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Abstract

Theory of asymptotic equivalence of probability distributions has been developed by
Ikeda. Among others uniform asymptotic equivalence is of interest. The usual asymptotic
distribution theory is based on the notion of the so called in law convergence, while the notion
of uniform asymptotic equivalence is defined by taking the absolute error evaluation into ac-
count. Regarding normal approximation, uniform approximation is the most important. On
the other hand, Matsunawa has given a modified Stirling formula which sharpens the well-
known Stirling asymptotic formula for natural numbers by presenting a double inequality.
This result is useful in the uniform asymptotic approximation theory. However, so far as the
author knows, applying the uniform normal approximation theory to concrete multivariate
distributions has not been done, where the uniform asymptotic normality is a strictly stronger
notion than the usual one which is based on the convergence in law.

In the present thesis, we consider two problems. One is the implication relation between
two types of asymptotic equivalence. The other is the uniform normal approximation to
multivariate distributions by using the modified Stirling formula.

In Chapter 2, we shall give a sufficient condition under which two types of asymptotic
equivalence are mutually equivalent in one-dimensional real case and also some useful for-
mulas for the numerical evaluation of the related quantities.

In Chapter 3, we shall prove the uniform asymptotic normality of the Wishart distribution
Wp(n, A)under the condition p*/n — 0, by giving an upper bound of the uniform error based
on the Kullback-Leibler information. The condition p*/n — 0 is the best possible for which
the information converges to zero.

In the last Chapter, we shall also prove the uniform asymptotic normality of the Dirichlet
distribution under certain limiting process of related parameters. This result can be obtained
by giving an upper bound of the uniform error based on the Kullback-Leibler information.
These results in Chapters 3 and 4 are effective for exact sample theory because the upper

bounds of the uniform errors are evaluated by certain inequality, respectively.
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Chapter 1

Introduction

Let {X,;n > 1} and {Y,;n > 1} be two sequences of k-dimensional real random
variables. It is assumed that X ,, and Y, are all absolutely continuous with respect to the
Lebesgue measure ;. over the measurable space (R, B()), R being the k-dimensional
Euclidean space and By, the usual Borel field of subsets of R). Let us denote the proba-
bility density functions of X, and Y, by f,.(x) and g, (x), respectively. Further let D(X ,,)
and D(Y ,,) denote the carriers of f,(x) and g, (x).

As is well-know, the Kullback-Leibler information for discrimination is given by

Y. )= fn(®)
X0 Y= [ fu@log " Sduta)

and we have I(X, : Y,,) > 0, where equality holds if and only if f,(x) = g.(x) (a.e. 1) on
Ry I ((D(X ) — D(Y'»)) 2 0, then I(X,, : Y ,,) = oo ([91,[10],[19D).

Let C be any given class of subsets of R, belonging to B,. Two sequences { X, ; n >
1} and {Y ,,; n > 1} are then said to be asymptotically equivalent in the sense of type (C)q
and denoted briefly by
Xy ~ Y, (€ (n— 00),
if it holds that

64(X 4, Y, : C)=sup | P**(E) — P™(E)| — 0, as n — oo,
EeC

where PX» and PY» designate the probability measures corresponding to the random vari-

ables X, and Y ,,, respectively. First, it is noted that the quantity 6,(X,,, Y, : C) defines a



distance over the family of all probability distributions or of all random variables if we iden-
tify those random variables which have the same probability measure over C, X, and Y,
being said to have the same probability measure over C if it holds that P*~(E) = P*(E) for

every E belonging to the class. Next, in special case C = By, it holds that

1
6(X 0, Yo Ba) = /R( | fa(@) — go() | dez.

Moreover, let ¢ is a measurable transformétion from (R, B)) to another measurable
space, then asymptotic equivalence is preserved by ¢ ([12], [14]). Type (B)q asymptotic
normality is sometimes called "uniform asymptotic normality" as in the title of the present
thesis.

Now, we shall consider some of the familiar subclasses of By, as the subclass C in the

definition above:
My = {(=00,a1] X -+ X (=00, a4 | —00 < a; < 00, i=1,---,k},

S ={01,a1]1 x -+ X (g, ]| —00 <b; <a; <00, i=1,---,k}.

My, is then a multiplicative class, and it immediately holds that My C Sy C B).

It should be noted that the convergence in the central limit theorem is always of type
(M)q ([12], [15D).

It is clear that (B),; = (M), in strongness between the asymptotic equivalence of type
(B), and that of type (M), but the converse is not necessarily true. Now the usual asymp-
totic distribution theory has widely developed based on type (M), asymptotic equivalence.
However, the argument based on type (B),; asymptotic equivalence has been indispensability
with the development of statistical theory and its applications. From this point of view, if the
conditions under which two notions given above are mutually equivalent are clarified, then
appling the results of type (M), to type (18), can be possible.

In Chapter 2, we shall give a sufficient condition under which two types of asymptotic

equivalence, type (B)4 and type (M), are mutually equivalent in one-dimensional real case



and also useful formulas for the numerical evaluation of related quantities, 64(X ,,, Y ,, : M),
04X, Y, : 8)and 64X ,,Y, : B).

In Chapters 3 and 4, we shall consider the problem of the uniform normal approximation
to the multivariate distributions. It is relatively well-known that both the Wishart distribution
and the Dirichlet distribution converges in law to the normal distribution. However, it is un-
known that its convergences are uniform. Now, these distributions are practically important
distributions and its asymptotic normality has used by probability calculations. In Chapter 3,
we shall prove that the Wishart distribution is asymptotically equivalent to the normal distri-
bution with the same mean vector and variance-covariance matrix in the sense of type (B), as
the size n of the sample tends to infinity. The accuracy of the approximation is estimated by
the upper bound of the uniform error based on the Kullback-Leibler information by using the
general approximation theory which is stadied by Matsunawa([20], [21]), where the uniform

error estimation is given by

5d(Xna Yn . B(k)) S V I(Xn . Yn)/za

([14]). In the same manner, the uniform normal approximation of the Dirichlet distribution

is presented in Chapter 4.



Chapter 2

Implication Relation Between Two Types
of Asymptotic Equivalence

2.1 Introduction

Let {X,;n > 1} and {Y,;n > 1} be two sequences of one-dimensional random variables,
which are absolutely continuous with respect to the Lebesgue measure over the Borel o-
field B on the real line R. Let f, and g, be the probability density functions of X, and Y,,,
respectively.

