
Title A PLAT FORM PRESENTATION FOR SURFACE-LINKS

Author(s) Yasuda, Jumpei

Citation Osaka Journal of Mathematics. 2025, 62(4), p.
565-586

Version Type VoR

URL https://doi.org/10.18910/102978

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Yasuda, J.
Osaka J. Math.
62 (2025), 565–586

A PLAT FORM PRESENTATION FOR SURFACE-LINKS

Jumpei YASUDA

(Received September 19, 2023, revised April 16, 2024)

Abstract
In this paper, we introduce a method, called a plat form, of describing a surface-link in the

4-space using a braided surface. We prove that every surface-link, which is not necessarily
orientable, can be described in a plat form. The plat index is defined as a surface-link invariant,
which is an analogy of the bridge index for a link in the 3-space. We classify surface-links with
plat index 1 and show some examples of surface-links in plat forms.

1. Introduction

1. Introduction
In knot theory we often use two methods of presenting links in the 3-space using braids:

One is a closed braid form as in Fig.1, and the other is a plat form as in Fig.2.

Fig.1. A closed braid form. Fig.2. A plat form.

A surface-link is a closed surface embedded in R4, and a 2-knot is a 2-sphere embedded
in R4. Two surface-links are considered to be equivalent if they are ambient isotopic in
R

4. It is known that every orientable surface-link is equivalent to a surface-link in a closed
2-dimensional braid form (cf. [9, 12, 21]). It is an analogy of a closed braid form for a link.

The purpose of this paper is to introduce a new method of presenting a surface-link, which
we call a plat form, as an analogy of a plat form for a link.

Theorem 1.1. Every surface-link is equivalent to a surface-link in a plat form.

We emphasize that our method works for every surface-link, while the closed
2-dimensional braid form works only for orientable ones. A genuine plat form is a spe-
cial case of a plat form. Some surface-links can be presented in genuine plat forms.

Theorem 1.2. Every orientable surface-link is equivalent to a surface-link in a genuine
plat form.

We show that the normal Euler number e(F) of a surface-link F in a genuine plat form is
zero (Proposition 5.9). It is unknown to the author whether every surface-link with e(F) = 0
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is equivalent to one in a genuine plat form.
We define two surface-link invariants, which are called the plat index and the genuine plat

index, denoted by Plat(F) and g.Plat(F), respectively. These are analogies of the plat index,
or the bridge index, of a link.

Using a theory of braided surfaces and 2-dimensional braids, we show that a surface-link
F with Plat(F) = 1 or with g.Plat(F) = 1 is trivial (Theorem 5.5) and that a 2-knot with
g.Plat(F) = 2 is ribbon (Theorem 5.7). We also see an example of a 2-knot whose plat
index and genuine plat index are different (Proposition 5.8). An example of a non-trivial
surface-link in a plat form is shown in Fig.3 by using a motion picture (Proposition 5.8).

Fig.3. The 2-twist spun trefoil in a (normal) plat form.

This paper is organized as follows. In Section 2, we recall the notions of braids, surface-
links, and braided surfaces. We also recall the definition of a plat form for a link. In Section
3, we define a (normal) plat form and a genuine plat form for a surface-link. In Section 4,
we prove Theorems 1.1 and 1.2. In Section 5, we discuss the plat index and the genuine plat
index of a surface-link, and show some examples.

We work in the PL or smooth category. Surfaces embedded in the 4-space are assumed
to be locally flat in the PL category.

2. Preliminaries

2. Preliminaries2.1. A plat form presentation for a link.
2.1. A plat form presentation for a link. Let n be a positive integer, I = [0, 1] the

interval, D the square I2 in R2, Int D the interior of D, and Qn = {q1, . . . , qn} the subset of n
points in D such that qk = (1/2, k/(n + 1)) for k = 1, 2, . . . , n.

An n-braid is a union of n intervals β embedded in D × I such that each component
intersects with every open disk Int D × {t} (t ∈ I) transversely at a single point, and ∂β =
Qn × {0, 1}. The n-braid group Bn is the group consisting of equivalence classes of n-braids
in D × I. The braid group Bn is identified with the fundamental group π1(n,Qn) of the
configuration space n of n points of Int D. We denote by σ1, σ2, . . . , σn−1 the standard
generators of Bn or their representatives due to Artin ([1]).

To define the plat closure of a braided surface in Section 3, we introduce the space of m
wickets.

Definition 2.1 ([3]). A wicket is a semicircle in D × I that meets D × {0} orthogonally at
its endpoints in Int D × {0}. A configuration of m wickets is a disjoint union of m wickets in
D× I. The space of m wickets m is the space consisting of all configurations of m wickets.

For a configuration w = w1 ∪ · · · ∪ wm of m wickets, we denote by |∂w| the 2m points
∂w1 ∪ · · · ∪ ∂wm in Int D, which is identified with Int D × {0}, and by ∂w the 2m points |∂w|
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equipped with the partition {∂w1, . . . , ∂wm}. Note that if two configurations w and w′ satisfy
∂w = ∂w′, then w = w′.

The set Q2m equipped with the partition {{q1, q2}, . . . , {q2m−1, q2m}} bounds a unique con-
figuration of m wickets, which we call the standard configuration of m wickets and denote
by w0.

The fundamental group π1(m, w0) is called the wicket group in [3]. Let |∂| : (m, w0)→
(2m,Q2m) be the continuous map sending w to |∂w|. It induces a homomorphism |∂|∗ :
π1(m, w0)→ π1(2m,Q2m) = B2m.

Hilden’s subgroup K2m is the subgroup of B2m generated by σ1, σ2σ1σ3σ2, and
σ2iσ2i−1σ

−1
2i+1σ

−1
2i for i = 1, . . . ,m − 1 ([7], cf. [2]).

Proposition 2.2 ([3]). For each positive integer m, the homomorphism |∂|∗ : π1(m, w0)
→ π1(2m,Q2m) = B2m is injective and the image is Hilden’s subgroup K2m. Namely, the
wicket group π1(m, w) is isomorphic to Hilden’s subgroup K2m.

The isomorphism from π1(m, w) to K2m is restated as follows: Let f : (I, ∂I) →
(m, w0) be a loop. Consider a 2m-braid β f =

⋃
t∈I |∂ f (t)| × {t} ⊂ D × I, then the iso-

morphism sends [ f ] ∈ π1(m, w) to [β f ] ∈ K2m.

