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Abstract
We determine the Thurston unit ball of a family of n-chained links with p half-twists on one

component, where the direction of the twists depends on the sign of p. These links are denoted
by C(n, p). For p ≥ 0, we compute the unit Thurston ball precisely: it is an n-dimensional
cocube (the dual of the n-dimensional cube) when p ≥ 1 and it is the union of a cocube and
two simplices when p = 0. When p < 0, we instead give a conjecture, supported by some
computational evidence, on the shape of the Thurston unit ball. Moreover, we are able to iden-
tify at least one fibered face for each C(n, p). Finally, we explicitely compute the Teichmüller
polynomial for a fibered face of the Thurston unit ball of C(n,−2), for arbitrary n ≥ 3.

1. Introduction

1. Introduction
Let M be a 3-dimensional manifold and suppose, for simplicity, that M has tori

boundaries. In one of his many seminal works [20], W. Thurston introduced a notion
of a semi-norm on the second homology vector spaces of M. More precisely, let [a] ∈
H2(M, ∂M;Z) be an integral second homology class. Then [a] can be represented by a dis-
joint union of properly embedded surfaces Si. The Thurston norm of [a] is then defined to
be

x(a) := min{
∑

i

max{0,−χ(Si)}}

where the minimum is taken over all possible ways to represent [a] as a disjoint union of
properly embedded surfaces. If M is irreducible and atoroidal, this then extends to a norm
on H2(M,R). We sometimes use || · || to denote the Thurston norm. In the same paper, he
proves that the unit ball with respect to that norm, which we will call Thurston unit ball,
is always a polytope. Even though this concept has had huge theoretical consequences, it
seems that there are very few cases for which unit Thurston balls are computed explicitely.
An interesting question in that regard is the following.

Question. Which polytope can appear as the Thurston unit ball of some 3-manifold?

This question was already posed by Kitayama in [14]. It has been generalized in terms of
groups and their first homology by Friedl, Lück and Tillmann [5]. In [18], Pacheco-Tallaj,
Schreve and Vlamis investigate the shape of the Thurston unit ball for tunnel number-one
manifolds. We refer to Kitayama’s survery [14] for more information on recent research
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Fig.1. The links C(n,−2)

about the Thurston norm.
In this article we show that the Thurston unit ball of a 3-dimensional manifold M can

contain highly symmetric polytopes of arbitrary high dimensions. We will do so by de-
termining the Thurston unit ball for a family of complements of links. This family will
be denoted by C(n, p), for two integers n and p with n positive, and the complements of
small enough neighborhoods of C(n, p) in S3 will be denoted by M(n, p). Briefly speaking,
C(n, p) is an n-chained link with p positive half-twist on the first component if p is positive
or p negative half-twist on the first component if p is negative (see Figure 1 for an exam-
ple). In [17], Neumann and Reid prove that M(n, p) with n ≥ 3 is hyperbolic if and only if
{|n + p|, |p|} � {0, 1, 2}. The complements of these links are in some sense generalizations
of the magic manifold, which is the complement of C(3, 0). The magic manifold and its
properties are thus good examples to keep in mind.

In a previous article [2], the two authors together with Harry Baik and Changsub Kim
studied the relation between the minimal (topological) entropy of pseudo-Anosov maps on
a surface S and the action of these maps on H1(S). Here the topological entropy of a pseudo-
Anosov map is equal to log λ, where λ is the expanding factor of the given map. In order to
do so, the use of the complements of C(n,−2) was crucial.

Here are the main results of this article.

Theorem A. Let M(n, p) be the complement of the link C(n, p) with n ≥ 3 and B be the
Thurston unit ball of M(n, p). Suppose M(n, p) is hyperbolic. Then

• If p ≥ 1, B is an n-dimensional cocube with vertices
(±1, 0, · · · , 0), · · · , (0, · · · , 0,±1). (Corollary 5.2)
• If p = 0, B is the union of an n-dimensional cocube and two simplices. (Theorem

4.1)

Remark that in [17], the authors show that M(n, p) is hyperbolic if and only if {|n +
p|, |p|} � {0, 1, 2}.

A complete answer for the case of p < 0 is out of our reach for now. We nonetheless
find a set V(n, p) of points in the Thurston unit ball and conjecture that their convex hull,
denoted by B(n, p), is the whole Thurston unit ball. We refer to the end for Section 6 for the
precise statement of the conjecture. This conjecture is partially supported by computational
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data, obtained using the program Tnorm [21]. The data is gathered in Appendix B.
When −n < p < 0, the link C(n, p) is fibered, as shown by Leininger [15]. For n ≥ 4,

we compute an explicit fiber using an operation that we call ‘squeezing’ one of the link
components (see Definition 7.5).

Theorem B (Theorem 7.6). Let C(n, p) be a hyperbolic negatively twisted n-chained
link and let S be any surface obtained by performing the Seifert algorithm to the diagram
obtained after squeezing one of the link components. Then, the cone of B(n, p) containing
[S] ∈ H2(M(n, p), ∂M(n, p)) is fibered.

When p = −2, we also compute the Teichmüller polynomial for every value of n.

Theorem C (Theorem 8.1). Suppose n ≥ 5. Let  be the fibered cone of M(n,−2)
which contains the point [Sn] ∈ H2(M(n,−2), ∂M(n,−2)), where Sn is the surface depicted
in Figure 15. The Teichmüller polynomial P for the fibered cone  is

P(x1, · · · , xn−1, u) := A −
n∑

k=1

uakAk

where a1 = 1, a2 = x−1
1 , · · · , an = (x1 · · · xn−1)−1, A := (a1 − u) · · · (an − u) and Ak =

A
(ak − u)(ak−1 − u)

, where an+1 = a1.

2. Preliminary

2. Preliminary
For a hyperbolic 3-manifold M, possibly with boundary ∂M, Thurston [20] defined a

norm || · || on H2(M, ∂M;R). It turns out the unit norm ball B with respect to the Thurston
norm is always a finite-sided polytope. Let  be a top-dimensional face of B and let  = R·
be the open cone over  . Thurston showed that if M is a fibered 3-manifold, then either all
integral points in  are fibered or none of them are fibered. Here a point of H2(M, ∂M;Z)
is fibered if it admits a representative that is a fiber surface. In the former case, we call
 a fibered cone and the associated face  a fibered face. The goal of this paper is to
compute this norm ball B and some fibered faces of some hyperbolic manifolds obtained as
complements of chain links.

This section contains the essential tools that will be used in the rest of the paper. In this
paper, surfaces will be denoted by S or Si, for some positive integer i, except for spheres that
are denoted by Sn where n is the dimension of the sphere.

2.1. Murasugi sums.
2.1. Murasugi sums. David Gabai ( [8], [9]) proved theorems related to the fiberedness

of embedded surfaces and, whenever they are in fact fibered, about their monodromy map.
A key construction in his work is a geometric operation called “Murasugi sum”. We begin
with the definition of this operation.