Consider the subclasses of B :
M ={(-00,a]; —o0 < a < o0},

S ={(b,a]; —c0 <b < a< oo},

and define, for any given subclasses C of B,
84(Xn, Ya; €) = sup | P*(E) — P™(E) | .
EeC
Two sequences of random variables, {X,;n > 1} and {Y,;n > 1} are then said
to be asymptotically equivalent in the sense of type (C); and denoted briefly by X,, ~
Y, (€C)g, (n — 00), if it holds that

5d(XnaYn;c) — 0, (n - OO)



Then, since

and

64(Xn, Yn; 8) < 266(Xy, Yo; M),

we have the implication relations
(B)y = (S)g = (M),

among the three types of asymptotic equivalence.

Under the present setting of fixed basic space R, ifY}, is identical to Y independently of
n, Y being absolutely continuous, then the notion of (M),-convergence, X,, — Y (M),,
(n — 00), is equivalent to the usual in law convergence.

In the following subsections we give a sufficient condition under which (M), and (B),
are mutually equivalent. In section 2.3, some formulas for evaluating numerically the quan-
tities given in (2.1) are presented.

As for the notions of asymptotic equivalence and its applications, the readef should refer

to [11], [14], [15] and [16].

2.2 A sufficient condition

Let {A,;n > 1} be a sequence of main domains of {X,,;n > 1} and {Y,;n > 1}, ie,
A, € B,PX(A,)— 1, P™(4,) — 1 as n — oo.

Consider the Hahn-decomposition ([8]) of R with respect to the signed measure PX» —
P (= Q, say):

R} ={z; fu(®) — ga(z) >0}, R;=R-R:, (n>1),
then, it is easy to see that

64(Xn, Y B) = Qu(RR;), (n21).



Let us put

W,=A, (| RE, (> 1)

First we note the following lemma.

Lemma 2.1 Suppose that the set W, is the sum of a finite number of disjoint intervals:
kn . . .

2.2) Wo=UL, LOL=06G#)),
i=1

for all n. Then, it holds that

84(Xn, Ya; B) < 2knb(X,, Yo; M) + max{PX"(A3), P (A2},
where AS = R — A,. (Each I\ may be considered as a member of S.)

Thus, the following theorem gives a sufficient condition for (M), and (B), to be equiv-

alent, which is straightforward from the lemma above.

Theorem 2.1 For some sequence of asymptotic main domains {A,;n > 1} of both

{X,3;n > 1} and {Y,;n > 1}, suppose that (2.2) holds. Then, the condition

implies that

(2.3) 64(Xn, Yn; B) — 0, (n — 00)
and in particular, if there exists a positive constant k such that
ko <k (21,

then

6d(XnaYn’M) — 01 (n - OO)

implies (2.3).



In what follows, some remarks are given on the evaluation of the number &,,.
Let h(z) be afunction defined over R, which is left-continuous and has a finite number

of discontinuities. Put

R* = {z; h(z) > 0}.

Suppose that the set R* is a disjoint sum of finite number k of the members of S.
Let us designate by [h]o, [1],, and [A]4., the number of zeros of /, that of optimal(ext-

remum) points and of discontinuities, respectively. Then, we have the following lemma.

Lemma 2.2
2.4) k< %{[h]o+ [} +1,
@.5) [ho < [,y + M) + 1.

Proof. Let R* be the sum of intervals (b;,a;], i =1,2,---,k, with —o0o < b; < a; <
by < ay < --- < by < ag < oco. Then, among the 2k points, a; and b;, at least 2k — 2 points
must be zeros or discontinuities. Hence, 2(k — 1) < [hly + [Al4., which implies (2.4).

Letz; < 25 < -+- < z4, 8 2> 2, be successive zeros of h(z) such that z; and 2, are conti-
nuity points and the rest s — 2 points are discontinuities. Then, since h(z) is left-continuous,
the interval (2, z;] contains at least one local optimum, and so does (21, z;].

Thus, if [R]o = oo then [h],, = 0o, and therefore (2.5) is trivial. Supposing [h]o be finite,
let the zeros of h(z) be —o0 < 2 < 22 < -+ < 2z, < 00, among which z; < z;, <
-+ < z;, are assumed to be continuity points and the other m — n zeros and discontinuities.
Then, each of the intervals (z;,, 23,1, (2i, 23], - -, (2i,_,, 2i, ] has at least one local optimum
and hence at least » — 1 local optimums in total. That is, [h],, > n — 1 and [A]s. > m — n.
Hence we have (2.5).

The following results are straightforward from the lemma above.

Lemma 2.3 If h(x) continuous, then it holds that

1
E< =
= 2[h]0+ 17



and

[Rlo < [hlop + 1.

Furthermore, if h(z) is continuous and differentiable over R, then

[h]op = [hl]O-

2.3 Numerical evaluation of the related quantities

In the present section, we shall give useful formulas for evaluating numerically the quantities
04(Xn,Yn; B), 64(X,,Yn; 8), and 64(X,, Yn; M), when the condition (2.2) holds. Without
any loss of generality, we assume that A,=R. Throughout the present section, the suffix n is
omitted.

As before, let R* = {z; f(z) — g(z) > 0} and R™ = R — R* be a Hahn-decomposition
of R with respect to the signed measure Q = PX — PY, If R* is the disjoint sum of k
intervals in 8, then R~ is also the disjoint sum of a finite number of intervals in §. Let the
whole intervals be

Ila IZ) I37 Tty IZka IZ/C+1

~ in this order from the left, for which it is assumed without any loss of generality that Q) >
0 and Q(I_;) < 0, and therefore R*=Y"% I;; and R™=Y%, I;,,. Put

Ii=(ai,ai+l]) 1= 1’ 27 "'72k+1,

where a; = —00. If ag4; = 00, we assume that I = 0.
Now, let £, = (—00, z] be a setin M which attains the value of 6,(X,Y; M); such E,
exists since PX and PY are assumed to be absolutely continuous with respect to the Lebesgus

measure over (R, B). Then, it is shown that

Lemma 2.4 The set E, must be identical with either one of the intervals

S L, s=1,2,---, 2k,
j=1



ie.,

2.6) 54X, Y; M) = max {| QI |}.

