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Abstract

The purpose of this paper is to determine the ring structure of the graph equivariant coho-
mology of the GKM graph induced from the complex quadrics Q,,. We show that the graph
equivariant cohomology is generated by two types of subgraphs in the GKM graph, namely M,
and Ak, which are subject to four different types of relations. By utilizing this ring structure,
we establish the multiplicative relation for the generators A of degree 2n and provide an alter-
native computation of the ordinary cohomology ring of Q»,, as previously computed by H. Lai.
Additionally, we provide a combinatorial explanation for why the square of the half-degree
generator x € H 21((0,,,) vanishes when 7 is odd and is non-vanishing when # is even.

1. Introduction

In the paper [8], Goresky, Kottwiz, and MacPherson established a framework for studying
the class of manifolds with a torus action, known as equivariantly formal, by using their fixed
points and one-dimensional orbits. These manifolds are now commonly referred to as GKM
manifold. Expanding on their work, Guillemin and Zara introduced the notion of an abstract
GKM graph in [11] as a combinatorial counterpart of GKM manifolds, thus initiating the
study of spaces with torus actions using the combinatorial structure of GKM graphs. Since
then, the research of GKM manifolds and GKM graphs, commonly known as GKM theory,
has been the subject of extensive research (e.g., [7, 9, 10, 15, 16, 22]).

One can view GKM theory as a methodology for computing equivariant cohomology
based on the combinatorial structure of a graph. For an equivariantly formal GKM man-
ifold, its equivariant cohomology is isomorphic to the graph equivariant cohomology of
its corresponding GKM graph, see (3.1). On the other hand, for abstract GKM graphs,
the graph equivariant cohomology can be defined independently of geometry, leading to its
study in various articles (e.g., [1, 5, 6, 7, 10, 18, 17, 22]). In particular, in [22], Maeda-
Masuda-Panov introduced the combinatorial counterpart of a torus manifold, where a forus
manifold is defined by a 2n-dimensional 7"-manifold with fixed points. This combinatorial
object is called a torus graph, and its properties have been extensively studied. Notably,
they established that the graph equivariant cohomology of a torus graph is isomorphic to its
face ring, which is defined using the simplicial poset induced from the subgraphs of a torus
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540 S. Kurok1

graph, relying solely on algebraic and combinatorial arguments. The advantage of estab-
lishing such a result for abstract GKM graphs, without relying on geometry, is that it can be
applied to a wider class of equivariantly formal GKM manifolds (or spaces) that share the
same GKM graph. This enables us to compute the equivariant cohomology of equivariantly
formal GKM manifolds, even when well-known techniques for computing equivariant coho-
mology, such as certain methods in algebraic topology or Hamiltonian torus actions, cannot
be applied. Hence, the result in [22] can be regarded as a generalization of the computation
of the equivariant cohomology ring of torus manifolds presented in [23].

In our paper, we focus on the study of GKM graphs corresponding to even-dimensional
complex quadrics. An even-dimensional complex quadric Q», is defined by

n+l
2n+1
Oan i=1lz1 ¢ -+ : 2aa] € CP | Y 223055 = 0},
i=1
having the natural 7"*!-action
o : : -1 P
(1.1 [z1 -t zonal 2 (21t 1 2200 Znattpet L Zne2 Dl Zna3 DB Zone2]s

where (¢1,...,1,41) € T"*!. Since Q,, ~ SO(2n+2)/SO(2n)xSO(2), this action is equivalent
to the restriction of the transitive SO(2n + 2)-action to the maximal torus 7"*!-action. As
T"*! is also a maximal torus of SO(2n) x SO(2) (i.e., SO(2n) x SO(2) is a maximal rank
subgroup of SO(2n +2)), it follows from [7] that the fixed points and one-dimensional orbits
of the T7"*!-action have the structure of a graph. Therefore, the GKM graph of Q,, with the
T™*!-action (1.1) can be constructed by labeling the edges with tangential representations.
Although the action (1.1) has a finite kernel Z, = {1} C T"*!, we can obtain an effective
T™*!-action on Q», by considering the quotient 7"*!/Z,. In this paper, we denote by GQ,,
the GKM graph obtained from this effective 7"*!-action, see Section 2.2.

On the other hand, the ordinary cohomology ring H*((Q,,) of Q,, over the integer coef-
ficient was computed by H. Lai in [19, 20] (also see [3, Excercise 68.3] for H*(Q,,) as the
Chow ring). In particular, we have the following isomorphisms.

(1.2)
H*(Qm):{

Zlc, x1/{(c** =2¢x, x*—c*'x)  if m=4n, where degc=2, degx=4n,
Z[c, x]/{c*"*?* =2cx, x%) if m=4n+2, where degc=2, deg x=4n+2.

Using this formula, one can conclude that H°%(Q,,) = 0 which means that Q,, is an equiv-
ariantly formal GKM manifold. Therefore, the equivariant cohomology H,,,,(Q2,) of the
effective 7"*!-action on Q», can be computed by using the graph equivariant cohomology
of its GKM graph, denoted by GQ,,,. The main goal of this paper is to determine the graph
equivariant cohomology H*(GQ,,) (see (3.1)) by explicitly describing its generators and
relations in terms of the subgraphs. As a consequence, we can compute the equivariant co-
homology ring of the effective 7"*'-action on Q», by generators and relations. The main
theorem of this paper, which is presented in Section 5 precisely, is as follows:

ISince 0, can also be regarded as the homogeneous space of the affine algebraic group SO(m+2, C), it follows
from [2, Appendix C.3.4] that its Chow ring is isomorphic to its cohomology ring, i.e., A*(Q,,) =~ H**(Q.;Z).
We also note that the rational cohomology ring of Q,_; is isomorphic to that of CP?*~! (e.g. see [25]); however,
these two cohomologies are not isomorphic over integer coefficients (e.g. see [3, 12]).
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Theorem 1.1. There exist the following isomorphisms as a ring:

Hy.,..(Qa) = H'(GQ2y) = Z[GQy,].

Since the complex quadric Q», is equivariantly formal, the Serre spectral sequence of
the fiber bundle Oy, — ET Xy Oy, — BT collapses at the E,-term. This implies that the
ordinary cohomology H*((Q,,) can be obtained as the quotient of the equivariant cohomol-
ogy H;M (Qo) by H >0(BT). 1t is worth noting that the ring structure of H*(Q>,), as shown
in (1.2), depends on whether n is even or odd. We provide a combinatorial explanation
for the difference between H*(Q4,) and H*(Q4,2) using Theorem 1.1 (see Lemma 7.2 and
Corollary 7.3 precisely).

