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Abstract

Accurate human counting in indoor environments is essential for optimizing people-centric applications, such as
crowd management, disaster response, and monitoring in settings like shopping malls and healthcare facilities.
Traditional vision approaches face challenges with poor lighting conditions and raise privacy concerns. WiFi-
based solutions enable device-free human counting by detecting disruptions in wireless signals caused by human
presence. However, methods using received signal strength indicator are unreliable due to physical obstructions,
multipath fading, radio interference, and fluctuating access point power. While WiFi channel state information-
based systems are more sensitive to environmental changes, they lack standardization, limiting their practicality.
To overcome these limitations, this paper presents Time4Count, an innovative device-free indoor human counting
system that leverages round trip time measurements to achieve high accuracy and scalability. Time4Count
capitalizes on human-induced fluctuations in signal propagation time to accurately estimate the number of
individuals in a space. By employing a multivariate transformer-based feature extraction method, the system
effectively mitigates non-line-of-sight errors and signal distortions, ensuring robust performance even in cluttered
indoor environments. Additionally, Time4Count integrates spatial discretization and multi-label classification
techniques, enabling it to count an unlimited number of individuals in real-time. The system was rigorously
evaluated in two realistic, cluttered environments using commodity hardware, involving up to 15 participants.
Experimental results reveal that Time4Count achieves an high counting accuracy of 92.7%. To our knowledge,
Time4Count is the first RTT-based indoor counting system, providing a precise solution for indoor monitor-
ing. Implementation is available at: https://github.com/mclab-osaka/time4count.

Keywords People counting - Round trip time - Multivariate transformer - Multi-label classification -
Cluttered environments

1 Introduction

Tracking the number of people within a specified area is essential for various applications, including intelligent
guidance in museums, energy efficiency in intelligent buildings, indoor analysis, and emergency evacuations. In
retail environments, for instance, lighting and climate control can be adjusted automatically based on customer
concentration, thereby enhancing both energy efficiency and customer experience. Analyzing visitor traffic also
aids strategic planning for retail spaces.

The significance of people counting has garnered research interest, particularly in computer vision, where deep
learning advancements have led to accurate counting solutions. These systems, often based on convolutional
neural networks (CNNs), process images, or videos to estimate crowd density [1-4]. However, these methods
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often rely on specialized hardware, suffer from environmental conditions like lighting, and face significant
challenges in privacy-sensitive contexts, especially in spaces where cameras or other visual-based systems are not
practical. The need for cost-effective, privacy-preserving, and robust solutions in cluttered environments
underlines the importance of exploring alternative technologies such as WiFi sensing.

Recent advancements in WiFi link blockage analysis [5—8] have introduced innovative approaches to people
counting. These methods utilize the interruption of WiFi signals by human bodies to estimate presence and count
individuals. However, their accuracy can vary under real-world conditions due to simplified assumptions. The
received signal strength indicator (RSSI) of WiFi signals, significantly influenced by human body blockages,
presents a potential avenue for device-free sensing [9, 10]. However, RSSI-based systems face challenges such as
signal degradation from physical obstructions, multipath fading, radio interference, and variable transmission
power of access points, all of which can compromise system performance [11-15]. For example, the work done
by Januszkiewicz et. al. [11] verified that placing a single adult in the line-of-sight lifts the median path loss in the
2.4 GHz band by 9.5 dB, and that three adults push the penalty to about 11 dB, implying that designers must
reserve on the order of ten decibels of fade margin whenever people may occlude the link. In addition, the RSSI
received by receiver strongly depend on the device itself [16]. Conversely, WiFi channel state information (CSI)
has been explored by several systems [17-20] for its sensitivity to changes in radio waves, which can indicate
human presence. However, the lack of standardization in CSI necessitates the use of specialized hardware or
software to acquire it, rendering it impractical for numerous applications and limiting its utility in counting in
diverse environments, and because every WiFi packet captures a full matrix of complex numbers for up to 256
subcarriers on each antenna, sampled hundreds of times per second, the raw logs can swell from megabytes to
gigabytes in minutes.

Recently, time-based techniques have shown promising solutions, particularly in device-based settings. These
techniques estimate the distance between a mobile device (e.g., smartphone) and access points by measuring the
signal’s propagation time and utilizing the known propagation velocity of the signal. Various approaches have
been proposed for measuring propagation time, including time of arrival (ToA) [21], time difference of arrival
(TDoA) [22], and RTT [23]. ToA and TDoA methods necessitate precise time synchronization among all devices,
posing a challenge. In contrast, RTT utilizes the difference in recorded times to measure the time required for the
signal to travel to a destination node and return, thereby mitigating the synchronization problem. Unlike RSSI-
based methods, RTT demonstrates enhanced resilience against the challenges common in cluttered indoor
environments, including multipath interference, signal attenuation, variations in transmission power, and radio
interference. The fine time measurement (FTM) protocol, introduced in the IEEE 802.11mc-2016 standard,
enables RTT measurements between mobile devices and access points. Its growing support from commercial
access points and consumer devices has made it a practical and viable choice for indoor applications. Building on
this foundation, the IEEE 802.11az-2023 standard further enhances these capabilities, delivering greater accuracy
and robustness in time-based localization. It provides improved handling of challenges such as multipath effects
and propagation latency, making RTT-based methods more reliable for precise indoor positioning and human
sensing applications. However, RTT still faces limitations, including the potential for distance overestimation
caused by indirect signal paths [24]. Approaches such as map matching and advanced filtering techniques have
been explored to mitigate these issues [25]. Despite these challenges, time-based techniques, particularly those
leveraging advancements in IEEE standards, continue to hold significant promise for practical indoor human
sensing and localization [23, 26-28].

In this paper, we introduce Time4Count, an innovative human counting system that leverages the precision of
RTT measurements to overcome the limitations of conventional counting methods. By utilizing RTT variations
caused by human presence, Time4Count offers a fully device-free solution, relying solely on RTT data as input.
This approach eliminates the need for additional hardware or invasive technologies, making it a practical and
efficient choice for real-world applications. At the core of Time4Count is an efficient multivariate transformer-
based feature extraction mechanism, meticulously designed to capture and interpret the intricate signal dynamics
associated with human movement and environmental interference. This method significantly enhances the
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system’s ability to decode complex patterns in RTT signals, ensuring robust performance even in cluttered or
dynamic indoor settings. A defining feature of Time4Count is its ability to count an unlimited number of
individuals without being restricted to predefined count classes. This flexibility is achieved through the inte-
gration of spatial discretization and multi-label classification mechanisms, which together enable precise detection
and counting in diverse and unpredictable scenarios.