1<s<2k ‘=

Proof. First, assume that ay,; = 00, and suppose that z fallsin I,;. Then, if Q(E,) > 0,
it holds that Q(E.) < Q(TZ, L), and if Q(E.) < 0, then | Q(E.) |<| Q%' I) |.
Hence, it is also clear that z can not fall in the last interval I5;. When 2z € I,;,4, it holds
that Q(E.,) < Q% I) or | Q(E.) |<| QX4 ;) | according as Q(E) > 0 or < 0,

respectively. Thus, we have

| QE) |= _max {|QQ_I) I}
g=1

1<s<2k—1

Next, assume that a,;,, = 0o. In this case, we also have

| QB = max {| QQ_ L) [}-

J=1
Thus, we obtain (2.6).
In the next place, a formula for evaluating 6,(X,Y; 8) is given. First, we have the fol-

lowing lemma.
Lemma 2.5 Ifaset E,, = (u,v] attains 64(X,Y; S), then it holds that
u=a; and v = ay,

forsomeiandi, 1 <i< i <2k+1, ie,

~
|
—

@7) E.,=Y1I,

o,
Il
—

Proof. Supposethatu € I, and v € I, for some 1 < s <t < 2k +2. Assume first that
Q(E,.,) > 0. If both s and ¢ are even, then we have

t
QEup) £ QEq,00) = QQ_ I).

i=3

If siseven and ¢ is odd, then

t—1
Q(Eu,l/) S Q(Eas,at) = Q(Z Ii)v

i=s



if s is odd and ¢ is even, then

t
Q(Eup) € QEapen) = QY 1),

i=g+1

and if both s and ¢ are odd, then

t—1
Q(Eu,v) S Q(Easﬂ,at) = Q( Z Iz)

1=5+1

Similar argument can be applied in case where ()(E,,) < 0, and therefore, we obtain
(2.7) in all cases.

By this lemma, we get

(2.8) 6(X,Y;8)= max {| Q(ZI ) 1}

1<s<t<2k+1
where we have assumed that asr,2 = co. (Incase ag,; = 00, then the maximum in (2.8)
should be taken over all integers such that 1 < s < t < 2k.) Hereafter we assume that
A2k+2 = OQ.

Now, some cases can be discarded from the right-hand side of (2.8). First, it is evident
that one can discard the case s = landt = 2k + 1, or Y2 I; = R. We now have the

following lemma.

Lemma 2.6 The sum of intervals ¥!_, I; can not attain the maximum on the right-hand side

of (2.8), if Q(I,) and Q(I;) have different signs.

Proof. Suppose that Q(I,) > 0 and Q(I;) < 0. If Q(X¢_, I,) > 0, then it holds that,
fors+1<t<2k+1,QCL, )< Q(Eﬁ;l I;), because I, is contained in R*. Also, if
Q. I) <0, then, for 1 < s, | QT 1) |<]| Q(Ti,_; L) | Next, suppose that Q(I,) <
Oand Q(I;) > 0. fFQ(Xi, I;) > O, then, for ] < sands+1<t<2k+1, Q%! L)<
Q) andif Q(CL, 1) < O, then, for 1 < 5, | QCL, L) |<| Qi 1) | This
completes the proof of the lemma.

The lemma above means that one can discard the sums of any even number of intervals

from (2.8), i.e.,

s+2w

54X, Y;S) = {1}

1<s, 0<w s+2w<2k+l P

10



In case where ay;,1 = 00, then

s+2w

54(X,Y;8) = {1y i}

1<s, 0<w s+2w<2k i

For example, if k = 2, then

6a(X,Y;8) =max{ |QUy| |QU | | QUs)|, | QUM |,
| QUi+ L+ 1) |, | QU+ B+ 1) |}

Summarizing the results thus obtained, we state the following theorem.

Theorem 2.2 Case (1): a4y = 00 and hence we have intervals 1y, I, - - -, Iy, Iy inall,

for which I; C R, i=1,2,---,k,and In;;; C R™,i=0,1,--- k. In this case, it holds

that
k
64X, Y;B) = ) QUy),
i=1
s+2w
b(X,Y;8) = 1<s, 0<w s+2w<2k: 1{] Z QL) |}
'and
(X, Y ; M) = ax {| ZQ(I) |}

1< <2k

Case(2): azpe1 = 00, and hence Iy, = 9. In this case,

k

31 QU ),

=1

6a(X,Y; B)

s+2w

{I| S eu},

i=s

64(X,Y; 8)

1<s, 0<w s+21u<2k'

and

64X, Y; M) = max {IZQ(I)I}

1<3<2k~1

11



Example 2.1 Let Z, be a normal random variable with mean n and variance 2n. On the
other hand, let X, be a chi-square variable with n degrees of freedom. Then E(X,,) = n and

Var(X,) = 2n. Let p,(x) and f,(z) be their probability density functions respectively;

e—(a:«n)2 /4n

pn(z) = —l—\/—— , (00 < x < ),

2v/nw

fn(:c)={ N vey 2-1e=2/2 forgz >0

0 otherwise.

Now, the Kullback-Leibler information can be evaluated for sufficiently large n as fol-

lows;

1
I(Xn . Zn) ~ =,
n

which shows that the chi-square distribution is asymptotically normal and uniform over the
Borel field. (The reader should refer to Capter 3.)

Numerical values of the error of uniform approximation, 6,(X,, Z,; B), together with the
values of 64(X,,, Z,; 8§) and §,(X,,, Z,,; M) are tabulated in the following table 2.2, and the

related measures ()(I;) are tabulated in table 2.1.

Table 2.1.

Values of Q(I,).

n\Q| QUi Q) Q(I3) Qs)
10 | —-0.02784 0.10015 -—0.07805 0.01842
20 | —0.02431 0.06721 -0.05655 0.01444
30 | —-0.01932 0.05374 —0.04672 0.01235
40 | —0.01623 0.04599 -0.04076 0.01100
50 | —-0.01420 0.04082 —0.03664 0.01003
60 | —0.01276 0.03705 -0.03358 0.00929
70 | —0.01166 0.03415 -0.03118 0.00870
80 | —0.01080 0.03184 —0.02924 0.00821
90 | —-0.01010 0.02993 —0.02763 0.00780
100 | —0.00952 0.02833 —0.02626 0.00744

12



Table 2.2.
Values of 6,(X,,, Z; B), 64(Xy, Z; 8) and 64(X,,, Z; M).

n\ba | 6a(Xn, Zn; B) 64(Xn, Zn; 8) 8s(X, Zu; M).
10 0.11857 0.10015 0.07231
20 0.08165 0.06721 0.04290
30 0.06609 0.05374 0.03442
40 0.05699 0.04599 0.02976
50 0.05085 0.04082 0.02662
60 0.04634 0.03705 0.02429
70 0.04285 0.03415 0.02249
80 0.04005 0.03184 0.02104
90 0.03773 0.02993 0.01983
100 0.03577 0.02833 0.01881

Example 2.2 Let Z be the standard normal random variable and let X, be that of Student’s ¢-

distribution of n degrees of freedom. Let ¢(x) and f,,(z) be their probability density functions

respectively;
1 2
- —z*/2
r)=—€ , (F0 <7 < 00),
7 V2r (- )
I'({(n+1)/2)

fa(@) =

2
1+ %)_("“)/2, (—00 < T < 00).

