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ABSTRACT

We investigate fundamental properties of the proximal point algorithm
for Lipschitz convex functions on (proper, geodesic) Gromov hyperbolic
spaces. We show that the proximal point algorithm from an arbitrary
initial point can find a point close to a minimizer of the function. More-
over, we establish contraction estimates (akin to trees) for the proximal
(resolvent) operator. Our results can be applied to small perturbations of
trees.
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1. Introduction

“non-

This article is devoted to an attempt to develop optimization theory on
Riemannian” metric spaces. Precisely, we study the discrete-time gradient flow
for a convex function f on a metric space (X,d) built of the proximal (or
resolvent) operator

_ : d*(x,y)
(1.1) W () = aryggm{f(y) + S,

where 7 > 0 is the step size. Iterating Jf is a well known scheme to construct
a continuous-time gradient flow for f in the limit as 7 — 0 (we refer to [9]
for the classical setting of Hilbert spaces and to [15, 19, 31] for some related
works). Generalizations of the theory of gradient flows to convex functions on
metric spaces go back to the 1990s [24, 25, 30] and have been making impressive
progress since then; we refer to [1, 3, 4] (to name a few) for the case of CAT(0)-
spaces, [35, 36] for CAT(1)-spaces, [28, 33, 35, 38, 40] for Alexandrov spaces and
the Wasserstein spaces over them, and to [41] for metric measure spaces sat-
isfying the Riemannian curvature-dimension condition (RCD(K, co)-spaces for
short). Here a CAT(k)-space (resp. an Alexandrov space of curvature > k)
is a metric space with sectional curvature bounded from above (resp. below)
by k € R, and an RCD(K, co)-space is a metric measure space of Ricci cur-
vature bounded from below by K € R, in certain synthetic geometric senses.
These spaces are all “Riemannian” in the sense that non-Riemannian Finsler
manifolds are excluded.

The theory of gradient flows in CAT(0)-spaces has found applications in op-
timization theory. Some important classes of spaces turned out CAT(0)-spaces
(such as phylogenetic tree spaces [5] and the orthoscheme complexes of modular
lattices [13, Chapter 7]; see also [4]), and then optimization in CAT(0)-spaces
can be applied to solve problems in optimization theory (see, e.g., [21, 23]).

Compared with the development of the theory of gradient flows in Riemannian
spaces as above, we know much less for non-Riemannian spaces (even for normed
spaces). Especially, the lack of the contraction (non-expansion) property is a
central problem. The aim of this article is to contribute to closing this gap. For
this purpose, we consider discrete-time gradient flows for convex functions on
Gromov hyperbolic spaces.

The Gromov hyperbolicity, introduced in a seminal work [20] of Gromov, is
a notion of negative curvature of large scale. A metric space (X, d) is said to
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be Gromov hyperbolic if it is §-hyperbolic for some § > 0 in the sense that

(1.2) (z[2)p = min{(z[y)y, (y|2)p} — 0

holds for all p,z,y, z € X, where

(aly)p = o (d(p, ) + d(p,y) — d(z. )}

is the Gromov product. If (1.2) holds with § = 0, then the quadruple p, x,y, z
is isometrically embedded into a tree. Therefore, the d-hyperbolicity means
that (X,d) is close to a tree up to local perturbations of size § (cf. Exam-
ple 2.2(e)). Admitting such a local perturbation is a characteristic feature of
the Gromov hyperbolicity; this is a reason why the Gromov hyperbolicity plays
a vital role in group theory and some non-Riemannian Finsler manifolds (e.g.,
Hilbert geometry) can be Gromov hyperbolic (see Example 2.2 for a further
account). We refer to [7, 12, 14, 18] and the references therein for some inves-
tigations on the computation of 4.

Inspired by the success of the theory of gradient flows in CAT(0)-spaces, it
is natural to consider gradient flows in Gromov hyperbolic spaces (note that
trees are CAT (k) for any k£ € R), and then we should employ discrete-time
gradient flows because of the inevitable local perturbations. Precisely, for a
convex function f: X — R, we study the behavior of the proximal operator JZ
as in (1.1). Then, due to the possible local perturbations of size §, only Jf for
large 7 (“giant steps”) is meaningful (see Example 2.2(c), from which we find
that any nontrivial estimate on the local behavior cannot be expected). We
remark that Jf(z) # () under a mild compactness assumption (see the beginning
of Subsection 3.1).

