
Title L^p - L^q ESTIMATES FOR SUBELLIPTIC PSEUDO-
DIFFERENTIAL OPERATORS ON COMPACT LIE GROUPS

Author(s) Cardona, Duván; Delgado, Julio; Kumar, Vishvesh
et al.

Citation Osaka Journal of Mathematics. 2025, 62(4), p.
587-608

Version Type VoR

URL https://doi.org/10.18910/102979

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Cardona, D., Delgado, J., Kumar, V. and Ruzhansky, M.
Osaka J. Math.
62 (2025), 587–608

Lp-Lq ESTIMATES FOR SUBELLIPTIC
PSEUDO-DIFFERENTIAL OPERATORS

ON COMPACT LIE GROUPS

Duván CARDONA, Julio DELGADO, Vishvesh KUMAR and Michael RUZHANSKY

(Received December 19, 2023, revised May 16, 2024)

Abstract
We establish the Lp-Lq-boundedness of subelliptic pseudo-differential operators on a compact

Lie group G. Effectively, we deal with the Lp-Lq-bounds for operators in the sub-Riemmanian
setting because the subelliptic classes are associated to a Hörmander sub-Laplacian. The Rie-
mannian case associated with the Laplacian is also included as a special case. Then, applica-
tions to the Lp-Lq-boundedness of pseudo-differential operators in the Hörmander classes on G
are given in the complete range 0 ≤ δ ≤ ρ ≤ 1, δ < 1. This also gives the Lp-Lq-bounds in the
Riemannian setting, because the later classes are associated with the Laplacian on G. In both
cases, in the Riemannian and the sub-Riemannian settings, necessary and sufficient conditions
for the Lp-Lq-boundedness of operators are also analysed.
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1. Introduction

1. Introduction
This paper is mainly concerned with the Lp-Lq boundedness of pseudo-differential oper-

ators associated with the global Hörmander symbol classes on compact Lie groups for the
range 1 < p, q < ∞. Our analysis also includes estimates for pseudo-differential operators
associated with subelliptic symbol classes.

The relevance of the boundedness of Fourier multipliers and pseudo-differential operators
has been highlighted by Stein and Hörmander. These kinds of estimates naturally arise in
the study of some evolution equations. For instance, one can see [29, 46]. Till now, there
have been extensive activities dealing with the Lp-Lq boundedness for spectral multipliers
and Fourier multipliers on compact Lie groups, we cite [3, 4, 7, 8, 12, 32, 33, 40] for a
non-exhaustive list of references.

To the best of our knowledge, there has been no activity to pursue the Lp-Lq estimates of
non-invariant operators, in particular, pseudo-differential operators on compact Lie groups.
In the classical Euclidean setting, Hörmander established the Lp-Lq estimates of pseudo-
differential operators associated with the so-called “Hörmander symbol classes” Sm

ρ,δ(R
n ×

R
n) on Rn with m ∈ R and 0 ≤ δ < ρ ≤ 1. It is well-known that any Lp-Lq bounded

Fourier multiplier is nontrivial only if p ≤ q (see [30]). Therefore, it is natural to assume
the condition p ≤ q when dealing with pseudo-differential operators. Later on, Álvarez
and Hounie [5] extended Hörmander’s result to the range 0 ≤ δ < 1 and 0 < ρ ≤ 1
without the restriction δ < ρ. In a recent work by the first and last two authors [11], we
have provided sufficient and necessary conditions for the Lp-Lq boundedness of pseudo-
differential operators associated with global Hörmander symbol classes Sm

ρ,δ(G × Ĝ), m ∈
R, 0 ≤ δ ≤ ρ ≤ 1 and δ � 1, on a graded Lie group G, where Ĝ denotes the unitary dual of
G.

In this work, we focus on pseudo-differential operators associated with the global
Hörmander symbol classes encoded with the Riemannian and sub-Riemannian structure of
compact Lie groups. One of the main differences between the approach developed in [11],
based on the analysis of hypoelliptic operators on those groups, is the use of the structure of
the dilations of the group, while the approach of this paper will be based on the submarko-
vian properties of the semigroup e−t, t > 0, of a Hörmander sub-Laplacian  =

∑k
j=1 X2

j ,

where one exploits the geometric properties induced by the Hörmander system of vector
fields {Xj : 1 ≤ j ≤ n} on a compact Lie group G.

On a compact Lie group G, in the monograph [41], Turunen and the last author introduced
a global notion of the Hörmander symbol classes on G. According to this terminology, and
observing that any continuous linear operator A acting on C∞(G) has a right convolution
kernel RA = RA(x, y) ∈ D ′(G × G), namely, a distribution that describes the action of the
operator by the group convolution ∗ as follows

(1.1) A f (x) = ( f ∗ RA(x, ·))(x),

the global symbol of A, is the matrix-valued function defined on G × Ĝ, defined via
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(1.2) σA(x, ξ) = R̂A(x, ξ), (x, [ξ]) ∈ G × Ĝ.

Here, ·̂ denotes the matrix-valued group Fourier transform on G. By classifying these
matrix-valued symbols by the behaviour of their derivatives (and of their differences), the
last author and Turunen [41] introduced the symbols classes Sm

ρ,δ(G × Ĝ), allowing the com-
plete range 0 ≤ δ ≤ ρ ≤ 1, and providing a new description of the Hörmander classes
Sm
ρ,δ(T

∗G) (as defined in [28] with the local notion of the principal symbol, defined on the
cotangent-bundle T ∗M of a compact manifold) when additionally, 0 ≤ δ < ρ ≤ 1, and
ρ > 1 − δ.

On the other hand, it was observed by the first and the last author in [7], that the sym-
bols classes Sm

ρ,δ(G × Ĝ), are associated to the Riemannian structure of the group G, in the
sense that the growth of the derivatives of symbols is classified according in terms of the
spectrum of the Laplacian G = −∑n

j=1 X2
j , n = dim(G). Then, in generalising this idea,

in [7] the subelliptic Hörmander classes Sm,
ρ,δ (G × Ĝ), were introduced with the derivatives

(and differences) of symbols compared with respect to the growth of the eigenvalues of a
fixed Hörmander sub-Laplacian  = −∑k

j=1 X2
j , where k < n. We observe that the pseudo-

differential calculus associated to the “subelliptic” classes Sm,
ρ,δ (G×Ĝ), is more singular than

the one associated to the “elliptic” classes Sm
ρ,δ(G × Ĝ). Indeed, singularities of the kernels

of the “subelliptic” classes are classified in terms of the Hausdorff dimension Q, associated
with the control distance associated with the sub-Laplacian . In the next subsection we
present the Lp − Lq regularity properties of the subelliptic Hörmander classes Sm,

ρ,δ (G × Ĝ).
We finally observe that for the case p = q, namely, the problem regarding the Lp-

boundedness of pseudo-differential operators, Fefferman in [20] has established a sharp
criterion of continuity for the operator in the Hörmander classes Sm

ρ,δ(R
n × Rn) on the Eu-

clidean space. Then Fefferman’s criterion has been extended for several pseudo-differential
calculi including the Weyl-Hörmander calculus [14], the Hörmander classes Sm

ρ,δ(G × Ĝ) as-
sociated to the Laplacian [15], also extended in the sub-Riemannian setting, namely, for the
Hörmander classes Sm,

ρ,δ (G×Ĝ) associated to a Hörmander sub-Laplacian [7], and finally for
the Hörmander classes on graded Lie groups in [9]. In order to give a general perspective
about this problem, here we are mainly concerned with the case p < q.

