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Abstract
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1 Introduction

In random matrix theory, the behavior of large eigenvalues offers valuable insights,
particularly regarding their positions and fluctuations. For example, significant sta-
tistical results have been derived from studies like [18, 20]. A particularly intriguing
phenomenon for researchers is the BBP phase transition, as discussed in works like [4]
and [21]. Analyzing this transition poses several challenges, often requiring advanced
techniques such as the moment method and complex analysis. While these are stan-
dard in the study of random matrix theory, many cases demand intensive calculations
for each model [5, 9, 15]. Conversely, non-commutative probability techniques, such
as freeness, second order freeness, and infinitesimal freenesses, have proven advanta-
geous for systematically analyzing models based on polynomials of several random
matrices [19, 22].

Our previous works [12] and [13] have employed free probability and the moment
method to systematically analyze the large eigenvalues of models constructed from
polynomials of multiple random matrices, including those of finite rank. Notably, the
concept of cyclically monotone independence has been instrumental in computing
their moments and revealing their underlying phenomema. This concept was further
developed in [10] where they gave a deep explanation of outlier problem with the
moment method. Cyclically monotone independence originates from infinitesimal
freeness and is connected to recent research on type B freeness, conditional freeness,
and cyclic boolean independence [1–3, 10, 11, 17].

Now it is the turn to consider their fluctuation. In free probability, second order
freeness gave a systematic way to obtain Gaussian fluctuations for global quantities
of polynomials of typical random matrices [19, Chapter 5]. In this paper, we consider
random matrices with only discrete eigenvalues in the large N limit as in [12] and
present a method for computing the fluctuations of eigenvalues, which provides a
deeper understanding of outlier problem. More concretely, the present paper analyzes
limiting eigenvalues and their fluctuations of the N × N random matrix

P(A1U∗, A2U∗, . . . , AkU∗, U B1, U B2, . . . , U B�) (1.1)

in the large N limit, where P is a polynomial in k + � noncommuting indeterminates
without a constant term, U ≡ U (N ) = (ui j )i, j∈[N ] ≡ (u(N )

i j )i, j∈[N ] is a Haar unitary
matrix,

Ai =
(

Âi 0
0 0

)
∈ MN (C) and Bi =

(
B̂i 0
0 0

)
∈ MN (C) (1.2)

with Âi , B̂i ∈ Mr (C). The number r ∈ N is fixed, and N is always assumed to satisfy
sufficiently large assumed to be sufficiently large. We basically exhibit all possible
patterns of the model (1.1) providing methods for calculating limiting eigenvalues and
fluctuations, and show that when multiple eigenvalues appear the number of patterns
can be very huge.

This model is related to the model in [12] in the sense that both involve Haar
unitaries and the limiting eigenvalues are discrete in the large N limit. Although the
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paper [12] focused only on almost sure convergence of eigenvalues, the present paper
is mainly concerned with fluctuations of the eigenvalues.

Let us explain roughly the idea behind the construction proposed in [13]. It relies on
the intuition that for any vector subspace V of dimensions r of CN , if we consider the
image U · V of V under the Haar unitary U , then V and U · V are almost orthogonal
in the sense that the inner product between any normed vector of V and a normed
vector of U · V is uniformly close to zero with high probability. This intuition can
be lifted at the level of matrices as follows: for the Hilbert-Schmidt norm, any Ãi of
norm one with the same domain and codomain as a matrix Ai of norm one satisfies
the property that U Ãi and ÃiU∗ are almost orthogonal to Ai in a uniform sense. A
perfect orthogonality (which, in a sense, occurs when N → ∞) gives naturally rise to
the construction of [13]. In a sense, U Ãi is obtained from Ãi by making a “block row
operation” and sending Ãi to its almost orthogonal self, whereas ÃiU∗ is obtained
from Ãi by making a “block column operation.”

For finite N , the goal of this paper is to try to view P(A1U∗, . . . , AkU∗, U B1, . . . ,

U B�) as an o(N−1) perturbation of the model of [13], and deduce the fluctuations of
the random matrix model from those of the limit model with perturbative methods. In
this paper, we obtained the following results on eigenvalue fluctuations based on the
above idea.

Theorem 1.1 The matrix P(A1U∗, . . . , AkU∗, U B1, . . . , U B�) has N − 2r zero
eigenvalues, called the “trivial eigenvalues”. The other eigenvalues, called the “non-
trivial eigenvalues” (although zeros may be included), converge almost surely to
deterministic numbers as N → ∞. See Subsection 3.1 for an algorithm for com-
puting these limits.

Here, the term “trivial eigenvalues” means that they are always identical to zero inde-
pendently of the polynomials and the Âi , B̂ j ’s. Nontrivial eigenvalues may or may
not be zero depending on a model.

Let {μ(N )
i }2r

i=1 be thenontrivial eigenvalues of P(A1U∗, . . . , AkU∗, U B1, . . . , U B�)

and {μi }2r
i=1 denote their limits of the eigenvalues as described in Theorem 1.1.

Theorem 1.2 In addition, assume that all these values {μi }2r
i=1 appear without multi-

plicity. Then, for every i ∈ [2r ], the number

κi := sup{κ ∈ R | N
κ
2 (μ

(N )
i −μi ) converges in law to a C-valued random variable }

(1.3)
belongs to the setN∪{∞}. Here, κi = ∞ means that N

κ
2 (μ

(N )
i −μi ) converges in law

to 0 for all κ ∈ R, which occurs only when μ
(N )
i = μi a.s. for all sufficiently large N ∈

N. Moreover, let I := {i ∈ [2r ] | κi < ∞}. Then the random vectors (N
κi
2 (μ

(N )
i −

μi ))i∈I converge in law to (Pi )i∈I as N → ∞, where Pi = Pi (x1, x2, . . . , x2r2)

are nonzero homogeneous polynomials of degree κi , i ∈ I , on a standard Gaussian
random vector (xi )i∈[2r2] on R

2r2 .