/T (n[2)

It is well-known that the ¢-distribution tends to the standard normal distribution uniformly
as n — oo. The related measures and quantities for some values of n are tabulated in the

following table 2.3 and table 2.4 respectively.

Table 2.3.

Values of Q(I).

Q[ QU) Q) QW)
10 —0.015542 0.031084 —0.015542
20 —0.007844 0.015687 —0.007844
30 —0.005245 0.010489 —0.005245
40 —0.003939 0.007878 —0.003939
50 —0.003154 0.006308 —0.003154
60 —0.002630 0.005260 -—0.002630
70 —0.002255 0.004510 -0.002255
80 —0.001974 0.003948 —0.001974
90 —0.001755 0.003509 —-0.001755
100 | —0.001580 0.003160 -—0.001580

13



Table 2.4.

Values of 04(X,,, Z; B), 64(X,, Z; 8) and 64(X,,, Z; M).

7 \ (Sd (Sd(Xnazn; B) 5d(XnaZn;S) 5d(Xna Zn;M)'
10 0.031084 0.031084 0.015542
20 0.015687 0.015687 0.007844
30 0.010489 0.010489 0.005245
40 0.007878 0.007878 0.003939
50 0.006308 0.006308 0.003154
60 0.005260 0.005260 0.002630
70 0.004510 0.004510 0.002255
80 0.003948 0.003948 0.001974
90 0.003509 0.003509 0.001755

100 0.003160 0.003160 0.001580

14




Chapter 3

Uniform Asymptotic Normality of the
Wishart Distribution

3.1 Introduction

Nonaka [22] studied the uniform asymptotic normality of the Wishart distribution in the
canonical case. We shall consider the same problem in the general case. The aim of this
chapter is to give exact evaluation based on an inequality for the uniform error, and conse-
quently we are to clarify the condition for the uniform convergence.

In [20] and [21], Matsunawa has given fairly sharp bounds(lower and upper) of the real
gamma function and digamma function by evaluating the corresponding series of inverse
factorials. This results are useful to our present purpose to evaluate uniform error based on the
Kullback-Leibler information between the Wishart distribution and the normal distribution.

In Section 3.2, we shall show that the general case can be reduced to the canonical case. In
Section 3.3, we shall give some lemmas, and in Section 3.4, we shall prove the uniform(i.e.,
type (B),) asymptotic normality of the Wishart distribution W,(n, A) under the condition
p®/n — 0, by giving the upper bound of the unifdrm error based on the Kullback-Leibler in-
formation. The condition p> /n — 0 is the best possible for which the information converges
to zero.

Let X, = (Xia, X20) -+, Xpa), @=1,2,--- N, be a random sample of size NV drawn

from a p-dimensional non-degenerate normal distribution with mean vector g = (uy, us,

15



- -+, tip) and variance-covariance matrix A = (Ai;)pxp-
Let us put
N
A=Y (Xo—TNXo—X)

a=1

with X = L+ 5% X .. Further, let us denote by A the s = p(p + 1)/2 dimensional vector of

distinct elements of A;

- /
A“(allaa125”'7a1paa227"',(I’Zp,‘”aa'pp) .

Then the density function of A is given by

| A |(n=P=D/2 exp(—tr(A~' A)/2)

(3.1) A= oo e [AP2 T, T((n+1—10)/2)

where we have put n = N — 1, which is called the Wishart distribution W,(n, A). The range
of variation of the components of A is over all values such that A is positive definite. We
discuss the uniform asymptotic normality of this distribution under the limiting N — oo,
where p maj/ also vary with V.

It is known that

E(CEZJ) = n)\ij, i, ] = 1527' D
3.2) Cov(aij, ar) = n(Axdj+ Aadje),

Var(a;) nO% + Xiihj;)-

Now, let A™ be a s x 1 random vector having the s-dimensional normal distribution with

mean nA and variance matrix nQ, N(n\, nQ), where we have put

E(A) naA,

Var(A) nQ.

The probability density function of A™ is given by

o(4) = @)% | nQ |2 exp { ~2(4 — N (n2) (A - )}

16



We shall show that under some conditions A and A" are asymptotically equivalent (1B),
as N — oo, which is denoted by A ~ A* (B), and means that
(3:3) 64(A, A" : B) = sup | PAE) - PY(E)|— 0, (N — o0),
EEB(B)
where By, is the Borel field in the s-dimensional Euclidean space R,). A sufficient condition

for this is given by

f(A)
g(A)

34 I(A: A")=F,4 [log ] — 0, (N — 00),

and an error estimation is given by

(3.5) §4(A, A% : By) < \JI(A : A%)/2.

It should be noted that while under the present situation the inclusion relation of the carriers
supp(f) C supp (g) holds, I(A" : A) = Ellog{g(A)/f(A)}]is undefined.

Remark. The error estimation (3.5) is proved as follows. Consider a decomposition of
Ry, such that R}, = {E; PA(E) > P4 (F), FE € B} and R;;) = R, — Ry,). Then, we
have 6,(A, A" : B(,)) = PA(RY,)) — PA(R},) = PA(R,) — PA(RL,). Now, Kullback
[19] gave the following inequality

A ArD—
PAR,) _ PR,
I(A: A") > PAR )1 — O 4 PAR,)) log ———2,
On the other hand, it holds that
(3.6) pilog 2+ g log & > 2(p, — p,)
D2 1))

forpi+q =p2+q =1, 0 < p;,p2 < 1. (¢f. Kraft and Schmitz [18] gave a sharper inequality

to (3.6).) Thus, combing the two results above, we get the error estimation (3.5).