The paper is organized as follows, consisting of Sections 2 through 7. In Section 2,
we compute the GKM graph GQ,, of the effective 7”*!-action on Q,,. In Section 3, we
introduce the graph equivariant cohomology H*(GQ,,) and define the generators M, and
Ak, studying their properties. In Section 4, we present the four relations among M, and
Ag. The main theorem (Theorem 5.1) is proved in Section 5. Section 6 and Section 7
serve as additional sections with applications of Theorem 1.1. In Section 6, we establish
multiplicative relations among Ag’s of degree 2n. In Section 7, the ordinary cohomology
ring of Q», is studied from a GKM theoretical perspective.

2. GKM graphs of even-dimensional complex quadrics 0>,

In this section, we compute the GKM graph of the effective T7"*!-action on Q», (see [11,
14] about the basic facts of the GKM graph). In this paper, we identify the cohomology ring

H*(BT"*") as the following polynomial ring generated by degree 2 generators xi, ..., X,41:
(2.1 H*(BT™") ~Z[x1, ..., Xps1]-
It is worth noting that the generator x;, fori = 1,...,n+1, is the equivariant first Chern class

of the T"*!-equivariant complex line bundle over a point, where the action on the unique
fiber is defined by the ith coordinate projection p; : 7! — S' € Hom(T"*!, §!). This gives
the following identifications:

H2(BTI1+1) ~ Hom(T"+1,Sl) ~ (t%+1)* ~ Zn+1,

where t%“ is the lattice of the Lie algebra of 7"*!. In this paper, we often use this identifi-
cation.

2.1. The GKM graph of the natural 7"*!-action on Q»,. Suppose that the 7"*!-action
on Q,, is defined by (1.1). We first compute the GKM graph of this non-effective 7"*+!-
action.

By definition, the GKM graph consists of the fixed points (vertices) and the invariant
2-spheres (edges), and the labels on edges (the axial function of the GKM graph) which
are defined by the tangential representations on fixed points. It is easy to check from the
definition (1.1) that the fixed points of Q,,, are

06 ={leilli=1,...,2n+2},
where [Ei] = [0 e 0:1:00: - 0] c CPZVH—I (Ol’lly the ith coordinate is 1) We first
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denote the 2-spheres in CP?>**! by the following symbol:
(2.2) [zi:z]:={[0:--:0:2:0:---:0:2;:0---:0] € CP*"*},

i.e., the subset consists of the only ith and jth coordinates. If [z; : z;] C Qa,, then it follows
from the quadric equation Z?:ll ZiZons3—i = 0 which defines Q,, that one of the following
properties hold:

e [z : z;]  CP' (diffeomorphic) if i + j # 2n + 3;

o [zi:zjl={[1:0l}or{[0: 1]}ifi+ j=2n+3.
Namely, invariant 2-spheres of 0, are [z; : z;] such that i + j # 2n + 3. Therefore, we obtain
the following graph from the 7"*!-action on Q»,:

e the set of vertices Vo, = [2n + 2] :={1,2,...,2n + 2};

o the set of edges E», = {ij|i,j€ [2n+ 2] suchthati # j, i + j # 2n + 3}.
We denote this graph as Iy, := (Va,, E2,), see Fig.1.

1 1 2

6 4 8

Fig. 1. The left graph is I'y (n = 2) induced from the T3-action on Qy, and
the right graph is I's (n = 3) induced from the 7"*-action on Qg.

Remark 2.1. For convenience, we often denote the vertex j € V,, suchthati+ j =2n+3
by i. Namely, the set of vertices can be written by

Vo, =R2n+2]1={1,2,...,n+1,n+1,n,..., 1}
Moreover, by using this notation, the set of edges can be written by
E», ={ij|i, j € Va, such that j # i, i}.

We next compute the tangential representations around the fixed points and put the label
on edges denoting as @ : E,, — H*(BT™"), called an axial function on edges. Recall
that the tangential representations around the fixed points decompose into the complex 1-
dimensional irreducible representations. One can also regard each complex 1-dimensional
irreducible representation as the tangential representation on the fixed point of the invariant
2-sphere. This implies that, to compute the tangential representations around fixed points,
it is enough to compute the tangential representation on each invariant 2-sphere [z; : z;] €
Q. see (2.2). By the definition of the 7"*!-action on [z; : z i1, we may write the action
t=(t,....tae1) € T oOn [z : z;] as

[zi - zj] = [pi(Dzi = pj(D)z;],
giving the T"*!_actions on the two fixed points of the 2-sphere [z; : z;] by

[1:z]-[1:pi) ' pz), [z e [pi@pin) 'z 1],
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where p; : T"*! — S! is the surjective homomorphism defined as the following map.

(4 ifien+1],
pi(0) = £ ifiefn+2,...,2n+2)

Therefore, the axial function @ : E», — H*(BT"*') is defined by the following equation (see
Fig.2):

(2.3) a(ij) = x; — x;,

where x; € H*(BT"*!) is the element such that

e fori € [n+ 1], x; is the generator of H*>(BT"*!) corresponds to the ith coordinate
projection p;, also see (2.1);

o forie{n+2,...,2n+2}, x; :== —x;.

Fig.2. The axial function @ around the vertex 1 in I'y. This corresponds to
the GKM graph induced from the 73-action on Q4 defined by (1.1). Note
that 6=1,5=2,4=3.

2.2. The GKM graph of the effective 7""*'-action on Q,,. Since the 7"*!-action (1.1)
on 0y, is not effective, the axial function a defined by (2.3) does not satisfy the effectiveness
conditions, i.e., for any fixed i € V,,, the set {a(ij) | ij € E,,} does not span H*(BT"™*') ~
7! (see [16, Section 2.1]). For example, around the vertex 1 € V»,, the axial functions are

n+1y\x*
(2.4) X2 = X1y vy Xpel — X1, —Xp4l — X1, —Xp — X1, ..., —X2 — X1 € (177)7,

and it is easy to check that these vectors span the lattice (x; — X1, ..., X411 — X1, —Xp41 — X1)7
which is the proper subspace in (t%“)*. This is also similar to the axial functions on the other
vertices. To apply the GKM theory, we will identify (x, — x1, ..., Xp11 — X1, =Xp+1 — X1)z aS
(t%“)*. In this paper, they are replaced as follows:

e x;—xjasx;_jfori=2,...,n+1;

® —Xp+l — X1 AS Xy

For the other vectors in (2.4), we have the following equalities:

—x; = x1 = =(% = x1) + (Xpe1 = X1) + (=Xpe1 — X1)
fori = 2,...,n. Therefore, we may replace the vectors in (2.4) with the following vectors
(respectively):
(2.5) Xl ooes Xy Xngls —Xnol + Xp F+ Xpgls ooy —X1 + Xy + Xppl.

Notice that the vectors in (2.5) are primitive generaters of (t%“)*. This gives the axial func-
tion induced by the effective T"*!(~ T"*!/Z,)-action on Q,,, where Z, = {+1} is the kernel
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of the T7"*!-action in (1.1) (more precisely, see the following Remark 2.2).