Definition 2.1 (Murasugi sum, [8]). The oriented surface S ⊂ S3 is a Murasugi sum of
two different oriented surfaces S1 and S2 if

(1) S = S1 ∪ S2 and S1 ∩ S2 = D, where D is a 2n-gon,
(2) The intersection of Si, i = 1, 2, with D is a disjoint union of n arcs,
(3) There is a partition of S3 into two 3-balls B1, B2 satisfying that

• Si ⊂ Bi for i = 1, 2.
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Fig.2. Murasugi sum of two surfaces, where D is a hexagon

• B1 ∩ B2 = S2 and Si ∩ S2 = D for i = 1, 2.

In simple terms, the Murasugi sum is a way to cut-and-paste two surfaces in an alternating
way so that, around the gluing region, it looks like there are 2n legs going up and down
alternatively (see Figure 2).

The interest of the Murasugi sum is that it preserves the fiberedness and also the mon-
odromies. More precisely, Gabai proved the two following theorems.

Theorem 2.2 ([6]). Let S be a Murasugi sum of S1 and S2. Then S is a fiber surface if
and only if both S1 and S2 are fiber surfaces.

Theorem 2.3 ([8], Cor 1.4). Suppose that S is a Murasugi sum of S1, S2 with ∂Si = Li,
where Li is a fibered link with monodromy fi fixing pointwise the boundary ∂Si, resp. Then
L = ∂S is a fibered link with fiber S and its monodromy map is f = f ′2 ◦ f ′1 where f ′i is equal
to fi on the image of Si in S and is the identity on S \ Si.

Using these two theorems, it is possible to construct fiber surfaces by gluing together
smaller fiber surfaces while keeping a nice control on the monodromy maps. A good starting
block for this construction is the Hopf link L, which consists of 2 circles that are linked
together exactly once. The Hopf band is then a Seifert surface of the Hopf link. It is thus a
fiber surface of S3 − L.

Lemma 2.4 (Monodromy of a Hopf band). The Hopf band is a fiber surface. Moreover,
the monodromy of the positive (resp. negative) Hopf band is the right-handed (resp. left-
handed) Dehn twist along its core curve.

In fact, Giroux and Goodman [10] proved that every fibered link in S3 can be obtained
from the unknot by Murasugi summing or desumming along Hopf bands. In that sense, the
Hopf bands are building blocks that can be used to construct any fibered link in S3.

2.2. Fibers of alternating knots/links.
2.2. Fibers of alternating knots/links. Suppose that a fibered link L in S3 is given. In

general, it is difficult to find a concrete fiber surface for S3 − L. However, if L is alternating
and D is an alternating diagram for L, Gabai [7] showed that the surface obtained using the
Seifert algorithm on D will be a fiber surface of minimal genus. We now recall the definition
of an alternating link and explain the Seifert algorithm. For more details, we refer to [19].

Let L be an oriented link. A link diagram for L is, roughly speaking, the planar graph
obtained by projecting L onto a plane. Whenever two edges of this graph cross, a segment
of one of the two edges is erased. The choice of which edge to erase depends on which one
was met first during the projection. A link diagram is alternating if the crossings alternate
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under and over as one travels along each component of the link. A link is alternating if it
admits an alternating diagram. See Figure 1 for an example of an alternating link diagram.

Definition 2.5 (Seifert algorithm). Let L be an oriented link. The Seifert algorithm can
be described as follows.

(1) For each crossing, cut at the crossing and paste back in such a way that, near the
crossing, there are 2 components, as showed in Figure 3.

Fig.3. Cut and paste at a crossing in Seifert algorithm.

(2) After all these cut-and-paste operations, a disjoint collection of oriented simple
closed curves is left. Each curve bounds a disk, unless two or more curves are
nested. If some of the curves are nested, we can consider the innermost curve to be
lying slightly above the others and repeat this process until there are no more nested
curves. We then assign to each region a ”+” sign if the region is on the left side of
the boundary curve, with respect to its orientation, or ”-” sign otherwise. Note that
the result is sometimes called a checkerboard coloring.

(3) Finally, reconnect these discs at each crossing with a twisted strip. The direction of
the twist is determined by the direction of the original crossing.

The result of this algorithm is a surface S whose (oriented) boundary is L.

The surface obtained from the Seifert algorithm is called a Seifert surface for L. The
genus of a link L is defined to be the minimal genus of a surface in the complement of L
whose boundary is L. In [9] Gabai proved that if L is alternating, the genus of L is equal to
the genus of any Seifert surface of L.

Theorem 2.6 ([9], Thm 4). Let L be an oriented link in S3. If S is a surface obtained by
applying Seifert’s algorithm to an alternating diagram of L, then S is a surface of minimal
genus.

The following theorem establishes a connection between the genus of a Seifert surface
and the possibility of the surface to be a fiber.

Theorem 2.7 (Theorem 4.1.10 in [11]). Let S be a Seifert surface for a fibered link L.
Then the following are equivalent.

(1) S attains the minimal Seifert genus for L.
(2) S is a fiber surface.

2.3. Teichmüller polynomial.
2.3. Teichmüller polynomial. The Teichmüller polynomial θ for a fibered face  ⊂

H1(M,R) is a polynomial associated to the fibered cone R+ ·  that determines the stretch
factors of all the monodromies of fibers in the fibered cone. Similarly to the Alexander
polynomial, the Teichmüller polynomial has coefficients in the group ring Z(G) where G =
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H1(M,Z)/torsion.
We describe here one way to compute the Teichmüller polynomial. Let ϕ : S → S be a

pseudo-Anosov map and let x = x1, · · · , xn−1 be a multiplicative basis for

H = Hom(H1(M,Zϕ),Z)

where H1(M,Z)ϕ is the ϕ-invariant cohomology. Remark that we can construct a natural
map from π1(S) to H by evaluating cohomology classes on loops. Choose a lift ϕ̃ : S̃→ S̃ of
ϕ to the cover S̃ corresponding to H under the previous map.

Let M = S × [0, 1]/(p, 1) ∼ (ϕ(p), 0) be the mapping torus of ϕ. Then, we have that

G = H1(M,Z)/ torsion = H ⊕ Z
Let u denote the generator of the Z component of G, so that G is generated by x1, · · · , xn−1

and u. Let V and E be the vertices and the edges of an invariant train track τ on S carrying the
pseudo-Anosov map ϕ. The lifts Ṽ and Ẽ of V and E to S̃ can respectivily be considered as
Z(H)-modules. Therefore, the lift ϕ̃ act as matrices PV(x) and PE(x) on these Z(H)-modules.
McMullen showed in [16] that the Teichmüller polynomial can then be computed in term of
these two matrices.

Theorem 2.8. The Teichmüller polynomial can be explicitly computed as follows:

θ (x, u) =
det(uI − PE(x))
det(uI − PV(x))

3. The n-chained links and their complements

3. The n-chained links and their complements
In [12], Eiko Kin analysed in detail a 3-manifold, known as the magic manifold. This

manifold has the property that all the faces of its Thurston unit ball are fibered. She was
able to precisely determine all the fibered faces and, for each integer point in a fibered face,
find the topology of the associated monodromy (i.e: determine its genus and the number
of boundary components). In this section, we generalize the technique used for the magic
3-manifold to study sequences of fibers in more general link complements.