3.2 Uniform asymptotic normality in canonical case

Let us consider the vectors

Za=A_1/2(Xa—ll')) Ot=1,2,"',N,
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which are mutually independent and each has the standard normal, N (0, I,,). For theée vari-

ables
Z=A""P(X - ),
and therefore
N m— —
3.7 B = Y(Z,-Z)XZ.,-Z)
a=1

A—1/2AA_1/2.

The transformation (3.7), A — B, is non-singular, i.e., it is measurable and one-to-one, and
hence the inverse mapping is well-defined and measurable.

Asbefore, let B = (b11, - -+, bip, baz, - -+, bop, -+, byp), where b;;(: < 7, 4,5 = 1,2,- -+, p)
are s = p(p + 1)/2 distinct elements of the matrix B.

From (3.2), it then follows that E(B) = nl, = n(1,0,---,0,1,0,---,0,---,1) = nn,

or
E(bz]) = néija (2 < ja ’l,_] = 1a25 et 1p)
Also,
(38) CO'U(bijv bkl) =0 if (7/, .7) # (ka l)7
20 ifi=j
Var(b;;) = { n ifid]
or
(2
1
1
2
1
B9 Var(B)y=n = nQ,.
1
2
0 1
\ 2 8X8

18



Let B* be a s x 1 random vector having the normal distribution N(nn, nQ,); whose density

is given by

(G.10) g (B)=@m)/* | nQ, |7/ exp {——;—(B — nn) (nQ) (B — nn)} .
On the other hand, B has the Wishart distribution

(3.11) fo(B)=C5} | B[PV exp (—%trB)

where

Cpp = 2P/ 2PP /4 lp-[p (”_"'1_"1)
i=]

We now quote a result on measurable transformation which transfer a type of asymptotic

equivalence to the same or to another([12], [14]).

Lemma 3.1 Ler o(x) be any given B(y-measurable mapping from R, to any Euclidean
space, say (R, Bw), and put X' = p(X), Y' = o(Y). Then X ~ Y (B)4, (n — 00),
implies that X' ~ YY" (B)y, in which case

54X, Y : Big) > 64(X",Y" : Byy).

Furthermore, if ¢ is non-singular, then X ~'Y (B), and X' ~ Y' (B), are mutually equiv-
alent, and

84X,Y : By) = 64X, Y : By).

Thus, in order to prove (3.3), it is sufficient to show that

. fo(B)
1 : BY) = — —
(3.12) I(B:B*)=Ep [log gO(B)] 0, (N — o0),

and an error estimation is given by

54(A, A* : Byy) = 64B, B* : Byy) < \/I(B : BY)/2.

Therefore, in order to show (3.4), it suffices to prove it in the canonical case where po = 0

and A=1T,.
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3.3 Lemmas

In this section, we state some lemmas which play fundamental roles for the calculations of

the Kullback-Leibler information. We shall begin with the following.

Lemma 3.2 Let X be a random variable having the chi-square distribution of n degrees of

freedom. Then
I'(n/2)

Ellog X]=log2 + Tn/2)

The proof of this lemma is simple and will be omitted.

Lemma 3.3 (Matsunawa)
1 1
logl'(z) = —2-log27r +(r — i)logx —r - R(z), (z>0),

where |
0<R@)=Y disl <o)
B Fr@+D)(c+2)--- (T +1) 64z:(z +1)’

and a;, are defined by

1 1 . 1 )
. [ —— — — “ee — —_— > B
Gint = /0 t(1-2-1)---C t)(2 tydt, (i >1)
Proof. See Formula 1 in[21].

Lemma 3.4 (Matsunawa)

'(z) _ 1 1
@) logx — T ;T(x), (z > 1),
where
—— < T(@) =
-1 O e ) @) S =D
and b;, are defined by

1 . .
b,»+1=m/0 Hl—)Q2—1)---G—Ddt, G> 1)

Proof. See [20] (pp. 303-304).
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Lemma 3.5 Let Z,, = (z;), 1 < 4,5 < k), be a symmetric matrix and z; = 1, (@ =
1,2,---,k). For2<k<mn,

(313) Lk / ‘ Zk ‘(n—-k—Z)/Z log ‘ Zk | d2512 s dzk_uc
Zp>0

_ ET((n - 1)/2)
n..k(k 1)/4 I I §
{i=l [ ((1L 1)/ )} { (k Z)Anz} ’

where Z;, > 0 means that Z,, is positive definite, and

1 2 1+2¢
3.14 Am'= s .
( ) §r+lgn——z+2t

Remarks. (i) Under the same situation as in the lemma 3.5 above, Cramér [7] (pp.

392-393) gives the following result

(3.15) A /Z . | Z (OFD/ g do i
k

k-t Ty EAn = D/2)
LT -2

The lemma 3.5 is proved by induction over k in the same way with the result.

(ii) Let

2 <k<n)

1 & 1+2

a, = . y
" r+1gn—z+2t

then we easily obtain

. L ,
ﬁmr(a ——1>=—-(n—z+1)>1, A<i<k-1).
r—00 Ayl 2

Hence, the positive term series (3.14) converges by using the Laabe’s criterion.
We shall indicate the general lines of the proof to the lemma 3.5. For k = 2, using the

transform 22, = y and Maclaulin expansion log(1 — y) = — =2, % /4,

/_ (1= 22)" " 108 (1 - ;) des

= /0 y~12(1 — y)" = log(1 — y)dy

1 n—2\& 1 o 142t
B “B(z 2 >§r+lgn—1+2t
F((n—2)/2)
‘/_r((n- 1)/2) An

(3.16) L,
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which proves (3.13), where B(p, ¢) designates the usual beta function. Suppose now that
our relation has been proved for a certain value of &, and let us consider L;,;. Using the
expression

k

| Zea | = | Ze| =) Zzipnzien

i,5=1
' %
| Zs | —Zp1 21 Zkals

where z}; designates the cofactor of z;; in Z, Zy is the adjugate matrix (z};) and zgy; =
(st 22,6415 * 2k ke1) - L€ AL, Ao, - -+ ) Ay be eigenvalues of Z, and let C be the matrix of
the corresponding eigenvectors, C = (¢, ¢z, - - -, Cr), and hence C'Z;C = Diag(A;, Az, - - -,

