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Abstract

In this paper, we prove some new connectivity of the Julia sets J of the complex Hé non maps
H(x,y) = (x*+c+ay, ax) with sufficiently small |a|. We investigate the connectivity of J for the
parameters near the boundary of the Mandelbrot set. We first give some conditions related to
the connectivity of J for sufficiently small |a|, which are useful for considering the connectivity
of J for the parameters near the boundary of the Mandelbrot set. We consider a perturbation
{H,,, }GED50,051<50 of dissipative semi-parabolic Hénon maps H,,, such that det DH,, = —-a?
and H, ,, has a fixed point q,, , for which (DH,L/L)qM has an eigenvalue 4,. Assume that 1, —

Ao = expaim/l) € 0D as t — 0 and /lf can be represented by exp(L; + i6,) with L, # O for
0 <t < 9. We prove that if 6, = O(L,), then the Julia sets J,,, for a € Ds,,0 < t < ¢y are
connected by using the conditions above.

1. Introduction

In this paper, we deal with the connectivity of the Julia sets of complex Hénon maps.

In one-dimensional (1-D) complex dynamics, we consider a complex polynomial f.(x) =
x? + ¢, ¢ € C and the Julia set J;, of f.. The Julia set J;. of f. is defined by the boundary of
the filled Julia set Ky := {z € C : {f"(z)}scv is bounded}. Note that the notation f' is the
n-fold composition of f.. The Mandelbrot set M is defined by {c € C : J is connected}.
It is known that the Julia set J;, of a polynomial f,. is connected if and only if K, contains
the critical point 0 of f, in C (see [13]). By using the fact, it is easy to find the boundary of
the connectedness locus for parameters ¢ € C. For example, the Julia set J, , is connected,
and the parameter 1/4 belongs to the boundary of the connectedness locus. Indeed, Jy ..
is connected if &€ < 0, and Jy, ., is disconnected if &£ > 0. The parameter ¢ = 1/4 is called
a parabolic parameter since fi,4 has a parabolic fixed point 1/2. Let us consider how the
parameters ¢ for which J is connected can approach parabolic parameters. Let us explain
this by using perturbations of multipliers of parabolic fixed points. We say that a pointa € C
is a parabolic fixed point of f. if f.(@) = @ and f/(@) is a root of unity. Here we consider
the case where f, has a parabolic fixed point o with multipliers Ay := exp(2xim/l), where
1 € Z\ {0}, m € Z and (m,[) = 1. Consider a one-parameter continuous family {A;}c(0.s,),
where 6y > 0. Assume that /lﬁ =exp(L;+if)and R > 6, —» Oast — 0, where L, € R\ {0}
and 6, € R for 0 <t < 6p. Let {f, }ie(0,6,) satisfy that f,, has a fixed point e, with multiplier
A;. We say that /lﬁ converges to 1 radially if 6, = O(L,). If 6, = O(L,), then {f }ic0,5,) has
nice properties (such as continuity of J;, , continuity of the Hausdorft dimension of J;, ) (see
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[12]). In particular, we see that J., is connected for each ¢ € (0, d), taking a smaller 6o > 0
if necessary.

Let us explain radial convergence by observing the main cardioid M := {c = 1/2—-1%/4 :
|A| < 1} of the Mandelbrot set M (Figure 1). For this purpose, we set p;(x) := x> + 1/2 —
A%/4, which has a fixed point A/2 with multiplier 1. The parameter ¢ = 1/4 is a parabolic
parameter. That is, the polynomial p;(x) = x?>+1/4 has a parabolic fixed point 1/2. Consider
afamily {p,,} with 4, = last — 0. Weset¢, = /11/2—/1,2/4 and A, = exp(L; +1i6,). If 6, = 0,
then the parameters ¢, approach 1/4 in Int Mo N R (the first of Figure 1). If parameters c; in
the sector in the second of Figure 1 approach 1/4, then A, satisfies 6, = O(L,). We remark
that there is a family {4,} such that the corresponding parameters ¢, € Int M, approach 1/4
as t — 0. For example, if parameters c; approach 1/4 in the curve near d. M, in the third
of Figure 1, then A, satisfies 0,2 = o(L,) and 6, # O(L,). On the other hand, if parameters c,
approach 1/4in R4, then Jy, is disconnected and 6, # O(L,) (see fourth of Figure 1).

< < < lc

174 1/4 w 1/4 \‘pﬁm

Fig. 1. 6, = O (first), limsup,_,, |6;/L;| < 1/\/§ (second), 9,2 = o(L,), 0, #
O(L,) (third) and disconnected (fourth)

In the case of two-dimensional (2-D) dynamics, for (c,a) € C?, we consider the qua-
dratic Hénon map of the form H(x,y) = (x*> + ¢ + ay, ax). For a diffeomorphism F(x,y) =
(F\(x,y), F2(x,y)) from an open set U c C? to C?, we set

(F1)x(x0,y0) (F1)y(x0,y0) )( ¢ )
(F2)x(x0,y0)  (F2)y(x0,Y0) n
for (xo,yo) € U and (£, n) € Ty, U. We have

2x a
(DH)(x,y) :( a 0 )7

(DF)(xo,yo)(g’ 77) = (

for (x,y) € C?. The map H has constant Jacobian —a?, i.e., det(DH),, = —a’ for all
(x,y) € C2. Unlike 1-D dynamics, we can consider the inverse H~!' of H if a # 0. Let K*
be the set of all points (x,y) € C? such that {H*"(x, y)},en is bounded in C2. We consider
the Julia sets J* := 0K* of H. Furthermore we denote J by the intersection of J* and J~.
It is known that J* are connected (see [2]). The Hénon connectedness locus is the set of
parameters (c,a) € C x C \ {0} for which the Julia set J is connected. Let us consider the
condition that J is connected. Unlike one-dimensional dynamics, Hénon maps H do not have
critical points for @ # 0. Instead, it was suggested to consider critical points of the Green
functions along the unstable manifolds of the saddle points to compute the connectivity of
the Julia sets (see [4]). The Julia set J is connected if and only if the restriction of the Green
function G*(x, y) := lim,_,«(1/2")log" ||H"(x, y)|| on the unstable manifold of some saddle
point has no critical points in K* (see [4] and [10, Theorem 3.3]). However, it is not easy
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to find the boundary of the Hénon connectedness locus. Our result (Theorem 1.2) describes
the local geometry near semi-parabolic parameters (c, a) if |a| is sufficiently small.

Let 4 € C\ {0}. To consider the connectivity of J for the parameters near the boundary of
the Mandelbrot set, we consider a Hénon family for which each element of the family has a
fixed point such that one of the eigenvalues of DH at the fixed point is A. Then, the set P,
of parameters (c,a) € C? for which the Hénon map H(x,y) = (x% + ¢ + ay, ax) has a fixed
point g such that A is an eigenvalue of (DH)q is the curve of equation

5[4 a’ 1 a2y
(1) CZ(I_G)E_ﬁ_E_ﬁ .

We denote the right hand side of equation (1) by c(a, ). Moreover, we set H, (x,y) =
(x% + c(a, A) + ax, ay) and p(x) = x> + ¢(0, 1). We denote the Julia sets of H, , by J;*" v Jaa
instead of J*, J respectively. Based on the above notations, we now present the first main
result of this paper.

Theorem 1.1. Assume that a Hénon family {Ha,/]}aeD&O satisfies the vertical condition
(VC),, with respect to € > 0,r > 0 (see Definition 3.1). Suppose that (D, x D,) N J;r’/1 =0
for each a € Ds,. Then the Julia sets J,, of the Hénon maps H,, for a € Ds, \ {0} are
connected if and only if the Julia set J,, of the polynomial p, is connected.

We regard D, X D, as a neighborhood of the critical point z = 0 of p, in two dimensions.
Note that most families {H,,, /l}aeDé.O satisfies the (VC), .. Indeed, if A # 1, then there is 6g > 0
such that {H,, /l}aeD% satisfies the (VC),, (see Lemma 3.2). The assumptions of Theorem
1.1 imply that the stable manifold of a saddle fixed point of H,, intersects transversely
horizontal direction in D, X D,. From this, we can construct a holomorphic motion of J; N
(C x {y}) over a € Dy, for each y € D, and can show that J;’ 1 N (Cx {y}) is homeomorphic
to the Julia set J,,, of p,.

It is known that for a hyperbolic polynomial x*> + ¢, there is a positive constant §(c) > 0
such that a small perturbation {H(x,y) = (x> + ¢ + ay,ax) : 0 < |a] < 6(c)} of H(x,y) =
(x* +¢,0) is hyperbolic (see [6] and [9]). In particular, the Julia sets J of the Hénon maps
H(x,y) = (x> + ¢ + ay, ax) for 0 < |a| < &(c) are connected if and only if J,2,. is connected.
However, the proofs in [6] and [9] do not give any uniform estimate on the constant 6(c) from
below for ¢ near the boundary of the Mandelbrot set. For example, it may be d(c,) — 0 as
Int My 3 ¢, = A1/2 — A>/4 € OM,, where || = 1. Therefore, we cannot apply methods
of [6] and [9] to compute the connectivity of J for the parameters near the boundary of
the Mandelbrot set. In our result, we only need to check that the (VC),, and the condition
(D xD,) N J;, =0 hold for a € Ds, and 0 < 1 < 5p. We can deduce the connectivity of J
for the parameters near the boundary of the Mandelbrot set by using Theorem 1.1 (see the
following Theorem 1.2 and Figure 2).