Definition 2.3. A loop g : (I, ∂I) → (2m,Q2m) is liftable if there exists a loop f :
(I, ∂I)→ (m, w0) such that g = |∂| ◦ f .

Definition 2.4. A 2m-braid β in D × I is adequate or wicket-adequate if the associated
loop g : (I, ∂I) → (2m,Q2m) is liftable, namely, there exists a loop f : (I, ∂I) → (m, w0)
such that β = β f .

Note that Hilden’s subgroup K2m consists of the elements of B2m represented by some
adequate 2m-braids.

Let β be a 2m-braid in D × I ⊂ R2 × R = R3. Attach a pair of the standard configurations
of m wickets to β as in Fig.4, and we obtain a link which is called the plat closure of β and
denoted by β̃. A link is said to be in a plat form when it is the plat closure of a braid. Every
link is equivalent to a link in a plat form.

Fig.4. The plat closure of a braid.

In Section 3 we introduce a plat form of a surface-link in R4. We will also introduce a
normal plat form, which is a plat form satisfying a nice condition such that its motion picture
is easy to describe.

To define a normal plat form of a surface-link in Section 3, we construct an isotopic
deformation changing the plat closure of an adequate braid to the plat closure of the trivial
braid as follows: Let f : (I, ∂I)→ (m, w0) be a loop. For each t ∈ I, let βt be

⋃
s∈I |∂ f ((1−

t)s)| × {s} in D × I, which is a union of 2m arcs. We denote by Lt a link obtained from
βt by attaching the configuration f (t) of m wickets to the side of D × {1} and the standard
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configuration w0 to the side of D×{0} in R3. See Fig.5. Then, {Lt}t∈I is a 1-parameter family
of links in R3 such that L0 is β̃ f and L1 is the plat closure of the trivial 2m-braid as in Fig.5.
We call {Lt}t∈I the isotopic deformation changing β̃ f to the plat closure of the trivial braid.

As a corollary, the plat closure of an adequate 2m-braid is an m-component trivial link.

Fig.5. The isotopic deformation changing β̃ f to the plat closure of the trivial braid.

2.2. Surface-links.
2.2. Surface-links. A surface-link is a closed surface embedded in R4, and a surface-

knot is a connected surface-link. A 2-knot is a surface-knot homeomorphic to a 2-sphere.
A 2-link is a surface-link consisting of 2-spheres. Two surface-links F and F′ are said to
be equivalent if they are ambient isotopic in R4. We denote it by F 	 F′ that F and F′ are
equivalent.

Let h : R3 × R1 → R1 be the projection onto the second factor. Set F[t] = F ∩ R3 × {t}
for t ∈ R, which is called the cross-section of F at t. A motion picture of F is a 1-parameter
family {F[t]}t∈R. We often describe surface-links using motion pictures.

A surface-knot is trivial if it is equivalent to a connected sum of standardly embedded
2-spheres, tori, and projective planes ([8]). Here standardly embedded projective planes P+
and P− are illustrated in Fig.6.

Fig.6. Motion pictures of P+ and P−.

2.3. Braided surfaces and 2-dimensional braids.
2.3. Braided surfaces and 2-dimensional braids. A braided surface was introduced by

Rudolph [19] and a 2-dimensional braid was introduced by Viro (cf. [10, 11, 12]). Let D1

and D2 be the squares I2 ⊂ R2 and pri : D1 × D2 → Di (i = 1, 2) the projection onto the i-th
factor. Let y0 ∈ ∂D2 be a fixed base point.

Definition 2.5 ([19], [21]). A (pointed) braided surface of degree n is a surface S embed-
ded in D1 × D2 satisfying the following conditions:

(1) πS = pr2|S : S → D2 is a simple branched covering map of degree n (i.e., the
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preimage of each branch locus consists of n − 1 points).
(2) ∂S is the closure of an n-braid in the solid torus D1 × ∂D2.
(3) pr1(π−1

S (y0)) = Qn.
In particular, a 2-dimensional braid of degree n is a braided surface S of degree n such that
∂S is trivial, i.e., pr1(π−1

S (y)) = Qn for all y ∈ ∂D2.

The degree of S is denoted by deg S. We say that two braided surfaces of the same degree
are equivalent if they are ambient isotopic by an isotopy {hs}s∈I of D1 ×D2 such that each hs

(s ∈ I) is fiber-preserving when we regard D1 ×D2 as the trivial D1-bundle over D2, and the
restriction of hs to pr−1

2 (y0) is the identity map. A braided surface is trivial if it is equivalent
to Qn × D2.

Lemma 2.6 (cf. [12]). A braided surface S is trivial if and only if S has no branch points.

We assume D1 × D2 ⊂ R2 × R2 = R4. Let S be a 2-dimensional braid of degree n.
The closure of S is an orientable surface-link in R4 obtained from S by attaching n 2-disks
trivially outside D1 × D2 in R4 along the boundary ∂S. It is described in Fig.7 when n = 3,
where ε is a positive number and S[t] = S ∩ D1 × (I × {t}) (t ∈ I).

Proposition 2.7 ([11, 21]). Every orientable surface-link is equivalent to the closure of a
2-dimensional braid.

Fig.7. The closure S of a 2-dimensional braid S.

For an orientable surface-link F, the braid index of F, denoted by Braid(F), is the mini-
mum degree of 2-dimensional braids whose closures are equivalent to F.

3. A plat form presentation for a surface-link

3. A plat form presentation for a surface-link
In this section, we introduce a plat form for a surface-link.
We fix a loop μ : (I, ∂I) → (∂D2, y0) which runs once on ∂D2 counter-clockwise. For a

braided surface S of degree n, let gS : (I, ∂I)→ (n,Qn) be a loop in the configuration space
n obtained by

gS(t) = pr1(π−1
S (μ(t)))
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and βS an n-braid in D1 × I obtained by

βS =
⋃
t∈I

pr1(π−1
S (μ(t))) × {t},

where πS : S → D2 is the simple branched covering map appearing in the definition of a
braided surface. Then ∂S is the closure of βS in D1 × ∂D2.

Definition 3.1. A braided surface S in D1×D2 is adequate if gS is liftable or equivalently
if βS is adequate.