The system demonstrates a counting accuracy of 92.7%, showcasing its effectiveness and potential applica-
bility in various indoor environments. To the best of our knowledge, this is the first counting system based on
RTT, setting a new standard for accuracy and adaptability in the field of crowd management technologies.

Our contribution is described as follows: We leverage the 1D CNN and multivariate transformer encoder to
extract features to predict the number of individuals present. To the best of our knowledge, this is the first work to
apply transformer models to WiFi RTT data. Through this approach, we underscore the necessity of adapting
models capable of handling time-series data for accurate prediction using WiFi signals. Secondly, we integrate a
multi-label classification methodology, thereby transcending the confines of traditional people counting models
and evolving towards an unlimited number counting framework. This adaptation allows for predicting varying
numbers of individuals with enhanced flexibility and accuracy. Additionally, we substantiate our proposed
system’s efficacy by conducting extensive evaluations using data collected from readily available devices on the
market in two realistic, cluttered environments. This empirical validation underscores the practical applicability
and reliability of our approach in real-world settings.

This paper is organized as follows: Sect. 2 explains the concept of RTT. Section 3 reviews related work in
RTT-based localization system and people counting technology and method. In Sect. 4, we explain the basic
concept, and Sect. 5 presents an overview of our methodology. Section 6 describes the components our proposed
system has and their role. Section 7 discusses the experimental setup and analyzes the results. Finally, Sect. 9
concludes the paper.

2 Background

RTT is defined as the time interval between the initiation of a network request at a source transmitter, its reception
at a receiver, and the subsequent return of the response to the source transmitter. In this study, RTT is employed
to measure the distance between two WiFi stations—specifically, commodity devices such as a smartphone and
an access point.

The primary advantage of the RTT technique lies in its ability to estimate the distance between two stations
without requiring synchronization. Synchronization is a critical challenge in time-based systems, and RTT’s
independence from synchronization simplifies its application. This capability is facilitated by the fine timing
measurement (FTM) protocol, introduced in the IEEE 802.11mc standard, which provides native support for RTT
measurements. The RTT-based distance estimation process begins with the smartphone, acting as the initiator,
sending a WiFi signal to an access point, the receiver, to ascertain its availability. Upon receipt, the access point
responds with an acknowledgment signal (ACK), initiating a two-way communication exchange. This exchange
enables the smartphone to measure the RTT and compute the distance. Repeated measurements can be performed
to enhance accuracy. Furthermore, RTT estimation is conducted for all access points within the smartphone’s
range, providing a comprehensive spatial analysis.

One benefit of RTT is its ability to compute distances locally on the edge device, thereby preserving user
privacy. Unlike cloud-based processing methods, the localized computation reduces exposure to potential data
breaches or misuse.

Figure 1 illustrates the FTM protocol workflow. The process starts with the smartphone transmitting an FTM
request to the access point to confirm its availability. Upon confirmation, the access point transmits an ACK
signal, enabling the smartphone to compute RTT through the exchange of multiple FTM packets.

The RTT value is calculated using the following equation:
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Fig. 1 Workflow of the IEEE 802.11mc fine timing Measurement(FTM) protocol for unsynchronized ranging. FTM protocol
exchange between a smartphone (initiator) and an access point (responder). At ¢}, the smartphone sends an FTM request
(blue dashed arrow); the AP acknowledges receipt (red dashed arrow) and, at f,, replies with an FTM frame (solid red
arrow). The smartphone receives this frame at #3 and returns an ACK (solid blue arrow) at #4. The round trip time is then
computed as RTT = (t4 — t;) — (t3 — ;) from which the one-way distance estimate follows as 1 RTT x c¢

RIT =1, — —(lg—lz) (1)

Here, (13 — t;) represents the processing time on the access point. The distance between the two devices is then
computed as:

1
Distance = ERTT X ¢ (2)

where ¢ is light speed, whose value is about 3 x 10%m/s.

Because IEEE 802.11 mc/az Fine Timing-Measurement (FTM) exchanges discard a station’s internal pro-
cessing delay when computing the round trip time (RTT), transient queuing or back-off experienced by other
devices does not bias the distance estimate itself.

Notably, the smartphone performs RTT measurements for all RTT-capable access points within its vicinity.
Unlike traditional multi-lateration approaches [24, 29, 30], Time4Count leverages the collected RTT values via
the FTM protocol as unique fingerprints to estimate the number of individuals present in indoor environments.
This process is described in detail in the Sect. 6.

3 Related work
In this section, we present a survey of the relevant literature related to our Time4Count system.

3.1 RTT-based indoor localization systems

To the best of our knowledge, there are no existing RTT-based counting approaches. However, due to its
resilience and robustness in indoor localization, the RTT technique gained more traction in recent years. WiNar
[23] employs RTT fingerprints to develop a probabilistic model using Bayesian inference. This model estimates
the likelihood of the user’s presence at predetermined reference points, offering valuable insights for localization
purposes. DeepNar [26] utilizes RTT data collected during an offline phase to train a multi-layer deep learning
model functioning as a multi-class classifier. In the online phase, the user’s device captures RTT measurements
from nearby access points. It inputs them into the trained model, which then calculates the probability of the
user’s presence at the reference points. Conversely, RRLoc [31] demonstrates improved performance compared
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to previous systems based on received signal strength indication (RSSI) and RTT. It employs a hybrid approach
that combines RSSI and RTT measurements, integrating them through a DeepCCA network to extract high-level
features. These features are subsequently used to train a deep classification model for precise localization. MagTT
[32] integrates magnetic field measurements with RTT to achieve submeter-level accuracy. Utilizing a CNN-
LSTM architecture, MagTT illustrates the potential of fusing various sensor data for enhanced indoor localization
accuracy. The authors of [33] proposed the robot localization system that fuses WiFi RTT information and
improves the positioning error. This system employs adaptive data filtering and other positioning error smoothing
methods to enhance the performance. LocFree [34] is the single-person localization method using only RTT in a
static environment and has achieved a median localization error of 1.56m in an area of 5.8m x 8.3m that consists
of many kinds of furniture. Additionally, the RTT-based localization system developed by WhereArtThou [35]
employs the extended Kalman filter with a random walk motion model (EKF-RW) and the step-and-heading-
based filter (EKF-SH), which integrate distance measurements with inertial sensor readings to enhance accuracy.
The final two references concentrate on the tracking of a single object or individual and do not address the
tracking of multiple objects or people.