The fluctuation limits appearing here can be obtained in principle by specific calcu-
lations.Wewill provide calculations for the twomodelsU A+AU∗ and P(A, U BU∗).

123



   28 Page 4 of 21 B. Collins et al.

Note that the latter model is a special case of (1.1) because A and U BU∗ can be
expressed e.g. as

A = AU∗U

(
1r 0
0 0

)
and U BU∗ = U B

(
1r 0
0 0

)
U∗.

The fluctuations for U A + AU∗ and P(A, U BU∗) are normal distributions and
mixtures of exponential distributions, respectively. Remarkably, fluctuations of eigen-
values of P(A, U BU∗) for generic polynomials P can be explicitly calculated in the
following way.

Theorem 1.3 Let P(x, y) be a polynomial over C in noncommuting elements x and y
such that P(0, 0) = 0. Let P1(x) := P(x, 0) and Q1(y) := P(0, y). Let

A = diag(α1, α2, . . . , αr , 0, 0, . . . , 0),

B = diag(β1, β2, . . . , βs, 0, 0, . . . , 0)

with αi , β j ∈ C \ {0} for all i ∈ [r ], j ∈ [s]. Then the r + s nontrivial eigenvalues
(the meaning will be made clear in the proof) of the random matrix

P(A, U BU∗) (1.4)

converge to {P1(αi )}r
i=1 and {Q1(β j )}s

j=1 a.s. If these r + s limiting values are all
distinct, then the nontrivial eigenvalues of (1.4) are of the forms

P1(αi ) + 1

N

∑
j∈[s]

pi, j

∣∣∣√Nu(N )
i, j

∣∣∣2 + ξ
(N )
i

N
3
2

, i ∈ [r ] and

Q1(β j ) + 1

N

∑
i∈[r ]

qi, j

∣∣∣√Nu(N )
i, j

∣∣∣2 + ζ
(N )
j

N
3
2

, j ∈ [s],

where pi, j , qi, j are explicit complex constants (shown in the proof, see (3.5) and (3.6))

and ξ
(N )
i , ζ

(N )
j denote random variables that converge in law to C-valued random

variables. The random variables {∣∣√Nu(N )
i j

∣∣2 | i ∈ [r ], j ∈ [s]} converge in law to
standard exponential iid random variables. See Figures 2 and 3 for simulations.

Remark 1.4 Originally thematrices Âi and B̂i in (1.2)were assumed to have a common
size r and instead were allowed to have zero eigenvalues. For the model P(A, U BU∗)
above, however, when Â or B̂ (the first r × r corners of A and B) contains zero
eigenvalues, the limiting nontrivial eigenvalues of P(A, U BU∗) easily have multiple
zero eigenvalues, which violates our assumption of simplicity. Therefore, we assume
in Theorem 1.3 that Â and B̂ have only nonzero eigenvalues and, instead, they are
allowed to have different sizes, denoted r and s respectively. Then one sees that the
matrix P(A, U BU∗) has r + s “nontrivial eigenvalues”.
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When multiple eigenvalues appear in the limit, the situation is more complex than
for models that have only simple eigenvalues. We will study some typical phenomena
through the specific model A + U BU∗. Striking features include:

• fluctuations of a multiple eigenvalue may have different orders, see Example 4.4;
• fluctuations can be non-polynomial functions of standardGaussian randomvectors
in contrast to the case of no multiplicities, see Examples 4.3, 4.4, 4.5, cf. Theorem
1.2.

This paper is organized as follows. In Section 2, we will present essential lemmas
for obtaining fluctuations. In Section 3, we prove the main theorems and provide
the aforementioned examples U A + AU∗ and P(A, U BU∗). In Section 4, we will
examine the model A + U BU∗ that has eigenvalues with multiplicities.

2 Technical tools

Calculations of the fluctuations of eigenvalues are based on the following two facts.
Let Û ≡ Û (N ) = (ui j )i, j∈[r ] ≡ (u(N )

i j )i, j∈[r ] be the truncation of U .

Lemma 2.1 (Theorem 4.2.1 and Proposition 4.4.1 in [8]) For N ≥ 2r , Û (N ) has the
probability density function

cN ,r det(1r − AA∗)N−2r1‖A‖≤1d A,

where cN ,r is a normalization constant and d A is the Lebesgue measure on Mr (C).
In particular, as N tends to infinity, the convergence in law

√
NÛ (N ) −→ Z

holds, where Z = (zi j )i, j∈[r ] is a standard complex Gaussian random matrix, i.e.,
{�(zi j ),
(zi j ) : i, j ∈ [r ]} are i.i.d. random variables having normal distribution
with mean 0 and variance 1/2.

Remark 2.2 According to theSkorohod representation theorem [7,Theorem6.7], there
exist r × r random matrices Y , V (N ), N ∈ N on some probability space such that
Y , V (N ) have the same distributions as Z , Û (N ), respectively, and that

√
N V (N ) con-

verges to Y almost surely. Some arguments below (in particular in Section 4) can be
simplified by employing Y and V (N ).

The previous lemma readily implies that Û (N ) itself converges to 0 in probability.
More strongly, almost sure convergence holds.

Lemma 2.3 As N → ∞, Û (N ) converges to 0 a.s.

Proof It is known that E[|u(N )
i j |4] = 2

N (N+1) , see e.g. [14, p. 778]. Taking the sum

over N implies that
∑∞

N=1 |u(N )
i j |4 has finite expectation and hence its value is finite

almost surely. ��
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Lemma 2.4 [[6, Chapter 1, Section 4, Problem 1]] Let X N , X , YN , Y be C-valued

random variables, N ∈ N. If X N
law−→ X and YN

prob−→ 0 then X N + YN
law−→ X and

X N YN
prob−→ 0.

