequence of
the fiber bundle Q2n → ET ×T Q2n → BT collapses at the E2-term. This implies that the
ordinary cohomology H∗(Q2n) can be obtained as the quotient of the equivariant cohomol-
ogy H∗T n+1 (Q2n) by H>0(BT ). It is worth noting that the ring structure of H∗(Q2n), as shown
in (1.2), depends on whether n is even or odd. We provide a combinatorial explanation
for the difference between H∗(Q4n) and H∗(Q4n+2) using Theorem 1.1 (see Lemma 7.2 and
Corollary 7.3 precisely).

The paper is organized as follows, consisting of Sections 2 through 7. In Section 2,
we compute the GKM graph 2n of the effective T n+1-action on Q2n. In Section 3, we
introduce the graph equivariant cohomology H∗(2n) and define the generators Mv and
ΔK , studying their properties. In Section 4, we present the four relations among Mv and
ΔK . The main theorem (Theorem 5.1) is proved in Section 5. Section 6 and Section 7
serve as additional sections with applications of Theorem 1.1. In Section 6, we establish
multiplicative relations among ΔK’s of degree 2n. In Section 7, the ordinary cohomology
ring of Q2n is studied from a GKM theoretical perspective.

2. GKM graphs of even-dimensional complex quadrics Q2n

2. GKM graphs of even-dimensional complex quadrics Q2n
In this section, we compute the GKM graph of the effective T n+1-action on Q2n (see [11,

14] about the basic facts of the GKM graph). In this paper, we identify the cohomology ring
H∗(BT n+1) as the following polynomial ring generated by degree 2 generators x1, . . . , xn+1:

H∗(BT n+1) � Z[x1, . . . , xn+1].(2.1)

It is worth noting that the generator xi, for i = 1, . . . , n+1, is the equivariant first Chern class
of the T n+1-equivariant complex line bundle over a point, where the action on the unique
fiber is defined by the ith coordinate projection pi : T n+1 → S1 ∈ Hom(T n+1, S1). This gives
the following identifications:

H2(BT n+1) � Hom(T n+1, S1) � (tn+1
Z

)∗ � Zn+1,

where tn+1
Z

is the lattice of the Lie algebra of T n+1. In this paper, we often use this identifi-
cation.

2.1. The GKM graph of the natural T n+1-action on Q2n.
2.1. The GKM graph of the natural T n+1-action on Q2n. Suppose that the T n+1-action

on Q2n is defined by (1.1). We first compute the GKM graph of this non-effective T n+1-
action.

By definition, the GKM graph consists of the fixed points (vertices) and the invariant
2-spheres (edges), and the labels on edges (the axial function of the GKM graph) which
are defined by the tangential representations on fixed points. It is easy to check from the
definition (1.1) that the fixed points of Q2n are

QT
2n = {[ei] | i = 1, . . . , 2n + 2},

where [ei] = [0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ CP2n+1 (only the ith coordinate is 1). We first
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denote the 2-spheres in CP2n+1 by the following symbol:

[zi : z j] := {[0 : · · · : 0 : zi : 0 : · · · : 0 : z j : 0 · · · : 0] ∈ CP2n+1},(2.2)

i.e., the subset consists of the only ith and jth coordinates. If [zi : z j] ⊂ Q2n, then it follows
from the quadric equation

∑n+1
i=1 ziz2n+3−i = 0 which defines Q2n that one of the following

properties hold:
• [zi : z j] � CP1 (diffeomorphic) if i + j � 2n + 3;
• [zi : z j] = {[1 : 0]} or {[0 : 1]} if i + j = 2n + 3.

Namely, invariant 2-spheres of Q2n are [zi : z j] such that i+ j � 2n+3. Therefore, we obtain
the following graph from the T n+1-action on Q2n:

• the set of vertices V2n = [2n + 2] := {1, 2, . . . , 2n + 2};
• the set of edges E2n = {i j | i, j ∈ [2n + 2] such that i � j, i + j � 2n + 3}.

We denote this graph as Γ2n := (V2n, E2n), see Fig.1.

Fig.1. The left graph is Γ4 (n = 2) induced from the T 3-action on Q4, and
the right graph is Γ6 (n = 3) induced from the T 4-action on Q6.

Remark 2.1. For convenience, we often denote the vertex j ∈ V2n such that i+ j = 2n+ 3
by i. Namely, the set of vertices can be written by

V2n = [2n + 2] = {1, 2, . . . , n + 1, n + 1, n, . . . , 1}.
Moreover, by using this notation, the set of edges can be written by

E2n = {i j | i, j ∈ V2n such that j � i, i}.
We next compute the tangential representations around the fixed points and put the label

on edges denoting as α̃ : E2n → H2(BT n+1), called an axial function on edges. Recall
that the tangential representations around the fixed points decompose into the complex 1-
dimensional irreducible representations. One can also regard each complex 1-dimensional
irreducible representation as the tangential representation on the fixed point of the invariant
2-sphere. This implies that, to compute the tangential representations around fixed points,
it is enough to compute the tangential representation on each invariant 2-sphere [zi : z j] ∈
Q2n, see (2.2). By the definition of the T n+1-action on [zi : z j], we may write the action
t = (t1, . . . , tn+1) ∈ T n+1 on [zi : z j] as

[zi : z j] �→ [pi(t)zi : p j(t)z j],

giving the T n+1-actions on the two fixed points of the 2-sphere [zi : z j] by

[1 : z j] �→ [1 : pi(t)−1 p j(t)z j], [zi : 1] �→ [pi(t)p j(t)−1zi : 1],
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where pi : T n+1 → S1 is the surjective homomorphism defined as the following map.

pi(t) =
⎧⎪⎨⎪⎩ ti if i ∈ [n + 1],

t−1
i

if i ∈ {n + 2, . . . , 2n + 2}.
Therefore, the axial function α̃ : E2n → H2(BT n+1) is defined by the following equation (see
Fig.2):

α̃(i j) = x j − xi,(2.3)

where xi ∈ H2(BT n+1) is the element such that
• for i ∈ [n + 1], xi is the generator of H2(BT n+1) corresponds to the ith coordinate

projection pi, also see (2.1);
• for i ∈ {n + 2, . . . , 2n + 2}, xi := −xi.

Fig.2. The axial function α̃ around the vertex 1 in Γ4. This corresponds to
the GKM graph induced from the T 3-action on Q4 defined by (1.1). Note
that 6 = 1, 5 = 2, 4 = 3.

2.2. The GKM graph of the effective T n+1-action on Q2n.
2.2. The GKM graph of the effective T n+1-action on Q2n. Since the T n+1-action (1.1)

on Q2n is not effective, the axial function α̃ defined by (2.3) does not satisfy the effectiveness
conditions, i.e., for any fixed i ∈ V2n, the set {α̃(i j) | i j ∈ E2n} does not span H2(BT n+1) �
Zn+1 (see [16, Section 2.1]). For example, around the vertex 1 ∈ V2n, the axial functions are

x2 − x1, . . . , xn+1 − x1, −xn+1 − x1, −xn − x1, . . . , −x2 − x1 ∈ (tn+1
Z

)∗,(2.4)

and it is easy to check that these vectors span the lattice 〈x2 − x1, . . . , xn+1 − x1,−xn+1 − x1〉Z
which is the proper subspace in (tn+1

Z
)∗. This is also similar to the axial functions on the other

vertices. To apply the GKM theory, we will identify 〈x2 − x1, . . . , xn+1 − x1,−xn+1 − x1〉Z as
(tn+1
Z

)∗. In this paper, they are replaced as follows:
• xi − x1 as xi−1 for i = 2, . . . , n + 1;
• −xn+1 − x1 as xn+1.