Remark 2.2. Here, we will explain that the axial function (2.5) is obtained by the explicit
T™!-action on Q, C CP?**! defined by (2.6). The vectors (2.4) in (t%“)* induce the non-
injective homomorphism ¢ : 7"*! — T2"*2 with ker ¢ = {+1} = Z; defined by

(tiseostur) = (Lt ot e g 5 ).
Note that the image of ¢ is the following subtorus in 722
imo= {10, ;oL GG () € T

= (L, STy ey Sus Suets Syt SuSuats - s ST SuSuats SuSus) | (S15- s Spe1) € ™).

By the fundamental theorem on homomorphisms, we have the following identifications:
ime~T""/kerp = 7" )7, ~ 7"

So the effective 7"*!-action is defined by the standard action of the subtorus im ¢ ¢ T?"*2,
ie,for[z1 1200 Zusl S Zna2 1 Zue3 & oo Zonsn) € Oop and (51, ..., Spe1) € T,
(2.6)  [z1:22: " 1Zua1 2042 2ne3 5" 1 22042]

. . . . ol . ol .
(210851200 I SnZna 1 S S 1204258, 1 SnSne 120350 28T SpSpa1 2041 SnSn4122n42]-

This action is nothing but the restricted 7"*!-action on Q,, from the standard T2+ _action
on CP>*2 where T?"*! = {(1,11,...,tons1) | t, - - ., tons1 € T} € T?"*2. Moreover, its axial
function around 1 € V,, = an coincides with (2.5). Therefore, (2.5) gives the effective
T"*!-action on Q,, by (2.6).

Applying a similar way to the other axial functions around each vertex (see (2.3)), we can
define the axial function of the effective 7"*!-action as follows (see Fig.3).

DeriNtTioN 2.1, Set f 1 Vo, — H?(BT"™) as

£ = Xj1—Xpe1 j=1,...,n+2,
J Xp— Xopgo—j j=n+3,...,2n+2,

where xo = 0 and (x1,. .., X,+1) = H*(BT"""). Then we define the axial function « : E,, —
H?*(BT™") as

a(ij) = f(j) = fO)
for j # i,i.
In this paper, the symbol GQ,,, represents the GKM graph (I',,,, @) (or equivalently (I, f),

called a O-cochain presentation) for Iy, = (Va,, E»,) defined in Definition 2.1.
We exhibit some useful properties for the GKM graph GQ»,,.

Lemma 2.1. For every vertix i € Vy, in the GKM graph GQ,,, the following equation
holds:

FG@) + fG) = Xy = Xns1.
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—x3 1
T T3
Ty — 0
2 4
2 Ty — X7 3
3 5
T — 2 — 1
i) 6

Fig.3. The GKM graph GQ,, when n = 2 (also see the left graph in Fig.1).
The right figure shows that the axial function @ : E; — H*(BT?) of GQ,
around the vertex 1. The left figure shows its O-cochain presentation f :
V4, — H*(BT?).

Proof. Since i +i = 2n + 3, we have that x;_; = Xy,4o_7- The equality is immediately
followed by Definition 2.1. m|

Lemma 2.2. For every edge ij € E,, in the GKM graph GQ,,, the following equation
holds:

a(ij) = —a(ij).
Proof. By Lemma 2.1, we have
(i) = £() = fG) = (on = Xue1 = F()) = (% = Xpet — £()
= f@) = f() = a(i) = —ai)). O
Lemma 2.3. For every j € Vy, \ {i,i}, the following equation holds:
a(i)) + a(i]) = Xy = Xps1 — 2£(0).

Proof. By definition of the axial function @ : E», — H*(BT™") and Lemma 2.1, we have
that

a(ij) + (i) = (f() = f@) + (F() = f@) = f() + £() = 2 ()
=Xp — Xn+l — 2f(l) |
Lemma 2.4. The GKM graph GQ,,, is three-independent, i.e., for every vertex i € V,, and

every distinct three vertices ji, ja, j3 € Vo, \{i, i}, the axial functions a(ij), a(ij,), a(ijz) are
linearly independent.

Proof. This is straightforward from Definition 2.1. m|

3. Two generators
The graph equivariant cohomology of the GKM graph GQ,, is defined by
(3.1)  H*(GQy,) :={h: Vo, = H*(BT™") | h(i) — h(j) =0 mod a(ij) for ij € Ey,).
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The equation A(i) — h(j) = 0 mod a(ij) in (3.1) is also called a congruence relation. Note
that H*(CQ»,) has the graded H*(BT"*')-algebra structure induced by the graded algebra
structure of €P 10 Re» where R, is the degree 7 part defined by R, := H'(BT"*"). In particular,
there is the injective homomorphism

(3.2) ¢ H'(BT"™™) - H*(GQ,,)

such that the image of x € H*(BT""), say «(x) : Vo, — H*(BT™'), is defined by the
function

(x)v) = x

for all v € V»,. This induces the H*(BT"*!)-action on H*(GQ,,).
The following lemma holds.

Lemma 3.1. For the effective T"'-action on Q»,, the following graded H*(BT™")-
algebra isomorphism holds:

Hy,(Q20) = H'(GQ2).

Proof. Because the effective 7"*!-action on Q», is obtained by the quotient "7, by
the finite kernel of the action (1.1). This implies that all isotropy subgroups of the effective
T™*!-action are connected. Therefore, by using H°%(Q,,) = 0 and [4] (also see [1, Theorem
2.12]), we have the statement. m]

Lemma 3.1 means that to compute the equivariant cohomology H7.,,,(Q2,) 1s equivalent
to compute the graph equivariant cohomology H*(GQ,,). The goal of this paper is to de-
scribe its generators and relations by the combinatorial data of the GKM graph GQ,,; this
will be proved in Theorem 5.1. The injective homomorphism (3.2) for H*(GQ,,) is also
given in Proposition 3.4; toghether with Theorem 5.1, this establishes the H*(BT"*!)-algebra
structure on H*(GQ,,). To prove it, in this section, we introduce two types of elements in
H*(GQ,,) which will be the ring generators of H*(GQ»,).

3.1. Degree 2 generators. We first define the degree two element, denoted by M,, in
H*(GQ,,) for every v € V5.

DEeriniTION 3.1 (DEGREE 2 GENERATORS). Take a vertex v € V,, = [2n + 2]. We define the
function M, : V,, — H*(BT™") by
0 J=0,
M,()) =4 a(jv) = f() = () J# 0,0,
a(vk) + a(vk) = x, — X,01 —2f(®) j=0.

The equality for M,(v) is obtained by Lemma 2.3; this means that M,(v) does not depend
on the choice of k € V,, \ {v,v}. The following proposition holds.

Proposition 3.2. For every v € Vs, the function M, : Vo, — H*(BT"*") is an element of
H*(GQy,), i.e., M, € H*(GQy,).