Notably, when dealing with the Lp-Lq-boundedness of operators with symbols in the
classes Sm,

ρ,δ (G × Ĝ), one has to analyse separately the cases: (i) 1 < p ≤ q ≤ 2, (ii)
1 < p ≤ 2 ≤ q < ∞, and (iii) 2 ≤ p ≤ q < ∞. Here for the case 1 < p ≤ 2 ≤ q < ∞ we
provide necessary and sufficient conditions.

1.1. Main results.
1.1. Main results. The following theorem presents the result that establishes a sufficient

condition and in some cases also a necessary condition, for the Lp-Lq boundedness of subel-
liptic pseudo-differential operators on compact Lie groups.

Theorem 1.1. Let 1 < p, q < ∞, and 0 ≤ δ < ρ ≤ 1. Let G be a compact Lie group,
and let Q be its Hausdorff dimension with respect to the control distance associated with a
Hörmander sub-Laplacian . Then, the following statements hold.

• Let 1 < p ≤ 2 ≤ q < ∞. Every pseudo-differential operator A ∈ Ψm,
ρ,δ (G× Ĝ) admits

a bounded extension from Lp(G) into Lq(G), that is

(1.3) ∀ f ∈ C∞(G), ‖A f ‖Lq(G) ≤ C‖ f ‖Lp(G)
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holds, if and only if,

(1.4) m ≤ −Q
(

1
p
− 1

q

)
.

• Every pseudo-differential operator A ∈ Ψm,
ρ,δ (G × Ĝ) admits a bounded extension

from Lp(G) into Lq(G), that is (1.3) holds, in the following cases:
(i) if 1 < p ≤ q ≤ 2 and

(1.5) m ≤ −Q
(

1
p
− 1

q
+ (1 − ρ)

(
1
q
− 1

2

))
.

(ii) if 2 ≤ p ≤ q < ∞ and

(1.6) m ≤ −Q
(

1
p
− 1

q
+ (1 − ρ)

(
1
2
− 1

p

))
.

Remark 1.2. The order conditions in (1.4), (1.5) and (1.6) can be written in a simplified
way for 1 < p, q < ∞ as follows:

(1.7) m ≤ −Q
(

1
p
− 1

q
+ (1 − ρ) max

{
1
2
− 1

p
,

1
q
− 1

2
, 0

})
,

where Q is the Hausdorff dimension of G with respect to the control distance associated to
the sub-Laplacian .

Remark 1.3. If G = Rn, although this is not a compact Lie group, the order condition in
(1.7) is sharp for Fourier multipliers, see Hörmander [29, Page 163].

Remark 1.4. When a system of vector fields X = {Xj} provides an orthonormal basis of
the Lie algebra (endowed, up to a constant factor, with its unique bi-invariant Riemannian
metric), the Hörmander condition is trivially satisfied, the sub-Laplacian associated to the
system X coincides with the Laplacian and the classes Sm,

ρ,δ (G × Ĝ) agree with the “elliptic

classes” Sm
ρ,δ(G × Ĝ) of the last author with Turunen [41]. The following corollary provides

the Lp − Lq-regularity properties for the elliptic classes.

Corollary 1.5. Let 1 < p, q < ∞, and 0 ≤ δ < ρ ≤ 1. Let G be a compact Lie group of
dimension n. Then, the following statements hold.

• Let 1 < p ≤ 2 ≤ q < ∞. Every pseudo-differential operator A ∈ Ψm
ρ,δ(G × Ĝ) admits

a bounded extension from Lp(G) into Lq(G), that is

(1.8) ∀ f ∈ C∞(G), ‖A f ‖Lq(G) ≤ C‖ f ‖Lp(G)

holds, if and only if,

(1.9) m ≤ −n
(

1
p
− 1

q

)
.

• Every pseudo-differential operator A ∈ Ψm
ρ,δ(G × Ĝ) admits a bounded extension

from Lp(G) into Lq(G), that is (1.8) holds, in the following cases:
(i) if 1 < p ≤ q ≤ 2 and
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(1.10) m ≤ −n
(

1
p
− 1

q
+ (1 − ρ)

(
1
q
− 1

2

))
.

(ii) if 2 ≤ p ≤ q < ∞ and

(1.11) m ≤ −n
(

1
p
− 1

q
+ (1 − ρ)

(
1
2
− 1

p

))
.

This paper is organised as follows. In Section 2 we present the preliminaries of this
paper related to submarkovian semigroups, and the subelliptic pseudo-differential calculus
introduced in [7]. Subsequently, the Lp − Lq-boundedness of these subelliptic classes is
analysed in Section 3. Then, in Section 4 we provide explicit examples of our criterion about
the Lp-Lq-boundedness of pseudo-differential operators in the case of the sphere S3 � SU(2)
and on SU(3).

2. Preliminaries

2. Preliminaries2.1. Symmetric submarkovian semigroups.
2.1. Symmetric submarkovian semigroups. We briefly recall some classical facts con-

cerning symmetric submarkovian semigroups on L2 := L2(X, μ). Here (X, μ) is a σ-finite
measure space. For the definitions and results mentioned in this sub-section we follow [13,
Section II.5], [13, Example II.5.1] (see Remark 2.1 below) and [13, Theorem II.3.1, Page
14] (see Theorem 2.2 below).

Let A be an operator with domain Dom(A) ⊂ L2. We recall that
−A is the generator of a symmetric semigroup Tt := e−tA on L2 such that

‖e−tA‖L2→L2 ≤ eαt

if and only if A is self-adjoint, Dom(A) is a dense subspace of L2, and

(A f , f ) ≥ −α‖ f ‖L2 .

Let Q be a symmetric bilinear form defined on a subspace D ⊂ L2. One says that Q is
positive if Q( f , f ) ≥ 0, and closed if for every sequence ( fn)n∈N ⊂ D, such that fn → f in
L2, and

lim
n,m→∞Q( fn − fm, fn − fm) = 0,

one has that f ∈ D and that Q( fn − f , fn − f )→ 0. One says that Q is closable if it admits a
closed extension.