For the other vectors in (2.4), we have the following equalities:

−xi − x1 = −(xi − x1) + (xn+1 − x1) + (−xn+1 − x1)

for i = 2, . . . , n. Therefore, we may replace the vectors in (2.4) with the following vectors
(respectively):

x1, . . . , xn, xn+1, −xn−1 + xn + xn+1, . . . , −x1 + xn + xn+1.(2.5)

Notice that the vectors in (2.5) are primitive generaters of (tn+1
Z

)∗. This gives the axial func-
tion induced by the effective T n+1(� T n+1/Z2)-action on Q2n, where Z2 = {±1} is the kernel
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of the T n+1-action in (1.1) (more precisely, see the following Remark 2.2).

Remark 2.2. Here, we will explain that the axial function (2.5) is obtained by the explicit
T n+1-action on Q2n ⊂ CP2n+1 defined by (2.6). The vectors (2.4) in (tn+1

Z
)∗ induce the non-

injective homomorphism ϕ : T n+1 → T 2n+2 with kerϕ = {±1} = Z2 defined by

(t1, . . . , tn+1) �→ (1, t2t−1
1 , . . . , tn+1t−1

1 , t−1
n+1t−1

1 , t−1
n t−1

1 , . . . , t−1
2 t−1

1 , t−2
1 ).

Note that the image of ϕ is the following subtorus in T 2n+2:

im ϕ = {(1, t2t−1
1 , . . . , tn+1t−1

1 , t−1
n+1t−1

1 , t−1
n t−1

1 , . . . , t−1
2 t−1

1 , t−2
1 ) | (t1, . . . , tn+1) ∈ T n+1}

= {(1, s1, . . . , sn, sn+1, s−1
n−1snsn+1, . . . , s−1

1 snsn+1, snsn+1) | (s1, . . . , sn+1) ∈ T n+1}.
By the fundamental theorem on homomorphisms, we have the following identifications:

im ϕ � T n+1/ kerϕ = T n+1/Z2 � T n+1.

So the effective T n+1-action is defined by the standard action of the subtorus im ϕ ⊂ T 2n+2,
i.e., for [z1 : z2 : · · · : zn+1 : zn+2 : zn+3 : · · · : z2n+2] ∈ Q2n and (s1, . . . , sn+1) ∈ T n+1,

[z1 :z2 :· · ·:zn+1 :zn+2 :zn+3 :· · ·:z2n+2](2.6)

�→[z1 : s1z2 :· · ·: snzn+1 : sn+1zn+2 : s−1
n−1snsn+1zn+3 :· · ·: s−1

1 snsn+1z2n+1 : snsn+1z2n+2].

This action is nothing but the restricted T n+1-action on Q2n from the standard T 2n+1-action
on CP2n+2, where T 2n+1 = {(1, t1, . . . , t2n+1) | t1, . . . , t2n+1 ∈ T 1} ⊂ T 2n+2. Moreover, its axial
function around 1 ∈ V2n = QT

2n coincides with (2.5). Therefore, (2.5) gives the effective
T n+1-action on Q2n by (2.6).

Applying a similar way to the other axial functions around each vertex (see (2.3)), we can
define the axial function of the effective T n+1-action as follows (see Fig.3).

Definition 2.1. Set f : V2n → H2(BT n+1) as

f ( j) =
{

x j−1 − xn+1 j = 1, . . . , n + 2,
xn − x2n+2− j j = n + 3, . . . , 2n + 2,

where x0 = 0 and 〈x1, . . . , xn+1〉 = H2(BT n+1). Then we define the axial function α : E2n →
H2(BT n+1) as

α(i j) := f ( j) − f (i)

for j � i, i.

In this paper, the symbol 2n represents the GKM graph (Γ2n, α) (or equivalently (Γ2n, f ),
called a 0-cochain presentation) for Γ2n = (V2n, E2n) defined in Definition 2.1.

We exhibit some useful properties for the GKM graph 2n.

Lemma 2.1. For every vertix i ∈ V2n in the GKM graph 2n, the following equation
holds:

f (i) + f (i) = xn − xn+1.
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Fig.3. The GKM graph 2n when n = 2 (also see the left graph in Fig.1).
The right figure shows that the axial function α : E4 → H2(BT 3) of 4

around the vertex 1. The left figure shows its 0-cochain presentation f :
V4 → H2(BT 3).

Proof. Since i + i = 2n + 3, we have that xi−1 = x2n+2−i. The equality is immediately
followed by Definition 2.1. �

Lemma 2.2. For every edge i j ∈ E2n in the GKM graph 2n, the following equation
holds:

α(i j) = −α(i j).

Proof. By Lemma 2.1, we have

α(i j) = f ( j) − f (i) = (xn − xn+1 − f ( j)) − (xn − xn+1 − f (i))

= f (i) − f ( j) = α( ji) = −α(i j). �

Lemma 2.3. For every j ∈ V2n \ {i, i}, the following equation holds:

α(i j) + α(i j) = xn − xn+1 − 2 f (i).

Proof. By definition of the axial function α : E2n → H2(BT n+1) and Lemma 2.1, we have
that

α(i j) + α(i j) = ( f ( j) − f (i)) + ( f ( j) − f (i)) = f ( j) + f ( j) − 2 f (i)

= xn − xn+1 − 2 f (i). �

Lemma 2.4. The GKM graph 2n is three-independent, i.e., for every vertex i ∈ V2n and
every distinct three vertices j1, j2, j3 ∈ V2n \{i, i}, the axial functions α(i j1), α(i j2), α(i j3) are
linearly independent.

Proof. This is straightforward from Definition 2.1. �

3. Two generators

3. Two generators
The graph equivariant cohomology of the GKM graph 2n is defined by

H∗(2n) := {h : V2n → H∗(BT n+1) | h(i) − h( j) ≡ 0 mod α(i j) for i j ∈ E2n}.(3.1)
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The equation h(i) − h( j) ≡ 0 mod α(i j) in (3.1) is also called a congruence relation. Note
that H∗(2n) has the graded H∗(BT n+1)-algebra structure induced by the graded algebra
structure of

⊕
t≥0 Rt, where Rt is the degree t part defined by Rt := Ht(BT n+1). In particular,

there is the injective homomorphism

ι : H∗(BT n+1)→ H∗(2n)(3.2)

such that the image of x ∈ H∗(BT n+1), say ι(x) : V2n → H∗(BT n+1), is defined by the
function

ι(x)(v) = x

for all v ∈ V2n. This induces the H∗(BT n+1)-action on H∗(2n).
The following lemma holds.

