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Abstract
In this paper, we introduce a method, called a plat form, of describing a surface-link in the
4-space using a braided surface. We prove that every surface-link, which is not necessarily
orientable, can be described in a plat form. The plat index is defined as a surface-link invariant,
which is an analogy of the bridge index for a link in the 3-space. We classify surface-links with
plat index 1 and show some examples of surface-links in plat forms.

1. Introduction

In knot theory we often use two methods of presenting links in the 3-space using braids:
One is a closed braid form as in Fig.1, and the other is a plat form as in Fig.2.

KK
i | Q 5

Fig.1. A closed braid form. Fig.2. A plat form.

A surface-link is a closed surface embedded in R*, and a 2-knot is a 2-sphere embedded
in R*. Two surface-links are considered to be equivalent if they are ambient isotopic in
R*. It is known that every orientable surface-link is equivalent to a surface-link in a closed
2-dimensional braid form (cf. [9, 12, 21]). It is an analogy of a closed braid form for a link.

The purpose of this paper is to introduce a new method of presenting a surface-link, which
we call a plat form, as an analogy of a plat form for a link.

Theorem 1.1. Every surface-link is equivalent to a surface-link in a plat form.

We emphasize that our method works for every surface-link, while the closed
2-dimensional braid form works only for orientable ones. A genuine plat form is a spe-
cial case of a plat form. Some surface-links can be presented in genuine plat forms.

Theorem 1.2. Every orientable surface-link is equivalent to a surface-link in a genuine
plat form.

We show that the normal Euler number e(F) of a surface-link F in a genuine plat form is
zero (Proposition 5.9). It is unknown to the author whether every surface-link with e(F) = 0
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566 J. Yasupa

is equivalent to one in a genuine plat form.

We define two surface-link invariants, which are called the plat index and the genuine plat
index, denoted by Plat(F) and g.Plat(F), respectively. These are analogies of the plat index,
or the bridge index, of a link.

Using a theory of braided surfaces and 2-dimensional braids, we show that a surface-link
F with Plat(F) = 1 or with g.Plat(F) = 1 is trivial (Theorem 5.5) and that a 2-knot with
g.Plat(F) = 2 is ribbon (Theorem 5.7). We also see an example of a 2-knot whose plat
index and genuine plat index are different (Proposition 5.8). An example of a non-trivial
surface-link in a plat form is shown in Fig.3 by using a motion picture (Proposition 5.8).
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Fig.3. The 2-twist spun trefoil in a (normal) plat form.

This paper is organized as follows. In Section 2, we recall the notions of braids, surface-
links, and braided surfaces. We also recall the definition of a plat form for a link. In Section
3, we define a (normal) plat form and a genuine plat form for a surface-link. In Section 4,
we prove Theorems 1.1 and 1.2. In Section 5, we discuss the plat index and the genuine plat
index of a surface-link, and show some examples.

We work in the PL or smooth category. Surfaces embedded in the 4-space are assumed
to be locally flat in the PL category.

2. Preliminaries

2.1. A plat form presentation for a link. Let n be a positive integer, / = [0, 1] the
interval, D the square /7 in R?, Int D the interior of D, and Q,, = {q1, . .., gy} the subset of n
points in D such that ¢ = (1/2,k/(n + 1)) fork =1,2,...,n.

An n-braid is a union of n intervals § embedded in D X [ such that each component
intersects with every open disk Int D X {t} (+ € I) transversely at a single point, and Jf8 =
0, x {0, 1}. The n-braid group B, is the group consisting of equivalence classes of n-braids
in D x I. The braid group B, is identified with the fundamental group 7;(C,, Q,) of the
configuration space C, of n points of Int D. We denote by o,0,...,0,-; the standard
generators of B, or their representatives due to Artin ([1]).

To define the plat closure of a braided surface in Section 3, we introduce the space of m
wickets.

DermntTion 2.1 ([3]). A wicket is a semicircle in D X [ that meets D X {0} orthogonally at
its endpoints in Int D x {0}. A configuration of m wickets is a disjoint union of m wickets in
D x I. The space of m wickets W,, is the space consisting of all configurations of m wickets.

For a configuration w = w; U --- U w,, of m wickets, we denote by [0w| the 2m points
Ow; U - -+ U 0w, in Int D, which is identified with Int D x {0}, and by dw the 2m points |0w|
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equipped with the partition {dwj, . .., dw,}. Note that if two configurations w and w’ satisty
Oow = ow', thenw = w'.

The set Q,,, equipped with the partition {{g1, g2}, . . ., {q2m-1, 2 }} bounds a unique con-
figuration of m wickets, which we call the standard configuration of m wickets and denote
by wy.

The fundamental group 7 (W,,, wy) is called the wicket group in [3]. Let 0] : (W,,, wp) —
(Com, Qo) be the continuous map sending w to [dw|. It induces a homomorphism ||, :
1 (Wi, wo) = 71(Comy O2m) = Bom.

Hilden’s subgroup K, is the subgroup of B,, generated by o, 0,0030,, and
02i02i-105}, 05} fori=1,...,m—1([7], cf. [2]).

Proposition 2.2 ([3]). For each positive integer m, the homomorphism 10|, : 711(W,, wo)
— 11(Coms Qo) = Boy, is injective and the image is Hilden’s subgroup K,,. Namely, the
wicket group m1(Wy,, w) is isomorphic to Hilden’s subgroup Ky,,,.

The isomorphism from m;(W,,,w) to K, is restated as follows: Let f : ([,0]) —
(Wpn,wp) be a loop. Consider a 2m-braid By = U,/ [0f ()] X {t} € D x I, then the iso-
morphism sends [f] € m{(W,,, w) to [Bf] € Ky,.

DerintTion 2.3. A loop g @ (I,01) — (Cap, Qo) is liftable if there exists a loop f :
(1,0I) > Wy, wp) such that g = |0] o f.

