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ABSTRACT

We investigate fundamental properties of the proximal point algorithm

for Lipschitz convex functions on (proper, geodesic) Gromov hyperbolic

spaces. We show that the proximal point algorithm from an arbitrary

initial point can find a point close to a minimizer of the function. More-

over, we establish contraction estimates (akin to trees) for the proximal

(resolvent) operator. Our results can be applied to small perturbations of

trees.
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1. Introduction

This article is devoted to an attempt to develop optimization theory on “non-

Riemannian” metric spaces. Precisely, we study the discrete-time gradient flow

for a convex function f on a metric space (X, d) built of the proximal (or

resolvent) operator

(1.1) Jfτ (x) := argmin
y∈X

{
f(y) +

d2(x, y)

2τ

}
,

where τ > 0 is the step size. Iterating Jfτ is a well known scheme to construct

a continuous-time gradient flow for f in the limit as τ → 0 (we refer to [9]

for the classical setting of Hilbert spaces and to [15, 19, 31] for some related

works). Generalizations of the theory of gradient flows to convex functions on

metric spaces go back to the 1990s [24, 25, 30] and have been making impressive

progress since then; we refer to [1, 3, 4] (to name a few) for the case of CAT(0)-

spaces, [35, 36] for CAT(1)-spaces, [28, 33, 35, 38, 40] for Alexandrov spaces and

the Wasserstein spaces over them, and to [41] for metric measure spaces sat-

isfying the Riemannian curvature-dimension condition (RCD(K,∞)-spaces for

short). Here a CAT(k)-space (resp. an Alexandrov space of curvature ≥ k)

is a metric space with sectional curvature bounded from above (resp. below)

by k ∈ R, and an RCD(K,∞)-space is a metric measure space of Ricci cur-

vature bounded from below by K ∈ R, in certain synthetic geometric senses.

These spaces are all “Riemannian” in the sense that non-Riemannian Finsler

manifolds are excluded.

The theory of gradient flows in CAT(0)-spaces has found applications in op-

timization theory. Some important classes of spaces turned out CAT(0)-spaces

(such as phylogenetic tree spaces [5] and the orthoscheme complexes of modular

lattices [13, Chapter 7]; see also [4]), and then optimization in CAT(0)-spaces

can be applied to solve problems in optimization theory (see, e.g., [21, 23]).

Compared with the development of the theory of gradient flows in Riemannian

spaces as above, we knowmuch less for non-Riemannian spaces (even for normed

spaces). Especially, the lack of the contraction (non-expansion) property is a

central problem. The aim of this article is to contribute to closing this gap. For

this purpose, we consider discrete-time gradient flows for convex functions on

Gromov hyperbolic spaces.

The Gromov hyperbolicity, introduced in a seminal work [20] of Gromov, is

a notion of negative curvature of large scale. A metric space (X, d) is said to
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be Gromov hyperbolic if it is δ-hyperbolic for some δ ≥ 0 in the sense that

(1.2) (x|z)p ≥ min{(x|y)p, (y|z)p} − δ

holds for all p, x, y, z ∈ X , where

(x|y)p :=
1

2
{d(p, x) + d(p, y)− d(x, y)}

is the Gromov product. If (1.2) holds with δ = 0, then the quadruple p, x, y, z

is isometrically embedded into a tree. Therefore, the δ-hyperbolicity means

that (X, d) is close to a tree up to local perturbations of size δ (cf. Exam-

ple 2.2(e)). Admitting such a local perturbation is a characteristic feature of

the Gromov hyperbolicity; this is a reason why the Gromov hyperbolicity plays

a vital role in group theory and some non-Riemannian Finsler manifolds (e.g.,

Hilbert geometry) can be Gromov hyperbolic (see Example 2.2 for a further

account). We refer to [7, 12, 14, 18] and the references therein for some inves-

tigations on the computation of δ.

Inspired by the success of the theory of gradient flows in CAT(0)-spaces, it

is natural to consider gradient flows in Gromov hyperbolic spaces (note that

trees are CAT(k) for any k ∈ R), and then we should employ discrete-time

gradient flows because of the inevitable local perturbations. Precisely, for a

convex function f : X −→ R, we study the behavior of the proximal operator Jfτ
as in (1.1). Then, due to the possible local perturbations of size δ, only Jfτ for

large τ (“giant steps”) is meaningful (see Example 2.2(c), from which we find

that any nontrivial estimate on the local behavior cannot be expected). We

remark that Jfτ (x) �= ∅ under a mild compactness assumption (see the beginning

of Subsection 3.1).

Our first main result is the following (see (2.4) for the definition of the K-

convexity).