Below we denote ‖X‖ := √
Tr[X∗ X ] for X ∈ Mr (C).

Lemma 2.5 [Eigenvalues of perturbed matrices] Let r ≥ 2 and � = diag(λ1, λ2, . . . ,
λr ) ∈ Mr (C), where λ1, λ2, . . . , λr are distinct complex numbers. Then there exist
homogeneous polynomials 
p,k(X) (k ∈ N, p ∈ [r ]) of degree k on the r2 complex
variables X = {xi j }i, j∈[r ] and a constant C > 0 such that for all X ∈ Mr (C) with
‖X‖ < C the eigenvalues of the perturbed matrix � + X can be expressed as the
absolutely convergent series expansions

λp +
∞∑

k=1


p,k(X), p ∈ [r ]. (2.1)

In particular, the first two terms 
p,1 and 
p,2 are given by


p,1(X) = x pp, 
p,2(X) =
∑
i �=p

xipx pi

λp − λi
.

Proof The function f (z, X) := det(z1r − (� + X)) is a polynomial of r2 + 1 vari-
ables, f (λp, 0) = 0 and ∂z f (λp, 0) �= 0; the last condition holds by the assumption
of simplicity. By the holomorphic implicit function theorem [16, p. 34], there exist
neighborhoods Up of λp ∈ C and Vp of 0 ∈ Mr (C) and holomorphic function
μ�

p : Vp → Up such that

{(z, X) ∈ Up × Vp | f (z, X) = 0} = {(μ�
p (X), X) | X ∈ Vp}.

As being a holomorphic function of several variables,μ�
p has an absolutely convergent

series expansion in a neighborhood of 0 and hence is of the form (2.1), as desired.
The formulas for 
p,1 and 
p,2 follow from straightforward calculus, i.e., taking

partial derivatives in the identity f (μ�
p (X), X) = 0with respect to xi j ’s and evaluating

at X = 0 yields formulas for ∂xi j μ
�
p (0), ∂2xi j xk�

μ�
p (0) for i, j, k, � ∈ [r ]. ��

3 Simple eigenvalues: a general algorithm and examples

3.1 Algorithm and proofs of Theorems 1.1 and 1.2

The algorithm for computing the fluctuations of eigenvalues of (1.1) is what follows.
We specialize in the case k = � = 1, which lightens the notation but does not decrease
the essence. Let A := A1 and B := B1. We first choose the basis (also regarded as an
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N × N matrix)

B := (e1, e2, . . . , er , u1, u2, . . . , ur , er+1, er+2, . . . , eN−r ), (3.1)

where ui is the i-th column vector of U (N ). Note that B is a basis with probability
one since the truncated Haar unitary Û has the continuous density in Mr (C) due to
Theorem 2.1 and the set of singular matrices is a null set with respect to Lebesgue
measure.

The matrix representations of AU∗ and U B with respect to the basis B are given
by

A′ :=
⎛
⎝ ÂÛ∗ Â ∗

0 0 0
0 0 0

⎞
⎠ and B ′ :=

⎛
⎝0 0 0

B̂ B̂Û 0
0 0 0

⎞
⎠ ,

respectively. Let P(x, y) be a polynomial without a constant term in noncommuting
indeterminates x, y. Because P(AU∗, U B) = BP(A′, B ′)B−1, it suffices to compute
the eigenvalues of the matrix P(A′, B ′) which is of the form

⎛
⎝P11( Â, B̂) P12( Â, B̂) ∗

P21( Â, B̂) P22( Â, B̂) ∗
0 0 0

⎞
⎠

︸ ︷︷ ︸
=:M

+
⎛
⎝O(‖Û‖) O(‖Û‖) ∗

O(‖Û‖) O(‖Û‖) ∗
0 0 0

⎞
⎠

︸ ︷︷ ︸
=:V

, (3.2)

where Pi j ( Â, B̂) (i, j = 1, 2) does not contain Û . It suffices to work on the submatrix
M̃ + Ṽ consisting of the first 2r row and columns of M + V . The eigenvalues of
M̃ + Ṽ are called the nontrivial eigenvalues of P(AU∗, U B).

Proof of Theorem 1.1 The entries of the matrix Ṽ are polynomials on entries of
Â, B̂, Û , Û∗ without a constant term with respect to Û , Û∗, so that, by Lemma 2.3,
they converge to 0 almost surely. This implies that the eigenvalues of M̃ + Ṽ con-
verge to those of M̃ , which can be easily proved by applying the argument principle
in complex analysis to the characteristic polynomials (this is a simple case of Lemma
4.1 below where dN are all equal to d = 2r ). ��

The eigenvalues of M̃ and M̃+Ṽ are denoted by {μi }2r
i=1 and {μ(N )

i }2r
i=1 respectively

according to the notation of Theorem 1.2.

