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Abstract
In this paper, we prove some new connectivity of the Julia sets J of the complex Hé non maps

H(x, y) = (x2+c+ay, ax) with sufficiently small |a|. We investigate the connectivity of J for the
parameters near the boundary of the Mandelbrot set. We first give some conditions related to
the connectivity of J for sufficiently small |a|, which are useful for considering the connectivity
of J for the parameters near the boundary of the Mandelbrot set. We consider a perturbation
{Ha,λt }a∈Dδ0 ,0≤t<δ0 of dissipative semi-parabolic Hénon maps Ha,λ0 such that det DHa,λt = −a2

and Ha,λt has a fixed point qa,λt
for which (DHa,λt )qa,λt

has an eigenvalue λt. Assume that λt →
λ0 = exp(2πim/l) ∈ ∂D as t → 0 and λl

t can be represented by exp(Lt + iθt) with Lt � 0 for
0 < t < δ0. We prove that if θt = O(Lt), then the Julia sets Ja,λt for a ∈ Dδ0 , 0 < t < δ0 are
connected by using the conditions above.

1. Introduction

1. Introduction
In this paper, we deal with the connectivity of the Julia sets of complex Hénon maps.
In one-dimensional (1-D) complex dynamics, we consider a complex polynomial fc(x) =

x2 + c, c ∈ C and the Julia set J fc of fc. The Julia set J fc of fc is defined by the boundary of
the filled Julia set Kfc := {z ∈ C : { f n

c (z)}n∈N is bounded}. Note that the notation f n
c is the

n-fold composition of fc. The Mandelbrot set  is defined by {c ∈ C : J fc is connected}.
It is known that the Julia set J fc of a polynomial fc is connected if and only if Kfc contains
the critical point 0 of fc in C (see [13]). By using the fact, it is easy to find the boundary of
the connectedness locus for parameters c ∈ C. For example, the Julia set J f1/4 is connected,
and the parameter 1/4 belongs to the boundary of the connectedness locus. Indeed, J f1/4+ε
is connected if ε < 0, and J f1/4+ε is disconnected if ε > 0. The parameter c = 1/4 is called
a parabolic parameter since f1/4 has a parabolic fixed point 1/2. Let us consider how the
parameters c for which J fc is connected can approach parabolic parameters. Let us explain
this by using perturbations of multipliers of parabolic fixed points. We say that a point α ∈ C
is a parabolic fixed point of fc if fc(α) = α and f ′c (α) is a root of unity. Here we consider
the case where fc0 has a parabolic fixed point α0 with multipliers λ0 := exp(2πim/l), where
l ∈ Z \ {0}, m ∈ Z and (m, l) = 1. Consider a one-parameter continuous family {λt}t∈[0,δ0),
where δ0 > 0. Assume that λl

t = exp(Lt + iθt) and R � θt → 0 as t → 0, where Lt ∈ R \ {0}
and θt ∈ R for 0 < t < δ0. Let { fct }t∈[0,δ0) satisfy that fct has a fixed point αt with multiplier
λt. We say that λl

t converges to 1 radially if θt = O(Lt). If θt = O(Lt), then { fct }t∈[0,δ0) has
nice properties (such as continuity of J fct

, continuity of the Hausdorff dimension of J fct
) (see
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[12]). In particular, we see that Jct is connected for each t ∈ (0, δ0), taking a smaller δ0 > 0
if necessary.

Let us explain radial convergence by observing the main cardioid 0 := {c = λ/2−λ2/4 :
|λ| ≤ 1} of the Mandelbrot set  (Figure 1). For this purpose, we set pλ(x) := x2 + λ/2 −
λ2/4, which has a fixed point λ/2 with multiplier λ. The parameter c = 1/4 is a parabolic
parameter. That is, the polynomial p1(x) = x2+1/4 has a parabolic fixed point 1/2. Consider
a family {pλt } with λt → 1 as t → 0. We set ct = λt/2−λ2

t /4 and λt = exp(Lt + iθt). If θt = 0,
then the parameters ct approach 1/4 in Int0 ∩R (the first of Figure 1). If parameters ct in
the sector in the second of Figure 1 approach 1/4, then λt satisfies θt = O(Lt). We remark
that there is a family {λt} such that the corresponding parameters ct ∈ Int0 approach 1/4
as t → 0. For example, if parameters ct approach 1/4 in the curve near ∂0 in the third
of Figure 1, then λt satisfies θ2

t = o(Lt) and θt � O(Lt). On the other hand, if parameters ct

approach 1/4 in R>1/4, then J fct
is disconnected and θt � O(Lt) (see fourth of Figure 1).

Fig. 1. θt = 0 (first), lim supt→0 |θt/Lt| ≤ 1/
√

3 (second), θ2
t = o(Lt), θt �

O(Lt) (third) and disconnected (fourth)

In the case of two-dimensional (2-D) dynamics, for (c, a) ∈ C2, we consider the qua-
dratic Hénon map of the form H(x, y) = (x2 + c + ay, ax). For a diffeomorphism F(x, y) =
(F1(x, y), F2(x, y)) from an open set U ⊂ C2 to C2, we set

(DF)(x0,y0)(ζ, η) :=
(

(F1)x(x0, y0) (F1)y(x0, y0)
(F2)x(x0, y0) (F2)y(x0, y0)

) (
ζ

η

)
,

for (x0, y0) ∈ U and (ζ, η) ∈ T(x0,y0)U. We have

(DH)(x,y) =

(
2x a
a 0

)
,

for (x, y) ∈ C2. The map H has constant Jacobian −a2, i.e., det (DH)(x,y) = −a2 for all
(x, y) ∈ C2. Unlike 1-D dynamics, we can consider the inverse H−1 of H if a � 0. Let K±

be the set of all points (x, y) ∈ C2 such that {H±n(x, y)}n∈N is bounded in C2. We consider
the Julia sets J± := ∂K± of H. Furthermore we denote J by the intersection of J+ and J−.
It is known that J± are connected (see [2]). The Hénon connectedness locus is the set of
parameters (c, a) ∈ C × C \ {0} for which the Julia set J is connected. Let us consider the
condition that J is connected. Unlike one-dimensional dynamics, Hénon maps H do not have
critical points for a � 0. Instead, it was suggested to consider critical points of the Green
functions along the unstable manifolds of the saddle points to compute the connectivity of
the Julia sets (see [4]). The Julia set J is connected if and only if the restriction of the Green
function G+(x, y) := limn→∞(1/2n) log+ ‖Hn(x, y)‖ on the unstable manifold of some saddle
point has no critical points in K+ (see [4] and [10, Theorem 3.3]). However, it is not easy
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to find the boundary of the Hénon connectedness locus. Our result (Theorem 1.2) describes
the local geometry near semi-parabolic parameters (c, a) if |a| is sufficiently small.

Let λ ∈ C \ {0}. To consider the connectivity of J for the parameters near the boundary of
the Mandelbrot set, we consider a Hénon family for which each element of the family has a
fixed point such that one of the eigenvalues of DH at the fixed point is λ. Then, the set λ

of parameters (c, a) ∈ C2 for which the Hénon map H(x, y) = (x2 + c + ay, ax) has a fixed
point q such that λ is an eigenvalue of (DH)q is the curve of equation

(1) c = (1 − a2)

⎛⎜⎜⎜⎜⎜⎝λ2 −
a2

2λ

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝λ2 −

a2

2λ

⎞⎟⎟⎟⎟⎟⎠
2

.

We denote the right hand side of equation (1) by c(a, λ). Moreover, we set Ha,λ(x, y) =
(x2 + c(a, λ) + ax, ay) and pλ(x) = x2 + c(0, λ). We denote the Julia sets of Ha,λ by J±a,λ, Ja,λ

instead of J±, J respectively. Based on the above notations, we now present the first main
result of this paper.

Theorem 1.1. Assume that a Hénon family {Ha,λ}a∈Dδ0 satisfies the vertical condition
(VC)ε,r with respect to ε > 0, r > 0 (see Definition 3.1). Suppose that (Dε × Dr) ∩ J+a,λ = ∅
for each a ∈ Dδ0 . Then the Julia sets Ja,λ of the Hénon maps Ha,λ for a ∈ Dδ0 \ {0} are
connected if and only if the Julia set Jpλ of the polynomial pλ is connected.

We regard Dε ×Dr as a neighborhood of the critical point z = 0 of pλ in two dimensions.
Note that most families {Ha,λ}a∈Dδ0 satisfies the (VC)ε,r. Indeed, if λ � 1, then there is δ0 > 0
such that {Ha,λ}a∈Dδ0 satisfies the (VC)ε,r (see Lemma 3.2). The assumptions of Theorem
1.1 imply that the stable manifold of a saddle fixed point of Ha,λ intersects transversely
horizontal direction in Dr ×Dr. From this, we can construct a holomorphic motion of J+a,λ ∩
(C × {y}) over a ∈ Dδ0 for each y ∈ Dr and can show that J+a,λ ∩ (C × {y}) is homeomorphic
to the Julia set Jpλ of pλ.

It is known that for a hyperbolic polynomial x2 + c, there is a positive constant δ(c) > 0
such that a small perturbation {H(x, y) = (x2 + c + ay, ax) : 0 < |a| < δ(c)} of H(x, y) =
(x2 + c, 0) is hyperbolic (see [6] and [9]). In particular, the Julia sets J of the Hénon maps
H(x, y) = (x2 + c + ay, ax) for 0 < |a| < δ(c) are connected if and only if Jx2+c is connected.
However, the proofs in [6] and [9] do not give any uniform estimate on the constant δ(c) from
below for c near the boundary of the Mandelbrot set. For example, it may be δ(cn) → 0 as
Int0 � cn → λ/2 − λ2/4 ∈ ∂0, where |λ| = 1. Therefore, we cannot apply methods
of [6] and [9] to compute the connectivity of J for the parameters near the boundary of
the Mandelbrot set. In our result, we only need to check that the (VC)ε,r and the condition
(Dε × Dr) ∩ J+a,λ = ∅ hold for a ∈ Dδ0 and 0 < t < δ0. We can deduce the connectivity of J
for the parameters near the boundary of the Mandelbrot set by using Theorem 1.1 (see the
following Theorem 1.2 and Figure 2).

To present the second main result, we recall radial convergence. Let λ0 = exp(2πim/l),
where l ∈ Z \ {0}, m ∈ Z and (m, l) = 1. Consider a one-parameter continuous family
{λt}t∈[0,δ0), where δ0 > 0. Assume that λl

t = exp(Lt + iθt) and R � θt → 0 as t → 0, where
Lt ∈ R \ {0} and θt ∈ R for 0 < t < δ0. We say that RDλt ,δ0 := {Ha,λt : a ∈ Dδ0 and 0 < t < δ0}
is a radial perturbation if θt = O(Lt). For each 0 < t < δ0, we will show that the section
{Ha,λt }a∈Dδ0 of RDλt ,δ0 satisfies the (VC)ε,r and that (Dε × Dr) ∩ J+a,λt

= ∅ for a ∈ Dδ0 . By
applying Theorem 1.1 to the family RDλt ,δ0 , we can show the second main result:
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Theorem 1.2. There is δ0 > 0 such that each Ha,λt ∈ RDλt ,δ0 with a � 0 has connected
Julia set Ja,λt .

Note that Ha,λ0 does not belong to RDλt ,δ0 . A Hénon map Ha,λ0 has connected Julia set
for a ∈ Dδ0 (see [17]). Radu and Tanase showed that there is δ0 > 0 such that Ha,λt is
hyperbolic for a ∈ Dδ0 and 0 < t < δ0 if θt = 0 for each 0 < t < δ0 in [16]. In [16], by
using hyperbolicity, the Julia sets are connected for the parameters if θt = 0 for 0 < t < δ0

(see the left of Figure 2). In our case, we consider a much wider range of eigenvalues than
θt = 0. In this case, we will show the Julia set Ja,λ of Ha,λt ∈ RDλt ,δ0 is connected without
using hyperbolicity.