If A is a symmetric operator with a dense domain Dom(A) ⊂ L2, then one may associate
with it the symmetric bilinear form QA( f , g) := Q(A f , g). If in addition QA is positive, it
is closable and its minimal closure QA is associated to a self-adjoint operator A which is
an extension of A. More precisely, A is the smallest self-adjoint extension of A, called the
Friedrichs extension of A. We shall not distinguish between A and A.

Recall that a semigroup Tt on L2 is called submarkovian if f ∈ L2, 0 ≤ f ≤ 1, implies
that 0 ≤ Tt f ≤ 1. Such a semigroup acts on the Lp-spaces and ‖Tt‖Lp→Lp ≤ 1.

Symmetric submarkovian semi-groups on L2 may be characterised through properties of
the associated symmetric bilinear form. A positive symmetric bilinear form Q defined on
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D ⊂ L2, is said to be a Dirichlet form, if for all g ∈ D, and for all f ∈ D, such that | f | ≤ |g|,
and | f (x) − f (y)| ≤ |g(x) − g(y)|, one has that f ∈ D, and Q( f , f ) ≤ Q(g, g).

If Tt = e−tA is a symmetric submarkovian semigroup on L2, the associated bilinear form
Q( f , g) := (A1/2 f , A1/2g), f , g ∈ Dom(A1/2), is a closed Dirichlet form with dense domain
in L2. Conversely, given a closed Dirichlet bilinear form Q, with dense domain D in L2,

there exists a unique symmetric submarkovian semigroup on L2, such that Tt = e−tA and
Q( f , g) := (A1/2 f , A1/2g), f , g ∈ Dom(A1/2).

Remark 2.1. We note that submarkovian semigroups arise naturally in the setting of
compact manifolds. Indeed, if M is a compact manifold with a volume form dx, and
L2(M) = L2(M, dx), consider a family of vector fields

X = {X1, X2, · · · , Xk}, k ≤ n := dim(M).

If every Xj is skew-adjoint on L2(M), namely, if

∀ f , g ∈ C∞(M), ∫
M

Xi( f )gdx = − ∫
M

f Xi(g)dx,

then we can associate with ΔX := −∑k
i=1 X2

i , its Friedrichs extension, which we still denote
by ΔX . Then, the semigroup

Tt := e−tΔX : L2(M)→ L2(M)

is a contraction semigroup. With respect to the Dirichlet form

Q( f , g) = (ΔX f , g), f , g ∈ C∞(M),

the semigroup Tt := e−tΔX is a submarkovian semigroup.

The following theorem will be fundamental for our further analysis.

Theorem 2.2. Let Tt = e−tA be a submarkovian semigroup. Assume that Tt is equicontin-
uous on L1(X, μ) and on L∞(X, μ). Suppose that there exists α > 0 and 1 < p < q ≤ ∞ such
that

(2.1) ‖ f ‖Lq(X,μ) ≤ C‖Aα/2 f ‖Lp(X,μ).

Then, with Q defined by the identity α = Q(1/p − 1/q), the following semigroup estimate
holds

(2.2) ∃C > 0, ∀ f ∈ L1(X, μ), ‖Tt f ‖L∞(X,μ) ≤ Ct−
Q
2 ‖ f ‖L∞(X,μ).

2.2. Pseudo-differential operators via localisations.
2.2. Pseudo-differential operators via localisations. Now we present the preliminaries

of the Hörmander theory of pseudo-differential operators on compact manifolds used in this
work. The setting of compact Lie groups appears as an essential case of manifolds with
symmetries. We refer to Hörmander [28] for details.

Let U be an open subset of Rn. We say that the symbol a ∈ C∞(T ∗U), T ∗U = U × Rn,

belongs to the Hörmander class

Sm
ρ,δ(T

∗U), 0 � ρ, δ � 1,
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if for every compact subset K ⊂ U the symbol inequalities

|∂βx∂αξ a(x, ξ)| � Cα,β,K(1 + |ξ|)m−ρ|α|+δ|β|,

hold true uniformly in x ∈ K for all ξ ∈ Rn. A continuous linear operator A : C∞0 (U) →
C∞(U) is a pseudo-differential operator of order m and of (ρ, δ)-type, if there exists a symbol
a ∈ Sm

ρ,δ(T
∗U) such that A is the Kohn-Nirenberg quantisation of the symbol a, namely, if

A f (x) = ∫
Rn

e2πix·ξa(x, ξ)(FRn f )(ξ)dξ,

for all f ∈ C∞0 (U), where

(FRn f )(ξ) := ∫
U

e−i2πx·ξ f (x)dx

is the Euclidean Fourier transform of f at ξ ∈ Rn.

Now, we extend this notion to smooth manifolds as follows. Given a smooth closed
manifold M, A : C∞0 (M) → C∞(M) is a pseudo-differential operator of order m and of
(ρ, δ)-type, with ρ � 1 − δ, and 0 ≤ δ < ρ ≤ 1, if for every local coordinate system
ω : Mω ⊂ M → Uω ⊂ Rn, and for every φ, ψ ∈ C∞0 (Uω), the operator

Tu := ψ(ω−1)∗Aω∗(φu), u ∈ C∞(Uω), 1

is a standard pseudo-differential operator with symbol aT ∈ Sm
ρ,δ(T

∗Uω). In this case we write
A ∈ Ψm

ρ,δ(M, loc).

2.3. Positive sub-Laplacians and global pseudo-differential operators.
2.3. Positive sub-Laplacians and global pseudo-differential operators. Let G be a

compact Lie group with Lie algebra g � TeG, where e is the neutral element of G, and
let

X = {X1, · · · , Xk} ⊂ g
be a system of C∞-vector fields. For all multi-index,

I = (i1, · · · , iω) ∈ {1, 2, · · · , k}ω

of length ω � 1, we denote by

XI := [Xi1 , [Xi2 , · · · [Xiω−1 , Xiω] · · · ]]
a commutator of length ω, where XI := Xi when ω = 1 and I = (i). The system X satisfies
the Hörmander condition of step κ if

g = span{XI : |I| ≤ κ}.
Given a system X = {X1, · · · , Xk} satisfying the Hörmander condition, the operator de-

fined as

 ≡ X := −(X2
1 + · · · + X2

k ),

is called the subelliptic Laplacian associated with the system X, or simply the sub-Laplacian
associated to X. The subellipticity of  follows from the validity of the estimate, (see

1As usually, ω∗ and (ω−1)∗ are the pullbacks, induced by the maps ω and ω−1 respectively.
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Hörmander [27] and Rothschild and Stein [38])

(2.3) ‖u‖Hs(G) � C(‖u‖L2(G) + ‖u‖L2(G)),

with s = 2/κ, while the Sobolev space Hs of order s is defined by the norm

‖u‖Hs(G) := ‖(1 − Δ)
s
2 u‖L2(G).