Note that the degree of an adequate braided surface is even. For an adequate braided
surface S of degree 2m, let fS : (I, ∂I) → (m, w0) be the lift of gS, i.e., a loop in m with
gS = |∂| ◦ fS.

Let N be a regular neighborhood of ∂D2 in R2 \ Int D2. Since N is homeomorphic to an
annulus I × S1, we identify them by a fixed identification map φ : I × S1 → N such that
φ(0, p(t)) = μ(t) ∈ ∂D2 for all t ∈ I, where p : I → S1 = I/∂I is the quotient map.

Definition 3.2. A properly embedded surface A in D1 × N is of wicket type if there exists
a loop f : (I, ∂I)→ (m, w0) such that

A =
⋃
t∈I

f (t) × {p(t)} ⊂ (D1 × I) × S1 = D1 × N.

In this case, we say that A is associated with f and denote it by Af .

We remark that a surface A of wicket type is a union of annuli or Möbius bands, and that
∂A = ∂Af is expressed as

∂A =
⋃
t∈I
|∂ f (t)| × {p(t)} ⊂ D1 × S1 = D1 × ∂D2.

Since two loops f and f ′ in (m, w0) with |∂| ◦ f = |∂| ◦ f ′ are the same, we see that two
surfaces A and A′ of wicket type with ∂A = ∂A′ are the same.

Let S be an adequate braided surface, and let f : (I, ∂I) → (m, w0) be a loop with
gS = |∂| ◦ f . Then it holds that S ∩ Af = ∂S = ∂Af . We denote Af by AS and say that AS is
the surface of wicket type associated with S.

Definition 3.3. Let S be an adequate braided surface and AS the surface of wicket type
associated with S. The plat closure of S, denoted by S̃, is the union of S and AS in R4.

When deg S = 2m and S has r branch points, the Euler characteristic χ(S) of S is 2m − r.
Since χ(AS) = χ(∂AS) = 0, we have χ(̃S) = 2m − r.

Definition 3.4. A surface-link is said to be in a plat form if it is the plat closure of an
adequate braided surface. Moreover, a surface-link is said to be in a genuine plat form if it
is that of a 2-dimensional braid.

We introduce a normal plat form for a surface-link by using a motion picture as follows:
Let S̃ be the plat closure of an adequate braided surface S of degree 2m, and set S̃[t] =

S̃ ∩ R3 × {t} (t ∈ R) and S[t] = S ∩ D1 × (I × {t}) = S ∩ R3 × {t} (t ∈ [0, 1]). Replacing S
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with an equivalent braided surface if necessary, we may assume that S satisfies the following
conditions for some t0 ∈ [0, 1]:

(1) S has no branch points over I × [t0, 1] ⊂ D2.
(2) pr1(π−1

S (y)) = Q2m for every y ∈ ∂D2 \ ({1} × [t0, 1]).
(3) S[t0] = βS × {t0}.

In particular, S[0] and S[1] are both the trivial braids. Furthermore, replacing S with an
equivalent braided surface if necessary, we may assume that the motion picture {̃S[t]}t∈[t0,1]

between t = t0 and t = 1 is the isotopic deformation changing β̃ f to the plat closure of the
trivial braid. (See Fig.5.) Finally, deforming AS by an ambient isotopy rel boundary, we have
a surface-link F, equivalent to S̃, described by a motion picture as in Fig.8. The surface-link
F in this form is said to be in a normal plat form.

Fig.8. A surface-link in a normal plat form.

4. Proofs of Theorems 1.1 and 1.2

4. Proofs of Theorems 1.1 and 1.2
In this section, we give proofs of Theorems 1.1 and 1.2. To prove them, we discuss a plat

form for a link and a banded link presentation for a surface-link.

4.1. Stabilization and generalized stabilization for braids.
4.1. Stabilization and generalized stabilization for braids. For positive integers n and

n′ with n ≤ n′, let ιn
′

n : Bn → Bn′ denote the natural inclusion map from Bn to Bn′ sending
each generator σi ∈ Bn to σi ∈ Bn′ .

A stabilization of a 2m-braid β is a replacement of β with a 2m′-braid β′ such that

β′ = ι2m′
2m (β)σ2m σ2(m+1) σ2(m+2) . . . σ2(m′−1),

where m′ is an integer with m ≤ m′. We also call a stabilization an l-stabilization when
l = m′ − m.

It is obvious that if β′ is obtained from β by an l-stabilization then the plat closure of β′ is
equivalent to that of β as links in R3. See Fig.9 for l = 1, 2.

Proposition 4.1 ([2]). Let βi (i = 1, 2) be a 2mi-braid such that the plat closure β̃i is
a knot. Then β̃1 is equivalent as knots in R3 to β̃2 if and only if there exists an integer
t ≥ max{m1,m2} such that for each m ≥ t, the 2m-braids β′i (i = 1, 2) obtained from βi by
stabilization belong to the same double coset of B2m modulo K2m.

Proposition 4.1 is generalized into the case of links in R3 by using the notion of a gener-
alized stabilization.
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Fig.9. Plat closures of stabilized braids.

Let Λm be the set of m-tuples of non-negative integers. For two elements λ = (l1, . . . , lm)
and λ′ = (l′1, . . . , l

′
m) of Λm, we write λ 
 λ′ if li ≤ l′i for each i = 1, . . . ,m. Then 
 is a

(directed) partial ordering on Λm. Put |λ|0 = m, |λ|i = m + l1 + · · · + li (i = 1, . . . ,m), and
|λ| = |λ|m. For a given λ ∈ Λm, we denote τi = σ2iσ2i−1σ2i+1σ2i ∈ K2|λ| (1 ≤ i ≤ |λ| − 1) and

Ti, j =

m−1∏
k=i

τk ·
j∏

k=m

τ−1
k ∈ K2|λ| (1 ≤ i ≤ m,m − 1 ≤ j ≤ |λ|),

where the former or later product is assumed to be the identity element of the group if i = m
or j = m − 1, respectively, and we construct a 2 |λ|-braid T (λ) as follows:

T (λ) =
m∏

i=1

Ti, (|λ|(i−1)−1) σ2|λ|i−1σ2(|λ|i−1+1) · · ·σ2|λ|i T−1
i, (|λ|(i−1)−1).

For a 2m-braid β and λ ∈ Λm, we let βλ denote a 2 |λ|-braid such that

βλ = ι2|λ|2m (β) · T (λ).