DEeriniTION 2.4, A 2m-braid 8 in D X I is adequate or wicket-adequate if the associated
loop g : (1,01) = (Cap, Qa) is liftable, namely, there exists a loop f : (I,0]) — (W, wo)
such that g = ;.

Note that Hilden’s subgroup K>,, consists of the elements of By, represented by some
adequate 2m-braids.

Let 8 be a 2m-braid in D x I ¢ R? x R = R3. Attach a pair of the standard configurations
of m wickets to 8 as in Fig.4, and we obtain a link which is called the plat closure of  and
denoted by E A link is said to be in a plat form when it is the plat closure of a braid. Every
link is equivalent to a link in a plat form.

5= | =55

Fig.4. The plat closure of a braid.

In Section 3 we introduce a plat form of a surface-link in R*. We will also introduce a
normal plat form, which is a plat form satisfying a nice condition such that its motion picture
is easy to describe.

To define a normal plat form of a surface-link in Section 3, we construct an isotopic
deformation changing the plat closure of an adequate braid to the plat closure of the trivial
braid as follows: Let f : ({,0]) — (W, wg) be a loop. For each t € I, let 5; be | ¢/ 10f((1 —
1)s)| X {s} in D X I, which is a union of 2m arcs. We denote by L, a link obtained from
B; by attaching the configuration f(#) of m wickets to the side of D X {1} and the standard
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configuration wy to the side of D X {0} in R3. See Fig.5. Then, {L,};c; is a 1-parameter family

of links in R? such that L is ,évf and L is the plat closure of the trivial 2m-braid as in Fig.5.

We call {L,},¢; the isotopic deformation changing ,87 to the plat closure of the trivial braid.
As a corollary, the plat closure of an adequate 2m-braid is an m-component trivial link.

"~ —
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C 5 @_X> —O

Q
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l

Fig.5. The isotopic deformation changing ﬁ~f to the plat closure of the trivial braid.

2.2. Surface-links. A surface-link is a closed surface embedded in R*, and a surface-
knot is a connected surface-link. A 2-knot is a surface-knot homeomorphic to a 2-sphere.
A 2-link is a surface-link consisting of 2-spheres. Two surface-links F and F’ are said to
be equivalent if they are ambient isotopic in R*. We denote it by F ~ F’ that F and F’ are
equivalent.

Let 4 : R3 xR! — R! be the projection onto the second factor. Set Fj;; = F N R3 x {1}
for t € R, which is called the cross-section of F at t. A motion picture of F is a 1-parameter
family {F;};er. We often describe surface-links using motion pictures.

A surface-knot is trivial if it is equivalent to a connected sum of standardly embedded
2-spheres, tori, and projective planes ([8]). Here standardly embedded projective planes P,
and P_ are illustrated in Fig.6.

—

P,

— —

O-O-@-®-
O O@R-®

Fig.6. Motion pictures of P, and P_.

2.3. Braided surfaces and 2-dimensional braids. A braided surface was introduced by
Rudolph [19] and a 2-dimensional braid was introduced by Viro (cf. [10, 11, 12]). Let D,
and D, be the squares 1> € R? and pr, : D; X D, — D; (i = 1,2) the projection onto the i-th
factor. Let yo € 0D, be a fixed base point.

DErinition 2.5 ([19], [21]). A (pointed) braided surface of degree n is a surface S embed-
ded in D; X D, satisfying the following conditions:

(1) ms = pryls : S — D, is a simple branched covering map of degree n (i.e., the
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preimage of each branch locus consists of n — 1 points).
(2) S is the closure of an n-braid in the solid torus D; X dD;.
(3) pri(r5' ®0)) = O
In particular, a 2-dimensional braid of degree n is a braided surface S of degree n such that
08 is trivial, i.e., prl(ngl(y)) = Q, forall y € dD,.

The degree of S is denoted by deg S. We say that two braided surfaces of the same degree
are equivalent if they are ambient isotopic by an isotopy {/,}se; of Dy X D, such that each /;
(s € 1) is fiber-preserving when we regard D X D, as the trivial D;-bundle over D,, and the
restriction of & to pr; (o) is the identity map. A braided surface is trivial if it is equivalent
to O, X Ds.

Lemma 2.6 (cf. [12]). A braided surface S is trivial if and only if S has no branch points.

We assume D; X D, € R?2 x R2 = R*. Let S be a 2-dimensional braid of degree n.
The closure of S is an orientable surface-link in R* obtained from S by attaching n 2-disks
trivially outside Dy X D, in R* along the boundary 8S. It is described in Fig.7 when n = 3,
where € is a positive number and S;; = SN Dy X (I x {t}) (t € I).

Proposition 2.7 ([11, 21]). Every orientable surface-link is equivalent to the closure of a
2-dimensional braid.

Fig.7. The closure S of a 2-dimensional braid S.

For an orientable surface-link F, the braid index of F, denoted by Braid(F), is the mini-
mum degree of 2-dimensional braids whose closures are equivalent to F.

3. A plat form presentation for a surface-link

In this section, we introduce a plat form for a surface-link.

We fix a loop u : (1,01) — (0D, yo) which runs once on D, counter-clockwise. For a
braided surface S of degree n, let gs : (I,01) — (C,, O,,) be a loop in the configuration space
C, obtained by

gs(t) = pr (x5 (1))



570 J. Yasupa

and B an n-braid in D; X I obtained by
Bs = | Jpris @) x 1),

tel
where g : S — D, is the simple branched covering map appearing in the definition of a
braided surface. Then S is the closure of Bg in Dy X dD;.

DerintTion 3.1. A braided surface S in D X D, is adequate if gg is liftable or equivalently
if Bs is adequate.

Note that the degree of an adequate braided surface is even. For an adequate braided
surface S of degree 2m, let fs : (I,01) — (W,,, wp) be the lift of g, i.e., a loop in W,, with
gs =10l o fs.