Ar). Using this matrix, make the transformation
C'U,=Z]c+1, u=(u1’u2’~~,uk)’.
Then, we obtain for Ly, the expression:
Ly = /Zk>0 dziz - - dzp_y /(l Zi | —2j1 2} 2agn) R

10g(| Zk | =241 25 Zke1)d21 ot -+ A2k a1

= dz1z+ - dzp—1k - Henr
Z>0

where the integral with respect to the z; 1., has to be extended over all values of the variables

such that 2}, Z} zr41 <| Zi |, and

. (n—k—3)/2
3.17 Hiyy = / Zo | =3 A2
(3.17) 1= fet <| (-3 u)

k
-log <| Zy | —-ZA,ﬂ?) duy - - - duy,.

i=1

Further, let us make the transformation

;s
V= —I—U,i, 1;=1,2,"',k‘.
VIZ:| ( )
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Then, the Jacobian of the transformation is given by

I Zk- |k/2

- 1/2
Oz 26 1

Hence (3.17) becomes

(3.18) Hiw=| Zx ["*?7log| Z; |- / et

k (n—k=3)/2
(I—Evf) dvy - - - dug
:"1 i 1
+| Z |(n—k-——2)/2/

k (n—k—3)/2 &
1— 2 log{1— 2) dvy - - - doy.
N (B 30 ) R (B o

Now, the first term of (3.18) is equal to a well-known Dirichlet integral and the latter integrai
may be evaluated by the same methods as the Dirichlet integral and (3.16), and we obtain the
following by the hypothesis of induction and (3.15).

iD= k= 1/2) {L ) ( . )J}

= _kkeD/4 r T((n —0)/2) & A
- Hr((n—1>/2> 241 = D

Thus the relation holds for & + 1, and the proof is completed.

Lk+1

3.4 Upper bound of the Kullback-Leibler information

Now, we shall check the condition (3.12), the validity of which implies uniform asymptotic
normality of the Wishart distribution, i.e., the condition (3.3) in general. By (3.10) and (3.11)

we get

(3.19) I(B: B")

5, [10 i fo(B>]

9o(B)
Es [log {c,;; | B ["=P=D/2 exp (—%uB) - @n)*Pn*pl?

- exp (5B — nf (128 - n) |

log C;} mypw/Appot/age/2 , 2 7P 7 12" — 5, llog | B]

1 1
— 5Ep 81+ 5 Ep [(B —nn) (nQ0) (B — nm)] ,
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where

Gy = 2o I (1120)

=1

‘We now calculate:
1
Eplog| B1=C; [ |B[" 7 log| B |-exp (——trB) dB.
B>0 2

We make the transformation B — Z = (211, -, Z1p, 222, * * , 22p, " * * , Zpp) SUCh that

bij = zi4/biby; GF5) bi = ziin

Then
(2’11 Zija/%ii%jj
(3.20) B = .
\ * Zpp
( V%11 O v/ 211 O
= Z, ,
0 Zom 0 paw
where
I 212 Z1p
z,= 221 1 22p
Zpp Zp e 1

and the Jacobian is given by (zy; - - - 2,)®~V/2. From (3.20) it follows that
| Bl=21-2pp | Zp |,
and consequently for the second member of the right-hand side of (3.19),

P
Egllog| B |1= Z Ezllog 2]+ Ezllog | Z, 1= 1, + I, say.
i=1
Since z;; = b;; has a chi-square distribution of n degrees of freedom, lemma 3.2 gives us
Fzllog z;;]1 =log2 +I''(n/2)/T(n/2). Hence

_ I''(n/2)
I —p{log2+ ——I‘(n/Z) } .
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Also
1 P
L= C,fpl /D((Zu o zpp) | Zp NPV log | Z, | - exp (‘5 Z%i)

=1

'(Z]l N zpp)(p‘l)/ZdZ
2/2 1 &
= Cn_pl/ ,(Zu ce pr)(n— )/ eXpt{ —=< Z Zi | dzyp e dzpp
D 2 =1
x/ | Zp |(n—p—1)/2 log ’ Zp I dzyg -+ 'dzp~1,p
Zp>0

where

D={Z,>0, 2; >0 fori=12,---,p},
D'={z>0fori=12,---,p},

and

dZ =dzydzyp- - dzpdzyy - - - dzgp - - - dzp1 pdzpy.

Here the first factor of the right-hand side is:

_ 1 &
/D’(Z“ ... pr)(n /2 exp (_5 3 Zu) dzyy - - dzpp
i=1

P 1
= H / Zz(? a7 exp (_Ezii) dzi;

=1 Y %ii>0
P

=112 (3)
7=l 2

= onp/2pp (E) )

2
Also, by lemma 3.5,
/Z >0 | Zp |(n~p~l)/2 log | Zp | drg- e+ dapoyp
P T(n+1-i)/2) [2=2
- { ®— sy
I =m 2
Therefore

p-1
L=—- Z(P — DAn41i-
i=1
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Summarizing these we get

_ I'(n/2)] =2 .
(321) EB[IOg | B I] =p {10g2 + F(n/z) } - ;(p - z)An+1,i-

In the second place, we shall calculate for the third term of the right-hand side of (3.19):
p P

(3.22) Eg[trB] = Ep [Z biz] =Y Eglb;l=np
=1 =]

because b;; has a chi-square distribution of n degrees of freedom.

Finally, by (3.8) and (3.9)

(3.23) Ep (B = nn) (nQo)™'(B — nm)

1 bii — i

= '_EB Z( 7”7 ) Z(bz] nnij)z
n i=1 1<j

= — +
)

_ pe+1)

2

Substituting (3.21), (3.22) and (3.23) into (3.19), we obtain

p(p —2n +3) p(p+1)

(3.24) I(B:B" = - log2+g-log7r+ —logn
plp+1) _@Q (n+1—i
% Zl 2 )
p(n —p— 1) '(n/2)
+ > {1og2+ T(n/2)
n—p— 183

2 Z(P Z)An+1,i-

=]
Now we shall calculate the upper bound of the Kullback-Leibler information I(B : B*)

for n > p. By lemma 3.3

2 n+l—i 2 n—i  n+l—i n+l—i
E logl"(—————) > E { log27r+ log —
i=1 2 i=1 2 2 2

_L<n+1—-i)‘2(n+l—z’ 1)4
64\~ 2 2t

26




P Pn—i, n+l—i
—log2
> Slog 7r+i2=1: 5 log 5
L= _m _p
4 2 8(n+1-pp

Here, using the inequalities z (z — 1) < log(1—2z), (0 <z < 1), and 14z < (1-2)7}, (z <

1), we have
i n—1 o n+l—1
2. 8T
Therefore

p
(325) 3 togT (

i=]

n+1——i)
2

By lemma 3.4

(3.26) log2 +

and it is clear that

(3.27)

v

v

P
A op gD
p(+1) p \!
4 (1—n+1)
p(p+1)(2p+1)
Rnr+1—-p)

logg— -

)
+
n

v

<1+p

p(2n —p—1)
4

np.