Theorem 1.1 (Tendency towards minimizer): Let (X, d) be a proper δ-hyper-

bolic geodesic space, and f : X −→ R be a K-convex L-Lipschitz function

with K ≥ 0, L > 0 such that infX f is attained at some p ∈ X . Then, for

any x ∈ X , τ > 0, and y ∈ Jfτ (x), we have

(1.3) d(p, y) ≤ d(p, x)− d(x, y) +
4
√
2τLδ√

Kτ + 1
.
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In the case of K > 0 and τ > K−1, we further obtain

(1.4) d(p, y) ≤ d(p, x)−
(
1− 1

Kτ

)f(x)− f(p)

L
+

4
√
2τLδ√

Kτ + 1
.

The inequality (1.4) ensures that, if f(x) is sufficiently larger than f(p)=infXf

(relative to δ), then the operator Jfτ sends x to a point closer to p.

We remark that, in the case of K > 0 and τ > K−1, the K-convexity and

the L-Lipschitz continuity imply

(1.5) f(y) ≤ f(x)− (Kτ − 1)2(f(x) − f(p))2

2(KL)2τ3

regardless of the δ-hyperbolicity. Then, given ε > 0 and an arbitrary initial

point x0 ∈ X , by recursively choosing xi ∈ Jfτ (xi−1), we have

(1.6) f(xN ) ≤ f(p) +
KLτ

√
2τ

Kτ − 1
ε

for some N < (f(x0)− f(p))ε−2. Together with the K-convexity, (1.6) yields

(1.7) d2(p, xN ) ≤ 2Lτ
√
2τ

Kτ − 1
ε

(see Subsection 3.2 for more details). By a similar discussion based on (1.4),

we obtain the following estimate in δ-hyperbolic spaces.

Corollary 1.2: Let (X, d) and f be as in Theorem 1.1 withK>0 and τ >K−1.

Then, given ε > 0 and an arbitrary initial point x0 ∈ X , we have

(1.8) d2(p, xN ) ≤ 2Lτ

Kτ − 1

( 4
√
2τLδ√

Kτ + 1
+ ε2

)
for some N < d(p, x0)ε

−2.

Note that, up to a constant depending on δ, the order ε2 in (1.8) is better

than ε in (1.7). We refer to [3, 35] for the convergence of discrete-time gradient

flows (i.e., xN converges to a minimizer of f) in metric spaces with upper or

lower sectional curvature bounds.

Our second main result establishes the contraction property of the proximal

operator.

Theorem 1.3 (Contraction estimates): Let (X, d) and f be as in Theorem 1.1.

Take any x1, x2 ∈ X , τ > 0, and yi ∈ Jfτ (xi) for i = 1, 2, and assume

d(p, y1) ≤ d(p, y2).



Vol. TBD, 2025 GRADIENT FLOWS IN HYPERBOLIC SPACES 5

(i) If d(p, y1) ≥ (x1|x2)p, then we have

(1.9) d(y1, y2) ≤ d(x1, x2)− d(x1, y1)− d(x2, y2) +
20

√
2τLδ√

Kτ + 1
+ 24δ.

In the case of K > 0 and τ > K−1, we further obtain

(1.10) d(y1, y2)≤d(x1, x2)−
(
1− 1

Kτ

)f(x1)+f(x2)−2f(p)

L
+
20

√
2τLδ√

Kτ+1
+24δ.

(ii) If d(p, y1) < (x1|x2)p, then we have

(1.11) d(y1, y2) ≤ d(x1, x2)− (p|x2)x1 + C(K,L,D, τ, δ),

whereD :=max{d(p, x1), d(p, x2)} and C(K,L,D, τ, δ)=OK,L,D,τ (δ
1/4)

as δ → 0.

See Subsection 3.3 for a precise estimate of C(K,L,D, τ, δ). The inequali-

ties (1.3), (1.9) and (1.11) show that Jfτ behaves like that in a tree (see Subsec-

tion 2.2) up to a difference depending on δ. Note also that (1.3) can be regarded

as a contraction estimate between p and x 
−→ y.

For gradient curves γ, η of a K-convex function on a Riemannian space, the

exponential contraction

d(γ(t), η(t)) ≤ e−Ktd(γ(0), η(0))

is known as one of the most important properties and has a number of applica-

tions from the uniqueness of gradient curves to the analysis of heat flow (see,

e.g., [1]). For example, the exponential contraction of heat flow plays a signifi-

cant role in geometric analysis on RCD(K,∞)-spaces; heat flow can be regarded

as gradient flow of the relative entropy in the L2-Wasserstein space, and the

K-convexity of the relative entropty is exactly the definition of the curvature-

dimension condition (we refer to [2, 17, 43]). For non-Riemannian spaces (such

as normed spaces and Finsler manifolds), however, the exponential contraction

is known to fail (see [37]). To the best of the author’s knowledge, Theorem 1.3

is the first contraction estimate concerning gradient flows of convex functions

on non-Riemannian spaces.

This article is organized as follows. We briefly review the basics of Gromov

hyperbolic spaces and the proximal point algorithm in Section 2. Then Section 3

is devoted to the proofs of the main results and discussions on possible further

investigations.
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Acknowledgment. I would like to thank Hiroshi Hirai for his comments on

convex functions on discrete spaces.