Here, Δ is the negative Laplace-Beltrami operator on G.
Let us now introduce the Hausdorff dimension associated with the sub-Laplacian . For

all x ∈ G, let Hω
x G be the linear subspace of TxG generated by the Xi’s and by the Lie

brackets

[Xj1 , Xj2 ], [Xj1 , [Xj2 , Xj3 ]], · · · , [Xj1 , [Xj2 , [Xj3 , · · · , Xjω]]],

where ω � κ. Then, Hörmander’s condition says that Hκ
xG = TxG, x ∈ G, and we have that

H1
xG ⊂ H2

xG ⊂ H3
xG ⊂ · · · ⊂ Hκ−1

x G ⊂ Hκ
xG = TxG, x ∈ G.

The dimension of every Hω
x G is constant in x ∈ G, so we set dim HωG := dim Hω

x G, for all
x ∈ G. The Hausdorff dimension can be defined as, see [35],

(2.4) Q :=
κ∑

i=1

i(dim HiG − dim Hi−1G).

Let A be a continuous linear operator from C∞(G) into D ′(G), and let Ĝ be the unitary
dual of G. There exists a matrix-valued function

(2.5) a : G × Ĝ → ∪�∈NC�×�,
that we call the matrix symbol of A, such that a(x, ξ) := a(x, [ξ]) ∈ Cdξ×dξ for every [ξ] ∈ Ĝ,
with ξ : G → Hom(Hξ), Hξ � Cdξ , and such that

(2.6) A f (x) =
∑
[ξ]∈Ĝ

dξTr[ξ(x)a(x, ξ) f̂ (ξ)], ∀ f ∈ C∞(G).

We have denoted by

f̂ (ξ) ≡ (F f )(ξ) := ∫
G

f (x)ξ(x)∗dx ∈ Cdξ×dξ , [ξ] ∈ Ĝ,

the group Fourier transform of f at ξ where the matrix representation of ξ is induced by an
orthonormal basis of the representation space Hξ. Correspondingly, one denotes the inverse
Fourier transform of g(ξ) ∈ Cdξ×dξ as

(F −1g)(x) :=
∑
[ξ]∈Ĝ

dξTr(ξ(x)g(ξ)), x ∈ G.

Note that the matrix-valued function a in (2.5) satisfying (2.6) is unique, and satisfies the
identity

a(x, ξ) = ξ(x)∗(Aξ)(x), Aξ := (Aξi j)
dξ
i, j=1, [ξ] ∈ Ĝ.

We will use the notation A = Op(a) to indicate that a := σA(x, ξ) is the (unique) matrix-
valued symbol associated with A.



Lp-Lq Estimates for Pseudo-Differential Operators 595

As defined in [45], a difference operator Qξ : D ′(Ĝ) → D ′(Ĝ) of order k ∈ N is defined
via

(2.7) Qξ f̂ (ξ) = q̂ f (ξ), [ξ] ∈ Ĝ,

for some function q ∈ C∞(G) vanishing of order k at x = e. We denote by diffk(Ĝ) the set
of the difference operators of order k. The associated difference operator to q is denoted by
Δq ≡ Qξ. A system of difference operators (see [45])

(2.8) Δαξ := Δα1
q(1)
· · ·Δαi

q(i)
, α = (α j)1� j�i,

with i ≥ n, is called an admissible family, if

(2.9) rank{∇q( j)(e) : 1 � j � i} = dim(G), and Δq( j) ∈ diff1(Ĝ).

An admissible family is said to be strongly admissible if, we also have the property

(2.10)
i⋂

j=1

{x ∈ G : q( j)(x) = 0} = {e}.

Remark 2.3. We observe that matrix components of unitary irreducible representations
induce difference operators of arbitrary order. Let us illustrate this fact as follows. If
ξ1, ξ2, · · · , ξk, are fixed irreducible and unitary representations of the group G, which does
not necessarily belong to the same equivalence class, then the matrix coefficients

(2.11) ξ�(g) − Idξ� = [ξ�(g)i j − δi j]
dξ�
i, j=1, g ∈ G, 1 ≤ � ≤ k,

define the smooth functions q�i j(g) := ξ�(g)i j − δi j, g ∈ G, and then define the difference
operators

(2.12) Dξ�,i j := F (ξ�(g)i j − δi j)F −1.

Then, by fixing k ≥ dim(G) of these unitary representations with the property that its corre-
sponding family of difference operators is admissible one can define higher-order difference
operators of this kind. Indeed, let us fix a unitary representation ξ�. We omit the index �.

Then, for any given multi-index α ∈ Nd2
ξ�

0 , with |α| = ∑dξ�
i, j=1 αi j, we write

D
α := Dα11

11 · · ·D
αdξ�

dξ�
dξ�dξ�

for a difference operator of order |α|.
The difference operators endow the unitary dual Ĝ with a difference structure. Indeed,

the following Leibniz formula holds true (see [43] for details). We refer to Definition 2.5
for the description via the group Fourier transform of the matrix-valued distributions in the
class D ′(G × Ĝ).

Proposition 2.4 (Leibniz rule for difference operators). Let G be a compact Lie group
and let Dα, α ∈ Ndξ�

0 , be the family of difference operators defined in (2.12). Then, the
following Leibniz rule

D
α(a1a2)(x0, ξ) =

∑
|γ|,|ε|�|α|�|γ|+|ε|

Cε,γ(Dγa1)(x0, ξ)(Dεa2)(x0, ξ), x0 ∈ G,
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holds for all a1, a2 ∈ D ′(G × Ĝ), where the summation is taken over all ε, γ such that
|ε|, |δ| ≤ |α| ≤ |γ| + |ε|.

Now, we will introduce the Hörmander classes of matrix-symbols defined in [41]. We
identify every Y ∈ g with the differential operator ∂Y : C∞(G)→ D ′(G) defined by

∂Y f (x) = (Yx f )(x) =
d
dt

f (x exp(tY))|t=0.

If {X1, · · · , Xn} is a basis of the Lie algebra g, we use the standard multi-index notation

∂αX = Xα
x = ∂

α1
X1
· · · ∂αn

Xn
.

By using this property, together with the following notation for the so-called elliptic
weight

〈ξ〉 := (1 + λ[ξ])1/2, [ξ] ∈ Ĝ,

we can finally give the definition of global symbol classes. Here, λ[ξ], [ξ] ∈ Ĝ, denotes the
corresponding eigenvalue of the positive Laplacian (in a bijective manner) indexed by an
equivalence class [ξ] ∈ Ĝ.

Definition 2.5. Let 0 � δ, ρ � 1. Let

σ : G × Ĝ →
⋃

[ξ]∈Ĝ
C

dξ×dξ ,

be a matrix-valued function such that for any [ξ] ∈ Ĝ, σ(·, [ξ]) is smooth, and such that,
for any element x ∈ G there is a distribution kx ∈ D ′(G), of C∞-class in x, satisfying that
σ(x, ξ) = k̂x(ξ), [ξ] ∈ Ĝ. The collection of all matrix-valued symbols σ = σ(x, ξ) satisfying
these properties will be denoted by D ′(G × Ĝ).