While RSSI-based systems benefit from not requiring specific hardware and utilizing signal strength for
localization, they are vulnerable to obstacles, interference, and multipath effects. In contrast, RTT provides more
precise distance measurements by directly capturing signal propagation time delay. The standardization of RTT
by IEEE 802.11mc has made it widely available in commercial off-the-shelf (COTS) devices such as smartphones
and access points.

The standardization of the RTT-based technique in the WiFi technology and the robustness of the time-based
techniques gave the localization systems the ability to present an enhanced performance with fine-grained
accuracy. Motivated by this, our work focuses on leveraging RTT measurements as features to recognize the
presence of multiple people within an indoor environment and thus counting them in a device-free fashion.

3.2 Counting systems

There are many techniques for counting the number of people in both indoor and outdoor environments,
leveraging a diverse array of sensors and their combinations. These techniques can be, in general, categorized into
two main categories of methods: detection-based methods and regression-based methods.

STEERER [36] represents one of the detection-based and image-based methods designed to count and localize
people, addressing the challenge of scale variation by cumulatively selecting and inheriting discriminative fea-
tures from the optimal scale. Crowd++ [37] introduces an unsupervised method for detecting the number of
speakers using microphones installed in smartphones. In [38], authors have tried to identify the number of people
in the proximity scenario from Point cloud data with a combination of convolutional neural networks (CNN) and
k-means clustering.

Meanwhile, MSCNN [39] and COUNT Forest [40] focus on crowd density estimation from image data
utilizing regression mechanisms. These methods extract density maps from images and estimate density in
crowded situations. An environmental sensor-based method, as described in [41], partially utilizes carbon dioxide
concentration to understand the presence of individuals and optimize energy consumption by heating, ventilation,
and air-conditioning (HVAC) systems. With their design to understand the number of people, they try to save
energy consumed by heating, ventilation, and air-conditioning (HVAC) systems. Additionally, WiFree [42]
utilizes channel state information (CSI) to achieve crowd counting with a classification model.

Furthermore, there are works that utilize WiFi CSI for people counting [39, 43—46]. Our method stands out by
leveraging transformer-based classification, allowing for more flexible and accurate predictions across varying
numbers of individuals. This novel approach enhances the reliability and adaptability of our people counting
system, distinguishing it from previous methodologies.

Neural Computing and Applications @ Springer
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4 The basic idea

The core concept of Time4Count is to utilize the propagation time measurements between transmitters (e.g.,
access points) and receivers (e.g., smartphones) to accurately count users in various environments. 7ime4Count
leverages the disruption caused by a user to the direct line-of-sight (LOS) path between a transmitter and a
receiver. When a person obstructs this path, the signal is forced to take an indirect, non-line-of-sight (NLoS)
route, resulting in increased travel time and decreased signal strength due to blockage by the human body. By
analyzing the combined data from all NLoS and LoS paths for each transmitter—receiver pair, Time4Count can
accurately map out the spatial presence of users.

The challenge arises from the diverse distribution and varying number of users, which complicates the
development of a robust model capable of precise user counting. In environments cluttered with furniture or
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Fig. 2 RTT data visualization of links with values less than 3.0 x 1078 seconds (The bolder the line, the shorter time (LoS),
which is the smaller RTT value)
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densely populated with individuals in close proximity, Fig. 2 demonstrates that variations in RTT, resulting from
signals navigating through these impediments, introduce additional layers of complexity.

To address these challenges, Time4Count employs a sophisticated feature extraction framework designed to
analyze RTT measurements over time, leveraging both spatial and temporal characteristics of the data. This
approach ensures a detailed understanding of signal variations and their underlying patterns, which is crucial for
achieving robust performance in dynamic environments.

The methodology combines advanced techniques for capturing localized fluctuations in signal data and
identifying sequential dependencies. Spatial analysis focuses on detecting subtle changes in the environment,
such as obstructions or user movements, while temporal analysis emphasizes the order and evolution of mea-
surements over time, enabling the differentiation of overlapping signals and mitigation of noise. By integrating
these capabilities, Time4Count creates a comprehensive and high-dimensional representation of the data, effec-
tively isolating noise and providing reliable insights into user interactions, as described in Sect. 6.

5 System overview

The architecture of the Time4Count system is depicted in Fig. 3, consisting of two main phases: the offline
training phase and the online counting phase. In the offline phase, RTT measurements (affected by the density of
humans) of different access points are captured by smartphones distributed throughout the target area while users
occupy arbitrary reference points. This data collection leverages a Data Recorder mobile application, running on
each WiFi-enabled device, utilizing the RTT API [47] to gather RTT readings. This data is then uploaded to a
server for further processing. The Pre-processor module normalizes measurements and constructs pairs of fixed-
size vectors from the RTT data, which represent the signals captured from access points within the vicinity.
Subsequently, the Feature Extractor module processes these vector pairs to derive high-level, counting-dis-
criminative features through a complex nonlinear transformation of the original signals into a new embedding
space. This is facilitated by a transformer network, enhancing the distinction between user counts even their
locations are arbitrary. In order to enable counting any number of users without pre-definied bound, the Spatial
Discretizer module superimpose a virtual grid to the target environment to facilitate the recognition of users’
presence in each discrete cell and thus counting them. The features are then utilized by the Counting Model
Builder module, which trains a classification model to estimate the presence of different users and count them.
The output of this phase includes the trained feature extraction and counting models, which are stored for
subsequent retrieval during the online phase.