2. Preliminaries

For a, b ∈ R, we set a ∧ b := min{a, b} and a ∨ b := max{a, b}. Besides the

original paper [20], we refer to [8, 10, 16, 39, 42] for the basics and various

applications of Gromov hyperbolic spaces.

2.1. Gromov hyperbolic spaces. We first have a closer look at the Gromov

hyperbolicity mentioned in the introduction. Let (X, d) be a metric space. For

three points x, y, z ∈ X , define the Gromov product (y|z)x by

(y|z)x :=
1

2
{d(x, y) + d(x, z)− d(y, z)}.

Observe from the triangle inequality that

(2.1) 0 ≤ (y|z)x ≤ d(x, y) ∧ d(x, z).

In the Euclidean plane R
2, (y|z)x is understood as the distance from x to the

intersection of the triangle 
xyz and its inscribed circle (see the left triangle

in Figure 1). If x, y, z are in a tripod, then (y|z)x coincides with the distance

from x to the branching point (see the right figure in Figure 1).

x

y

z
(y|z)x

x

y

z

(y|z)x

Figure 1. Gromov products in R
2 and a tripod.

Definition 2.1 (Gromov hyperbolic spaces): A metric space (X, d) is said to be

δ-hyperbolic for δ ≥ 0 if

(2.2) (x|z)p ≥ (x|y)p ∧ (y|z)p − δ
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holds for all p, x, y, z ∈ X . We say that (X, d) is Gromov hyperbolic if it is

δ-hyperbolic for some δ ≥ 0.

The Gromov hyperbolicity can be regarded as a large-scale notion of negative

curvature.

Example 2.2: (a) Complete, simply connected Riemannian manifolds of

sectional curvature ≤ −1 (or, more generally, CAT(−1)-spaces) are

Gromov hyperbolic (see [10, Proposition H.1.2]).

(b) An important difference between CAT(−1)-spaces and Gromov hyper-

bolic spaces is that the latter admits some non-Riemannian Finsler man-

ifolds such as Hilbert geometry (see [26], [34, §6.5]). We also remark

that, for the Teichmüller space of a surface of genus g with p punctures,

the Weil–Petersson metric (which is Riemannian and incomplete) is

known to be Gromov hyperbolic if and only if 3g − 3 + p ≤ 2 ([11]),

whereas the Teichmüller metric (which is Finsler and complete) does

not satisfy the Gromov hyperbolicity ([29]) (see also [34, §6.6]).
(c) It is clear from (2.1) that the Gromov product does not exceed the

diameter diam(X) := supx,y∈X d(x, y). Hence, if diam(X) ≤ δ, then

(X, d) is δ-hyperbolic. This also means that the local structure of X

(up to size δ) is not influential in the δ-hyperbolicity.

(d) The definition (2.2) makes sense for discrete spaces. In fact, the Gromov

hyperbolicity has found rich applications in group theory (a discrete

group whose Cayley graph satisfies the Gromov hyperbolicity is called

a hyperbolic group; we refer to [8, 20], [10, Part III]). In the sequel,

however, we do not consider discrete spaces, mainly due to the difficulty

of dealing with convex functions (see Subsection 3.4).

(e) Assume that (X, d) admits a map φ : T −→ X from a tree (T, dT ) such

that

d(φ(a), φ(b)) = dT (a, b) for all a, b ∈ T

and that the δ-neighborhood B(φ(T ), δ) of φ(T ) covers X . Then, since

(T, dT ) is 0-hyperbolic, we can easily see that (X, d) is 6δ-hyperbolic.

We call (X, d) a geodesic space if any two points x, y ∈ X are connected

by a (minimal) geodesic γ : [0, �] −→ X satisfying γ(0) = x, γ(�) = y and

d(γ(s), γ(t)) = (|s− t|/�) · d(x, y) for all s, t ∈ [0, �]
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(we will take � = 1 or � = d(x, y)). In this case, there are many characteriza-

tions of the Gromov hyperbolicity, most notably by the δ-slimness of geodesic

triangles (see, e.g., [10, §III.H.1]). We remark that, by [6, Theorem 4.1], ev-

ery δ-hyperbolic metric space can be isometrically embedded into a complete

δ-hyperbolic geodesic space. Concerning the Gromov product in a δ-hyperbolic

geodesic space, one can see that

(2.3) d(x, γ)− 2δ ≤ (y|z)x ≤ d(x, γ),

where d(x, γ) := mint∈[0,1] d(x, γ(t)), holds for any x, y, z ∈ X and geodesic

γ : [0, 1] −→ X from y to z (note that the latter inequality always holds by the

triangle inequality; see [42, 2.33]).

We close this subsection with two important fundamental lemmas for later

use in the proofs of Theorems 1.1 and 1.3, respectively (see [42, 2.15, 2.19]).

Lemma 2.3 (Tripod lemma): Let γ, η : [0, 1] −→ X be geodesics emanating

from the same point x and put y = γ(1), z = η(1). Then, for any y′ on γ and z′

on η with d(x, y′) = d(x, z′) ≤ (y|z)x, we have

d(y′, z′) ≤ 4δ.