Fig.2. θt = 0 (left) and radial perturbations (right). The set 1 (resp. −1)
is a semi-parabolic parameter given by equation (1) with λ = 1 (resp. λ =
−1).

The rest of this paper is organized as follows. In Section 2, we present fundamental facts
for Hénon maps. In Section 3, we introduce the vertical condition (VC)ε,r with respect to
ε, r, and the condition (Dε × Dr) ∩ J+a,λ = ∅. By using these conditions, we construct a
holomorphic motion of J+a,λ ∩ (C × {y}) over a ∈ Dδ0 for each y ∈ Dr. Using these, we show
Theorem 1.1. In Section 4, we show Theorem 1.2 by using Theorem 1.1. In particular, we
check the condition (Dε × Dr) ∩ J+a,λ = ∅ holds for Ha,λt by using local coordinates near
semi-parabolic fixed points.

2. Preliminary

2. Preliminary
In this section, we recall some basic results on the dynamics of Hénon maps. See [2], [8],

[14] and [16] for more details.

Definition 2.1. For (c, a) ∈ C2, let H : C2 → C2 be the map of the form

H(x, y) = (p(x) + ay, ax), where p(x) = x2 + c.

We call H : C2 → C2 a Hénon map. If a � 0, the inverse is

H−1(x, y) =
1

a
(y, x − p(y/a)).

Remark 2.2. In [14], a holomorphic automorphism of C2 of the form

F : (x, y) 
→ (y, y2 + c − δx), δ, c ∈ C, δ � 0,

is called a Hénon map. The form of the Hénon map H in Definition 2.1 differs from the
form (x, y) 
→ (y, y2 + c − δx) given in [14]; however, H is conjugate by a polynomial
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automorphism to (x, y) 
→ (y, y2 + c + a2x).

In [8], the dynamical space C2 is divided into the following three sets.

Definition 2.3 ([8]). Let r > 0 be a large number. Consider the following three subsets
of C2,

Dr × Dr := {(x, y) ∈ C2 : |x| < r, |y| < r},

V+ := {(x, y) ∈ C2 : |x| ≥ max{|y|, r}} and V− := {(x, y) ∈ C2 : |y| ≥ max{|x|, r}}.
Let H be a Hénon map with a � 0. We define the escaping sets U± of H by

U+ :=
⋃
k≥0

H−k(V+), and U− :=
⋃
k≥0

Hk(V−).

We consider the Julia sets and the filled Julia sets of Hénon maps.

Definition 2.4. For a Hénon map H(x, y) = (p(x) + ay, ax) with a � 0, we define the
filled Julia sets K± of H as follows:

K± := {(x, y) ∈ C2 : {H±n(x, y)}n∈N is bounded in C2}.
We define the Julia sets J± and J of H as follows:

J± := ∂K±, and J := J+ ∩ J−.

Remark 2.5. For a = 0, we can also define K+ and J+. In this case, K+ (resp. J+) is the
product set of the filled Julia set (resp. the Julia set) of p and C.

Bedford and Smillie [2] showed that there is a positive constant r > 0 depending on H
such that

(2) H(V+) ⊂ V+,H−1(V−) ⊂ V−,U+ = C2 \ K+, and U− = C2 \ K−.

It is easy to see that for a polynomial x2 + c0, there is r > 0 and δ such that H(x, y) =
(x2 + c + ay, ax) satisfies the condition (2) with respect to r for (c, a) ∈ Dδ(c0) × Dδ \ {0}.

In this paper, we consider the following three types of fixed points.

Definition 2.6. Suppose that a Hénon map H has a fixed point q. Let λ and ν be the
eigenvalues of (DH)q. We say that the fixed point q is

( i ) attracting if |λ| < 1 and |ν| < 1,

(ii) semi-parabolic if |ν| < 1 and λ = exp(2πip/l) for some p/l ∈ Q,
(iii) a saddle if |ν| < 1 and |λ| > 1.

We write that An = O(Bn) if there are a positive constant K > 0 and a positive integer
N ∈ N such that |An| ≤ K|Bn| for n ≥ N. We set Pr1 : C2 → C, Pr1(x, y) := x and Pr2 : C2 →
C, Pr2(x, y) := y. We recall stable manifolds (see [14], [18]).

Definition 2.7 ([14, p.311]). Let H be a Hénon map and r > 0 satisfy the condition (2)
with respect to H. For a saddle fixed point q of H, the stable manifold W s(q) of q is defined
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as

W s(q) := {z ∈ C2 : lim
n→∞ ‖H

n(z) − q‖ = 0},

where ‖ · ‖ is the Euclidean metric of C2.

Let λ ∈ C \ {0}. To consider the connectivity of J for the parameters near the boundary of
the Mandelbrot set, we consider a Hénon family for which each element of the family has
a fixed point such that one of the eigenvalues of DH at the fixed point is λ. A Hénon map
H(x, y) = (x2 + c + ay, ax) has a fixed point q such that λ � 0 is an eigenvalue of (DH)q if
and only if

(3) c = (1 − a2)

⎛⎜⎜⎜⎜⎜⎝λ2 −
a2

2λ

⎞⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎝λ2 −

a2

2λ

⎞⎟⎟⎟⎟⎟⎠
2

.

Let λ be the set of parameters (c, a) ∈ C2 satisfying (3). We denote the right hand side of
equation (3) by c(a, λ). Moreover, we set Ha,λ(x, y) = (x2 + c(a, λ) + ay, ax) and pλ(x) =
x2 + c(0, λ). We denote the filled Julia sets and the Julia sets of Ha,λ by K±a,λ J±a,λ, Ja,λ instead
of K±, J±, J respectively. We see that Ha,λ has a fixed point

(4) qa,λ :=

⎛⎜⎜⎜⎜⎜⎝λ2 −
a2

2λ
, a

⎛⎜⎜⎜⎜⎜⎝λ2 −
a2

2λ

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ ,

with eigenvalues λ and ν := −a2/λ. We give the parametrization of W ss(qa,λ).

Lemma 2.8 ([7], [15, the proofs of Propositions 3.16, 3.17], [17, Proposition 5.2]). Let
v = (−a/λ, 1) be an eigenvector for ν. Assume that λ satisfies |−a2/λ| < 1 and |λ| > |−a2/λ|.
Then there exists the injective holomorphic map

(5) Φa,λ : C→ C2,Φa,λ(z) = lim
k→∞

H−k
a,λ(qa,λ + ν

kzv),

such that Φa,λ(νz) = Ha,λ(Φa,λ(z)) for z ∈ C and a � 0.
Let Φ0,λ(z) := (Pr1 q0,λ, z). Then, Φa,λ is analytic with respect to a and supz∈K ‖Φa,λ(z) −

Φ0,λ(z)‖ = O(a) for each compact subset K of C.

Remark 2.9. Fix λ0 � 0. Consider a family {Ha,λ}(a,λ)∈Dδ0×Dδ0 (λ0). Since the fixed point
qa,λ of Ha,λ depends holomorphically on a, λ, we see thatΦa,λ(z) is holomorphic with respect
to (a, λ, z) ∈ Dδ0 \ {0} × Dδ0 (λ0) × C (see the proof of Theorem 6.43 in [14]). Since Φa,λ

is holomorphic with respect to each variable separately when the other variables are fixed,
Φa,λ(z) is holomorphic with (a, λ, z) ∈ Dδ0 ×Dδ0 (λ0)×C, taking a smaller δ0 > 0 if necessary.

Definition 2.10. The curve W ss(q) := Φ(C) is called the strong stable manifold of a fixed
point q for a � 0, where Φ is given by (5), and the definition of (5) is valid if at least one
eigenvalue of the fixed point has absolute value less than 1 (see the proof of Theorem 6.43
in [14]).

For a fixed point q of H, the local strong stable manifold W ss
loc(q) of q is defined by the

component of W ss(q) ∩ (Dr × Dr) that contains q, with the topology induced by Φ : C →
W ss(q).
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Remark 2.11. When a = 0, we set W ss(q) =
⋃

j≥0 p− j({Pr1 q})×C and W ss
loc(q) = {Pr1 q}×

Dr.

Remark 2.12. If q is a saddle, then W s(q) = W ss(q). In this case, the local stable manifold
W s

loc(q) of q is defined by W ss
loc(q).

By using Lemma 2.8, we have the following.

Lemma 2.13. If λ0 ∈ C \ {0, 1}, then there is a positive constant δ0 > 0 such that Ha,λ has
a saddle fixed point sa,λ depending holomorphically on (a, λ) ∈ Dδ0 ×Dδ0 (λ0). Let Φ̃0,λ(z) :=
(Pr1 s0,λ, z), and Φ̃a,λ(z) := limk→∞ H−k

a,λ(sa,λ + ν̃
kzṽ), where ν̃ is the eigenvalue of (DHa,λ)sa,λ

with |ν̃| < 1 and ṽ is the eigenvector of ν̃ of the form (·, 1) for (a, λ) ∈ (Dδ0 \ {0}) × Dδ0 (λ0)
(see (5)). Then, Φ̃a,λ(z) is holomorphic with respect to (a, λ, z) ∈ Dδ0 × Dδ0 (λ0) × C.

Proof. If |λ0| > 1, then qa,λ is saddle for (a, λ) ∈ Dδ0 × Dδ0 (λ0), taking a smaller δ0

if necessary. By taking sa,λ as qa,λ and applying Lemma 2.8, we obtain the statement of
Lemma 2.13.

We may assume that λ0 � 1, λ0 � 0 and |λ0| ≤ 1. Then c(0, λ0) � 1/4 and H0,λ0 (x, y) has
a saddle fixed point. By the implicit function theorem, there are a positive constant δ0 and a
saddle fixed point sa,λ of Ha,λ depending holomorphically on (a, λ) ∈ Dδ0 × Dδ0 (λ0).

We show that Φ̃a,λ(z) is holomorphic with respect to (a, λ, z) ∈ Dδ0 ×Dδ0 (λ0)×C by using
Lemma 2.8. It follows from s0,λ0 � q0,λ0

that sa,λ � qa,λ for (a, λ) ∈ Dδ0 × Dδ0 (λ0), taking δ0

small enough. By sa,λ � qa,λ and the fixed point equation (x2 + c(a, λ) + ay, ax) = (x, y), we
have

sa,λ = (1 − a2 − Pr1 qa,λ, a(1 − a2 − Pr1 qa,λ)).

Consider the characteristic equation det((DHa,λ)sa,λ − λ̃I) = 0, which is equivalent to
−(2Pr1 sa,λ − λ̃)λ̃ − a2 = 0. We set f (a, λ, λ̃) := −(2Pr1 sa,λ − λ̃)λ̃ − a2. We see that
f (0, λ0, ζ̃) = 0, where ζ̃ = 0, 2 − λ0 (see (4)). By ∂λ̃ f (0, λ0, 2 − λ0) = 2 − λ0 � 0 and
the Implicit Function Theorem, there exists a holomorphic map λ̃(a, λ) with |λ̃(a, λ)| > 1 for
(a, λ) ∈ Dδ0 ×Dδ0 (λ0) such that f (a, λ, λ̃(a, λ)) = 0 and λ̃(0, λ0) = 2− λ0, taking a smaller δ0

if necessary. We see that c(a, λ) = c(a, λ̃(a, λ)) for each (a, λ) ∈ Dδ0 ×Dδ0 (λ0) since Ha,λ has
the fixed point sa,λ with one eigenvalue λ̃(a, λ) (see (3)). In particular, Ha,λ = Ha,λ̃(a,λ)

for each (a, λ) ∈ Dδ0 × Dδ0 (λ0). By the identity theorem, we have sa,λ = qa,λ̃(a,λ) for
(a, λ) ∈ Dδ0 × Dδ0 (λ0). Thus Φ̃a,λ = Φa,λ̃(a,λ) for (a, λ) ∈ Dδ0 × Dδ0 (λ0), where Φa,λ̃(a,λ)

is the map in Lemma 2.8. By Remark 2.9 and the fact that λ̃(a, λ) depends holomor-
phically on (a, λ) ∈ Dδ0 × Dδ0 (λ0), it follows that Φ̃a,λ(z) is holomorphic with respect to
(a, λ, z) ∈ Dδ0 × Dδ0 (λ0) × C. �

3. Vertical Condition

3. Vertical Condition
For the rest of the section, we assume that the Jacobians of Hénon maps Ha,λ are less

than 1 in the absolute value, and λ � 0. In this section, we show the first main result
(Theorems 3.10 and 3.11). We construct a holomorphic motion of J+a,λ ∩ (C × {y}) over
a ∈ Dδ0 for each y ∈ Dr to obtain the first main result. In order to construct it, we consider
the vertical condition and the condition (Dε × Dr) ∩ J+a,λ = ∅. We consider the vertical cone



616 T. Yagi

field {Cv
(x,y)}(x,y)∈Dr×Dr given by

(6) Cv
(x,y) := {(ζ, η) ∈ T(x,y)C

2 : |η| > |ζ |},
for (x, y) ∈ Dr × Dr. We first introduce the vertical condition as follows.