We say that σ ∈ S m
ρ,δ(G) if, for all β and γ multi-indices and for all (x, [ξ]) ∈ G × Ĝ, the

following inequalities

(2.13) ‖∂βXΔγξσ(x, ξ)‖op � Cα,β〈ξ〉m−ρ|γ|+δ|β|,
hold, where ‖ · ‖op denotes the �2 → �2 operator norm

(2.14) ‖σ(x, ξ)‖op = sup{‖σ(x, ξ)v‖�2 : v ∈ Cdξ , ‖v‖�2 = 1}.
For σA ∈ S m

ρ,δ(G) we will write A ∈ Ψm
ρ,δ(G) ≡ Op(S m

ρ,δ(G)).

The global Hörmander classes on compact Lie groups describe the Hörmander classes
defined by local coordinate systems. We present the corresponding statement as follows.

Theorem 2.6 (Equivalence of classes, [41, 43]). Let A : C∞(G)→ D ′(G) be a continuous
linear operator and let us consider 0 ≤ δ < ρ ≤ 1, with ρ ≥ 1 − δ. Then, A ∈ Ψm

ρ,δ(G, loc), if
and only if σA ∈ S m

ρ,δ(G), consequently

(2.15) Op(S m
ρ,δ(G)) = Ψm

ρ,δ(G, loc), 0 � δ < ρ � 1, ρ � 1 − δ.



Lp-Lq Estimates for Pseudo-Differential Operators 597

2.4. Subelliptic Hörmander classes on compact Lie groups.
2.4. Subelliptic Hörmander classes on compact Lie groups. In order to define the

subelliptic Hörmander classes, we will use a suitable basis of the Lie algebra arising from
Taylor expansions. We explain the choice of this basis by means of the following lemma
(see [7, Section 3.1]).

Lemma 2.7. Let G be a compact Lie group of dimension n. Let D = {Δq( j)}1� j�n be a
strongly admissible collection of difference operators (for the definition see (2.9) and (2.10)).
Then there exists a basis XD = {X1,D, · · · , Xn,D} of g such that

X j,Dq(k)(·−1)(e) = δ jk.

Moreover, by using the multi-index notation

∂
(β)
X = ∂

β1
X1,D
· · · ∂βn

Xn,D
,

for any β ∈ Nn
0, where

∂Xi,D f (x) =
d
dt

f (x exp(tXi,D))|t=0, f ∈ C∞(G),

and denoting by

Rf
x,N(y) = f (xy) −

∑
|α|<N

qα1
(1)(y

−1) · · · qαn
(n)(y

−1)∂(α)
X f (x)

the Taylor remainder, we have that

|Rf
x,N(y)| � C|y|N max

|α|�N
‖∂(α)

X f ‖L∞(G),

where the constant C > 0 is dependent on N, G and D (but not on f ∈ C∞(G)). In addition

we have that ∂(β)
X |x1=xR f

x1,N
= R∂

(β)
X f

x,N , and

|∂(β)
X |y1=yR

f
x,N(y1)| � C|y|N−|β| max

|α|�N−|β|
‖∂(α+β)

X f ‖L∞(G),

provided that |β| � N.

Denoting by Δαξ := Δα1
q(1) · · ·Δαn

q(n) , we can introduce the subelliptic Hörmander class of

symbols of order m ∈ R and of type (ρ, δ). We will use the notation ̂ to indicate the matrix
symbol of  := (1 + )

1
2 . Also, for every [ξ] ∈ Ĝ and s ∈ R, we define the subellliptic

matrix weight,

̂(ξ)s := diag[(1 + νii(ξ)2)
s
2 ]1�i�dξ ,

where ̂(ξ) =: diag[νii(ξ)2]1�i�dξ is the symbol of the sub-Laplacian  at [ξ], as the symbol
of the operator s := (1 + )

s
2 .

Definition 2.8 (Subelliptic Hörmander classes). Let G be a compact Lie group and let
0 � δ, ρ � 1. Let us consider a sub-Laplacian  = −(X2

1 + · · · + X2
k ) on G, where the

system of vector fields X = {Xi}ki=1 satisfies the Hörmander condition of step κ. We say that
σ ∈ Sm,

ρ,δ (G × Ĝ), if for all r ∈ R, α, β ∈ Nn
0,

(2.16) pα,β,ρ,δ,m,r(a) := sup
(x,[ξ])∈G×Ĝ

‖̂(ξ)(ρ|α|−δ|β|−m−r)∂
(β)
X Δ

α
ξ a(x, ξ)̂(ξ)r‖op < ∞.
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where ‖ · ‖op is as in (2.14).

By following the usual nomenclature, we define:

Op(Sm,
ρ,δ (G × Ĝ)) := {A : C∞(G)→ D ′(G) : σA ≡ Â(x, ξ) ∈ Sm,

ρ,δ (G × Ĝ)},
with

A f (x) =
∑
[ξ]∈Ĝ

dξTr(ξ(x)Â(x, ξ) f̂ (ξ)), f ∈ C∞(G), x ∈ G.

The decay properties of subelliptic symbols are summarized in the following lemma (see
[7, Chapter 4]), where we present a necessary (but not a sufficient) condition in order that
the matrix-symbol a := a(x, ξ) belongs to the class Sm,

ρ,δ (G × Ĝ).

Lemma 2.9. Let G be a compact Lie group and let 0 � δ, ρ � 1. If a ∈ Sm,
ρ,δ (G × Ĝ), then

for every α, β ∈ Nn
0, there exists Cα,β > 0 satisfying the estimates

‖∂(β)
X Δ

α
ξ a(x, ξ)‖op � Cα,β sup

1�i�dξ
(1 + νii(ξ)2)

m−ρ|α|+δ|β|
2 ,

uniformly in (x, [ξ]) ∈ G × Ĝ.

In the next theorem we describe the fundamental properties of the subelliptic calculus [7],
like compositions, adjoints, and boundedness properties.

Theorem 2.10. Let 0 � δ < ρ � 1, and let Ψm,
ρ,δ := Op(Sm,

ρ,δ (G × Ĝ)), for every m ∈ R.
Then,

- The mapping A �→ A∗ : Ψm,
ρ,δ → Ψm,

ρ,δ is a continuous linear mapping between
Fréchet spaces and the symbol of A∗, σA∗(x, ξ) satisfies the asymptotic expansion,

Â∗(x, ξ) ∼
∞∑
|α|=0

Δαξ ∂
(α)
X (Â(x, ξ)∗).