Lemma 2.4: Let γi be a geodesic from p to xi, i = 1, 2. Then, for yi on γi such

that d(p, y1) ∧ d(p, y2) ≥ (x1|x2)p − σ with σ ≥ 0, we have

|(x1|x2)p − (y1|y2)p| ≤ 6δ + σ.

In view of (2.3), the latter lemma means that the distance from p to a geodesic

between x1 and x2 is almost the same as the distance from p to a geodesic

between y1 and y2.

2.2. Proximal point algorithm. Given a function f : X −→ R on a metric

space (X, d), optimization theory is concerned with how to find a minimizer

(or the minimum value) of f . It is well studied for CAT(0)-spaces by means of

the proximal point algorithm; we refer to the books [1, 4] for further reading.

For x ∈ X and τ > 0, recall that the proximal (or resolvent) operator is

defined by

Jfτ (x) := argmin
y∈X

{
f(y) +

d2(x, y)

2τ

}
.

Roughly speaking, an element in Jfτ (x) can be regarded as an approximation of

a point on the gradient curve of f at time τ from x.
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As a fundamental example, let us consider a convex function on a 0-hyperbolic

geodesic space. We say that f is (weakly, geodesically) K-convex for K ∈ R

if, for any x, y ∈ X and some geodesic γ : [0, 1] −→ X from x to y,

(2.4) f(γ(t)) ≤ (1 − t)f(x) + tf(y)− K

2
(1− t)td2(x, y)

holds for all t ∈ [0, 1]. As usual, by a convex function we mean a 0-convex

function.

Let (X, d) be a 0-hyperbolic geodesic space and f be a convex function on X

such that infX f is attained at p ∈ X . By the 0-hyperbolicity, any four points

in X are isometrically embedded into a tree and, in particular, any two points

are connected by a unique geodesic (see, e.g., [16, §3.3], [39, §6.2]). Given x ∈ X

and τ > 0, we take y ∈ Jfτ (x) and assume f(y) > f(p). Then, on the geodesic

γ : [0, 1] −→ X from x to y, we find from the choice of y that f(y) < f(γ(t))

holds for all t ∈ [0, 1). Let γ(t̄) be the closest point to p on γ. Then the

concatenation of the geodesic η from p to γ(t̄) and γ|[t̄,1] is again a geodesic,

along which f is convex. Since f(p) < f(y) < f(γ(t)) for all t ∈ [0, 1), t̄ = 1

necessarily holds and we find that y lies in the geodesic from x to p. Therefore,

the proximal point algorithm goes straight towards the closest minimizer of f

(see Figure 2).

p

x

y ∈ Jfτ (x)

γ

Figure 2. Proximal operator in 0-hyperbolic spaces.

The above argument is essentially indebted to the special property that any

(simple, constant speed) curve is a geodesic, however, it provides a rough picture

of our strategy for general Gromov hyperbolic spaces in the next section.
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3. Proofs of main results

In this section, let (X, d) be a proper δ-hyperbolic geodesic space, and f :X−→R

be a K-convex L-Lipschitz function with K ≥ 0 and L > 0. Recall that (X, d)

is proper if every bounded closed set is compact, and f is L-Lipschitz if

|f(x) − f(y)| ≤ Ld(x, y) for all x, y ∈ X . We also assume that infX f > −∞
and the infimum is attained at some point p ∈ X . This is indeed the case

if K > 0 by a standard argument as follows (see, e.g., [1, Lemma 2.4.8]).

Lemma 3.1: Let (X, d) be a complete geodesic space and f be a lower semi-

continuous K-convex function with K > 0. If f is bounded below on some

nonempty open set, then infX f > −∞ and the infimum is attained at a unique

point.

In the case of K > 0, we also have the following a priori estimates in terms

of K and L.

Remark 3.2 (A priori estimates): For any x ∈ X , we find

f(p) +
K

2
d2(p, x) ≤ f(x) ≤ f(p) + Ld(p, x),

where the first inequality follows from the K-convexity along a geodesic be-

tween p and x. Hence, we always have

d(p, x) ≤ 2L

K
, f(x)− f(p) ≤ 2L2

K
.

In particular, diam(X) ≤ 4L/K.

3.1. Proof of Theorem 1.1. We first prove Theorem 1.1. The following

proposition shows the first assertion (1.3). We remark that, in the current set-

ting, we have Jfτ (x) �= ∅ for any x ∈ X and τ > 0. In fact, the properness can be

replaced with a weaker assumption that every bounded closed set in each sub-

level set {y ∈ X | f(y) ≤ c} is compact (see [1, Corollary 2.2.2, Lemma 2.4.8]).