Definition 3.1. Let {Ha,λ}a∈Dδ0 be a Hénon family. Fix ε > 0, and fix r > 0 such that
Ha,λ satisfies the condition (2) with respect to r for a ∈ Dδ0 \ {0}. Moreover, we assume that
δ0 < min{1/2, ε}. We say that {Ha,λ}a∈Dδ0 satisfies the vertical condition (VC)ε,r with respect
to ε, r if the following three conditions hold:

( i ) H−1
a,λ((Dr × Dr) \ (Dr × Dr/2)) ⊂ V− and |Pr2 H−1

a,λ(x, y)| > 2|y| for a ∈ Dδ0 \ {0} and

(x, y) ∈ V− ∪ ((Dr × Dr) \ (Dr × Dr/2)).

(ii) (DH−1
a,λ)(x,y)(Cv

(x,y)) ⊂ Cv
H−1

a,λ(x,y) and |Pr2 (DH−1
a,λ)(x,y)(ζ, η)| > 2|η| for a ∈ Dδ0 \ {0},

(x, y) ∈ Ha,λ((Dr × Dr) \ (Dε × Dr)) ∩ (Dr × Dr) and (ζ, η) ∈ Cv
(x,y).

(iii) There are a saddle fixed point sa,λ of Ha,λ depending holomorphically on a ∈ Dδ0

and a holomorphic map fa : Dr → C depending holomorphically on a ∈ Dδ0 such

that W s
loc(sa,λ) = {( fa(y), y) : y ∈ Dr} and T(x,y)W s

loc(sa,λ) ⊂ Cv
(x,y) for (x, y)

∈ W s
loc(sa,λ).

We see that most families {Ha,λ}a∈Dδ0 satisfy the condition (VC)ε,r by the following lemma.

Lemma 3.2. Fix λ � 1. Then there is a positive constant δ0 > 0 such that {Ha,λ}a∈Dδ0
satisfies the (VC)ε,r.

Proof. Fix ε > 0. We can take r > 0 such that each Ha,λ satisfies the condition (2) with
respect to r for a ∈ Dδ0\{0} by taking a smaller δ0 if necessary. Assume that δ0 < min{1/2, ε}.

We show that the condition ( i ) in Definition 3.1 holds. For (x, y) ∈ V− ∪ ((Dr × Dr) \
(Dr×Dr/2)), we set (x1, y1) := H−1

a,λ(x, y) = (y/a, (x−y2/a2−c(a, λ))/a). We show |y1| > 2|y|.
Since |x| ≤ max{|y|, r}, we have

|ay1| = |x − y2/a2 − c(a, λ)| ≥ |y/a|2 − |c(a, λ)| −max{|y|, r}.
To obtain |y1| > 2|y|, it suffices to show that |y/a|2 − 2|a||y| − |c(a, λ)| −max{|y|, r} > 0 which
is equivalent to |y|2 − 2|a|3|y| − |a|2|c(a, λ)| − |a|2 max{|y|, r} > 0. Note that |y| ≥ r/2 by
(x, y) ∈ V− ∪ ((Dr × Dr) \ (Dr × Dr/2)). If a = 0, we have |y|2 ≥ r2/4 > 0. Thus, we
can take δ0 > 0 such that |y1| > 2|y| for a ∈ Dδ0 \ {0}. Similarly, we have (x1, y1) ∈ V− if
(x, y) ∈ (Dr × Dr) \ (Dr × Dr/2) for a ∈ Dδ0 \ {0}, taking a smaller δ0 if necessary. Thus,
{Ha,λ}a∈Dδ0\{0} satisfies the condition ( i ) in Definition 3.1.

We next show that the condition (ii) in Definition 3.1 holds. Fix (x, y) ∈ Ha,λ((Dr ×
Dr) \ (Dε × Dr)) ∩ (Dr × Dr) and (ζ, η) ∈ Cv

(x,y). We set (x1, y1) = H−1
a,λ(x, y) and (ζ1, η1) =

(DH−1
a,λ)(x,y)(ζ, η). By (x1, y1) = H−1

a,λ(x, y) = (y/a, (x − y2/a2 − c(a, λ))/a), we have ζ1 = η/a
and η1 = (ζ − 2yη/a2)/a. By x1 = y/a, we have η1 = (ζ − 2x1η/a)/a. Thus we have

|η1| >
1

|a|(
|2x1η|
|a| − |ζ |) ≥

1

|a|(
2ε

|a| − 1)|η| > 1

δ0
(
2ε

δ0
− 1)|η| > 2|η|,

by δ0 < min{1/2, ε}. In particular, we have |η1| > 1/|a|(2ε − |a|)|ζ1| > (2ε/|δ0| − 1)|ζ1| > |ζ1|
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by η = aζ1 and δ0 < min{1/2, ε}. Thus the condition (ii) holds for a ∈ Dδ0 \ {0}.
Finally, we show that the condition (iii) in Definition 3.1 holds. There exists a saddle

fixed point sa,λ of Ha,λ depending holomorphically on a ∈ Dδ0 by Lemma 2.13. By Lemmas
2.8 and 2.13, W s

loc(sa,λ) = {( fa(y), ga(y)) : y ∈ g−1
a (Dr)} for some holomorphic maps fa, ga

depending holomorphically on a ∈ Dδ0 . Here, we remark that by Rouché’s theorem and
g0(y) = y, there exists g−1

a in Dr for a ∈ Dδ0 , taking a smaller δ0 if necessary. Thus we
have W s

loc(sa,λ) = {( fa(g−1
a (y)), y) : y ∈ Dr}. In the case of a = 0, we have W s

loc(s0,λ) =
{Pr1 s0,λ} × Dr and T(x,y)W s

loc(s0,λ) = {(ζ, η) : ζ = 0} ⊂ Cv
(x,y). Since W s

loc(sa,λ) depends on a
holomorphically, by taking δ0 sufficiently small, we have |( fa(g−1

a (y)))′| < 1 for y ∈ Dr. �

Remark 3.3. The proof of Lemma 3.2 is still valid for perturbations {Ha,λ}(a,λ)∈Dδ0×Dδ0 (λ0),
where λ0 � 1. That is, there is δ0 > 0 such that the family {Ha,λ}(a,λ)∈Dδ0×Dδ0 (λ0) satisfies
( i ), (ii), and (iii) in (VC)ε,r.

Remark 3.4. By the proof of Lemma 3.2, ( i ) and (ii) in Definition 3.1 hold for
{Ha,λ}a∈Dδ0\{0} without the condition λ � 1 in Lemma 3.2. Moreover, for each ε > 0, there is
δ0 > 0 such that (ii) in Definition 3.1 holds for {Ha,λ}a∈Dδ0 .

Consider a Hénon family {Ha,λ}a∈Dδ0 satisfying the (VC)ε,r, and

(7) (Dε × Dr) ∩ J+a,λ = ∅,
for a ∈ Dδ0 (see Remark 2.5 for the case a = 0). Let sa,λ be a saddle fixed point of Ha,λ

depending holomorphically on a ∈ Dδ0 . Let va,λ := (
⋃

j∈Z≥0
H− j

a,λ(W
s
loc(sa,λ)))∩ (Dr ×Dr). We

say that v is a vertical component of va,λ if v is a connected component of H−m
a,λ (W s

loc(sa,λ)))∩
(Dr × Dr) for some m ∈ Z≥0. Under the assumption (7), we have

(8) va,λ ⊂ (Dr \ Dε) × Dr,

for a ∈ Dδ0 by W s(sa,λ) ⊂ J+a,λ and (2). To construct a holomorphic motion of J+a,λ ∩ (C× {y})
over a ∈ Dδ0 for each y ∈ Dr, we prove the following two lemmas.

Lemma 3.5. Suppose that {Ha,λ}a∈Dδ0 satisfies the (VC)ε,r and the condition (7) holds for
a ∈ Dδ0 . Let va be a vertical component of va,λ represented by {( fa(y), y) : y ∈ Dr} for
some holomorphic map fa depending holomorphically on a ∈ Dδ0 . Then for each a ∈ Dδ0 ,
H−1

a,λ(va) ∩ (Dr ×Dr) is the union of two distinct vertical components va,1 and va,2. Moreover,
va, j can be represented by {( fa, j(y), y) : y ∈ Dr} for some holomorphic map fa, j : Dr → C
depending holomorphically on a ∈ Dδ0 for j = 1, 2.

Proof. Let va be a vertical component of va,λ represented by {( fa(y), y) : y ∈ Dr} for some
holomorphic map fa depending holomorphically on a ∈ Dδ0 .

We first show that the set H−1
a,λ(va)∩ (C×{w}) consists of exactly two points for w ∈ Dr and

a ∈ Dδ0 . For a = 0, f0 is constant and H0,λ(x, y) = (x2+c(0, λ), 0). Clearly, H−1
0,λ(v0)∩(C×{w})

consists of exactly two points for w ∈ Dr since the critical value c(0, λ) of x2 + c(0, λ) does
not belong to f0(Dr) (see (7)). For a ∈ Dδ0 \ {0}, recall that H−1

a,λ(x, y) = (y/a, (x − y2/a2 −
c(a, λ))/a). Consider the equation

(9) fa(y) − y2/a2 − c(a, λ) = aw,
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for a ∈ Dδ0 \{0}. We set ga(y) := fa(y)−y2/a2−c(a, λ)−aw and ha(y) := − fa(y)+c(a, λ)+aw
for a ∈ Dδ0 \ {0}. By va ⊂ va,λ ⊂ Dr × Dr, we have | fa(y)| ≤ r for y ∈ Dr. If |a| < 1, then for
y ∈ ∂D√

(4r+4|c(a,λ)|)|a|2 , we have

|ga(y)| ≥ |y2/a2| − |c(a, λ)| − |aw| − | fa(y)| ≥ (3 − |a|)r + 3|c(a, λ)| > r + |c(a, λ)| + |a|r
≥ | fa(y)| + |c(a, λ)| + |aw| ≥ |ha(y)|.

By Rouché’s theorem, ga and ga + ha have the same number of zeros inside D√
(4r+4|c(a,λ)|)|a|2 .

Since ga(y) + ha(y) = −y2/a2, the map ga has two zeros in D√
(4r+4|c(a,λ)|)|a|2 . Moreover, the

map ga has two distinct zeros by using the condition (ii) and (iii) in Definition 3.1. Indeed,
let ga(y0) = 0. Then we have (y0/a, w) ∈ H−1

a,λ(va) ∩ (C × {w}). By (8), we have |y0/a| > ε.
Moreover, we have | f ′a(y0)| < 1 by the condition (ii), (iii) in Definition 3.1, and (6). Hence
we have

(10) |g′a(y0)| ≥ |2y0/a2| − | f ′a(y0)| > 2ε/|a| − 1 > 2ε/δ0 − 1 > 0,

by δ0 < min{ε, 1/2} (see Definition 3.1). Thus, ga has two distinct zeros in D√
(4r+4|c(a,λ)|)|a|2 .