Let N be a regular neighborhood of D, in R? \ Int D,. Since N is homeomorphic to an
annulus / x S', we identify them by a fixed identification map ¢ : I x S' — N such that
#(0, p(t)) = u(t) € dD, for all t € I, where p : I — S' = I/dI is the quotient map.

DermviTion 3.2. A properly embedded surface A in Dy X N is of wicket type if there exists
aloop f: (I,0) = (W, wp) such that

A = Jroxipw) ¢ (D1 xDxS" = Dy xN.

tel

In this case, we say that A is associated with f and denote it by A .

We remark that a surface A of wicket type is a union of annuli or M&bius bands, and that
0A = 0Ay is expressed as

oA = | JIofolx {p@) ¢ Dy x§" = Dy x D™,
tel
Since two loops f and f” in (W,,, wp) with |d| o f = |d| o f” are the same, we see that two
surfaces A and A’ of wicket type with A = JA’ are the same.
Let S be an adequate braided surface, and let f : (I,01) — (W,,, wp) be a loop with
gs = |0 o f. Then it holds that SN Ay = 0S = 0Ay. We denote Ay by Ag and say that Ay is
the surface of wicket type associated with S.

DeriniTioN 3.3. Let S be an adequate braided surface and Ay the surface of wicket type
associated with S. The plat closure of S, denoted by S, is the union of § and Ag in R*.

When deg S = 2m and S has r branch points, the Euler characteristic y(S) of S is 2m — r.
Since y(Ag) = x(0As) = 0, we have x(S) = 2m — r.

DeriniTion 3.4. A surface-link is said to be in a plat form if it is the plat closure of an
adequate braided surface. Moreover, a surface-link is said to be in a genuine plat form if it
is that of a 2-dimensional braid.

We introduce a normal plat form for a surface-link by using a motion picture as follows:
Let S be the plat closure of an adequate braided surface S of degree 2m, and set Sy =
SNR3x () (t € Ryand S;;; = SN Dy x (I X {t}) = SNR3 x {t} (t € [0, 1]). Replacing S
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with an equivalent braided surface if necessary, we may assume that S satisfies the following
conditions for some 7, € [0, 1]:

(1) S has no branch points over I X [y, 1] C D;.

(2) pry(n5' (y)) = Qo for every y € AD; \ ({1} X [10, 1]).

(3) Stor = Bs X {to}-
In particular, Sjo; and Spjp are both the trivial braids. Furthermore, replacing S with an
equivalent braided surface if necessary, we may assume that the motion picture {TS;m Yeelto1]
between ¢ = fp and ¢ = 1 is the isotopic deformation changing ,é} to the plat closure of the
trivial braid. (See Fig.5.) Finally, deforming Ag by an ambient isotopy rel boundary, we have
a surface-link F, equivalent to S, described by a motion picture as in Fig.8. The surface-link
F in this form is said to be in a normal plat form.

t=—¢ —e<t<O 0<t<t, t=1t,
""""" ) c—oo d D d D
C D — « > — g5 b — aSp,p
@ m——) C ) d D @ D
t=1 t=1 1<t<1l+e¢ t=1+¢
d D C— ) c—Do — )
— CBSD — ) — C— D — C D
c ) C D c—Do ‘

Fig.8. A surface-link in a normal plat form.

4. Proofs of Theorems 1.1 and 1.2

In this section, we give proofs of Theorems 1.1 and 1.2. To prove them, we discuss a plat
form for a link and a banded link presentation for a surface-link.

4.1. Stabilization and generalized stabilization for braids. For positive integers n and
n’ withn < n’, let LZ/ : B, — B, denote the natural inclusion map from B, to B, sending
each generator o; € B, to 0; € B,.

A stabilization of a 2m-braid S is a replacement of § with a 2m’-braid 5’ such that

B = 0" (B) Tom Tome1) Tams2) - - - Tagmr—1)s

where m’ is an integer with m < m’. We also call a stabilization an [-stabilization when
[=m"—m.

It is obvious that if 8’ is obtained from 8 by an /-stabilization then the plat closure of 5’ is
equivalent to that of 3 as links in R?. See Fig.9 for [ = 1,2.

Pr0p0s1t10n 4.1 ([2]). Let B; (i = 1,2) be a 2m, braid such that the plat closure ,8, is
a knot. Then ,81 is equivalent as knots in R? to ,82 if and only if there exists an integer
t > max{mi, ma} such that for each m > t, the 2m-braids f3; (i = 1,2) obtained from p; by
stabilization belong to the same double coset of By, modulo Ky,.

Proposition 4.1 is generalized into the case of links in R* by using the notion of a gener-
alized stabilization.
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C )]
.  \C
C ) — 2D
H . - LA A -
g ,P d 13 q,B2
a’ p = a D
Fig.9. Plat closures of stabilized braids.

Let A,, be the set of m-tuples of non-negative integers. For two elements A = (Iy,...,1,)
and " = (I},...,1;) of A, we write A < A" if [; < I foreachi = 1,...,m. Then <isa

(directed) partial ordering on A,,. Put |l = m, [A; =m+ L +---+ ;@ =1,...,m), and
|| = |Al,,. For a given A € A,,, we denote T; = 07;072i-1072i+1072; € Ky (1 <i < |4 —1) and

—_

=

n—

J
Ty - I—IT €K2|,1| (I<i<mm-1<j<|A),
k=m

o~
Iy

i

where the former or later product is assumed to be the identity element of the group if i = m
or j = m — 1, respectively, and we construct a 2 |A|-braid T (1) as follows:

— -1
() = 1_[Ti,<u|<,-_n—1>02u|,-_1ff 2001+ 0200 T gy -1)-
i=1

For a 2m-braid 8 and A € A,,, we let 84 denote a 2 |A|-braid such that
B! =B - T().