Proposition 3.3: Let f : X −→ R be K-convex and L-Lipschitz with K ≥ 0

and L > 0. Then, for any x ∈ X , τ > 0, and y ∈ Jfτ (x), we have

(3.1) d(p, y) ≤ d(p, x)− d(x, y) +
4
√
2τLδ√

Kτ + 1
,

where p ∈ X is a minimizer of f .
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The assertion (3.1) can be rewritten as

(x|p)y ≤ 2
√
2τLδ√

Kτ + 1
.

In particular, if δ = 0, then (x|p)y = 0 holds and y lies in a geodesic from x

to p (recall (2.3) and the discussion in Subsection 2.2).

Proof. Assume y �= x without loss of generality. On the one hand, for any

geodesic γ : [0, 1] −→ X from y to x, we deduce from the choice of y that

f(y) +
d2(x, y)

2τ
≤ f(γ(t)) +

(1− t)2d2(x, y)

2τ

for all t ∈ (0, 1). On the other hand, for some geodesic η : [0, 1] −→ X from y

to p, the K-convexity implies

f(η(s)) ≤ (1 − s)f(y) + sf(p)− K

2
(1− s)sd2(p, y).

We set

t̄ :=
(x|p)y
d(x, y)

∈ [0, 1], s̄ :=
t̄d(x, y)

d(p, y)
=

(x|p)y
d(p, y)

∈ [0, 1].

Then we have d(y, γ(t̄)) = d(y, η(s̄)) = (x|p)y and it follows from Lemma 2.3

that

d(γ(t̄), η(s̄)) ≤ 4δ.

Hence, we find, since f is L-Lipschitz,

(2t̄− t̄2)
d2(x, y)

2τ
≤ f(γ(t̄))− f(y)

≤ f(η(s̄))− f(y) + 4Lδ

≤ s̄(f(p)− f(y))− K

2
(1 − s̄)s̄d2(p, y) + 4Lδ

=
t̄d(x, y)

d(p, y)
(f(p)− f(y))− K

2
(d(p, y)− t̄d(x, y))t̄d(x, y) + 4Lδ.

Rearranging and multiplying both sides by 2τ/d2(x, y) implies

(3.2) (Kτ + 1)t̄2 −
( 2τ

d(x, y)

f(y)− f(p)

d(p, y)
+Kτ

d(p, y)

d(x, y)
+ 2

)
t̄+

8τLδ

d2(x, y)
≥ 0.
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We regard the left-hand side of (3.2) as a quadratic polynomial of t̄. First, if

the discriminant

Δ :=
( τ

d(x, y)

f(y)− f(p)

d(p, y)
+

Kτ

2

d(p, y)

d(x, y)
+ 1

)2

− (Kτ + 1)
8τLδ

d2(x, y)

is negative, then we have

Kτd(p, y) + 2d(x, y) < 4
√
Kτ + 1

√
2τLδ

since f(y)≥f(p). Combining this with the triangle inequality and d(x, y)≤d(p, x)

from the choice of y (and f(y) ≥ f(p)), we find that

(Kτ + 1)d(p, y) < 4
√
Kτ + 1

√
2τLδ − 2d(x, y) + d(p, x) + d(x, y)

≤ 4
√
Kτ + 1

√
2τLδ + (Kτ + 1)(d(p, x) − d(x, y)).

This shows the claimed inequality (3.1).

Next, suppose Δ ≥ 0. Observe that t̄ lies left of the vertex of the polynomial,

namely

t̄ =
(x|p)y
d(x, y)

≤ 1

Kτ + 1

( τ

d(x, y)

f(y)− f(p)

d(p, y)
+

Kτ

2

d(p, y)

d(x, y)
+ 1

)
holds, since

2(Kτ + 1)(x|p)y −
(
2τ

f(y)− f(p)

d(p, y)
+Kτd(p, y) + 2d(x, y)

)
≤ (Kτ − 1)d(x, y) + d(p, y)− (Kτ + 1)d(p, x)

≤ −d(x, y) + d(p, y)− d(p, x) ≤ 0.

Thus, we obtain from (3.2) that

(Kτ + 1)t̄ ≤ τ

d(x, y)

f(y)− f(p)

d(p, y)
+

Kτ

2

d(p, y)

d(x, y)
+ 1−

√
Δ

≤
√( τ

d(x, y)

f(y)− f(p)

d(p, y)
+

Kτ

2

d(p, y)

d(x, y)
+ 1

)2

−Δ

=
√
Kτ + 1

2
√
2τLδ

d(x, y)
.

Substituting t̄ = (x|p)y/d(x, y) yields (3.1) and completes the proof.

In the case of K > 0 and τ > K−1, we can estimate d(x, y) in (3.1) from

below in terms of K and L (regardless of δ) as follows.
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Lemma 3.4: Let f : X −→ R be K-convex and L-Lipschitz with K,L > 0.

Then we have, for any x ∈ X , τ > K−1, and y ∈ Jfτ (x),

(3.3) d(x, y) ≥
(
1− 1

Kτ

)f(x)− f(p)

L
.