This means that, for every N ∈ N, and for all � ∈ N,

Δ
α�
ξ ∂

(β)
X

⎛⎜⎜⎜⎜⎜⎜⎝Â∗(x, ξ) −
∑
|α|�N

Δαξ ∂
(α)
X (Â(x, ξ)∗)

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Sm−(ρ−δ)(N+1)−ρ�+δ|β|,
ρ,δ (G × Ĝ),

where |α�| = �.
- The mapping (A1, A2) �→ A1 ◦ A2 : Ψm1,

ρ,δ × Ψm2,
ρ,δ → Ψm1+m2,

ρ,δ is a continuous
bilinear mapping between Fréchet spaces, and the symbol of A = A1 ◦ A2 is given
by the asymptotic formula

σA(x, ξ) ∼
∞∑
|α|=0

(Δαξ Â1(x, ξ))(∂(α)
X Â2(x, ξ)),

which, in particular, means that, for every N ∈ N, and for all � ∈ N,

Δ
α�
ξ ∂

(β)
X

⎛⎜⎜⎜⎜⎜⎜⎝σA(x, ξ) −
∑
|α|�N

(Δαξ Â1(x, ξ))(∂(α)
X Â2(x, ξ))

⎞⎟⎟⎟⎟⎟⎟⎠
∈ Sm1+m2−(ρ−δ)(N+1)−ρ�+δ|β|,

ρ,δ (G × Ĝ),
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for all α� ∈ Nn
0 with |α�| = �.

- For 0 � δ < ρ � 1, (or for 0 ≤ δ ≤ ρ ≤ 1, δ < 1/κ) let us consider a continuous
linear operator A : C∞(G)→ D ′(G) with symbol σ ∈ S0,

ρ,δ (G × Ĝ). Then A extends
to a bounded operator from L2(G) to L2(G).

Finally, we present the following result about the Lp-boundedness of the subelliptic
classes for the sub-Laplacian , see [7, Section 6].

Theorem 2.11. Let G be a compact Lie group and let us denote by Q the Hausdorff
dimension of G associated to the control distance associated to the sub-Laplacian  = X ,

where X = {X1, · · · , Xk} is a system of vector fields satisfying the Hörmander condition of
order κ. For 0 � δ < ρ � 1, let us consider a continuous linear operator A : C∞(G) →
D ′(G) with symbol σ ∈ S−m,

ρ,δ (G × Ĝ), m � 0. Then A extends to a bounded operator on
Lp(G) provided that

m � mp := Q(1 − ρ)
∣∣∣∣∣1p − 1

2

∣∣∣∣∣ .
2.5. Lp-Lq-boundedness for Bessel potentials.
2.5. Lp-Lq-boundedness for Bessel potentials. Here we discuss the sharpness of the

Hardy-Littlewood-Sobolev inequality, in this case, formulated in terms of the Lp-Lq-
boundedness of Bessel potentials.

Lemma 2.12. Let 1 < p, q < ∞. Let G be a compact Lie group of the Hausdorff dimension
Q associated to the control distance associated to the sub-Laplacian  = −∑

1≤i≤k X2
i . Then,

the Bessel operator Ba = (1+)−
a
2 , admits a bounded extension from Lp(G) into Lq(G), that

is, the estimate

(2.17) ‖Ba f ‖Lq ≤ C‖ f ‖Lp

holds, if and only if, 1 < p < q < ∞ and

(2.18) a ≥ Q
(

1
p
− 1

q

)
.

Proof. The sufficiency of the condition (2.18) on a for the Lp-Lq-boundedness of Ba is
exactly the Hardy-Littlewood-Sobolev inequality, see e.g. [13]. On the other hand, assume
that

Ba : Lp(G)→ Lq(G)

is bounded.
Using the subelliptic functional calculus in [7, Section 8], we have that

√
 ∈ Ψ1,

1,0 (G×Ĝ)
is a pseudo-differential operator of first order. Since

√
 is not invertible, let

√

−1 be the

inverse of
√
 on the orthogonal complement of its kernel, i.e. if P0 is the L2-orthogonal

projection on Ker(
√
), then

√

−1
√
 =
√

√

−1 = I − P0, ∀ f ∈ Ker(

√
),
√

−1 f := 0.

This operator agrees with the operator f (), defined by the spectral calculus where f (t) =
t−1, and that

√

−1 ∈ Ψ−1,

1,0 (G × Ĝ) is a consequence of the functional calculus in [7, Section
8].
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Let us consider the operator −
a
2 := (

√

−1
G )a ∈ Ψ−a,

1,0 (G × Ĝ) defined by the spectral
calculus if a > 0. In the case where a < 0, −

a
2 ∈ Ψ|a|,1,0 (G × Ĝ). In view of the inclusion of

the powers −a to the subelliptic calculus, note that


− a

2 = 
− a

2 B−aBa = T Ba,

where

T = 
− a

2 B−a = 
− a

2 (1 + )
a
2 ∈ Ψ0

1,0(G × Ĝ)

is a subelliptic pseudo-differential operator of order zero (see [7, Theorem 8.20]). Then
T : Lq(G) → Lq(G) is bounded and from the Lp-Lq boundedness of Ba we deduce the
Lp-Lq-boundedness of −

a
2 = T Ba. Note that we have the validity of the estimate

(2.19) ‖− a
2 f ‖Lq ≤ C‖ f ‖Lp .

In other words, we have that the inequality

(2.20) ‖ f ‖Lq ≤ C‖ a
2 f ‖Lp ,

is valid with C > 0, independent of f ∈ Lq(G). Define the semigroup

Tt = e−t, t > 0,

and consider the heat kernel ht defined by Tt f = f ∗ pt. Note that (see [13, Lemma VIII.2.5,
Page 110])

sup
t>0
‖ht‖L1 � 1.

In consequence we have that

(2.21) sup
t>0
‖Tt f ‖L1(G) = sup

t>0
‖ f ∗ ht‖L1(G) ≤ sup

t>0
‖ht‖L1(G)‖ f ‖L1(G) � ‖ f ‖L1(G).

In a similar way

(2.22) sup
t>0
‖Tt f ‖L∞(G) = sup

t>0
‖ f ∗ ht‖L∞(G) ≤ sup

t>0
‖ht‖L1(G)‖ f ‖L∞(G) � ‖ f ‖L∞(G).

In view of (2.21) and (2.22) we have that the semigroup Tt is equicontinuous on L1 and on
L∞. Moreover, in view of Remark 2.1, with X = {X1, X2, · · · , Xk}, the semigroup Tt = eΔX =

e−t is a submarkovian semigroup. Then, in view of (2.20), by applying Theorem 2.2, with
Q̃ defined by

(2.23) a = Q̃
(

1
p
− 1

q

)
,

we have the estimate

(2.24) ‖e−t‖L1→L∞ ≤ CQ̃t−Q̃/2.

Note that if

Q′ := inf{Q̃ : Ttsatisfies (2.24)for all t : 0 < t < 1},
then Q′ ≤ Q̃,
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‖e−t‖L1→L∞ ≤ CQ′ t−Q′/2 ≤ CQ̃t−Q̃/2, 0 < t < 1.