Lemma 3.1. For the effective T n+1-action on Q2n, the following graded H∗(BT n+1)-
algebra isomorphism holds:

H∗T n+1 (Q2n) � H∗(2n).

Proof. Because the effective T n+1-action on Q2n is obtained by the quotient T n+1/Z2 by
the finite kernel of the action (1.1). This implies that all isotropy subgroups of the effective
T n+1-action are connected. Therefore, by using Hodd(Q2n) = 0 and [4] (also see [1, Theorem
2.12]), we have the statement. �

Lemma 3.1 means that to compute the equivariant cohomology H∗T n+1 (Q2n) is equivalent
to compute the graph equivariant cohomology H∗(2n). The goal of this paper is to de-
scribe its generators and relations by the combinatorial data of the GKM graph 2n; this
will be proved in Theorem 5.1. The injective homomorphism (3.2) for H∗(2n) is also
given in Proposition 3.4; toghether with Theorem 5.1, this establishes the H∗(BT n+1)-algebra
structure on H∗(2n). To prove it, in this section, we introduce two types of elements in
H∗(2n) which will be the ring generators of H∗(2n).

3.1. Degree 2 generators.
3.1. Degree 2 generators. We first define the degree two element, denoted by Mv, in

H2(2n) for every v ∈ V2n.

Definition 3.1 (degree 2 generators). Take a vertex v ∈ V2n = [2n + 2]. We define the
function Mv : V2n → H2(BT n+1) by

Mv( j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 j = v,
α( jv) = f (v) − f ( j) j � v, v,
α(vk) + α(vk) = xn − xn+1 − 2 f (v) j = v.

The equality for Mv(v) is obtained by Lemma 2.3; this means that Mv(v) does not depend
on the choice of k ∈ V2n \ {v, v}. The following proposition holds.

Proposition 3.2. For every v ∈ V2n, the function Mv : V2n → H2(BT n+1) is an element of
H2(2n), i.e., Mv ∈ H2(2n).

Proof. We claim that Mv( j) − Mv(k) ≡ 0 mod α( jk) for every jk ∈ E2n by case-by-case
checking.
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The case when j = v: For every k ∈ V2n \{ j, j} = V2n \{v, v}, by Definition 3.1 we have

Mv( j) − Mv(k) = 0 − ( f (v) − f (k)) = f (k) − f (v) = α(vk) ≡ 0 mod α(vk) = α( jk).

The case when j = v: For every k ∈ V2n \ { j, j} = V2n \ {v, v}, we have that

Mv( j) − Mv(k) = α(vk) + α(vk) − α(kv)

= α(vk) + α(vk) − α(vk) (by Lemma 2.2 and Definition 2.1)

= α(vk) ≡ 0 mod α(vk) = α( jk).

The case when j � v, v: With the method similar to that demonstrated as above for the
two cases (k � v and k = v), we can easily check that Mv( j)−Mv(k) ≡ 0 mod α( jk).

Therefore, we have that Mv ∈ H2(2n). �

Example 3.1. For n = 2, Fig.4 represents the class M6 ∈ H2(4).

Fig.4. The element M6 ∈ H2(4).

3.2. Some properties for degree 2 generators Mv.
3.2. Some properties for degree 2 generators Mv. Before we define the higher degree

generators, we introduce three properties for Mv’s.
For the vertices W ⊂ V2n, we denote the full-subgraph with vertices W by ΓW , i.e., ΓW

consists of the following data:
• the vertices W;
• the edges EW := {i j ∈ E2n | i, j ∈ W}.

Note that, by Definition 3.1, the value of Mv( j) ∈ H2(BT n+1) for j � v coincides with
the axial function α( jv) on the vertex j of the full-subgraph ΓI , where I = V2n \ {v}. We
also note that the edge jv is the unique out-going edge of the full-subgraph ΓI from the
vertex j ∈ I \ {v}. The following proposition shows that an element in H2(2n) with such a
property is uniquely determined.

Proposition 3.3. If an element A ∈ H2(2n) satisfies that A( j) = Mv( j) for every j ∈
V2n \ {v, v}, then A = Mv.

Proof. We first claim that A(v) = 0 = Mv(v). By using the congruence relations on the
edges jv for all j ∈ V2n \ {v, v}, we have

A( j) − A(v) = Mv( j) − A(v) = α( jv) − A(v) ≡ −A(v) ≡ 0 mod α( jv).
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This shows that for every j ∈ V2n \ {v, v} there exists an integer k j such that

A(v) = −k jα( jv) = k jα(v j).

In particular, for every j1, j2 ∈ V2n \ {v, v},
A(v) = k j1α(v j1) = k j2α(v j2).

By Lemma 2.4, this gives that k j = 0, thus establishing A(v) = 0.
We next claim that A(v) = xn − xn+1 − 2 f (v) = Mv(v). By using the congruence relations

on the edges jv for all j ∈ V2n \ {v, v}, we have

A( j) − A(v) = Mv( j) − A(v) = α( jv) − A(v) ≡ 0 mod α( jv).

This shows that for every j ∈ V2n\{v, v} there exists an integer k j which satisfies the following
equation:

A(v) = α( jv) + k jα( jv)

= α(v j) + k jα(v j) (by Lemma 2.2 and Definition 2.1)

= xn − xn+1 − 2 f (v) − α(v j) + k jα(v j) (by Lemma 2.3)

= xn − xn+1 − 2 f (v) − (1 + k j)α(v j) (by Lemma 2.2).

In particular, this equation holds for every j1, j2 ∈ V2n \ {v, v}. Therefore, by using the
similar method for the proof of A(v) = 0, we obtain 1 + k j = 0, thus k j = −1. Therefore, by
Lemma 2.2 and Lemma 2.3,

A(v) = α( jv) − α( jv) = xn − xn+1 − 2 f (v).

This establishes A = Mv. �

Recall ι : H∗(BT n+1) → H∗(2n) in (3.2). By abuse of notation, we also denote ι(x) :
V2n → H∗(BT n+1) as x : V2n → H∗(BT n+1) for an element x ∈ H∗(BT n+1). The following
proposition shows that x can be also presented by Mv’s.

Proposition 3.4. The generator xi ∈ H∗(BT n+1) for i = 1, . . . , n + 1 is obtained by the
following equality:

xi = Mi+1 − M1.

Proof. Because i = 1, . . . , n + 1, for all j ∈ V2n \ {1, i + 1}, we have that

Mi+1( j) − M1( j) = f (i + 1) − f ( j) − ( f (1) − f ( j)) = f (i + 1) − f (1)

= xi − xn+1 − (x0 − xn+1) = xi.

For j = 1 = 2n + 2, we have

Mi+1(2n + 2) − M1(2n + 2) = f (i + 1) − f (2n + 2) − (xn − xn+1 − 2 f (2n + 2))

= f (i + 1) + f (2n + 2) − ( f (i + 1) + f (i + 1)) (by Lemma 2.1)

= f (2n + 2) − f (i + 1) = xi (by Definition 2.1).