A generalized stabilization (with respect to λ) or λ-stabilization of β is a replacement of β
with βλ. A λ-stabilization is a composition of li-stabilization performed on the 2i-th strand of
β for each i = 1, . . . ,m. A l-stabilization of β is a λ-stabilization with λ = (0, . . . , 0, l) ∈ Λm.
Fig.10 depicts the plat closure of a 12-braid obtained from a 6-braid β by a generalized
stabilization with respect to λ = (2, 0, 1) ∈ Λ3.

Fig.10. The plat closure of a (2, 0, 1)-stabilized braid.

The following proposition states that two braids of even degrees have equivalent plat
closures as links in R3 if and only if, after applying a generalized stabilization suitably, they
belong to the same double coset of B2m modulo K2m.
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Proposition 4.2 (cf. [2]). Let βi (i = 1, 2) be a 2mi-braid. The plat closure β̃1 is equivalent
to β̃2 as links in R3 if and only if there exists an element λ ∈ Λm1 satisfying the following
condition: For any λ1 � λ, there exists λ2 ∈ Λm2 with |λ1| = |λ2| such that βλ1

1 and βλ2
2 belong

to the same double coset of B2m modulo K2m, where m = |λ1| = |λ2|.
Proposition 4.2 is proved directly by applying the proof of Proposition 4.1 given in [2]

for each component of a link.

4.2. A banded link presentation for a surface-link.
4.2. A banded link presentation for a surface-link. A banded link in R3 means a pair

(L, B) of a link L and a family B of mutually disjoint bands attaching to L. We let LB denote
the link obtained from L by surgery along the bands belonging to B. A banded link (L, B) is
admissible if both L and LB are trivial links.

Let (L, B) be an admissible banded link in R3. Let d and D be unions of mutually disjoint
2-disks embedded in R3 bounded by L and LB, respectively. Consider a closed surface
F = F(L, B) in R4 = R3 × R defined by

p(F ∩ R3 × {t}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D (t = 1),

LB (0 < t < 1),

L ∪ |B| (t = 0),

L (−1 < t < 0),

d (t = −1),

∅ otherwise,

where |B| is the union of the bands belonging to B. We call F(L, B) a closed realizing surface
of (L, B). Although it depends on a choice of d and D, the equivalence class as surface-links
does not depend on them (cf. [13, 16]).

Let r be a real number, and let h : R3 × (−∞, r] → (−∞, r] be the projection onto the
second factor, which we regard as a height function of R3 × (−∞, r].

Lemma 4.3 (cf. [13, 16]). Let F and F′ be compact surfaces properly embedded in
R

3 × (−∞, r] such that all critical points of F and F′ are minimal points with respect to
h, and their boundaries are the same trivial link in R3 × {r}. Then, F and F′ are ambient
isotopic in R3 × (−∞, r] rel R3 × {r}.

Lemma 4.4 ([16]). If two admissible banded links (L, B) and (L′, B′) are ambient isotopic
in R3, then their closed realizing surfaces F(L, B) and F(L′, B′) are equivalent.

Lemma 4.5 ([16]). Any surface-link F is equivalent to a closed realizing surface F(L, B)
of an admissible banded link (L, B).

Lemma 4.6. By an isotopy of R3, any banded link (L, B) in R3 is deformed to a banded
link (L0, B0) satisfying the following conditions:

(1) There exists a disk D in R2 and a 2m0-braid β0 in D × I (⊂ R2 × R = R3) for some
m0 ∈ N such that β0 = L0 ∩ D × I and β̃0 = L0.

(2) There exist mutually disjoint n subcylinders Ui = di × [si, ti] (i = 1, . . . , n) in D × I
such that each Ui contains a part of L0 as a pair of vertical line segments and a
half-twisted band bi ∈ B0 as in Fig.11, where n is the number of bands belonging to
B0.
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Furthermore, we may take subcylinders Ui = di × [si, ti] such that d1, . . . , dn are mutually
disjoint disks in Int D and [si, ti] = [2/5, 3/5] for i = 1, . . . , n.

Fig.11. A local model of L0 and bi in Ui = di × [si, ti].

Proof. Let d1, . . . , dn be mutually disjoint disks in Int D and let Ui = di × [2/5, 3/5] for
i = 1, . . . , n. By an isotopy of R3, (L, B) is deformed into (L1, B0) such that for each i, Ui

intersects with (L1, B0) as in Fig.11.
By an isotopy of R3 keeping Ui (i = 1, . . . , n) fixed pointwise, (L1, B0) is deformed into

(L2, B0) such that all maximal points of L2 are in R2 × {1} and all minimal points of L2 are in
R

2 × {0}. Finally, by an isotopy of R3 keeping Ui (i = 1, . . . , n) fixed pointwise, we deform
the link L2 into a link L0 satisfying the condition (1). �

We denote by (β0)B0 the 2m0-braid in D × I obtained from β0 by surgery along bands
belonging to B0.

Proof of Theorem 1.1. We prove the theorem by 3 steps. Let F be a surface-link.
Step 1: By Lemmas 4.4, 4.5 and 4.6, F is equivalent to a closed realizing surface of

a banded link (L0, B0) satisfying the conditions (1) and (2) in Lemma 4.6. Let β0 be the
2m0-braid in D × I as in Lemma 4.6.

Let c1 and c2 be the numbers of components of L0 and (L0)B0 , respectively. Since β̃0 = L0

is a trivial link of c1 components, the plat closure β̃0 is equivalent as links in R3 to the plat
closure 1̃2c1 of the trivial braid 12c1 ∈ B2c1 . The plat closure (̃β0)B0 is equivalent to the plat
closure 1̃2c2 of the trivial braid 12c2 ∈ B2c2 by the same reason.

Applying Proposition 4.2 to the two pairs (β0, 12c1 ) and ((β0)B0 , 12c2 ) of braids in D × I,
there exist a positive integer m ∈ Z, three elements λ ∈ Λm0 , λ1 ∈ Λc1 , λ2 ∈ Λc2 , and four
adequate 2m-braids γ, γ′, δ, δ′ in D × I such that |λ| = |λ1| = |λ2| = m and

β1 = γ α1 γ
′, β2 = δ α2 δ

′ in B2m,

where β1 = β
λ
0, α1 = 1λ1

2c1
, β2 = (β0) λB0

and α2 = 1λ2
2c2

are 2m-braids in D × I obtained by
generalized stabilization.