Our first main result is the following (see (2.4) for the definition of the K-
convexity).

THEOREM 1.1 (Tendency towards minimizer): Let (X, d) be a proper é-hyper-
bolic geodesic space, and f : X — R be a K-convex L-Lipschitz function
with K > 0, L > 0 such that infx f is attained at some p € X. Then, for
anyx € X, 7> 0, and y € J(x), we have

4V27L6
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In the case of K > 0 and 7 > K ', we further obtain

LIS AL
Kt L VKT +1

The inequality (1.4) ensures that, if f(z) is sufficiently larger than f(p)=infx f

(1L4)  dpy) <dpa) - (1

(relative to d), then the operator J/ sends z to a point closer to p.
We remark that, in the case of K > 0 and 7 > K !, the K-convexity and
the L-Lipschitz continuity imply
(KT —1)*(f(z) — f(p))?
2(KL)?r3
regardless of the §-hyperbolicity. Then, given ¢ > 0 and an arbitrary initial

(1.5) fly) < flz) -

point g € X, by recursively choosing x; € J/(2;_1), we have

KLtV2r
1. <
(1.6) flan) < flo)+ €
for some N < (f(xo) — f(p))e~2. Together with the K-convexity, (1.6) yields
2LTV21
1. d? <
(17) o) < V2l e

(see Subsection 3.2 for more details). By a similar discussion based on (1.4),
we obtain the following estimate in é-hyperbolic spaces.

COROLLARY 1.2: Let (X,d) and f be as in Theorem 1.1 with K >0 and 7> K~ L.
Then, given € > 0 and an arbitrary initial point xo € X, we have

2LT 7 4V27L6
1. d? < 2
(18) o)< 0 (r a1 75

for some N < d(p,xo)e 2.

Note that, up to a constant depending on §, the order 2 in (1.8) is better
than € in (1.7). We refer to [3, 35] for the convergence of discrete-time gradient
flows (i.e., xy converges to a minimizer of f) in metric spaces with upper or
lower sectional curvature bounds.

Our second main result establishes the contraction property of the proximal
operator.

THEOREM 1.3 (Contraction estimates): Let (X, d) and f be as in Theorem 1.1.
Take any x1,x9 € X, 7> 0, and y; € Jl(xl) for i = 1,2, and assume

d(p,y1) < d(p,y2)-
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(1) Ifd(p,y1) > (x1|®2)p, then we have

20V/27 L5
1.9 A1, yo) < d(21, 29) — d(z1,11) — d(s, 245.
(1.9) (y1,92) < d(z1,22) — d(21,y1) — d(72,Y2) + VKT 41 +

In the case of K > 0 and 7 > K, we further obtain

1 )f(z1>+f<sc2>—2f<p>+2W2TL6

— +246.
Kt L VET+1

(1.10) d(yl,y2)§d($1,$2)*(1
(i) Ifd(p,y1) < (z1]|z2)p, then we have
(]‘11) d(ylva) S d(xth) - (p|1‘2)$1 + C(K7 L7 DvTv 5)5

where D :=max{d(p,z1),d(p, x2)} and C(K,L, D, 7,6) =0k 1.p.+(5*)
as 6 — 0.

See Subsection 3.3 for a precise estimate of C(K, L, D, 1,d). The inequali-
ties (1.3), (1.9) and (1.11) show that J/ behaves like that in a tree (see Subsec-
tion 2.2) up to a difference depending on é. Note also that (1.3) can be regarded
as a contraction estimate between p and z — y.

For gradient curves v,n of a K-convex function on a Riemannian space, the
exponential contraction

d(y(t),n(t)) < e **d(v(0),7(0))

is known as one of the most important properties and has a number of applica-
tions from the uniqueness of gradient curves to the analysis of heat flow (see,
e.g., [1]). For example, the exponential contraction of heat flow plays a signifi-
cant role in geometric analysis on RCD(K, 0o)-spaces; heat flow can be regarded
as gradient flow of the relative entropy in the L2-Wasserstein space, and the
K-convexity of the relative entropty is exactly the definition of the curvature-
dimension condition (we refer to [2, 17, 43]). For non-Riemannian spaces (such
as normed spaces and Finsler manifolds), however, the exponential contraction
is known to fail (see [37]). To the best of the author’s knowledge, Theorem 1.3
is the first contraction estimate concerning gradient flows of convex functions
on non-Riemannian spaces.