During the online phase, the system provides real-time estimations of the number of people present. It
continuously collects and preprocesses RTT data, ensuring proper data normalization and shaping. This pre-
processed data are then input into the pre-trained models to extract embeddings and to accurately count the
number of users. This real-time estimation enables effective counting-based service in realistic, cluttered

environments.
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Fig. 3 System overview
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6 System details
6.1 Deployment and data collection by Data Recorder

In our experimental setup, we distribute multiple access points and smartphones as signal receivers throughout the
environment. Given practical constraints, such as limited resources, there will inevitably be a finite number of
access points and smartphones available for deployment. To ensure comprehensive coverage, we locate these
devices in a manner that maintains uniform spacing between each device type throughout the room. Subse-
quently, once installed, the locations of these devices remain fixed throughout the duration of the experiments.

6.2 The pre-processing module

The Pre-processing module is pivotal in both the offline training and online localization phases of Time4Count,
focusing on data preparation and anomaly correction for deep learning applications. This module processes RTT
data from smartphones to construct input vectors for machine learning models, with each vector element rep-
resenting a signal measurement from a smartphone to an access point. Given the dynamic nature of real-world
environments, not all access points are consistently detected in each scan, which leads to input vectors of variable
lengths. To address this variability, undetected access points in a scan are assigned a placeholder RTT value, set
to represent an improbably high distance—specifically, 0.2 x 1073 ms in RTT, which exceeds typical values for
access points within detection range. Additionally, the module removes anomalies such as the Android API
reporting incorrect negative RTT values, likely due to internal calibration of WiFi cards or multipath effects. Such
anomalies, including latency variations at reference points, can degrade traditional trilateration techniques. The
module also standardizes the feature set by normalizing the input vector elements to a range of [0, 1]. This
normalization is crucial for improving the effectiveness of the optimization algorithms during the training of the
models, thereby enhancing the overall accuracy and robustness of Time4Count in user counting in cluttered
environments.

6.3 Spatial discretization methodology

To facilitate the analysis of human counting within an environment using wifi data, we implement a spatial
discretization strategy. This approach involves segmenting the space into a virtual grid, where each cell within the
grid represents an area of 1 m x 1 m dimensions. Each individual is presumed to occupy a single cell at any
given time. This assumption allows for a structured analysis of the interactions between the users and the wireless
signal, as each cell can be independently evaluated for its signal characteristics and associated human presence.
The granularity of this grid, with its 1-meter square cells, strikes a balance between spatial resolution and
computational manageability. It ensures that the spatial distribution of wifi data is adequately captured, providing
a detailed yet manageable framework for analyzing how human presence and movements affect wireless signals.

6.4 Feature extractor

Our feature extractor employs a 1D CNN and transformer encoder, adapted from natural language processing to
time series analysis, to predict the total number of individuals. This model, demonstrated by Vaswani et al. [48]
and further validated in recent studies [49], utilizes a pre-training and fine-tuning approach, which enhances
performance by extracting nuanced features relevant to our task.

Figure 4 presents exemplar WiFi RTT traces collected while subjects were seated. Even in this ostensibly static
setting, the RTT series displays noticeable fluctuations, underscoring the need to model RTT as a genuine time-
varying process rather than as isolated snapshots. To diagnose the temporal structure of these traces, we computed
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the power spectral density via the fast Fourier transform (FFT). The coexistence of pronounced low-frequency
(long-term) and high-frequency (short-term) components confirms that the RTT signal possesses multi-scale
temporal dependencies. This spectral evidence cautions against relying solely on conventional convolutional
neural networks, which are optimised for recognizing local patterns in fixed-size receptive fields and therefore
risk neglecting extended dependencies [50]. Effective modelling of RTT dynamics instead demands architectures
capable of integrating information across a wide temporal horizon, such as dilated temporal convolutions or
transformer-style attention mechanisms, so that both enduring trends and fleeting variations are captured in a
unified representation.

To address this limitation, we incorporate a transformer with positional encoding. One of the key advantages of
the transformer is its ability to capture long-range dependencies in the data. This capability is crucial for
identifying patterns that develop over extended periods—patterns that traditional models like RNNs and LSTMs
often struggle to capture due to vanishing gradient issues. The transformer’s self-attention mechanism resolves
this limitation by directly modeling the relationships between all elements of the sequence, making it particularly
effective for our application. This approach is particularly advantageous when dealing with noisy time series data.
The transformer’s ability to recognize contextual relationships allows it to assign appropriate weights to different
parts of the sequence, even in the presence of noise, improving the detection of human presence.

The feature extraction process begins with a series of 1D CNN layers, which are used to detect local features in
the RTT data. CNNs apply a set of filters that scan through the time series, identifying short-term patterns or

fluctuations that are indicative of immediate changes in RTT values. Mathematically, the output h,ﬂ”c, of the /-th
convolutional layer for batch index b, output channel ¢, and time step ¢ is given by

Cin k—1
[ l -1
hé,z,,w(zst;,f h,s,f,,mg») o)

=1 =0

where () denotes the ReLU activation function, k is the kernel size, C;;, is the number of input channels, and

WU and b") are the learnable weights and biases, respectively.

However, these local features alone cannot account for the broader temporal relationships that unfold over
longer periods. To address this, the outputs from the CNN layers are passed to the transformer encoder, which
serves to capture long-range dependencies. Given a sequence of feature vectors H € R¥*?, where K is the
sequence length and d is the dimensionality of each vector, the transformer encoder operates through multi-head
self-attention:

0=HW,, K=HW, V=HWy, (4)
KT

A = softmax <Q—>, (5)
Vi

Z=AV, (6)

H = LayerNorm(H + ZW,), (7)

where Wy, Wk, Wy, and Wy, are learnable projection matrices, and H represents the output of the attention block.
This output is further passed through a position-wise feedforward network with residual connections and layer
normalization.

Positional encoding is added to H prior to attention computation to encode the temporal order of the input:
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t t
PE,» = sin[—————— ), PE; ) = cos(——— ). 8
(+20) Sln(seq_lengch’/d) (t.26+1) COS(seq_length2’/d> ®)

where ¢ is the time step and i indexes the feature dimensions. This enables the model to reason about sequence
order—a property not inherently captured by attention alone.

Despite the fact that the outputs of the convolutional layers are continuous-valued vectors (unlike the discrete
token embeddings in classical NLP), prior works [51-53] demonstrate that Transformers effectively process such
continuous inputs in time-series domains. This hybrid design thus enables the model to jointly learn localized and
global temporal features.