For j = i + 1 = 2n + 2 − i, we have
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Mi+1(2n + 2 − i) − M1(2n + 2 − i) = (xn − xn+1 − 2 f (2n + 2 − i)) − ( f (1) − f (2n + 2 − i))

= xn − f (2n + 2 − i) (by Definition 2.1).

In this case, by using Definition 2.1 again, we have the following equations.

xn − f (2n + 2 − i) =
{

xn − (xn − xi) i = 1, . . . , n − 1,
xn − (x2n+1−i − xn+1) i = n, n + 1.

Therefore, Mi+1(2n+2−i)−M1(2n+2−i) = xi. These equations show that Mi+1(v)−M1(v) =
xi for all v ∈ V2n. This establishes the statement. �

We also have the following proposition for the 0-cochain presentation f : V2n →
H2(BT n+1) defined in Definition 2.1.

Proposition 3.5. The 0-cochain presentaion f : V2n → H2(BT n+1) satisfies that f =
−Mn+2.

Proof. By definitions of f and Mn+2, we can easily check the statement. �

Example 3.2. The left figure of Fig.3 in Section 2.2 also represents that f = −M4.

3.3. Higher degree generators.
3.3. Higher degree generators. We next define the degree 2l element ΔK in H2l(2n)

for some K ⊂ V2n such that |K| = l + 1, where |K| is the cardinality of K.
For a non-empty subset K ⊂ V2n, by definition of Γ2n, the following two properties are

equivalent:
• the full-subgraph ΓK is the complete subgraph of Γ2n;
• if i ∈ K, then i � K (or equivalently {i, i} � K for all i ∈ V2n).

We call one of these properties the property (∗). Note that if K satisfies the property (∗),
then its cardinality satisfies 1 ≤ |K| ≤ n + 1.

Definition 3.2 (degree (≥)2n generators). Let K ⊂ V2n = [2n+2] be a non-empty subset
that satisfies the property (∗). We define the function ΔK : V2n → H4n−2|K|+2(BT n+1) by the
following map.

ΔK( j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∏

k�K∪{ j}
α( jk) =

∏
k�K∪{ j}

( f (k) − f ( j)) j ∈ K,

0 j � K.
(3.3)

Note that ΔK is nothing but the Thom class of the GKM subgraph ΓK (see [22, Section
4]). Therefore, by the similar arguments for the proof of [22, Lemma 4.1], we have the
following lemma.

Lemma 3.6. If K ⊂ V2n satisfies the property (∗), then ΔK ∈ H4n−2|K|+2(2n).

Remark 3.1. Geometrically, ΔK is the equivariant Thom class of the invariant subman-
ifold in Q2n (see [21]) which is diffeomorphic to the projective space whose fixed points
consisting of K. For example, there exists the following subspace which is diffeomorphic to
CPl−1 in Q2n for every 1 ≤ l ≤ n + 1:

{[z1 : z2 : · · · : zl : 0 : · · · : 0] ∈ Q2n | zi ∈ C} � CPl−1.
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In this case, K = [l] ⊂ [2n + 2] and the class ΔK ∈ H4n−2l+2(2n) corresponds to the
equivariant Thom class of CPl−1 ⊂ Q2n in the equivariant cohomology H4n−2l+2

T (Q2n).

Example 3.3. For the GKM graph 4, the set of vertices K = {1, 2, 3} satisfies the
property (∗). Fig.5 represents the class ΔK ∈ H4(4).

Fig.5. ΔK for K = {1, 2, 3}, where ΔK(2) = (x3 − x1)(x2 − x1 + x3).

Example 3.4. For the GKM graph 4, the set of vertices L = {1, 2} also satisfies the
property (∗). Fig.6 represents the class ΔL ∈ H6(4).

Fig.6. ΔL for L = {1, 2}, where ΔL(2) = (x2 − x1)(x3 − x1)(x2 − x1 + x3).

4. Four relations

4. Four relations
In this section, we introduce the four types of relations among Mv’s and ΔK’s (see Lemma

4.1– 4.4).

Relation 1 (
∏
∩J=∅GJ = 0). We use the following notation for J ⊂ V2n.

GJ :=
{

Mv if J = V2n \ {v} for a vertex v ∈ V2n,

ΔJ if J satisfies that the property (∗), i.e., {i, i} � J for every i ∈ V2n.
(4.1)

By Definition 3.1 and Definition 3.2, we have the following relation in H∗(2n) (see Fig.7).
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Lemma 4.1 (Relation 1). There is the following relation:∏
∩J=∅

GJ = 0.(4.2)

Fig.7. In H∗(4), the relation Δ{1} · M1 = 0 holds (Relation 1).

Relation 2 (Mi + Mi = Mj + Mj). We define the element X ∈ H2(2n) by the map
X : V2n → H2(BT n+1) which satisfies

X(k) := xn − xn+1 − 2 f (k)

for all k ∈ V2n. Then, by Lemma 2.3, for every j ∈ V2n such that j, j � k, there exists the
following equation:

X(k) = α(k j) + α(k j).

By Lemma 2.1 and Definition 3.1, we have the following relation (see Fig.8).

Lemma 4.2 (Relation 2). For every v ∈ V2n, there is the following relation:

Mv + Mv = X.(4.3)

Fig.8. M6 + M6 = X (Relation 2), where 6 = 1 ∈ V4.

Relation 3 (
∏

i∈I Mi = Δ(I∪{a})c + Δ(I∪{a})c). Assume that the subset I ⊂ V2n satisfies that
|I| = n and the property (∗). Then, because |V2n| = 2n + 2, there exists the unique pair
{a, a} ⊂ Ic = V2n \ I such that

ΔK , ΔL ∈ H2n(2n)
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for K = (I ∪ {a})c = Ic \ {a} and L = (I ∪ {a})c = Ic \ {a}. Then, the following relation holds
(see Fig.9 for n = 2 and Fig.10 for n = 3).

Lemma 4.3 (Relation 3). For every I ⊂ V2n as above, there is the following relation:∏
i∈I

Mi = Δ(I∪{a})c + Δ(I∪{a})c .(4.4)

Proof. If v ∈ I, then
∏

i∈I Mi(v) = 0 = Δ(I∪{a})c(v) + Δ(I∪{a})c(v). If v ∈ Ic \ {a, a}, then v ∈ I.
Thus, we have∏

i∈I
Mi(v) = Mv(v)

∏
i∈I\{v}

α(vi) = (α(va) + α(va))
∏

i∈I\{v}
α(vi) = Δ(I∪{a})c(v) + Δ(I∪{a})c(v).

For the vertex a(� I), we have

Δ(I∪{a})c(a) + Δ(I∪{a})c(a) = 0 +
∏
i∈I

α(ai) =
∏
i∈I

Mi(a).

Similarly, we have
∏

i∈I Mi(a) = Δ(I∪{a})c(a) + Δ(I∪{a})c(a). This establishes the statement.
�

Fig. 9. For the GKM graph 4 (where the vertices are de-
fined in Fig.1), this represents the following equation (Relation 3):

M4 · M1 = Δ{2,3,6} + Δ{3,5,6},
where I = {1, 4} ⊂ V4 (for n = 2).