Since β1 is a λ-stabilized β0, there exists a subcylinder U of D × I such that β1 ∩ U = β0

under an identification of U and D × I. Let B1 be the set of bands attaching to β1 obtained
from B0 via the identification. Then, β2 and (β1)B1 are the same braid. Note that (β̃1, B1) is
ambient isotopic to (L0, B0).

Step 2: We construct a properly embedded compact surface S0 in D1 × D2 and a braided
surface S of degree 2m in D1 × D2. Let 0 = t0 < t1 < · · · < t6 < t7 = 1 be a partition of
I = [0, 1]. We divide D2 = I × I into seven pieces E0, . . . , E6 with Ei = I × [ti, ti+1]. Let α∗1
and α∗2 be 2m-braids in D1 × I given by
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α∗1 =
m∏

i=1

Ti, (|λ1 |(i−1)−1)T−1
i, (|λ1 |(i−1)−1), α

∗
2 =

m∏
i=1

Ti, (|λ2 |(i−1)−1)T−1
i, (|λ2 |(i−1)−1),

which are obtained from α1 = 1λ1
2c1
= T (λ1) and α2 = 1λ2

2c2
= T (λ2) by removing the

parts σ2|λ1 |(i−1)σ2(|λ1 |(i−1)+1) . . . σ2|λ1 |i and σ2|λ2 |(i−1)σ2(|λ2 |(i−1)+1) . . . σ2|λ2 |i (i = 1, . . . ,m), respec-
tively (Fig.14). Note that α∗1 and α∗2 are equivalent to the trivial braid 12m = Q2m× I as braids
in D1 × I.

Fig.12. The partition of D2.

Let p1 : D1 × I → D1 and p2 : D1 × I → I be the projections onto the first and second
factors, respectively. Let pri : D1×D2 → Di be the projections onto the i-th factors (i = 1, 2).
For a braid b in D1 × I and s ∈ I, we denote by b[s] the image p1(b ∩ p−1

2 (s)) in D1 of the
intersection b ∩ p−1

2 (s).
Now, we define a properly embedded compact surface S0 in D1 × D2, step by step, as

follows:
(0) First, we define S0 ∩ D1 × ∂E0 by

pr1(S0 ∩ pr−1
2 (s, t)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(α∗1)[s] ((s, t) ∈ I × {t1}),
Q2m ((s, t) ∈ {0, 1} × [t0, t1]),

Q2m ((s, t) ∈ I × {t0}).
See Fig.13. Since α∗1 is equivalent to the trivial 2m-braid, we may define S0 ∩ D1 × E0

as a braided surface of degree 2m without branch points in D1 × E0, which is trivial by
Lemma 2.6.

Fig.13. A blueprint for a surface S0. Each braid is appeared as the section of S0.
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(1) We define S0 ∩ D1 × (E1 \ I × {(t1 + t2)/2}) as follows:

pr1(S0 ∩ pr−1
2 (s, t)) =

⎧⎪⎪⎨⎪⎪⎩
(α∗1)[s] ((s, t) ∈ I × [t1, (t1 + t2)/2)),

(α1)[s] ((s, t) ∈ I × ((t1 + t2)/2, t2]).

Then, we define S0 ∩D1 × (I × {(t1 + t2)/2}) as the 2m-braid α∗1 with bands such that the
surgery result of α∗1 is α1 (see Fig.14). We denote by B−1 the set of these bands.

Fig.14. A motion picture of S0 (t1 ≤ t ≤ t2).

(2) We construct S0 ∩ D1 × E2 similarly to the case (0). First, we define S0 ∩ D1 × ∂E2 by

pr1(S0 ∩ pr−1
2 (s, t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β1)[s] ((s, t) ∈ I × {t3}),
γ′[(t−t2)/(t3−t2)] ((s, t) ∈ {1} × [t2, t3]),

(α1)[s] ((s, t) ∈ I × {t2}),
γ[(t−t3)/(t2−t3)] ((s, t) ∈ {0} × [t2, t3]).

Since β1 = γ α1 γ
′, the closed braid S0∩D1×∂E2 is equivalent to the trivial closed braid

in D1×∂E2. Thus we may define S0∩D1×E2 as a braided surface of degree 2m without
branch points.

(3) We construct S0 ∩ D1 × E3 similarly to the case (1). First, we define S0 ∩ D1 × (E3 \ I ×
{(t3 + t4)/2}) by

pr1(S0 ∩ pr−1
2 (s, t)) =

⎧⎪⎪⎨⎪⎪⎩
(β1)[s] ((s, t) ∈ I × [t3, (t3 + t4)/2)),

(β2)[s] ((s, t) ∈ I × ((t3 + t4)/2, t4]).

Then, we define S0 ∩ D1 × (I × {(t3 + t4)/2}) as the 2m-braid β1 with bands belonging to
B1.

(4) We construct S0 ∩ D1 × E4 similarly to the case (2). We define S0 ∩ D1 × ∂E4 by

pr1(S0 ∩ pr−1
2 (s, t)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β2)[s] ((s, t) ∈ I × {t4}),
δ′[(t−t5)/(t4−t5)] ((s, t) ∈ {1} × [t4, t5]),

(α2)[s] ((s, t) ∈ I × {t5}),
δ[(t−t4)/(t4−t5)] ((s, t) ∈ {0} × [t4, t5]).

Since β2 = δ α2 δ
′, we define S0 ∩ D1 × E4 as a braided surface of degree 2m without

branch points.
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(5) We construct S0∩D1×E5 similarly to the case (1). We define S0∩D1×(E5 \{(t5+ t6)/2})
by

pr1(S0 ∩ pr−1
2 (s, t)) =

⎧⎪⎪⎨⎪⎪⎩
(α2)[s] ((s, t) ∈ I × [t5, (t5 + t6)/2)),

(α∗2)[s] ((s, t) ∈ I × ((t5 + t6)/2, t6]).

Then, we define S0 ∩D1 × I × {(t5 + t6)/2} as the 2m-braid α∗2 with bands attaching to α∗2
as in the opposite direction of Fig.14 such that the surgery result of α∗2 is α2. We denote
by B+1 the set of these bands.