Proof of Theorem 1.2 Since {μi }2r
i=1 have no multiplicities by the assumption, there

exists an invertible matrix R̃ of size 2r such that R̃−1M̃ R̃ = diag(μ1, μ2, . . . , μ2r ).
Apparently the eigenvalues of M̃ + Ṽ are exactly those of the matrix

diag(μ1, μ2, . . . , μ2r ) + R̃−1Ṽ R̃.
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Then Lemmas 2.1 and 2.5 lead to Theorem 1.2 as desired. Indeed, Lemma 2.5 yields

μ
(N )
i = μi +

∞∑
k=1


i,k(R̃−1Ṽ R̃),

which absolutely converges for sufficiently large N since Ṽ → 0 a.s. The RHS is a
power series on variables {ui j , ui j | i, j ∈ [r ]} and can be regrouped into

μ
(N )
i = μi +

∞∑
k=1

Qi,k(Û , Û∗),

where Qi,k(X , X∗) is a homogeneous polynomial of degree k on commuting indeter-
minates X = {xi j }i, j∈[r ] and X∗ = {x ji }i, j∈[r ]. We set

κi := inf{k ∈ N | Qi,k(X , X∗) �= 0}. (3.3)

If κi = ∞ then μ
(N )
i = μi a.s. If κi < ∞ then we can easily prove by Lemma

2.4 that N
κi
2 (μ

(N )
i − μi ) converges in law to Qi,κi (Z , Z∗), where Z is a standard

complex Gaussian matrix. Moreover, this convergence holds jointly for all i for which
κi < ∞. Note that Qi,κi (Z , Z∗) is a nonzero random variable; indeed, because the
set S := {X ∈ Mr (C) | Qi,κi (X , X∗) = 0} is a null set with respect to the Lebesgue
measure and Z has a probability density function, the probability of the event Z ∈ S
is zero. This implies that for all κ > κi , N

κ
2 (μ

(N )
i − μi ) does not converge in law and

hence the definitions (1.3) and (3.3) coincide. ��

3.2 The case UA + AU∗

Proposition 3.1 The 2r nontrivial eigenvalues of the matrix

U A + AU∗,

where

A =
(

Â 0
0 0

)
∈ MN (C) and Â = diag(α1, α2, . . . , αr ), α1, α2, . . . , αr ∈ C,

converge to {αi ,−αi }r
i=1 a.s. In addition, if these 2r limiting numbers are all distinct

(which implies that they are nonzero) then the nontrivial eigenvalues of U A + AU∗
are of the forms

αi + αi√
N

�[√Nu(N )
i i ] + ω

(N )
i,+
N

and − αi + αi√
N

�[√Nu(N )
i i ] + ω

(N )
i,−
N

, i ∈ [r ],
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Fig. 1 A histogram for√
N (μ

(N )
1 − 4)/4 (made of 400

samples), where μ
(N )
1 is the

eigenvalue near 4 of the matrix
model AU + U∗ A with
A = diag(4, 2, 1, 0, 0, . . . , 0) of
size N = 400. The appended
curve is the probability density
function of N (0, 1) multiplied
by 40

where {ω(N )
i,± }r

i=1 are random variables converging in law to C-valued random vari-
ables. See Figure 1 for a simulation.

Proof With respect to the basis B introduced in (3.1), the matrix U A + AU∗ has the
matrix representation

T :=
⎛
⎝ ÂÛ∗ Â ∗

Â ÂÛ 0
0 0 0

⎞
⎠ =

⎛
⎝0 Â 0

Â 0 0
0 0 0

⎞
⎠ +

⎛
⎝ ÂÛ∗ 0 ∗

0 ÂÛ 0
0 0 0

⎞
⎠ .

The main part of T can be diagonalized by the orthogonal matrix

R :=
⎛
⎜⎝

1√
2
1r

1√
2
1r 0

1√
2
1r − 1√

2
1r 0

0 0 1N−2r

⎞
⎟⎠

in such a way that

R−1T R =
⎛
⎝ Â 0 0
0 − Â 0
0 0 0

⎞
⎠ +

⎛
⎜⎝

Â Û+Û∗
2 Â Û∗−Û

2 ∗
Â Û∗−Û

2 Â Û+Û∗
2 ∗

0 0 0

⎞
⎟⎠ .

Suppose further that the 2r numbers ±α1,±α2, . . . ,±αr are all distinct. As a conse-
quence of Lemma 2.5, the nontrivial eigenvalues of T , denoted byμ

(N )
i , ν

(N )
i , i ∈ [r ],

are of the forms

μ
(N )
i = αi + 1

2
( Â(Û + Û∗))i i + O(‖Û‖2) = αi + αi�(uii ) + O(‖Û‖2), i ∈ [r ],

ν
(N )
i = −αi + αi�(uii ) + O(‖Û‖2), i ∈ [r ].

��
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Remark 3.2 With the help of Lemma 2.1 and Lemma 2.4, this proposition implies
that, as N → ∞,

√
N (μ

(N )
i − αi )

law−→ αi√
2

xi and
√

N (ν
(N )
i + αi )

law−→ αi√
2

xi for all i ∈ [r ],

where {xi }r
i=1 are iid random variables, each distributed as N (0, 1).

3.3 The case P(A,UBU∗) and a proof of Theorem 1.3

The specialized model P(A, U BU∗) is easier to analyze than (1.1) because the main
part of the representation matrix is already diagonalized; see (3.4) below. In this
subsection we modify the definition of Û to the rectangular truncation (ui j )i∈[r ], j∈[s].

Proof of Theorem 1.3 Straightforward calculations yield that, with respect to the mod-
ified basis

(e1, e2, . . . , er , u1, u2, . . . , us, er+1, er+2, . . . , eN−s),

A and U BU∗ have the matrix representations

Ã :=
⎛
⎝ Â ÂÛ 0
0 0 0
0 0 0

⎞
⎠ and B̃ :=

⎛
⎝ 0 0 0

B̂Û∗ B̂ ∗
0 0 0

⎞
⎠ ,

respectively, where

Â := diag(α1, α2, . . . , αr ) ∈ Mr (C), B̂ := diag(β1, β2, . . . , βs) ∈ Ms(C).