Fig. 10. For the GKM graph 6 (where the vertices are de-
fined in Fig.1), this represents the following equation (Relation 3):

M1 · M2 · M3 = Δ{5,6,7,8} + Δ{4,6,7,8},
where I = {1, 2, 3} ⊂ V6 (for n = 3).

Relation 4 (ΔK · Mi = ΔK\{i}). For two generators ΔK and Mi, we have the following
relation (see Fig.11).
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Lemma 4.4 (Relation 4). Fix i ∈ V2n. If a subset K ⊂ V2n satisfies {i} � K and the
property (∗), then there is the following relation:

ΔK · Mi = ΔK\{i}.(4.5)

Proof. The multiplication of ΔK and Mi is not zero only on K ∩ (V2n \ {i}) = K \ {i}.
Therefore, we have the following equations.

ΔK · Mi(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∏

j�(K\{i})∪{v}
α(v j) if v ∈ K \ {i},

0 if v � K \ {i}.
This shows the equation ΔK · Mi = ΔK\{i}. �

Fig.11. Δ{2,3,6} · M3 = Δ{2,6} (Relation 4), where i = 3 and K = {2, 3, 6}.

5. Main theorem and its proof

5. Main theorem and its proof
In this section, we prove the main theorem (Theorem 5.1). To state the main theorem

precisely, we first prepare some notations. We denote the set of elements defined in Section 3
as follows:

Generator 1:  := {Mv | v ∈ V2n};
Generator 2:  := {ΔK | K ⊂ V2n with the property (∗)}.

Let Z[,] be the polynomial ring which generated by all elements in  and . We
define the degree of elements by

• deg Mv = 2 for every Mv ∈;
• degΔK = 2(2n − (|K| − 1)) = 4n − 2|K| + 2 for every ΔK ∈ .

Let  be the ideal in Z[,] generated by the four relations defined in Section 4. Namely,
the ideal  in Z[,] is generated by the following four types of elements:

Relation 1:
∏
∩J=∅GJ for GJ ∈ �;

Relation 2: (Mi + Mi) − (Mj + Mj) for every distinct i, j ∈ V2n;
Relation 3:

∏
i∈I Mi − (Δ(I∪{a})c + Δ(I∪{a})c) for every subset I ⊂ V2n which satisfies the

property (∗) and |I| = n, where {a, a} is the unique pair in V2n \ I;
Relation 4: ΔK · Mi − ΔK\{i} for {i} � K.

We use the following notation:

Z[2n] := Z[,]/.(5.1)

Because of Section 3 and Section 4, there exists the well-defined homomorphism
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ψ : Z[2n]→ H∗(2n)

by the induced homomorphism from

ψ̃ : Z[,]→ H∗(2n).

Namely, ψ is induced from the following commutative diagram:

Z[,]

��

ψ̃

�������������

Z[2n]
ψ �� H∗(2n),

(5.2)

where the vertical map is the natural projection.
The following theorem is the main theorem of this paper.

Theorem 5.1. The homomorphism ψ is the isomorphism, i.e.,

Z[2n] � H∗(2n).

Together with Lemma 3.1, we obtain Theorem 1.1.
Note that in the proofs below, by definitions of generators in Section 3, we may write

ψ̃(Mi) = Mi, ψ̃(ΔK) = ΔK ∈ H∗(2n).

5.1. Surjectivity of ψ : Z[2n]→ H∗(2n).
5.1. Surjectivity of ψ : Z[2n] → H∗(2n). We first prove the surjectivity of ψ. To

prove it, we use the inductive argument for vertices which is often used in GKM theory (see
e.g. [22, Lemma 4.4] or [18, Lemma 5.6]).

Lemma 5.2. The homomorphism ψ : Z[2n]→ H∗(2n) is surjective.

Proof. By the commutative diagram (5.2), it is enough to prove that ψ̃ is surjective.
Take an element f ∈ H∗(2n). By definition, for the vertex 1 ∈ V2n, the polynomial
f (1) ∈ H∗(BT n+1) can be written by

f (1) =
∑

a
kaxa = g1,

where ka ∈ Z and xa := xa1
1 · · · xan+1

n+1 for a = (a1, · · · , an+1) ∈ (N ∪ {0})n+1. By definition of
M2, . . . , Mn+2 in Definition 3.1, we have M2(1) = x1, . . . , Mn+2(1) = xn+1; therefore,

xa = xa1
1 · · · xan+1

n+1 = Ma1
2 · · ·Man

n+1Man+1
n+2 (1).

This means that we may take an element from Z[M2, . . . , Mn+2] ⊂ Z[,] whose image of
ψ̃ coincides with f (1) on the vertex 1 ∈ V .

We next put

f2 = f − g1.

Then, f2(1) = 0. So, by the congruence relations on the edge 21 ∈ E2n, we have

f2(2) − f2(1) ≡ 0 mod α(21) = M1(2).

Therefore, we have that f2(2) = g2M1(2) for some g2 ∈ H∗(BT n+1). By Proposition 3.4, we
have that
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x1 = M2 − M1, . . . , xn+1 = Mn+2 − M1.

This implies that g2 ∈ Z[M2 − M1, M3 − M1, . . . , Mn+2 − M1] ⊂ Z[,]. Note that it may
also be regarded as g2 ∈ Z[M1, M2, M3, . . . , Mn+2]. This shows that g2M1 is in the image of
ψ̃. Put

f3 = f2 − g2M1(= f − g1 − g2M1).

Then, by f2(1) = M1(1) = 0 and f2(2) = g2M1(2), we have

f3(1) = f3(2) = 0.

By the similar argument, we may write f3(3) = g3M1M2(3) for some g3 ∈ Z[M1, M2,

M3, . . . , Mn+2]. Similarly, we can also check that f4 := f3 − g3M1M2 satisfies f4(1) =
f4(2) = f4(3) = 0. Iterating similar arguments n + 2 times (note that n + 1 = n + 2), we
obtain an element

fn+2 := fn+1 − gn+1M1 · · ·Mn ∈ H∗(2n)

such that gn+1 ∈ Z[M1, M2, . . . , Mn+2] and fn+1 ∈ H∗(2n) satisfies that fn+1(1) = · · · =
fn+1(n) = 0 and fn+1(n + 1) = gn+1M1 · · ·Mn(n + 1). Consequently, we have that

fn+2 = fn+1 − gn+1M1 · · ·Mn(5.3)

= fn − (gnM1 · · ·Mn−1 + gn+1M1 · · ·Mn)
...

= f − (g1 + g2M1 + · · · + gnM1 · · ·Mn−1 + gn+1M1 · · ·Mn).

Note that fn+2 satisfies that fn+2(1) = · · · = fn+2(n + 1) = 0. Therefore, by the defini-
tion of Δ{n+2,...,2n+2} and the congruence relation (see (3.1)), there exists an element gn+2 ∈
Z[M1, M2, . . . , Mn+2] such that

fn+2(n + 2) = gn+2Δ{n+2,...,2n+2}(n + 2).

Since Δ{n+2,...,2n+2}(1) = · · · = Δ{n+2,...,2n+2}(n+1) = 0, if we put fn+3 := fn+2−gn+2Δ{n+2,...,2n+2},
then

fn+3(1) = · · · = fn+3(n + 2) = 0.