On the other hand, by δ0 < min{ε, 1/2}, if y ∈ Dr satisfies |y| ≥ √
(4r + 4|c(a, λ)|)|a|2, then

|Pr2 H−1
a,λ( fa(y), y)|= | fa(y)−y2/a2−c(a, λ)|

|a| ≥ |y
2/a2|−| fa(y)|−|c(a, λ)|

|a| ≥ 3r+3|c(a, λ)|
|a| >r.

Hence, there are exactly two distinct solutions of (9) with respect to y ∈ Dr, which belong to
D√

(4r+4|c(a,λ)|)|a|2 . This implies that the set H−1
a,λ(va) ∩ (C × {w}) consists of exactly two points

for w ∈ Dr. Note that H−1
a,λ(va) ∩ ((C \ Dr) × {w}) = ∅ by (2), otherwise W s(sa,λ) ∩ V+ � ∅.

Thus, H−1
a,λ(va) ∩ (Dr × Dr) is the union of two vertical components of va,λ.

Recall that f0 is constant. Assume f0 ≡ A for some A ∈ C. Let z2 + c(0, λ) − A =
(z− A1)(z− A2). Then we have H−1

0,λ(v0)∩ (Dr ×Dr) = ({A1} ∪ {A2})×Dr. There are positive
constants δ1, ε1 > 0 such that δ1 < δ0, Dε1 (A1) ∩ Dε1 (A2) = ∅, H−1

a,λ(va) ∩ (Dε1 (Aj) × Dr) � ∅
for j = 1, 2 and a ∈ Dδ1 , and H−1

a,λ(va) ∩ (Dr × Dr) ⊂ (Dε1 (A1) ∪ Dε1 (A2)) × Dr for a ∈ Dδ1 .
For a ∈ Dδ1 and j ∈ {1, 2}, we let va, j be the component of H−1

a,λ(va) ∩ (Dr × Dr) which is
contained in Dε1 (Aj) × Dr.

We show that va, j ∩ (C × {w}) moves holomorphically over Dδ1 for each fixed w ∈ Dr

by using the implicit function theorem. We set F(a, y) := fa(y) − y2/a2 − c(a, λ) − aw for
a ∈ Dδ1 \ {0}. Since T( fa(y),y)v ⊂ Cv

( fa(y),y) for y ∈ Dr, we have |∂y fa(y)| < 1 for y ∈ Dr. Fix
arbitrary points a ∈ Dδ1 \ {0} and z̃ j = z̃ j(a) with F(a, z̃ j(a)) = 0 and z̃ j(a)/a ∈ Dε1 (Aj).
Then, we have (z̃ j/a, ( fa(z̃ j) − z̃2

j/a
2 − c(a, λ))/a) = (z̃ j/a, w) ∈ va, j ∩ (C × {w}). By (8),

we have |z̃ j/a| > ε. Since F(a, z̃ j) = ga(z̃ j), we have |∂y F(a, z̃ j)| > 0 (see (10)). By the
implicit function theorem, {z̃ j/a, w} = va, j ∩ (C× {w}) moves holomorphically over Dδ1 \ {0}.
Moreover, z̃ j(a)2/a2 = fa(z̃ j(a)) − c(a, λ) − aw since F(a, z̃ j(a)) = 0. Note that z̃ j(a) ∈ Dr/2

by r > |w| = |Pr2 H−1
a,λ( fa(z̃ j), z̃ j)| and ( i ) in Definition 3.1. Since fa(z) is holomorphic with

respect to a ∈ Dδ0 and z ∈ Dr, fa(z) → f0(z) uniformly on Dr/2 as a → 0. This implies that
z̃ j(a)/a → Aj as a → 0 since fa(z) → f0(z) ≡ A as a → 0. Thus {z̃ j/a} = va, j ∩ (C × {w})
moves holomorphically over Dδ1 .

For each a ∈ Dδ0 \ Dδ1 and each j ∈ {1, 2}, va, j ∩ (C × {w}) can be analytically continued
along a path connecting a and a point in Dδ1 . By the monodromy theorem, for each a ∈ Dδ0
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and each j ∈ {1, 2}, there is a component va, j of H−1
a,λ(va)∩ (Dr ×Dr) such that va, j ∩ (C× {w})

moves holomorphically over Dδ0 for each fixed w ∈ Dr. We show that va,1 � va,2 for each
a ∈ Dδ0 \Dδ1 . Assume that va,1 = va,2 for some a ∈ Dδ0 \Dδ1 . There exists a sequence {an}n∈N
in {a ∈ Dδ0 : va,1 = va,2} such that an → a0 as n→ ∞ and

(11) |a0| = inf{|a| ∈ Dδ0 : va,1 = va,2}.
Clearly, we have |a0| ≥ δ1 by the argument above. Moreover, we have va0,1 = va0,2. Oth-
erwise, va,1 � va,2 for all a in a small neighborhood of a0, which implies that an � {a ∈
Dδ0 : va,1 = va,2} for sufficiently large n. Consider the vertical component va0 of va0,λ.
Let H−1

a0,λ
(va0 ) ∩ (Dr × Dr) = ṽa0,1 ∪ ṽa0,2 for some vertical components ṽa0,1, ṽa0,2 of va,λ.

There are open neighborhoods U1,U2 of ṽa0,1, ṽa0,2 respectively such that U1 ∩ U2 = ∅.
We may assume that va0,1(= va0,2) = ṽa0,1. We take a positive constant δ2 > 0 such that
H−1

a,λ(va)∩ (Dr×Dr)∩U j � ∅ for j = 1, 2 and a ∈ Dδ2 (a0), and H−1
a,λ(va)∩ (Dr×Dr) ⊂ U1∪U2

for a ∈ Dδ2 (a0). Recall that F(a, y) = fa(y) − y2/a2 − c(a, λ) − aw for w ∈ Dr. We see that
|∂y F(a0, z̃1)| > 0, where z̃1 satisfies that F(a0, z̃1) = 0 and (z̃1/a0, w) ∈ U1 (see (10)). By the
implicit function theorem, va,1∩(C×{w}) ⊂ U1 moves holomorphically overDδ2 (a0) for each
fixed w ∈ Dr. We can take ã ∈ Dδ2 (a0) with |ã| < |a0| such that vã,1 = vã,2. This contradicts
(11). Thus, H−1

a,λ(va)∩ (Dr ×Dr) = va,1∪ va,2 and va, j∩ (C× {w}) moves holomorphically over
Dδ0 for each fixed w ∈ Dr and j ∈ {1, 2}.

Finally, we show that there are holomorphic maps fa,1, fa,2 such that va, j = {( fa, j(y), y) :
y ∈ Dr} for j = 1, 2. Since Pr2 : va, j → Dr is a bijective holomorphic map for a ∈ Dδ0 and
j ∈ {1, 2}, there are holomorphic maps fa,1, fa,2 such that va, j = {( fa, j(y), y) : y ∈ Dr} for
a ∈ Dδ0 and j = 1, 2. �

Let Wa,λ be the vertical component of va,λ such that Ha,λ(Wa,λ) ⊂ W s
loc(sa,λ) and Wa,λ ∩

W s
loc(sa,λ) = ∅ for a ∈ Dδ0 .

Lemma 3.6. Suppose that {Ha,λ}a∈Dδ0 satisfies the (VC)ε,r and the condition (7) holds for
a ∈ Dδ0 . Then the two sets H−n

a,λ(Wa,λ)∩ (Dr ×Dr) and H−m
a,λ (Wa,λ)∩ (Dr ×Dr) do not intersect

for n � m ∈ Z≥0 and a ∈ Dδ0 .

Proof. Fix a ∈ Dδ0 . Assume that there are components vn and vm of H−n
a,λ(Wa,λ)∩ (Dr ×Dr)

and H−m
a,λ (Wa,λ) ∩ (Dr × Dr) respectively such that vn ∩ vm � ∅. We may assume that n > m.

We see that Hm
a,λ(vn) is a subset of some component of H−n+m

a,λ (Wa,λ)∩ (Dr×Dr). On the other
hand, Hm

a,λ(vm) ⊂ Wa,λ. Thus, an intersection point of vn and vm is mapped under Hm
a,λ into

Wa,λ ∩ H−n+m
a,λ (Wa,λ) ∩ (Dr × Dr). Hence, we have Hn−m

a,λ (Wa,λ) ∩Wa,λ � ∅. This contradicts
Ha,λ(Wa,λ) ⊂ W s

loc(sa,λ), Ha,λ(W s
loc(sa,λ)) ⊂ W s

loc(sa,λ) and W s
loc(sa,λ)∩Wa,λ = ∅. Thus we have

proved Lemma 3.6. �

Let us consider the section Sa,λ,y := W s(sa,λ)∩(C×{y}) for y ∈ Dr. Recall that H0,λ(x, y) =
(pλ(x), 0). We denote the Julia set of pλ by Jpλ . We now construct holomorphic motions.

Lemma 3.7. Suppose that {Ha,λ}a∈Dδ0 satisfies the (VC)ε,r and the condition (7) holds for
each a ∈ Dδ0 . Then there exists a holomorphic motion hλ,y : Dδ0 × S0,λ,y → C × {y} such
that hλ,y(a, (x, y)) ∈ Sa,λ,y for y ∈ Dr, a ∈ Dδ0 and (x, y) ∈ S0,λ,y. In particular, hλ,y can be
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extended to a holomorphic motion h̃λ,y : Dδ0 × (C×{y})→ C×{y} and h̃λ,y({a}× (Jpλ ×{y})) =
Sa,λ,y.

Proof. By Lemma 3.5, H− j
a,λ(Wa,λ) ∩ (C × {y}) has exactly 2 j elements for each j ∈ Z≥0.

By Lemma 3.6, we have

Sa,λ,y = (W s
loc(sa,λ) ∩ (C × {y})) �

⊔
j∈Z≥0

(H− j
a,λ(Wa,λ) ∩ (C × {y})).

By (iii) in Definition 3.1, we have W s
loc(sa,λ) = {( fa(y), y) : y ∈ Dr} for some holomorphic

map fa : Dr → C depending holomorphically on a ∈ Dδ0 .
Let va be a vertical component of va,λ such that va∩ (C×{w}) moves holomorphically over

Dδ0 for each w ∈ Dr. By Lemma 3.5, there are two vertical components va,1 and va,2 of va,λ

such that H−1
a,λ(va) ∩ (Dr ×Dr) = va,1 ∪ va,2, and va, j ∩ (C × {w}) moves holomorphically over

Dδ0 for each fixed w ∈ Dr and j ∈ {1, 2}. Thus, we can construct hλ,y : Dδ0 × S0,λ,y → C × {y}
such that hλ,y(a, (x, y)) ∈ Sa,λ,y for y ∈ Dr, a ∈ Dδ0 and (x, y) ∈ S0,λ,y. By Lemma 3.6, for
each fixed a ∈ Dδ0 and y ∈ Dr, hλ,y(a, (x, y)) is injective with respect to x with (x, y) ∈ S0,λ,y.
The map hλ,y can be extended to a holomorphic motion h̃λ,y : Dδ0 × C × {y} → C × {y} and
h̃λ,y({a} × (Jpλ × {y})) = Sa,λ,y (see [11] and [19]). �

Corollary 3.8. Suppose that {Ha,λ}a∈Dδ0 satisfies the (VC)ε,r and the condition (7) holds
for a ∈ Dδ0 . Then J+a,λ ∩ (Dr × Dr) =

⋃
y∈Dr

Sa,λ,y. In particular, J+a,λ ∩ (C × {y}) is path
connected for y ∈ Dr if Jpλ is connected.

Proof. We first show that

(12) W s(sa,λ) ∩ (Dr × Dr) ∩ (Dr × Dr) = W s(sa,λ) ∩ (Dr × Dr),

as follows. Let (z1, w1) ∈ W s(sa,λ) ∩ (Dr × Dr). Since (z1, w1) ∈ Dr × Dr, for each n ∈ N,
there exists (z1,n, w1,n) ∈ W s(sa,λ) ∩ (Dr × Dr) such that (z1,n, w1,n) → (z1, w1) as n → ∞.
Thus (z1, w1) ∈ W s(sa,λ) ∩ (Dr × Dr). Hence (z1, w1) ∈ W s(sa,λ) ∩ (Dr × Dr)∩ (Dr×Dr). The
opposite inclusion is obvious. Thus we have shown (12).