This article is organized as follows. We briefly review the basics of Gromov
hyperbolic spaces and the proximal point algorithm in Section 2. Then Section 3
is devoted to the proofs of the main results and discussions on possible further
investigations.
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ACKNOWLEDGMENT. I would like to thank Hiroshi Hirai for his comments on
convex functions on discrete spaces.

2. Preliminaries

For a,b € R, we set a Ab := min{a,b} and a V b := max{a,b}. Besides the
original paper [20], we refer to [8, 10, 16, 39, 42] for the basics and various

applications of Gromov hyperbolic spaces.

2.1. GROMOV HYPERBOLIC SPACES. We first have a closer look at the Gromov
hyperbolicity mentioned in the introduction. Let (X, d) be a metric space. For
three points z,y, z € X, define the Gromov product (y|z). by

, (d(r.y) +d(z, 2) — d(y, )}

Observe from the triangle inequality that

(2.1) 0 < (y|2)e < d(z,y) Nd(x, 2).

In the Euclidean plane R?, (y|z), is understood as the distance from z to the
intersection of the triangle Azyz and its inscribed circle (see the left triangle
in Figure 1). If z,y, z are in a tripod, then (y|z), coincides with the distance
from z to the branching point (see the right figure in Figure 1).

Y

(yl2)x

Figure 1. Gromov products in R? and a tripod.

Definition 2.1 (Gromov hyperbolic spaces): A metric space (X, d) is said to be
d-hyperbolic for § > 0 if

(2.2) (@[2)p = (z[y)p A (y[2)p —
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holds for all p,z,y,z € X. We say that (X,d) is Gromov hyperbolic if it is

0-hyperbolic for some ¢ > 0.

The Gromov hyperbolicity can be regarded as a large-scale notion of negative

curvature.

Example 2.2: (a) Complete, simply connected Riemannian manifolds of

(b)

sectional curvature < —1 (or, more generally, CAT(—1)-spaces) are
Gromov hyperbolic (see [10, Proposition H.1.2]).

An important difference between CAT(—1)-spaces and Gromov hyper-
bolic spaces is that the latter admits some non-Riemannian Finsler man-
ifolds such as Hilbert geometry (see [26], [34, §6.5]). We also remark
that, for the Teichmiiller space of a surface of genus g with p punctures,
the Weil-Petersson metric (which is Riemannian and incomplete) is
known to be Gromov hyperbolic if and only if 3g — 3 + p < 2 ([11]),
whereas the Teichmiiller metric (which is Finsler and complete) does
not satisfy the Gromov hyperbolicity ([29]) (see also [34, §6.6]).

It is clear from (2.1) that the Gromov product does not exceed the
diameter diam(X) := sup, ,cy d(z,y). Hence, if diam(X) < §, then
(X,d) is 0-hyperbolic. This also means that the local structure of X
(up to size §) is not influential in the §-hyperbolicity.

The definition (2.2) makes sense for discrete spaces. In fact, the Gromov
hyperbolicity has found rich applications in group theory (a discrete
group whose Cayley graph satisfies the Gromov hyperbolicity is called
a hyperbolic group; we refer to [8, 20|, [10, Part III]). In the sequel,
however, we do not consider discrete spaces, mainly due to the difficulty
of dealing with convex functions (see Subsection 3.4).

Assume that (X, d) admits a map ¢ : T — X from a tree (T, dr) such
that

d(¢(a), d(b)) = dr(a,b) foralla,be T

and that the d-neighborhood B(¢(T),d) of ¢(T') covers X. Then, since
(T, dr) is 0-hyperbolic, we can easily see that (X, d) is 66-hyperbolic.