2

2 _
log 2 p@° —1)

p
2 log?2 s )
> ogem 2 12(n+1-1p)

2

pp—1)
2n

p

+ e |
8(n+1-—p)y

< logn —

I'(n/2) gn— 1

T'(n/2) n 18n(n —2)’

1
Apyii > —.
n

Substituting (3.25), (3.26) and (3.27) into (3.24), we obtain

IB:BY < P&+,

p(p* - 1) p(p+1) p p

4n

12(n+1—1p)

36n(n—2)  36(n—2)  8n+1—p)p

which tends to zero as p? /n — 0 or equivalently p* /N — 0.

Thus, we have proved the following theorem.
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Theorem 3.1 The Wishart distribution (3.1) is asymptotically equivalent in the sense of type
(B); to the s = p(p + 1)/2-dimensional normal variable A* with mean vector nA and

variance-covariance matrix nQ, where
/
A'_"(AII’A]J’”'a)‘IpJAZZ,“"A2pa”'aApp) ’

and
2)\3, AikAj1 + AirAje
)\%2 + }\11)\22
* v v 2)\12,1, axe

provided that p* Jn — 0 as n — oo. An upper bound to the uniform error (3.3) is given by

. p(@*+3) p@*-1) p(p+1)
6a(A, A" : B) < { 80 24(n+1- D) * 72n(n — 2)

1/2
R p
72(n —2) 16(n+1— p)3 '
Remark. The condition p? /n — 0 is the best possible for which the Kullback-Leibler

information converges to zero. This can be shown in the following:

p-1 ' p—l RN A B
(328) Z(p - Z)An+l,i = Z(p - l)z r41
i=l

i=1 =0 !':Ion+1—i+2t

= %Ig(p—i)(l—i_l)—l{l+%(l—i~3>_1

n n

(-2 (-5 Heo(E)

_ 2 _ 4
po—1)  p2p*+3p 5)+O(p )

2n 12n2 n3

By Stirling’s formula and Taylor’s expansion,

P n+l—1 P (n—1 n+l—¢ n+l-—17 1
3.2 1 r(—_) ~ { L _ 1
(3.29) ; og ) > 5 log— s+ 2log27r

i=1

1 1 P
* 6(n+1—i)“90(n+1—z‘)2}+0<ﬁ§)
p2p*+3p—1) pn—-p-1) n np
2n 4 log35 -7

4
p p
+ Elog27r+0 (F) ,
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and also

I'(n/2) 1 1 1
(3.30) log 2+ 7' ~ logn—;;—3—n—2+0(—).

Substituting (3.28), (3.29) and (3.30) into (3.24), we obtain

3 2 4

* D D D b
IB:BY) ~ — 4+ — 4+ — =—1.
( ) 12n+4n+3n+0<n2>

Now, let ¢ be a measurable mapping from (R, B(,) to another measurable space

(R, B)). Then we have the following corollary by the lemma 3.1 and the theorem above.

Corollary 3.1 Let A and A" be the same situation as in the theorem above. Then, it holds

that

" (A) ~ p(AY) (B)y, (n— o0).
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Chapter 4

Uniform Asymptotic Normality of the
Dirichlet Distribution

4.1 Introduction

The theory of the uniform asymptotic equivalence of probability distributions has been de-
veloped by Ikeda ([11], [12]). However, so far as the author knows, applying the uniform
approximation theory to concrete multivariate distributions has not been done sufficiently. In
Chapter 3, the author proved the uniform (or type (B),) asymptotic normality of the Wishart
distribution by giving an upper bound of the uniform error based on the Kullback-Leibler in-
formation. In this chapter, we shall consider the same problem for the Dirichlet distribution
which is often used to calculate quantity connected with order statistics.

A k-dimensional continuous distribution with probability density function

r k N k Q_Zfal ;-1
@  flea)==F F(a,-)-IE?oz—Z'LI a,.)Hx?' - (1 —Z_;xi)

i=1 1=l

on the domain D = {@y) = (21,72, -+, 2); 7 > 0, T8, 2, < 1}, where o = S % o) o >
0(=1,2,---,k+ 1) are parameters, is called a Dirichlet distribution. In case k = 1, this
becomes a beta distribution. It is straightforward to show that the marginal distribution X; is
given by beta distribution

I'(a)

42) T4 = Rt —ap

xf“_l(l - xi)"‘_""'—‘,_ O<z<]),
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fori=1,2,--- k,(k+1). Mean vector and variance-covariance matrix of X ) are given by

= (& % %k _
E(X(k‘))_(a,a, 7a)—l‘l’(k)
and
oi(o — ap) — — 010k
1 —ajap  opla—az) -0 —opoy
. X
(4 3) VCLT‘( (k)) 052(68 + 1) : :
—0 Oy, —map o ogla — og)

We investigate the uniform asymptotic normality of X ;) under the following conditions

case (1) aj,az,-+,apg — 00, kis fixed,

case (2) k — oo, aQp,qa, -+, 0k — OO,
The proof of the assertion above is given by checking the convergence of the Kullback-
Leibler information. Throughout the present chapter, lemma 3.3 and lemma 3.4 in Chapter 3
play fundamental roles for the calculations of the information.

Let f and g be the probability density functions of X, and Y () respectively. The
Kullback-Leibler information is defined by

I(X(k) . Y(k)) = -/R,( flog —'Z—d:l:(k).
k)

Also we define

(44) 6d(X(k), Y(k) : B(k)) sup I PX(")(E) — PY(")(E) |

EeBg,

1
= — — g | deg,
2/R(k)|f g | deg

where By, is the usual Borel field in the k-dimensional Euclidean space R). The error

estimation is given by

(X 49, Yyt Bay) < I(Xy 1 Yp)/2.
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4.2 Upper bound of the Kullback-Leibler information

Let X ) and Y (1) be k-dimensional random vector, whose probability density functions are
the Dirichlet distribution (4.1) and the normal density g(y,) with same mean vector and

variance-covariance matrix as (4.1), respectively. Thus,

- _ 1 _
4.5) 9y = 27) k12 | Za | 12 exp {_E(y(k) - Il'(k))z(k;(y(k) - “(k))l} .