The integration of the transformer encoder is essential for modeling the long-term dependencies present in the
RTT data. The CNN layers extract localized patterns, but the transformer, with its self-attention mechanism,
enables the model to capture relationships between distant time steps, allowing it to consider the global context.
The self-attention mechanism directly models the interactions between all parts of the sequence, effectively
bypassing the vanishing gradient problem that hampers traditional sequence models such as RNNs and LSTMs.
This is particularly advantageous for handling noisy or irregular time series data, as it allows the model to discern
important patterns over extended periods.

Positional encoding is introduced at this stage to ensure that the transformer can interpret the temporal order of
the RTT sequences. Unlike CNNs, which naturally preserve spatial information, Transformers do not inherently
recognize sequence order, making positional encoding critical. This encoding provides the necessary temporal
structure, allowing the model to understand the chronological progression of RTT data and capture both local and
long-term dependencies in a unified manner.

The architecture of our feature extraction module, as shown in Fig. 5, processes input sequences from N re-
ceiver devices, specifically smartphones. The model is designed to handle a multivariate time series input where
each of the N entries corresponds to a distinct receiver device. For each device, the input comprises a sequence of
M time-series features of length K, where M represents the number of access points. This design allows our
system to analyze interactions between each receiver and multiple transmitters, enhancing the model’s ability to
discern patterns indicative of user presence.

Our approach is validated by the t-SNE visualization in Fig. 7b, where the transformer encoder’s output shows
clear and distinguishable user counting levels, in contrast to the ambiguous clusters observed in the raw data
visualization in Fig. 6a. This clear grouping demonstrates the efficacy of our feature extraction strategy in
identifying and counting users accurately in complex environments.
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Fig. 5 The overall architecture of the feature extractor
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6.5 Counting model

In this section, we discuss how to train a counting model leveraging the embeddings derived from the feature
extraction module.

The model adopts a multi-label classification approach [55], where each cell within a physical environment is
independently assessed to determine the probability of user presence, effectively treating the detection problem as
a series of binary classifications—one for each cell. This multi-label classification approach enables the model to
concurrently evaluate multiple cells, making it adept at handling scenarios where multiple individuals are present
in various spatial divisions of the environment. The binary classification for each cell predicts whether it is
occupied or not, providing a granular level of detail that enhances the overall accuracy of the counting process.
The effectiveness of this approach is underpinned by the use of a specialized loss function, described mathe-
matically as follows:

1 . 1
loss(x,y) = _EZ,: <y[z] x log (m)

+ (1= y{]) x log (22D ))

(1 + exp(—x[i]))

where C € Z -  represents the total number of cells (classes), x[i] € R denotes the model’s output logits for each
cell, and y[i] € 0, 1 indicates the actual presence (1) or absence (0) of a user in cell i. This MultiLabel Soft-Margin
Loss function, designed for differentiability, facilitates the optimization of the model during training by penal-
izing the prediction error across all cells simultaneously. This structured approach not only improves learning
efficiency but also enhances the model’s ability to generalize across different environmental configurations and
user distributions.

By implementing this multi-label classification technique, we effectively bypass the limitations of traditional
counting methods that rely on direct classification of user counts, thereby achieving a more scalable and flexible
solution for dynamic and densely populated environments.
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(a) From raw data. (b) From embedded features.

Fig. 6 t-SNE [54] visualization(perplexity = 5, num of iteration = 250)
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6.6 Convergence properties of the hybrid feature extractor

Let fp : RM*K L RC denote the hybrid CNN—Transformer described in Sect. 6.4, with parameters 0 € R?. Given
an RTT sequence x, it outputs logits z = fp(x). With the MultiLabel Soft-Margin loss £(z,y) in Equation (9), the
empirical risk reads

LO) =23 i) y).  LF =10,
i=1
Choose

0o
2L;°

so every 0 € B(H*, r) satisfies amin(Jagg(Q)) > 00/2 [56-59]. Within this neighbourhood, the following Polyak—
Lojasiewicz (PL) inequality holds [60]:

2

IVoLOI > w(LO) -L*),  w=22. (10)

The result rests on two standard assumptions.

e Jacobian regularity: The aggregated Jacobian Je,(0) = ﬁ J1(0) ;.. ;7,(0)T] obeys omin(Juge(0)) > 60/2 in

B(0*, r) for sufficiently wide networks [56-59].
 Quadratic growth of the loss: For the sigmoid cross-entropy loss, the stacked error E(0) = [e], ..., e;]T with
e; = a(z;(0)) — y; satisfies the two-sided bound

B 1 .
= EO)); < n(L(0) = L*) < — [E(O)]3,  Buin = mina(r)(1 — a(t)) >0, (11)
C 4C lt| <5

whenever [|z;(0) — z(0*)||,, <. The right-hand inequality exploits o’ (¢) = o(¢) [1 — a()] <1/4; the left
arises from the local strong convexity obtained by the second-order Taylor expansion of the sigmoid-BCE
loss. Rearranging (11) gives ||E(0)||; > 4nC(L(0) — L*), the form required to derive the Polyak—Lojasiewicz
constant.

Since VyL(0) = ﬁ Jage(0) T E(0), combining the two bounds yields (10).

The model is trained with AdamW and a ReduceLROnPlateau scheduler,’ which multiplies the learning
rate by a factor y € (0,1) after p stagnant epochs. Because the scheduler only decreases 7,, the condition
0<n,<1/L persists, leading to the piecewise-linear decay

L(0p1) — L* < (1 = m,p) (L(6;) — L*).
Hence, the loss declines at least linearly while #, is fixed, and each reduction produces a tighter geometric
envelope.
The theoretical analysis presumes that both the CNN blocks and the Transformer encoder possess sufficient

width to keep the aggregated Jacobian well conditioned. To confirm that the proposed hyperparameters indeed

! https://pytorch.org/docs/stable/generated/torch.optim.Ir_scheduler.ReduceLROnPlateau.html.
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place the model in this over-parameterised regime, we trained the feature extractor 32 times with independent
random seeds while keeping all other settings fixed. Figure 7a plots the resulting training losses, and Fig. 7 shows
the relative weight movement. Across all seeds, the loss curves collapse and converge monotonically, while the
normalised weight movement plateaus below 10~!. These observations indicate (i) initialization does not
materially affect optimisation behaviour, and (ii) the model consistently converges during training, as experi-
mentally observed under the proposed hyperparameter settings.

