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Abstract

We establish the L”-L7-boundedness of subelliptic pseudo-differential operators on a compact
Lie group G. Effectively, we deal with the LP-L7-bounds for operators in the sub-Riemmanian
setting because the subelliptic classes are associated to a Hormander sub-Laplacian. The Rie-
mannian case associated with the Laplacian is also included as a special case. Then, applica-
tions to the LP-L7-boundedness of pseudo-differential operators in the Hormander classes on G
are given in the complete range 0 < 6 < p < 1, § < 1. This also gives the L”-L?-bounds in the
Riemannian setting, because the later classes are associated with the Laplacian on G. In both
cases, in the Riemannian and the sub-Riemannian settings, necessary and sufficient conditions
for the L”-L7-boundedness of operators are also analysed.
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1. Introduction

This paper is mainly concerned with the L”-L? boundedness of pseudo-differential oper-
ators associated with the global Hormander symbol classes on compact Lie groups for the
range 1 < p,q < co. Our analysis also includes estimates for pseudo-differential operators
associated with subelliptic symbol classes.

The relevance of the boundedness of Fourier multipliers and pseudo-differential operators
has been highlighted by Stein and Hormander. These kinds of estimates naturally arise in
the study of some evolution equations. For instance, one can see [29, 46]. Till now, there
have been extensive activities dealing with the LP-L? boundedness for spectral multipliers
and Fourier multipliers on compact Lie groups, we cite [3, 4, 7, 8, 12, 32, 33, 40] for a
non-exhaustive list of references.

To the best of our knowledge, there has been no activity to pursue the L7-L? estimates of
non-invariant operators, in particular, pseudo-differential operators on compact Lie groups.
In the classical Euclidean setting, Hormander established the LP-L? estimates of pseudo-
differential operators associated with the so-called “Ho6rmander symbol classes” S,?, s(R" X
R") on R" withm € Rand 0 < 6§ < p < 1. It is well-known that any L”-L? bounded
Fourier multiplier is nontrivial only if p < ¢ (see [30]). Therefore, it is natural to assume
the condition p < ¢ when dealing with pseudo-differential operators. Later on, Alvarez
and Hounie [5] extended Hormander’s result to the range 0 < 6§ < land 0 < p < 1
without the restriction 6 < p. In a recent work by the first and last two authors [11], we
have provided sufficient and necessary conditions for the L”-L9 boundedness of pseudo-
differential operators associated with global Hormander symbol classes Sz 5(G X G), m €

R,0<6 <p <1and¢ # 1, on a graded Lie group G, where G denotes the unitary dual of
G.

In this work, we focus on pseudo-differential operators associated with the global
Hormander symbol classes encoded with the Riemannian and sub-Riemannian structure of
compact Lie groups. One of the main differences between the approach developed in [11],
based on the analysis of hypoelliptic operators on those groups, is the use of the structure of
the dilations of the group, while the approach of this paper will be based on the submarko-
vian properties of the semigroup e, t > 0, of a Hormander sub-Laplacian £ = Z'j‘.zl Xlz.,
where one exploits the geometric properties induced by the Héormander system of vector
fields {X; : 1 < j < n} on a compact Lie group G.

On a compact Lie group G, in the monograph [41], Turunen and the last author introduced
a global notion of the Héormander symbol classes on G. According to this terminology, and
observing that any continuous linear operator A acting on C*(G) has a right convolution
kernel Ry = Ra(x,y) € 2'(G X G), namely, a distribution that describes the action of the
operator by the group convolution = as follows

(1.1) Af(x) = (f * Ralx, ))(x),

the global symbol of A, is the matrix-valued function defined on G X G, defined via
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(1.2) oa(x,€) = Ra(x,6), (x,[€]) € G X G.

Here, - denotes the matrix-valued group Fourier transform on G. By classifying these
matrix-valued symbols by the behaviour of their derivatives (and of their differences), the
last author and Turunen [41] introduced the symbols classes SZf 5(G X 5), allowing the com-
plete range 0 < 6 < p < 1, and providing a new description of the Hormander classes
SZ}(T*G) (as defined in [28] with the local notion of the principal symbol, defined on the
cotangent-bundle 7*M of a compact manifold) when additionally, 0 < § < p < 1, and
p>1-0.

On the other hand, it was observed by the first and the last author in [7], that the sym-
bols classes S/’J’f s(G X 5), are associated to the Riemannian structure of the group G, in the
sense that the growth of the derivatives of symbols is classified according in terms of the
spectrum of the Laplacian L5 = — Z;Ll X]2., n = dim(G). Then, in generalising this idea,
in [7] the subelliptic Hormander classes SZSE (G x 5), were introduced with the derivatives
(and differences) of symbols compared with respect to the growth of the eigenvalues of a
fixed Hormander sub-Laplacian £ = — Z']‘.zl XJZ., where k < n. We observe that the pseudo-

differential calculus associated to the “subelliptic” classes SZ’f (GxG), is more singular than

the one associated to the “elliptic” classes SZ” s(G X E). Indeed, singularities of the kernels
of the “subelliptic” classes are classified in terms of the Hausdorff dimension Q, associated
with the control distance associated with the sub-Laplacian L. In the next subsection we
present the LP — L9 regularity properties of the subelliptic Hormander classes S;’)ff (G x G).