To present the second main result, we recall radial convergence. Let 1y = exp(2rim/l),
where [ € Z \ {0}, m € Z and (m,l) = 1. Consider a one-parameter continuous family
{A¢}re10.6,)» Where 69 > 0. Assume that /lﬁ =exp(L; +if)and R 3 6, —» 0 ast — 0, where
L, e R\{0}and 6, € Rfor 0 <t < 9. We say that RD,, 5, 1= {H,, : a € Ds, and 0 < t < dp}
is a radial perturbation if 8, = O(L,). For each 0 < t < ¢y, we will show that the section
{H,, A,}QGDEO of RD,, s, satisfies the (VC),, and that (D, X D,) N J;’ 2 = 0 for a € Ds,. By
applying Theorem 1.1 to the family RD,, s,, we can show the second main result:
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Theorem 1.2. There is 69 > O such that each H,,, € RD,, s, with a # 0 has connected
Julia set J, ,,.

Note that H, ,, does not belong to RD,,s5,. A Hénon map H, ,, has connected Julia set
for a € Dy, (see [17]). Radu and Tanase showed that there is dp > O such that H,,, is
hyperbolic for a € Ds, and 0 < t < dg if 6, = 0 for each 0 < t < dp in [16]. In [16], by
using hyperbolicity, the Julia sets are connected for the parameters if 6, = 0 for 0 < ¢ <
(see the left of Figure 2). In our case, we consider a much wider range of eigenvalues than
6, = 0. In this case, we will show the Julia set J,, of H,, € RD,, s, is connected without
using hyperbolicity.

P1 a I:)1 Pl I:)1

Lt>0,Le<0

C

Fig.2. 6, = 0 (left) and radial perturbations (right). The set P; (resp. P-;)
is a semi-parabolic parameter given by equation (1) with 4 = 1 (resp. A =

-1).

The rest of this paper is organized as follows. In Section 2, we present fundamental facts
for Hénon maps. In Section 3, we introduce the vertical condition (VC),, with respect to
g, r, and the condition (D, X D,) N J;’ , = 0. By using these conditions, we construct a
holomorphic motion of J; 1N (Cx{y}) over a € D, for each y € D,. Using these, we show
Theorem 1.1. In Section 4, we show Theorem 1.2 by using Theorem 1.1. In particular, we
check the condition (D, X D,) N J; 1 = 0 holds for H,,, by using local coordinates near
semi-parabolic fixed points.

2. Preliminary

In this section, we recall some basic results on the dynamics of Hénon maps. See [2], [8],
[14] and [16] for more details.

DerNtTioN 2.1. For (¢, a) € C?, let H: C? — C? be the map of the form
H(x,y) = (p(x) + ay, ax), where p(x) = 2 +e.

We call H: C? — C? a Hénon map. 1If a # 0, the inverse is

1
H ' (x,y) = 5@, x = py/a)).
REMARK 2.2. In [14], a holomorphic automorphism of C? of the form
F:(x,y) — (y,y2+c—5x), 0,ceC, 60,

is called a Hénon map. The form of the Hénon map H in Definition 2.1 differs from the
form (x,y) — (y,y*> + ¢ — 6x) given in [14]; however, H is conjugate by a polynomial
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automorphism to (x,y) = (y,y* + ¢ + a*x).
In [8], the dynamical space C? is divided into the following three sets.

Derinition 2.3 ([8]). Let r > 0 be a large number. Consider the following three subsets
of C?,

D, x D, = {(x,y) € C* : |x| < 1, |yl < r},

V™= {(x,y) € C* : |x| > max{lyl,r}} and V™ := {(x,y) € C*: |y| > max{|x], r}}.
Let H be a Hénon map with a # 0. We define the escaping sets U* of H by
Ut = U H™XV"), and U™ := UHk(v—).

k>0 k>0

We consider the Julia sets and the filled Julia sets of Hénon maps.

Dermnition 2.4. For a Hénon map H(x,y) = (p(x) + ay,ax) with a # 0, we define the
filled Julia sets K* of H as follows:

K* :={(x,y) € C* : {H*(x, y)}nen is bounded in C?}.
We define the Julia sets J* and J of H as follows:
JE:=0K*, and J:=J"NnJ".

RemARK 2.5. For a = 0, we can also define K* and J*. In this case, K* (resp. J*) is the
product set of the filled Julia set (resp. the Julia set) of p and C.

Bedford and Smillie [2] showed that there is a positive constant r > 0 depending on H
such that
) HVHYc VY HY\V)cV,U " =C*\K", and U =C>\K".

It is easy to see that for a polynomial x> + co, there is » > 0 and & such that H(x,y) =
(x* + ¢ + ay, ax) satisfies the condition (2) with respect to r for (c,a) € Ds(cp) X Dy \ {0}.
In this paper, we consider the following three types of fixed points.

DeriniTioN 2.6. Suppose that a Hénon map H has a fixed point . Let A and v be the
eigenvalues of (DH),. We say that the fixed point q is
(i) attracting if |[4] < 1 and |v| < 1,
(ii) semi-parabolic if |v| < 1 and A = exp(2nip/I) for some p/l € Q,
(i) asaddleif|v| <1 and|A] > 1.
We write that A, = O(B,,) if there are a positive constant K > 0 and a positive integer

N € N such that |A,| < K|B,| for n > N. We set Pr;: C> — C,Pr(x,y) := x and Pr,: C?> —
C, Pry(x, y) := y. We recall stable manifolds (see [14], [18]).

DeriniTion 2.7 ([14, p.311]). Let H be a Hénon map and r > 0 satisfy the condition (2)
with respect to H. For a saddle fixed point q of H, the stable manifold W*(q) of q is defined
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as

Wi(@) = (z € C: lim IH"(2) - qll = 0},
where || - || is the Euclidean metric of C2.

Let A € C\ {0}. To consider the connectivity of J for the parameters near the boundary of
the Mandelbrot set, we consider a Hénon family for which each element of the family has
a fixed point such that one of the eigenvalues of DH at the fixed point is A. A Hénon map
H(x,y) = (XX +c+ ay, ax) has a fixed point q such that 4 # 0 is an eigenvalue of (DH)q if
and only if

2

3 _ 2/1 a? A1 a?
3) c=(-a) 5|15 53] -

Let P, be the set of parameters (c,a) € C? satisfying (3). We denote the right hand side of
equation (3) by c(a, 1). Moreover, we set H,  (x,y) = (x* + c(a, A) + ay,ax) and p,(x) =
x? + ¢(0, 2). We denote the filled Julia sets and the Julia sets of H,, by Kaf B Ji 1> Ja,1 instead
of K*,J*, J respectively. We see that H, , has a fixed point

4 A A1 a
() qa,/l'_ E_ﬁ’a E_ﬁ s

with eigenvalues A and v := —a®/A. We give the parametrization of W (q,.0)-

Lemma 2.8 ([7], [15, the proofs of Propositions 3.16, 3.17], [17, Proposition 5.2]). Let
v = (—=a/A, 1) be an eigenvector for v. Assume that A satisfies |—a*/A| < 1 and || > |-a*/A).
Then there exists the injective holomorphic map

) ©yp: C = € ®(0) = lim H (g, +v'20).

such that @, ,(vz) = H, (®,.1(2)) for z € Cand a # 0.
Let ®©0 (z) := (Pr1 qq,2). Then, ®,, is analytic with respect to a and sup ¢ ||®g(z) —
Dy 1(2)|l = O(a) for each compact subset K of C.

RemARK 2.9. Fix 4p # 0. Consider a family {H,, A}(a,ﬂ)eDéoxD%uO). Since the fixed point
q,, of H, 1 depends holomorphically on a, 4, we see that @, ,(z) is holomorphic with respect
to (a,4,z) € Dg, \ {0} X Ds, (1) X C (see the proof of Theorem 6.43 in [14]). Since @, ,
is holomorphic with respect to each variable separately when the other variables are fixed,
®, () is holomorphic with (a, 4, z) € Ds, XDs,(1o) X C, taking a smaller 6y > O if necessary.

DerintTion 2.10. The curve W*(q) := ®©(C) is called the strong stable manifold of a fixed
point q for a # 0, where @ is given by (5), and the definition of (5) is valid if at least one
eigenvalue of the fixed point has absolute value less than 1 (see the proof of Theorem 6.43
in [14]).

For a fixed point q of H, the local strong stable manifold W (q) of q is defined by the
component of W*(q) N (D, x D,) that contains q, with the topology induced by ®: C —

W*(q).
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Remark 2.11. Whena = 0, we set W*(q) = U ;50 p~/({Pr; q})xC and Wi (q) = {Pry q} X
D,.

RemARK 2.12. If q is a saddle, then W*(q) = W**(q). In this case, the local stable manifold
W; (q) of q is defined by W;* (q).

By using Lemma 2.8, we have the following.

Lemma 2.13. If 1y € C\ {0, 1}, then there is a positive constant 6o > O such that H, 4 has
a saddle fixed point s, depending holomorphically on (a, 1) € Ds, X Dy, (o). Let g () :=
(Pry s0.4,2), and (TDM(z) = im0 H;”j(sa, 1 + VRz0), where V is the eigenvalue of (DH, )5,
with |7 < 1 and ¥ is the eigenvector of v of the form (-, 1) for (a, ) € (Ds, \ {0}) X Ds,(4o)
(see (5)). Then, (i)a, 1(2) is holomorphic with respect to (a, A,z) € Dg, X D5, (o) X C.

Proof. If |19| > 1, then q,, is saddle for (a,4) € Dy, X Ds,(4o), taking a smaller 6o
if necessary. By taking s, as q,, and applying Lemma 2.8, we obtain the statement of
Lemma 2.13.

We may assume that 4y # 1, 49 # 0 and [4g| < 1. Then ¢(0, Ap) # 1/4 and Hy 4,(x, y) has
a saddle fixed point. By the implicit function theorem, there are a positive constant dy and a
saddle fixed point s, , of H, ; depending holomorphically on (a, 1) € D5, X Dg,(1o).