(6) We construct S0 ∩ D1 × E6 similarly to the case (0). First, we define S0 ∩ D1 × ∂E6 by

pr1(S0 ∩ pr−1
2 (s, t)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(α∗2)[s] ((s, t) ∈ I × {t7}),
Q2m ((s, t) ∈ {0, 1} × [t6, t7]),

Q2m ((s, t) ∈ I × {t6}).
Since α∗2 is equivalent to the trivial 2m-braid, we may define S0 ∩ D1 × E6 as a braided
surface of degree 2m without branch points.

As a result, we have a properly embedded surface S0 in D1 × D2. We take a based point
y0 = (0, 0) ∈ ∂D2. Then, S0 is a braided surface of degree 2m except in neighborhoods of the
bands appearing in (1), (3), and (5). By an ambient isotopy of a neighborhood of each band,
we can change the band to a branch point as shown in Fig.15. Hence, we obtain a braided
surface S of degree 2m from S0. The braided surface S is adequate because the 2m-braid βS

is the composition of adequate 2m-braids γ−1, δ, δ′, and γ′−1.

Fig.15. An isotopic deformation changing a band to a branch point.

Step 3: Finally, we show that the surface-link F is equivalent to the plat closure S̃ of S.
Let p : R4 = R3 × R→ R3 and h : R4 = R3 × R→ R be the projections onto the first and

second factors, respectively. We regard h as a height function of R4. Let A be the surface of
wicket type associated with S. Note that ∂A = ∂S = ∂S0. Let F0 = S0 ∪ A. Then F0 is a
surface-link equivalent to S̃ = S ∪ A. Thus we show that F0 and F are equivalent.

By an ambient isotopy of R4 keeping R3 × (t0, t7) fixed pointwise, we deform F0 to a
surface-link F1 such that
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p(F1 ∩ R3 × {t}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1 (t = t7),

α̃∗2 ((t5 + t6)/2 < t < t7),

α̃∗2 ∪ |B+1 | (t = (t5 + t6)/2),

p(F0 ∩ R3 × {t}) ((t1 + t2)/2 < t < (t5 + t6)/2),

α̃∗1 ∪ |B−1 | (t = (t1 + t2)/2),

α̃∗1 (t0 < t < (t1 + t2)/2),

d1 (t = t0),

∅ otherwise,

where |B−1 | (resp. |B+1 |) is the union of the bands belonging to B−1 (resp. B+1 ), and d1 (resp.
D1) is a union of mutually disjoint m 2-disks in R3 bounded by α̃∗1 (resp. α̃∗2) such that d1

(resp. D1) is disjoint from |B−1 | (resp. |B+1 |) as in the left of Fig.16 except for the attaching
arcs of the bands, respectively. Next, we define a surface-link F2 in R4 by

p(F2 ∩ R3 × {t}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2 (t = t7),

α̃2 ((t5 + t6)/2 ≤ t < t7),

p(F0 ∩ R3 × {t}) ((t1 + t2)/2 < t < (t5 + t6)/2),

α̃1 (t0 < t ≤ (t1 + t2)/2),

d2 (t = t0),

∅ otherwise,

where d2 = d1 ∪ |B−1 | (resp. D2 = D1 ∪ |B+1 |) is the union of mutually disjoint c1 (resp. c2)
2-disks as in the right of Fig.16, respectively.

Fig.16. d2 is the union of d1 and |B−1 |.

Then, F2 is obtained from F1 by cellular moves (cf. [18]) along 3-cells |B−1 | × [t0, (t1 +
t2)/2] ∪ |B+1 | × [(t5 + t6)/2, t7]. This implies that F1 and F2 are equivalent.

Note that F2 ∩ R2 × {t0} = d2 × {t0} is the union of all minimal disks of F with respect to
the height function h, F2 ∩ R2 × {t7} = D2 × {t7} is the union of all maximal disks of F, and
all saddle bands of F appear at t = (t3 + t4)/2 as bands belonging to B1. By Lemma 4.3, F2

is equivalent to a closed realizing surface of the banded link (β̃1, B1).
Since (L0, B0) is ambient isotopic to (β̃1, B1) and F is equivalent to a closed realizing

surface of (L0, B0), we see that F2 is equivalent to F. �
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Next, we show Theorem1.2. We define the 2m-braid Δm by Δ1 = Q2 × I and Δm =∏m−1
k=1 (σ2k σ2k−1 · · ·σ2 σ1) for m ≥ 2. See Fig.17.

Fig.17. The 2m-braids Δm (m = 1, 2, 3).

Note that the closure of an m-braid b is equivalent to the plat closure of a 2m-braid
Δm ι

2m
m (b)Δ−1

m . See Fig.18 and 19.

Fig. 18. An isotopic deformation of Δm with the standard wicket config-
uration w0 to a configuration of wickets appearing in a closed braid form
(Fig.1).

Fig. 19. A transformation from the closure of b to the plat closure of
Δm ι

2m
m (b)Δ−1

m (m = 3).

Proof of Theorem 1.2. Let F be an orientable surface-link. By Proposition 2.7, there
exists a 2-dimensional braid S in D1 × D2 = D1 × I × I whose closure in R4 is equivalent
to F. Let m be the degree of S and S[t] the cross-section S ∩ D1 × (I × {t}) for each t ∈ I.
See Fig.7 when m = 3. Let S1 be the 2-dimensional braid of degree 2m obtained from S by
adding trivial m sheets.

Let ε be a positive number and let D′2 = I × [−ε, 1 + ε]. We consider a 2-dimensional
braid S2 of degree 2m in D1 × D′2 = D1 × (I × [−ε, 1 + ε]) with a motion picture (S2)[t] as in
Fig.20. Here, the motion picture (S2)[t] for t ∈ [−ε, 0] (or t ∈ [1, 1 + ε]) is the 1-parameter
family of 2m-braids changing 12m to Δm Δ

−1
m (or Δm Δ

−1
m to 12m), respectively, and the motion

picture (S2)[t] for t ∈ I = [0, 1] is the composition of Δm, (S1)[t] and Δ−1
m .

As a result, the plat closure of S2 has the motion picture as in Fig.21. By comparing Fig.7
and Fig.21, we see that the closure of S is equivalent to the plat closure of S2. Hence, F has
a genuine plat form presentation. �

Remark 4.7. In Lemma 4.6, each subcylinder Ui contains a part of a banded link as in
the left of Fig.22. However, we may assume that for each i, the band in Ui is either as in
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Fig.20. A motion picture of S2 (m = 3).