An n-chained link L is a link with n components that are linked together in a circular
fashion. Note that some of the components of L may have self half-twists. A clasp of an
n-chained link L is the combinatorial structure defined by a pair of crossing of two adjacent
link components of L. There are only two different types of clasps, which we will call
positive (or +) and negative (or −) clasps, according to the convention shown in Figure 4.

Let L be an n-chained link. We can always isotope L in such a way that all the half-twists
happen in a single component of L. Also, if C1 and C2 are two components of L that meet
in a + clasp, performing a half twist on C1 or on C2 will change the clasp to a − clasp.

Therefore, any n-chained link can be isotoped to an n-chained link where all the clasps
are + clasps and where all the half-twists happen in a single component. We will denote by
C(n, p) the n-chained link L which admits a link diagram in which every clasp is positive
and in which there are exactly p half-twists, where the direction of the twists in determined
by the sign of the integer p. We will choose the directions of the twists in such a way that
the diagram is alternating when p is positive. From now on, whenever we use a link diagram
for C(n, p), it will be the one we described here, unless explicitly specified otherwise. Two
examples are illustrated in Figure 5. The same Figure also shows how the sign of a clasp
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can be changed by a half-twist on one of the components of the clasp.

Fig. 4. The two different kinds of clasps. We will say that the left clasp is
positive and the right clasp is negative. Positive and negative clasps will
also be referred as + and − clasps, respectively.

Fig.5. C(5,−1) and C(6, 3).

Let M(n, p) be the complement of a small enough neighborhood  (C(n, p)) of C(n, p).
In particular, M(3, 0) is the magic 3-manifold. Note that ∂ (C(n, p)) is a disjoint union
of n tori. Suppose M(n, p) is hyperbolic. The manifold M(n, p) with n ≥ 3 is hyperbolic
if and only if {|n + p|, |p|} � {0, 1, 2}, as shown by Neumann and Reid in [17]. Moreover,
Leininger [15] shows that, except when (n, p) = (2,−1), the manifold M(n, p) is fibered as
long as n ≥ −p ≥ 0. He does so by explicitly computing a fiber surface for M(n, p).

We roughly describe how to obtain such a fiber surface. We can remove a half-twist, at
the cost of changing the sign of one of the clasps. Repeat this process until only 2 half-twists
remain and then use Seifert’s algorithm on the link diagram. The surface S obtained in this
way is a horizontal Hopf band Murasugi summed by n vertical Hopf bands. Theorems 2.2
and 2.3 allow us to conlcude that S is indeed a fiber surface for M(n, p).

Now, we focus on the homology of M(n, p). Consider that we draw C(n, p) in such a way
that the top link has the p half-twists, as in Figure 5. We will denote this top link component
as L1, and we enumerate the other components L2, L3, · · · Ln in a clockwise fashion.

A diagram for a link L is said to be circular if the component L1, · · · , Ln of L can be or-
dered in such a way that Li forms a clasp exactly with Li−1 and Li+1, for every i = 1, 2, · · · , n,
where Ln+1 = L1. A diagram is said to be oriented if each link component is given an orien-
tation. Let D be an oriented circular diagram for C(n, p). There is a standard basis {[Ki]1≤i≤n}
for H2(M, ∂M) associated to D, where each Ki is a sphere with three boundaries. Each Ki

can be seen as having Li as one of its boundaries, while the two other boundaries correspond
to Li−1 and Li+1, as show in Figure 6.

Let {[Ki]1≤i≤n} be the standard basis associated to the circular oriented diagram D for
C(n, p) that is described in the beginning of this section.

Lemma 3.1 ([2], lemma 4.6). Suppose n ≥ −p ≥ 0 with (n, p) � (2,−1). The fiber S
provided by Lemma 4.1 in [15] has coordinates (1, · · · , 1,−1) in the basis {[Ki]1≤i≤n}. In
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Fig.6. The Ki are spheres with 3 boundaries, where one of the boundaries
of Li and the two others are drawn in dotted circles

Fig.7. The unit Thurston ball B3 for the link C(3, 0). It is the convex hull of
(±1, 0, 0), (0,±1, 0), (0, 0,±1) and (1, 1, 1), (−1,−1,−1). The missing edges
of the cocube are indicated by dotted edges.

other words, we have that [S] = [K1] + · · · + [Kn−1] − [Kn].

Note that the fiber S is a genus 1 surface with n boundaries, and so its Euler characteristic
is equal to n.

4. Thurston unit ball for C(n, 0)

4. Thurston unit ball for C(n, 0)4.1. Thurston unit ball.
4.1. Thurston unit ball. We start by stating the main theorem of this section, even

though its proof is relegated to the end of the section. The notation used in the statement of
the main theorem will nonetheless be used throughout the whole section.

Theorem 4.1. For n ≥ 3, the Thurston unit ball Bn of C(n, 0) is the union of:

(1) The n-dimensional cocube with vertices (±1, 0, · · · , 0), · · · , (0, · · · , 0,±1), and
(2) Two n-simplices: the convex hull of (1, 0, · · · , 0), · · · , (0, · · · , 0, 1), 1

n−2 (1, · · · , 1),
and its antipodal image.

The second homology class represented by 1
n (1, · · · , 1,−1) then lies in the fibered face  ,

whose vertices are (1, 0, · · · , 0), · · · , (0, · · · , 1, 0), (0, · · · , 0,−1) and 1
n−2 (1, · · · , 1). More-

over, every face of Bn is a fibered face.

Here, the n-dimensional cocube is the dual of the standard cube [−1, 1]n. It can also be
seen as an n consecutive suspension of the closed interval [−1, 1].

Note that Theorem 4.1 includes the case of the magic 3-manifold case, which was handled
by Thurston in [20]. The Thurston unit ball of the magic manifold is a parallelepiped with
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vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1) and (1, 1, 1), (−1,−1,−1), as illustrated by Figure 7.
We observe that

Lemma 4.2. Suppose that a1, · · · , an are vertices of a facet F of the Thurston unit ball
and let σ be the n-dimensional simplex spanned by these vertices. Then, σ is a subset of F if
there exists a point a ∈ σ whose Thurston norm −χ(a) is equal to 1. In this case, the linear
equation of the facet  is

∑n
i=1 xi/ai = 1.

Proof. The proof is a direct consequence of the fact that the Thurston unit ball is a
polytope. �

As in the magic manifold case, we can calculate the Thurston norm of any points in the
fibered cone  = R+ ·  .

Corollary 4.3. The convex hull of the points e1, e2, · · · ,−en and 1
n−2 (1, 1, · · · , 1) is a

subset of the facet  of Bn. Moreover, for any α := (α1, · · · , αn) in the cone  := R+ · , the
Thurston norm of α is α1 + · · · + αn−1 − αn.