Proof. On the one hand, it follows from the choice of y and the L-Lipschitz

continuity that

f(p) +
d2(p, x)

2τ
≥ f(y) +

d2(x, y)

2τ
≥ f(x)− Ld(x, y) +

d2(x, y)

2τ
.

On the other hand, the K-convexity implies (recall Remark 3.2)

(3.4) f(x) ≥ f(p) +
K

2
d2(p, x).

Combining these furnishes

2τLd(x, y) ≥ 2τLd(x, y)− d2(x, y) ≥ 2τ(f(x) − f(p))− d2(p, x)

≥
(
2τ − 2

K

)
(f(x)− f(p)).

Now, plugging (3.3)into(3.1) completes the proof of the second assertion(1.4).

Remark 3.5: In (1.4), we have d(p, y) < d(p, x) if

f(x) > f(p) +
4KLτ

√
2τLδ

(Kτ − 1)
√
Kτ + 1

.

Note that this does not contradict the a priori bound f(x)− f(p) ≤ 2L2/K we

mentioned in Remark 3.2.

3.2. Proof of Corollary 1.2. Let us first observe (1.5), (1.6) and (1.7).

Combining (3.3) with the choice of y, we obtain (1.5) as

f(y) ≤ f(x)− d2(x, y)

2τ
≤ f(x)− (Kτ − 1)2(f(x)− f(p))2

2(KL)2τ3
.

When we recursively choose xi ∈ Jfτ (xi−1) for an arbitrary initial point x0 ∈ X

and

f(xi) > f(p) +
KLτ

√
2τ

Kτ − 1
ε

holds for all 0 ≤ i ≤ N − 1, (1.5) yields

f(xN ) < f(x0)−Nε2.
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Since f(p) ≤ f(xN ), we find that N < (f(x0) − f(p))ε−2 necessarily holds.

Therefore, we have (1.6) for some N < (f(x0) − f(p))ε−2. Moreover, (1.7) fol-

lows from (1.6) and (3.4).

Turning to Corollary 1.2, if

d2(p, xi) >
2Lτ

Kτ − 1

( 4
√
2τLδ√

Kτ + 1
+ ε2

)
for all 0 ≤ i ≤ N − 1, then we deduce from (3.4) and (1.4) that

d(p, xN ) < d(p, x0)−Nε2.

Therefore, we have (1.8) for some N < d(p, x0)ε
−2.

3.3. Proof of Theorem 1.3. We finally prove the contraction inequalities in

Theorem 1.3. The next lemma concerning convex functions on an interval is a

well known fact.

Lemma 3.6: Let f : [0,∞) −→ R be a lower semi-continuous convex function

attaining its minimum at 0. Then, for any τ > 0 and 0 < t1 < t2, we have

0 ≤ s2 − s1 ≤ t2 − t1,

where si ∈ Jfτ (ti) for i = 1, 2.

Proof. We give a proof for thoroughness. Note that, by hypotheses, f is con-

tinuous and non-decreasing on [0,∞). Thus, si ≤ ti holds. Observe also that,

for each t > 0, the function s 
−→ f(s) + (t− s)2/(2τ) is (τ−1)-convex and has

a unique minimizer. Hence, we have Jfτ (ti) = {si}.
We denote by f ′

+ and f ′
− the right and left derivatives of f , respectively. Since

f ′
−(s)−

t1 − s

τ
> f ′

−(s)−
t2 − s

τ
> 0

for all s > s2, we have s1 ≤ s2. In particular, s2 = 0 implies s1 = 0. Now,

suppose s2 > 0. Then we have, by the choices of s1 and s2,

f ′
+(s1)−

t1 − s1
τ

≥ 0, f ′
−(s2)−

t2 − s2
τ

≤ 0.

Since f ′
+(s1) ≤ f ′

−(s2) by the convexity of f , we obtain t1 − s1 ≤ t2 − s2.
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We are ready to prove Theorem 1.3. Recall thatD = d(p, x1)∨d(p, x2) and we

assume d(p, y1) ≤ d(p, y2). Let γi : [0, d(p, xi)] −→ X be a unit speed geodesic

from p to xi (along which f is K-convex), and ȳi be a point in γi closest to yi.

It follows from (2.3) and Proposition 3.3 that

(3.5) d(yi, ȳi) ≤ (xi|p)yi + 2δ ≤ 2
√
2τLδ√

Kτ + 1
+ 2δ =: C1.

If d(p, y1) ≥ (x1|x2)p, then we have

d(p, ȳ1) ∧ d(p, ȳ2) ≥ d(p, y1) ∧ d(p, y2)− C1 ≥ (x1|x2)p − C1.

Hence, we obtain from Lemma 2.4, (3.5) and Proposition 3.3 that

12δ ≥ 2(x1|x2)p − 2(ȳ1|ȳ2)p − 2C1

≥ 2(x1|x2)p − 2(y1|y2)p − 6C1

= d(y1, y2)− d(x1, x2)− 2(x1|p)y1 − 2(x2|p)y2 + d(x1, y1) + d(x2, y2)− 6C1

≥ d(y1, y2)− d(x1, x2) + d(x1, y1) + d(x2, y2)− 8
√
2τLδ√

Kτ + 1
− 6C1.