Proof. We claim that M,(j) — M,(k) = 0 mod «(jk) for every jk € E,, by case-by-case
checking.
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The case when j = v: Forevery k € V,\{}. j} = V5, \ {v, v}, by Definition 3.1 we have
My(j) = My(k) =0 = (f(v) - f(k)) = f(k) = f(v) = a(vk) =0 mod a(vk) = a(jk).
The case when j = v: Forevery k € V5, \ {J, 7} = Vo, \ {v, v}, we have that

M,(j) = My(k) = a(vk) + a(vk) — a(kv)

= a(vk) + a(0k) — (k) (by Lemma 2.2 and Definition 2.1)
=a(k) =0 mod a(vk) = a(jk).

The case when j # v,v: With the method similar to that demonstrated as above for the
two cases (k # v and k = v), we can easily check that M,(j)—M,(k) = 0 mod a(jk).

Therefore, we have that M, € H*(GQ»,). O

ExampLE 3.1. For n = 2, Fig.4 represents the class Mg € H?*(GQ.).

Mﬁ(].) = X9 — T3 — Qf(é) =22+ 3

M6<2) =To — X1+ T3 M6(4) = M6(§) = X9

M@(B) = T3 - - M6(5) = M6(§) = I

Fig.4. The element Mg € H*(GQ,).

3.2. Some properties for degree 2 generators M,. Before we define the higher degree
generators, we introduce three properties for M,’s.

For the vertices W c V,,, we denote the full-subgraph with vertices W by 'y, i.e., ['y
consists of the following data:

e the vertices W;
o theedges Ey :={ij€ Ey, | i, j € W}

Note that, by Definition 3.1, the value of M,(j) € H*(BT"*") for j # v coincides with
the axial function a(jv) on the vertex j of the full-subgraph I';, where I = V5, \ {v}. We
also note that the edge jv is the unique out-going edge of the full-subgraph I'; from the
vertex j € I\ {v}. The following proposition shows that an element in H 2(GQ,,) with such a
property is uniquely determined.

Proposition 3.3. If an element A € H*(GQ,,) satisfies that A(j) = M,(j) for every j €
Vo, \ {v, 0}, then A = M,

Proof. We first claim that A(v) = 0 = M,(v). By using the congruence relations on the
edges jv for all j € Vy, \ {v,v}, we have

A()) = A@) = My(j) = A() = a(jv) —A@) = -A() =0 mod a(jv).
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This shows that for every j € V>, \ {v, v} there exists an integer k; such that
A@) = —kja(jv) = kja(v)).

In particular, for every ji, j» € Vo, \ {v,0},
A@) = kj a(vjr) = kj,a(vj2).

By Lemma 2.4, this gives that k; = 0, thus establishing A(v) = 0.
We next claim that A(v) = x,, — x,,+1 — 2f(v) = M,(v). By using the congruence relations
on the edges jv for all j € V, \ {v, v}, we have

A()) = A@) = My()) = A@) = a(jv) = A@) =0 mod a(jv).

This shows that for every j € V>, \{v, v} there exists an integer k; which satisfies the following
equation:

A@) = a(jv) + kja(jv)
= a(v)) + kja(vj) (by Lemma 2.2 and Definition 2.1)
=Xy — Xp1 — 2f(©) — a(v)) + kja/(v}) (by Lemma 2.3)
=Xy — Xps1 — 2f(@0) — (1 + kj)a(vj) (by Lemma 2.2).

In particular, this equation holds for every j;, j» € Va, \ {v,0}. Therefore, by using the
similar method for the proof of A(v) = 0, we obtain 1 + k; = 0, thus k; = —1. Therefore, by
Lemma 2.2 and Lemma 2.3,

A() = a(jv) — a(jv) = X, = Xpe1 — 21 (V).
This establishes A = M,,. ]

Recall ¢ : H*(BT™") — H*(GQ,,) in (3.2). By abuse of notation, we also denote ¢(x) :
Vo — H*(BT"™') as x : V,, — H*(BT™") for an element x € H*(BT"*"). The following
proposition shows that x can be also presented by M,’s.

Proposition 3.4. The generator x; € H*(BT™") fori = 1,...,n + 1 is obtained by the
following equality:

x; = My, — M.
Proof. Because i = 1,...,n+ 1, forall j € V», \ {1,i + 1}, we have that
Min(j) — Mi(j) = fG+ 1) = f() — (f(D) = f() = fG+ 1) - f(1)
= X; — Xpe1 — (X0 — Xpp1) = X

For j =1 = 2n + 2, we have

Mg 2n+2) = Mi2n+2) = f(i+1) = fQn+2) = (x, — Xus1 — 2f (21 +2))
= fli+ 1D+ fQn+2)—(fG+1)+ fi+1)) (byLemma?2.1)
= f@n+2)— f(i+1)=x (by Definition 2.1).

For j=i+1=2n+2-1i, we have
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Mg Qn+2—-0D)-M2n+2—-i)=(x, — X1 —2fCn+2-0))— (f(1) - fRn+2 1))
=x,— f(2n+2—1i) (by Definition 2.1).

In this case, by using Definition 2.1 again, we have the following equations.

Xp — (X, — X3) i=1,...,n—1,
Xn = (Xop41-i — Xpg1) I=n,n+ 1.

xn—f(2n+2—i)={

Therefore, M;.1(2n+2—i)—M;(2n+2—1i) = x;. These equations show that M;,(v)—M;(v) =
x; for all v € V,,,. This establishes the statement. O

We also have the following proposition for the O-cochain presentation f : V,, —
H*(BT"") defined in Definition 2.1.

Proposition 3.5. The 0-cochain presentaion f : V,, — H*(BT™') satisfies that f =

—Mp42.

Proof. By definitions of f and M,,;», we can easily check the statement. O

ExampLE 3.2. The left figure of Fig.3 in Section 2.2 also represents that f = —M,.

3.3. Higher degree generators. We next define the degree 2/ element Ag in H*(GQ,,)
for some K C V5, such that |K| =/ + 1, where |K] is the cardinality of K.
For a non-empty subset K C Vj,, by definition of I',,, the following two properties are
equivalent:
e the full-subgraph [k is the complete subgraph of ['5,;
e ificK,theni¢ K (or equivalently {i, i} ¢ K forallie Von).
We call one of these properties the property (x). Note that if K satisfies the property (x),
then its cardinality satisfies 1 < |K| <n+ 1.

DEriniTION 3.2 (DEGREE (>)21 GENERATORS). Let K C V5, = [2n+2] be a non-empty subset
that satisfies the property (). We define the function Ag : V,, — H*~2K*2(BT7+1) by the
following map.

[ eGo=[] t®-rGn jek,
(3.3) Ax(j) =1 keku() keKU()
0 j¢K.