We call (X,d) a geodesic space if any two points z,y € X are connected

by a (minimal) geodesic v : [0, ] — X satisfying v(0) = z, v({) = y and

d(v(s),v(t)) = (|s — t|/€) - d(x,y) forall s,te€][0,/
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(we will take £ = 1 or £ = d(z,y)). In this case, there are many characteriza-
tions of the Gromov hyperbolicity, most notably by the J-slimness of geodesic
triangles (see, e.g., [10, §IIL.LH.1]). We remark that, by [6, Theorem 4.1], ev-
ery 0-hyperbolic metric space can be isometrically embedded into a complete
0-hyperbolic geodesic space. Concerning the Gromov product in a é-hyperbolic
geodesic space, one can see that

(2.3) d(x,7) =20 < (y[z). < d(z,7),

where d(x,v) := minse[o,1) d(x,7(t)), holds for any z,y,2 € X and geodesic
v:[0,1] — X from y to z (note that the latter inequality always holds by the
triangle inequality; see [42, 2.33]).

We close this subsection with two important fundamental lemmas for later
use in the proofs of Theorems 1.1 and 1.3, respectively (see [42, 2.15, 2.19]).

LEMMA 2.3 (Tripod lemma): Let v,n : [0,1] — X be geodesics emanating
from the same point x and put y = (1), z = n(1). Then, for any y’ on~y and 2’
on n with d(x,y’) = d(z,2") < (y|2)x, we have

d(y',z') < 46.

LEMMA 2.4: Let y; be a geodesic from p to x;, ¢ = 1,2. Then, for y; on ~y; such
that d(p,y1) A d(p,y2) > (z1|x2), — 0 with o > 0, we have

[(z1]x2)p — (y1|y2)p| < 66 + 0.

In view of (2.3), the latter lemma means that the distance from p to a geodesic
between z; and x5 is almost the same as the distance from p to a geodesic
between y; and ys.

2.2. PROXIMAL POINT ALGORITHM. Given a function f: X — R on a metric
space (X, d), optimization theory is concerned with how to find a minimizer
(or the minimum value) of f. It is well studied for CAT(0)-spaces by means of
the proximal point algorithm; we refer to the books [1, 4] for further reading.
For x € X and 7 > 0, recall that the proximal (or resolvent) operator is
defined by
J () := argmin {f(y) + @ (,y) }

yeX 27’
Roughly speaking, an element in J/(z) can be regarded as an approximation of
a point on the gradient curve of f at time 7 from .
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As a fundamental example, let us consider a convex function on a 0-hyperbolic
geodesic space. We say that f is (weakly, geodesically) K-convex for K € R
if, for any x,y € X and some geodesic v : [0,1] — X from z to y,

(24) PO < (1= 0f () + 1) — 'y (1= )i ()

holds for all ¢ € [0,1]. As usual, by a convex function we mean a 0-convex
function.

Let (X, d) be a 0-hyperbolic geodesic space and f be a convex function on X
such that infx f is attained at p € X. By the 0-hyperbolicity, any four points
in X are isometrically embedded into a tree and, in particular, any two points
are connected by a unique geodesic (see, e.g., [16, §3.3], [39, §6.2]). Givenz € X
and 7 > 0, we take y € Jf(x) and assume f(y) > f(p). Then, on the geodesic
v :10,1] — X from « to y, we find from the choice of y that f(y) < f(y(¢))
holds for all ¢ € [0,1). Let «(¢) be the closest point to p on . Then the
concatenation of the geodesic n from p to y(t) and Yliz,1) 1s again a geodesic,
along which f is convex. Since f(p) < f(y) < f(v(¢)) for all t € [0,1), t =1
necessarily holds and we find that y lies in the geodesic from = to p. Therefore,
the proximal point algorithm goes straight towards the closest minimizer of f

(see Figure 2).

Figure 2. Proximal operator in 0-hyperbolic spaces.

The above argument is essentially indebted to the special property that any
(simple, constant speed) curve is a geodesic, however, it provides a rough picture
of our strategy for general Gromov hyperbolic spaces in the next section.
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3. Proofs of main results

In this section, let (X, d) be a proper d-hyperbolic geodesic space, and f: X — R
be a K-convex L-Lipschitz function with K > 0 and L > 0. Recall that (X, d)
is proper if every bounded closed set is compact, and f is L-Lipschitz if
|f(z) — f(y)| < Ld(z,y) for all z,y € X. We also assume that infx f > —o0
and the infimum is attained at some point p € X. This is indeed the case
if K > 0 by a standard argument as follows (see, e.g., [1, Lemma 2.4.8]).