We show that (i)a, 1(2) 1s holomorphic with respect to (a, 4, z) € Dy, X D5, (4dp) X C by using
Lemma 2.8. It follows from s¢ 4, # qq 4, that s, # q,, for (a, 1) € Ds, X Ds,(4o), taking ¢
small enough. By s, # q, , and the fixed point equation (X% + c(a, D) + ay, ax) = (x,y), we
have

Sup = (1 —a*> = Priq,  a(l —a* - Pri q,)).

Consider the characteristic equation det((DH,a)s,, — Al = 0, which is equivalent to
—(2Prys,0 — DA —a®> = 0. We set f(a,A4,4) := —(2Pr; s, — DA — a>. We see that
£(0,20,0) = 0, where Z = 0,2 — Ay (see (4)). By 9:1/(0,20,2 — ) = 2 — 2o # 0 and
the Implicit Function Theorem, there exists a holomorphic map A(a, 1) with [A(a, )| > 1 for
(a, 1) € Ds, X D, (o) such that f(a, 4, A(a, 1)) = 0 and A(0, Ag) = 2 — A, taking a smaller &,
if necessary. We see that c(a, 1) = c(a, A(a, A)) for each (a, 1) € Ds, X Ds,(1o) since H, 4 has
the fixed point s,, with one eigenvalue A(a, 1) (see (3)). In particular, H,, = H,
for each (a,1) € Ds, X Ds,(do). By the identity theorem, we have s, = q, . for
(a,d) € Dg, X Dg,(dg). Thus Oy = D, 3, for (@, 1) € Dg, x Ds,(do), where @, 3,
is the map in Lemma 2.8. By Remark 2.9 and the fact that A(a, 1) depends holomor-
phically on (a,1) € Dy, X Ds,(dp), it follows that Cf)a, 1(z) 1s holomorphic with respect to
(a,4,z) € Dg, X Dy, (1p) x C. |

3. Vertical Condition

For the rest of the section, we assume that the Jacobians of Hénon maps H,, are less
than 1 in the absolute value, and A # 0. In this section, we show the first main result
(Theorems 3.10 and 3.11). We construct a holomorphic motion of J; 1 N (C X {y}) over
a € D, for each y € D, to obtain the first main result. In order to construct it, we consider
the vertical condition and the condition (D, X D,) N J; 1 = 0. We consider the vertical cone



616 T. Yacr

field {C{, , }xyep,»p, given by
©) Cl.,) = () € TieyyC < Il > 1211,

for (x,y) € D, x D,. We first introduce the vertical condition as follows.

DeriniTioN 3.1. Let {Ha,,l}aemo be a Hénon family. Fix & > 0, and fix r > 0 such that
H, , satisfies the condition (2) with respect to r for a € D, \ {0}. Moreover, we assume that
0o < min{1/2, e}. We say that {H, A}QEM satisfies the vertical condition (VC),,, with respect
to &, r if the following three conditions hold:

(1) H A((D x D)\ (D, xD,/2)) € V™ and |Pr, (;,}1()5’ y)| > 2|y| for a € D, \ {0} and
(x,y) € V- U ((Dy xDy) \ (D X Dy2)).

(i) (DH, )iy (Cl,,) € C H-(xy 4N [Pr2 (DH,, D@l > 2l for a € Dy, \ {0},
(x, ) € Hyp(Dy X Dy) \ (D xD;)) N (D, xD,) and (£, n) € C(, .

(ii) There are a saddle fixed point s, 4 of H,, depending holomorphically on a € Dy,
and a holomorphic map f;: D, — C depending holomorphically on a € D, such

that W;OC(Sa,A) = {(fa(.l/), .I/) HY/RS Dr} and T(x Y) loc(sa /l) - C(x n for (xa _1/)
e W, (sa.0)

We see that most families {H; 1 }qen 5 satisfy the condition (VC),, by the following lemma.

Lemma 3.2. Fix A # 1. Then there is a positive constant 69 > 0 such that {H,, /l}aem%
satisfies the (VC)g .

Proof. Fix € > 0. We can take r > 0 such that each H, , satisfies the condition (2) with
respect to r for a € Ds, \{0} by taking a smaller oy if necessary. Assume that 6y < min{1/2, &}.

We show that the condition (1) in Definition 3.1 holds. For (x,y) € V- U (D, x D,) \
(D, xD,2)), we set (x1,y1) := H, '\ (x,4) = (y/a, (x—y*[a* = c(a, A))/a). We show |yi| > 2Jyl.
Since |x| < max{|yl, r}, we have

lay1| = |x — y*/a* - c(a, V)| = ly/al* - |c(a, V)| — max{|y|, r}.

To obtain |y;| > 2|yl, it suffices to show that |y/al> — 2|ally| — |c(a, )| — max{|y|, 7} > O which
is equivalent to |y|* — 2lal’ly| — |a*|c(a, D)| — |a]> max{|y|, 7} > 0. Note that |y| > r/2 by
(x,y) € VU (D, xD,;)\ (D, x D,p)). If a = 0, we have ly> > r?/4 > 0. Thus, we
can take 69 > O such that |y;| > 2|y| for a € Dy, \ {0}. Similarly, we have (x;,y;) € V™ if
(x,y) € (D, xD,) \ (D, x D,p) for a € Dg, \ {0}, taking a smaller ¢y if necessary. Thus,
{H,, ﬂ}aED(;O\{O} satisfies the condition (1) in Definition 3.1.

We next show that the condition (ii) in Definition 3.1 holds. Fix (x,y) € H, (D, X

D)\ (De x D)) N (D, X Dy) and (£, ) € C(, . We set (x1,y1) = H\(x,y) and (&1,m) =
(DH,)iep(&om). By (x1,41) = H, (%, 9) = (y/a, (x = y*/a* = c(a, D)) /a), we have {; = n/a
and 7, = (¢ - 2yn/a®)/a. By x; = y/a, we have nn; = ({ — 2x1n/a)/a. Thus we have

1 Rl
il > —(—2 I§I)_—(——1)|17I>—(——1)|n|>2|77|
a Tl a1

by 69 < min{1/2, g}. In particular, we have || > 1/|a|2e — |a])|{1] > (2&/|00| — DI&1| > |£1]
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by n = a{; and 6y < min{1/2, &}. Thus the condition (ii) holds for a € Dy, \ {O}.

Finally, we show that the condition (iii) in Definition 3.1 holds. There exists a saddle
fixed point s, ; of H, , depending holomorphically on a € Ds, by Lemma 2.13. By Lemmas
2.8 and 2.13, Wi (8q.0) = {(Ja(¥),94(y)) : y € gljl(D,)} for some holomorphic maps f;, g,
depending holomorphically on a € Ds,. Here, we remark that by Rouché’s theorem and
go(y) = y, there exists g;l in D, for a € Dy,, taking a smaller dy if necessary. Thus we
have W’ (s,1) = {(fa(ggl(y)),y) : y € D,}. In the case of a = 0, we have Wi (s0.0) =

loc
{Pr1so.} X D, and T,y W (s0.0) = {(¢{,n) : { =0} C (Y Since W} (sq,1) depends on a

(xey)*
holomorphically, by taking &y sufficiently small, we have |(f,(g;'(y)))'| < 1 fory e D,. O

Remark 3.3. The proof of Lemma 3.2 is still valid for perturbations {H, i}, D)ED3, XDy, (o)
where Ao # 1. That is, there is 69 > 0 such that the family {H,,}, DED;, XDy, (Ao) satisfies
(1), (i1), and (iii) in (VC)g,,.

RemARk 3.4. By the proof of Lemma 3.2, (i) and (ii) in Definition 3.1 hold for
{H,, A}aeD%\{o, without the condition A # 1 in Lemma 3.2. Moreover, for each £ > 0, there is
6o > 0 such that (ii) in Definition 3.1 holds for {H,, A}aeDo-O-

Consider a Hénon family {H,, /l}aeD% satisfying the (VC),,, and
(7) (D x D) N 5, =0,

for a € Ds, (see Remark 2.5 for the case a = 0). Let s, be. a saddle fixed point of H, ,
depending holomorphically on a € Ds,. Let o, := (U jez., H;Q(Wl‘;) .(82.0))) N (D, XD,). We
say that v is a vertical component of v, if v is a connected component of H;’A"(W]so (8a.))N

(D, x D,) for some m € Zsp. Under the assumption (7), we have
(8) Vaa - (Dr \ Ds) X Dr’

for a € Dy, by W¥(s,2) € J; , and (2). To construct a holomorphic motion of J; , N (C x {y})
over a € D, for each y € D,, we prove the following two lemmas.

Lemma 3.5. Suppose that {H,, ﬂ}aeD(sO satisfies the (VNC),, and the condition (7) holds for
a € Ds,. Let v, be a vertical component of v, , represented by {(f,(y),y) : y € D,} for
some holomorphic map f, depending holomorphically on a € Ds,. Then for each a € D,
H{;h(va) N (D, x D,) is the union of two distinct vertical components v, and v,,. Moreover,
va,j can be represented by {(f.,j(y),y) : y € D,} for some holomorphic map f,;j: D, — C
depending holomorphically on a € Ds, for j =1,2.

Proof. Let v, be a vertical component of v, ; represented by {(f,(¥),y) : y € D,} for some
holomorphic map f, depending holomorphically on a € D, .