We finally observe that for the case p = ¢, namely, the problem regarding the L”-
boundedness of pseudo-differential operators, Fefferman in [20] has established a sharp
criterion of continuity for the operator in the Hormander classes SZf s(R" X R") on the Eu-
clidean space. Then Fefferman’s criterion has been extended for several pseudo-differential
calculi including the Weyl-Hormander calculus [14], the Hormander classes S;’f 5(G X 5) as-
sociated to the Laplacian [15], also extended in the sub-Riemannian setting, namely, for the
Hormander classes SZf (G xG) associated to a Hérmander sub-Laplacian [7], and finally for
the Hormander classes on graded Lie groups in [9]. In order to give a general perspective
about this problem, here we are mainly concerned with the case p < g.

Notably, when dealing with the L”-L7-boundedness of operators with symbols in the
classes Sfo (G x 5), one has to analyse separately the cases: (1) 1 < p < g < 2, (ii)
l<p<2<g<oo,and ()2 < p<qg < oo Hereforthecase ] < p <2< g < oowe
provide necessary and sufficient conditions.

1.1. Main results. The following theorem presents the result that establishes a sufficient
condition and in some cases also a necessary condition, for the L”-L? boundedness of subel-
liptic pseudo-differential operators on compact Lie groups.

Theorem 1.1. Let 1 < p,q < 0o, and 0 < 6 < p < 1. Let G be a compact Lie group,
and let Q be its Hausdor{f dimension with respect to the control distance associated with a
Hormander sub-Laplacian L. Then, the following statements hold.

o Let]l < p <2< q < oo. Every pseudo-differential operator A € lI’Zf’f(G x G) admits
a bounded extension from LP(G) into LY(G), that is

(1.3) Vf e C™G), Aflle) < Clifllre
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holds, if and only if,
1 1
(1.4) mS—Q(———)-

e FEvery pseudo-differential operator A € ‘P;””EE(G X E) admits a bounded extension
from LP(G) into L1(G), that is (1.3) holds, in the following cases:
1) ifl<p<g<2and

(1 1 (1 1))
(1.5) m<-Q0l—--—-+0-p)|--=||.
P q qg 2

(i) if2< p < q<ooand

(1.6) mS—Q(l—l+(1—p)(l—l)).
P q 2 p

Remark 1.2. The order conditions in (1.4), (1.5) and (1.6) can be written in a simplified
way for 1 < p, g < oo as follows:

(1.7) ms—Q(l—1+(1—p)max{l—l,l—l,O}),
P 4 2 p

where Q is the Hausdorff dimension of G with respect to the control distance associated to
the sub-Laplacian L.

Remark 1.3. If G = R”, although this is not a compact Lie group, the order condition in
(1.7) is sharp for Fourier multipliers, see Hormander [29, Page 163].

Remark 1.4. When a system of vector fields X = {X;} provides an orthonormal basis of
the Lie algebra (endowed, up to a constant factor, with its unique bi-invariant Riemannian
metric), the Hormander condition is trivially satisfied, the sub-Laplacian associated to the
system X coincides with the Laplacian and the classes S/’)’f’f (G x G) agree with the “elliptic

classes” SZf s(G X 6) of the last author with Turunen [41]. The following corollary provides
the L? — L9-regularity properties for the elliptic classes.

Corollary 1.5. Let 1 < p,q < 00, and 0 < 6 < p < 1. Let G be a compact Lie group of
dimension n. Then, the following statements hold.
o Let]l < p <2< g < oo, Every pseudo-differential operator A € ‘I’;’;&(G x G) admits
a bounded extension from LP(G) into LY(G), that is

(1.8) Vf e C®(G), lIAfllc) < Clifllr )
holds, if and only if,
1 1
(1.9) mg—n(———),
P 4

e Every pseudo-differential operator A € ‘Pﬁ s(G X 5) admits a bounded extension
from LP(G) into LY(G), that is (1.8) holds, in the following cases:
1) ifl<p<g<2and
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(1 1 (1 1))
(1.10) m<-nl—--+U-p--=]].
P q qg 2
(1) if2<p<g<ooand
(1.11) mg_n(l_lJr(l_p)(l_l))_
P q 2 p

This paper is organised as follows. In Section 2 we present the preliminaries of this
paper related to submarkovian semigroups, and the subelliptic pseudo-difterential calculus
introduced in [7]. Subsequently, the L” — L?-boundedness of these subelliptic classes is
analysed in Section 3. Then, in Section 4 we provide explicit examples of our criterion about
the L”-L4-boundedness of pseudo-differential operators in the case of the sphere S* = SU(2)
and on SU(3).

2. Preliminaries

2.1. Symmetric submarkovian semigroups. We briefly recall some classical facts con-
cerning symmetric submarkovian semigroups on L? := L*(X,u). Here (X, ) is a o-finite
measure space. For the definitions and results mentioned in this sub-section we follow [13,
Section I1.5], [13, Example I1.5.1] (see Remark 2.1 below) and [13, Theorem I1.3.1, Page
14] (see Theorem 2.2 below).

Let A be an operator with domain Dom(A) c L?. We recall that

—A is the generator of a symmetric semigroup T, := e on L? such that

lle™ 2oz < e

if and only if A is self-adjoint, Dom(A) is a dense subspace of L, and
Af, 1) =z —allfllr.

Let Q be a symmetric bilinear form defined on a subspace D C L?. One says that Q is
positive if Q(f, f) > 0, and closed if for every sequence (f,),eny C D, such that f, — f in
L2, and

n}qizr—l;loo Q(f;1 - fm’ fn - fm) = 0’

one has that f € D and that Q(f, — f, f, — f) — 0. One says that Q is closable if it admits a
closed extension.