Proof. Set

ai =

⎧⎪⎪⎨⎪⎪⎩ei, 1 ≤ i ≤ n − 1

−en, i = n

and a = 1
n (1, · · · , 1,−1). Since we already observed in Lemma 3.1 that na is a fiber and

−χ(na) = n, this means that the linear equation x1 + · · · + xn−1 − xn = 1 is the equation of a
supporting hyperplane for the fibered face  . Plugging (α1, · · · , αn) into x1 + · · ·+ xn−1 − xn,
we get the Euler characteristic for α. �

We are now ready to prove Theorem 4.1. Proof of theorem 4.1. Note that C(n, 0) is circu-
larly symmetric, so the points pi := 1

n (1, · · · , 1) − 2
n ei for all 1 ≤ i ≤ n is also a fiber. Hence,

by Corollary 4.3, the n -dimensional parallelograms Pi of vertices e1, · · · ,−ei, · · · , en and
1

n−2 (1, 1, · · · , 1) are subsets of the boundary of the Thurston unit ball (each pi is contained in
Pi). However, the union of the Pi forms a closed polytope, so it has to contain the boundary
of the Thurston unit ball. �

4.2. Topological type of fibers.
4.2. Topological type of fibers. In addition to understanding the Thurston unit ball, we

can also get information about each fiber surface in the fiber facet  . To obtain the complete
topological type of representatives of given fibered points, we will use a slightly generalized
version of the boundary formula proven by Kin and Takasawa, [13].

Lemma 4.4 ([2], lemma 4.9). Let M = M(n, 0), let  be the fibered face described in
Theorem 4.1 and let  = R+ ·  be the associated fibered cone. Suppose S is a mini-
mal representative of (α1, · · · , αn) ∈ . Then the number of boundaries of S is equal to∑n

i=1 gcd(αi−1 + αi+1, αi), where αn+1 = α1.

5. Thurston unit ball for C(n, p) with p ≥ 0

5. Thurston unit ball for C(n, p) with p ≥ 0
Since the link L = C(n, p) with p > 0 admits an alternating link diagram, its Seifert

surface S is a minimal genus surface for L.
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Theorem 5.1. Let L = C(n, p) with p ≥ 1. Given arbitrary signs on x = (±1, · · · ,±1) ∈
H2(M(n, p), ∂ (L)), the Thurston norm of x is n.

Proof. We will perform the Seifert algorithm explicitly. Assume first that we arbitrarily
fix the signs of each component of x. Note that these signs determine the orientation of each
component of the link. Let L be the link with the orientations corresponding to x. As always,
the link L is drawn in a circular way so that the twisted component lies at the top (as shown
in Figure 5). Label the twisted link L1 and continue the labeling clockwise.

We begin by applying the algorithm, starting with the crossings involving L1. Applying
the Seifert algorithm to the crossing corresponding to half twists, we get p− 1 discs. On the
contrary, applying the algorithm at the 2 clasps involving L1, we get arcs on both sides L1.
Now, focus on the right arc and the next link L2. If the signs of L1, L2 agree, then the Seifert
algorithm produces one disc, and the arc is still not closed. Otherwise, the Seifert algorithm
makes the arc tied and ends up with a disk, and another arc will be created on the right side
of L2.

We proceed inductively until we get n + p disks. Note that the number n + p of circles
does not depend on the signs assigned to each component. As the number of crossings in
the diagram is equal to 2n + p, we conclude that the genus of S is

Genus of S =
2 + (2n + p) − (n + p) − n

2
= 1.

By Theorem 2.7, the surface S is a minimal genus surface for x. Therefore, S is a minimal
representative of x and ||x|| = n. �
The above Theorem implies that the Thurston unit ball of M � M(n, p) is an n dimensional
cocube.

Corollary 5.2. Thurston unit ball of M(n, p) with p ≥ 1 is an n dimensional cocube with
vertices (±1, 0, · · · , 0), · · · , (0, · · · , 0,±1).

Proof. Let ei be a canonical basis of Zn � H2(M(n, p), ∂M(n, p)). Since ei is represented
by a 2 punctured disk, it lies on the Thurston unit ball. By Theorem 5.1, we know that
(±1/n, · · · ,±1/n) is also on the unit ball. For each (±1/n, · · · ,±1/n), it is a convex combi-
nation of the canonical basis (with suitable signs). Therefore, we conclude that the convex
hull of {±ei}1≤i≤n is exactly the Thurston unit ball. �

6. Thurston unit ball for C(n, p) with p < 0

6. Thurston unit ball for C(n, p) with p < 0
In Lemma 4.2 in [15], Leininger proved that C(n,−p) is fibered for 0 ≤ p ≤ n except

(n, p) � (2,−1). In this section we investigate what is the shape of the Thurston unit ball for
the complements of n-chained links with negative twists. Suppose that we have an n-chain
link C(n,−p) and that we have labeled each link component as before. Note that we can
untwist all the negative twists. After resolving the negative twists on L1, the link becomes a
chain link with no twists. See Figure 10 for an example. However, the shape of clasps may
have changed during this process. We re-assign the orientations of each component Li in a
circular way after resolving all the twists on L1, for each i = 1, · · · , n. Recall that, associated
to a circular oriented diagram, there is a standard basis {ei = [Ki]1≤i≤n} for H2(M, ∂M), where
each Ki is a sphere with three boundaries, as in Figure 6. Let {e1, · · · , en} be the standard
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Fig.8. Flip

Fig.9. Full twist.

basis associated to the diagram described above.
Each component of the link has 2 clasps, which may now be + clasp or − clasp. Since

the − clasp only appears whenever a negative twist is resolved, the number of − clasps in
the final diagram is equal to |p|. Let D be a circular diagram for C(n, p). We define shape
vectors for such diagrams.

Definition 6.1. Suppose n ≥ 4 and −
n/2� ≤ p < 0 and D is a circular diagram for
C(n, p). The shape vector of D is an n-tuple, whose entries are either + or −. The i’th entry
records the shape of the clasp formed by Li and Li+1. For each Li, we will say that Li has
clasp shape (α, β), with α, β ∈ {+,−}, if the clasp between Li−1 and Li is an α clasp and the
clasp between Li and Li+1 is a β clasp.

Suppose Li has − shape with Li−1 and + shape with Li+1. Here are two isotopic operations
that we can perform on such Li.

(1) A flip: we flip Li so that the + clasp changes to a − clasp and vice versa. Hence a
flip exchanges the (i − 1)’th entry and i’th entry of the shape vector. See Figure 8.

(2) A full twist: Cut M(n, p) along Ki. In the slice, there are 2 copies of Ki, say D1,D2.
Then, glue D1 and D2 back, after twisting either D1 or D2 by 360 degrees. See
Figure 9.

Proposition 6.2. Let n ≥ 4. Suppose Li admits (+,−) or (−,+) clasp shape. Then, the
homology class (1, · · · , 0, · · · , 1) ∈ H2(M(c, p), ∂M(c, p)), where the 0 is in the ith entry,
admits a sphere with (n− 1) boundaries as a representative. Its Thurston norm is thus equal
to n − 3.