We first show that the set H;lﬁ(va) N(Cx{w}) consists of exactly two points for w € D, and
a € Ds,. Fora = 0, fyis constant and Hy 4(x, y) = (x2+¢(0, 1), 0). Clearly, H&l (vo)N(Cx{w})
consists of exactly two points for w € D, since the critical value ¢(0, 1) of x% + ¢(0, A) does
not belong to fo(D,) (see (7)). For a € D, \ {0}, recall that Ha‘,ﬁ(x, y) = (y/a,(x — y?*|a® —
c(a, 1))/a). Consider the equation

) L) — y*la* - c(a, D) = aw,
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for a € Ds, \{0}. We set g,(y) := fu(y)—y*/a*—c(a, ) —aw and hy(y) := —f,(y)+c(a, D) +aw
for a € Ds, \ {0}. By v, C v44 C D, X D,, we have |f,(y)| < r for y € D,. If |a| < 1, then for

y e aDm, we have
lgaW)l = ly*/a?] = le(a, V| = law| = | f.(y)l = 3 = lal)r + 3lc(a, D) > r + |c(a, )| + |alr
> L))+ le(a, V)] + law] > |hy(y)].

By Rouché’s theorem, g, and g, + h, have the same number of zeros inside D EEEETIE

i 22 .
Since g,(y) + h,(y) = —y~/a”, the map g, has two zeros in D N e Moreover, the
map g, has two distinct zeros by using the condition (ii) and (iii) in Definition 3.1. Indeed,
let g.(yo) = 0. Then we have (yo/a,w) € H;j(va) N (C x {w}). By (8), we have |yp/a| > e.
Moreover, we have |f;(yo)| < 1 by the condition (ii), (iii) in Definition 3.1, and (6). Hence
we have

(10) |9, (wo)l > 12y0/a’| = |f(yo)l > 2&/lal — 1 > 28/ — 1 > 0,
by 6y < min{e, 1/2} (see Definition 3.1). Thus, g, has two distinct zeros in D N e

On the other hand, by dp < min{e, 1/2}, if y € D, satisfies |y| > \/(4r + 4|c(a, A)|)|al?, then

\fa)—y*/a*—c(a, V| 1y?/a®|=|fu(y)l—Ic(a, D] 3r+3lc(a, )|
> > >

lal lal |al

IPry H\(fu(y), )= r.

Hence, there are exactly two distinct solutions of (9) with respect to y € D,, which belong to
D N e This implies that the set H*fl(va) N (C x {w}) consists of exactly two points

for w € D,. Note that Ha"ﬁ(va) N ((C\ D,) x {w}) = 0 by (2), otherwise W*(s,,) N V" # 0.
Thus, Ha‘jl(ua) N (D, x D,) is the union of two vertical components of v, ;.

Recall that fy is constant. Assume fy = A for some A € C. Let 22 + ¢(0,1) — A =
(z=A1)(z—Aj3). Then we have H&;(vo) N (D, xD,) = ({A1} U{As}) X D,. There are positive
constants 9, €] > 0 such that d; < dg, D, (A1) N Dy, (A2) = 0, H{;}l(va) N(Dg (A) xD,) #0
for j = 1,2 and a € Dy, and H‘;;(va) N (D, xD,) ¢ (Dg (A1) UDg (A)) X D, for a € Dy,.
For a € Ds, and j € {1,2}, we let v, ; be the component of H;}l(va) N (D, x D,) which is
contained in D (A;) X D,.

We show that v, ; N (C x {w}) moves holomorphically over Dy, for each fixed w € D,
by using the implicit function theorem. We set F(a,y) := f.(y) — y*/a*> — c(a, A) — aw for
a € Ds, \ {0}. Since Tz, v C Cffa(y)’y) for y € D,, we have |0, f,(y)| < 1 for y € D,. Fix
arbitrary points a € Dy, \ {0} and Z; = Z;(a) with F(a,Z;(a)) = 0 and Z;j(a)/a € D (A)).
Then, we have (Zj/a, (fa(Z;) — Z?/a2 —c(a,)/a) = Zj/a,w) € va; N (C X {w}). By (8),
we have |Z;/a| > &. Since F(a,Z;) = gu(Z;), we have |0, F(a,Z;)| > 0 (see (10)). By the
implicit function theorem, {Z;/a, w} = v, ; N (C X {w}) moves holomorphically over Ds, \ {0}.
Moreover, Z;(a)?/a® = f,(3j(a)) — c(a, A) — aw since F(a,Z;(a)) = 0. Note that Z;(a) € D,
by r > |w| = |Pry H;ﬁ( fu(Z/),Z)l and (i) in Definition 3.1. Since f,(z) is holomorphic with
respect to a € Ds, and z € D,, f,(z) — fo(z) uniformly on m as a — 0. This implies that
Zj(a)Ja — Ajas a — 0since f,(z) = fo(z) = Aasa — 0. Thus {Zj/a} = v,; N (C X {w}))
moves holomorphically over Dy, .

For each a € Dy, \ D5, and each j € {1,2}, v, ; N (C X {w}) can be analytically continued
along a path connecting a and a point in Ds,. By the monodromy theorem, for each a € Dy,
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and each j € {1, 2}, there is a component v, ; of H A(va) N (D, xD,) such that v, ; N (C x {w})
moves holomorphically over D5, for each fixed w € D,. We show that v,; # v,» for each
a € Ds, \ Ds,. Assume that v, = v, for some a € Ds, \ Dg,. There exists a sequence {d,, } e
in {a € Dg, : v41 = v42) such that a, — ap asn — oo and

(1) |aol = infflal € Ds, : va,1 = va2}.

Clearly, we have |ag| > ¢ by the argument above. Moreover, we have v,,| = v4,2. Oth-
erwise, v, # U2 for all a in a small neighborhood of aj, which implies that a, ¢ {a €
Ds, : va1 = vq2} for sufficiently large n. Consider the vertical component v,, of v, 1.
Let H, A(vao) N (D, X D,) = g1 U Dy, for some vertical components ¥y, 1, Ug,2 Of V4.
There are open neighborhoods Uy, Uy of 4,1, 04,2 respectively such that Uy N Uy = 0.
We may assume that v, (= v4,2) = U4,,1. We take a positive constant 6, > 0 such that
H;;(va)ﬂ(D,xDr)ﬂ U; # 0for j=1,2anda € Ds,(ap), and H /l(va)ﬂ(D xD,) c U1UU,
for a € Dy, (ap). Recall that F(a,y) = f,(y) — y*/a®> — c(a, ) — aw for w € D,. We see that
|0, F(ao,Z1)| > 0, where Z; satisfies that F(ag,Z;) = 0 and (Z,/ag, w) € U, (see (10)). By the
implicit function theorem, v, ; N(Cx{w}) C U; moves holomorphically over Dy, (ap) for each
fixed w € D,. We can take & € Dy, (ap) with || < |ao| such that vz; = vz2. This contradicts
(11). Thus, H;j(va) N(D, xD;) = v41 Uuvgp and v, ; N (C X {w}) moves holomorphically over
Dy, for each fixed w € D, and j € {1, 2}.

Finally, we show that there are holomorphic maps f, 1, fo2> such that v, ; = {(f.j(¥),y) :
y € D,} for j = 1,2. Since Pry: v,; — D, is a bijective holomorphic map for a € Ds, and
J € {1,2}, there are holomorphic maps f, 1, fu2 such that v, ; = {(f.,;(¥),y) : y € D,} for
a€Ds, and j=1,2. O

Let W, be the vertical component of v, such that H, (W, ) C (Sq.1) and W, 1 N
W (Sa.2) = 0 for a € Ds,.

loc

Lemma 3.6. Suppose that {H, /l}aemé satisfies the (NC),, and the condition (7) holds for
a € Dy,. Then the two sets H; "Wa )N (D, xD,) and Ha’ (Wo) N (D, xD,) do not intersect
forn #m € Zso and a € Dy,

Proof. Fix a € Dg,. Assume that there are components v, and v, of H, A(Wa )N([D,xD,)
and H ’"(Wa 1) N (D, x D,) respectively such that v, N v, # 0. We may assume that n > m.
We see that H;'f () 1s a subset of some component of H;”+m(Wa, VN(D,xD,). On the other
hand, Hm}(vm) C W, 4. Thus, an intersection point of v, and v,, is mapped under HZf , Into
W N H‘”+m(Wa 0 N (D, xD,). Hence, we have H; " (Wa0) N W # (. This contradicts

a,/l(Wa,/l) C W} (Sa.0), Haa(W}, (Sa.0)) € W} (Sa.0) and W Wi (84.,0) N W,y = 0. Thus we have
proved Lemma 3.6. o

Let us consider the section S, := W*(s, 1) N(Cx{y}) for y € D,. Recall that Hy (x, y) =
(pa(x),0). We denote the Julia set of p, by J,,. We now construct holomorphic motions.

Lemma 3.7. Suppose that {H, /l}aeDé satisfies the (VC),,, and the condition (7) holds for
each a € Ds,. Then there exists a holomorphic motion h,,: Ds, X So, — C X {y} such
that hy,(a,(x,y)) € Sqay fory € D,, a € Dy, and (x,y) € Soa,. In particular, hy, can be
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extended to a holomorphic motion iz/l,y : D, X (Cx{y}) = Cx{y} and Ew({a} X (Jp, x{y})) =

Sa,/l,y'

Proof. By Lemma 3.5, H;’A'(Wa, 1) N (C x {y}) has exactly 2/ elements for each j € Zs,.
By Lemma 3.6, we have

Sany = Wie(sa2) N(Cx {yh) U |_| (H,(Wa2) 0 (C X {y})).
JE€Z5o
By (iii) in Definition 3.1, we have W} (s.1) = {(fa(¥),y) : y € D,} for some holomorphic
map f,: D, — C depending holomorphically on a € Dy, .