From this it is clear that ourmodel P(A, U BU∗) has N −r −s trivial zero eigenvalues.
The polynomial P(x, y) can be decomposed into

P(x, y) = P1(x) + Q1(y) +
∑

k,�≥1

ak,�xk y�

︸ ︷︷ ︸
=:P2(x,y)

+
∑

k,�≥1

bk,�y�xk

︸ ︷︷ ︸
=:Q2(x,y)

+
∑

k,�,m≥1

ck,�,m xk y�xm

︸ ︷︷ ︸
=:P3(x,y)

+
∑

k,�,m≥1

dk,�,m y�xk ym

︸ ︷︷ ︸
=:Q3(x,y)

+R(x, y),

where bk,�, ck,�,m, dk,�,m are complex coefficients, and R is a linear combination of
monomials of lengths larger than three (the length of the elements xk and y� is counted
as one). For k, �, m ≥ 1 we have

Ãk =
⎛
⎝ Âk ÂkÛ 0

0 0 0
0 0 0

⎞
⎠ , B̃� =

⎛
⎝ 0 0 0

B̂�Û∗ B̂� ∗
0 0 0

⎞
⎠ ,
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Fig. 2 Ahistogram for N (μ
(N )
2 −2) (400 samples, normalized to have area 1), whereμ

(N )
2 is the eigenvalue

near 2 of the model A + U BU∗ + AU BU∗ A + U BU∗ AU BU∗ with A = diag(5, 2, 1, 0, 0, . . . , 0), B =
diag(4, 3, −1, 0, 0, . . . , 0) of size N = 400, together with the theoretical limiting probability density
function 21

800 e3x/141(−∞,0)(x) + 3
800 (−25e−x/6 + 32e−x/12)1[0,∞)(x)

Ãk B̃� =
⎛
⎝ ÂkÛ B̂�Û∗ ÂkÛ B̂� ∗

0 0 0
0 0 0

⎞
⎠ ,

B̃� Ãk =
⎛
⎝ 0 0 0

B̂�Û∗ Âk B̂�Û∗ ÂkÛ 0
0 0 0

⎞
⎠ ,

Ãk B̃� Ãm =
⎛
⎝ ÂkÛ B̂�Û∗ Âm ÂkÛ B̂�Û∗ ÂmÛ 0

0 0 0
0 0 0

⎞
⎠ ,

B̃� Ãk B̃m =
⎛
⎝ 0 0 0

B̂�Û∗ ÂkÛ B̂mÛ∗ B̂�Û∗ ÂkÛ B̂m ∗
0 0 0

⎞
⎠ .

With the convention that ck,�,0 = ak,�, dk,�,0 = bk,� and P1(x) = ∑
k≥1 ak,0xk, Q1(y) =∑

�≥1 b0,�y� we get

P( Ã, B̃) =
⎛
⎝ P1( Â) P1( Â)Û 0

Q1(B̂)Û∗ Q1(B̂) ∗
0 0 0

⎞
⎠ +

∑
k,�≥1

⎛
⎝ak,� ÂkÛ B̂�Û∗ ak,� ÂkÛ B̂� ∗

bk,� B̂�Û∗ Âk bk,� B̂�Û∗ ÂkÛ ∗
0 0 0

⎞
⎠

+
∑

k,�,m≥1

⎛
⎝ck,�,m ÂkÛ B̂�Û∗ Âm 0 0

0 dk,�,m B̂�Û∗ ÂkÛ B̂m ∗
0 0 0

⎞
⎠

+
⎛
⎝O(‖Û‖3) O(‖Û‖2) ∗

O(‖Û‖2) O(‖Û‖3) ∗
0 0 0

⎞
⎠

=
⎛
⎝P1( Â) 0 0

0 Q1(B̂) ∗
0 0 0

⎞
⎠ +

∑
k≥1,�≥0

⎛
⎝0 ak,� ÂkÛ B̂� ∗
0 0 ∗
0 0 0

⎞
⎠
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+
∑

k≥0,�≥1

⎛
⎝ 0 0 ∗

bk,� B̂�Û∗ Âk 0 ∗
0 0 0

⎞
⎠

+
∑

k,�≥1,m≥0

⎛
⎝ck,�,m ÂkÛ B̂�Û∗ Âm 0 0

0 dk,�,m B̂�Û∗ ÂkÛ B̂m ∗
0 0 0

⎞
⎠

+
⎛
⎝O(‖Û‖3) O(‖Û‖2) ∗

O(‖Û‖2) O(‖Û‖3) ∗
0 0 0

⎞
⎠ (3.4)

Suppose that the r + s eigenvalues of the main part

(
P1( Â) 0
0 Q1(B̂)

)

are all distinct. Note that these eigenvalues are P1(αi ), i ∈ [r ] and Q1(β j ), j ∈ [s].
According to Lemma 2.5 the eigenvalues μ

(N )
1 , μ

(N )
2 , . . . , μ

(N )
r+s of the first (r + s)-

dimensional corner of P( Ã, B̃) (called the nontrivial eigenvalues) are of the form

μ
(N )
i = P1(αi ) +

∑
k,�≥1,m≥0

ck,�,m( ÂkÛ B̂�Û∗ Âm)i,i

+
∑
j∈[s]

1

P1(αi ) − Q1(β j )

∑
k≥1,�≥0

ak,�( ÂkÛ B̂�)i, j

∑
k′≥0,�′≥1

bk′,�′(B̂�′
Û∗ Âk′

) j,i + O(‖Û‖3)

= P1(αi ) +
∑

k,�≥1,m≥0

ck,�,m

∑
j∈[s]

αk+m
i β�

j |ui, j |2

+
∑
j∈[s]

1

P1(αi ) − Q1(β j )

∑
k≥1,�≥0

ak,�

∑
k′≥0,�′≥1

bk′,�′αk+k′
i β�+�′

j |ui, j |2 + O(‖Û‖3)

= P1(αi ) +
∑
j∈[s]

(
P2(αi , β j ) + P3(αi , β j )

+[P1(αi ) + P2(αi , β j )][Q1(β j ) + Q2(αi , β j )]
P1(αi ) − Q1(β j )