We next show that

(13)
⋃
y∈Dr

(Sa,λ,y) ∩ (Dr × Dr) =
⋃
y∈Dr

Sa,λ,y,

as follows. Let (z2, w2) ∈ ⋃
y∈Dr

(Sa,λ,y) ∩ (Dr × Dr). By (z2, w2) ∈ Dr × Dr, we can take
(z2,n, w2,n) ∈ (

⋃
y∈Dr

Sa,λ,y) ∩ (Dr × Dr) such that (z2,n, w2,n) → (z2, w2) as n → ∞. Let vn

be the vertical component va,λ which contains (z2,n, w2,n). Let xn ∈ Dr such that (xn, w2) ∈
vn. To show (z2, w2) ∈ ⋃

y∈Dr
Sa,λ,y, we show that (xn, w2) → (z2, w2) as n → ∞. Since

‖(xn, w2) − (z2, w2)‖ ≤ ‖(xn, w2) − (z2,n, w2,n)‖ + ‖(z2,n, w2,n) − (z2, w2)‖, it suffices to show
that ‖(xn, w2) − (z2,n, w2,n)‖ → 0 as n → ∞. Since Pr2 : vn → Dr is a homeomorphism, we
can take a curve γ : [0, 1] → vn, represented by γ(s) = ( f (s), g(s)), between (xn, w2) and
(z2,n, w2,n) such that lengthE (Pr2 γ) = |w2,n − w2|, where lengthE(Pr2 γ) is the length of the
curve Pr2 γ with respect to the Euclidean metric. Note that Pr2 γ is the segment between w2,n

and w2. By ( f ′(s), g′(s)) ∈ Cv
γ(s) (see (ii) in Definition 3.1), we have

‖(xn, w2) − (z2,n, w2,n)‖ ≤ lengthE γ ≤
√

2
∫ 1

0
max{| f ′(s)|, |g′(s)|}ds =

√
2
∫ 1

0
|g′(s)|ds.
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Since
∫ 1

0 |g′(s)|ds = |w2,n − w2| → 0 as n → ∞, we have that ‖(xn, w2) − (z2,n, w2,n)‖ → 0
as n → ∞. Hence we have (z2, w2) ∈ ⋃

y∈Dr
Sa,λ,y. Therefore

⋃
y∈Dr

(Sa,λ,y) ∩ (Dr × Dr) ⊂⋃
y∈Dr

Sa,λ,y. The opposite inclusion is obvious. Thus we have shown (13).
By J+a,λ = W s(sa,λ) (see [3]), W s(sa,λ) ∩ (Dr × Dr) =

⋃
y∈Dr

Sa,λ,y, (12) and (13), we have

J+a,λ ∩ (Dr × Dr) = W s(sa,λ) ∩ (Dr × Dr) =
⋃
y∈Dr

(Sa,λ,y) ∩ (Dr × Dr) =
⋃
y∈Dr

Sa,λ,y.

By the above, we have J+a,λ ∩ (C × {y}) = Sa,λ,y for y ∈ Dr. Note that the condition
(Dε ×Dr) ∩ J+a,λ = ∅ for a ∈ Dδ0 implies that (Dε ×Dr) ∩ (Jpλ × C) = ∅ since J+0,λ = Jpλ × C.
In particular, the critical point 0 of pλ belongs to C \ Jpλ . Since Jpλ is connected, pλ has
an attracting or parabolic periodic point. Hence Jpλ is the image of unit circle under a
continuous map (see [5]). In particular, Jpλ is path connected. Since Sa,λ,y is homeomorphic
to Jpλ (see Lemma 3.7), the section J+a,λ ∩ (C × {y}) is path connected for each y ∈ Dr. �

The following lemma is useful for checking whether Ja,λ is disconnected.

Lemma 3.9. Suppose that {Ha,λ}a∈Dδ0 satisfies the condition (VC)ε,r and the condition
(7) holds for a ∈ Dδ0 . Then each vertical component v of va,λ contains a point of Ja,λ for
a ∈ Dδ0 \ {0}.

Proof. Let v0 := v be a vertical component of va,λ. Inductively, let vn be a component
of H−1

a,λ(vn−1) ∩ (Dr × Dr) for each n ∈ N. Then we have the nested compact sequence
{Hn

a,λ(vn)}n≥0 with Hn
a,λ(vn) ⊂ Hn−1

a,λ (vn−1) for n ∈ N. For any a ∈ D1, we have J−a,λ = K−a,λ (see
Lemma 5.5 in [2]). A point of

⋂
n∈N Hn−1

a,λ (vn−1) belongs to Ja,λ since its backward orbit is
bounded and v is a subset of J+a,λ. �

We now prove the first main result of this paper, divided into Theorem 3.10 and Theorem
3.11. Theorem 3.10 relates to the connected case, and Theorem 3.11 to the disconnected
case.

Theorem 3.10. Let {Ha,λ}a∈Dδ0 be a Hénon family satisfying the (VC)ε,r. Assume that the
condition (7) holds for a ∈ Dδ0 . If the Julia set Jpλ of the polynomial pλ is connected, then
the Julia set Ja,λ of the Hénon map Ha,λ is connected for a ∈ Dδ0 \ {0}.

Proof. Assume that Jpλ is connected and λ � 1. We first show that J+a,λ ∩ (Dr × Dr) is
connected. We take any distinct points (x1, y1) and (x2, y2) in J+a,λ ∩ (Dr ×Dr). We construct
a path between these points as follows. Let v be a vertical component of va,λ, and (z j, y j) be
the intersection of v ∩ (C × {y j}) for j = 1, 2. Since J+a,λ ∩ (C × {y j}) is homeomorphic to
Jpλ for j = 1, 2, and Jpλ is a path connected, there exists a path between (z j, y j) and (x j, y j)
in J+a,λ ∩ (C × {y j}) for each j = 1, 2. We can take a path between (z1, y1) and (z2, y2) in v
since v is path connected. Thus, J+a,λ ∩ (Dr × Dr) is path connected, which implies that it is
connected.

We now show that Ja,λ is connected. We see that Ja,λ =
⋂

k≥0 (Hk
a,λ(J+a,λ ∩ (Dr × Dr))).

Moreover, we have Hk+1
a,λ (J+a,λ ∩ (Dr × Dr)) ⊂ Hk

a,λ(J+a,λ ∩ (Dr × Dr)). Hence Ja,λ is a nested
intersection of connected compact subsets. Thus Ja,λ is connected. �



622 T. Yagi

We next show the following theorem.

Theorem 3.11. Let {Ha,λ}a∈Dδ0 be a Hénon family satisfying the condition (VC)ε,r. As-
sume that the condition (7) holds for a ∈ Dδ0 . If the Julia set Jpλ of the polynomial pλ is
disconnected, then the Julia set Ja,λ of the Hénon map Ha,λ is disconnected for a ∈ Dδ0 \ {0}.

Proof. Assume that Jpλ is disconnected. That is, it is a Cantor set. We show that Ja,λ is
disconnected. We can take a Jordan curve γ j ⊂ C for each j = 1, 2 with γ1 ∩ γ2 = ∅ such
that Jpλ ⊂ U1 ∪ U2 and Jpλ ∩ U j � ∅ for j = 1, 2, where U j is the bounded domain with the
boundary γ j for j = 1, 2. Let h̃λ,y : Dδ0 × (C × {y}) → C × {y} be the holomorphic motion
given in Lemma 3.7.

Fix a ∈ Dδ0 \ {0}. Let γa,y, j := Pr1 h̃λ,y({a} × (γ j × {y})) ⊂ C and Ua,y, j = Pr1 h̃λ,y({a} ×
(U j × {y})) ⊂ C for j = 1, 2 and y ∈ Dr. Since (γa,y, j × {y})∩ J+a,λ = ∅ for j = 1, 2 and y ∈ Dr,
there exists ε1(a, y) with 0 < ε1(a, y) < r − |y| such that

(14) (
⋃
y∈Dr

(γa,y, j × Dε1(a,y)(y))) ∩ J+a,λ = ∅,

for each j = 1, 2 and each y ∈ Dr. We now show that

(15) J+a,λ ∩ (C × Dε1(a,y)(y)) ⊂ (
2⋃

j=1

Ua,y, j) × Dε1(a,y)(y),

for each y ∈ Dr. Fix y0 ∈ Dr. Let (z, w) ∈ (C \ ⋃2
j=1 Ua,y0, j) × Dε1(a,y0)(y0). In order to

show (15), it suffices to show that (z, w) � J+a,λ ∩ (C × Dε1(a,y0)(y0)). If (z, w) ∈ ⋃2
j=1 γa,y0, j ×

Dε1(a,y0)(y0), then (z, w) � J+a,λ by (14). Thus we may assume that (z, w) ∈ (C \⋃2
j=1 Ua,y0, j)×

Dε1(a,y0)(y0). By assuming that (z, w) ∈ J+a,λ ∩ (C ×Dε1(a,y0)(y0)), we derive a contradiction as
follows. Note that w ∈ Dr by ε1(a, y0) < r − |y0|. By W s(sa,λ) = J+a,λ, there exists a vertical
component v0 of va,λ and a point ẑ ∈ C such that {(ẑ, w)} = v0∩(C×{w}) ⊂ (C\⋃2

j=1 Ua,y0, j)×
{w}. Let x0 ∈ C be the point such that {(x0, y0)} = v0∩ (C×{y0}). By J+a,λ∩ (C×{y0}) = Sa,λ,y0

(see Corollary 3.8), we have J+a,λ ∩ (C × {y0}) ⊂ (
⋃2

j=1 Ua,y0, j) × {y0}. Hence, we have
{(x0, y0)} = v0 ∩ (C× {y0}) ⊂ (

⋃2
j=1 Ua,y0, j)× {y0}. Since Pr2 : v0 → Dr is a homeomorphism,

we can take a path γ0 ⊂ v0 ∩ (C × Dε1(a,y0)(y0)) between (x0, y0) and (ẑ, w). Then we have
(Pr1 γ0) ∩ (

⋃2
j=1 γa,y0, j) � ∅ which implies that v0 ∩ ((

⋃2
j=1 γa,y0, j) × Dε1(a,y0)(y0)) � ∅. By

v0 ⊂ J+a,λ and (14), we have a contradiction. Thus we have (15) for each y ∈ Dr.

Fig.3. The case (x0, y0) ∈ Ua,y0,1 × {y0}
Let U1 =

⋃
y∈Dr

(Ua,y,1×Dε1(a,y)/2(y)). SinceDr/2 is compact, we can take a positive integer
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N ∈ N and points y1, y2, · · · , yN ∈ Dr such that U1,N :=
⋃N

j=1(Ua,y j,1×Dε1(a,y j)/2(y j)) satisfies
Dr/2 ⊂ Pr2 U1,N . Let va,λ, j be the union of all vertical components of va,λ which intersect
Ua,0, j × {0} for j = 1, 2. We now show that

(16) va,λ,1 ∩ (Dr × Dr/2) ⊂ U1,N .