Fig.21. A motion picture of S̃2 (m = 3).

the left or as in the right of Fig.22. Then we have another braided surface in the proof of
Theorem 1.1, where the corresponding branch point changes the sign. (A branch point of a
braided surface is positive (or negative) if the local monodromy is a conjugate of a standard
generator (or its inverse), cf. [12, 13]).

Fig.22. Two types of half-twisted bands in a subcylinder Ui = di × [si, ti].

5. The plat index of a surface-link and examples

5. The plat index of a surface-link and examples
In this section, we introduce two surface-link invariants called the plat index and the

genuine plat index.
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Definition 5.1. Let F be a surface-link. The plat index of F, denoted by Plat(F), is de-
fined as the half of the minimum degree of all adequate braided surfaces whose plat closures
are equivalent to F:

Plat(F) = min{ deg S/2 | S is a braided surface with S̃ 	 F}.
Definition 5.2. Let F be a surface-link. If F admits a genuine plat form, the genuine

plat index of F, denoted by g.Plat(F), is defined as the half of the minimum degree of all
2-dimensional braids whose plat closures are equivalent to F. If F dose not admit a genuine
plat form, it is defined as infinity:

g.Plat(F) =

⎧⎪⎪⎨⎪⎪⎩
min{deg S/2 | S is a 2-dimensional braid with S̃ 	 F},
∞ if F admits no genuine plat forms.

By definition, it holds that Plat(F) ≤ g.Plat(F) for every surface-link F. Moreover, from
the proof of Theorem 1.2, we have the following proposition.

Proposition 5.3. The following inequalities hold for every orientable surface-link F:

Plat(F) ≤ g.Plat(F) ≤ Braid(F).

In the rest of this section, we show some examples of surface-links in plat forms and
discuss the plat index and the genuine plat index.

We first recall the notion of a braid system of a braided surface. Refer to [12] for more
details. Let pri : D1 × D2 → Di (i = 1, 2) be the projection and n the configuration space
of n points of Int D1. Let S be a braided surface of degree n, and Σ(S) the branch locus of
πS = pr2|S : S→ D2. Let y0 ∈ ∂D2 be a fixed base point.

The braid monodromy of S is a homomorphism ρS : π1(D2 \ Σ(S), y0)→ π1(n,Qn) = Bn

defined as follows: For a loop c : (I, ∂I) → (D2 \ Σ(S), y0), define a loop ρS(c) : (I, ∂I) →
(n,Qn) as ρS(c)(t) = pr1(π−1

S (c(t))). Then the braid monodromy of S is defined as a group
homomorphism sending [c] to [ρS(c)] ∈ π1(n,Qn).

Let r be a positive integer. A Hurwitz arc system in D2 (with the base point y0) is an
r-tuple  = (α1, · · · , αr) of oriented simple arcs in D2 such that

(1) for each i, αi ∩ ∂D2 = ∂αi ∩ ∂D2 = {y0} and this is the terminal point of αi,
(2) for i � j, αi ∩ α j = {y0}, and
(3) α1, . . . , αr appear in this order around the base point y0.

The set of initial points of α1, . . . , αr is called the starting point set of .
Let  = (α1, · · · , αr) be a Hurwitz arc system with the starting point set Σ(S). For each

i, let Ni be a (small) regular neighborhood of the starting point of αi, αi an oriented arc
obtained from αi by restricting to D2 \ Int Ni, and γi a loop αi

−1 · ∂Ni · αi in D2 \ Σ(S) with
base point y0. Here, ∂Ni is oriented counter-clockwise. Then π1(D2 \ Σ(S), y0) is generated
by [γ1], [γ2], . . . , [γr] and we have [∂D2] = [γ1] · · · [γr]. The braid system of S associated
with  is an r-tuple bS of elements of Bn defined as

bS = (ρS([γ1]), . . . , ρS([γr])) ∈ (Bn)r.

It is known that ρS([γi]) is a conjugation of a standard generator or its inverse, σε1 (ε ∈
{±1}), such that ε is the sign of the branch point which is the starting point of αi. The
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composition ρS([γ1])ρS([γ2]) · · · ρS([γr]) is equal to βS in Bn.
The slide action of the braid group Br on (Bn)r is a left group action defined as

slide(σ j)(β1, . . . , βr) = (β1, . . . , β j−1, β jβ j+1β
−1
j , β j, β j+2, . . . , βr)

for σ j ∈ Br and (β1, . . . , βr) ∈ (Bn)r. Two elements of (Bn)r are said to be Hurwitz equivalent
if they are in the same orbit of the slide action of Br.

Lemma 5.4 (cf. [12, 17, 20]). Two braided surfaces in D1×D2 are equivalent if and only
if their braid systems are Hurwitz equivalent.

Let e(F) be the normal Euler number of a surface-knot F. The normal Euler number of
any orientable surface-knot is 0, and the normal Euler number of a trivial non-orientable
surface-knot, which is a connected sum of p copies of P+ and q copies of P−, is 2(p− q) (cf.
[4, 8]).

Theorem 5.5. Let F be a surface-link.

(1) Plat(F) = 1 if and only if F is either a trivial 2-knot or a trivial non-orientable
surface-knot.

(2) g.Plat(F) = 1 if and only if F is either a trivial 2-knot or a trivial non-orientable
surface-knot with e(F) = 0.

(3) If F is a trivial orientable surface-knot with positive genus, then Plat(F) = g.Plat(F)
= 2.

Proof. (1) Let F be a surface-link with Plat(F) = 1 and S a braided surface of degree
2 with S̃ 	 F. Let p and q be the numbers of positive and negative branch points of S,
respectively. Then a braid system for S is Hurwitz equivalent to (σ1, . . . , σ1, σ

−1
1 , . . . , σ

−1
1 )

consisting of p σ1’s and q σ−1
1 ’s. Hence, the equivalence class of S is determined from p

and q. Fig.23 is a motion picture of the plat closure of a braided surface of degree 2 with p
positive branch points and q negative branch points. The motion picture describes a trivial
2-knot if p = q = 0 holds, otherwise, it describes a connected sum of p copies of P+ and q
copies of P−. Therefore, F is either a trivial 2-knot or a trivial non-orientable surface-knot.