)
|ui, j |2

+ O(‖Û‖3) (3.5)

for i ∈ [r ], and similarly,

μ
(N )
r+ j = Q1(β j ) +

∑
i∈[r ]

(
Q2(αi , β j ) + Q3(αi , β j )

−[P1(αi ) + P2(αi , β j )][Q1(β j ) + Q2(αi , β j )]
P1(αi ) − Q1(β j )

)
|ui, j |2
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Fig. 3 Ahistogram for N (μ
(N )
1 −2) (400 samples, normalized to have area 1), whereμ

(N )
1 is the eigenvalue

near 2 of the model A + U BU∗ + AU BU∗ + U BU∗ A + 1
2 (AU BU∗ A + U BU∗ AU BU∗) with A =

diag(2, 1,−1, 0, 0, . . . , 0), B = diag(4, −0.2, 0, 0, . . . , 0) of size N = 400, together with the theoretical
limiting probability density function 55

2352 (ex/44 − e55x/68)1(−∞,0)(x)

+ O(‖Û‖3) (3.6)

for j ∈ [s]. The random variables N |u(N )
i j |2 converge in law to (�(zi j ))

2 + (
(zi j ))
2

which follows the exponential distribution e−x dx, x > 0. ��

4 Eigenvalues withmultiplicities: examples

When themain term of (3.2) has multiple eigenvalues, a general algorithm for comput-
ingfluctuationswould be complicated (Lemma2.5works only for simple eigenvalues).
Abandoning the general case, we work with the specific model

X = A + U BU∗, (4.1)

where

A := diag(α1, α2, . . . , αr , 0, 0, . . . , 0) ∈ MN (R),

B := diag(β1, β2, . . . , βs, 0, 0, . . . , 0) ∈ MN (R),

αi , β j ∈ R \ {0}, i ∈ [r ], j ∈ [s].

It is easy to see (e.g., from (4.2)) that the limiting eigenvalues of X are αi , β j , i ∈
[r ], j ∈ [s] and the others are all zero.

Even for this specific model, a general algorithm for computing fluctuations looks
too difficult. We deal with further special cases.

4.1 Convergence of polynomials and convergence of roots

Our analysis of the fluctuations of eigenvalues of the sum model (4.1) is based on the
characteristic polynomials. The following fact is essential to deal with eigenvalues

123



   28 Page 14 of 21 B. Collins et al.

with multiplicities and is a simple consequence of the argument principle in complex
analysis.

Lemma 4.1 Let P(z), PN (z), N ∈ N be polynomials with complex coefficients such
that P �≡ 0. Let d := deg P(z), dN := deg PN (z) and assume that supN∈N dN < ∞.
We denote by λi , i ∈ [d] the roots of P(z) counting multiplicities. Suppose that
PN converges to P pointwisely on C. Then dN ≥ d for sufficiently large N and
there is a suitable labeling of the roots of PN (z) counting multiplicities, denoted by
λ

(N )
i , i ∈ [dN ], such that

(i) lim
N→∞ λ

(N )
i = λi for all i ∈ [d],

(ii) lim
N→∞ max

d+1≤i≤dN
|λ(N )

i | = ∞.

When P is a nonzero constant, we understand that d = 0 and assertion (i) must be
deleted. On the other hand, when dN = d then the number maxd+1≤i≤dN |λ(N )

i | is to
be interpreted as ∞.

Example 4.2 Let

PN (x) = (−1)N

N
x2 +

(
1 − (−1)N

N 2

)
x − 1

N
= 1

N
((−1)N x + N )

(
x − 1

N

)
.

Then PN (x) converges to P(x) = x pointwise. The root x = (−1)N−1N tends to
±∞, while the root x = 1

N converges to 0 which is the root of P(x).

4.2 The characteristic polynomial

Notation For an m × n matrix C = (ci j )i∈[m], j∈[n] and two subsets I ⊆ [m], J ⊆ [n]
of the same cardinality we let [C]I ,J be the determinant of the submatrix (ci j )i∈I , j∈J .
As convention, we also set [C]∅,∅ := 1.

According to Example 1.3, with respect to the basis

(e1, e2, . . . , er , u1, u2, . . . , us, er+1, er+2, . . . , eN−s)

the matrix X in (4.1) has the representation matrix

⎛
⎝ Â ÂÛ 0

B̂Û∗ B̂ ∗
0 0 0

⎞
⎠ , (4.2)

where Â = diag(α1, α2, . . . , αr ), B̂ = diag(β1, β2, . . . , βs) and Û = (ui j )i∈[r ], j∈[s].
Let X̃ be the submatrix of (4.2) consisting of the first (r + s) rows and columns. The
characteristic polynomial of X̃ is given by
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ϕN (λ) :=
min{r ,s}∑

n=0

(−1)n
∑

I⊆[r ],J⊆[s]
#I=#J=n

⎧⎨
⎩

∏
i∈[r ]\I

(λ − αi )
∏

j∈[s]\J

(λ − β j )
∏
i∈I

αi
∏
j∈J

β j

⎫⎬
⎭
∣∣[Û ]I ,J

∣∣2 ,

which is a direct consequence of the definition of determinant by prescribing the fixed
points of permutations. Investigating this polynomial will reveal fluctuations of the
eigenvalues.

4.3 Multiplicities within A (and/or within B)

Suppose first that α1 = α2 = · · · = αm for some m ∈ [r ] and that none of
αm+1, αm+2, . . . , αr , β1, . . . , βs equals α1.