A generalized stabilization (with respect to A) or A-stabilization of § is a replacement of 5
with 1. A A-stabilization is a composition of /;-stabilization performed on the 2i-th strand of
Bforeachi=1,...,m. A [-stabilization of  is a A-stabilization with A = (0,...,0,0) € A,,.
Fig.10 depicts the plat closure of a 12-braid obtained from a 6-braid g by a generalized
stabilization with respectto 4 = (2,0, 1) € As.

C

€

I =
- \//%
— X

.

Fig.10. The plat closure of a (2, 0, 1)-stabilized braid.

The following proposition states that two braids of even degrees have equivalent plat
closures as links in R? if and only if, after applying a generalized stabilization suitably, they
belong to the same double coset of B,,, modulo K,,.
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Proposition 4.2 (cf. [2]). Let5; (i = 1,2) be a 2m;-braid. The plat closure ,é] is equivalent
to ,Ez as links in R? if and only if there exists an element A € A, satisfying the following
condition: For any A; > A, there exists A, € A, with || = |A2| such that ﬁf] and ,8;2 belong
to the same double coset of By, modulo Ky,,, where m = || = |43].

Proposition 4.2 is proved directly by applying the proof of Proposition 4.1 given in [2]
for each component of a link.

4.2. A banded link presentation for a surface-link. A banded link in R? means a pair
(L, B) of alink L and a family B of mutually disjoint bands attaching to L. We let Lg denote
the link obtained from L by surgery along the bands belonging to B. A banded link (L, B) is
admissible if both L and Lp are trivial links.

Let (L, B) be an admissible banded link in R*. Let d and D be unions of mutually disjoint
2-disks embedded in R? bounded by L and Lg, respectively. Consider a closed surface
F = F(L, B) in R* = R? x R defined by

D t=1),

Lg O<t<l),
P(FAR3 x (1)) = EU . Et_; S); <0,

d (t=-1),

0 otherwise,

where |B| is the union of the bands belonging to B. We call F/(L, B) a closed realizing surface
of (L, B). Although it depends on a choice of d and D, the equivalence class as surface-links
does not depend on them (cf. [13, 16]).

Let r be a real number, and let & : R3 x (=00, 7] — (=00, r] be the projection onto the
second factor, which we regard as a height function of R? x (—co, r].

Lemma 4.3 (cf. [13, 16]). Let F and F’ be compact surfaces properly embedded in
R3 X (—co, r] such that all critical points of F and F’ are minimal points with respect to
h, and their boundaries are the same trivial link in R3 x {r}. Then, F and F’' are ambient
isotopic in R? x (=co, r] rel R3 x {r}.

Lemma 4.4 ([16]). If two admissible banded links (L, B) and (L', B") are ambient isotopic
in R3, then their closed realizing surfaces F(L, B) and F(L', B') are equivalent.

Lemma 4.5 ([16]). Any surface-link F is equivalent to a closed realizing surface F(L, B)
of an admissible banded link (L, B).

Lemma 4.6. By an isotopy of R?, any banded link (L, B) in R? is deformed to a banded
link (Lo, Boy) satisfying the following conditions:

(1) There exists a disk D in R*> and a 2mq-braid By in D X I (C R*> x R = R3) for some
mg € N such that Sy = Lo N D X Iandﬁz) = Ly.

(2) There exist mutually disjoint n subcylinders U; = d; X [s;, ;] (i =1,...,n)in DX I
such that each U; contains a part of Ly as a pair of vertical line segments and a
half-twisted band b; € By as in Fig.11, where n is the number of bands belonging to
By.
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Furthermore, we may take subcylinders U; = d; X [s;, t;] such that d,, . ..,d, are mutually
disjoint disks in Int D and [s;,t;] = [2/5,3/5] fori=1,...,n.

di x {ti oo

di X {Sz}
Fig.11. A local model of Ly and b; in U; = d; X [s;, t;].

Proof. Let dy,...,d, be mutually disjoint disks in Int D and let U; = d; X [2/5,3/5] for
i =1,...,n By an isotopy of R3, (L, B) is deformed into (L;, By) such that for each i, U;
intersects with (L, Bp) as in Fig.11.

By an isotopy of R® keeping U; (i = 1,...,n) fixed pointwise, (L, By) is deformed into
(Ly, Bp) such that all maximal points of L, are in R? x {1} and all minimal points of L, are in
R? x {0}. Finally, by an isotopy of R? keeping U; (i = 1,...,n) fixed pointwise, we deform
the link L, into a link L satisfying the condition (1). ]

We denote by (By)s, the 2mp-braid in D X I obtained from S, by surgery along bands
belonging to By.

Proof of Theorem 1.1. We prove the theorem by 3 steps. Let F’ be a surface-link.

Step 1: By Lemmas 4.4, 4.5 and 4.6, F is equivalent to a closed realizing surface of
a banded link (L, By) satisfying the conditions (1) and (2) in Lemma 4.6. Let ) be the
2myg-braid in D X [ as in Lemma 4.6.

Let ¢ and ¢, be the numbers of components of Ly and (Lg)3,, respectively. Since ,8~0 =L
is a trivial link of ¢; components, the plat closure Bo is equivalent as links in R? to the plat
closure 17:1 of the trivial braid 1,., € By.,. The plat closure (/Bs;o is equivalent to the plat
closure 17:2 of the trivial braid 15., € By, by the same reason.

Applying Proposition 4.2 to the two pairs (8o, 12.,) and ((80)s,, 12c,) of braids in D X I,
there exist a positive integer m € Z, three elements 4 € A, 41 € A, 12 € A,,, and four
adequate 2m-braids y, y’, 0, ¢’ in D x I such that 1] = |4;] = |12| = m and

B =vyary, Br=d0ayd in By,

where 8 = ﬁé, ) = 1’22], B = (ﬁo);}o and ap = 1;22 are 2m-braids in D X [ obtained by
generalized stabilization.