In the case of K > 0 and τ > K−1, Lemma 3.4 further implies

12δ ≥ d(y1, y2)−d(x1, x2)+
(
1− 1

Kτ

)f(x1) + f(x2)− 2f(p)

L
− 8

√
2τLδ√

Kτ + 1
−6C1.

Thus, we have (1.9) as well as (1.10).

In the case of d(p, y1) < (x1|x2)p, we shall essentially reduce to the 1-

dimensional situation (on γ2) and apply Lemma 3.6. We first consider “projec-

tions” to γi. Take

zi ∈ argmin
z∈γi([0,d(p,xi)])

{
f(z) +

d2(xi, z)

2τ

}
.

Since

f(zi) +
d2(xi, zi)

2τ
≥ f(yi) +

d2(xi, yi)

2τ

≥ f(ȳi)− Ld(yi, ȳi) +
d2(xi, ȳi)

2τ
− d(p, xi)

τ
d(yi, ȳi)

≥ f(ȳi) +
d2(xi, ȳi)

2τ
−
(
L+

D

τ

)
C1
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(we used in the second inequality the fact d(xi, yi) ≤ d(p, xi) from yi ∈ Jfτ (xi)

as well as d(xi, ȳi) ≤ d(p, xi) since ȳi is on γi) and

(3.6) f(ȳi) +
d2(xi, ȳi)

2τ
≥ f(zi) +

d2(xi, zi)

2τ
+

K + τ−1

2
d2(ȳi, zi)

by the (K + τ−1)-convexity of t 
−→ f(γi(t)) + d2(xi, γi(t))/(2τ), we have

(3.7) d2(ȳi, zi) ≤ 2τ

Kτ + 1

(
L+

D

τ

)
C1 =: C2

2 .

Then, we put x̃1 := γ1((x1|x2)p) and take

z̃1 ∈ argmin
z∈γ1([0,d(p,x1)])

{
f(z) +

d2(x̃1, z)

2τ

}
.

Since f ◦ γ1 is non-decreasing, z̃1 lies between p and x̃1. Moreover, we have

d(p, z̃1) ≤ d(p, z1)

by s1 ≤ s2 in Lemma 3.6.

p

x1 x2
γ1 γ2

y1

y2
ȳ1

ȳ2

z1

z2

x̃1 x̃2

z̃1 z̃2

ỹ2

Figure 3. The case of d(p, y1) < (x1|x2)p.

Next, we further project from γ1 to γ2. Precisely, we put

x̃2 := γ2((x1|x2)p) and z̃2 := γ2(d(p, z̃1)).

Then Lemma 2.3 implies

(3.8) d(x̃1, x̃2) ≤ 4δ, d(z̃1, z̃2) ≤ 4δ.
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Now we claim that

(3.9) d(z̃1, y2) ≥ d(y1, y2)− 8δ − 9C1 − 5C2.

Since d(p, z̃2) = d(p, z̃1) ≤ d(p, z1) and

d(p, ȳ2) ≥ d(p, y2)− C1 ≥ d(p, y1)− C1 ≥ d(p, z1)− 2C1 − C2

by (3.5) and (3.7), we find that

d(γ2(d(p, z1) ∧ d(p, x2)), ȳ2) = |d(p, ȳ2)− d(p, z1) ∧ d(p, x2)|
≤ d(p, ȳ2)− d(p, z1) ∧ d(p, x2) + 4C1 + 2C2

≤ d(p, ȳ2)− d(p, z̃2) + 4C1 + 2C2

≤ d(z̃2, ȳ2) + 4C1 + 2C2.

Moreover, it follows from d(p, z1) ≤ d(p, y1) + C1 + C2 < (x1|x2)p + C1 + C2,

(x1|x2)p ≤ d(p, x2) and Lemma 2.3 that

d(γ2(d(p, z1) ∧ d(p, x2)), z1)

≤ d(γ2(d(p, z1) ∧ (x1|x2)p), γ1(d(p, z1) ∧ (x1|x2)p)) + 2C1 + 2C2

≤ 4δ + 2C1 + 2C2.

Together with (3.5), (3.8) and (3.7), we can see the claim (3.9) as

d(z̃1, y2) ≥ d(z̃2, ȳ2)− 4δ − C1

≥ d(γ2(d(p, z1) ∧ d(p, x2)), ȳ2)− 4δ − 5C1 − 2C2

≥ d(z1, ȳ2)− d(γ2(d(p, z1) ∧ d(p, x2)), z1)− 4δ − 5C1 − 2C2

≥ d(z1, ȳ2)− 8δ − 7C1 − 4C2

≥ d(y1, y2)− 8δ − 9C1 − 5C2.