Proof. After performing a full twist on Li, the now consecutive link components Li−1 and
Li+1 form a clasp, whose shape depends on the direction of the full twist. If we forget about
the component Li, the other link components now form a chain link with n − 1 components.
We can then apply the Seifert algorithm, with all positive orientations, to this new chain link.
The Seifert surface S obtained in this way is a sphere with n−1 boundaries. Since the surface
S does not admit Li as its boundary component, S is an embedded surface in M(n, p). Since
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Fig. 10. C(5,−2). Note that the orientation of each link component is re-
assigned in a circular way. Starting from the top link component, we label
the components L1, L2, · · · , L5, clockwise.

it has no genus, this is the minimal Thurston norm representative of the given homology
class. �

We now show how to obtain many other points on the boundary of the Thurston unit ball.
Suppose that L is C(n,−1). After untwisting once, we obtain an n-chained link with

shape vector (−,+, · · · ,+). By proposition 6.2, 1
n−3 (1, 0, 1, · · · , 1) is a point of Thurston

norm equal to one. If we flip L2, the shape vector changes to (+,−,+, · · · ,+). We can now
perform a full twist on L3 and then, using the same method as in the proof of proposition
6.2, we can deduce that the point (1,−1, 0, 1, · · · , 1) is also of norm equal to one. Note that
we have a −1 on the second entry this time. In conclusion, as the 0 coordinate moves one
step on the right, it also introduces a minus sign. Hence, by repeating this process, we obtain
a total of 2n points on the boundary of the Thurston unit ball. These points are the points of
coordinates

1
n − 3

(1, 0, 1, · · · , 1),
1

n − 3
(1,−1, 0, 1, · · · , 1), · · · ,

1
n − 3

(1,−1, · · · ,−1, 0) and
1

n − 3
(0,−1, · · · ,−1).

and their antipodal points.
If instead L is C(n,−2), the shape vector contains two negative entries. We can perform

a full twist on the two link components Li and Lj whose clasps on both sides are different,
unless Li and Lj are consecutive link components. In this case, we get 2 zero entries in the
new points and hence it represents a sphere with n− 2 punctures. Therefore, it has Thurston
norm (n − 4). See Figure 10 and 11 also.

The processes described above generalize to all the links C(n, p), with p < 0. We there-
fore obtain the following result.

Corollary 6.3. By following the process described above, we obtain a set V := V(n, p)
of points that lie on the boundary of the Thurston unit ball. Every point in V is obtained by



Thurston Unit Ball of a Family of n-Chained Links 645

Fig. 11. After two full twists, one on L1 and one on L3, we get the above
link. Note that (0, 1, 0, 1, 1) is represented by S0,3, which is obtained by
oriented sum of the 3 disks bounded by L2, L4, L5.

flipping the link components and taking full twists. The flip operation slides the 0 entry to
the next coordinate. All points x = (x1, · · · , xn) in V have the following properties.

(1) ||x|| · xi ∈ {−1, 0, 1} for all i = 1, 2, · · · , n.
(2) No two consecutive entries are equal to 0.

Hence, B = B(n, p), the convex hull of V ∪{±ei}, is contained in the unit Thurston norm ball.

We now give some more details on the shape of the balls B(n, p).

Proposition 6.4. Let C(n, p) be a negative twisted n-chained link. Choose any 1 ≤ i ≤ n
and collect all points in V(n, p) ∪ {±ei} with xi = 0. Then the convex hull of such points
forms an (n − 1)-dimensional polytope and is contained in the union of B(n − 1, p + 1) and
B(n − 1, p).

Proof. After flipping some of the link components, we can suppose that Li has clasp shape
(−,+). Perform a full twist on Li and forget Li for the moment. Then, the remaining link
components form a new link, which is either C(n− 1, p+ 1) or C(n− 1, p), depending on the
direction of the twist. More precisely, if the full twist yields a negative shape clasp between
Li−1 and Li+1, the link C(n − 1, p) is obtained. On the other hand, if the full twist yields a
positive one, we get C(n − 1, p + 1). For any points in V(n − 1, p + 1) or V(n − 1, p), if we
plug a 0 in the ith tuple, it becomes a point which lies on the boundary of V(n, p). �

We end this section with a question and some remarks.

Question 1. Is B(n, p) equal to the unit Thurston norm ball of C(n, p) when p < 0?

We thank William Worden and the program Tnorm[21] which helped us to calculate and
verify that the question is true for n ≤ 6. We provide the table of all the vertices of the
Thurston unit normal ball, calculated by Tnorm, for various C(n, p)’s up to n ≤ 6 in the
appendix B.

As we already mentioned, C(n, p) is fibered for 0 ≤ −p ≤ n. Assigning proper signs,
Leininger’s fiber surface has coordinates (1, · · · , 1) and has genus 1 and n punctures. Since
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each vector ei of the canonical basis represents a twice punctured disk, we can deduce that
there is a fibered face  which contains the standard (n − 1) simplex spanned by the {ei}’s.
Furthermore, using lemma 4.2 and similar methods as in the proof of corollary 4.3, we
can get that the Euler characteristic of any primitive points of (x1, · · · , xn) with all positive
entries is equal to

∑n
i=1 xi.

7. Detecting fibered faces

7. Detecting fibered faces
By theorem 4.1 and corollary 5.2, we now understand the shape of the Thurston unit ball

of C(n, p) when p ≥ 0, and some faces when p < 0. We now investigate which faces of that
unit ball are fibered.

7.1. p is nonnegative.
7.1. p is nonnegative. Denote by S(n, p)x the surface obtained from the process in The-

orem 5.1, when starting from x = (±1, · · · ,±1). By Theorem 5.1, S(n, p)x has genus equal
to 1 and n boundaries.

Fig.12. (Murasugi) desum the Hopf bands in the case of different orienta-
tions. Observe that the twist of result is compatible with the positive half
twist with respect to the clasp shape.

In the language of H2(M(n, p), ∂M(n, p)), the sign change of the given orientation x can
be interpreted as a number of half twists after we (Murasugi) desum each vertical Hopf band.
In addition, we use the following Lemma, coming from the work of Baader and Graf [1].

Lemma 7.1 (Example 3.1 in [1]). Suppose L is a (2, 2n)-torus link with a given oriented
diagram D such that the Seifert surface obtained from D is a full-twisted annulus. Then L is
fibered if and only if |n| = 1, and thus the Seifert surface is a positive/negative Hopf band.

Remark that the (2, 2n)-torus link is fibered if the orientation of the two link components
is parallel. However, in our case, it cannot happen since their orientations are inherited by
the orientation of the link components, so that they must be opposite.

Theorem 7.2 (p is even). Let p be a nonnegative even integer. For a given orientation
x = (±1,±1, · · · ,±1), denote by s the number of sign changes. Hence, s =

∑n
i=1 δ−1,xi xi+1 ,

where δi, j = 1 if i = j and 0 otherwise.
Then, S(n, p)x is fibered if and only if (p, s) = (0, 2), (2, 0).
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Proof. Choose one clasp. There are two components of the link associated to the clasp.
Suppose both have the same orientation in the sense that, after performing the Seifert al-
gorithm, locally around the clasp, we get a disk and a band at the clasp. It implies that
for a Seifert surface of this diagram with given orientations, there is a Hopf band Murasugi
summed at the clasp.

If the orientations are different, then, perform a half twist on the one of the component
so that it changes the shape of clasp. Performing the Seifert algorithm locally again, we get
a disk and a half-twisted band, as in Figure 12. We will thus desum whenever there arises
a Murasugi sum of Hopf bands. In the end, a twisted band remains whose boundary is a
(2, p + s)-torus link. By Lemma 7.1, such a torus link is fibered if and only if p + s = 2,
which finishes the proof. �

Theorem 7.3 (p is odd). Let p be a non negative odd integer and let x, s be as in Theorem
7.2. Then, S(n, p)x is fibered if and only if (p, s) = (1, 0).