Let v, be a vertical component of v, ; such that v, N (C X {w}) moves holomorphically over
Ds, for each w € D,. By Lemma 3.5, there are two vertical components v, ; and v, of v,
such that H;ﬁ(va) N(D, XD;) = v4,1 Uvgp, and v, ; N (C X {w}) moves holomorphically over
Ds, for each fixed w € D, and j € {1, 2}. Thus, we can construct i, : Ds, X So 1, — C X {y}
such that hy ,(a, (x,y)) € Sy, fory € D,, a € Ds, and (x,y) € So1,. By Lemma 3.6, for
each fixed a € D, and y € D,, hy(a, (x,y)) is injective with respect to x with (x, y) € Sp .
The map h,, can be extended to a holomorphic motion 'fu,y: Ds, x Cx {y} —» Cx {y} and
ha,(la} x (J,, X {y}) = S, (see [11] and [19]). o

Corollary 3.8. Suppose that {Ha,A}aE]DJO satisfies the (VC),, and the condition (7) holds
for a € Ds,. Then J;’A N (D, xD,) = Uyep, Sary- In particular, J;’A N (C x {y}) is path
connected for y € D, if J,,, is connected.

Proof. We first show that

(12) WS(Sa,/l) N[O, xD,) N (D, xD,) = Ws(sq.0) N (D, X D),

as follows. Let (z1,w) € W3(s,0) N (D, X D,). Since (z1,w;) € D, X D,, for each n € N,
there exists (z1,, wi,) € W(s,1) N (D, X D,) such that (24, w;,) — (21, w;) as n — oo.
Thus (z1, wy) € Wi(s,2) N (D, x D,). Hence (z1, w;) € Wi(sg0) N (D, xD,)N (D, xD,). The
opposite inclusion is obvious. Thus we have shown (12).

We next show that

(13) S n @ xD) = | Say

yeD, yeD,

as follows. Let (z2,w2) € Uyep,(Sa.ay) N (D X D,). By (z22,wz) € D, X D,, we can take
(220, w2.0) € (Uyep, Sary) N (D, X D,) such that (22,4, w2n) — (22, w2) as n — oo. Let v,
be the vertical component v, ; which contains (2, w2,). Let x, € D, such that (x,,w,) €
vy To show (z2,w2) € Upyep, Sa1y> We show that (x,, w2) — (z2,wz) as n — oco. Since
[1Cxs w2) = (z2, w2l < [1(Xn, w2) = (220> W2 + (22,0 W2.0) — (22, w2)[, it suffices to show
that [|(x,, w2) — (a4, w2)ll = 0 as n — oo. Since Pry: v, — D, is a homeomorphism, we
can take a curve y: [0,1] — wv,, represented by y(s) = (f(s),g(s)), between (x,,w;) and
(221, W2,,) such that length, (Proy) = |wa, — wy|, where length,(Pr; y) is the length of the
curve Pr; y with respect to the Euclidean metric. Note that Pr; y is the segment between w ,
and wy. By (f'(s),9'(s)) € C;(S) (see (ii) in Definition 3.1), we have

1 1
|Mwwﬂmmm$mmﬂsﬁfmmwmwmm=ﬁfMmm
0 0
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Since fol lg’($lds = |wa,, — wp] — 0asn — oo, we have that ||(x,, w2) — (22, w2 )l = 0
as n — oo. Hence we have (z2,w2) € yep, m Therefore m NDO, xD,) c
Uyen, m The opposite inclusion is obvious. Thus we have shown (13).

By J7, = Wi(sq) (see [3]), W¥(sa)) N (Dy X D)) = Uyen, Sany» (12) and (13), we have

JN (0, xDy) = Wilsg) N (D, x D) = [ Sany) 0 (@ x D) = ] Say
yeD, yeD,

By the above, we have J; L NECx{yh = m for y € D,. Note that the condition
Dy, xD,)N J;r,/l = 0 for a € D5, implies that (D, x D,) N (J,, x C) = 0 since Ja/l =J, xC.
In particular, the critical point O of p, belongs to C \ J,,. Since J,, is connected, p, has
an attracting or parabolic periodic point. Hence J,, is the image of unit circle under a
continuous map (see [5]). In particular, J,, is path connected. Since m is homeomorphic
to J,, (see Lemma 3.7), the section J; 1N (Cx{y}) is path connected for each y € D,. ]

The following lemma is useful for checking whether J, ; is disconnected.

Lemma 3.9. Suppose that {Ha,/l}aem0 satisfies the condition (VC)., and the condition
(7) holds for a € Ds,. Then each vertical component v of v, contains a point of J,, for
a € Dg, \ {0}.

Proof. Let vy := v be a vertical component of v, ;. Inductively, let v, be a component
of H;E(vn_l) N (D, x D,) for each n € N. Then we have the nested compact sequence
{HZ’A(E)}nz() with HZJ(E) C Hg;ll(v,,_l) for n € N. For any a € Dy, we have J;ﬂ = K;ﬂ (see
Lemma 5.5 in [2]). A point of (),ay Hg;ll (v,—1) belongs to J, 4 since its backward orbit is

bounded and v is a subset of J; IE O

We now prove the first main result of this paper, divided into Theorem 3.10 and Theorem
3.11. Theorem 3.10 relates to the connected case, and Theorem 3.11 to the disconnected
case.

Theorem 3.10. Let {H,, ﬁ}aeD(sO be a Hénon family satisfying the (VC),, . Assume that the
condition (7) holds for a € Ds,. If the Julia set J,, of the polynomial p, is connected, then
the Julia set J, ; of the Hénon map H, , is connected for a € Ds, \ {0}.

Proof. Assume that J,,, is connected and 4 # 1. We first show that J; N[, xD,)is
connected. We take any distinct points (x, y;) and (x2, y>) in J:; 1N (D, xD,). We construct
a path between these points as follows. Let v be a vertical component of v, 4, and (z;, ;) be
the intersection of v N (C X {y,;}) for j = 1,2. Since Jl 1 N(C x{y;}) is homeomorphic to
Jp, for j =1,2,and J,, is a path connected, there exists a path between (z;,y;) and (x;,y;)
in J;“J N (C x {y;}) for each j = 1,2. We can take a path between (z;,y1) and (z2,4>) in v
since v is path connected. Thus, J;, N (D, X D,) is path connected, which implies that it is
connected.

We now show that J,, is connected. We see that J, 1 = [0 (Hg, /I(J;f’ LN (D, xDy))).

Moreover, we have H**'(J* N (D, xD,)) ¢ H* (J7, N (D, xD,)). Hence J,, is a nested
intersection of connected compact subsets. Thus J, ; is connected. ]
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We next show the following theorem.

Theorem 3.11. Let {H,, A}aeDg(, be a Hénon family satisfying the condition (VC),,. As-
sume that the condition (7) holds for a € Ds,. If the Julia set J,, of the polynomial p, is
disconnected, then the Julia set J, ) of the Hénon map H, ; is disconnected for a € D, \ {0}.

Proof. Assume that J,, is disconnected. That is, it is a Cantor set. We show that J,, is
disconnected. We can take a Jordan curve y; C C for each j = 1,2 with y; Ny, = 0 such
that J,, c Uy U Uz and J,, NU; # 0 for j = 1,2, where U; is the bounded domain with the
boundary y; for j = 1,2. Let fu,y: Ds, X (C x {y}) — C x {y} be the holomorphic motion
given in Lemma 3.7.

Fix a € Dg, \ {0}. Let y,,, := Prihy,(a} X (y; X {y})) € Cand Uy, ; = Pry hy,({a} x
(Ujx{y})) c Cfor j=1,2and y € D,. Since (y,,,; X {y})ﬁJ;”/l =(Qfor j=1,2andy € D,,
there exists €1(a, y) with 0 < g;(a, y) < r — |y| such that

(14) (| Oayi X Desap @ 0 I3, = 0,

yeD,

for each j = 1,2 and each y € D,. We now show that

2
(15) J5i 0 (€ X Detay®) € (| Uy ) X Derian®),

j=1
for each y € D,. Fix yp € D,. Let (z,w) € (C\ U§:1 Uayo.j) X m In order to
show (15), it suffices to show that (z,w) & J7, N (C X Dy, (ayy) (H))- If (z.w) € UL Yagos X
m, then (z, w) ¢ J; , by (14). Thus we may assume that (z,w) € (C\ U?:l m) X
D, (ayo)(Y0)- By assuming that (z,w) € J7; N (C X Dy, (ayy)(40)), We derive a contradiction as
follows. Note that w € D, by &((a,yo) < r — |yol- By m = J;’ - there exists a vertical
component vy of v, 4 and a point Z € C such that {(Z, w)} = voN(Cx{w}) c (C\ U?:l %)x
{w}. Let x¢ € C be the point such that {(xg, yo)} = vo N (Cx{yp}). By J;’A N(Cx{yo}) = Sary,
(see Corollary 3.8), we have J;/l N (C x {yo}) C (U?Z1 Uay,.j) X {yo}. Hence, we have
{(x0,y0)} = vo N(Cx{yp}) C (U?zl Uay,.) % {yo}. Since Pry: vy — D, is a homeomorphism,
we can take a path yg C vy N (C X Dy, (4, (y0)) between (xo, yo) and (Z, w). Then we have

(Priyp) N (U§:1 Yauyo.j) # O which implies that vy N ((U?:1 Yayo.)) X e (ayo)y0)) # 0. By
vy C J; , and (14), we have a contradiction. Thus we have (15) for each y € D,.

Uaor X Dew (Yp) Va2 X Deay (Yp)
2,v)

_/ (z,W)

(r’y ) Cx{Yo}

\
Vo

Fig.3. The case (x0,y0) € Uay,1 X {yo}

LetU; = Uyen, (Uay1 XDg (ay)2(y))- Since D, is compact, we can take a positive integer
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N € N and points yi, y», - - - ,yny € D, such that U; y := Ul,yzl(Ua,yj,l X Dg,(ay;)/2(y;)) satisfies

D, € Prp Uy n. Let v, ; be the union of all vertical components of v, , which intersect
Uayp,j X {0} for j = 1,2. We now show that

(16) Vo1 N (D XDyp) C Uy y.