Since () is a A-stabilized S, there exists a subcylinder U of D X I such that 8 N U =
under an identification of U and D X I. Let B; be the set of bands attaching to 5; obtained
from By via the identification. Then, 8, and (8;)p, are the same braid. Note that (,El, B)) is
ambient isotopic to (Ly, By).

Step 2: We construct a properly embedded compact surface Sy in D X D, and a braided
surface S of degree 2m in D1 X D,. Let0 = #) <t} < --- < tg < t7 = 1 be a partition of
I =10, 1]. We divide D, = I X I into seven pieces Ey, ..., E¢ with E; = I X [t;, 1;11]. Let @}
and a;, be 2m-braids in D X I given by
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m m
* ) -1 * ) -1
a, = 1_[Tt,(I/11|<,>1>—1)Ti,(|/11|(,-_.>—1)’ @, = l_[Tt,(lﬂz\(H)—l)Ti,(\Azhi_l)—l)’

i=1 i=1

which are obtained from @ = 1;‘61 = T4y and ap = 1;; = T(1,) by removing the
parts o214, iy 0204 -+ 1) - - - T 214y and T2 -1y T 2(1 2|1y +1) « = - T 2|, (i =1,...,m), respec-

tively (Fig.14). Note that ] and @; are equivalent to the trivial braid 15, = Qo X I as braids
in Dy X 1.

Dy = |Ey|EL|Ey| Es|Ey| E5 | Eg

Fig.12. The partition of D;.

Letp; : Dy XI — Djand p, : Dy X I — I be the projections onto the first and second
factors, respectively. Let pr; : D; XD, — D; be the projections onto the i-th factors (i = 1, 2).
For a braid b in D; X I and s € I, we denote by b, the image p;(b N pgl(s)) in D; of the
intersection b N p; L(s).

Now, we define a properly embedded compact surface Sy in D; X D,, step by step, as
follows:

(0) First, we define Sy N D X 0E, by

@) ((s,0eIx{n),
pri(So N pr3'(s,0) = { Qo ((s,0) € {0, 1} X [0, 11]),
Oom ((s,1) € I X {to}).

See Fig.13. Since aj is equivalent to the trivial 2m-braid, we may define So N Dy X Ey
as a braided surface of degree 2m without branch points in D X E(, which is trivial by

Lemma 2.6.

lom v &' Lom
s=1

EO El EQ E3 E4 E5 EG

lom|  aif  ap B B @p @ lom
12m ’Y 5 12m
0 >
to t1 to t3 ts ts te tr

Fig.13. A blueprint for a surface Sy. Each braid is appeared as the section of Sy.
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(1) We define So N Dy X (E1 \ I X {(t; + t)/2}) as follows:

(@)rs) ((s,0) € I X [11,(t1 +12)/2)),
(@) ((s,) e I X ((t1 +12)/2,12]).

Then, we define So N Dy X (I X {(#; + 12)/2}) as the 2m-braid o with bands such that the
surgery result of @] is a; (see Fig.14). We denote by B the set of these bands.

pri(So N pry'(s,0) = {

tl S t < tl-gtz t = tl-th tl—gtg <t S t2

Fig.14. A motion picture of Sy (t; <t < 1p).

(2) We construct Sy N D X E, similarly to the case (0). First, we define Sy N Dy X E; by

B1)rs) ((s,1) € I x{13}),
S -1 i — 7{(1_12)/(,3_[2)] ((S, t) € {1} X [t2’ tS])’
Prio NP (0 =13 (5.1) € I x {12,

Yitt-13)/(tr—13)] ((s,1) € {0} X [12, 13]).
Since | = y a; ¥, the closed braid Sy N D X 0E; is equivalent to the trivial closed braid
in D X 0E,. Thus we may define SoN D, X E; as a braided surface of degree 2m without

branch points.
(3) We construct Sy N Dy X E5 similarly to the case (1). First, we define So N Dy X (E3 \ I X

{(13 + 14)/2}) by
B ((s,1) € I X [13,(13 + 14)/2)),
B2)rs1 ((s,0) € I X ((13 + 14)/2,14]).

Then, we define So N D X (I X {(#3 + t4)/2}) as the 2m-braid 8, with bands belonging to
B,.
(4) We construct Sop N D X E4 similarly to the case (2). We define Sy N D X dE4 by

pri(So N pry'(s,0) = {

B2)rs1 ((s, 1) € I X {14}),
_ OF sy 5 ((s, 1) € {1} X [14,15]),
pri(So Npr; (s, 1) = § /@)l
B (@) ((s,0) € I x {1s]),

Ol(1—12)/(t4—15)] ((s, 1) € {0} X [14,15]).

Since B, = dap ¢, we define Sp N D; X E4 as a braided surface of degree 2m without
branch points.
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(5) We construct SoN Dy X Es similarly to the case (1). We define So N D1 X (Es5\{(t5+1)/2})
by

(@2)15] ((s,0) € I X [15, (15 + 16)/2)),

(@3)1s] ((s, 1) € I X (15 + 16)/2, 16]).

Then, we define So N Dy X I X {(#5 +16)/2} as the 2m-braid o, with bands attaching to @

as in the opposite direction of Fig.14 such that the surgery result of @ is a». We denote

by By the set of these bands.
(6) We construct Sp N D X Eg similarly to the case (0). First, we define Sy N D X dE¢ by

(@)s) ((s, 1) € I x{t7}),
pri(So N pry ' (5,0) = < O ((s,1) € {0, 1} X [t6, 17]),
O ((s,1) € I X {t6}).