In order to investigate the uniform(or type (B),) asymptotic normality of the Dirichlet
distribution (4.1), we try to find conditions under which the Kullback-Leibler information
converges to zero.

By (4.1) and (4.5), the Kullback-Leibler information I(X ¢ : Y ;) becomes

fX (k))]
46) I( X4 :Y. = F log ——
4.6) I( X :Yw) X [ og 7K o)

T(a)m)*/? | £y |72 k
i — 1)Ex,,, [log X;
LT T (o - =k, ) ¥ ;(O‘ 1Exq,[log Xi]

(- S - 1) Ex, g 1- zx)]

=] =]

1 _
+ 5 Exq [(X ) — M) X e — N(k))'] :

By (4.3), it is easy to verify that

1 k k
(4.7) I E(k.) I— mgaz . (Oé - ;Oéi) .

As was seen in (4.2), under X ), the variable 1 — f=1 X; = Xp,1 is distributed as the
beta distribution B(ao — Y%, oy, T8 ).
For the exact calculation of this information, we shall prepare a formula of integral cal-

culus.

Lemma 4.1 For positive real numbers p and q,

I'(p)I'(g)
I'p+q)

1
/o 2?7 (1 - )" log(1 — 2)dz = — {v@+9 - ¥(9)}

where ¥(x) = dlog'(z)/dzx.
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For the third member of the right-hand side of (4.6), by using the lemma, we obtain

(4.8) EX(k)[log< ;x)] {(a) ¢<a—za>}

and for the second term we have

4.9) Ex,llog X;1 = —{1(a) — ()}
We also have
(4.10) Ex,, [(X oy — Ba)Zay X — )] = k.

Substituting (4.7), (4.8), (4.9) and (4.10) into (4.6) we obtain

k 1 k+l
4.11) IXg:Yg) = Elog27r+log1"(oz)+ log—————k+l( +1)kH

k+1 k+1
— > logI(e;) — Z(O‘z — D{9() — ¥(e)} + 2
1=1

Now we shall calculate an upper bound of the Kullback-Leibler information /(X , :
Yw)fora; >1(G=1,2,---,k+1). By lemma 3.3 in Chapter 3, we have

1
@4.12) logT() < 3 log2r + (a - %) loga ~

k+1 +1 k+1 1 k+1 1
413) S logI'(a log?2 (z——)l 1 -
(4.13) > log (a)> og 7r+z ai = ) log o = ;6401%(055+1)

i=1
By lemma 3.4 in Chapter 3, we also have

k+1 k+1 k+1 1

4.14) > (o — D{y(@) — (@)} > D (e — (loga —loga;) — = Z =
=1 i=1 =] M
k(6a — 5) 5 k

2ata—1) 12272

Substituting (4.12), (4.13) and (4.14) into (4.11), and using the inequality 2/2z + 1) <
log(1 + 1/z), (z > 0), we have

: k a 3581 k6a-35)
4.15 I(Xgy:Y@) < 5log— @ 12afa-1)
( ) (X(k) (k)) ) IOg +1 t 72 mlle 126!(04 - 1)
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5 k+1 1
T2t ; 64a2(a; + 1)
35 g:l 1 k(4a?-16a-5) 5
- N~ o 1Rala—-1DRa+1) 12a

i=1

k+1
1 -
—_—— (=1 Xw® : Y ).
+ Zl: 2ot D) EIXw:Ym)
Thus, if k — oo (or kis fixed), oy, an,- -+, ag — 00, then the value above T(X(k) 1Y 1)
tends to zero provided that Y% 1/a; — 0 (hence k/a — 0).

Thus, we have proved the following theorem.

Theorem 4.1 Under the limiting k — oo (or k is fixed), oy,03, -, Qp — 00, the
Dirichlet distribution (4.1) is asymptotically normal, uniformly over the Borel field, provided

that %! 1/a; — 0. An upper bound of the uniform error (4.4) is given by

35 1 k(Q4a?-16a-5) 5
6 : < =y — - -~
X, Y Bw) < { 144 ZI: o 24ala—DQRa+1) 24a
1/2

k+1 1
+ Y Dgaiars 1)}

The following corollary is immediate from asymptotically equivalent (B), property.

Corollary 4.1 (i) For any measurable transformation t from Ry into Ry, m < k, the

transformd variable

(X ®) = Zw

is asymptotically equivalent (B), to t(Y () = U ) under the condition in the theorem above,
where t may be dependent on the parameters involved.

(ii) In particular, if t is a linear transformation and
Zgy = (X @) = XwAw,

then Z gy is asymplotically equivalent (B)q to the normal N(v ), Awy) with vy = pgoAw

and Awy = Ay Ew) Ay, where of course Ay may be dependent on the parameters.
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Some values of I(X ¢, : Y ) in case (1) (i.e., k is fixed) are tabulated in the following
table 4.1. Similarly, in case (2) (i.e., k — 00), the values of I(X ) : Y ) for some values

of k and o; where %! 1/q; tends to zero are tabulated in table 4.2.

Table 4.1. _
Values OfT(X(k) . Y(k)) for (5(71) = (041, Qg+, Olk+1) = (n, Ny, n)

k\é(n) | 6(10) 6(20) 6(50) 6(100) 6(500)
0.0268 0.0133 0.0053 0.0026 0.0005
0.0657 0.0327 0.0131 0.0065 0.0013
0.1094 0.0546 0.0218 0.0109 0.0022
0.1551 0.0774 0.0310 0.0155 0.0031
0.2017 0.1008 0.0403 0.0201 0.0040
0.4403 0.2201 0.0880 0.0440 0.0088
0.9240 0.4619 0.1847 0.0924 0.0185

Nosupbrwo~

‘ Table 4.2.
Values of I(X ) : Y ) for 6(k) = (a1, 0, - -, pa1) =
((6/5)%,(6/5)%*,- - -, (6/5)*+DF),

6B) 6@ 65) &6 6T &8)
04148 03812 0.3123 0.2431 0.1883 0.1475
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