Take a vertical component v; C v, of v, and a point w; € D,,. To show (16), it
suffices to show that v; N (D, X {w;}) c U;y. Let E,M,y: Cx{y} » Cx{y}, fza,w(x, y) =
h 1y(a, (x, y)) for y € D, and x € C. By the construction of ha .y (see the proof of Lemma 3.7),
Pri Uyep, My(vl N (C x {y})) consists of a single point of J, , say b;. We have b; € U; by
v1 N (Ugp,1 X {0}) # 0. Since w; € D,/,, we can take a positive integer k; with 1 <k < N
such that w; € Dgl(a,ykl)/z(ykl). Let x; € C be the point such that {(x;, yx, )} = v1 N (C X {yk, }).
By Pry h“yk (Uay, 1 X Ayi}) = Ur 3 by, we have (x1, yx,) € Uay 1 X Deyayy, )2y, ). This
implies that vlﬂ(Ua,ykl,l X{yr, }) # 0. By (14) and (15), we have {(z;, w;)} := v;N(D,x{w;}) C
Ua,ykl,l X {w;}. Otherwise, for any path in v; N (C X Dsl(a,ykl)ﬂ(!/kl )) between (z;,w;) and
(x1, Yk, ), the path necessarily intersects Yy, 1 X Dgl(a% y/2(yk, ). This leads to a contradiction
(see the proof of (15)). Thus we have v; N (D, X {w;}) C Uay, 1 X {w;}, which implies that
v N(D, X {u}) C Uﬂ,ykl,] X Dé‘](flsykl)/zq/kl) C U]’N. Thus we have (16)
By using (16), we show that

(17) Va1 N (D, xDy2) CUpn.

We have v, 1 N (D, X D,n) = UyeD,/z Va1 N (D, X {y}) by the same argument as in the
proof of (13). Thus, to show that (17), it suffices to show that v, ,; N (D, X {y}) € U, y for
y € D,jp. Fix @, € D,j;. By using the argument in the proof of (16), we can take k; € N
with 1 < lAq < N such that @, € Dgl(a,ykl)/g(y;q) and v, N (D, X {d}) C U‘Wh’l X {0 }.

By (14), v 11 N (D, x {@}) C Ua,y@],l X {i;}. In particular, we have v, N (D, X {d}) C
U‘l’%}lsl X Dgl(aa%}l)/Z(yiq) C Ul,N~ Thus we have (17).
We next show that

(18) Va2 N (Dr X Dr/Z) N Ul,N =0.

Note that m = U?’:](Ua,yj,l X D, (ay,2(y;))- Assume that there is (2o, w2) € V402 N
(D, xDy2) N m Let vy C v, 2 be the vertical component of v, ; which contains (z, w»).
By (14), we may assume that (zp,w;) € Ua,ka,l X Dgl(a,ykz)/z(ykz) for some k, with 1 <
ky < N. Let x; € C be the point such that {(x2,y,)} = v2 N (C X {y,}). By (14) and
7y € Ua,ykZ,l’ we have {(x2, yr,)} = v2 N (C X {yy,}) C Ua,ykz,l X {yr,}. Otherwise, for any
path in v N(CXDg, (a,)/2(Yx,)) between (x2, yx,) and (z2, wy), the path necessarily intersects
Yayiy1 X D, (@) /2(Yyk,). This leads to a contradiction (see the proof of (15)). Thus we have
v N(C X {yg,)) C Ua,yk2 1 X {yx,}, which implies that Pr; haM (2 N (C %X {yr,})) € U;. On
the other hand, v, N (U2 X {0}) # 0 since v C V0 1s @ Vertlcal component of v, 1. Thus
Pr, h 0(1)2 N(Cx{0})) c U,. Since Uy NU, = () and Pry UJGD, A y(l)g N (Cx{y})) consists
of a smgle point, we have a contradiction. This contradiction implies that (18) holds.
By using (18), we show that

(19) Va2 N(D, XD, p)NUpy =0.

By the same argument as in the proof of (17), it suffices to show that v, 1, N (D, X {y}) N
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W,N = 0 fory € D,j5. Fix i, € D,j5. By (18), we have v, ;2 N (D, X {th,}) N m = 0.
Note that m N (D, X {i,}) can be represented by a finite union of the sets m X {}.
Thus, by (14), we have v, 12 N (D, X {2}) N Uy v N (D, X {i2}) = 0. Hence we have (19) by
Va2 N (D x{wz}) N Uy N (D X {d2}) = Va2 N (Dp x {d2) NUy.

Finally, we show that J, , is disconnected. We set U, := (C X D, /) \ U;y. Then J,, C
U;ny U U,. Indeed, we have J,;, € D, X D,/» by (2) and (i) in Definition 3.1. Thus
Jaa € (Va1 UVga2) N (D, X D,pp). Therefore, by (17) and (19), J,1 € U y U U,. Clearly,
we have J,, NU; y # 0 by (16) and Lemma 3.9. Similarly, we have J,, N U, # 0 by (18)
and Lemma 3.9. Thus J,, is disconnected. O

4. Application for radial perturbations of semi-parabolic Hénon maps

In this section, we apply Theorem 3.10 to perturbations of semi-parabolic Hénon maps.
To consider the connectivity of J for the parameters near the boundary of the Mandelbrot
set, we consider perturbations of semi-parabolic Hénon maps by using a perturbation of one
eigenvalue of semi-parabolic fixed points. Let 19 = exp(2rim/[), where [ € Z\ {0}, m € Z
and (m,l) = 1. Let {A;},c10,5,) be a one-parameter continuous family of complex numbers,
where 6y > 0. Assume that /lﬁ =exp(L;+if)and R > 0, —» Oast — 0, where L, € R\ {0}
and 9, € R for 0 <t < &y.

DEerINITION 4.1 (RADIAL PERTURBATIONS). We say that a family RD, s, 1= {H,, }aeDa(],0<t<6o
is a radial perturbation of the semi-parabolic Hénon family {H, ,, }aeDJO if 6, = O(L,).

In order to apply Theorem 3.10 to RD,, 5,, we first check that the section {H, 4, }aeDb.O of
RD,, 5, satisfies the condition (VC),,, for each # with 0 < ¢ < dy.

Lemma 4.2. There is 69 > O such that the section {Ha,/l,}ae]D)go of RD,, 5, satisfies the
condition (VC),, for each t with 0 < t < 9.

Proof. If Ay # 1, then the section {H,, /l,}aeDaO of RD,, s, satisfies the (VC)., for 0 <t <y
by Lemma 3.2, taking a smaller ¢y > 0 if necessary (see Remark 3.3).

Assume that g = 1. We may assume that each H,,, € RD, s, with a # 0 satisfies the
condition (2) with respect to r by taking a smaller dy and a larger r if necessary. Fix € > 0.
We can show that {Ha’/b}uem0 satisfies (1), (i) in Definition 3.1 for 0 < ¢ < ¢ in the same
way as in the proof of Lemma 3.2, taking a smaller 09 > 0 if necessary (see Remark 3.4).
Thus it suffices to show that {H,, Ar}aeDJO satisfies (iii) in Definition 3.1 for 0 < ¢ < ¢y, taking
a smaller 6¢ > O if necessary.

To show that (iii) in Definition 3.1 holds, we first show that H, ,, has a saddle fixed point
for 0 < t < ¢p. In order to show this, we show that H,, has two distinct fixed points.
Consider the equation (x> + c(a, A;) + ay, ax) = (x,y). By y = ax, we have

(20) 2+ (@ = Dx+cla,A,) =0.

Assume that (x — a@)(x —8) = x* + (a®> = Dx + c(a, 4,). If @ = B, thena = 1/2 — a*/2. In
this case, H,,, has only one fixed point (1/2 — a*/2,a/2 — a*/2). Since H,,, has a fixed
point q, , = (/2 — a*/(2A),a(A,/2 — a*/(24,))) (see (4)), we have A, = 1 or A, = —d’.
Since 49 = 1, we have A, = 1 for a € Dy,, by taking 69 > 0 so that 0 < dp < 1/2 and
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|| > 1/2 for O < t < p. This contradicts A, = exp(L, + i6,) with L, # 0 for 0 < t < 6.
This contradiction shows that H, ; has two distinct fixed points. The other fixed point of
Hy isugy = (1 - a’> - Pr; q,.qa(l - a’ - Pr; q,.)) by (20). These fixed points q, ,, U1
depend holomorphically for (a, 4) in a small neighborhood of (0, 1). At least one of the fixed
points q,, , , Usy, is a saddle by q,, , # ., (see [14, Theorem 7.1.16, p.234]). Hence, there
is a fixed point s, 4 of H,, depending holomorphically for (a, 1) in a small neighborhood of
(0, Ap), and s, 4, is a saddle fixed point of H, ,, € RD,, s,, by taking a smaller ¢ if necessary.

Finally, we show that (iii) in Definition 3.1 holds. Let @ 1(z) := (Pr; so.4,z) and @, ; be
the parametrization of W**(s, ;) for (a, 4) € Dy, \ {0} X Ds,(1o) given by (5). In the same way
as in the proof of Lemma 2.13, d)a,/l(z) is holomorphic with (a, 4,z) € Ds, X Dg,(1o) x C.
We have Wi (a.1) = {(®a11(D,',»).y) : y € D} for (a,4) € Dy, X Dg,(do), taking a
smaller 9y if necessary, where @, = (P, 1.1, P,12) (see the proof of Lemma 3.2). We have
Sady = Q. SINCE Uy, q, ) — 4, , a8t — 0. Since Wi¥ (qq,,) = {Pr1qp,,} X D;, we see
that T,y W} (Sa.0,) € C{,,, for (x,y) € W} (S4.4,), a € Ds, and 0 < 7 < 6p, taking a smaller

(x.y) loc
0o > 0 if necessary. Thus, H, 5, € RD,, 5, satisfies (iii) in Definition 3.1 for 0 < ¢ < dy. ]

We next prepare local coordinates near semi-parabolic fixed points to check that the con-
dition (7) holds for RD,, s, .