However, by the sharpness of the heat kernel estimates is very well known that the infimum
Q′ agrees with the Hausdorff dimension Q of the group associated to the control distance
associated to the sub-Laplacian  (see [13, Chapter VIII]), that is Q′ = Q. Since Q̃ ≥ Q, in
view of (2.23) we have proved that

(2.25) a ≥ Q
(

1
p
− 1

q

)
,

as desired. �

3. Lp-Lq-boundedness of pseudo-differential operators

3. Lp-Lq-boundedness of pseudo-differential operators3.1. Lp-Lq-boundedness of pseudo-differential operators I.
3.1. Lp-Lq-boundedness of pseudo-differential operators I. The following result

presents the necessary and sufficient criteria for a pseudo-differential operator to be bounded
from Lp(G) into Lq(G) for the range 1 < p ≤ 2 ≤ q < ∞.

Theorem 3.1. Let 1 < p ≤ 2 ≤ q < ∞ and m ∈ R. Let G be a compact Lie group,
and let Q be its Hausdorff dimension with respect to the control distance associated to a
Hörmander sub-Laplacian . Let 0 ≤ δ < ρ ≤ 1. Then, every pseudo-differential operator
A ∈ Ψm,

ρ,δ (G × Ĝ) with 0 ≤ δ < ρ ≤ 1 admits a bounded extension from Lp(G) into Lq(G),
that is

(3.1) ∀ f ∈ C∞0 (G), ‖A f ‖Lq ≤ C‖ f ‖Lp

holds, if and only if,

(3.2) m ≤ −Q
(

1
p
− 1

q

)
.

Proof. Assume that m > −Q
(

1
p − 1

q

)
.We are going to show that there exists A ∈ Ψm,

ρ,δ (G×
Ĝ) which is not bounded from Lp(G) into Lq(G). We consider

A = B−m = (1 + )
m
2 ∈ Ψm,

1,0 (G × Ĝ) ⊂ Ψm,
ρ,δ (G × Ĝ).

Since

−m < Q
(

1
p
− 1

q

)
,

from Lemma 2.12, we have that A = B−m is not bounded from Lp(G) into Lq(G). So, we
have proved the necessity of the order condition (3.2). Now, in order to prove the reverse
statement, we consider m satisfying (3.2) and m1 and m2 satisfying the conditions

(3.3) m = m1 + m2, m1 ≤ −Q(1/p − 1/2), m2 ≤ −Q(1/2 − 1/q).

If A ∈ Ψm,
ρ,δ (G × Ĝ), we factorise A as follows,

A = B−m2 A0B−m1 , A0 = Bm2 ABm1 .

Note that A0 ∈ Ψ0,
ρ,δ (G×Ĝ). The Calderón-Vaillancourt theorem (Theorem 2.10(iii)) implies

that A0 is bounded from L2(G) into L2(G).On the other hand, from Lemma 2.12 we have that
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Bm2 : L2(G) → Lq(G), and Bm1 : Lp(G) → L2(G), are bounded operators. In consequence,
we have proved that A admits a bounded extension from Lp(G) into Lq(G). The proof is
complete. �

3.2. Lp-Lq-boundedness of pseudo-differential operators II.
3.2. Lp-Lq-boundedness of pseudo-differential operators II. In this subsection, we

consider the Lp − Lq boundedness of pseudo-differential operators on compact Lie groups
for a wider range of indices p and q.Our main result of this section is the following theorem.

Theorem 3.2. Let 1 < p ≤ q < ∞,m ∈ R, and let 0 ≤ δ < ρ ≤ 1. Let G be a compact Lie
group, and let Q be its Hausdorff dimension with respect to the control distance associated
to a Hörmander sub-Laplacian . Then, every pseudo-differential operator A ∈ Ψm,

ρ,δ (G×Ĝ)
admits a bounded extension from Lp(G) into Lq(G), that is

(3.4) ∀ f ∈ C∞0 (G), ‖A f ‖Lq ≤ C‖ f ‖Lp

holds in the following cases:

(i) if 1 < p ≤ q ≤ 2 and

(3.5) m ≤ −Q
(

1
p
− 1

q
+ (1 − ρ)

(
1
q
− 1

2

))
.

(ii) if 2 ≤ p ≤ q < ∞ and

(3.6) m ≤ −Q
(

1
p
− 1

q
+ (1 − ρ)

(
1
2
− 1

p

))
;

Proof. (i) Let us consider p, q and m satisfying the conditions given in (i). Choose m′ =
−Q

(
1
p − 1

q

)
and this implies that the subelliptic Bessel potential B−m′ is bounded

from Lp(G) to Lq(G) as a consequence of Lemma 2.12. For A ∈ Ψm,
ρ,δ (G × Ĝ), we

decompose it as follows:

A = (ABm′)B−m′ .

Now, we note that operator ABm′ ∈ Ψm−m′,
ρ,δ (G × Ĝ) with m − m′ satisfying m −

m′ ≤ −Q(1 − ρ)
(

1
q − 1

2

)
. Then, Theorem 2.11 shows that ABm′ is bounded operator

from Lq(G) into Lq(G). Therefore, we conclude that the operator A has a bounded
extension from Lp(G) into Lq(G).

(ii) To prove this part we follow the same strategy as in Part (i). We factorise the operator
A ∈ Ψm,

ρ,δ (G × Ĝ) in the following manner:

A = B−m′(Bm′A),

where m′ = −Q( 1
p − 1

q ). Again, it follows from Lemma 2.12 that the operator
B−m′ is a bounded from Lp(G) into Lq(G). On the other hand, the operator Bm′A ∈
Ψ

m−m′,
ρ,δ (G×Ĝ) with m−m′ ≤ −Q(1−ρ)

(
1
2 − 1

p

)
, which, as a consequence of Theo-

rem 2.11, yields that the operator B−m′A is bounded from Lp(G) into Lp(G). Hence,
we conclude that the operator A has a bounded extension from Lp(G) into Lq(G).

This completes the proof of this theorem. �
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4. Lp-Lq-boundedness of pseudo-differential operators on S3 and on SU(3)

4. Lp-Lq-boundedness of pseudo-differential operators on S3 and on SU(3)
We will present an explicit form of our main Theorem 1.1 on the sphere SU(2) � S3 and

on SU(3). By abuse of notation, we will use the same symbol to denote an element of the
Lie algebra and the vector field on the group obtained by left translation.