Convergence of rescaled characteristic polynomial.
By taking the Skorohod representation, we assume for the moment that Û (N ) con-

verges to Z almost surely, see Remark 2.2. (This replacement will be justified later.)
We begin by observing

N mϕN

(
α1 + 1

N
τ

)
= τm

r∏
i=m+1

(α1 − αi )

s∏
j=1

(α1 − β j )

+
min{m,s}∑

n=1

(−1)n
∑

I⊆[m],J⊆[s]
#I=#J=n

τm−n

⎡
⎣ r∏

i=m+1

(α1 − αi )
∏

j∈[s]\J

(α1 − β j )

∏
i∈I

αi

∏
j∈J

β j

⎤
⎦ N n

∣∣[Û ]I ,J
∣∣2 + O

(
1

N

)
,

where O
( 1

N

)
is a polynomial on τ of degree not larger than r + s with coefficients

of order O
( 1

N

)
in the usual sense almost surely. Since N mϕN

(
α1 + 1

N τ
)
converges

almost surely to the polynomial

ψ(τ) := τm +
min{m,s}∑

n=1

(−1)n
∑

I⊆[m],J⊆[s]
#I=#J=n

τm−n

⎡
⎣∏

j∈J

α1β j

α1 − β j

⎤
⎦ ∣∣[Z ]I ,J

∣∣2 ,

by Lemma 4.1, the polynomial τ �→ ϕN
(
α1 + 1

N τ
)
has m consecutive roots δ

(N )
11 ≥

δ
(N )
12 ≥ · · · ≥ δ

(N )
1m that converge almost surely to the m real roots of ψ .
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The roots ofψ can be well described as the eigenvalues of a certain randommatrix.
Let γ1 j := α1β j

α1−β j
, �1 := diag(γ11, γ12, . . . , γ1s) and Z1 = (zi j )i∈[m], j∈[s] be the

truncation of Z . Then we have

ψ(τ) = τm +
min{m,s}∑

n=1

(−1)nτm−n
∑

I⊆[m],J⊆[s]
#I=#J=n

[Z�1]I ,J [Z∗]J ,I

= τm +
m∑

n=1

τm−n(−1)n
∑

I⊆[m]
#I=n

[Z�1Z∗]I ,I

= τm +
m∑

n=1

τm−n(−1)n
∑

I⊆[m]
#I=n

[Z1�1Z∗
1 ]I ,I

= det(τ Im − Z1�1Z∗
1).

Note that [Z�1Z∗]I ,I = 0 if s < n = #I because the rank of Z�1Z∗ is not greater
than s and hence we were allowed to replace min{m, s} with m.

From the discussions above the random vector (δ
(N )
11 , δ

(N )
12 , . . . , δ

(N )
1m ) converges

almost surely to the sequence of the eigenvalues of Z1�1Z∗
1 (labeled in the decreasing

order), and hence, converges in law.

Conclusion.
The convergence in law of the random vector (δ

(N )
11 , δ

(N )
12 , . . . , δ

(N )
1m ) also holds

for the original random matrix model (without taking the Skorohod representation)
because the roots of polynomials can be expressed as measurable (in fact, continuous)
functions of the coefficients as a consequence of the argument principle so that each
δ
(N )
1 j is a measurable function of Û (N ). Convergence in law is a notion completely
determined by the law and hence is unchanged by replacing the random variables with
other ones with identical laws.

Example 4.3 The preceding arguments allow us to calculate the joint distribution of
fluctuations when the entries of A and B are of the form

(α1, α2, . . . , αr ) = (α′
1, . . . , α

′
1︸ ︷︷ ︸

m1 times

, α′
2, . . . , α

′
2︸ ︷︷ ︸

m2 times

, . . . , α′
p, . . . , α

′
p︸ ︷︷ ︸

m p times

),

(β1, β2, . . . , βs) = (β ′
1, . . . , β

′
1︸ ︷︷ ︸

n1 times

, β ′
2, . . . , β

′
2︸ ︷︷ ︸

n2 times

, . . . , β ′
q , . . . , β ′

q︸ ︷︷ ︸
nq times

),

where α′
1 . . . , α′

p, β
′
1, . . . , β

′
q are distinct. Without loss of generality, we assume that

α′
1 > α′

2 > · · · > α′
p and similarly β ′

1 > β ′
2 > · · · > β ′

q .
Let �k = diag(γk1, . . . , γks) and H� = diag(η1�, η2�, . . . , ηr�), where

γk j = α′
kβ j

α′
k − β j

and ηi� = αiβ
′
�

αi − β ′
�
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Fig. 4 Histograms for δ
(N )
1,1 (left), δ(N )

1,2 (middle) and δ
(N )
1,3 (right) in Example 4.3 for the model A +U BU∗

with A = diag(2, 2, 2, 0, . . . , 0), B = diag(1, 1, −1, 0, . . . , 0) of size N = 400. The histograms are
constructed from 500 samples, and the heights are normalized to have area 1. The appended curves are the
probability density functions of ρ1,1 (left), ρ1,2 (middle), ρ1,3 (right), drawn by taking 2 · 106 samples and
connecting (by line segments) the heights of the histogram

and let Zk, Y� be the mk × s and r × n� submatrices of Z , respectively, defined by

Z =

⎛
⎜⎜⎜⎝

Z1
Z2
...

Z p

⎞
⎟⎟⎟⎠ = (Y1, Y2, . . . , Yq).

Let {ρk1, ρk2, . . . , ρk,mk } and {σ1�, σ2�, . . . , σm�,�} be the eigenvalues of Zk�k Z∗
k and

of Y ∗
� H�Y�, respectively, labeled in the decreasing order. Then the eigenvalues of X̃

are of the form α′
k + 1

N δ
(N )
k j ( j ∈ [mk], k ∈ [p]) and β ′

� + 1
N ε

(N )
i� (i ∈ [n�], � ∈ [q])

with δ
(N )
k1 ≥ δ

(N )
k2 ≥ · · · ≥ δ

(N )
k,mk

and ε
(N )
1� ≥ ε

(N )
2� ≥ · · · ≥ ε

(N )
n�,�

such that

(
(δ

(N )
k j ) j∈[mk ],k∈[p], (ε(N )

i� )i∈[n�],�∈[q]
)

law−→ (
(ρk j ) j∈[mk ],k∈[p], (σi�)i∈[n�],�∈[q]

)

as random vectors on Rm1≥ ×R
m2≥ × · · · ×R

m p
≥ ×R

n1≥ ×R
n2≥ × · · · ×R

nq
≥ . See Figure

4 for simulations of fluctuations.