Similarly, for k ≥ 2, there exists gn+k ∈ Z[M1, M2, . . . , Mn+2] such that

fn+k+1 := fn+k − gn+kΔ{n+k,...,2n+2}(5.4)

and fn+k+1(1) = · · · = fn+k+1(n + k) = 0. Then, in the case when k = n + 2, there exists
g2n+2 ∈ Z[M1, M2, . . . , Mn+2] such that

f2n+3 := f2n+2 − g2n+2Δ{2n+2}

and f2n+3(v) = 0 for all v ∈ V2n. Therefore, f2n+2 = g2n+2Δ{2n+2}. Substituting this equation
to (5.4) for k = n + 1, we get f2n+1; and iterating this argument from k = n to k = 2, we have

f2n+1 = g2n+2Δ{2n+2} + g2n+1Δ{2n+1,2n+2};

f2n = g2n+2Δ{2n+2} + g2n+1Δ{2n+1,2n+2} + g2nΔ{2n,2n+1,2n+2};
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...

fn+2 = g2n+2Δ{2n+2} + g2n+1Δ{2n+1,2n+2} + · · · + gn+2Δ{n+2,...,2n+2}.

Together with (5.3), every element f ∈ H∗(2n) can be written by the elements in Z[,]
as follows:

f = g1 + g2M1 + · · · + gn+1M1 · · ·Mn(5.5)

+ gn+2Δ{n+2,...,2n+2} + gn+3Δ{n+3,...,2n+2} + · · · + g2n+2Δ{2n+2}

for some g1 ∈ Z[M2, . . . , Mn+2] and g2, . . . , g2n+2 ∈ Z[x1, . . . , xn+1] � Z[M2−M1, . . . , Mn+2−
M1] ⊂ Z[M1, . . . , Mn+2] ⊂ Z[,]. This shows the subjectivity of ψ̃ : Z[,] →
H∗(2n). �

5.2. Injectivity of ψ : Z[2n]→ H∗(2n).
5.2. Injectivity of ψ : Z[2n]→ H∗(2n). We next prove the injectivity of ψ.

Lemma 5.3. The homomorphism ψ : Z[2n]→ H∗(2n) is injective.

To show this lemma, we will use the combinatorial counterpart of the localization theorem
which will be stated in Corollary 5.5. To state that, we prepare the following notation. For
v ∈ V2n = [2n + 2], the subset Iv ⊂ [n + 2] ⊂ V2n is defined by

• Iv = [n + 2] \ {v} for 1 ≤ v ≤ n + 1;
• Iv = [n + 2] \ {v} for n + 2 ≤ v ≤ 2n + 2.

Note that Iv = I2n+3−v for 1 ≤ v ≤ n + 1, for example, I1 = {2, . . . , n + 2} = I2n+2.

Lemma 5.4. The following isomorphism holds for every v ∈ V2n:

Z[2n]/〈GJ | v � J〉 � Z[Mi | i ∈ Iv] � H∗(BT n+1),

where 〈GJ | v � J〉 is the ideal in Z[2n] generated by GJ with v � J (see Relation 1 in
Section 4).

Proof. We will prove the statement only for the vertex v = 1 ∈ V2n because the proofs for
the other vertices in V2n = [2n + 2] = {1, . . . , 2n + 2} are similar.

Suppose that v = 1 ∈ V2n. We shall prove that

Z[2n]/〈GJ | 1 � J〉 � Z[M2, . . . , Mn+1, Mn+2] � H∗(BT n+1).

We first claim that every element in  can be written by the elements in  in
Z[2n]/〈GJ | 1 � J〉. Assume that K ⊂ V2n satisfies {i, i} � K for every i = 1, . . . , n + 1. If
1 � K, then ΔK = 0 in Z[2n]/〈GJ | 1 � J〉. If 1 ∈ K and |K| < n + 1, then by Relation 4,
we have that

ΔK = ΔK∪{ j} · Mj for j, j � K.

This implies that in Z[2n]/〈GJ | 1 � J〉 the generators in  can be written by ΔK’s such
that 1 ∈ K and |K| = n + 1. We next assume that I ⊂ V2n satisfies |I| = n such that
1 � I and there is the unique pair {a, a} ⊂ V2n \ I. Put I = { j1, . . . , jn} and Ic = V2n \ I =
{1, i1, . . . , in−1, a, a}. Then, by Relation 3, we have

Δ{1,i1,...,in−1,a} = Mj1 · · ·Mjn − Δ{1,i1,...,in−1,a} ∈ Z[2n]/〈GJ | 1 � J〉.
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This shows that for the generator ΔK ∈  such that 1 ∈ K and |K| = n + 1, if there is the
vertex a ∈ K for a = 2, . . . n + 1, then we may replace ΔK into Δ(K\{a})∪{a} by using elements
in . Therefore, we may reduce the generators in  into only one generator Δ{1,...,n+1}.
Moreover, since 1 � {2, . . . , n + 1, 2n + 2}, we have

Mn+2 · · ·M2n+1 = Δ{1,2,...,n+1} + Δ{2,...,n+1,2n+2} = Δ{1,2,...,n+1} ∈ Z[2n]/〈GJ | 1 � J〉,
by Relation 3. This shows that every element in  can be written by the elements in .

Next, by the definition of M1, we have M1 = GV2n\{1} = 0 in Z[2n]/〈GJ | 1 � J〉.
Therefore, together with Relation 2, we have that

M1 = M2 + M2 = · · · = Mn+1 + Mn+1 ∈ Z[2n]/〈GJ | 1 � J〉.
Therefore, M1 = Mn+1 + Mn+2 and Mk = Mn+1 + Mn+2 − Mk for k = 2, . . . , n. This implies
that the generators in  can be reduced into

M2, . . . , Mn+1, Mn+2.

This shows that there is the surjective homomorphism

p : Z[M2, . . . , Mn+2]→ Z[2n]/〈GI | 1 � I〉
defined by p(Mi) = Mi for i = 2, . . . , n + 2. We finally consider the following composition
homomorphism:

Z[M2, . . . , Mn+2]
p→ Z[2n]/〈GI | 1 � I〉 ι1→ H∗(BT n+1),

where ι1 is the induced homomorphism from Z[2n]
ψ→ H∗(2n) → H∗(BT n+1) such

that f �→ ψ( f )(1) for f ∈ Z[2n]. By the definition of Mi, we have ι1 ◦ p(Mi) = xi−1 for
i = 2, . . . , n + 2. Therefore, the composition map ι1 ◦ p is an isomorphism. This shows that
p is injective. Consequently, p is an isomorphism. This establishes that Z[2n]/〈GI | 1 �
I〉 � Z[M2, . . . , Mn+2] � H∗(BT n+1). �

Therefore, by the definition of the graph equivariant cohomology and Lemma 5.4, we
have the following corollary.

Corollary 5.5. There is an injective homomorphism:

H∗(2n) ↪→
⊕
v∈V2n

H∗(BT n+1) �
⊕
v∈V2n

Z[2n]/〈GJ | v � J〉 �
⊕
v∈V2n

Z[Mi | i ∈ Iv].