7 Experiments and results
7.1 Data collection

In this study, data collection took place within a realistic cluttered environment, as illustrated in Figs. 8a and
Fig. 9a, c. The configurations of these testbeds are summarized in Table 1. For the pilot testbed, they are limited
to multi-label classification for location estimation in scenarios where a single individual is present at a designated
location. During the others, groups of up to 15 individuals each sat for one minute at predetermined locations in
testbed1 (Fig. 10), and groups of up to six individuals each stood for one minute at predetermined locations in
testbed2, following the setup experienced in several research [61-63].

Data collection was streamlined using an Android application installed on multiple smartphones, which was
designed to continuously scan for nearby access points. To ensure uniformity and synchronization in data
collection, the application was configured to operate concurrently across all devices. One device was designated
as the master to initiate the scanning process, ensuring that all participating smartphones collected data simul-
taneously and uniformly. This setup was crucial for maintaining the integrity and consistency of the data collected
during the experiment. To achieve high-precision distance measurements, the IEEE 802.11az> WiFi standard was
utilized for RTT measurements, improving location accuracy and ensuring reliable data collection. The appli-
cation was deployed on eight Pixel 3 devices (receivers), while five Google Nest WiFi access points (transmitters)
were utilized for signal transmission. Access points and smartphones were positioned to maximize line-of-sight
coverage across each room. One side of the smartphone faces a spacious area like the ceiling, and the access
points are positioned in open and elevated places, such as the tops of shelves, so that no objects block them from
above.

7.2 System parameters

The dataset is partitioned into a training dataset and a test dataset at an 80% to 20% ratio, respectively.

Additionally, we performed data augmentation on the normalized training data by adding noise with a mean of
0 and a standard deviation of 0.001 to the training data. Using different seed values, we conducted data
augmentation twice for each training data point—that is, including the synthetic data, we tripled the size of the
training dataset. Moreover, we applied a dropout rate of 0.2 during training to suppress overfitting.

7.3 Results

The system parameters and the model configuration are described in Table 2. These parameters are determined by
grid search.

2 https://standards.ieee.org/beyond-standards/newly-released-ieee-802- 1 1 az-standard-improving-wi-fi-location-accuracy-is-
set-to-unleash-a-new-wave-of-innovation/.
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Fig. 7 Learning analysis

7.3.1 Pilot study: preliminary evaluation of model performance

To assess the performance of our multi-label classification model, we adopt example-based evaluation metrics,
which evaluate predictions at the instance level by comparing predicted and ground-truth label sets per sample.
Specifically, we report Example-based Precision, Recall, and F1-score, which are defined as follows for an

input instance i € {1,...,N}:

. y; NY; y, Ny, 2 - Precision; - Recall;
Precision; = M Recall; = u, F1; = r.ec.lslonl ceatl

;| ly;| Precision; + Recall;
Here, y; and y; denote the predicted and true binary label vectors, respectively. The overall performance is then
computed by averaging over all N instances:

(12)

|
Example-based F1 = — F1; 13
xamp N; (13)
In addition, we report the subset accuracy, also known as the Exact Match Ratio, which strictly measures the
proportion of instances where the predicted label set exactly matches the ground-truth set:

|
Subset Accuracy = N Z Iy, =y, (14)

i=1

These metrics provide a comprehensive evaluation: the example-based metrics allow for partial correctness, while
subset accuracy serves as a stringent criterion of correctness in multi-label settings.
As shown in Table 3, multi-label classification is able to be used for this task, detecting an individual is at the

candidate position.

Neural Computing and Applications @ Springer


https://doi.org/10.1007/s00521-025-11540-8

https://doi.org/10.1007/500521-025-11540-8

< 17.80 meters 5
< >
Window Window Window [ Window | [ Window |

ox O 1— 1
v | g S e O
Desk Desk Desk Deik Desk . Desk | | Desk O 10.15 meters

HE B B B O =
Desk Desk Desk
esk Desk Desk . .

seus ()

¥seq
I sseq

2
%
T AE 0 He
m " A
SR . Access Point
(2] {2}
Desk Desk Desk " g
o N
Desk Desk DeQ‘I . . . A Smartphone

. . . he". | WorkbencA | s‘t)aerrlzci’r?g

| Door position
:' Desk | Desk | Desk |£Shelf

(a) Floor Map(Pilot Testbed).

il

(b) Photograph of the interior space.
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7.3.2 Counting performance evaluation

In this section, we assess the performance of our proposed counting system. We specifically evaluate our
transformer-based method and compare it to other existing methods for counting using WiFi signals, such as Wi-
cal [45], RPCNet [65], LocFree [34] and ImgFi [66].3

It is important to note that Time4Count is the first RTT-based counting technique. However, to rigorously
evaluate the system’s model design, we applied state-of-the-art counting models to the RTT data to ensure a fair
comparison. Figure 11 shows the proposed models surpass all the compared schemes. This improvement is
attributed to the transformer’s superior ability to handle sequential data and its enhanced capacity to capture long-

? 1t is noteworthy that RPCNet and ImgFi are implemented as multi-class classification, and we modified the last layer of
their model to fit multi-label classification(The task in Wi-cal is regression).
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Table 1 Summary of the
testbeds
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©® Access point
Table A Smartphone

W Seating position

T o
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space of Fig. 9a.
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(d) Photograph of the interior
space of Fig. 9c.