Proof. The only difference compared to the case where p is even is the last desumming
process. Since there is an odd number of half-twists, the leftmost and rightmost parts of the
top link L1 do not coincide. Hence, after the desumming process, the remaining part is a
twisted band whose boundary is a (2, p+ s+1)-torus link. Again, by Lemma 7.1, it is fibered
if and only if p + s + 1 = 2 and (p, s) = (1, 0) is the only solution. �

Note that x = 1
n (±1, · · · ,±1) is the barycenter of the vectors ±ei. Therefore, together with

Lemma 4.2 in [15] we obtain the following corollary.

Corollary 7.4 (Fiberedness of C(n, p)). The link C(n, p) is fibered if and only if −n− 2 ≤
p ≤ 2. Moreover, every faces of the Thurston unit ball of C(n, 0) is a fibered face. In contrast,
there are only 2 fibered faces of C(n, 1) and C(n, 2), one which contain 1

n (1, 1, · · · , 1) and
one which contains its antipodal point.

Proof. For p = 0, by theorem 7.2 S(n, 0)x is fibered if and only if x has only one entry
−1 and the others are all 1 or its antipodal points. By corollary 4.3, each S(n, 0)xi is in the
distinct fibered cone, hence every face of Thurston unit ball for C(n, 0) is fibered.

Suppose p = 1 or p = 2. By theorem 7.2 and 7.3, S(n, p)x is fibered if and only if
x = (1, · · · , 1) or (−1, · · · ,−1). By corollary 5.2, there are only 2 faces whose supporting
planes are

∑n
i=1 xi = ±1. �

7.2. p is negative.
7.2. p is negative. Some faces of the polytope B are actually faces of the Thurston unit

ball. We introduce another isotopic operation for link components which have the same
clasp shape on both sides.

Definition 7.5 (Squeezing). Suppose Li has a clasp shape (+,+) or (−,−). Perform a half
twists on both sides so that each clasp alters its shape. We will call this operation squeezing
the link Li.

Theorem 7.6. Let n ≥ 4 and C(n, p) be a twisted n-chained link with −n − 2 ≤ p ≤ 0.
Let S be any surface obtained by performing the Seifert algorithm to the diagram obtained
after squeezing one of the link components. Then, the cone of B(n, p) containing [S] ∈
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Fig.13. The link component in the middle has a (−,−) shape. After squeez-
ing, the shape of the clasp changes to (+,+) with a squeezed link compo-
nent.

H2(M(n, p), ∂M(n, p)) is fibered.

Proof. We will proceed by induction. In this proof, every full twist will be performed
such that the clasp has a + shape after the operation.

(1) p = −1. Choose any point q in V and any link component Li which has a clasp
shape (+,+). There is exactly one 0 entry in q. Let k be its index. By Proposi-
tion 6.4, the slice of the unit Thurston norm ball of C(n, p) at xk = 0 must con-
tain the union of B(n − 1, 0) and B(n − 1,−1). Choose one face in B(n − 1, 0).
Since its shape vector is all + (or −), any link component of Lk has (+,+) shape
(or (−,−)). We choose Li except i = k − 1, k, k + 1 and squeeze it. Taking the in-
verse orientation of Li, (1, · · · , −1︸︷︷︸

ith

, · · · , 0︸︷︷︸
kth

, · · · , 1) is represented by one hor-

izontal Hopf band Murasugi summed by n − 1 vertical Hopf bands. i.e., x =
1

n−1 (1, · · · , −1︸︷︷︸
ith

, · · · , 0︸︷︷︸
kth

, · · · , 1) is in the unit sphere of C(n,−1).

Now the convex sum x := n−1
n × x + 1

n × ek is 1
n (1, · · · , −1︸︷︷︸

ith

, · · · , 1). This is still a

fiber, since we choose i carefully so that the squeezing still works even if we undo
the full twist. Note that since this point is in the convex hull of n + 1 vertices, the
face containing x is fibered.

(2) 
n/2� ≤ p ≤ −2. By induction, we already have squeezing fibers on the face of
C(n − 1, p + 1). See the figure 14. So it remains to show that such squeezing still
works after we undo the full twists. But since |p + 1| is strictly smaller than 
n/2�,
there always exists a link component of shape (+,+) or (−,−). Hence by undoing
full twists except near the link component, we get the fibered face which contains a
squeezing fiber. �

Theorem 7.6 implies that most of the faces in B(n, p) are actually fibered faces of the
Thurston unit norm ball. We provide some computations of the vertices of the Thurston unit
ball for the p < 0 cases in the appendix B. In the remaining section, we will cover the special
case of C(n,−2), in which case more explicit calculations can be made.
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Fig.14. The vertical axis is xk coordinates, orthogonal to Rn−1. The convex
hull of V(n − 1, p + 1) lies at the bottom and taking the cone with the apex
xk = 1. The point labeled S is a fiber obtained by squeezing.

8. Teichmüller Polynomial for one fibered face of C(n,−2), for n ≥ 5

8. Teichmüller Polynomial for one fibered face of C(n,−2), for n ≥ 5
In this section we compute explicitly the Teichmüller polynomials for one fibered face of

C(n,−2), when n ≥ 5, so that M(n,−2) is hyperbolic. Let Mn be the exterior complement of
the link C(n,−2). We denote by Sn the surface obtained by performing the Seifert algorithm
to the link diagram of C(n,−2) shown in Figure 10. We will sometimes omit the subscript
n if it is not important in the context. Since Mn is the complement of C(n,−2), the second
homology group H2 = H2(Mn, ∂Mn) is a free abelian group of rank n, with a canonical basis
given by the meridians of the link components. With that in mind, we remark that Sn is a
surface of genus one with n boundaries and its coordinates in H2 are (1, 1, · · · , 1). Since Sn

is a Murasugi sum of one horizontal Hopf bands with n vertical Hopf bands, it is a fiber. By
Theorem 2.3, the monodromy ϕn of this fibering is the composition of the Dehn twists along
the cores of the Hopf bands.

Fig.15. The surface Sn for C(n,−2), the horizontal band is a positive Hopf
band and each vertical band is a negative Hopf band. Here we omit the full
twists which are supposed to be at each band, as they have no role in the
remainder of the calculations.

Thus, if Sn is placed as suggested in figure 15, the monodromy ϕn is the composition of the
multi-twists composed of the Dehn twists, all directed downward, around the vertical bands
followed by the left Dehn twist along the core of horizontal band. Following the methods
in [3] and [16], we compute the Teichmüller polynomial corresponding to the fibered cone
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R+ ·  of the Thurston unit ball which contains the point (1, · · · , 1) ∈ H2(Mn, ∂Mn).
As explained in section 2.3, we first need to compute H = Hom (H1(S,Z)ϕ,Z) and then

understand how the lift ϕ̃n of ϕn acts on the cover S̃n of Sn which has H as a deck transform
group. In this case, as noted in [3], the group H is equal to the ϕn invariant first homology
H1(Sn : Z)ϕn . We choose c0, · · · , cn as a basis for H1(Sn;Z), where c0 is the curve corre-
sponding to the core of the horizontal band and c1, · · · , cn are the curves corresponding to
the cores of the vertical bands, c1 being the leftmost one and cn the rightmost one. Then,
H1(Sn : Z)ϕn is the subspace of H1(Sn;Z) generated by the column vectors of

Bn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
1 1 · · · 1
−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...