If A is a symmetric operator with a dense domain Dom(A) c L?, then one may associate
with it the symmetric bilinear form Qa(f,g) := Q(Af, g). If in addition Q4 is positive, it
is closable and its minimal closure Q, is associated to a self-adjoint operator A which is
an extension of A. More precisely, A is the smallest self-adjoint extension of A, called the
Friedrichs extension of A. We shall not distinguish between A and A.

Recall that a semigroup T; on L? is called submarkovian if f € L?>,0 < f < 1, implies
that 0 < T, f < 1. Such a semigroup acts on the LP-spaces and ||T||pr—rr < 1.

Symmetric submarkovian semi-groups on L> may be characterised through properties of
the associated symmetric bilinear form. A positive symmetric bilinear form Q defined on
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D c L2, is said to be a Dirichlet form, if for all g € D, and for all f € D, such that |f] < |g],
and |f(x) — f(y)| < lg(x) — g(y)|, one has that f € D, and O(f, f) < 0(g, 9).

If T, = e7™ is a symmetric submarkovian semigroup on L?, the associated bilinear form
O(f.g) := (A2 f,A12g), f,g € Dom(A'/?), is a closed Dirichlet form with dense domain
in L?. Conversely, given a closed Dirichlet bilinear form Q, with dense domain D in L?,
there exists a unique symmetric submarkovian semigroup on L?, such that 7, = ™4
O(f.g) := (A2 f,A2g), f,g € Dom(A"/?).

and

Remark 2.1. We note that submarkovian semigroups arise naturally in the setting of
compact manifolds. Indeed, if M is a compact manifold with a volume form dx, and
L*(M) = L*(M, dx), consider a family of vector fields

X ={X1,Xo, -+, Xy}, k <n:=dim(M).
If every X is skew-adjoint on L*(M), namely, if
Vf.g € C™(M), éXi(f)gdx = —Aiin(g)dx,
then we can associate with Ay := — Zf.‘z ! Xl.z, its Friedrichs extension, which we still denote
by Ayx. Then, the semigroup
T, :=e ™™ : L2 (M) - L*(M)
is a contraction semigroup. With respect to the Dirichlet form

Q(f’ g) = (AXf’ g)’ f’g € COO(M)’

the semigroup 7; := e~"*% is a submarkovian semigroup.

The following theorem will be fundamental for our further analysis.

Theorem 2.2. Let T, = e~ be a submarkovian semigroup. Assume that T, is equicontin-
uous on L'(X, p1) and on L¥(X, ). Suppose that there exists « > 0 and 1 < p < g < oo such
that

2.1 I lzocx ) < CNAY Flliocx -

Then, with Q defined by the identity a = Q(1/p — 1/q), the following semigroup estimate
holds

Y
(2.2) 3C > 0,Yf € L'X, 1), T flleecepy < CF 2 | fllecx -

2.2. Pseudo-differential operators via localisations. Now we present the preliminaries
of the Hormander theory of pseudo-differential operators on compact manifolds used in this
work. The setting of compact Lie groups appears as an essential case of manifolds with
symmetries. We refer to Hormander [28] for details.

Let U be an open subset of R". We say that the symbol a € C*(T*U), T*U = U x R",
belongs to the Hormander class

S%(T*U), 0<p,6<1,
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if for every compact subset K C U the symbol inequalities
|3§5ga(x, E) < Copr(l + |g])mrlattobl,

hold true uniformly in x € K for all £ € R". A continuous linear operator A : C;’(U) —
C*(U) is a pseudo-differential operator of order m and of (p, 9)-type, if there exists a symbol
a € §'(T*U) such that A is the Kohn-Nirenberg quantisation of the symbol a, namely, if

Af() = | & alx, )(Fre NEE,
for all f € C°(U), where
(e ) 1= [ [

is the Euclidean Fourier transform of f at ¢ € R”".

Now, we extend this notion to smooth manifolds as follows. Given a smooth closed
manifold M, A : CJ(M) — C*(M) is a pseudo-differential operator of order m and of
(0,0)-type, with p > 1 —9,and 0 < 6 < p < 1, if for every local coordinate system
w:M,cM— U, cCR", and for every ¢,y € C(U,), the operator

Tu = y(w "V Aw (pu), u € C>(U,),"

is a standard pseudo-differential operator with symbol a; € Sz s(T"U,). In this case we write
A€ ‘PZ(S(M, loc).

2.3. Positive sub-Laplacians and global pseudo-differential operators. Let G be a
compact Lie group with Lie algebra ¢ ~ T,.G, where e is the neutral element of G, and
let

X={X;,---, X} Cg
be a system of C*-vector fields. For all multi-index,
I=(i, - ,iy) €{1,2,--- ,k}¥
of length w > 1, we denote by
X=X, [ Xi, - [ Xi, - X, 1+ 1

a commutator of length w, where X; := X; when w = 1 and I = (i). The system X satisfies
the Hormander condition of step « if

g = span{Xj : |I| < «}.