Note that Ak is nothing but the Thom class of the GKM subgraph I'x (see [22, Section
4]). Therefore, by the similar arguments for the proof of [22, Lemma 4.1], we have the
following lemma.

Lemma 3.6. If K C V., satisfies the property (x), then Ax € H"2K+2(GQ,,).
RemARk 3.1. Geometrically, Ak is the equivariant Thom class of the invariant subman-
ifold in Oy, (see [21]) which is diffeomorphic to the projective space whose fixed points

consisting of K. For example, there exists the following subspace which is diffeomorphic to
CP""!in Q,, for every 1 </<n+1:

{lzi:zz:--:2:0:---:0] € Oy |z € Cy =~ CPL.
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In this case, K = [I] c [2n + 2] and the class Ax € H*"2*2(CQ,,) corresponds to the
equivariant Thom class of CP""! ¢ Q,, in the equivariant cohomology H;"‘QHZ(QZ").

ExampLE 3.3. For the GKM graph GQ,, the set of vertices K = {1,2,3} satisfies the
property (). Fig.5 represents the class Ag € H*(GQy).

AK(l) = 563(132 — X+ $3)

Fig.5. Ak for K = {1,2, 3}, where Ag(2) = (x3 — x1)(x2 — X1 + X3).

ExampiE 3.4. For the GKM graph GQy, the set of vertices L = {1,2} also satisfies the
property (). Fig.6 represents the class A; € H%(GQ,).

AL(l) = l‘g[L‘g(Ig — T+ Zlfg)

Fig.6. Ay for L = {1,2}, where Ap(2) = (xo — x1)(x3 — x1)(x2 — X1 + X3).

4. Four relations

In this section, we introduce the four types of relations among M,’s and Ag’s (see Lemma
4.1-4.4).
RELATION 1 ([]A729 Gs = 0). We use the following notation for J C V5,,.

M, if J =V,, \ {v} for a vertex v € V5,

4.1 Gy = ) -
@1 / { Ay if J satisfies that the property (), i.e., {i,i} ¢ J for every i € V.

By Definition 3.1 and Definition 3.2, we have the following relation in H*(GQ»,) (see Fig.7).
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Lemma 4.1 (Relation 1). There is the following relation:

(4.2) []e, =0

NJ=0

0 M; (6) 0

Fig.7. In H*(GQ4), the relation Ay - M; = 0 holds (Relation 1).

RELATION 2 (M; + M; = M; + M;). We define the element X € H*(GQ,,) by the map
X : Va, — H*(BT"™") which satisfies

X(k) = x5 — Xp41 — 2f(k)

for all k € V,,. Then, by Lemma 2.3, for every j € V,, such that j,; # k, there exists the
following equation:

X (k) = a(kj) + a(k)).
By Lemma 2.1 and Definition 3.1, we have the following relation (see Fig.8).

Lemma 4.2 (Relation 2). For every v € Vy,, there is the following relation:

4.3) M, + M; = X.
Mg(1) =0 Ty + T3
/*\
v X2 — 2x 3 — T3
\ /7 + =
SuLT T3 — — T2 — T3
Ms(6) =0 —Ty — @3

Fig.8. Mg + Mz = X (Relation 2), where 6=1¢ Vy.

RELATION 3 ([T, Mi = Agutaye + Aguiay)- Assume that the subset I C V;, satisfies that

|l = n and the property (*). Then, because |V,,| = 2n + 2, there exists the unique pair
{a,a} c I° = V,, \ I such that

Ak, AL € H"(GQy,)
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for K= U{a}) =1°\{a} and L = (I U {a})° = I\ {a}. Then, the following relation holds
(see Fig.9 for n = 2 and Fig.10 for n = 3).

Lemma 4.3 (Relation 3). For every I C V», as above, there is the following relation:
(4.4) l—l M; = Aqujaye + Aquiayy-
iel
Proof. If v € I, then [];e; Mi(v) = 0 = Agujaype (V) + Aqugay (). If v € I\ {a,a}, then v € 1.
Thus, we have
[ [Mi0) = M) | | ati) = (@va) + ) | | a(i) = Aguiar®) + Agua ©).
iel iel\{o} iel\{o}
For the vertex a(¢ I), we have
A(Iu{a})(-(a) + A([U{a})c(a) =0+ l_[ a(ai) = 1_[ M,'(Cl).
i€l iel

Similarly, we have [];c; Mi(a) = Aguiay-(@) + Aquay(a). This establishes the statement.

Fig. 9. For the GKM graph GO, (where the vertices are de-
fined in Fig.1), this represents the following equation (Relation 3):
My - My = Apse + Apses

where I = {1,4} c V4 (forn = 2).

Fig. 10. For the GKM graph GQg¢ (where the vertices are de-
fined in Fig.1), this represents the following equation (Relation 3):
My - Ms - M; = Ais67.8) + Aas.8)

where I = {1,2,3} C Vg (for n = 3).

REeLaTiON 4 (Ag - M; = Ag\iy). For two generators Ax and M;, we have the following
relation (see Fig.11).
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Lemma 4.4 (Relation 4). Fix i € V,,. If a subset K C V,, satisfies {i} € K and the
property (%), then there is the following relation:

(45) AK . M,’ = AK\{i}-

Proof. The multiplication of Ax and M; is not zero only on K N (V,, \ {i}) = K\ {i}.
Therefore, we have the following equations.

]_[ a(vj) ifveK\{i),
Ak - Mi(v) = 4 jek\iiHuio)
0 ifog K\ {i).

This shows the equation Ag - M; = Ag\jy). O

Fig.11. Apse) - M3 = Apgy (Relation 4), where i = 3 and K = {2, 3, 6}.

5. Main theorem and its proof

In this section, we prove the main theorem (Theorem 5.1). To state the main theorem
precisely, we first prepare some notations. We denote the set of elements defined in Section 3
as follows:

Generator 1: M :={M,|ve V,,};

Generator 2: D := {Ag | K C V,, with the property (x)}.
Let Z[M, D] be the polynomial ring which generated by all elements in M and D. We
define the degree of elements by

e deg M, = 2 for every M, € M;

o degAx =2(2n - (|K| - 1)) = 4n — 2|K]| + 2 for every Ag € D.
Let 7 be the ideal in Z[M, D] generated by the four relations defined in Section 4. Namely,
the ideal 7 in Z[M, D] is generated by the following four types of elements:

Relation 1: [,y G; for Gy e M UD;

Relation 2: (M; + M;) — (M; + M;) for every distinct 7, j € Vy,;

Relation 3: [[,.; M; — (Aquaye + Aquiaye) for every subset I C V,, which satisfies the

property () and |I| = n, where {a, a} is the unique pair in V5, \ [;
Relation 4: Ag - M; — Ag\; for {i} € K.

We use the following notation:
(5.1 Z[GQs,] := Z[M, D]/1.