Take a vertical component v1 ⊂ va,λ,1 of va,λ and a point w1 ∈ Dr/2. To show (16), it
suffices to show that v1 ∩ (Dr × {w1}) ⊂ U1,N . Let h̃a,λ,y : C × {y} → C × {y}, h̃a,λ,y(x, y) :=
h̃λ,y(a, (x, y)) for y ∈ Dr and x ∈ C. By the construction of h̃λ,y (see the proof of Lemma 3.7),
Pr1

⋃
y∈Dr

h̃−1
a,λ,y(v1 ∩ (C × {y})) consists of a single point of Jpλ , say b1. We have b1 ∈ U1 by

v1 ∩ (Ua,0,1 × {0}) � ∅. Since w1 ∈ Dr/2, we can take a positive integer k1 with 1 ≤ k1 ≤ N
such that w1 ∈ Dε1(a,yk1 )/2(yk1 ). Let x1 ∈ C be the point such that {(x1, yk1 )} = v1 ∩ (C× {yk1}).
By Pr1 h̃−1

a,λ,yk1
(Ua,yk1 ,1 × {yk1}) = U1 � b1, we have (x1, yk1 ) ∈ Ua,yk1 ,1 × Dε1(a,yk1 )/2(yk1 ). This

implies that v1∩(Ua,yk1 ,1×{yk1}) � ∅. By (14) and (15), we have {(z1, w1)} := v1∩(Dr×{w1}) ⊂
Ua,yk1 ,1 × {w1}. Otherwise, for any path in v1 ∩ (C × Dε1(a,yk1 )/2(yk1 )) between (z1, w1) and
(x1, yk1 ), the path necessarily intersects γa,yk1 ,1×Dε1(a,yk1 )/2(yk1 ). This leads to a contradiction
(see the proof of (15)). Thus we have v1 ∩ (Dr × {w1}) ⊂ Ua,yk1 ,1 × {w1}, which implies that
v1 ∩ (Dr × {w1}) ⊂ Ua,yk1 ,1 × Dε1(a,yk1 )/2(yk1 ) ⊂ U1,N . Thus we have (16).

By using (16), we show that

(17) va,λ,1 ∩ (Dr × Dr/2) ⊂ U1,N .

We have va,λ,1 ∩ (Dr × Dr/2) =
⋃
y∈Dr/2

va,λ,1 ∩ (Dr × {y}) by the same argument as in the
proof of (13). Thus, to show that (17), it suffices to show that va,λ,1 ∩ (Dr × {y}) ⊂ U1,N for
y ∈ Dr/2. Fix ŵ1 ∈ Dr/2. By using the argument in the proof of (16), we can take k̂1 ∈ N
with 1 ≤ k̂1 ≤ N such that ŵ1 ∈ Dε1(a,yk̂1

)/2(yk̂1
) and va,λ,1 ∩ (Dr × {ŵ1}) ⊂ Ua,yk̂1

,1 × {ŵ1}.
By (14), va,λ,1 ∩ (Dr × {ŵ1}) ⊂ Ua,yk̂1

,1 × {ŵ1}. In particular, we have va,λ,1 ∩ (Dr × {ŵ1}) ⊂
Ua,yk̂1

,1 × Dε1(a,yk̂1
)/2(yk̂1

) ⊂ U1,N . Thus we have (17).
We next show that

(18) va,λ,2 ∩ (Dr × Dr/2) ∩ U1,N = ∅.
Note that U1,N =

⋃N
j=1(Ua,y j,1 × Dε1(a,y j)/2(y j)). Assume that there is (z2, w2) ∈ va,λ,2 ∩

(Dr × Dr/2) ∩ U1,N . Let v2 ⊂ va,λ,2 be the vertical component of va,λ which contains (z2, w2).
By (14), we may assume that (z2, w2) ∈ Ua,yk2 ,1 × Dε1(a,yk2 )/2(yk2 ) for some k2 with 1 ≤
k2 ≤ N. Let x2 ∈ C be the point such that {(x2, yk2 )} = v2 ∩ (C × {yk2}). By (14) and
z2 ∈ Ua,yk2 ,1, we have {(x2, yk2 )} = v2 ∩ (C × {yk2}) ⊂ Ua,yk2 ,1 × {yk2}. Otherwise, for any
path in v2∩ (C×Dε1(a,yk2 )/2(yk2 )) between (x2, yk2 ) and (z2, w2), the path necessarily intersects
γa,yk2 ,1 × Dε1(a,yk2 )/2(yk2 ). This leads to a contradiction (see the proof of (15)). Thus we have
v2 ∩ (C × {yk2}) ⊂ Ua,yk2 ,1 × {yk2}, which implies that Pr1 h̃−1

a,λ,yk2
(v2 ∩ (C × {yk2})) ⊂ U1. On

the other hand, v2 ∩ (Ua,0,2 × {0}) � ∅ since v2 ⊂ va,λ,2 is a vertical component of va,λ. Thus
Pr1 h̃−1

a,λ,0(v2∩ (C×{0})) ⊂ U2. Since U1∩U2 = ∅ and Pr1
⋃
y∈Dr

h̃−1
a,λ,y(v2∩ (C×{y})) consists

of a single point, we have a contradiction. This contradiction implies that (18) holds.
By using (18), we show that

(19) va,λ,2 ∩ (Dr × Dr/2) ∩ U1,N = ∅.
By the same argument as in the proof of (17), it suffices to show that va,λ,2 ∩ (Dr × {y}) ∩
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U1,N = ∅ for y ∈ Dr/2. Fix ŵ2 ∈ Dr/2. By (18), we have va,λ,2 ∩ (Dr × {ŵ2}) ∩ U1,N = ∅.
Note that U1,N ∩ (Dr × {ŵ2}) can be represented by a finite union of the sets Ua,y j,1 × {ŵ2}.
Thus, by (14), we have va,λ,2 ∩ (Dr × {ŵ2})∩U1,N ∩ (Dr × {ŵ2}) = ∅. Hence we have (19) by
va,λ,2 ∩ (Dr × {ŵ2}) ∩ U1,N ∩ (Dr × {ŵ2}) = va,λ,2 ∩ (Dr × {ŵ2}) ∩ U1,N .

Finally, we show that Ja,λ is disconnected. We set U2 := (C × Dr/2) \ U1,N . Then Ja,λ ⊂
U1,N ∪ U2. Indeed, we have Ja,λ ⊂ Dr × Dr/2 by (2) and ( i ) in Definition 3.1. Thus
Ja,λ ⊂ (va,λ,1 ∪ va,λ,2) ∩ (Dr × Dr/2). Therefore, by (17) and (19), Ja,λ ⊂ U1,N ∪ U2. Clearly,
we have Ja,λ ∩ U1,N � ∅ by (16) and Lemma 3.9. Similarly, we have Ja,λ ∩ U2 � ∅ by (18)
and Lemma 3.9. Thus Ja,λ is disconnected. �

4. Application for radial perturbations of semi-parabolic Hénon maps

4. Application for radial perturbations of semi-parabolic Hénon maps
In this section, we apply Theorem 3.10 to perturbations of semi-parabolic Hénon maps.

To consider the connectivity of J for the parameters near the boundary of the Mandelbrot
set, we consider perturbations of semi-parabolic Hénon maps by using a perturbation of one
eigenvalue of semi-parabolic fixed points. Let λ0 = exp(2πim/l), where l ∈ Z \ {0}, m ∈ Z
and (m, l) = 1. Let {λt}t∈[0,δ0) be a one-parameter continuous family of complex numbers,
where δ0 > 0. Assume that λl

t = exp(Lt + iθt) and R � θt → 0 as t → 0, where Lt ∈ R \ {0}
and θt ∈ R for 0 < t < δ0.

Definition 4.1 (Radial perturbations). We say that a family RDλt ,δ0 := {Ha,λt }a∈Dδ0 ,0<t<δ0

is a radial perturbation of the semi-parabolic Hénon family {Ha,λ0}a∈Dδ0 if θt = O(Lt).

In order to apply Theorem 3.10 to RDλt ,δ0 , we first check that the section {Ha,λt }a∈Dδ0 of
RDλt ,δ0 satisfies the condition (VC)ε,r for each t with 0 < t < δ0.

Lemma 4.2. There is δ0 > 0 such that the section {Ha,λt }a∈Dδ0 of RDλt ,δ0 satisfies the
condition (VC)ε,r for each t with 0 < t < δ0.

Proof. If λ0 � 1, then the section {Ha,λt }a∈Dδ0 of RDλt ,δ0 satisfies the (VC)ε,r for 0 < t < δ0

by Lemma 3.2, taking a smaller δ0 > 0 if necessary (see Remark 3.3).
Assume that λ0 = 1. We may assume that each Ha,λt ∈ RDλt ,δ0 with a � 0 satisfies the

condition (2) with respect to r by taking a smaller δ0 and a larger r if necessary. Fix ε > 0.
We can show that {Ha,λt }a∈Dδ0 satisfies ( i ), (ii) in Definition 3.1 for 0 < t < δ0 in the same
way as in the proof of Lemma 3.2, taking a smaller δ0 > 0 if necessary (see Remark 3.4).
Thus it suffices to show that {Ha,λt }a∈Dδ0 satisfies (iii) in Definition 3.1 for 0 < t < δ0, taking
a smaller δ0 > 0 if necessary.

To show that (iii) in Definition 3.1 holds, we first show that Ha,λt has a saddle fixed point
for 0 < t < δ0. In order to show this, we show that Ha,λt has two distinct fixed points.
Consider the equation (x2 + c(a, λt) + ay, ax) = (x, y). By y = ax, we have

(20) x2 + (a2 − 1)x + c(a, λt) = 0.

Assume that (x − α)(x − β) = x2 + (a2 − 1)x + c(a, λt). If α = β, then α = 1/2 − a2/2. In
this case, Ha,λt has only one fixed point (1/2 − a2/2, a/2 − a3/2). Since Ha,λt has a fixed
point qa,λt

= (λt/2 − a2/(2λt), a(λt/2 − a2/(2λt))) (see (4)), we have λt = 1 or λt = −a2.
Since λ0 = 1, we have λt = 1 for a ∈ Dδ0 , by taking δ0 > 0 so that 0 < δ0 < 1/2 and
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|λt| > 1/2 for 0 < t < δ0. This contradicts λt = exp(Lt + iθt) with Lt � 0 for 0 < t < δ0.
This contradiction shows that Ha,λt has two distinct fixed points. The other fixed point of
Ha,λ is ua,λ := (1 − a2 − Pr1 qa,λ, a(1 − a2 − Pr1 qa,λ)) by (20). These fixed points qa,λ, ua,λ

depend holomorphically for (a, λ) in a small neighborhood of (0, 1). At least one of the fixed
points qa,λt

, ua,λt is a saddle by qa,λt
� ua,λt (see [14, Theorem 7.1.16, p.234]). Hence, there

is a fixed point sa,λ of Ha,λ depending holomorphically for (a, λ) in a small neighborhood of
(0, λ0), and sa,λt is a saddle fixed point of Ha,λt ∈ RDλt ,δ0 , by taking a smaller δ0 if necessary.

Finally, we show that (iii) in Definition 3.1 holds. Let Φ̃0,λ(z) := (Pr1 s0,λ, z) and Φ̃a,λ be
the parametrization of W ss(sa,λ) for (a, λ) ∈ Dδ0 \ {0}×Dδ0 (λ0) given by (5). In the same way
as in the proof of Lemma 2.13, Φ̃a,λ(z) is holomorphic with (a, λ, z) ∈ Dδ0 × Dδ0 (λ0) × C.
We have W ss

loc(sa,λ) = {(Φ̃a,λ,1(Φ̃−1
a,λ,2(y)), y) : y ∈ Dr} for (a, λ) ∈ Dδ0 × Dδ0 (λ0), taking a

smaller δ0 if necessary, where Φ̃a,λ = (Φ̃a,λ,1, Φ̃a,λ,2) (see the proof of Lemma 3.2). We have
sa,λ0 = qa,λ0

since ua,λt , qa,λt
→ qa,λ0

as t → 0. Since W ss
loc(q0,λ0

) = {Pr1 q0,λ0
} × Dr, we see

that T(x,y)W s
loc(sa,λt ) ⊂ Cv

(x,y) for (x, y) ∈ W s
loc(sa,λt ), a ∈ Dδ0 and 0 < t < δ0, taking a smaller

δ0 > 0 if necessary. Thus, Ha,λt ∈ RDλt ,δ0 satisfies (iii) in Definition 3.1 for 0 < t < δ0. �

We next prepare local coordinates near semi-parabolic fixed points to check that the con-
dition (7) holds for RDλt ,δ0 .