Given a system X = {X,---, X} satisfying the Hormander condition, the operator de-
fined as

L=Ly:=—X]+ - +XD),

is called the subelliptic Laplacian associated with the system X, or simply the sub-Laplacian
associated to X. The subellipticity of £ follows from the validity of the estimate, (see

TAs usually, w* and (w™")* are the pullbacks, induced by the maps w and w™' respectively.
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Hormander [27] and Rothschild and Stein [38])

(2.3) lullzs ey < CILullr2G) + llullzzG))s

with s = 2/, while the Sobolev space H*® of order s is defined by the norm
lllz) = (L= A)2ull 2.

Here, A is the negative Laplace-Beltrami operator on G.

Let us now introduce the Hausdorft dimension associated with the sub-Laplacian £. For
all x € G, let HYG be the linear subspace of TG generated by the X;’s and by the Lie
brackets

[le’ij]’ [le’ [X]27X]3]]a T [le’ [ij, [Xj39 U anw]]L
where w < k. Then, Hérmander’s condition says that HXG = TG, x € G, and we have that
H'GCcH!GCHGcC---cH"'GCHG=T,G, x€G.

The dimension of every H{G is constant in x € G, so we set dim H“G := dim HYG, for all
x € G. The Hausdorff dimension can be defined as, see [35],

(2.4) Q:= Y i(dimH'G - dim H™'G).

i=1
Let A be a continuous linear operator from C*(G) into 2’(G), and let G be the unitary

dual of G. There exists a matrix-valued function

(2.5) a:GxG — UpnC™,

that we call the matrix symbol of A, such that a(x, &) := a(x, [£]) € Clexde for every [£] € 5,
with ¢ : G — Hom(H;), H = C%  and such that

(2.6) Af) = ) dTHE@ax OF O, Vf € C7(G).

[£1eG

We have denoted by

—

@& = (FHE) = Jf0Eo dx € clexde | [£] € G,

the group Fourier transform of f at & where the matrix representation of £ is induced by an
orthonormal basis of the representation space H;. Correspondingly, one denotes the inverse
Fourier transform of g(&) € C%*% as

(F ) = Y dTrEWgE), x€G.
[£1eG
Note that the matrix-valued function a in (2.5) satisfying (2.6) is unique, and satisfies the
identity
a(x,£) = £() (AE ), Af = (A&, 1€ €G.

We will use the notation A = Op(a) to indicate that a := o 4(x, €) is the (unique) matrix-
valued symbol associated with A.
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As defined in [45], a difference operator Q; : 9’(5) - .@’(6) of order k € N is defined
via

.7) 0:1(&) = qf (&), [€] € G,

for some function ¢ € C*(G) vanishing of order k at x = e. We denote by diff* (5) the set
of the difference operators of order k. The associated difference operator to g is denoted by
A, = Q¢. A system of difference operators (see [45])

(2.8) AL = AD AT = (@) i<

qq) qai)°

with i > n, is called an admissible family, if
2.9) rank{Vq(j(e) : 1 < j < i} = dim(G), and A, € diff'(G).

An admissible family is said to be strongly admissible if, we also have the property
(2.10) m{x € G :q(j(x) =0} = {e}.

j=1

Remark 2.3. We observe that matrix components of unitary irreducible representations
induce difference operators of arbitrary order. Let us illustrate this fact as follows. If

&1,8, -+, &, are fixed irreducible and unitary representations of the group G, which does
not necessarily belong to the same equivalence class, then the matrix coefficients

d
(2.11) §(g) — la, = [£c(9)ij — 51;],-;[:1, geG, 1<t<k,

define the smooth functions qu(g) = &0(9)ij — 0ij, g € G, and then define the difference
operators

(2.12) Dg,ij := F(&lg)ij — 6:i)-F .

Then, by fixing k > dim(G) of these unitary representations with the property that its corre-
sponding family of difference operators is admissible one can define higher-order difference
operators of this kind. Indeed, let us fix a unitary representation &,. We omit the index .

ij=1

. .. d .
Then, for any given multi-index & € N, with |a| = 3 @;j, we write

@y d,
@ . Tl 0%
D := Dy, Ddfldé‘[

for a difference operator of order |a/.

The difference operators endow the unitary dual G with a difference structure. Indeed,
the following Leibniz formula holds true (see [43] for details). We refer to Definition 2.5
for the description via the group Fourier transform of the matrix-valued distributions in the
class (G x 5).

Proposition 2.4 (Leibniz rule for difference operators). Let G be a compact Lie group
and let D, a € Ngf", be the family of difference operators defined in (2.12). Then, the
following Leibniz rule

DY (@), &) = Y Cey@ax, D @)x0.6), %€,

L lel<lal<lyl+lel
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holds for all aj,a, € P'(G X 5), where the summation is taken over all €,y such that
lel, o] < lal < |yl + el

Now, we will introduce the Hormander classes of matrix-symbols defined in [41]. We
identify every Y € g with the differential operator dy : C*(G) — Z’(G) defined by

d
Oy f(x) = (Yo f)(x) = Ef (xexp(tY))li=o-
If{Xy,---,X,}is a basis of the Lie algebra g, we use the standard multi-index notation
0y =X{ = 6;“(‘1 8;

By using this property, together with the following notation for the so-called elliptic
weight

€ =1+ €] €6,

we can finally give the definition of global symbol classes. Here, A, [£] € G, denotes the
corresponding eigenvalue of the positive Laplacian (in a bijective manner) indexed by an
equivalence class [¢] € G.