LEMMA 3.1: Let (X,d) be a complete geodesic space and f be a lower semi-
continuous K-convex function with K > 0. If f is bounded below on some
nonempty open set, then infx f > —oo and the infimum is attained at a unique
point.

In the case of K > 0, we also have the following a priori estimates in terms
of K and L.

Remark 3.2 (A priori estimates): For any « € X, we find

K22 < fe) < 1) + Ld, ),

flo)+

where the first inequality follows from the K-convexity along a geodesic be-
tween p and x. Hence, we always have

2L 2172
) < .

K

In particular, diam(X) < 4L/K.

d(p,x) <

3.1. PrROOF OF THEOREM 1.1. We first prove Theorem 1.1. The following
proposition shows the first assertion (1.3). We remark that, in the current set-
ting, we have Jf(z) # () for any x € X and 7 > 0. In fact, the properness can be
replaced with a weaker assumption that every bounded closed set in each sub-
level set {y € X | f(y) < ¢} is compact (see [1, Corollary 2.2.2, Lemma 2.4.8]).

ProposITION 3.3: Let f: X — R be K-convex and L-Lipschitz with K > 0
and L > 0. Then, for any x € X, 7 > 0, and y € J/(x), we have

4/27L6

(3.1) d(p,y) < d(p,z) — d(x,y) + JEr 41

where p € X is a minimizer of f.
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The assertion (3.1) can be rewritten as

V27 LS

(z|p)y < VET 41

In particular, if 6 = 0, then (z|p), = 0 holds and y lies in a geodesic from z
to p (recall (2.3) and the discussion in Subsection 2.2).

Proof. Assume y # z without loss of generality. On the one hand, for any
geodesic v : [0,1] — X from y to z, we deduce from the choice of y that

PO <+

(1 —t)*d*(x,y)

fly)+ or

for all t € (0,1). On the other hand, for some geodesic 1 : [0,1] — X from y
to p, the K-convexity implies

F) < (0= 9)f @) +55) — 5 (1= )5 (p,y).

We set
_ td
i @y 0,1, 5= (@, y) _ (2lp)y
d(z,y) dpy)  dp,y)
Then we have d(y,v(t)) = d(y,n(8)) = (z|p), and it follows from Lemma 2.3

that

€ [0,1].

d(y(t),n(3)) < 44.

Hence, we find, since f is L-Lipschitz,

(2 - P)dz(”: v)

IN

fy(@) = f(y)
F(n(3)) — fly) +4Lé

<5(f(p) - f(y) — K

2
B tfll((pxj)) (f(p) = f(y)) - I;(d(p, y) — td(z,y))td(z, y) + 4L0.

Rearranging and multiplying both sides by 27/d?(x,y) implies

27 f(y) — f(p) d(p,y)
d(z,y) d(p,y) +KTd(ﬂc,y)

IN

(1 —5)5d*(p,y) +4L5

87LS

(3.2) (Kr+1)f — ( Loy

+2)E+



12 S.-1. OHTA Isr. J. Math.

We regard the left-hand side of (3.2) as a quadratic polynomial of #. First, if
the discriminant

A.:( T fly) - flp) | K7dp,y)
- \d(z,y)  dpy) 2 d(z,y)

is negative, then we have

87L6

+ 1)2 — (K7 + 1)d2(x,y)

Krd(p,y) + 2d(z,y) < 4VKT + 1V27L§

since f(y)>f(p). Combining this with the triangle inequality and d(x, y)< d(p, x)
from the choice of y (and f(y) > f(p)), we find that

(K7 + 1)d(p,y) < 4VKT + 1V271Ls — 2d(x,y) + d(p, x) + d(z, y)
<AVKT 4+ 1V2rLs + (K7 + 1)(d(p, ) — d(z,y)).
This shows the claimed inequality (3.1).

Next, suppose A > 0. Observe that ¢ lies left of the vertex of the polynomial,
namely

i @)y 1 (d(T f(y)—f(p)+KTd(p,y)+1>

d(z,y) = KT +1\d(z,y) d(p,y) 2 d(z,y)

holds, since

fly) = f(»)
d(p,y)
< (K7 - L)d(z,y) +d(p,y) — (K7 + 1)d(p, )

< —d(z,y) +d(p,y) — d(p,z) <0.