Lemma 4.3 ([16, Theorem 3.5 and its proof]). Let r > 3 be a fixed constant, Ay :=
exp(2rim/l) and A; := (1 + t)Ag where t € R. Then, there exist 6 > 0,6" > 0 such that for
lal < 0 and |t| < & there exists a coordinate transformation ¢o;: B = D, (Pry qq, 1) XDy —
Dy X Drsoa Such that ¢,(d,,) = (0.0), W (q,,,) € Dy (Pry ) X Dy, bW (G,)) ©
{0}XC, the image of any horizontal curve Dy (Pry qq ) X{y1} under ¢, is a subset of Cx{ya}
for some y> € Do), and I:IM, = s 0 Hyp, © ¢;}, I:Ia,lr(x, y) = (X1, Y1) has the form

1) (X1, Y1) = (A(x + X+ Coxd®™ + b gopa )X + ), Vaay + xha (X, ),

where C,; is a constant depending only on a and t, xh,,(x,y) = O(a) and v,; is the other
eigenvalue of (DHy,y,)q,, - Moreover, the transformation ¢, is analytic for a and t,

(lzi_{% ¢a,t(x’ .’/) = (¢t(x)a y),

uniformly for t. The map ¢,: Dy (Pry qq ) — D, is the transformation of the polynomial p,,
and

¢ 0 Pa, © ¢t—1(x) =A(x+ xl+1 + CO,tleH + 0(x21+2)).

For r > 3, A9 = exp(2nim/I), if (¢, a) € P,, with sufficiently small |a, then the sets U*
given in Definition 2.3 satisfy the equations (2). The condition A, = (1 + )4y in Lemma 4.3
corresponds to §; = 0 for 0 < # < ¢y in Definition 4.1. To see that H,,, € RD,, s, has the
form (21) (Lemma 4.4), we sketch the proof of Lemma 4.3.

Sketch of the proof of Lemma 4.3. The proof of Lemma 4.3 breaks into four steps.
Step 1. Let @, 3, = (Py,.1, Py a,2) be given in Lemma 2.8. Then @, 4, (y) = Do 4,(y) + O(a)
by Lemma 2.8. For sufficiently small |a| and |f|, we may assume that there exists (D;’lﬂhz in
D, by Rouché’s theorem and @, 4, »(z) = z. For (x,y) € C X D,, consider the transformation
(22)

(X, ) = (x = @yt 1 (@1 @), O (1)) with inverse (x,y) = (X + Dy, (Y), @ 2(V)),
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which maps W?*

loc

(q,,,) into {0} X C. By using the transformation (22), H, 4, and H,, have
the forms

Bas1 (V)X + baa(VX* + -+ vy, Y + Xhe (X, Y)) and (1,X + X2,0),

respectively. Note that b,,1(0) = 4, and b, 1(Y) = A, + O(a) since D, ,(y) = Dy ,(y) + O(a).
Step 2. Suppose that H, »,(x, y) has the form

(23) Basn WX + bao)X* + -+, Vary + xha,(x, y)).
Let us reduce the function b, (y) to b,;1(0) = A, (see Proposition 3.2 in [17]). Since

ba,l,l (VZ,M)

) =1+ 0(,,y), the product
t

bas1(Vy,y)
ua) = | | (IA—)

n>0
converges for y € D,. By using (X,Y) = (uq:(y)x,y) with inverse (x,y) = (X/u,(Y),Y),
(23) has the form
g (VarY +Xho (X/ug (Y), Y)/Ma,t(Y))X(ba,z,l(Y)X/ua,t(Y)+ba,t,2(Y)(X/”a,t(Y))2+‘ )
Uat(Vai¥)bar1(Y)
= e e O(XD)=A,X+O(XP),
ua,t(Y)

in the first coordinate.
Step 3. We may assume that H, 4, has the form

(A + b o)X + bay3(Y)X + -+ Vasy + xhas(x, y)).
We next reduce the function b, (y) to constants by induction on 2 < k < 2/ + 1. Consider
24) (X +ba2X + bar3x + -+ bagp 1 X+ b+ vy + xh(x,y)),

where b, ; is constant for j = 1,2,...,k — 1. We set
bas®) = ) (bask V) = bass O,
n=0

This series converges since |v, ;A < v, ,4?| < 1 for sufficiently small ¢ and |a|. By using
local coordinate (X, Y) = (x + v, (y)x*, y) with inverse (x,y) = (X — v, ()X  + -+, Y), (24)
has the form
AX 4+ b1 X+ (V) + A0 (VagY) = Atg (YDX* + OX
= X+ 4 bup 1 X+ b (0)XF + OXF,

in the first coordinate.
Step 4. We may assume that H, ;, has the form

2 201 242
A(X +Dayox” + -+ baioi1 X7 + bayoo(y)xTTT + 00,

in the first coordinate. We reduce b, to O for each k with2 <k <2/ + 1and k—1 ¢ IN by
induction. We first assume that H, ,, has the form
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(25) (X + by g + o+ by T,

in the first coordinate. By the local coordinate
(26)
(X, Y) = (x = Aba e /(A = A, ) with inverse (x, y) = (X + Aba X /(A = ) + -+, ),

(25) has the form
X + (Abar = (A8 = A)Aba i/ (A = ANXE + -+ = 4,X + OXF.

By induction and a linear transformation, we may assume that the first coordinate of H,
has the form

I+1 1+2 20+1 20+2
(X + X7+ baggax ™+t b1 X7+ bagon2 ()X A ).
We next assume that H, ,, has the form
27 (x4 X 4 b - b T ),

in the first coordinate. By induction, we reduce b, to O for each k with / + 2 < k < 2[. By
(26), (27) has the form

X+ XM + Ubask = (A = A Abasi/ (AF = ANX" + -+ = (X + X" + 0X*),
in the first coordinate. Therefore, we may assume that H, ,, has the form
L+ X+ Co® ! 4 by 210 () + 03,

in the first coordinate. Hence we have Theorem 4.3. Note that, by repeating Step 3 and Step
4, H, 4, has the form

(28) (A(x + 2+ Cogxd® ™+ bzt D + ), Vagy + xhay(x, y)).

We obtain the following lemma by the same computation as in the proof of Theorem 3.5
in [16].

Lemma 4.4. There is 69 > 0 such that by a coordinate transformation ¢,,, ¢,,0Hy 2, oqf);}
has the form (21) for each H,, ,, € RD,, s,.

We now prove the second main result of this paper.

Theorem 4.5. There is 6o > O such that each H,,, € RD,, s, with a # 0 has connected
Julia set J, ,,.

Proof. It suffices to show the statement of Theorem 4.5 for H,, ;-1 instead of H,,,. More-
over, by Theorem 3.10 and Lemma 4.2, it suffices to show that there are £ > 0 and 59 > 0
such that (D; x D,) N J;,/l;l =0 for H, -1 € RD)-1 5, and Jp,l,-l is connected for 0 < 1 < §y.

We first consider the case 4y = 1. By a transformation ¢, (see Lemma 4.4), ¢, ;0 H, A1 0
¢} is of the form

(29) (1t y1) = (7 (x+ X2+ Cuyx + 0, (X)), Vauy + xhy,(x, 1),

in D, X D,,0(a), Where the notation O,(x) represents a holomorphic map of (x,y) which
is bounded by K|x|* for some K. By the transformation ,(x,y) = (-1/(4,x),y), the map
Wi 0 Gas o Hyyor 0 ¢y 0 (X, Y) = (X, Y1) is of the form
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(30)
(A X+ 1490, (X, V), Vas Y+ far(X, 1)) = (AX + 1+ Dy /X + Oy (1/1XP), v, ¥ + Oy (1/1X1)).

We take a constant M > 0 such that

31 XY — and X, Y —M
< <
(3D |ga (X, Y)| < X and |fq (X, Y)| < X!

fora € Dy, and 0 < ¢ < 6p. Recall that ¢, is a transformation from D, (Pr; q; ;) X D, to
Dy X Dy1ogap- Since Pra ¢, ,(x, y) = y + O(a) (see the sketch of the proof of Lemma 4.3), we
may assume that the forms (30) are defined in {|X| > 1/p} X D, and the inequalities (31) hold
for (X, Y) € {|X] > 1/p} XD, Note that ¥/, © ¢q(q, 1-1) = (e0,0). We set (Xo, Yo) := Yoo doo°
Hé\f -1(0,0) for some large N € N. We have Re Xy > 1/p, by taking a larger N if necessary,
since the forward orbit of critical point O under p 45! converges to its parabolic fixed point
(see [1], p.120). Let y > 0 be a number such that D, (Xo) XD, C {X € C: Re X > 1/p} X D,.
We set E := D, (Xo) X D,. We consider the affine transformations

Xo — b,

z—-b
: w) and Q7" (z.w) = ((Xo = bz + by, w), where by := —.
-4

01z, w) = [

We set

Foizow) = Qo0 a0 Hypr 0¢,; 07" 0 Q7 (zow).
Then, we have

—1 —1 —1 ga,t((XO - b;)Z + bt, w)
Prl Fa,t(Z7 w) = Prl Ql o l//l o ¢a,t OHa’/l;] o ¢(l,l‘ o l//t o Ql (Z, w) = /l[Z + .

Xo— by
We set
oty = BB b)
Further we set E'(= E}) := Q,(E) and U’(= U]) := Q«(U), where U = {|z| < 1/p} xD,. Then
we have
, ) b | 1
E :{zEC:lz—H < |bt_XO|}XDr and U Z{ZECI z- bt—X0| <p|b,—Xo|}XD"

Clearly, if p and ¢ are sufficiently small, then for each a € D55, and each 7 € (0, §p), we have
(32) Pry F,,((CxD,)\ U") C D,.