DEeriniTiON 2.5. Let 0 < 0,p < 1. Let
c:GxG — U Clexde
[£1eG

be a matrix-valued function such that for any [£] € 5, o (-, [£]) is smooth, and such that,
for any element x € G there is a distribution k, € 2'(G), of C*-class in x, satisfying that
o(x,¢&) = 76;(5), [£] € G. The collection of all matrix-valued symbols o = o(x, &) satisfying
these properties will be denoted by 2’(G X G).

We say that o € Z)’f‘é(G) if, for all § and y multi-indices and for all (x, [£]) € G X (7, the
following inequalities

(2.13) R AL (. E)llop < Carg(€)" O,
hold, where || - ||,, denotes the £* — ¢? operator norm

(2.14) o, Olop = sup{llo(x, E)olle = v € C¥, Jlofl 2 = 1.
Foro, € <5”p””5(G) we will write A € ‘I’/’f s(G) = Op(&’ﬁ%(G}).

The global Hormander classes on compact Lie groups describe the Hormander classes
defined by local coordinate systems. We present the corresponding statement as follows.

Theorem 2.6 (Equivalence of classes, [41,43]). Let A : C*(G) — 2'(G) be a continuous
linear operator and let us consider 0 <6 < p < 1, withp > 1 —0. Then, A € LPZl,a(G’ loc), if
and only if oy € L§”p 75(G), consequently

(2.15) Op(.#"(G)) = ¥"4(G,loc), 0<6<p<1,p>1-06
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2.4. Subelliptic Hormander classes on compact Lie groups. In order to define the
subelliptic Hormander classes, we will use a suitable basis of the Lie algebra arising from
Taylor expansions. We explain the choice of this basis by means of the following lemma
(see [7, Section 3.1]).

Lemma 2.7. Let G be a compact Lie group of dimension n. Let © = {A; }i<j<n be a
strongly admissible collection of difference operators (for the definition see (2.9) and (2.10)).
Then there exists a basis Xv = {X| », -+ , Xyo} of g such that

Xinqu (1 )e) = 5.
Moreover, by using the multi-index notation

B _ n
6X - af(l]vg e af(,,"ﬁ’

for any € N, where

d 0
Ox,» f(x) = Ef(XCXP(IXi,b))lﬁo, /e C7(G),
and denoting by
R\@) = fo) = Y gl gl oy fx)
la|l<N

the Taylor remainder, we have that
RUy@) < Clyl™ max 105 flli=cc),

where the constant C > 0 is dependent on N, G and D (but not on f € C*(G)). In addition
. )
we have that 8f)|xl:xR{C N= Ri’;vf, and

0 =Rl < Cly* ™ max 197 fll=(c).

o]
provided that |8] < N.

a0 gy» We can introduce the subelliptic Hormander class of

symbols of order m € R and of type (o, 6). We will use the notation M to indicate the matrix
symbol of M = (1 + E)%. Also, for every [£] € G and s € R, we define the subellliptic
matrix weight,

Denoting by Af := Ay} -~ Ay

M(&)* = diag[(1 + Vi) |1<icd;

where E(f) =: diag[vii(f)z]ls,@f is the symbol of the sub-Laplacian L at [£], as the symbol
of the operator M := (1 + L£):.

DeriniTioN 2.8 (SuBELLIPTIC HORMANDER CcLASSES). Let G be a compact Lie group and let
0 < 6,p < 1. Let us consider a sub-Laplacian £ = —(X? + --- + X?) on G, where the
system of vector fields X = {X,-}i.‘: , satisfies the Hormander condition of step . We say that

o eSNE(GxG),ifforall r € R, @, € Ny,

216)  Pappomr@ = sup IMEPPTIHDALax, ) MEY lop < oo,
(x,[EDeGXG
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where |[[ - [|op 18 as in (2.14).

By following the usual nomenclature, we define:
Op(SE(G X G)) := A : C¥(G) = Z'(G) : 04 = Alx, §) € SIE(G X G},
with
Af() = ) dTEWACL HFE), f€C™(G), x€G.
[£1eG

The decay properties of subelliptic symbols are summarized in the following lemma (see
[7, Chapter 4]), where we present a necessary (but not a sufficient) condition in order that
the matrix-symbol a := a(x, &) belongs to the class S/’J’f’f (G xG).

Lemma 2.9. Let G be a compact Lie group and let 0 < 6,p < 1. Ifa € Sm E(G X G) then
for every a, B € N, there exists Cop > 0 satisfying the estimates

plal Bl

109 AZaCx, E)lop < Cap sup (1 + @5

1<l<df
uniformly in (x, [£]) € G X G.

In the next theorem we describe the fundamental properties of the subelliptic calculus [7],
like compositions, adjoints, and boundedness properties.

Theorem 2.10. Let 0 < 6 < p < 1, and let ‘I’m L= Op(S’" (G x G)), for every m € R.
Then,

- The mapping A — A™ : ‘Pm o ‘Pm £ is a continuous linear mapping between
Fréchet spaces and the symbol of A* a’A «(x, &) satisfies the asymptotic expansion,

A (x, ) ~ Z ALIP (A, £)).

|ar|=0

This means that, for every N € N, and for all { € N,

@ o vy x ~(p=0)(N+1)=pL+3|Bl, £ =
ALIP | A8 = D AZIP A, &) | € Sy IR E G x G,
le|<N
where |a;| = €
- The mapping (A1, Ay) = Ay o Ay - W5 x Wit — WL s q continuous
bilinear mapping between Fréchet spaces, and the symbol of A = A| o A, is given
by the asymptotic formula

TAE) ~ ) (ATAI(x, )0y Ar(x, £),

|o|=0

which, in particular, means that, for every N € N, and for all € € N,

ALOP oAt ) = D (AZAL (6, )0 Ao (x. )
la|l<N
c S/’J’f:§+m2—(p—6)(N+l)—pt’+6W|,E(G % (’;\),
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Jor all ap € Ny with |a,| = €.