0 0 · · · −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We still need to figure out what the cover S̃n is, and how ϕ̃n acts on it. Once again,

the details are all given in [3]. Instead of repeating them here, we give some graphical
explanations for the simplest non trivial example, which is M3 = C(3,−2). In this case, the
cover S̃n is explicitly drawn in figure 17.

Fig.16. The surface S3, which is the fiber associated to the link C(3,−2)

Let T be the matrix representing the H-module action of ϕ̃n on S̃n. Since the monodromy
ϕn is the composition of one horizontal Dehn twist and n vertical ones, we can decompose
the matrix T into TV and TH . These matrices represent the action of the lifts of the vertical
multi-twist and the horizontal Dehn twist, respectively, on S̃. Note that the entries of these
matrices are in Z[G], where G is the deck transformation group of S̃, and hence is isomorphic
to Zn−1.

Using our conventions, the matrices TV and TH are the 2n × 2n matrices shown here.
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Fig.17. The Galois covering S̃3 of S3 with deck transform H

TV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1 · · · xn−1)−1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...
...
. . .

...

0 0 · · · (x1 · · · xn−2)−1 0 0 · · · 0
1 0 · · · 0 1 0 · · · 0
0 x−1

1 · · · 0 0 x−1
1 · · · 0

...
...
. . .

...
...
...
. . .

...

0 0 · · · (x1 · · · xn−1)−1 0 0 · · · (x1 · · · xn−1)−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 1 1 · · · 1
0 1 · · · 0 1 1 · · · 1
...
...
. . .

...
...
...
. . .

...

0 0 · · · 1 1 1 · · · 1
0 0 · · · 0 1 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...
...
. . .

...
...
...
. . .

...

0 0 · · · 0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can consider these matrices as being block matrices with four blocks of size n × n. As
such, we get that

TV =

[
Ds 0
D D

]
, TH =

[
I 1
0 I

]

where Ds is an n×n matrix whose diagonal entries are the same as D, but shifted to the right
by one, and 1 is the n × n matrix with all entries equal to 1.
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By [16], the Teichmüller polynomial can be obtained using the formula

P(x1, · · · , xn−1, u) :=
det(TVTH − uI)

det(D − uI)
.

The remaining calculations are showed in Appendix A.
Let ak be the k’th diagonal entry of D. Hence, a1 = 1, a2 = x−1

1 , · · · , an = (x1 · · · xn−1)−1.

Theorem 8.1 (Teichmüller polynomial). Let n ≥ 5. The Teichmüller polynomial P for
the fibered cone  containing the point [Sn] ∈ H2(Mn, ∂Mn), where Sn is the surface depicted
in Figure 15.

P(x1, · · · , xn−1, u) := A −
n∑

k=1

uakAk

where A := (a1 − u) · · · (an − u) and Ak =
A

(ak−1 − u)(ak − u)
, where an+1 := a1.

The manifold Mn can be viewed at the same time as a link complement and has a fibration.
Both points of view lead to natural coordinates on H2 = H2(Mn, ∂Mn;Z).

It is sometimes more convenient to use the coordinates coming from the link complement
point of view for the Teichmüller polynomials. For example, that point of view is more fitted
to the computation of the stretch factor of the monodromy of the fiber which has coordinates
(1, 1, · · · , 1) in the basis given by the link components.

The Teichmüller polynomials we computed are using the basis coming from the fibration
point of view. We thus need to find the explicit change of coordinates for going from one
basis to the other.

Let us fix the notation clearly. The basis Y given by the link complements will be de-
noted as y1, · · · , yn, with y1 corresponding to the link complement with the self twist. If
the monodromy for the fibration of Mn is denoted by ϕn, the corresponding basis X will be
u, x1, · · · , xn−1 where the xi form a basis for the ϕn invariant cohomology and u corresponds
to the suspension flow. We also let a0, · · · , an−1 be the canonical basis for H1(Sn,Z). By the
computation above, we already know that xi = a1 − ai+1. Moreover, as suggested by figure
18, we see that ai = yi − yi+1, where the indices are taken modulo n as always. Finally, the
basis element u corresponding to the suspension flow is simply mapped to y1.

To sum it up, the change of coordinates is given by
u→ y1

x1 → y1 − y3

x2 → y1 − y2 + y3 − y4
...

xn−2 → y1 − y2 − yn−1 + yn

xn−1 → −y2 + yn

Hence the image of the fiber whose coordinates in the basis X are (1, 1, · · · , 1) has
(0, 0, · · · , 0, 1) as coordinates in the basis Y . The specialization of the Teichmüller poly-
nomial to the point p = (0, 0, · · · , 0, 1) is then given by

(1 − u)n − nu(1 − u)n−2 = (1 − u)n−2(1 − (n + 2)u + u2).

A simple calculation shows that the largest root of this polynomial is n+2+
√

n2+4n
2 .
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Fig. 18. The surface Sn and the geometric representation of the ai,for i =
0, · · · , n − 1. On the bottom, we see how each ai is related to the link
components, since ai, yi and yi+1 always bound a disk in Mn

Appendix A Proof of Theorem 8.1

Appendix A. Proof of Theorem 8.1
In this appendix we finish the calculations of the Teichmüller polynomial of section 8.
We need to compute the determinant of block matrices, and we make use of the following

Lemma to do so.

Lemma A.1. Let M =
[
A B
C D

]
a block matrix, where A and D are square matrices of

same size. If D is invertible, then det(M) = det(A − BD−1C) det(D). Moreover, if C and D
commute, we get that det(M) = det(AD − BC).

Proof. Suppose that D is invertible. Then M can be factorized as

M =
[
I BD−1

0 I

] [
A − BD−1C 0

0 D

] [
I 0

D−1C I

]
.

Taking the determinant on both sides, we conclude that the first part of the Lemma holds. If
C and D commute, we get that

det(M) = det(A − BD−1C) det(D) = det(AD − BD−1CD) = det(AD − BC).

Hence, the second part of the Lemma also holds. �

The matrix TVTH − uI can be expressed as a block matrix,
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TVTH − uI =
[
Ds − uI Ds · 1

D D · 1 + D − uI

]
.

By performing some row reductions, we can simplify this matrix.[
I 0

−DD−1
s I

]
×
[
Ds − uI Ds · 1

D D · 1 + D − uI

]
=

[
Ds − uI Ds · 1
uDD−1

s D − uI

]
.

Such operations do not affect the determinant and now the bottom two block matrices are
both diagonals, so they commute. Hence we can apply lemma A.1 to compute the determi-
nant

det(TVTH − uI) = det((Ds − uI)(D − uI) − uDs · 1 · DD−1
s )

= det(Ds((Ds − uI)(D − uI) − u1 · D)D−1
s )

= det((Ds − uI)(D − uI) − u1 · D).