Item

Pilot Testbed

Testbed 1

Testbed 2

Participant Arrangement

Number of Candidate Points
Number of Position Configurations
Total Number of Records

Average Records per Pattern
Number of Receivers

Number of Access Points

1 person standing
18

18

13,512

751

9

10

15 people sitting
24

138

27,123

197

8

5

6 people standing
18

50

11,083

221

7

3

range dependencies within the signal data. Wi-cal [45] uses limited signal features (maximum, minimum,
average, etc.) and does not explicitly consider the correlation between different signals. From the results, we can
conclude that the summarized features are insufficient for analyzing RTT time-series data. LocFree [34] originally
uses the multiple layers perceptron with utilizing dropout for a single person localization. The result shows that
the simple architecture is not able to handle the time-series data in our dataset. RPCNet [65] employs 1D CNN
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Table 2 System
hyperparameters

Table 3 Example-based
and Subset Accuracy Eval-
uation Metrics

Fig. 11 Counting perfor-
mance of the proposed
Time4Count system and the
baseline approaches

Parameter

Explore range (bold means default)

Batch size

Learning rate

Optimizer

Epochs

Input sequence length

1D CNN output channels

1D CNN hidden channels

1D CNN kernel size

The number of Attention heads in Transformer
Dimension of the feedforward network in Transformer
Data Augmentation Rate

Dropout rate

{256, 512, 1024, 2048}
{0.001, 0.005, 0.0001, 0.00005}
AdamW [64]

500

8

{32, 64, 128, 256}

{32, 64, 128, 256}
{3,5,7,9}

{1,2, 4,8}

{32, 64, 128, 256}
Double(2x)

{0.1,0.2, 0.3, 0.4}

Metric Score

Subset Accuracy 0.9071
Example-based Precision 0.9073
Example-based Recall 0.9075
Example-based F1-score 0.9074

BN testbedl
testbed2
0.8 1

0.6 -

0.4

0.2516

People Counting Accuracy

0.2079
0.2 1
0.1306

0.0673

0.0 -

Wi-Cal
(XGBoost)

LocFree
(MLP)

0.0920 5767

0.9271 0-9390

0.1816 0.1863

ImgFi Time4Count

RPCNet
(CNN) (Bidirectional-LSTM)

and bidirectional-LSTMs to grasp spatial and temporal features. Although the architecture is well-known for
processing time series data, it does not succeed in accurately predicting the number of people in our dataset.
ImgFi [66] utilizes a method that converts time-series signal data into images through transformations such as the
Gramian angular field, Markov transition field, or recurrence plot. This image representation is then processed
using a CNN model to identify human activities. However, this approach predominantly emphasizes derivative
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values over the actual data values, which could result in lower accuracy compared to the method we propose.
Additionally, the method’s reliance on image-based transformations means that it requires a sufficiently long
sequence of input data, making it less effective for shorter time-series sequences. The superior performance of an
architecture combining 1D CNN with a Transformer over using a transformer alone for time series data analysis
can be attributed to the ability of the convolutional layer to effectively extract significant local features and
emphasize critical information shown in Fig. 12, thereby reducing noise and highlighting essential characteristics.
In this scenario, a LocFree [34] that has 75,636 trainable parameters required 54 MB of memory for inference,
whereas our proposed method that has 280,820 trainable parameters required 394 MB. Although this increase in
memory usage still allows operation on typical edge devices, it could be reduced by decreasing the number of
CNN layers or simplifying the Transformer hyperparameters. By first feeding the per AP RTT streams into a
shallow 1D CNN, Time4Count distils short-range convolution motifs that capture the sub-second co-fluctuations
shared by neighbouring access points and the handset. Prior WiFi counting schemes based on RSSI or CSI
compress each window to simple statistics or rely on handcrafted features, which blur the cross-channel rela-
tionships. The subsequent Transformer encoder then fuses those local embeddings through self-attention, learning
long-range inter AP dependencies that RNN-based models or earlier RTT RSSI CSI pipelines cannot express.
This enables accurate counts from only a brief slice of RTT data and establishes Time4Count as the first people
counting system to combine IEEE 802.11mc az RTT measurements with a modern attention backbone.

Figure 13 illustrates a scenario in which the trained model produces both correct and incorrect predictions on
test data. Figure 13a, b show datasets with identical spatial distribution patterns, as depicted in Fig. 13c. From the
raw data, incorrect predictions are notably associated with signal waveforms exhibiting significant amplitude
disturbances. The attention maps highlight the model’s focus during processing. For correct predictions, the
attention map at Layer 1, shown in Fig. 13d, effectively identifies essential regions. As the layers deepen,
attention values diminish, indicating that the model condenses input information and concentrates on the most
salient features. This reduction in attention values also suggests that the model filters out unnecessary infor-
mation, focusing its resources efficiently on relevant features. In contrast, incorrect predictions are characterized
by persistently high attention values even in deeper layers, such as Layer 2 and Layer 3, as shown in Fig. 13e,
which was led by the perturbation in the raw data in Fig. 13b. This behavior suggests that the model struggles to
isolate critical features, leading to information diffusion and confusion. Additionally, the sustained attention to
non-essential information indicates that the model inefficiently allocates resources, contributing to prediction
errors. The input to the transformer consists of features extracted by a preceding CNN. The results imply that the
model performs effectively when the CNN reduces noise and captures relevant local patterns. When feature
extraction is accurate, the transformer can efficiently focus attention in the early layers, minimizing the need for
extensive reprocessing in deeper layers. Finally, the difference in attention dynamics between correct and
incorrect predictions is further validated through statistical analysis of the variance and the range (i.e., the
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«Fig. 13 Case study about five people counting

difference between maximum and minimum values) of the attention map values, as demonstrated in Fig. 13f, g.
The greater variance observed in deeper layers during incorrect predictions suggests that the model experiences

confusion, resulting in unstable focus across layers.

7.3.3 The impact of input sequence length

Figure 14 illustrates the effect of input sequence length on the accuracy of user counting. The results indicate that
very short sequences lead to a drop in system accuracy, as they do not provide sufficient data for the model to
make reliable predictions. On the other hand, too long sequences introduce variability in the data due to changes
in the number of individuals or their positions over time, which can confuse the model and degrade performance
in our dataset. An optimal balance is achieved with a sequence length of 8(about 2.2 s), which provides enough
contextual information without introducing significant variability, resulting in an accuracy of 92.7%. The system

parameters and model configuration values were fixed as shown in Table 2.

7.3.4 Robustness of the number of people

Figure 15 showcases the system’s performance as tested with an increasing maximum number of people observed
during the training dataset. Notably, the model demonstrates slightly superior performance in scenarios involving
three and five to eight people, surpassing the results of the one, two, and four-people classifications. This
enhancement is attributed to the key factor that our approach utilizes multi-label classification, significantly
improving the accuracy and robustness of people counting. This method allows the model to simultaneously
predict multiple labels, making it more effective in complex scenarios where multiple people may be present. The
inclusion of diverse environmental data during training equips the model to better understand and adapt to
different situational variables. By analyzing detailed features from each candidate position, the model can more
accurately assess and predict the presence of individuals, thus enhancing both its accuracy and performance in
real-world applications.