4.4 Common eigenvalues shared by A and B

We assume that r = s = 2 and discuss the case where some αi coincides with some
β j . The fluctuations are more exotic.

Example 4.4 Suppose that α1 = α2 = β1 �= β2.Without loss of generality, we assume
that α1 < β2. The characteristic polynomial of X̃ is explicitly given by

ϕN (λ) = (λ − α1)
3(λ − β2) − α2

1(|u11|2 + |u21|2)(λ − α1)(λ − β2)

− α1β2(|u12|2 + |u22|2)(λ − α1)
2 + α3

1β2|u11u22 − u12u21|2.

Analogously to Section 4.3, we assume for the moment that
√

NÛ (N ) converges to Z
almost surely.

123



   28 Page 18 of 21 B. Collins et al.

Fluctuations of α1. Unexpectedly, there are two different scalings. Observe first that

N
3
2 ϕN

(
α1 + 1√

N
τ

)
= τ 3(α1 − β2) − α2

1 N (|u11|2 + |u21|2)τ (α1 − β2) + O

(
1√
N

)
,

(4.3)

which reveals that ϕN (α1 + 1√
N

τ) has two roots τ = δ
(N )
1 , δ

(N )
2 that respectively

converge almost surely to

ξ1 := |α1|
√

|z11|2 + |z21|2 and ξ2 := −|α1|
√

|z11|2 + |z21|2.

In addition to ξ1, ξ2, the limiting polynomial of (4.3) has the root 0 with multiplicity
one. This means that the scaling 1/

√
N is irrelevant for the third root near α1. The

right scaling is N−1 as we see from

N 2ϕN

(
α1 + 1

N
τ

)
= −α2

1 N (|u11|2 + |u21|2)τ (α1 − β2) + α3
1β2N 2

|u11u22 − u12u21|2 + O

(
1

N

)

→ −α2
1(|z11|2 + |z21|2)τ (α1 − β2) + α3

1β2|z11z22 − z12z21|2.

Again by Lemma 4.1, the polynomial τ �→ ϕN (α1 + 1
N τ) has a root τ = δ

(N )
3 that

converges almost surely to the random variable

ξ3 := α1β2

α1 − β2
· |z11z22 − z12z21|2

|z11|2 + |z21|2 .

Fluctuations of β2. A similar analysis yields that ϕN has a root of the form λ =
β2 + 1

N ε(N ) such that ε(N ) converges almost surely to

ζ := α1β2

β2 − α1
(|z12|2 + |z22|2).

Conclusion. Considering the scaling and the signs of limiting random variables, for

sufficiently large N (depending on samples), we have β2 + 1
N ε(N ) > α1 + 1√

N
δ
(N )
1 >

α1 + 1
N δ

(N )
3 > α1 + 1√

N
δ
(N )
2 . Let λ(N )

1 ≥ λ
(N )
2 ≥ λ

(N )
3 ≥ λ

(N )
4 be the four eigenvalues

of X̃ . We conclude that the random vector

(
N (λ

(N )
1 − β2),

√
N (λ

(N )
2 − α1), N (λ

(N )
3 − α1),

√
N (λ

(N )
4 − α1)

)
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Fig. 5 Histograms for N (λ
(N )
1 −2) (left),

√
N (λ

(N )
2 −1) (middle), N (λ

(N )
3 −1) (right) in Example 4.4 for

the matrices A = diag(1, 1, 0, 0, . . . , 0), B = diag(1, 2, 0, 0, . . . , 0) of size N = 400. The histograms are
constructed from 400 samples, and the heights are normalized to have area 1. The appended curves are the
probability density functions of 2(|z12|2 + |z22|2) (left, (1/4)xe−x/2, x > 0),

√
|z11|2 + |z21|2 (middle,

2x3e−x2 , x > 0), −2|z11z22−z12z21|2
|z11|2+|z21|2 (right, drawn by taking 2 · 106 samples and connecting the heights

of the histogram)

Fig. 6 A histogram for√
N (λ

(N )
1 − 3) in Example 4.5

for the matrices
A = B = diag(2, 3, 0, 0, . . . , 0)
of size N = 400, together with
the probability density function
of 3|z22|
((2/9)xe−x2/9, x > 0). The
histogram is constructed from
500 samples, and the heights are
normalized to have area 1

converges in law to

(
α1β2

β2 − α1
(|z12|2 + |z22|2), |α1|

√
|z11|2 + |z21|2, −α1β2|z11z22 − z12z21|2

(β2 − α1)(|z11|2 + |z21|2) ,

−|α1|
√

|z11|2 + |z21|2
)

.

This also holds without taking the Skorohod representation from the corresponding
reasoning in Section 4.3. See Figure 5 for simulations.

Example 4.5 Suppose that α1 = β1 < α2 = β2. Let λ
(N )
1 ≥ λ

(N )
2 ≥ λ

(N )
3 ≥ λ

(N )
4 be

the four eigenvalues of X̃ . A similar technique reveals that the random vector

(√
N (λ

(N )
1 − α2),

√
N (λ

(N )
2 − α2),

√
N (λ

(N )
3 − α1),

√
N (λ

(N )
4 − α1)

)

converges in law to

(|α2z22|,−|α2z22|, |α1z11|,−|α1z11|).

See Figure 6 for a simulation.
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