Since a7} is equivalent to the trivial 2m-braid, we may define Sy N Dy X E¢ as a braided
surface of degree 2m without branch points.

pri(So N pry'(s,0) = {

As a result, we have a properly embedded surface S in D; X D,. We take a based point
yo = (0,0) € dD,. Then, Sy is a braided surface of degree 2m except in neighborhoods of the
bands appearing in (1), (3), and (5). By an ambient isotopy of a neighborhood of each band,
we can change the band to a branch point as shown in Fig.15. Hence, we obtain a braided
surface S of degree 2m from Sy. The braided surface S is adequate because the 2m-braid S
is the composition of adequate 2m-braids y~!, 8, &', and y'~!

ti S t < z+tz+1 — t +tz+1 t +tz+1 < t < tz—{—l

=563
=~ E5-62-E2-E2

Fig.15. An isotopic deformation changing a band to a branch point.

Step 3: Finally, we show that the surface-link F is equivalent to the plat closure Sof S.

Letp:R*=R¥*xR — R3and i : R* = R* x R — R be the projections onto the first and
second factors, respectively. We regard h as a height function of R*. Let A be the surface of
wicket type associated with S. Note that 0A = 9S = 3Sy. Let Fp = Sp U A. Then Fy is a
surface-link equivalent to S = SUA. Thus we show that F, o and F are equivalent.

By an ambient isotopy of R* keeping R? x (f, t7) fixed pointwise, we deform Fy to a
surface-link F'; such that
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D, (t=17),
@ ((ts +16)/2 < t < 17),
i U|BT| (t = (t5 + 16)/2),
3
o(FL R X () = P(Fo NR X (1) (1 +1)/2 <1 < (15 + 16)/2),
@t U B (t = (11 + 1)/2),
@ (to <t < (11 + 12)/2),
d; (t = 1o),
0 otherwise,

where |B7| (resp. |B+|) is the union of the bands belonging to B (resp B+) and d; (resp.
D) is a union of mutually disjoint m 2-disks in R? bounded by a; (resp. “2) such that d,
(resp. Dy) is disjoint from |B7| (resp. |B{]) as in the left of Fig.16 except for the attaching
arcs of the bands, respectively. Next, we define a surface-link F in R* by

D, (t=17),
@ (15 +16)/2 <t <17),
3
D(Fy VR X (1)) = IjEFo NR>Xx{t}) (11 +1)/2 <1< (I5+16)/2),
a) (to <t < (1 +12)/2),
d, (t = 19),
0 otherwise,

where dy = d; U |By| (resp. D> = Dy U |B1+|) is the union of mutually disjoint ¢; (resp. ¢3)
2-disks as in the right of Fig.16, respectively.

Fig.16. d> is the union of d; and |B}|.

Then, F» is obtained from F; by cellular moves (cf. [18]) along 3-cells |B]| X [to, (1] +
1)/2] U |B]| X [(ts + t6)/2, t7]. This implies that F'; and F are equivalent.

Note that F» N R? X {fp} = dy X {0} is the union of all minimal disks of F with respect to
the height function &, F, N R? x {t;} = D, x {t7} is the union of all maximal disks of F, and
all saddle bands of F appear at t = (3 + t4)/2 as bands belonging to B;. By Lemma 4.3, F;
is equivalent to a closed realizing surface of the banded link (EI B

Since (Ly, By) is ambient isotopic to @,Bl) and F is equivalent to a closed realizing
surface of (Lo, By), we see that F; is equivalent to F. m]
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Next, we show Theoreml1.2. We define the 2m-braid A,, by A} = O, X [ and A, =
HZ:II(O'zk O -1 -0 07) form > 2. See Fig.17.

]

Alz AQZ _/,T_ A3:

—~

LR
g

Fig.17. The 2m-braids A,, (m = 1,2, 3).

Note that the closure of an m-braid b is equivalent to the plat closure of a 2m-braid

A 2"(b) AL See Fig.18 and 19.
q .
2 Am—l N
d [

Fig. 18. An isotopic deformation of A, with the standard wicket config-
uration wy to a configuration of wickets appearing in a closed braid form
(Fig.1).

.

2
2

d

|| ~ < >
m //, a7 b — \\\

Fig. 19. A transformation from the closure of b to the plat closure of
Ay 2M(b) ALY (m = 3).

Proof of Theorem 1.2. Let F be an orientable surface-link. By Proposition 2.7, there
exists a 2-dimensional braid S in D; x D, = D; x I x I whose closure in R* is equivalent
to F. Let m be the degree of S and Sy the cross-section S N D X (I X {t}) for each r € I.
See Fig.7 when m = 3. Let S; be the 2-dimensional braid of degree 2m obtained from S by
adding trivial m sheets.

Let € be a positive number and let D) = I X [-¢,1 + £]. We consider a 2-dimensional
braid S of degree 2m in Dy x D} = Dy X (I X [—¢, 1 + &]) with a motion picture (S2), as in
Fig.20. Here, the motion picture (S2) for t € [-¢,0] (or ¢ € [1,1 + &]) is the 1-parameter
family of 2m-braids changing 1,,, to A, A;,] (or A, A;ll to 1,,,), respectively, and the motion
picture (S2); for t € I = [0, 1] is the composition of A,,, (S1)[; and A,;l.

As aresult, the plat closure of S, has the motion picture as in Fig.21. By comparing Fig.7
and Fig.21, we see that the closure of S is equivalent to the plat closure of S,. Hence, F has
a genuine plat form presentation. |

RemMARK 4.7. In Lemma 4.6, each subcylinder U; contains a part of a banded link as in
the left of Fig.22. However, we may assume that for each i, the band in U; is either as in
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Fig.21. A motion picture of S‘; (m = 3).

the left or as in the right of Fig.22. Then we have another braided surface in the proof of
Theorem 1.1, where the corresponding branch point changes the sign. (A branch point of a
braided surface is positive (or negative) if the local monodromy is a conjugate of a standard
generator (or its inverse), cf. [12, 13]).

dl‘ X {ti}

di X {Sl}

Fig.22. Two types of half-twisted bands in a subcylinder U; = d; X [s;, t;].