2(KT+1)(z|p)y — (27 + K7d(p,y) + 2d(z, y))

Thus, we obtain from (3.2) that

: T fly)—flp) | Krdlpy) .
(KT+ 1)t < Aoy dp.w) +, i g) +1-VA
T fly)—f(p) | K7d(p,y) 2
- \/(d(w) dpy) 2 day) 1) A
=VK7+ 12;57;)6,

Substituting ¢ = (z|p),/d(z,y) yields (3.1) and completes the proof. |

In the case of K > 0 and 7 > K~!, we can estimate d(z,y) in (3.1) from
below in terms of K and L (regardless of d) as follows.
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LEMMA 3.4: Let f : X — R be K-convex and L-Lipschitz with K,L > 0.
Then we have, for any x € X, 7> K~', and y € JI(z),

(3.3) i, y) > (1 B I;T) f(@) Z ().

Proof. On the one hand, it follows from the choice of y and the L-Lipschitz
continuity that

d*(p, z) d*(x,y) d*(z,y)
> > - .
fo)+ = o 2 f)+ 7 2 fa) ~ L@y +
On the other hand, the K-convexity implies (recall Remark 3.2)
K o
(3.4 1@) 2 1)+ ()

Combining these furnishes
2rLd(w,y) > 2rLd(z,y) — d*(z,y) > 27(f(2) — f(p)) — d*(p, )
2
> — — . |
> (21— ) (@) = £0)
Now, plugging (3.3)into(3.1) completes the proof of the second assertion (1.4).

Remark 3.5: In (1.4), we have d(p,y) < d(p, z) if

AKL7TV27L6

f@)> 1)+ (KT —1)vVKT+1

Note that this does not contradict the a priori bound f(z) — f(p) < 2L?/K we

mentioned in Remark 3.2.

3.2. PROOF OF COROLLARY 1.2. Let us first observe (1.5), (1.6) and (1.7).
Combining (3.3) with the choice of y, we obtain (1.5) as

d*(x,y) (K7 —1)%(f(z) = f(p))?
< — < — :
When we recursively choose x; € Jf(x;_1) for an arbitrary initial point xg € X
and
KLtV2r
fla) > fo)+ e

holds for all 0 < < N — 1, (1.5) yields

flan) < fwo) = Ne2.
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Since f(p) < f(xn), we find that N < (f(xo) — f(p))e~2 necessarily holds.
Therefore, we have (1.6) for some N < (f(xo) — f(p))e~2. Moreover, (1.7) fol-
lows from (1.6) and (3.4).

Turning to Corollary 1.2, if

2LT (4V@TL5 2)
Kr—1\VKr+1
for all 0 <4 < N — 1, then we deduce from (3.4) and (1.4) that

dQ(pa:Ei) >

d(p,zn) < d(p,r0) — Ne2.

Therefore, we have (1.8) for some N < d(p, zo)e 2.

3.3. PROOF OF THEOREM 1.3. We finally prove the contraction inequalities in
Theorem 1.3. The next lemma concerning convex functions on an interval is a

well known fact.

LEMMA 3.6: Let f : [0,00) — R be a lower semi-continuous convex function
attaining its minimum at 0. Then, for any 7 > 0 and 0 < t1 < t2, we have

0<s2—s1 <ty—1,
where s; € J/(t;) fori=1,2.

Proof. We give a proof for thoroughness. Note that, by hypotheses, f is con-
tinuous and non-decreasing on [0,00). Thus, s; < t; holds. Observe also that,
for each t > 0, the function s — f(s) + (t — s)?/(27) is (77!)-convex and has
a unique minimizer. Hence, we have J/(t;) = {s;}.

We denote by f and f’ the right and left derivatives of f, respectively. Since

t1 — s to — s
R ) R
T T

f(s) =

for all s > sy, we have s; < so. In particular, ss = 0 implies s; = 0. Now,
suppose s2 > 0. Then we have, by the choices of s; and s,

t1 —$1

fi(s1) — >0, fL(s2)

T

tf
U2 SQSO.