Notice that Corollary 5.5 may be regarded as the counterpart of the localization theorem
for the usual equivariant cohomology.

Now we may prove Lemma 5.3.
Proof of Lemma 5.3. It is enough to prove that the following composition map ϕ is

injective:

ϕ : Z[2n]
ψ−→ H∗(2n) ↪→

⊕
v∈V2n

H∗(BT n+1) �
⊕
v∈V2n

Z[Mi | i ∈ Iv].

Assume that ϕ( f ) = 0 for an element f ∈ Z[2n]. We will prove that f = 0. In the proof,
we use the following restriction map for w ∈ V2n:
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ρw :
⊕
v∈V2n

Z[Mi | i ∈ Iv]→ Z[Mi | i ∈ Iw]

and the image of f ∈ Z[2n] by the composition map ρw ◦ ϕ by f (w)(:= ρw ◦ ϕ( f )). The
assumption ϕ( f ) = 0 is equivalent to that ρv ◦ϕ( f ) = f (v) = 0 ∈ Z[Mi | i ∈ Iv] for all v ∈ V2n.

In the proof of Lemma 5.2, especially in Equation (5.5), we also show the following
fact: for any element f ∈ Z[2n], there exists gi, g

′
n ∈ Z[M2 − M1, . . . , Mn+2 − M1] ⊂

Z[M1, . . . , Mn+2] for i = 1, . . . , 2n and g0 ∈ Z[M2, . . . , Mn+2] such that

f = g0 + g1M1 + · · · + gnM1 · · ·Mn + g
′
nΔ{n+2,...,2n+2} + gn+1Δ{n+3,...,2n+2} + · · · + g2nΔ{2n+2}

(5.6)

= g0 +

n∑
i=1

giM1 · · ·Mi + X(Δ),

where X(Δ) is the ΔK terms. Note that ψ(g j), ψ(g′n) ∈ Z[x1, . . . , xn+1] (see (3.2)) for all j =
0, . . . , 2n. This implies that if there is a vertex v ∈ V2n such that g j(v) = 0 (resp. g′n(v) = 0),
then g j = 0 (resp. g′n = 0).

We first claim that f can be written by ΔK terms only. Since M1(1) = 0 and X(Δ)(1) = 0,
by (5.6), we have that

g0(1) = f (1) −
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

giM1 · · ·Mi + X(Δ)

⎞⎟⎟⎟⎟⎟⎠ (1) = f (1) = 0.

Therefore, we have g0 = 0. Similarly, by using g0 = 0 and (5.6), we have that

g1(2)M1(2) = f (2) −
⎛⎜⎜⎜⎜⎜⎝ n∑

i=2

giM1 · · ·Mi + X(Δ)

⎞⎟⎟⎟⎟⎟⎠ (2) = 0.

Now g1(2), M1(2) ∈ Z[Mi | i ∈ I2 = {1, 3, . . . , n + 2}] and M1(2) � 0. Since the polynomial
ring Z[Mi | i ∈ I2] is an integral domain, we see that g1(2) = 0; therefore, g1 = 0. Iterating
the similar arguments for i = 3, . . . , n − 2, we also have that g2 = · · · = gn−1 = 0, i.e.,

f = gnM1 · · ·Mn + X(Δ)

= gn(Δ{n+2,...,2n+2} + Δ{n+1,n+3,...,2n+2}) + X(Δ) (by Relation 3).

Therefore, if f (v) = 0 for every v ∈ V2n, then f can be written by the ΔK terms only; more
precisely,

f = gnΔ{n+1,n+3,...,2n+2} + (gn + g
′
n)Δ{n+2,...,2n+2} + gn+1Δ{n+3,...,2n+2} + · · · + g2nΔ{2n+2}.(5.7)

We next claim that f = 0 if f (v) = 0 for every v ∈ V2n. The equality (5.7) implies that for
the vertex n + 1 ∈ V2n,

gn(n + 1)Δ{n+1,n+3,...,2n+2}(n + 1)

= f (n + 1) − ((gn + g
′
n)Δ{n+2,...,2n+2} + gn+1Δ{n+3,...,2n+2} + · · · + g2nΔ{2n+2}

)
(n + 1) = 0.

Since Δ{n+1,n+3,...,2n+2}(n + 1) � 0, by the similar reason as above, we have gn = 0. Iterating
the similar arguments for i = n+ 2, . . . , 2n+ 2, we have that g′n = gn+1 = · · · = g2n = 0. This
establishes that f = 0. Consequently, ϕ is injective. �



Equivariant Cohomology of Even-Dimensional Complex Quadrics 559

6. Multiplicative formula of ΔK, ΔH with |K| = |H| = n + 1

6. Multiplicative formula of ΔK, ΔH with |K| = |H| = n + 1
In this section, we show some multiplicative formula in H∗(2n) which gives a typical

difference between H∗(2n) and the graph equivariant cohomology ring of a torus graph,
i.e., the face ring proved in [22].

Let K,H ⊂ V2n be the subsets with the property (∗) and |K| = |H| = n + 1, i.e., there
are classes ΔK ,ΔH ∈ H2n(2n). Note that if K ∩ H � ∅, then we can also define ΔK∩H ∈
H4n−2k(2n) for k = |K ∩ H| − 1. If K ∩ H = ∅, then we put Δ∅ = 0. Recall that the
elementary symmetric polynomial with degree j is defined by

S j(ri | i = 1, . . . , n) :=
∑

a1+···+an= j,
0≤ai≤1

ra1
1 · · · ran

n .

Moreover, because of Relation 2, for every v = 1, . . . , n + 1, we may put

X := Mv + Mv ∈ H2(2n).

There is the following multiplicative formula in H∗(2n) � Z[2n] (see Fig.12 and
Fig.13).

Theorem 6.1. The following formula holds:

ΔK · ΔH = ΔK∩H ·
⎛⎜⎜⎜⎜⎜⎜⎝

k∑
i=0

(−1)iXi ·Sk−i(Mv | v � K ∪ H)

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ H4n(2n),(6.1)

where k = |K ∩ H| − 1.

Proof. If K ∩ H = ∅, then the statement follows from Relation 1 and Δ∅ = 0. So we may
assume K ∩ H � ∅.

Because ΔK ,ΔH ∈ H2n(2n), their multiplication satisfies ΔK · ΔH ∈ H4n(2n). More-
over, the degree of each term on the right-hand side in (6.1) satisfies that

degΔK∩H + deg Xi + degSk−i(Mv | v � K ∪ H) = (4n − 2k) + 2i + 2(k − i) = 2n.

For every p � K ∩ H, because ΔK · ΔH(p) = ΔK∩H(p) = 0, the relation (6.1) holds.
For p ∈ K ∩ H, by the definitions of ΔK’s and Mv’s, it is easy to check that

ΔK · ΔH(p) = ΔK∩H(p) ·
∏

v�K∪H∪{p}
Mv(p).