Because of Section 3 and Section 4, there exists the well-defined homomorphism
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lrb : Z[QQZn] - H*(QQZn)

by the induced homomorphism from

Y : ZIM, D] — H (GQ2).
Namely, ¢ is induced from the following commutative diagram:
(5.2) Z[M, D]
s
v %
21GQ2n] —— H"(GQ2),

where the vertical map is the natural projection.
The following theorem is the main theorem of this paper.

Theorem 5.1. The homomorphism \ is the isomorphism, i.e.,

Z[GQ2,] = H(GQ2n).

Together with Lemma 3.1, we obtain Theorem 1.1.
Note that in the proofs below, by definitions of generators in Section 3, we may write
Y(M;) = M;, y(Ak) = Ak € H (GQ2).

5.1. Surjectivity of ¥ : Z[GO,,] — H*(GQ,,). We first prove the surjectivity of . To
prove it, we use the inductive argument for vertices which is often used in GKM theory (see
e.g. [22, Lemma 4.4] or [18, Lemma 5.6]).

Lemma 5.2. The homomorphism ¢ : Z|GO,,] — H*(GQ,,) is surjective.

Proof. By the commutative diagram (5.2), it is enough to prove that ¢ is surjective.
Take an element f € H*(GQ,,). By definition, for the vertex 1 € V,,, the polynomial
f(1) € H*(BT"*!) can be written by

f) =)k = g1,

where k, € Z and x, := x{' - x| fora = (ay, - ,ap1) € N U {0)™*!. By definition of
M,, ..., M, , in Definition 3.1, we have M,(1) = x1,..., M, »(1) = x,,1; therefore,

xa - xtlll .. _xan+1 — Mgl . Mlln Man-%-l(l)'

n+l n+1"""n+2
This means that we may take an element from Z[ M5, ..., M,»] C Z[.M, D] whose image of
 coincides with f(1) on the vertex 1 € V.
We next put
L=f-9.

Then, f>(1) = 0. So, by the congruence relations on the edge 21 € E,,, we have
£2) - (1) =0 mod a(21) = M,(2).

Therefore, we have that f>(2) = g, M,(2) for some g, € H*(BT"*"). By Proposition 3.4, we
have that
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Xy =My —My, ..., Xpp1 = Mypo — M,y

This implies that g, € Z[M, — My, M3 — M, ..., M,» — M;] C Z[M, D]. Note that it may
also be regarded as g, € Z[M,, M, M, ..., M,.>]. This shows that g, M| is in the image of
Y. Put

f3=f—gM(=f-g91—gM).
Then, by f>(1) = M (1) = 0 and f2(2) = goM;(2), we have
() = f(2)=0.

By the similar argument, we may write f3(3) = g3M;M,(3) for some g3 € Z[M;, M,
Ms,...,M,,]. Similarly, we can also check that f; = f3 — gsM M, satisfies f4(1) =
f1(2) = f4(3) = 0. Iterating similar arguments n + 2 times (note that n+ 1 = n + 2), we
obtain an element

fn+2 = fn+1 - gn+1M1 e Mn € H*(QQZn)

such that g,+1 € Z[M,M>,...,M,»] and f,.1 € H*(GQ,,) satisfies that f,, (1) = --- =
Jor1(m) =0and f i1 (n+1) = gpe1 My - - - M, (n + 1). Consequently, we have that

(53) fn+2 = fn+] - gn+lM1 Tt Mn
= fn - (gan o 'Mn—l + gn+1M1 o Mn)

=f-(@+gM +-+g.My- Myy + g1 My - - My).
Note that f,,, satisfies that f,,2(1) = -+ = f.o(n + 1) = 0. Therefore, by the defini-

.....

ZIMy, M>, ..., M,,>] such that

then

fn+3(1) == n+3(n + 2) =0.

Similarly, for k > 2, there exists g,.x € Z[M,, M>, ..., M,.>] such that

(5.4) Jntke1 7= fosk = GniiDinsk.... 2n42)

and fuixe1(1) = -+ = fue1(m + k) = 0. Then, in the case when k = n + 2, there exists
gons2 € ZIM, M3, ..., M,.>] such that

Sone3 = foner — Gon2Dpns2y

and f>,+3(v) = O for all v € V,,. Therefore, frn+2 = gan+2Aj2n+2y. Substituting this equation
to (5.4) for k = n+ 1, we get f»,41; and iterating this argument from k£ = n to k = 2, we have

Jonet = 9200200042y + G2ns 1820112042}

Jon = Gons2Bpn42) + 9201 A2n+12042) + G2n D20 20412042}
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Together with (5.3), every element f € H*(GQ,,) can be written by the elements in Z[ M, D]
as follows:

(5.5 f=g1+gM + - +g, M- M,

for some g € Z[M5,...,M,n]and ga, ..., gons2 € Z[X1, ..., Xpp1] = Z[M2~—M1, N
M|l c Z[M,,...,M,»] C Z[M,D]. This shows the subjectivity of ¥ : Z[M,D] —
H*(GQap). o

5.2. Injectivity of  : Z[CQ,,] —» H*(GQ,,). We next prove the injectivity of .
Lemma 5.3. The homomorphism  : Z|GO»,] — H*(GQ»,) is injective.

To show this lemma, we will use the combinatorial counterpart of the localization theorem
which will be stated in Corollary 5.5. To state that, we prepare the following notation. For
v e Vy, =[2n+ 2], the subset I, C [n + 2] C V, is defined by

o [,=[n+2]\{vjforl <v<n+1;
o [, =[n+2]\{vjforn+2<0v<2n+2.

Note that [, = I,43-, for 1 <v <n+ 1, forexample, I} ={2,...,n+ 2} = I,4.
Lemma 5.4. The following isomorphism holds for every v € V,,:
ZIGQx /(G lv ¢ J) =~ ZIM; | i € I,] ~ H'(BT""),

where (G | v ¢ J) is the ideal in Z[GQ,,]| generated by G; with v ¢ J (see Relation 1 in
Section 4).

Proof. We will prove the statement only for the vertex v = 1 € V5, because the proofs for
the other vertices in Vo, = [2n + 2] = {1,...,2n + 2} are similar.
Suppose thatv = 1 € V,,. We shall prove that

Z[GO /(G |1 ¢ J)y = Z[My,..., My, Myyo] ~ H (BT™).

We first claim that every element in D can be written by the elements in M in
Z[CGO5,1/(G; | 1 ¢ J). Assume that K C V5, satisfies {i,i} ¢ K for everyi=1,...,n+ 1. If
1 ¢ K, then Ay = 01in Z[GD,,1/{G; |1 ¢ J). If 1 € K and |K| < n + 1, then by Relation 4,
we have that

AK:AKU{j}'Mijrj,jiK.