Since f! (s1) < f’ (s2) by the convexity of f, we obtain t; — 51 < to — 5. |
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We are ready to prove Theorem 1.3. Recall that D = d(p, z1)Vd(p, z2) and we
assume d(p,y1) < d(p,y2). Let v; : [0,d(p, z;)] — X be a unit speed geodesic
from p to x; (along which f is K-convex), and g; be a point in 7; closest to y;.
It follows from (2.3) and Proposition 3.3 that

2v21L§
(3.5) d(yi, ¥i) < (zi]p)y; +26 < \/\[/{TT+ : +26 =: C}.

If d(p,y1) > (z1]x2)p, then we have

d(p,y1) A d(p,y2) = d(p,y1) AN d(p,y2) — C1 = (21|z2)p — C1.
Hence, we obtain from Lemma 2.4, (3.5) and Proposition 3.3 that

126 > 2(z1[x2)p — 2(5152)p — 2C1
> 2(w1|m2)p — 2(y1ly2)p — 6C1
=d(y1,y2) — d(21,72) — 2(x1[p)y, — 2(2|p)y, + d(21,y1) + d(22,y2) — 6C1

8v2rLJ

—60,.
VET +1 !

> d(y1,y2) — d(w1,22) + d(z1,91) + d(22,y2) —

In the case of K > 0 and 7 > K !, Lemma 3.4 further implies

1 )f(wl) + fw2) —2f(p)  8V2TLS

126 > d —d 1—
= (ylayQ) ($1,$2)+( KT L \/KT+1

Thus, we have (1.9) as well as (1.10).

In the case of d(p,y1) < (x1|®2)p, we shall essentially reduce to the 1-
dimensional situation (on 72) and apply Lemma 3.6. We first consider “projec-
tions” to ;. Take

d?(z;
se argmin {f(z)+ (z ,z)}_
z€v;([0,d(p,x;)]) 27
Since
dQ(xi;Z’i)
2T

d? (SCi, yz)

flzi) + 9r

> flyi) +

d*(zi,5:)  d(p,xi)

> f(9i) — Ld(yi, i) + 97 -

d(yi, ¥i)

S (T [
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(we used in the second inequality the fact d(x;,y;) < d(p,x;) from y; € Jf(z;)
as well as d(z;, ;) < d(p,x;) since g; is on ;) and

(3.6) f(w:) + d2(;: vi) > f(z) + d2(;: i) n K+2T_1

by the (K + 771)-convexity of t — f(vi(t)) + d*(xi,7:(t))/(27), we have

d2(gia Zl)

2T
<
-~ Kr+1

Then, we put Z; := v1((z1]x2),) and take

D
205 _. 2
(3.7) d*(gi, z;) (L—i— . )01 =:C}5.

dQ(il,z)}'

Z1 €  argmin {f(z) + or

z€m1([0,d(p,z1)])

Since f o~y is non-decreasing, z; lies between p and Z;. Moreover, we have
d(pa 21) S d(p7 Zl)

by s1 < s5 in Lemma 3.6.

T 71 ) 2272/__ To
Y2 .
1 T2 7,
. . Y2
Y1 . -yl
L g
5 5
p

Figure 3. The case of d(p,y1) < (z1]|z2)p.

Next, we further project from 7, to ~». Precisely, we put
To = Ya((z1]|22)p) and  Zp :=y2(d(p, Z1)).
Then Lemma 2.3 implies

(3.8) d(Z1,%9) <40, d(z1,2%2) < 40.
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Now we claim that
(3.9) d(Z1,y2) > d(y1,y2) — 85 — 9Cy — 5C5.
Since d(p, Z2) = d(p, 21) < d(p, z1) and
d(p,y2) = d(p,y2) — C1 = d(p,y1) — C1 > d(p, z1) — 2C1 — Co
by (3.5) and (3.7), we find that

d(v2(d(p, 21) A d(p, x2)), §2) = |d(p, g2) — d(p, 21) A d(p, z2)|
< d(p,72) — d(p, z1) AN d(p,z2) +4C1 + 20
< d(p,y2) — d(p, Z2) +4C1 + 20
< d(Z2,72) +4C1 + 2C5.

Moreover, it follows from d(p, z1) < d(p,y1) + C1 + C2 < (z1|x2)p + C1 + Co,
(x1|z2)p < d(p,x2) and Lemma 2.3 that

d(y2(d(p, z1) A d(p, 2)), 21)
< d(’}@(d(p, 21) A (l‘ll,fg)p),’yl(d(p, 21) A (1‘1|l‘2)p)) +2C1 + 20y
<46 +2C7 + 20,.