Lemma 4.3 ([16, Theorem 3.5 and its proof]). Let r > 3 be a fixed constant, λ0 :=
exp(2πim/l) and λt := (1 + t)λ0 where t ∈ R. Then, there exist δ > 0, δ′ > 0 such that for
|a| < δ and |t| < δ′ there exists a coordinate transformation φa,t : B = Dρ′(Pr1 q0,λt

) × Dr →
Dρ ×Dr+O(|a|) such that φa,t(qa,λt

) = (0, 0), W ss
loc(qa,λt

) ⊂ Dρ′(Pr1 q0,λt
)×Dr, φa,t(W ss

loc(qa,λt
)) ⊂

{0}×C, the image of any horizontal curveDρ′(Pr1 q0,λt
)×{y1} under φa,t is a subset of C×{y2}

for some y2 ∈ Dr+O(|a|), and H̃a,λt = φa,t ◦ Ha,λt ◦ φ−1
a,t , H̃a,λt (x, y) = (X1, Y1) has the form

(21) (X1, Y1) = (λt(x + xl+1 +Ca,t x2l+1 + ba,t,2l+2(y)x2l+2 + · · · ), νa,ty + xha,t(x, y)),

where Ca,t is a constant depending only on a and t, xha,t(x, y) = O(a) and νa,t is the other
eigenvalue of (DHa,λt )qa,λt

. Moreover, the transformation φa,t is analytic for a and t,

lim
a→0

φa,t(x, y) = (φt(x), y),

uniformly for t. The map φt : Dρ′(Pr1 q0,λt
)→ Dρ is the transformation of the polynomial pλt

and

φt ◦ pλt ◦ φ−1
t (x) = λt(x + xl+1 +C0,t x2l+1 + O(x2l+2)).

For r > 3, λ0 = exp(2πim/l), if (c, a) ∈ λ0 with sufficiently small |a|, then the sets U±

given in Definition 2.3 satisfy the equations (2). The condition λt = (1 + t)λ0 in Lemma 4.3
corresponds to θt = 0 for 0 < t < δ0 in Definition 4.1. To see that Ha,λt ∈ RDλt ,δ0 has the
form (21) (Lemma 4.4), we sketch the proof of Lemma 4.3.
Sketch of the proof of Lemma 4.3. The proof of Lemma 4.3 breaks into four steps.
Step 1. Let Φa,λt = (Φa,λt ,1,Φa,λt ,2) be given in Lemma 2.8. Then Φa,λt (y) = Φ0,λt (y) + O(a)
by Lemma 2.8. For sufficiently small |a| and |t|, we may assume that there exists Φ−1

a,λt ,2
in

Dr by Rouché’s theorem and Φa,λt ,2(z) = z. For (x, y) ∈ C × Dr, consider the transformation
(22)

(X, Y) = (x − Φa,λt ,1(Φ−1
a,λt ,2(y)),Φ−1

a,λt ,2(y)) with inverse (x, y) = (X + Φa,λt ,1(Y),Φa,λt ,2(Y)),
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which maps W ss
loc(qa,λt

) into {0} × C. By using the transformation (22), Ha,λt and H0,λt have
the forms

(ba,t,1(Y)X + ba,t,2(Y)X2 + · · · , νa,tY + Xha,t(X, Y)) and (λtX + X2, 0),

respectively. Note that ba,t,1(0) = λt and ba,t,1(Y) = λt + O(a) since Φa,t(y) = Φ0,t(y) + O(a).
Step 2. Suppose that Ha,λt (x, y) has the form

(23) (ba,t,1(y)x + ba,t,2(y)x2 + · · · , νa,ty + xha,t(x, y)).

Let us reduce the function ba,t,1(y) to ba,t,1(0) = λt (see Proposition 3.2 in [17]). Since
ba,t,1(νn

a,ty)

λt
= 1 + O(νn

a,ty), the product

ua,t(y) =
∏
n≥0

⎛⎜⎜⎜⎜⎜⎝ba,t,1(νn
a,ty)

λt

⎞⎟⎟⎟⎟⎟⎠ ,
converges for y ∈ Dr. By using (X, Y) = (ua,t(y)x, y) with inverse (x, y) = (X/ua,t(Y), Y),
(23) has the form

ua,t(νa,tY+Xha,t(X/ua,t(Y), Y)/ua,t(Y))×(ba,t,1(Y)X/ua,t(Y)+ba,t,2(Y)(X/ua,t(Y))2+· · · )

=
ua,t(νa,tY)ba,t,1(Y)

ua,t(Y)
X+O(X2)=λtX+O(X2),

in the first coordinate.
Step 3. We may assume that Ha,λt has the form

(λt x + ba,t,2(y)x2 + ba,t,3(y)x3 + · · · , νa,ty + xha,t(x, y)).

We next reduce the function ba,t,k(y) to constants by induction on 2 ≤ k ≤ 2l + 1. Consider

(24) (λt x + ba,t,2x2 + ba,t,3x3 + · · · + ba,t,k−1xk−1 + ba,t,k(y)xk + · · · , νa,ty + xha,t(x, y)),

where ba,t, j is constant for j = 1, 2, . . . , k − 1. We set

va,t(y) =
∞∑

n=0

(ba,t,k(νn
a,ty) − ba,t,k(0))λn(k−1)−1

t .

This series converges since |νa,tλ
k−1
t | < |νa,tλ

2l
t | < 1 for sufficiently small t and |a|. By using

local coordinate (X, Y) = (x + va,t(y)xk, y) with inverse (x, y) = (X − va,t(Y)Xk + · · · , Y), (24)
has the form

λtX + · · · + ba,t,k−1Xk−1 + (ba,t,k(Y) + λk
t va,t(νa,tY) − λtva,t(Y))Xk + O(Xk+1)

= λtX + · · · + ba,t,k−1Xk−1 + ba,t,k(0)Xk + O(Xk+1),

in the first coordinate.
Step 4. We may assume that Ha,λt has the form

λt(x + ba,t,2x2 + · · · + ba,t,2l+1x2l+1 + ba,t,2l+2(y)x2l+2 + · · · ),
in the first coordinate. We reduce ba,t,k to 0 for each k with 2 ≤ k ≤ 2l + 1 and k − 1 � lN by
induction. We first assume that Ha,λt has the form
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(25) λt(x + ba,t,k xk + · · · + ba,t,l+1xl+1 + · · · ),
in the first coordinate. By the local coordinate
(26)
(X, Y) = (x − λtba,t,k xk/(λk

t − λt), y) with inverse (x, y) = (X + λtba,t,kXk/(λk
t − λt) + · · · , Y),

(25) has the form

λtX + (λtba,t,k − (λk
t − λt)λtba,t,k/(λk

t − λt))Xk + · · · = λtX + O(Xk+1).

By induction and a linear transformation, we may assume that the first coordinate of Ha,λt

has the form

λt(x + xl+1 + ba,t,l+2xl+2 + · · · + ba,t,2l+1x2l+1 + ba,t,2l+2(y)x2l+2 + · · · ).
We next assume that Ha,λt has the form

(27) λt(x + xl+1 + ba,t,k xk + · · · + ba,t,2l+1x2l+1 + · · · ),
in the first coordinate. By induction, we reduce ba,t,k to 0 for each k with l + 2 ≤ k ≤ 2l. By
(26), (27) has the form

λt(X + Xl+1) + (λtba,t,k − (λk
t − λt)λtba,t,k/(λk

t − λt))Xk + · · · = λt(X + Xl+1) + O(Xk+1),

in the first coordinate. Therefore, we may assume that Ha,λt has the form

λt(x + xl+1 +Ca,t x2l+1 + ba,t,2l+2(y)x2l+2 + O(x2l+3)),

in the first coordinate. Hence we have Theorem 4.3. Note that, by repeating Step 3 and Step
4, Ha,λt has the form

(28) (λt(x + xl+1 +Ca,t x2l+1 + ba,t,3l+1(y)x3l+1 + · · · ), νa,ty + xha,t(x, y)).

We obtain the following lemma by the same computation as in the proof of Theorem 3.5
in [16].

Lemma 4.4. There is δ0 > 0 such that by a coordinate transformation φa,t, φa,t◦Ha,λt ◦φ−1
a,t

has the form (21) for each Ha,λt ∈ RDλt ,δ0 .

We now prove the second main result of this paper.

Theorem 4.5. There is δ0 > 0 such that each Ha,λt ∈ RDλt ,δ0 with a � 0 has connected
Julia set Ja,λt .

Proof. It suffices to show the statement of Theorem 4.5 for Ha,λ−1
t

instead of Ha,λt . More-
over, by Theorem 3.10 and Lemma 4.2, it suffices to show that there are ε > 0 and δ0 > 0
such that (Dε × Dr) ∩ J+

a,λ−1
t
= ∅ for Ha,λ−1

t
∈ RDλ−1

t ,δ0
, and Jp

λ−1
t

is connected for 0 < t < δ0.
We first consider the case λ0 = 1. By a transformation φa,t (see Lemma 4.4), φa,t ◦Ha,λ−1

t
◦

φ−1
a,t is of the form

(29) (x1, y1) = (λ−1
t (x + x2 +Ca,t x3 + Oy(x4)), νa,ty + xha,t(x, y)),

in Dρ × Dr+O(|a|), where the notation Oy(xα) represents a holomorphic map of (x, y) which
is bounded by K|x|α for some K. By the transformation ψt(x, y) = (−1/(λt x), y), the map
ψt ◦ φa,t ◦ Ha,λ−1

t
◦ φ−1

a,t ◦ ψ−1
t (X, Y) = (X1, Y1) is of the form
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(30)
(λtX+1+ga,t(X, Y), νa,tY+ fa,t(X, Y)) =

(
λtX + 1 + Da,t/X + OY

(
1/|X|2

)
, νa,tY + OY (1/|X|)

)
.

We take a constant M > 0 such that

(31) |ga,t(X, Y)| ≤ M

|X| and | fa,t(X, Y)| ≤ M

|X|,

for a ∈ Dδ0 and 0 < t < δ0. Recall that φa,t is a transformation from Dρ′(Pr1 q0,λt
) × Dr to

Dρ ×Dr+O(|a|). Since Pr2 φa,t(x, y) = y+O(a) (see the sketch of the proof of Lemma 4.3), we
may assume that the forms (30) are defined in {|X| > 1/ρ}×Dr and the inequalities (31) hold
for (X, Y) ∈ {|X| > 1/ρ}×Dr. Note that ψt ◦φa,t(qa,λ−1

t
) = (∞, 0). We set (X0, Y0) := ψ0 ◦φ0,0 ◦

HN
0,λ−1

0
(0, 0) for some large N ∈ N. We have Re X0 > 1/ρ, by taking a larger N if necessary,

since the forward orbit of critical point 0 under pλ−1
0

converges to its parabolic fixed point
(see [1], p.120). Let γ > 0 be a number such that Dγ(X0)×Dr ⊂ {X ∈ C : Re X > 1/ρ} ×Dr.
We set E := Dγ(X0) × Dr. We consider the affine transformations

Qt(z, w) =

⎛⎜⎜⎜⎜⎜⎝ z − bt

X0 − bt
, w

⎞⎟⎟⎟⎟⎟⎠ and Q−1
t (z, w) = ((X0 − bt)z + bt, w), where bt :=

1

1 − λt
.

We set

Fa,t(z, w) = Qt ◦ ψt ◦ φa,t ◦ Ha,λ−1
t
◦ φ−1

a,t ◦ ψ−1
t ◦ Q−1

t (z, w).

Then, we have

Pr1 Fa,t(z, w) = Pr1 Qt ◦ψt ◦φa,t ◦Ha,λ−1
t
◦φ−1

a,t ◦ψ−1
t ◦Q−1

t (z, w) = λtz+
ga,t((X0 − bt)z + bt, w)

X0 − bt
.

We set

Ga,t(z, w) :=
ga,t((X0 − bt)z + bt, w)

X0 − bt
.

Further we set E′(= E′t ) := Qt(E) and U′(= U′t ) := Qt(U), where U = {|z| < 1/ρ}×Dr. Then
we have

E′ =

⎧⎪⎪⎨⎪⎪⎩z ∈ C : |z − 1| < γ

|bt − X0|

⎫⎪⎪⎬⎪⎪⎭ × Dr and U′ =

⎧⎪⎪⎨⎪⎪⎩z ∈ C :

∣∣∣∣∣∣∣z −
bt

bt − X0

∣∣∣∣∣∣∣ <
1

ρ|bt − X0|

⎫⎪⎪⎬⎪⎪⎭ × Dr.