We can also show that

ỹ2 ∈ argmin
y∈γ2([0,d(p,x2)])

{
f(y) +

d2(x̃2, y)

2τ

}

is close to z̃2 in a similar way. Namely, we observe from

d(γ1(d(p, ỹ2)), ỹ2) ≤ 4δ
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from Lemma 2.3, (3.8) and d(p, x̃1) = d(p, x̃2) = (x1|x2)p that

f(ỹ2) +
d2(x̃2, ỹ2)

2τ
≥f(ỹ2) +

d2(x̃1, ỹ2)

2τ
− 2d(x̃2, ỹ2) + 4δ

2τ
4δ

≥f(ỹ2) +
d2(x̃1, ỹ2)

2τ
− d(p, x̃2) + 2δ

τ
4δ

≥f(γ1(d(p, ỹ2))) +
d2(x̃1, γ1(d(p, ỹ2)))

2τ

−
(
L+

(x1|x2)p + 2δ

τ

)
4δ − (x1|x2)p + 2δ

τ
4δ.

Then, by the choice of z̃1, (3.8), d(x̃1, z̃1) = d(x̃2, z̃2) and (3.6), the right-hand

side is bounded from below by

f(z̃1) +
d2(x̃1, z̃1)

2τ
−
(
L+ 2

(x1|x2)p + 2δ

τ

)
4δ

≥ f(z̃2) +
d2(x̃2, z̃2)

2τ
−
(
2L+ 2

(x1|x2)p + 2δ

τ

)
4δ

≥ f(ỹ2) +
d2(x̃2, ỹ2)

2τ
+

K + τ−1

2
d2(ỹ2, z̃2)−8

(
L+

D+2δ

τ

)
δ.

This yields

d2(ỹ2, z̃2) ≤ 16τ

Kτ + 1

(
L+

D + 2δ

τ

)
δ =: C2

3 .

Finally, we apply the 1-dimensional contraction in Lemma 3.6 to see

d(ỹ2, z2) ≤ d(x̃2, x2).

Therefore, together with (3.9), (3.8), (3.5) and (3.7), we obtain

d(y1, y2) ≤ d(z̃1, y2) + 8δ + 9C1 + 5C2

≤ d(z̃2, ȳ2) + 12δ + 10C1 + 5C2

≤ d(ỹ2, z2) + 12δ + 10C1 + 6C2 + C3

≤ d(x̃2, x2) + 12δ + 10C1 + 6C2 + C3.

Recalling x̃2 = γ2((x1|x2)p), we observe that

d(x̃2, x2) = d(p, x2)− (x1|x2)p = d(x1, x2)− (p|x2)x1 .

This completes the proof of (1.11) with

C(K,L,D, τ, δ) = 12δ + 10C1 + 6C2 + C3.
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3.4. Further problems. We discuss some possible directions of further re-

searches, besides improvements of the estimates in Theorems 1.1, 1.3 and Corol-

lary 1.2.

(A) As we mentioned in Subsection 2.1, the Gromov hyperbolicity makes

sense for discrete spaces. Therefore, it is interesting to consider some gener-

alizations of the results in this article to discrete Gromov hyperbolic spaces.

Then, it is a challenging problem to formulate and analyze K-convex functions

on discrete Gromov hyperbolic spaces (possibly for some special classes such as

hyperbolic groups). We refer to [32] for the theory of convex functions on Z
N

(called discrete convex analysis), and to [22, 27] for some generalizations to

graphs and trees, respectively.

(B) It is also interesting to consider simulated annealing in Gromov hyper-

bolic spaces, namely the proximal point algorithm with noise. With this method

it is expected that one can approximate a global minimizer even for quasi-convex

functions or K-convex functions with K < 0.

(C) Related to the above problems, it is worthwhile considering “convex func-

tions of large scale”, preserved by quasi-isometries. This would provide a natural

generalization of our research since the Gromov hyperbolicity is preserved by

quasi-isometries between geodesic spaces (see, e.g., [42, Theorem 3.18]).
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[2] L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci

curvature bounded from below, Duke Mathematical Journal 163 (2014), 1405–1490.
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[4] M. Bačák, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter Series

in Nonlinear Analysis and Applications, Vol. 22, De Gruyter, Berlin, 2014.

https://creativecommons.org/licenses/by/4.0/


20 S.-I. OHTA Isr. J. Math.

[5] L. J. Billera, S. P. Holmes and K. Vogtmann, Geometry of the space of phylogenetic

trees, Advances in Applied Mathematics 27 (2001), 733–767.

[6] M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geometric and

Functional Analysis 10 (2000), 266–306.

[7] M. Borassi, D. Coudert, P. Crescenzi and A. Marino, On computing the hyperbolicity

of real-world graphs, in Algorithms—ESA 2015, Lecture Notes in Computer Science,

Vol. 9294, Springer, Heidelberg, 2015, pp. 215–226.

[8] B. H. Bowditch, A Course on Geometric Group Theory, MSJ Memoirs, Vol. 16, Mathe-

matical Society of Japan, Tokyo, 2006.
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