-ForO0<o<p<l,(orfor0 <6 <p<1,0 < 1/k)let us consider a continuous
linear operator A : C*(G) — 2'(G) with symbol o € Sg: (f (G x 5}. Then A extends
to a bounded operator from L*(G) to L*(G).

Finally, we present the following result about the L”-boundedness of the subelliptic
classes for the sub-Laplacian L, see [7, Section 6].

Theorem 2.11. Let G be a compact Lie group and let us denote by Q the Hausdorff
dimension of G associated to the control distance associated to the sub-Laplacian L = Ly,
where X = {Xy,---, X} is a system of vector fields satisfying the Hormander condition of
order k. For 0 < 6 < p < 1, let us consider a continuous linear operator A : C*(G) —
2'(G) with symbol o € S;”g’ﬁ (G x 5), m > 0. Then A extends to a bounded operator on
LP(G) provided that

1 1
m>mp = Q(l—p)‘;—i‘

2.5. LP-L9-boundedness for Bessel potentials. Here we discuss the sharpness of the
Hardy-Littlewood-Sobolev inequality, in this case, formulated in terms of the LP-L9-
boundedness of Bessel potentials.

Lemma 2.12. Let 1 < p, g < oo. Let G be a compact Lie group of the Hausdor[f dimension
Q associated to the control distance associated to the sub-Laplacian L = — 1<« Xiz. Then,
the Bessel operator B, = (1 + £)"%, admits a bounded extension from LP(G) into L1(G), that
is, the estimate

(2.17) 1Bafllea < ClIfller
holds, if and only if, 1 < p < g < co and
1 1
(2.18) aZQ(———).
P 9

Proof. The sufficiency of the condition (2.18) on a for the L”-L?-boundedness of B, is
exactly the Hardy-Littlewood-Sobolev inequality, see e.g. [13]. On the other hand, assume
that

B, : LP(G) — L1(G)
1s bounded.

Using the subelliptic functional calculus in [7, Section 8], we have that VL € ‘P}OE (Gx 5)

is a pseudo-differential operator of first order. Since VL is not invertible, let VL™ be the
inverse of VL on the orthogonal complement of its kernel, i.e. if Py is the L2-orthogonal
projection on Ker(VL), then

Ve 'VE =VeNeT = 1- Py, Vf € Ker(VE), VL' f = 0.

This operator agrees with the operator f(L), defined by the spectral calculus where f(¢) =
r!, and that VL' € ‘I‘IBE (G x G) is a consequence of the functional calculus in [7, Section
8].
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Let us consider the operator LT3 := (\/Zz;l ) e ‘P;‘é’ﬁ (G x 5) defined by the spectral

calculus if @ > 0. In the case where a < 0, £L72 € ‘I"l“ l(’)E(G X 5). In view of the inclusion of
the powers L7 to the subelliptic calculus, note that

L5 =B ,B,=TB,,
where
T=LB,=L5(1+L) €] (GxG)

is a subelliptic pseudo-differential operator of order zero (see [7, Theorem 8.20]). Then
T : LY(G) — L4G) is bounded and from the L?-L? boundedness of B, we deduce the
LP-L9-boundedness of £L~% = TB,. Note that we have the validity of the estimate

(2.19) 1272 fllzo < Cllflles-

In other words, we have that the inequality

(2.20) 1fllee < CIES fller,

is valid with C > 0, independent of f € LY(G). Define the semigroup
T,=¢,1>0,

and consider the heat kernel /; defined by T,f = f * p,. Note that (see [13, Lemma VIII.2.5,
Page 110])

sup [lA |l < 1.
>0

In consequence we have that

(2.21) sup T fllei) = supllf = Iilli) < sup 1l o)l f iy < 1)
>0 >0 >0

In a similar way

(2.22) sup |7, fllz=) = sup llf * hull=) < sup Lol flle=@) < Iflli=)-
>0

>0 >0 t

In view of (2.21) and (2.22) we have that the semigroup T, is equicontinuous on L' and on
L*. Moreover, in view of Remark 2.1, with X = {X}, X, -- - , X}, the semigroup T, = etx =
et is a submarkovian semigroup. Then, in view of (2.20), by applying Theorem 2.2, with
O defined by

(1 1
P q
we have the estimate
(2.24) lle™ |l < Cpr™ 9.

Note that if
Q' :=inf{Q : T,satisfies (2.24)forallr: 0 < ¢ < 1},
then Q' < O,
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le™ i e < Cor @ < Cor9?, 0 <1 < 1.

However, by the sharpness of the heat kernel estimates is very well known that the infimum
Q' agrees with the Hausdorff dimension Q of the group associated to the control distance
associated to the sub-Laplacian £ (see [13, Chapter VIII]), thatis Q' = Q. Since 0 > Q, in
view of (2.23) we have proved that

(2.25) az Q(l - l),
P 9

as desired. O

3. LP-Li-boundedness of pseudo-differential operators

3.1. L7-L9-boundedness of pseudo-differential operators I. The following result
presents the necessary and sufficient criteria for a pseudo-differential operator to be bounded
from L?(G) into LY(G) for therange 1 < p <2 < g < 0.