5. The plat index of a surface-link and examples

In this section, we introduce two surface-link invariants called the plat index and the
genuine plat index.
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DEriniTioN 5.1. Let F be a surface-link. The plat index of F, denoted by Plat(F), is de-
fined as the half of the minimum degree of all adequate braided surfaces whose plat closures
are equivalent to F:

Plat(F) = min{degS/2|S is a braided surface with S~F }.

DeriniTioN 5.2. Let F be a surface-link. If F' admits a genuine plat form, the genuine
plat index of F, denoted by g.Plat(F), is defined as the half of the minimum degree of all
2-dimensional braids whose plat closures are equivalent to F'. If F' dose not admit a genuine
plat form, it is defined as infinity:

min{deg S/2|S is a 2-dimensional braid with S ~ F},

oo if F admits no genuine plat forms.

g.Play(F) = {

By definition, it holds that Plat(F) < g.Plat(F) for every surface-link F. Moreover, from
the proof of Theorem 1.2, we have the following proposition.

Proposition 5.3. The following inequalities hold for every orientable surface-link F:
Plat(F) < g.Plat(F) < Braid(F).

In the rest of this section, we show some examples of surface-links in plat forms and
discuss the plat index and the genuine plat index.

We first recall the notion of a braid system of a braided surface. Refer to [12] for more
details. Let pr; : D X D, — D; (i = 1,2) be the projection and C, the configuration space
of n points of Int D;. Let § be a braided surface of degree n, and X(S) the branch locus of
7ts = prols : S — Ds. Let yy € 9D, be a fixed base point.

The braid monodromy of S is a homomorphism pg : 71(D; \ 2(S), yo) — m1(Cy, On) = By,
defined as follows: For a loop ¢ : (I,01) — (D, \ Z(5), yo), define a loop ps(c) : (I,01) —
(Cy, Oy) as ps(e)(t) = pr1(7r§1 (c(?))). Then the braid monodromy of § is defined as a group
homomorphism sending [c] to [ps(c)] € m1(Cp, On).

Let r be a positive integer. A Hurwitz arc system in D, (with the base point yg) is an
r-tuple A = (ay,- -, a,) of oriented simple arcs in D, such that

(1) for each i, @; N D, = da; N D, = {yo} and this is the terminal point of «;,
(2) fori # j,a; N a; = {yo}, and

(3) ai,...,a, appear in this order around the base point yj.
The set of initial points of @, ..., a, is called the starting point set of A.
Let A = (ay,---,@,) be a Hurwitz arc system with the starting point set X(S). For each

i, let N; be a (small) regular neighborhood of the starting point of «;, @; an oriented arc
obtained from ¢; by restricting to D, \ Int N;, and 7y; a loop Ffl - ON; - a; in D, \ X(S) with
base point yy. Here, dN; is oriented counter-clockwise. Then 71(D; \ 2(S), yo) is generated
by [yi], [y2], ..., y.] and we have [0D,] = [yi]:--[y,]. The braid system of S associated
with A is an r-tuple bgs of elements of B, defined as

bs = (ps([y1Ds....ps([y:D) € (Bn)".

It is known that ps([y;]) is a conjugation of a standard generator or its inverse, oy (& €
{£1}), such that ¢ is the sign of the branch point which is the starting point of @;. The
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composition ps([y1Dps([¥2]) - - - ps([y,]) is equal to Bs in B,.
The slide action of the braid group B, on (B,)" is a left group action defined as

slide(o)(B1»---.B) = Bis--»Bj-1,BiBjs18; BjsBisas - - Br)

foro; € B, and (By,...,B,) € (B,)". Two elements of (B,)" are said to be Hurwitz equivalent
if they are in the same orbit of the slide action of B,.

Lemma 5.4 (cf. [12, 17, 20]). Two braided surfaces in D\ X D, are equivalent if and only
if their braid systems are Hurwitz equivalent.

Let e(F) be the normal Euler number of a surface-knot F'. The normal Euler number of
any orientable surface-knot is 0, and the normal Euler number of a trivial non-orientable
surface-knot, which is a connected sum of p copies of P, and g copies of P_, is 2(p — g) (cf.
(4, 8]).

Theorem 5.5. Let F be a surface-link.

(1) Plat(F) = 1 if and only if F is either a trivial 2-knot or a trivial non-orientable
surface-knot.

(2) g.Plat(F) = 1 if and only if F is either a trivial 2-knot or a trivial non-orientable
surface-knot with e(F) = 0.

(3) If F is a trivial orientable surface-knot with positive genus, then Plat(F) = g.Plat(F)
=2.

Proof. (1) Let F be a surface-link with Plat(F) = 1 and S a braided surface of degree
2 with § =~ F. Let p and ¢ be the numbers of positive and negative branch points of S,
respectively. Then a braid system for S is Hurwitz equivalent to (o1, ..., 07, (7[1, ... ,a’f')
consisting of p o’s and ¢ o-[l ’s. Hence, the equivalence class of S is determined from p
and ¢g. Fig.23 is a motion picture of the plat closure of a braided surface of degree 2 with p
positive branch points and g negative branch points. The motion picture describes a trivial
2-knot if p = ¢ = 0 holds, otherwise, it describes a connected sum of p copies of P, and ¢
copies of P_. Therefore, F is either a trivial 2-knot or a trivial non-orientable surface-knot.

Conversely, if F is a trivial 2-knot, then Plat(F) = 1. If F is a trivial non-orientable
surface-knot, then F is equivalent to a surface-knot described in Fig.23 and hence Plat(F)

=1.
—_
( ) — ( )— QX L4

b q
— OO0 — ( ) — ( )

Fig.23. A surface-knot in a (normal) plat form.

(2) Let F be a surface-link with g.Plat(F) = 1 and S a 2-dimensional braid of degree 2
with S ~ F. Since S is a 2-dimensional braid, the number of positive branch points of S,
denoted by p, is equal to the number of negative ones. Hence, the argument in the proof
of (1) implies that F is equivalent to a trivial 2-knot, when p = 0, or a connected sum of p
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copies of P, and p copies of P_. In particular, it holds that e(F) = 0.