Together with (3.5), (3.8) and (3.7), we can see the claim (3.9) as

d(Z1,y2) > d(Z2,72) — 46 — Cy
> d(v2(d(p, 1) A d(p, 23)),72) — 46 — 5Cy — 2C5
> d(z1,72) — d(v2(d(p, 21) A d(p, 2)), 21) — 46 — 5C1 — 2C;
> d(z1,92) — 85 — TCy — 40
> d(y1,y2) — 85 — 9C; — 5C5.

We can also show that

d?(7
o € arg min {f(y) + (Z2,9) }
yEr2([0.d(p,z2)]) 27

is close to Zs in a similar way. Namely, we observe from

d(m1(d(p, 2)), J2) < 46
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from Lemma 2.3, (3.8) and d(p, Z1) = d(p, #2) = (z1]x2), that

vy PE) o P TR) | 2d(0, ) + 4
> _ 4
F@)+ = 7 7 2 fm) + 27 ’
o d(@1,g2)  d(p,E2) + 20
> _ 4
>fe)+ ) Lo
d? (21,1 (d(p, 72)))

> fn ) + T
_ (L n (@1|z2)p + 25)45 _ (@fz2)p +26 o
T T
Then, by the choice of Z1, (3.8), d(Z1,21) = d(Z2, Z2) and (3.6), the right-hand
side is bounded from below by

N dz(jl, 21) (.1‘1|.”L'2)p + 20
FE)+ T (L2 T g
2(%9, 3 20
> f(z)+ TR (22 + g (T1lz2) + )49
2T T
~ d2(f2ag2) K+T_1 2/~ o~ D+26
> — .
> f(¥2) + o Ty d* (Y2, 22) 8(L+ - )5
This yields
167 D+20
2(Gg, 79) < 5 =: C2.
d(yQ’ZQ)—KTJrl(LjL r ) 3

Finally, we apply the 1-dimensional contraction in Lemma 3.6 to see
d(f2, 22) < d(T2,72).
Therefore, together with (3.9), (3.8), (3.5) and (3.7), we obtain

El,yg) + 85 + 9C; + 5Cs

d(y1,y2) < d(
(22,72) + 126 + 10Cy + 5C>
(
(

7;27 ZQ) + 126 + ].001 + 602 + 03
Ta, $2) + 126 + 10C7 + 6C5 + Cs.

Recalling Z2 = v2((z1]22)p), we observe that
(T2, 2) = d(p, w2) — (w1]x2)p = d(21, 72) — (pl2)e,-
This completes the proof of (1.11) with

C(K,L,D,7,6) =120 4+ 10C; + 6C5 + Cs.
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3.4. FURTHER PROBLEMS. We discuss some possible directions of further re-
searches, besides improvements of the estimates in Theorems 1.1, 1.3 and Corol-
lary 1.2.

(A) As we mentioned in Subsection 2.1, the Gromov hyperbolicity makes
sense for discrete spaces. Therefore, it is interesting to consider some gener-
alizations of the results in this article to discrete Gromov hyperbolic spaces.
Then, it is a challenging problem to formulate and analyze K-convex functions
on discrete Gromov hyperbolic spaces (possibly for some special classes such as
hyperbolic groups). We refer to [32] for the theory of convex functions on Z
(called discrete convex analysis), and to [22, 27] for some generalizations to
graphs and trees, respectively.

(B) It is also interesting to consider simulated annealing in Gromov hyper-
bolic spaces, namely the proximal point algorithm with noise. With this method
it is expected that one can approximate a global minimizer even for quasi-convex
functions or K-convex functions with K < 0.

(C) Related to the above problems, it is worthwhile considering “convex func-
tions of large scale”, preserved by quasi-isometries. This would provide a natural
generalization of our research since the Gromov hyperbolicity is preserved by
quasi-isometries between geodesic spaces (see, e.g., [42, Theorem 3.18]).
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Commons Attribution 4.0 International License, which permits unrestricted
use, distribution and reproduction in any medium, provided the appropriate
credit is given to the original authors and the source, and a link is
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