4.1. Lp-Lq-boundedness of pseudo-differential operators on S3.
4.1. Lp-Lq-boundedness of pseudo-differential operators on S3. Let us consider the

left-invariant first-order differential operators ∂+, ∂−, ∂0 : C∞(SU(2)) → C∞(SU(2)), called
creation, annihilation, and neutral operators respectively, (see Definition 11.5.10 of [41])
and let us define

X1 = − i
2

(∂− + ∂+), X2 =
1
2

(∂− − ∂+), X3 = −i∂0,

where X3 = [X1, X2], based on the commutation relations [∂0, ∂+] = ∂+, [∂−, ∂0] = ∂−, and
[∂+, ∂−] = 2∂0. The system X = {X1, X2} satisfies the Hörmander condition of step κ = 2,
and the Hausdorff dimension defined by the control distance associated to the sub-Laplacian
1 = −X2

1 − X2
2 is Q = 4. In a similar way, we can define the sub-Laplacian 2 = −X2

2 − X2
3

associated to the system of vector fields X′ = {X2, X3}, which also satisfies the Hörmander
condition of step κ = 2. In the following corollary we describe the Lp-Lq-boundedness of
subelliptic pseudo-differential operators on SU(2) � S3. In this case we observe that one can
identify ŜU(2) � 1

2N0, see [41] for details.

Corollary 4.1. Let 1 < p, q < ∞, and 0 ≤ δ < ρ ≤ 1. Let us consider the Hörmander
sub-Laplacian  = −X2

1 − X2
2 . Then, the following statements hold.

• Let 1 < p ≤ 2 ≤ q < ∞. Every pseudo-differential operator

A ∈ Ψm,
ρ,δ (SU(2) × 1

2
N0)

admits a bounded extension from Lp(SU(2)) into Lq(SU(2)), that is

(4.1) ∀ f ∈ C∞(SU(2)), ‖A f ‖Lq(SU(2)) ≤ C‖ f ‖Lp(SU(2))

holds, if and only if,

(4.2) m ≤ −4
(

1
p
− 1

q

)
.

• Every pseudo-differential operator A ∈ Ψm,
ρ,δ (SU(2)× 1

2N0) admits a bounded exten-
sion from Lp(SU(2)) into Lq(SU(2)), that is (4.1) holds, in the following cases:
(i) if 1 < p ≤ q ≤ 2 and

(4.3) m ≤ −4
(

1
p
− 1

q
+ (1 − ρ)

(
1
q
− 1

2

))
.

(ii) if 2 ≤ p ≤ q < ∞ and

(4.4) m ≤ −4
(

1
p
− 1

q
+ (1 − ρ)

(
1
2
− 1

p

))
.
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4.2. Lp-Lq-boundedness of pseudo-differential operators on SU(3).
4.2. Lp-Lq-boundedness of pseudo-differential operators on SU(3). The special uni-

tary group of 3 × 3 complex matrices is defined by

SU(3) = {g ∈ GL(3,C) : gg∗ = I3 ≡ (δi j)1�i, j�3, det(g) = 1},
and its Lie algebra is given by

su(3) = {g ∈ GL(3,C) : g + g∗ = 0, Tr(g) = 0}.
The inner product is defined by a multiple of the Killing form on su(3) given by B(X, Y) =
− 1

2 Tr[XY]. The torus

TSU(3) = {diag[eiθ1 , eiθ2 , eiθ3 ] : θ1 + θ2 + θ3 = 0, θi ∈ R}
is a maximal torus of SU(3), and its Lie algebra is given by

tsu(3) = {diag[iθ1, iθ2, iθ3] : θ1 + θ2 + θ3 = 0, θi ∈ R}.
The following vectors

T1 = diag[−i, i, 0], T2 = diag[−i/
√

3,−i/
√

3, 2i/
√

3]

provide a basis for tsu(3). Completing this basis with the following vectors

X1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
−1 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , X2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 i 0
i 0 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , X3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 1
0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

X4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 −i
0 −i 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , X5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1
0 0 0
−1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , X6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 i
0 0 0
i 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
we obtain the Gell-Mann system, which forms an orthonormal basis of su(3). The system
of vector fields X = {X1, X2, X3, X4, X5, X6} satisfies the Hörmander condition of step κ = 2,
(see [7, Section 11]). Indeed, this can be deduced if we write

X7 = −[X1, X2] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−2i 0 0
0 2i 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , X8 = −[X3, X4] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 2i 0
0 0 −2i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
from TABLE 1. Observe that the Hausdorff dimension associated to the control distance

Table 1. Commutators in SU(3)

X1 X2 X3 X4 X5 X6 X7 X8

X1 0 −X7 X5 −X6 −X3 X4 4X2 2X2

X2 X7 0 X6 X5 −X4 −X3 −4X1 −2X1

X3 −X5 −X6 0 −X8 X1 X2 2X4 4X4

X4 X6 −X5 X8 0 X2 −X1 −2X3 −4X3

X5 X3 X4 −X1 −X2 0 X8 − X7 2X6 −2X6

X6 −X4 X3 −X2 X1 X7 − X8 0 −2X5 2X5

X7 −4X2 4X1 −2X4 2X3 −2X6 2X5 0 0
X8 2X2 2X1 −4X4 4X3 2X6 −2X5 0 0
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associated to the sub-Laplacian

 = −X2
1 − X2

2 − X2
3 − X2

4 − X2
5 − X2

6 ,

can be computed from (2.4) as follows.

Q : = dim(H1G) + 2(dim H2G − dim H1G) = 6 + 2(8 − 6) = 10.

In the following Corollary we describe the Lp-Lq-boundedness of subelliptic pseudo-
differential operators on SU(3). In this case we observe that one can identify ŜU(3) �
{D(p, q) : p, q ∈ N0}, where D(p, q) in physical terms, p is the number of quarks and q
is the number of antiquarks. The construction of the unitary representations D(p, q) can be
found in [24]. We keep in this case the standard notation ŜU(3) by simplicity.

Corollary 4.2. Let 1 < p, q < ∞, and 0 ≤ δ < ρ ≤ 1. Let us consider the Hörmander
sub-Laplacian  = −X2

1 − X2
2 − X2

3 − X2
4 − X2

5 − X2
6 . Then, the following statements hold.

• Let 1 < p ≤ 2 ≤ q < ∞. Every pseudo-differential operator

A ∈ Ψm,
ρ,δ (SU(3) × ŜU(3))

admits a bounded extension from Lp(SU(3)) into Lq(SU(3)), that is

(4.5) ∀ f ∈ C∞(SU(3)), ‖A f ‖Lq(SU(3)) ≤ C‖ f ‖Lp(SU(3))

holds, if and only if,

(4.6) m ≤ −10
(

1
p
− 1

q

)
.

• Every pseudo-differential operator A ∈ Ψm,
ρ,δ (SU(3) × ŜU(3)) admits a bounded

extension from Lp(SU(3)) into Lq(SU(3)), that is (4.5) holds, in the following cases:
(i) if 1 < p ≤ q ≤ 2 and

(4.7) m ≤ −10
(

1
p
− 1

q
+ (1 − ρ)

(
1
q
− 1

2

))
.

(ii) if 2 ≤ p ≤ q < ∞ and

(4.8) m ≤ −10
(

1
p
− 1

q
+ (1 − ρ)

(
1
2
− 1

p

))
.
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