Theorem 3.1. Let 1 < p <2 < g < c0oand m € R. Let G be a compact Lie group,
and let Q be its Hausdor[f dimension with respect to the control distance associated to a
Hormander sub-Laplacian L. Let 0 < 6 < p < 1. Then, every pseudo-differential operator
A€ ‘Pﬁf(G X G) with 0 < 6 < p < 1 admits a bounded extension from LP(G) into L1(G),
that is

3.1 Vf € Cy(G), IASflls < Clifllee
holds, if and only if,
(3.2) m < —Q(l - l)

P 9

Proof. Assume thatm > —Q ( % - é) . We are going to show that there exists A € ‘I’;’ff(Gx
5) which is not bounded from L?(G) into L(G). We consider
A=B_,=(1+L)? e¥'7(GxG)C WG X G).
Since

P q

from Lemma 2.12, we have that A = B_,, is not bounded from L?(G) into LY(G). So, we
have proved the necessity of the order condition (3.2). Now, in order to prove the reverse
statement, we consider m satistying (3.2) and m; and m, satisfying the conditions

(3.3) m=my +my, m <—-Q(1/p—1/2), my <-0(1/2 - 1/g).
IfA e ‘I’;’ff (G x 5), we factorise A as follows,
A = B_,,AoB_»,, Ao = Bn,ABy,.

Note that Ag € ‘I’g:g (GXx 5). The Calderén-Vaillancourt theorem (Theorem 2.10(iii)) implies
that Ay is bounded from L?(G) into L*(G). On the other hand, from Lemma 2.12 we have that
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By, : L*(G) — LY(G), and By, : L’(G) — L*(G), are bounded operators. In consequence,
we have proved that A admits a bounded extension from LP(G) into LY(G). The proof is
complete. m|

3.2. LP-Li-boundedness of pseudo-differential operators II. In this subsection, we
consider the L” — L7 boundedness of pseudo-differential operators on compact Lie groups
for a wider range of indices p and ¢g. Our main result of this section is the following theorem.

Theorem 3.2. Let 1 < p<g<oomeR,andlet0 <6 <p < 1. Let G be a compact Lie
group, and let Q be its Hausdorff dimension with respect to the control distance associated
to a Hormander sub-Laplacian L. Then, every pseudo-differential operator A € ‘I’fo (GxG)
admits a bounded extension from LP(G) into L1(G), that is

(3.4) Vf e Cy(G), IAfllLe < ClIflley

holds in the following cases:
() ifl<p<qg<2and

(35) ms—Q(l—l+(1—p)(l_l))‘
P q q 2
(i) f2<p<qg<ooand
1 1 1 1
(3.6) ne-o(t-tra-p(3-1))
P q p

Proof. (i) Let us consider p, g and m satisfying the conditions given in (i). Choose m’ =
—Q(i - 5) and this implies that the subelliptic Bessel potential B_,, is bounded
from LP(G) to L1(G) as a consequence of Lemma 2.12. For A € ‘I’fo (G x E), we
decompose it as follows:

A = (AB,y)B_p.

Now, we note that operator AB,, € ‘I’Z;ml’ﬁ(G x G) with m — m’ satisfying m —
m < -0 -p) (é - %) Then, Theorem 2.11 shows that AB,,, is bounded operator
from LY(G) into L4(G). Therefore, we conclude that the operator A has a bounded
extension from L?(G) into L1(G).

(i) To prove this part we follow the same strategy as in Part (i). We factorise the operator

A€ lI’/')"”(SE(G X 5) in the following manner:

A =B_(ByA),

where m’ = —Q(% - é). Again, it follows from Lemma 2.12 that the operator
B_,» is a bounded from L?(G) into LY(G). On the other hand, the operator B,yA €
‘I’z;'"/’ﬁ (GxG) withm—m’ < -0(1-p) (% - %) , which, as a consequence of Theo-
rem 2.11, yields that the operator B_, A is bounded from L”(G) into L”(G). Hence,
we conclude that the operator A has a bounded extension from L?(G) into L4(G).

This completes the proof of this theorem. O
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4. LP-Li-boundedness of pseudo-differential operators on S* and on SU(3)

We will present an explicit form of our main Theorem 1.1 on the sphere SU(2) = S* and
on SU(3). By abuse of notation, we will use the same symbol to denote an element of the
Lie algebra and the vector field on the group obtained by left translation.

4.1. L”-L?-boundedness of pseudo-differential operators on S°. Let us consider the
left-invariant first-order differential operators d.,d_, 9y : C*(SU(2)) — C*(SU(2)), called
creation, annihilation, and neutral operators respectively, (see Definition 11.5.10 of [41])
and let us define

] 1
X, = —é(a_ +0), Xo = S0~ 91). Xs = —idh,

where X3 = [X}, X»], based on the commutation relations [dy, ;] = 0., [0, dy] = 0_, and
[04+,0-] = 20y. The system X = {X;, X»} satisfies the Hormander condition of step x = 2,
and the Hausdorff dimension defined by the control distance associated to the sub-Laplacian
L) = —X% - X% is Q = 4. In a similar way, we can define the sub-Laplacian £, = —X% - X%
associated to the system of vector fields X’ = {X», X3}, which also satisfies the Hérmander
condition of step k = 2. In the following corollary we describe the L-L7-boundedness of
subelliptic pseudo-differential operators on SU(2) = S3. In this case we observe that one can
identify SU(2) = 1Ny, see [41] for details.