Let Bk := (ak−1 − u)(ak − u), where a0 = an. Then the matrix (Ds − uI)(D − uI) − u1 · D is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1 − ua1 −ua1 · · · −ua1

−ua2 B2 − ua2 · · · −ua2
...

...
. . .

...

−uan −uan · · · Bn − uan

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

In order to calculate the determinant of this matrix, we will use the following Lemma.

Lemma A.2. Let A be the following matrix.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c1 − u −u · · · −u
−u c2 − u · · · −u
...

...
. . .

...

−u −u · · · cn − u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then, det (A) = c1 · · · cn − (

∑n
i=1 c1 · · · ĉi · · · cn)u, where c1 · · · ĉi · · · cn = c1 · · · ci−1ci+1 · · · cn.

Proof. We proceed by induction. For n = 2, the determinant is equal to (c1 − u)(c2 − u) −
u2 = c1c2 − (c1 + c2)u. Suppose now that the Lemma holds for any natural number n − 1
and let A be n × n matrix of the given form. By induction hypothesis, the determinant of
the upper-left (n − 1) × (n − 1) block of A is c1 · · · cn−1 − (

∑n−1
i=1 c1 · · · ĉi · · · cn−1)u. We now

compute det (A) using cofactor expansion on the last row of A. Then, we have that

det (A) =

⎡⎢⎢⎢⎢⎢⎢⎣c1 · · · cn−1 −
⎛⎜⎜⎜⎜⎜⎜⎝

n−1∑
i=1

c1 · · · ĉi · · · cn−1

⎞⎟⎟⎟⎟⎟⎟⎠ u

⎤⎥⎥⎥⎥⎥⎥⎦ (cn − u)

+ (−u) × (other terms).

Each other term is in fact the determinant of an (n − 1) × (n − 1) block whose ith column
is omitted and (n − 1)th column has −u on all its entries. If we cyclically permute from the
i’th column to the last column, the determinant of this matrix is equal to −c1 · · · ĉi · · · cn−1u,
by applying ci = 0. The sign of each cyclic permutation offsets to the alternating sum in the
determinant formula. Hence, we get
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det (A) =

⎡⎢⎢⎢⎢⎢⎢⎣c1 · · · cn−1 −
⎛⎜⎜⎜⎜⎜⎜⎝

n−1∑
i=1

c1 · · · ĉi · · · cn−1

⎞⎟⎟⎟⎟⎟⎟⎠ u

⎤⎥⎥⎥⎥⎥⎥⎦ (cn − u)

+

⎛⎜⎜⎜⎜⎜⎜⎝
n−1∑
i=1

c1 · · · ĉi · · · cn−1

⎞⎟⎟⎟⎟⎟⎟⎠ u2

= c1 · · · cn −
⎛⎜⎜⎜⎜⎜⎝ n∑

i=1

c1 · · · ĉi · · · cn

⎞⎟⎟⎟⎟⎟⎠ u.
�

The given matrix can be factorized as follows.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a1 0 · · · 0
0 a2 · · · 0
...
...
. . .

...

0 0 · · · an

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1
a1
− u −u · · · −u
−u B2

a2
− u · · · −u

...
...

. . .
...

−u −u · · · Bn
an
− u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Apply Lemma A.2, the determinant of the given matrix is

B1 · · · Bn − (a1B2 · · · Bn + B1a2B3 · · · Bn + · · · B1 · · · Bn−1an)u.

The Teichmüller polynomial is obtained by dividing (a1 − u) · · · (an − u), the determinant of
D − uI.

Appendix B Some calculations of C(n, p) with p < 0

Appendix B. Some calculations of C(n, p) with p < 0
In this section we give our calculations and tables of vertices for some C(n, p), p < 0

cases.
We thank William Worden, as we made extensive use of his paper [4] and the program,

called ‘Tnorm’, that he developed. Tnorm is able to compute the vertices of the Thurston
unit ball of given links complements. In the tables in this section, we list the vertices, except
for vertices of the form ±ei’s, together with the topological type of their representatives. The
left columns of the tables are the coordinates of the vertices and the right columns are the
corresponding surfaces representing them in the second homology groups.

C(4,−1)
±(1, 0, 1, 1) S0,3

±(1,−1, 0, 1) S0,3

±(1,−1,−1, 0) S0,3

±(0,−1,−1,−1) S0,3

C(5,−1) C(5,−2)
±(1/2, 0, 1/2, 1/2, 1/2) 1

2 S0,4 ±(0, 1, 0, 1, 1) S0,3

±(1/2,−1/2, 0, 1/2, 1/2) 1
2 S0,4 ±(0, 1,−1, 0, 1) S0,3

±(1/2,−1/2,−1/2, 0, 1/2) 1
2 S0,4 ±(1, 0,−1, 0, 1) S0,3

±(1/2,−1/2,−1/2,−1/2, 0) 1
2 S0,4 ±(1, 0,−1,−1, 0) S0,3

±(0,−1/2,−1/2,−1/2,−1/2) 1
2 S0,4 ±(1,−1, 0,−1, 0) S0,3
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C(6,−1)
±(1/3, 0, 1/3, 1/3, 1/3, 1/3) 1

3 S0,5

±(1/3,−1/3, 0, 1/3, 1/3, 1/3) 1
3 S0,5

±(1/3,−1/3,−1/3, 0, 1/3, 1/3) 1
3 S0,5

±(1/3,−1/3,−1/3,−1/3, 0, 1/3) 1
3 S0,5

±(1/3,−1/3,−1/3,−1/3,−1/3, 0) 1
3 S0,5

±(0,−1/3,−1/3,−1/3,−1/3,−1/3) 1
3 S0,5

C(6,−2)
±(0, 1/2, 0, 1/2, 1/2, 1/2) 1

2 S0,4

±(1/2, 0,−1/2, 0, 1/2, 1/2) 1
2 S0,4

±(1/2,−1/2, 0,−1/2, 0, 1/2) 1
2 S0,4

±(1/2,−1/2, 1/2, 0,−1/2, 0) 1
2 S0,4

±(0, 1/2,−1/2,−1/2, 0, 1/2) 1
2 S0,4

±(1/2, 0,−1/2,−1/2,−1/2, 0) 1
2 S0,4

±(0, 1/2,−1/2, 0, 1/2, 1/2) 1
2 S0,4

±(1/2, 0,−1/2,−1/2, 0, 1/2) 1
2 S0,4

±(1/2,−1/2, 0,−1/2,−1/2, 0) 1
2 S0,4

C(6,−3)
±(0, 1/2, 1/2, 0, 1/2, 1/2) 1

2 S0,4

±(1/2, 0,−1/2, 1/2, 0,−1/2) 1
2 S0,4

±(1/2,−1/2, 0, 1/2,−1/2, 0) 1
2 S0,4

±(0,−1/2, 1/2, 0, 1/2,−1/2) 1
2 S0,4

±(−1/2, 0, 1/2, 1/2, 0,−1/2) 1
2 S0,4

±(1/2, 1/2, 0,−1/2,−1/2, 0) 1
2 S0,4

±(0, 1, 0,−1, 0, 1) S0,3

±(−1, 0, 1, 0, 1, 0) S0,3
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