Additionally, Fig. 15 provides detailed insights into the accuracy of our proposed system for predicting user
counts. In the context of people counting, allowing a margin of error of plus or minus two people, the results
demonstrate that our model achieves over 98% accuracy in estimating the number of individuals present. This
high level of precision underscores the effectiveness of our approach in accurately counting users in various

settings.
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7.3.5 Robustness of the number of devices

We explore the requisite number of devices, including access points and smartphones, necessary for achieving
accurate predictions. Fig. 16a, b present the results showcasing the robustness of our approach in terms of the
number of devices. Each blue point shows the counting accuracy.

The result of Fig. 16a highlights the impact of varying the number of access points. When we track the average
score, we can do an analysis that employing three access points enables achieving over 90% accuracy in counting.
This observation aligns with the intuitive understanding derived from localization systems based on time of
arrival (ToA), which mathematically necessitates a minimum of three base stations for accurate positioning.
However, intriguingly, simulation results demonstrate that employing only two access points can also yield 90%
accuracy in two specific configurations, underscoring the potential effectiveness of a strategically positioned pair
of access points in capturing the room’s dynamics comprehensively. Conversely, employing a single access point
results in a significant decline in prediction accuracy, emphasizing the vulnerability of such setups to signal
interference in multi-person scenarios, even when not in direct line-of-sight.

The result of Fig. 16b elucidates the influence of the number of receivers on prediction accuracy. As shown in
Fig. 9a pointed out in blue triangle icons, the smartphones are installed along the walls of the room, effectively
determining the room’s visibility from the perspective of the access points. Unsurprisingly, increasing the number
of smartphones enhances model performance, as it directly correlates with an increase in the number of features
available for analysis. On average, employing more than five smartphones enables achieving over 90% accuracy

Access POI nts Effects 10 Effect of receivers distributions

o accuracy
T 05] " Sveragesceurocy &
e accuracy °
Py 0.8

Iy
=}

o
©
L

average accuracy

o
©
L

By

Person Counting Accuracy(%)

07 o 0 ‘E .5
8 o4
0.6 ¥ g 03

054 4 02 %
T T T 01

1AP 2 APs 3 APs
The number of Access Points 1 device 2 devices 3 devices 4 devices 5 devices 6 devices 7 devices
The number of Smartphones
(a) The effect of access point density. (b) Effect of the number of receivers.

Fig. 16 Investigations of the number of devices(testbed2)

&\ Springer Neural Computing and Applications


https://doi.org/10.1007/s00521-025-11540-8

https://doi.org/10.1007/500521-025-11540-8

in person counting. However, certain distribution patterns may fail to consistently achieve this threshold,
necessitating the deployment of at least seven devices to ensure reliable performance within our experimental
room and environment.

7.4 Data augmentation study

Finally, we evaluate the impact of different levels of data augmentation on the model’s performance. Data
augmentation is used to increase the diversity of the training data and enhance the model’s generalization
capability. We systematically investigate how augmenting the dataset by various factors (e.g., doubling and
tripling) influences the model’s predictive accuracy.

Figure 17 illustrates how varying the amount of augmented data affects the model’s performance. The
improvements observed with data augmentation can be attributed to the increased variety in the training set,
which allows the model to generalize better to unseen data. However, we observed that the model’s performance
degrades when the augmentation factor exceeds 4x. This decline is believed to result from a loss of data diversity
due to excessive augmentation with noise, making the augmented data less representative of the true data
distribution.

8 Limitations

The present study demonstrates that Time4Count reaches state-of-the-art accuracy in a single 80 m? office, yet
three open challenges remain. First, all volunteers moved slowly or paused between measurements, and the
prediction performance in a dynamic situation has not been evaluated in this work. Second, scalability beyond a
room-sized cell is untested. Large area trials of device-free localization have shown that coverage gaps grow
rapidly once the monitored floor exceeds 100 m? unless access points are densified or partitioned into cooperative
clusters, inflating both deployment cost and inference latency. Recent RTT field studies likewise observe meter-
scale errors in wide corridors unless at least three FTM-capable anchors fall inside every ten-metre radius,
underscoring the need for principled coverage planning. Also, prior CSI-based evaluations report a 10 to 20when
subjects walk at everyday speeds through walls [67]. Third, the influence of heterogeneous client hardware is still
unverified. Although the RTT protocol subtracts station-side processing delays, variations in chipset design,

Fig. 17 Evaluation of per- 1.0001 — No Error Accuracy
formance by applying data
augmentation 0.975 -

0.950 1

o
©
N
o]

People Counting Accuracy
=) =]
0 O
~ o
w o

0.850 A

0.825

0.800 T T T T T T T
No Augumentation 1x 2x 3x 4x 5x 6x
Levels of Augmentation

Neural Computing and Applications @ Springer


https://doi.org/10.1007/s00521-025-11540-8

https://doi.org/10.1007/500521-025-11540-8

antenna gain, and firmware may alter the measured signals. Systematic cross-device experiments are therefore
required to confirm robustness in mixed hardware environments.

9 Conclusion

In this paper, we introduced Time4Count, a novel people counting system that utilizes RTT data captured by
commodity smartphones and access points. Specifically, Time4Count combines CNN and Transformer models to
harness the unique advantages of each, effectively mitigating the impact of noisy measurements caused by
cluttered environments or varying user distributions. We highlighted the critical importance of integrating time-
series data into our methodology and detailed our approach for extracting robust representations using a trans-
former encoder. Notably, Time4Count achieved an accuracy of 92.7% in counting individuals. Additionally, we
conducted comprehensive evaluations to assess the system’s performance across various conditions, including
changes in input sequence length, the number of individuals in the training dataset, and the density of access
points and smartphones. Our results demonstrate the robustness of the prediction model, confirming its effec-
tiveness in maintaining high accuracy despite fluctuations in the number of individuals present. This underscores
the potential of Time4Count for practical deployment in diverse, real-world environments.
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