Clearly, if ρ and δ0 are sufficiently small, then for each a ∈ Dδ0 and each t ∈ (0, δ0), we have

(32) Pr2 Fa,t((C × Dr) \ U′) ⊂ Dr.

Indeed, |Pr2 ψt ◦ φa,t ◦ Ha,λ−1
t
◦ φ−1

a,t ◦ ψ−1
t (X, Y)| ≤ |νa,tY | + M/|X| < |νa,t|r + Mρ for (X, Y) ∈

{|X| > 1/ρ} × Dr (see (30) and (31)). Recall that νa,t = −a2/λ−1
t and |λ0| = 1. By taking ρ

and δ0 with sufficiently small, we have |νa,t|r + Mρ < r for a ∈ Dδ0 and 0 < t < δ0. Since
Pr2 Qt(z, w) = w, we have (32).

By X0 = Pr1 ψ0 ◦ φ0,0 ◦ HN
0,λ−1

0
(0, 0), E = Dγ(X0) × Dr and (32), we have Qt ◦ ψt ◦ φa,t ◦

HN
a,λ−1

t
(Dε×Dr) ⊂ E′ for a ∈ Dδ0 and 0 < t < δ0, by taking δ0 > 0 and ε > 0 sufficiently small

if necessary. Thus, to show that there are ε > 0 and δ0 > 0 such that (Dε × Dr) ∩ J+
a,λ−1

t
= ∅

for Ha,λ−1
t
∈ RDλ−1

t ,δ0
, it suffices to show that there is δ0 > 0 such that
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(33)
⋃
k∈N

Fk
a,t(E

′) ∩ U′(=
⋃
k∈N

Fk
a,t(E

′
t ) ∩ U′t ) = ∅,

for a ∈ Dδ0 and 0 < t < δ0, taking smaller γ > 0, ρ > 0 and a larger N ∈ N if necessary.
Indeed, if (33) holds for Fa,t, then

⋃
n≥0 Hn

a,λ−1
t

(Dε×Dr) is a bounded set of C2, which implies
that Dε × Dr ⊂ Int Ka,λ−1

t
. To obtain (33), we show the following Claims 1,2,3.

Claim 1. For sufficiently small δ0, the following hold. If Lt > 0 for 0 < t < δ0, then
U′ ⊂ D ×Dr for 0 < t < δ0. If Lt < 0 for 0 < t < δ0, then U′ ∩ (D ×Dr) = ∅ for 0 < t < δ0.

Fig.4. Lt > 0 and θt > 0 (left), Lt < 0 and θt > 0 (right)

We prove Claim 1. Assume that Lt > 0 for each 0 < t < δ0. We show that
|bt|

|bt − X0| +
1

ρ|bt − X0| < 1 for sufficiently small t to obtain the conclusion. The inequality is equivalent

to

(34) |1 − X0(1 − λt)| − |1 − λt|/ρ − 1 > 0.

Let x1 := Re(λt −1) and y1 := Im(λt −1). Then, x1 = Lt +O(L2
t ) and y1 = θt +O(θtLt). First,

we have

|1 + X0(λt − 1)| =
√

(1 + Re(X0)x1 − Im(X0)y1)2 + (Re(X0)y1 + Im(X0)x1)2

=

√
1 + 2Re(X0)x1 − 2Im(X0)y1 + O((x1 + y1)2)

=

√
1 + 2Re(X0)x1 − 2Im(X0)y1 + O(L2

t )

= 1 + Re(X0)x1 − Im(X0)y1 + O(L2
t ).

We now show the inequality (34). By the above computation, we have

|1 − X0(1 − λt)| − |1 − λt|/ρ − 1 = Re(X0)x1 − Im(X0)y1 + O(L2
t ) − |1 − λt|/ρ.

Recall that X0 = Pr1 ψ0 ◦ φ0,0 ◦ HN
0,λ−1

0
(0, 0). Since Re X0 > 0, 0 < x1 � Lt, y1 = O(θt)

and |1 − λt| = O(Lt), we have the assertion, taking a large N ∈ N so that |Im X0|/Re X0 and
1/(ρRe X0) are sufficiently small (see [1], p.120), where x1 � Lt means that there is K > 0
such that Lt/K < x1 < KLt for sufficiently small t.

Assume that Lt < 0 for 0 < t < δ0. We claim that
|bt|

|bt − X0|−
1

ρ|bt − X0| > 1 for sufficiently

small t. The inequality is equivalent to 1 − |1 − λt|/ρ − |1 − X0(1 − λt)| > 0. We have

1 − |1 − λt|/ρ − |1 − X0(1 − λt)| = −|1 − λt|/ρ − Re(X0)x1 + Im(X0)y1 + O(L2
t ).
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By Re X0 > 0 and x1 < 0, we have the assertion, taking a larger N ∈ N so that |Im X0|/Re X0

and 1/(ρRe X0) are sufficiently small if necessary (see [1], p.120). Thus, we have proved
Claim 1.

Claim 2. For sufficiently small δ0, the following hold. If Lt > 0 for 0 < t < δ0, then
|Pr1 Fa,t(z, w)| > eLt/2|z| > |z| for a ∈ Dδ0 , 0 < t < δ0 and (z, w) ∈ ({|z| > 1/2} × Dr) \ U′.
If Lt < 0 for 0 < t < δ0, then |Pr1 Fa,t(z, w)| < eLt/2|z| < |z| for a ∈ Dδ0 , 0 < t < δ0 and
(z, w) ∈ ({|z| > 1/2} × Dr) \ U′.

We prove Claim 2. Assume that (z, w) ∈ ({|z| > 1/2}×Dr) \U′. By using the inequality (31),
we have

|Ga,t(z, w)|
||λtz| − eLt/2|z|| <

2|Ga,t(z, w)|
|eLt − eLt/2| ≤

2Mρ

|eLt − eLt/2||X0 − bt| =
2Mρ|1 − λt|

eLt/2|eLt/2 − 1||X0(1 − λt) − 1|.

Since |1 − λt| = O(Lt), there exists a positive constant δ0 such that the ratio is less than 1/2
if 0 < t < δ0, taking ρ > 0 sufficiently small if necessary. We note that the constant δ0 does
not depend on z. By the inequality

(35) |λtz| − eLt/2|z| − |Ga,t(z)| ≤ |Pr1 Fa,t(z, w)| − eLt/2|z| ≤ |λtz| − eLt/2|z| + |Ga,t(z, w)|,
the statement of Claim 2 holds.

Claim 3. For sufficiently small δ0, the following hold. If Lt > 0 for 0 < t < δ0, then
Fa,t(E′) ∩ (D × Dr) = ∅ for a ∈ Dδ0 and 0 < t < δ0. If Lt < 0 for 0 < t < δ0, then
Fa,t(E′) ⊂ D × Dr for a ∈ Dδ0 and 0 < t < δ0.

We prove Claim 3. Let (z, w) ∈ E′. Then, we have z = 1 + z0, where |z0| < γ/|bt − X0|.
Since

|Pr1 Fa,t(z, w)| = |λt(1 + z0) +Ga,t(1 + z0, w)| = |λt + λtz0 +Ga,t(1 + z0, w)|,
we have

eLt − |λtz0 +Ga,t(1 + z0, w)| ≤ |Pr1 Fa,t(z, w)| ≤ eLt + |λtz0 +Ga,t(1 + z0, w)|.
Since |z0| < γ/|bt − X0| = O(Lt) and |Gn(1 + z0)| < Mρ/|X0 − bt| = O(Lt), we have the
assertion, taking smaller γ, ρ if necessary. Hence, we have proved Claim 3.

We now show that there is δ0 > 0 such that Fk
a,t(E

′) ∩ U′ = ∅ for a ∈ Dδ0 , 0 < t < δ0

and each k ∈ N by using Claims 1, 2, and 3. First, assume that Lt > 0 for 0 < t < δ0. By
Claim 1, U′ ⊂ D × Dr. By Claim 3, Fa,t(E′) ∩ (D × Dr) = ∅, and so Fa,t(E′) ∩ U′ = ∅ for
a ∈ Dδ0 and 0 < t < δ0. By U′ ⊂ D × Dr and Claim 2, we have |Pr1 Fa,t(z, w)| > |z| > 1 for
(z, w) ∈ (C\D)×Dr, and so Fa,t((C\D)×Dr) ⊂ (C\D)×Dr. By using Fa,t(E′) ⊂ (C\D)×Dr,
for k ≥ 2, we have

Fk
a,t(E

′) = Fk−1
a,t (Fa,t(E′)) ⊂ Fk−1

a,t ((C \ D) × Dr) ⊂ (C \ D) × Dr.

Hence, we have Fk
a,t(E

′) ∩ U′ = ∅ for a ∈ Dδ0 , 0 < t < δ0 each k ∈ N by U′ ⊂ D × Dr.
Assume that Lt < 0 for 0 < t < δ0. Similarly, we have Fa,t(E′) ∩ U′ = ∅ for a ∈ Dδ0 and

0 < t < δ0. We note that U′ ⊂ (C \D)×Dr by Claim 1. Therefore, Fa,t is defined in D×Dr.
It is easy to see that
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(36) Fa,t(D1/2 × Dr) ⊂ D2/3 × Dr,

for a ∈ Dδ0 and 0 < t < δ0, taking a smaller δ0 if necessary. Indeed, if (z, w) ∈ D1/2×Dr, then
|Pr1 Fa,t(z, w)| ≤ |λtz|+ |Ga,t(z, w)| ≤ |λt|/2+Mρ/(|X0 − bt|) < 2/3 for a ∈ Dδ0 and 0 < t < δ0,
taking a smaller δ0 if necessary. Thus we have (36). By Claim 2, U′ ⊂ (C \ D) × Dr and
(36), we have |Pr1 Fa,t(z, w)| < |z| < 1 or |Pr1 Fa,t(z, w)| < 2/3 for (z, w) ∈ D × Dr, and so
Fa,t(D × Dr) ⊂ D × Dr. For k ≥ 2, we have

Fk
a,t(E

′) = Fk−1
a,t (Fa,t(E′)) ⊂ Fk−1

a,t (D × Dr) ⊂ D × Dr.

Hence, we have Fk
a,t(E

′) ∩ U′ = ∅ for a ∈ Dδ0 , 0 < t < δ0 and each k ∈ N by U′ ∩ (D ×
Dr) = ∅. Hence we obtain (33). This implies that there are δ0 > 0 and ε > 0 such that
(Dε×Dr)∩ Ja,λ−1

t
= ∅ for a ∈ Dδ0 and 0 < t < δ0. For the constant ε > 0, {Ha,λt }a∈Dδ0 satisfies

the condition (VC)ε,r for 0 < t < δ0 by Lemma 4.2, taking a smaller δ0 if necessary (see
Remark 3.4).

In order to apply Theorem 3.10 to {Ha,λ−1
t
}a∈Dδ0 for 0 < t < δ0, we show that Jp

λ−1
t
⊂ C is

connected for 0 < t < δ0. It suffices to show that pλ−1
t

has an attracting fixed point. Since
pλ−1

t
has a fixed point with multiplier λ−1

t = exp(−Lt − iθt), if Lt > 0 for 0 < t < δ0, then pλ−1
t

has an attracting fixed point. If Lt < 0 for 0 < t < δ0, then F0,t(D × Dr) ⊂ D × Dr by Claim
2 and (36). Thus pλ−1

t
has an attracting fixed point.

In the case of l ≥ 2, by the transformation X = −1/(lxl), Y = y and a linear transformation,
the form of (28) with λt replaced by λ−1

t is conjugate to

(X1, Y1) = λl
tX + 1 + Da,t/X + OY(1/X2), νnY + OY(1/|X|1/l)).

Similar to the case of l = 1, we can show the statement in Theorem 4.5 in the case of l ≥ 2.
�
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