This implies that in Z[GQ,,1/{(G; | 1 ¢ J) the generators in D can be written by Ag’s such
that 1 € K and |K| = n + 1. We next assume that I C V,, satisfies |[I| = n such that
1 ¢ I and there is the unique pair {a,a} C Vo, \ 1. Put I = {ji,...,j,}and I = Vp, \ I =
{1,i1,...,i,-1,a,a}. Then, by Relation 3, we have

Aty = M - M, = Niyinoa) € 21692, 1/(Gy | 1 ¢ ).
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This shows that for the generator Ay € D such that 1 € K and |[K| = n + 1, if there is the
vertex a € K fora = 2,...n + 1, then we may replace Ag into A\ (auie by using elements
in M. Therefore, we may reduce the generators in D into only one generator Ay
Moreover, since 1 ¢ {2,...,n+ 1,2n + 2}, we have

2ont12042) = D12, nr1y € Z[GQ0,1/(Gy | 1 & J),

by Relation 3. This shows that every element in D can be written by the elements in M.
Next, by the definition of M;, we have M| = Gy,\;1y = 01in Z[GO,,]/{G, | 1 & J).
Therefore, together with Relation 2, we have that

..... n+1}.

Mo Mope1 = Ajip, pey + A

My =My +Ms = =My + Mg € Z[GD]/(Gy | 1 € J).

Therefore, M7 = M1 + Myy2 and My = M,y + My — My for k = 2,...,n. This implies
that the generators in M can be reduced into

M25 R Mn+l, Mn+2‘
This shows that there is the surjective homomorphism
P LMy, ..., My2] = Z[GQ2n]/KGr | 1 € 1)

defined by p(M;) = M; fori = 2,...,n + 2. We finally consider the following composition
homomorphism:

ZIM, ..., Myl = Z[GQ2,1/(Gy | | & I) <> H*(BT™),

where ¢; is the induced homomorphism from Z[GQO,, ] i H*(GQ,,) — H*(BT"") such
that f — Y (f)(1) for f € Z[GQD,,]. By the definition of M;, we have ¢; o p(M;) = x;_; for
i=2,...,n+ 2. Therefore, the composition map ¢; o p is an isomorphism. This shows that
pis 1n]ectlve. Consequently, p is an isomorphism. This establishes that Z[GQ,,1/(G; |1 ¢
Iy~ Z[M,,... ,My»] ~ H(BT""). |

Therefore, by the definition of the graph equivariant cohomology and Lemma 5.4, we
have the following corollary.

Corollary 5.5. There is an injective homomorphism:

H*(6Qu) — €D H'(BT™") = (P ZI6Qu1/(Gy v g ) =~ D zIM; i € 1,].
veVy, veVy, veVy,

Notice that Corollary 5.5 may be regarded as the counterpart of the localization theorem
for the usual equivariant cohomology.

Now we may prove Lemma 5.3.

Proof of Lemma 5.3. It is enough to prove that the following composition map ¢ is
injective:

Voo x .
¢ Z[GQa,] — H'(GQa) — CH H'(BT™") ~ D ZIM; | i € I,).
VEVay VeV,

Assume that ¢(f) = 0 for an element f € Z[GQ»,]. We will prove that f = 0. In the proof,
we use the following restriction map for w € Vy,,:
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pw: D ZIM; i€ 1) - ZIM; | i € 1,)]
veVy,
and the image of f € Z[GO,,] by the composition map p,, © ¢ by f(w)(:= py © ¢(f)). The
assumption ¢(f) = 0 is equivalent to that p, o o(f) = f(v) =0 € Z[M; |i € I,] for allv € V>,.
In the proof of Lemma 5.2, especially in Equation (5.5), we also show the following
fact: for any element f € Z[GO,,], there exists g;, g, € Z[My — My,..., My — M,] C
ZIMy,...,M, ] fori=1,...,2nand gy € Z[M>, ..., M,,>] such that

(5.6)

=go+ ) giMy - M; + X(A),
i=1

where X(A) is the Ag terms. Note that ¥(g;), ¥(g,) € Z[x1, ..., Xu41] (see (3.2)) for all j =
0,...,2n. This implies that if there is a vertex v € V5, such that g;(v) = 0 (resp. g,(v) = 0),
then g; = 0 (resp. g,, = 0).

We first claim that f can be written by Ak terms only. Since M;(1) = 0 and X(A)(1) = 0,
by (5.6), we have that

go(h) = f(1) - (Z giMy - M; + X(A)] ()= f(1)=0.
i=1
Therefore, we have gy = 0. Similarly, by using go = 0 and (5.6), we have that
91 (2M1(2) = f(2) - (Z giMy - M; + X(A)) (2)=0.
i=2

Now g1(2), M\(2) € Z[M; |i e I, ={1,3,...,n+ 2}] and M(2) # 0. Since the polynomial
ring Z[M; | i € I;] is an integral domain, we see that g;(2) = 0O; therefore, g; = 0. Iterating
the similar arguments fori = 3,...,n — 2, we also have that g, = --- = ¢g,,-; =0, i.e.,

f=9.Mi--- M, + X(A)

..........

Therefore, if f(v) = 0 for every v € V,,, then f can be written by the Ag terms only; more
precisely,

We next claim that f = 0 if f(v) = O for every v € V,,. The equality (5.7) implies that for
the vertex n + 1 € V5,

Since A1 043, 2n+2y(n + 1) # 0, by the similar reason as above, we have g, = 0. Iterating
the similar arguments fori = n+2,...,2n+2, we have that g, = g,+1 = -+ = g2, = 0. This

establishes that f = 0. Consequently, ¢ is injective. |

.....
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6. Multiplicative formula of Ag, Ay with |K| = [H| = n+ 1

In this section, we show some multiplicative formula in H*(GQ5,) which gives a typical
difference between H*(GQ,,) and the graph equivariant cohomology ring of a torus graph,
i.e., the face ring proved in [22].

Let K,H C V,, be the subsets with the property (x) and |K| = |H| = n + 1, i.e., there
are classes Ag, Ay € H*(GQ,,). Note that if K N H # 0, then we can also define Agny €
H*"%(GQ,,) for k = |[K N H|— 1. If K N H = 0, then we put Ay = 0. Recall that the
elementary symmetric polynomial with degree j is defined by

Sj(rilizl,...,n):z Z I"T"'I"Z”.
art-+ap=j,
0<a;<1

Moreover, because of Relation 2, for every v = 1,...,n + 1, we may put
X := M, + M; € H*(GQ,,).

There is the following multiplicative formula in H*(GQ,,) =~ Z[GQ,,] (see Fig.12 and
Fig.13).

Theorem 6.1. The following formula holds:

k
6.1) Ak Ay =Axon-| D (X Si(M, |0 ¢ K UH) | € H"(GQs),
i=0

where k = |[K N H| — 1.

Proof. If K N H = (, then the statement follows from Relation 1 and Ay = 0. So we may
assume K N H # (.