Indeed, [Pr ;0 $ © Hy g1 0 67} 0 47 (X, V)| < v Y1 + M/IX| < vaglr + Mp for (X, Y) €
{IX| > 1/p} X D, (see (30) and (31)). Recall that v,; = —az//l,‘1 and |4p| = 1. By taking p
and ¢ with sufficiently small, we have |v,|r + Mp < r for a € D5, and 0 < 1 < dp. Since
Pr, O,(z, w) = w, we have (32).

By Xo = Pri g o ¢ © Hév,%l(O, 0), E = Dy(Xo) X D, and (32), we have Q; o ¥ © ¢g; ©
HQ’II(DSXD,) C E’ fora € Dg, and 0 < 7 < 6, by taking 6o > 0 and & > 0 sufficiently small
if nécessary. Thus, to show that there are € > 0 and &y > 0 such that (D, x D,) N J: = 0
for H, -+ € RD -1 5, it suffices to show that there is 6o > 0 such that o
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(33) ey nu = FEDnUp =0,

keN keN

fora € Dy, and 0 < ¢ < ¢y, taking smaller y > 0, p > 0 and a larger N € N if necessary.
Indeed, if (33) holds for F,,, then | J,50 H;’ o (D, xD,) is a bounded set of C?, which implies
that D X D, C IntK,,, A To obtain (33), wé show the following Claims 1,2,3.

Claim 1. For sufficiently small ¢y, the following hold. If L, > 0 for 0 < ¢ < &y, then
U cDxD,forO<t<dy. If L, <0for0<t<dg,thenU N(DxD,)=0for0 <t < dp.

PriE.(E") E«(E")
an ey
NN

Fig.4. L, > 0 and 6, > O (left), L, < 0 and 6, > 0O (right)

1Dl .
b = Xol

We prove Claim 1. Assume that L, > 0 for each 0 < t < ¢§p. We show that

1

W < 1 for sufficiently small ¢ to obtain the conclusion. The inequality is equivalent
Py — Ao
to

(34) 1T = Xo(1 =) =1 = Al/p—1>0.

Let x; := Re(4;—1) and y; := Im(4;—1). Then, x; = L, + O(L,Z) and y; = 6; + O(6;L;). First,
we have

[T+ Xo(4; — D) \/ (1 +Re(Xop)x1 — Im(Xo)y1)* + (Re(Xo)y1 + Im(Xo)x1)?

\/1 + 2Re(X0)x1 — 2Im(X0)y1 + 0(()61 + yl)z)

= \/ 1 + 2Re(Xo)x; — 2Im(Xo)y; + O(L?)
1 + Re(Xp)x; — Im(Xo)y; + O(L?).

We now show the inequality (34). By the above computation, we have
1= Xo(1 = ) = 1 = Al/p = 1 = Re(Xo)x1 — Im(Xo)y1 + O(LY) = |1 = A/l /p.

Recall that Xo = Prj g o ¢gp © H(])\f[](o, 0). Since ReXy > 0,0 < x; < L;, y; = O(,)
and |1 — A, = O(L,), we have the asseortion, taking a large N € N so that [Im Xy|/Re X, and
1/(pRe Xy) are sufficiently small (see [1], p.120), where x; =< L, means that there is K > 0
such that L,/ K < x; < KL, for sufficiently small 7.

b4l 1

o b= Xol  plb = Xol
small ¢. The inequality is equivalentto 1 — |1 — 4,|/p — |1 — Xo(1 — 4,)] > 0. We have

Assume that L; < 0 for 0 < t < dp. We claim that

> 1 for sufficiently

L= 1= l/p =11 = Xo(1 = )| = =|1 = Al/p — Re(Xo)x1 + Im(Xo)y; + O(L}).
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By Re Xy > 0 and x; < 0, we have the assertion, taking a larger N € N so that |Im Xp|/Re Xy
and 1/(pRe Xp) are sufficiently small if necessary (see [1], p.120). Thus, we have proved
Claim 1.

Claim 2. For sufficiently small ¢y, the following hold. If L, > 0 for 0 < t < ¢y, then
|Pry Fu (z,w)| > eb/?|z| > || for a € Ds,,0 < t < & and (z,w) € ({lz] > 1/2} xD,)\ U".
If L; < O0for 0 <t < ¢, then [Pr; F,(z, w)| < el'?|z| < 7| for a € Ds,,0 < t < 6p and
(z,w) € ({lzl > 1/2} xD,) \ U".

We prove Claim 2. Assume that (z, w) € ({|z]| > 1/2}xD,)\ U’. By using the inequality (31),
we have

Gas(zw)  2|Gas(z, )l 2Mp 2Mpll = A4

< < .
|zl — eB 2zl el — eld/2] T el — eli/2|| X — by  el/2|el 2 — 1] Xo(1 — A;) — 1

Since |1 — A;| = O(L;), there exists a positive constant dy such that the ratio is less than 1/2
if 0 < 1 < ¢y, taking p > O sufficiently small if necessary. We note that the constant ¢y does
not depend on z. By the inequality

(35) |zl — Pzl = |Gay(@)] < IPry Foy(z, w)l — %[z < Azl — e""21z] + |Gz, w),
the statement of Claim 2 holds.

Claim 3. For sufficiently small ¢y, the following hold. If L, > 0 for 0 < r < 9y, then
Fo(E')YN(D xD,) =0fora € Dsyand 0 < ¢t < 6g. If L, < 0 for 0 < ¢ < 6y, then
F./(E") cDxD,foraeDs,and 0 <t < 9.

We prove Claim 3. Let (z,w) € E’. Then, we have z = 1 + z9, where |z9| < v/|b; — Xol.
Since

[Pry Fyi(z,w)| = [A,(1 + 20) + Ga (1 + 20, w)| = |A; + 4120 + Gy (1 + 20, W),
we have
e —A,z0 + Go (1 + 2o, w)| < |Pry Fou(z,w)| < €™ + 20 + Goy(1 + 20, ).

Since |z9] < v/|b; — Xo| = O(L,) and |G, (1 + z9)| < Mp/|Xy — b;] = O(L,), we have the
assertion, taking smaller v, p if necessary. Hence, we have proved Claim 3.

We now show that there is 6o > 0 such that F% (E)) N U’ = 0 for a € Ds,,0 < 1 < &
and each k € N by using Claims 1, 2, and 3. First, assume that L, > 0 for 0 < ¢ < §p. By
Claim 1, U’ ¢ D x D,. By Claim 3, F,,(E')N (D xD,) = 0, and so F,,(E") N U’ = 0 for
a €Ds,and 0 <t < ¢y. By U € D XD, and Claim 2, we have |Pr; F,,(z, w)| > |z| > 1 for
(z,w) € (C\D)xD,, and so F,,((C\D)xD,) c (C\D)xD,. By using F,,(E’) c (C\D)xD,,
for k > 2, we have

Fi(E) = Fi\(F.(E)) c Fi'((C\ D) x D,) € (C\ D) X D,.

Hence, we have FX (E') N U’ = 0 fora € D,, 0 < 1 < 6y eachk € Nby U’ ¢ D x D,.

Assume that L, < 0 for 0 < ¢ < §p. Similarly, we have F,,(E’) N U’ = 0 for a € D;, and
0 <t < dp. We note that U’ ¢ (C\ D) x D, by Claim 1. Therefore, F,, is defined in D X D,..
It is easy to see that
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(36) Fo (D1 xD,) CDyz XDy,

fora € Dy, and 0 < ¢ < 6y, taking a smaller 6 if necessary. Indeed, if (z,w) € MXDH then
[Pry Fui(z, w) < |42l +1Gas(z, w)| < 14,1/2+ Mp/(IXo — by|) < 2/3 for a € D, and 0 < £ < &,
taking a smaller ¢ if necessary. Thus we have (36). By Claim 2, U’ c (C \ D) x D, and
(36), we have |Pr| F,(z,w)| < |z] < 1 or |Pry Fy(z,w)| < 2/3 for (z,w) € D X D,, and so
F,/(DxD,) c DxD,.Fork > 2, we have

Fi(E) = Fi\(F(E)) c Fi{(DxD,) c DX D,.

a,t

Hence, we have F (E') N U’ = 0 for a € Ds,,0 < 1 < &) and each k € N by U’ N (D X
D,) = 0. Hence we obtain (33). This implies that there are 6y > 0 and £ > 0 such that
(DexDNJ, o= 0 for a € Dy, and 0 < ¢ < ¢. For the constant € > 0, {Ha,/ll}aem% satisfies
the condition (VC),, for 0 < ¢t < ¢y by Lemma 4.2, taking a smaller d, if necessary (see
Remark 3.4).

In order to apply Theorem 3.10 to {H,, o }“€Déo for 0 < t < ¢y, we show that J po1 C Cis
connected for 0 < 7 < 6. It suffices to show that p -1 has an attracting fixed poiflt. Since
;- has a fixed point with multiplier A7 = exp(=L, —i6,), if L, > 0 for 0 < t < &, then p o
has an attracting fixed point. If L, < 0 for 0 < ¢ < 9, then Fp,(D x D,) c D x D, by Claim
2 and (36). Thus p,-1 has an attracting fixed point.

In the case of [ > 2, by the transformation X = —1/ (x)),Y = y and a linear transformation,
the form of (28) with A, replaced by 47! is conjugate to

(X1,Y1) = AX + 14Dy /X + Oy(1/X%),v,Y + Oy(1/1X]'h)).

Similar to the case of [ = 1, we can show the statement in Theorem 4.5 in the case of [ > 2.
m]
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