Conversely, if F is a trivial 2-knot, then g.Plat(F) = 1. If F is a trivial non-orientable
surface-knot with e(F) = 0, then F is a connected sum of p copies of P, and p copies of P_
for some p > 0, which is equivalent to a surface-knot described in Fig.23 with p = ¢g. Hence
g.Plat(F) = 1.

(3) Let F be a trivial orientable surface-knot with a positive genus. Since Braid(F) = 2
(cf. [9, 12]), by Proposition 5.3, we have Plat(F)) < g.Plat(¥) < 2. On the other hand, by
(1), it holds that Plat(F) # 1. Hence, we have Plat(F) = g.Plat(F) = 2. (Fig.24 shows a
motion picture of a genuine plat form of F.) |

Fig.24. A trivial orientable surface-knot with a positive genus in a genuine
plat form.

Proposition 5.6. Let F be the 2-knot denoted by 2_2 in the table of [15], which is depicted
in Fig.25. Then Plat(F) = g.Plat(F) = 2.

Proof. Fig.26 shows a deformation of a banded link by an isotopy of R?. Using the
isotopy, we see that F' is equivalent to a surface-knot in a genuine plat form depicted in
Fig.27. Hence, we have the inequality Plat(F) < g.Plat(F) < 2. Since F is not a trivial
2-knot, we have Plat(F) = g.Plat(F) = 2. ]

The braid index of every non-trivial surface-knot is greater than 2 ([9]). Hence, 2_2 is an
example such that the equality in g.Plat(F) < Braid(F) in Proposition 5.3 does not hold.

—>H C O Cao

:)%:_)(%_)&)i

Fig.25. A motion picture of the 2-knot 2_2.
A surface-link is said to be ribbon if it is obtained from a trivial 2-link by some 1-handle
surgeries.

Theorem 5.7. Let F be a 2-knot (or a surface-link with y(F) = 2) with g.Plat(F) = 2.
Then, F is ribbon.
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A = C D

s ~ diIs ~ g

Fig.26. An isotopic deformation of a banded link.

D O O O
> —— 7 KN T AN
TN T — 7 =

Fig.27. A motion picture of the 2-knot 2_2 in a genuine plat form.

Proof. Let S be a 2-dimensional braid of degree 4 with S =~ F, and r the number of
branch points of S. Since y(F) = 2, we see that » = 2 from x(§) =4 -—r. Letbs =
(B1,B2) € (Bs)? be a braid system of S. Since § is a 2-dimensional braid, S5 = 815, = 1 in
By, ie., B = ,Bfl. A 2-dimensional braid with a symmetric braid system (5], ,8;') is known
as a ribbon 2-dimensional braid ([12]), which is equivalent to a 2-dimensional braid S’ in
Dy X Dy, = Dy X (I X [0, 1]) such that §’ is symmetric with respect to t = 1/2. Then the plat
closure of §” is symmetric with respect to = 1/2 and it is in a normal form in the sense of
[16]. Hence S’ is ribbon (cf. Theorem 11.4 of [12]). Since F ~ S and S =~ S, F is ribbon.

|

Proposition 5.8. Let k(n) be the twist knot (n € Z) and F(n) the 2-twist spin of k(n) ([23]).
Then Plat(F(n)) = 2 holds for n # 0.

Proof. The 2-knot F(n) has a motion picture described in [14] as in Fig.28, where m =
2n + 1 and a box labeled by m contains m positive half-twists or —m negative half-twists
for m < 0. Since the trivial link depicted in (4) of Fig.28 is the plat closure of an adequate
braid of degree 4, this motion picture gives us a (normal) plat form presentation for F(n).
On the other hand, it is known that F'(n) is a non-trivial 2-knot if n # 0. Hence, we have that
Plat(F(n)) = 2. O

Furthermore, it is known that F'(n) is not a ribbon 2-knot for n # 0 ([6]). By Theorem 5.7,
the genuine plat index of F(n) is greater than 2. Thus, Proposition 5.8 gives us examples of
2-knots such that the equality in Plat(F) < g.Plat(F) in Proposition 5.3 does not hold.

A P?-link is a surface-link whose components are projective planes. Replacing m = 2n+1
(or —m = —2n — 1) crossings in Fig.28 with 2n (or —2n) crossings, respectively, we have a
2-component P?-link in a plat form. In particular, in the case of n = 1, the P*-link is a
P2-link denoted by 87"~" in Yoshikawa’s table ([22]).

Proposition 5.9. Let F be a surface-link in a genuine plat form. Each component of F is
a surface-knot whose normal Euler number is zero.



A PLAT FORM PRESENTATION FOR SURFACE-LINKS 585

(0)

Fig.28. The 2-knot F(n) in a plat form (m = 2n + 1).

Proof. Each connected component of F is regarded as a surface-knot in a genuine plat
form by forgetting other components of F. Thus it is sufficient to show that e(F) = O for a
surface-knot F' in a genuine plat form.

For a (broken surface) diagram D of F (cf. [5]), let b..(D) (resp. b_(D)) be the number of
positive (resp. negative) branch points of D. Then, the normal Euler number e(F) is equal
to b (D) — b_(D).

When F = Sisina genuine plat form, taking a diagram suitably, positive (resp. negative)
branch points of S (in the sense of a 2-dimensional braid) correspond to positive (resp.
negative) branch points of D, and vise versa. Since S is a 2-dimensional braid, the number
of positive branch points of S and that of negative branch points of S are the same. Thus we
have e(F) = by (D) — b_(D) = 0. O

It is unknown to the author whether every surface-link consisting of surface-knots whose
normal Euler numbers are zero is equivalent to a surface-link in a genuine plat form.

AckNOWLEDGEMENTS. The author would like to thank Seiichi Kamada and Taizo Kanenobu
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