Because |K ∩ H| = k + 1 for 0 ≤ k ≤ n, we may put

K ∩ H = {a0, a1, . . . , ak} ⊂ V2n,

where we assume p = a0. Because |K| = |H| = n + 1 = |V2n |
2 , we also have that Kc = {a | a ∈

K} and Hc = {b | b ∈ H}. Therefore, Kc ∩ Hc = {x | x ∈ K ∩ H} = {a0, a1, . . . , ak}. This
shows that v � K ∪H ∪ {p} if and only if v ∈ (K ∪H ∪ {p})c = (Kc ∩Hc) \ {p} = {a1, . . . , ak}.
Therefore, if we put  := {a1, . . . , ak},

ΔK · ΔH(p) = ΔK∩H(p) ·
∏
v∈

Mv(p).(6.2)

On the other hand,
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k∑
i=0

(−1)iXi ·Sk−i(Mv | v � K ∪ H)(p) =
k∑

i=0

(−1)iX(p)i ·Sk−i(Mv | v ∈ {p} ∪)(p).(6.3)

By the definition of Mv, we have Mp(p) = X(p). Therefore, for 0 ≤ i ≤ k − 1,

Sk−i(Mv | v ∈ {p} ∪)(p) = Sk−i(Mv | v ∈ )(p) + X(p) ·Sk−i−1(Mv | v ∈ )(p).

Substituting this into (6.3), we have

k∑
i=0

(−1)iX(p)i ·Sk−i(Mv | v∈{p}∪)(p)

=

k−1∑
i=0

(−1)iX(p)i ·Sk−i(Mv | v∈)(p)+
k−1∑
i=0

(−1)iX(p)i+1 ·Sk−i−1(Mv | v∈)(p)+(−1)kX(p)k

=Sk(Mv | v∈})(p)

=
∏
v∈

Mv(p) (by ||=k).

Combining (6.2) and (6.3), we obtain (6.1). �

Fig. 12. This represents the following relation (also see Fig.13):
Δ{2,3,6} · Δ{3,5,6} = Δ{3,6} · (S1(M1, M4) − X) = Δ{3,6} · (M1 + M4 − X),

because K∩H = {3, 6} and K∪H = {2, 3, 5, 6} ⊂ I (so V4\(K∪H) = {1, 4}).

Fig.13. This figure represents the term A = M1 + M4 − X in Fig.12. Note
that A(3) = A(6) = −x2 by Fig.3. Moreover, A(1), A(2), A(4), A(5) might
not be 0 ∈ H2(BT 3); however, Δ{3,6}(1) = Δ{3,6}(2) = Δ{3,6}(4) = Δ{3,6}(5) =
0.

7. Comparison of two ordinary cohomology rings H∗(Q4n) and H∗(Q4n+2)

7. Comparison of two ordinary cohomology rings H∗(Q4n) and H∗(Q4n+2)
Since Hodd(Q2n) = 0 by [20], Q2n is the equivariantly formal GKM manifold (see [8]).

Therefore, its ordinary cohomology also can be computed by the quotient of H∗T (Q2n) by
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H>0(BT n+1). Thus, by using Theorem 5.1 and Proposition 3.4, we also have the ordinary
cohomology of Q2n by the different way of [20].

Corollary 7.1. The ordinary cohomology H∗(Q2n) is isomorphic to Z[2n]/ , where
 is generated by

Mi+1 − M1

for i = 1, . . . , n + 1.

Recall that the cohomology ring formula of Q2n depends on n is even or odd, i.e., by [20],

H∗(Q4n) � Z[c, x]/〈c2n+1 − 2cx, x2 − c2nx〉;
H∗(Q4n+2) � Z[c, x]/〈c2n+2 − 2cx, x2〉.

In this final section, we give the combinatorial reason why this difference occurs by using
Corollary 7.1. To do that, the following lemma is essential.

Lemma 7.2. If K ⊂ V2n is the following subset with the property (∗):
K = {i1, . . . , in+1}.

Then, there is the following formula in Z[2n]/ :

ΔK = Δ{i1,...,in−1,in,in+1}.

Proof. By definition of  , in Z[2n]/ , we have

M1 = M2 = · · · = Mn+1 = Mn+2.

By Relation 2, Mn+1 + Mn+2 = Mi + Mi for all i = 1, . . . , n. Therefore, we also have that

M1 = Mn+3 = · · · = M2n+2.

Consequently, we have Mi = Mj for all i, j ∈ [2n + 2]. Because K satisfies the property
(∗), for every a ∈ K, the subset I := K \ {a} ⊂ V2n satisfies that |I| = n; moreover, there are
unique pair {a, a} ⊂ V2n \ I. Therefore, we may apply Relation 3 for K \ {a}. Together with
M1 = Mi for all i ∈ V2n as above, we have

Mn
1 = ΔKc + Δ((K\{a})∪{a})c = ΔKc + Δ(Kc\{a})∪{a}.(7.1)

Note that this equation (7.1) holds for all K ⊂ V2n which satisfies the assumption of this
lemma. Therefore, we have

Mn
1 = Δ{i1,...,in+1} + Δ{i1,...,in,in+1} = Δ{i1,...,in,in+1} + Δ{i1,...,in−1,in,in+1}.

Thus, Δ{i1,...,in+1} = Δ{i1,...,in−1,in,in+1}. �

Consequently, we have the following corollary.

Corollary 7.3. For K ⊂ V2m which satisfies the assumption of Lemma 7.2, there are the
following relations:

• ΔK · (M2n
i − ΔK) = 0 in Z[4n]/ if m = 2n;

• Δ2
K = 0 in Z[4n+2]/ if m = 2n + 1.
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Proof. Suppose m = 2n + 1, i.e., m ≡ 1 mod 2. By iterating to use Lemma 7.2, we
have ΔKc = ΔK . Therefore, by K ∩ Kc = ∅ and Relation 1, we have the 2nd relation in the
statement.

Suppose m = 2n, i.e., m ≡ 0 mod 2. In this case, K = {i1, . . . , i2n+1}. By iterating to use
Lemma 7.2, we obtain

ΔK = Δ{i1,i2,...,i2n+1}.

By applying (7.1) to i1 ∈ {i1, i2 . . . , i2n+1}c = {i1, i2 . . . , i2n+1}, it follows from this relation
that

M2n
1 = Δ{i1,i2,...,i2n+1} + Δ{i1,i2,...,i2n+1} = ΔK + ΔKc .

Hence, we have ΔKc = M2n
1 −ΔK . Therefore, by K ∩ Kc = ∅ and Relation 1, we have the 1st

relation in the statement. �

Fig.14 and Fig.15 show the difference of the ordinary cohomology for n = 2 and n = 3.
For example, in Fig.14, K = {3, 5, 6} (see Fig.1). In this case, by applying Lemma 7.2,
ΔK = ΔH for H = {1, 2, 3} = {2, 4, 6} = {1, 4, 5}. This shows that K ∩ H � ∅; therefore,
Δ2

K � 0. However, in Fig.15, we can take such H as Kc; this gives Δ2
K = 0

Fig.14. ΔK(M2
1 −ΔK) = 0 for

n = 2.
Fig.15. Δ2

K = 0 for n = 3.
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