Because Ag, Ay € H”(GQ,,), their multiplication satisfies Ag - Ay € H*(GQ,,). More-
over, the degree of each term on the right-hand side in (6.1) satisfies that

deg Agny + deg X' + deg Si_i(M, |v ¢ K U H) = (4n — 2k) + 2i + 2(k — i) = 2n.

For every p ¢ K N H, because Ak - Ay(p) = Axnu(p) = 0, the relation (6.1) holds.
For p € K N H, by the definitions of Ag’s and M,’s, it is easy to check that

Ak -Au(p) = Aken(p) - [ ] Mup).

veKUHU{p)

Because [K N H| =k + 1 for 0 < k < n, we may put

KNH={ay,a,...,ar} C Vo,

where we assume p = ag. Because |K| = |H|=n+1 = %, we also have that K = {a|a €
K} and H¢ = {E | b € H}. Therefore, K“NH® ={x|x € KN H} = {ag,ai,...,a;}. This
shows thatv ¢ KU HU {p}ifand only ifv € (KU H U {p}) = (KN H)\{p} ={ay, ..., a}.

Therefore, if we put A := {ay,...,a;},

(6.2) Ak - Au(p) = Akon(p) - | | Mup).
veEA

On the other hand,
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k k
(63) D (=X S (M, [vg KUH)p) = Y (~1)X(p)' - S, | v € (B} U A)p).
i=0 i=0

By the definition of M,, we have M5z(p) = X(p). Therefore, for 0 <i <k -1,
Cr-ilMy | v € {p} U A)p) = S—i(M, | v € A)p) + X(p) - Sp—i-1 (M, | v € A)(p).

Substituting this into (6.3), we have

k
D DX Si(M, | veBIUAP)
i=0

k—1 k—1
= > (X - S i(My | ve AY(p)+ ) (~1YX(p) ™!+ S i1 (M, | ve A)(p)+(= D! X(p)t
i=0 i=0
=G(M, | ve A})(p)
=[ [Mp) by 14I=h).
veA
Combining (6.2) and (6.3), we obtain (6.1). m]

Fig. 12. This represents the following relation (also see Fig.13):
Apje) - Apse = Ape) - (S1(M1, M) = X) = Apep - (My + My — X),
because KNH = {3,6}and KUH ={2,3,5,6} C I (so V4\(KUH) = {1,4}).

1 X(1) A1)
SRR X(2 X(4) A(2) ,//*\\\A(él)
kii/iiii\ii\’
_ = :(:\7 B 7//7): g5)
w3 — (5) ANV
—T9 — T3 —Tp — T3 A(6)

Fig.13. This figure represents the term A = M| + M, — X in Fig.12. Note
that A(3) = A(6) = —x, by Fig.3. Moreover, A(1),A(2),A(4), A(5) might
not be 0 € HZ(BT3); however, A{3,6}(1) = A{3,6}(2) = A{3’6}(4) = A{3’6}(5) =
0.

7. Comparison of two ordinary cohomology rings H*(Q4,) and H*(Q4,+2)

Since H%(Q,,) = 0 by [20], Q,, is the equivariantly formal GKM manifold (see [8]).
Therefore, its ordinary cohomology also can be computed by the quotient of H7.(Q2,) by
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H>%(BT™"). Thus, by using Theorem 5.1 and Proposition 3.4, we also have the ordinary
cohomology of 0, by the different way of [20].

Corollary 7.1. The ordinary cohomology H*(Q»,) is isomorphic to Z[GQ»,1/J, where
J is generated by

M — M,
fori=1,...,n+ 1.
Recall that the cohomology ring formula of O, depends on 7 is even or odd, i.e., by [20],
H'(Qun) = Ze, x] (™! = 2ex, 2% = ¢¥x);
H*(Qunsa) = Z[c, x]1/(c*"*? = 2¢x, x%).

In this final section, we give the combinatorial reason why this difference occurs by using
Corollary 7.1. To do that, the following lemma is essential.

Lemma 7.2. If K C V5, is the following subset with the property (x):
K =i, ... ius1}.
Then, there is the following formula in Z[GQ,,1/J :
Ak =D i)
Proof. By definition of .7, in Z[GQ»,]1/J, we have
My =My =--= M1 = M.
By Relation 2, M1 + M. = M; + M; for all i = 1, ..., n. Therefore, we also have that
My =M,z =" =M.

Consequently, we have M; = M, for all i, j € [2n + 2]. Because K satisfies the property
(%), for every a € K, the subset I := K \ {a} C V,, satisfies that |I| = n; moreover, there are
unique pair {a,a} C V5, \ I. Therefore, we may apply Relation 3 for K \ {a}. Together with
M, = M, for all i € V,, as above, we have

(7.1) MY = Age + Aqrvapotay: = Axe + Aev@hutal-

Note that this equation (7.1) holds for all K c V,, which satisfies the assumption of this
lemma. Therefore, we have

+A;, . — =A, . — +A

""" in+1} {i1seeoslnslne1} {i1seeoslnslne1 } {i1seesin—1slnsins1}”

Thus, Ag,..iy = A

{i1seosln—1snsins1 }

Consequently, we have the following corollary.

Corollary 7.3. For K C V,,, which satisfies the assumption of Lemma 7.2, there are the
following relations:
o Ax- (M = Ag) = 0inZIGQ4,) /T if m = 2n;
o A} =0inZ[GQua]/T if m=2n+1.
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Proof. Suppose m = 2n + 1, i.e., m = 1 mod 2. By iterating to use Lemma 7.2, we
have Agc = Ag. Therefore, by K N K¢ = () and Relation 1, we have the 2nd relation in the
statement.

Suppose m = 2n, i.e., m =0 mod 2. In this case, K = {iy,...,i2,+1}. By iterating to use
Lemma 7.2, we obtain

AK:A

{i1s025ensions }

By applying (7.1) to i; € {E, .o, iome1 )€ = {il,g. .., lone1}, 1t follows from this relation
that

M = A = Ag + Age.

i) T AE B )
Hence, we have Agc = Mf" — Ag. Therefore, by K N K = () and Relation 1, we have the 1st
relation in the statement. O

Fig.14 and Fig.15 show the difference of the ordinary cohomology for n = 2 and n = 3.
For example, in Fig.14, K = {3,5,6} (see Fig.1). In this case, by applying Lemma 7.2,
Ax = Ay for H = {1,2,3} = {2,4,6} = {1,4,5}. This shows that K N H # 0; therefore,
A%( # 0. However, in Fig.15, we can take such H as K¢; this gives A%( =0

| | | ! \/ \ ~ \
K XX X1=0 oL O X oL U =0
AR 2N A 2N ARSI a PAATER S R0
= = [ S ) AR
\\V’/ N\ LN
. 2 _ .
Fig.14. Ag(M7—Ag) = Ofor Fig.15. A2 = 0forn = 3.

n=2.
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