Conversely, if F is a trivial 2-knot, then Plat(F) = 1. If F is a trivial non-orientable
surface-knot, then F is equivalent to a surface-knot described in Fig.23 and hence Plat(F)
= 1.

Fig.23. A surface-knot in a (normal) plat form.

(2) Let F be a surface-link with g.Plat(F) = 1 and S a 2-dimensional braid of degree 2
with S̃ 	 F. Since S is a 2-dimensional braid, the number of positive branch points of S,
denoted by p, is equal to the number of negative ones. Hence, the argument in the proof
of (1) implies that F is equivalent to a trivial 2-knot, when p = 0, or a connected sum of p
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copies of P+ and p copies of P−. In particular, it holds that e(F) = 0.
Conversely, if F is a trivial 2-knot, then g.Plat(F) = 1. If F is a trivial non-orientable

surface-knot with e(F) = 0, then F is a connected sum of p copies of P+ and p copies of P−
for some p > 0, which is equivalent to a surface-knot described in Fig.23 with p = q. Hence
g.Plat(F) = 1.

(3) Let F be a trivial orientable surface-knot with a positive genus. Since Braid(F) = 2
(cf. [9, 12]), by Proposition 5.3, we have Plat(F) ≤ g.Plat(F) ≤ 2. On the other hand, by
(1), it holds that Plat(F) � 1. Hence, we have Plat(F) = g.Plat(F) = 2. (Fig.24 shows a
motion picture of a genuine plat form of F.) �

Fig.24. A trivial orientable surface-knot with a positive genus in a genuine
plat form.

Proposition 5.6. Let F be the 2-knot denoted by 2 2 in the table of [15], which is depicted
in Fig.25. Then Plat(F) = g.Plat(F) = 2.

Proof. Fig.26 shows a deformation of a banded link by an isotopy of R3. Using the
isotopy, we see that F is equivalent to a surface-knot in a genuine plat form depicted in
Fig.27. Hence, we have the inequality Plat(F) ≤ g.Plat(F) ≤ 2. Since F is not a trivial
2-knot, we have Plat(F) = g.Plat(F) = 2. �

The braid index of every non-trivial surface-knot is greater than 2 ([9]). Hence, 2 2 is an
example such that the equality in g.Plat(F) ≤ Braid(F) in Proposition 5.3 does not hold.

Fig.25. A motion picture of the 2-knot 2 2.

A surface-link is said to be ribbon if it is obtained from a trivial 2-link by some 1-handle
surgeries.

Theorem 5.7. Let F be a 2-knot (or a surface-link with χ(F) = 2) with g.Plat(F) = 2.
Then, F is ribbon.
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Fig.26. An isotopic deformation of a banded link.

Fig.27. A motion picture of the 2-knot 2 2 in a genuine plat form.

Proof. Let S be a 2-dimensional braid of degree 4 with S̃ 	 F, and r the number of
branch points of S. Since χ(F) = 2, we see that r = 2 from χ(̃S) = 4 − r. Let bS =

(β1, β2) ∈ (B4)2 be a braid system of S. Since S is a 2-dimensional braid, βS = β1β2 = 1 in
B4, i.e., β2 = β

−1
1 . A 2-dimensional braid with a symmetric braid system (β1, β

−1
1 ) is known

as a ribbon 2-dimensional braid ([12]), which is equivalent to a 2-dimensional braid S′ in
D1 × D2 = D1 × (I × [0, 1]) such that S′ is symmetric with respect to t = 1/2. Then the plat
closure of S′ is symmetric with respect to t = 1/2 and it is in a normal form in the sense of
[16]. Hence S̃′ is ribbon (cf. Theorem 11.4 of [12]). Since F 	 S̃ and S̃ 	 S̃′, F is ribbon.

�

Proposition 5.8. Let k(n) be the twist knot (n ∈ Z) and F(n) the 2-twist spin of k(n) ([23]).
Then Plat(F(n)) = 2 holds for n � 0.

Proof. The 2-knot F(n) has a motion picture described in [14] as in Fig.28, where m =
2n + 1 and a box labeled by m contains m positive half-twists or −m negative half-twists
for m < 0. Since the trivial link depicted in (4) of Fig.28 is the plat closure of an adequate
braid of degree 4, this motion picture gives us a (normal) plat form presentation for F(n).
On the other hand, it is known that F(n) is a non-trivial 2-knot if n � 0. Hence, we have that
Plat(F(n)) = 2. �

Furthermore, it is known that F(n) is not a ribbon 2-knot for n � 0 ([6]). By Theorem 5.7,
the genuine plat index of F(n) is greater than 2. Thus, Proposition 5.8 gives us examples of
2-knots such that the equality in Plat(F) ≤ g.Plat(F) in Proposition 5.3 does not hold.

A P2-link is a surface-link whose components are projective planes. Replacing m = 2n+1
(or −m = −2n − 1) crossings in Fig.28 with 2n (or −2n) crossings, respectively, we have a
2-component P2-link in a plat form. In particular, in the case of n = 1, the P2-link is a
P2-link denoted by 8−1,−1

1 in Yoshikawa’s table ([22]).

Proposition 5.9. Let F be a surface-link in a genuine plat form. Each component of F is
a surface-knot whose normal Euler number is zero.
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Fig.28. The 2-knot F(n) in a plat form (m = 2n + 1).

Proof. Each connected component of F is regarded as a surface-knot in a genuine plat
form by forgetting other components of F. Thus it is sufficient to show that e(F) = 0 for a
surface-knot F in a genuine plat form.

For a (broken surface) diagram D of F (cf. [5]), let b+(D) (resp. b−(D)) be the number of
positive (resp. negative) branch points of D. Then, the normal Euler number e(F) is equal
to b+(D) − b−(D).

When F = S̃ is in a genuine plat form, taking a diagram suitably, positive (resp. negative)
branch points of S (in the sense of a 2-dimensional braid) correspond to positive (resp.
negative) branch points of D, and vise versa. Since S is a 2-dimensional braid, the number
of positive branch points of S and that of negative branch points of S are the same. Thus we
have e(F) = b+(D) − b−(D) = 0. �

It is unknown to the author whether every surface-link consisting of surface-knots whose
normal Euler numbers are zero is equivalent to a surface-link in a genuine plat form.
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