Corollary 4.1. Let 1 < p,g < 0, and 0 < 6 < p < 1. Let us consider the Hormander
sub-Laplacian L = —Xl2 - Xg. Then, the following statements hold.

e Let]l < p <2< g < oco. Every pseudo-differential operator
1
m,L
Ae ‘Pp’é (SU®2) x ENO)
admits a bounded extension from LP(SU(2)) into L1(SU(2)), that is
4.1) Vf e CT(SUQR)), A fllasuey < Cllfllzrsue)y)
holds, if and only if,

4.2) m < —4(l - l)

e FEvery pseudo-differential operator A € ‘I’Zif(SUQ) X %No) admits a bounded exten-
sion from LP(SU(2)) into L1(SU(2)), that is (4.1) holds, in the following cases:
1) ifl<p<g<2and
(43) ms-4(l_l+(1_p>(l_l)),
P q q 2
(i) if2<p <g<ooand

4.4) mS—4(l—l+(1—p)(l—l)).
p 2 p
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4.2. LP-L1-boundedness of pseudo-differential operators on SU(3). The special uni-
tary group of 3 X 3 complex matrices is defined by

SU@B) ={g € GL(3,C) : gg" = Is = (0i)1<i j<3- det(g) = 1},
and its Lie algebra is given by
su(3) ={g € GL(3,C) : g+ g" = 0, Tr(g) = 0}.

The inner product is defined by a multiple of the Killing form on su(3) given by B(X,Y) =
—%Tr[XY]. The torus

Tsui) = (diag[e™, ™, e™]: 6, + 6, + 65 = 0, §; € R}
is a maximal torus of SU(3), and its Lie algebra is given by
touz) = {diag[if,, i61,i05] : 01 + 6, + 63 = 0, 6; € R}.
The following vectors
T, = diag[—i,i,0], T, = diag[—i/V3, —i/V3,2i/V3]

provide a basis for t,3). Completing this basis with the following vectors

0 10 07 0 0 0 O
Xi=|-1 0 0, X,=|i O O}, X35=|0 0O 1},
0 0O 000 0 -1 0
0 0 0 0 0 1 0 0 i
X4=10 0 —i|l,Xs=]10 0 0|,Xs=|0 0 Of,
0 - 0 -1 0 0 i 0

we obtain the Gell-Mann system, which forms an orthonormal basis of s1(3). The system
of vector fields X = {X, X5, X3, X4, X5, X¢} satisfies the Hormander condition of step x = 2,
(see [7, Section 11]). Indeed, this can be deduced if we write

-2i 0 O 0O 0 O
X7=-[X1,X2]=| 0 2i 0f, Xg=-[X3,X4]=]|0 2i O
0O 0 O 0O 0 -2

from TABLE 1. Observe that the Hausdorff dimension associated to the control distance

Table 1. Commutators in SU(3)

X X X5 Xd Xs Xe X7 Xs
X 0 -X; X5 —Xg —X; X, 4% 2X,
X, X; 0 Xo  Xs —X4 —X; —-4X; -2X;
X5 -Xs -Xg 0 —Xg X Xo  2Xs  4Xy
X, X¢ -Xs Xg O X, X, -2X; —4X;
Xs X5 Xa -Xi -Xo 0 Xs—X; 2X¢ —2Xe
Xe -Xa X35 -Xo Xi X9-Xg 0 —2Xs 2Xs

X; —4X, 44X, -2Xs 2X3 -2Xs 2Xs 0 0
Xg  2X, 2X; —4Xs 4X3 2Xs -2X5 0 0
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associated to the sub-Laplacian
L=-Xi-X5-X;-X;-X: - Xz,
can be computed from (2.4) as follows.
0 : = dim(H'G) + 2(dim H>G — dim H'G) = 6 + 2(8 — 6) = 10.

In the following Corollary we describe the L?-L?-boundedness of subelliptic pseudo-
differential operators on SU(3). In this case we observe that one can identify §I\J(3) =
{D(p,q) : p,q € Ny}, where D(p, g) in physical terms, p is the number of quarks and ¢
is the number of antiquarks. The construction of the unitary representations D(p, g) can be
found in [24]. We keep in this case the standard notation SU (3) by simplicity.

Corollary 4.2. Let 1 < p,g < co,and 0 < 6 < p < 1. Let us consider the Hormander
sub-Laplacian L = —Xl2 - Xg - X§ - Xi - Xg - Xg. Then, the following statements hold.

e [et]l < p <2< g < oco. Every pseudo-differential operator

A e WrE(SUB) x SU3))

admits a bounded extension from LP(SU(3)) into L1(SU(3)), that is
4.5) Vf € CT(SUQ)), lIAfllasuay < Cllifllysuey
holds, if and only if,
1 1
(4.6) m < —10(_ . _).
P 4
o Every pseudo-differential operator A € ‘I’Z”f(SUG) X §I\J(3)) admits a bounded
extension from LP(SU(3)) into L1(SU(3)), that is (4.5) holds, in the following cases:
(1) ifl<p<g<2and

4.7 ms—10(1—1+(1—p)(1—1)).
P q qg 2

(ii) if2 < p < g < ooand

(4.8) mS—lO(l—l-i-(l—p)(l—l)).
P q 2 p
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