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Abstract

The fuzzy numbers have been introduced to the analytic hierarchy process (AHP)
to reflect the vagueness of the decision maker’s judgments. In fuzzy AHP (FAHP),
a normalized fuzzy priority weight vector is estimated from a fuzzy pairwise com-
parison matrix (FPCM). Because the FPCM components are supposed to show the
ratios of fuzzy priority weights, the deviations between them are considered natural
criteria. Thus, if a normalized fuzzy priority weight vector has the same deviations
as a solution to the estimation problem, it can be considered another solution. We
may find such solutions, and the estimation problem can have many solutions. In
this paper, we propose an FAHP approach to decision analysis using a set of solu-
tions to the estimation problem under an FPCM. First, we study the estimation
problem of the normalized fuzzy priority weight vector under a given FPCM and
review a conventional approach. Minimizing the deviations between the FPCM
components and the ratios of fuzzy priority weights becomes more complex than
the conventional approach. We adopt a solution of the conventional approach. We
extend it to a set of solutions because we can find other normalized fuzzy priority
weight vectors having the same deviations as the solution. A decision analysis is
proposed using all of these normalized fuzzy priority weight vectors. In numerical
examples, we demonstrate a detailed decision analysis from multiple perspectives,
considering all potential orders of alternatives. Therefore, the decision maker may
select the final solution from several recommended orders of alternatives in various
ideas according to her/his consent.

Keywords Fuzzy AHP - Multiple criteria decision making - Linear programming -
Centroid defuzzification - Non-uniqueness

P4 Shigeaki Innan
innan@sys.es.osaka-u.ac.jp

Masahiro Inuiguchi
inuiguti@sys.es.osaka-u.ac.jp

Graduate School of Engineering Science, The University of Osaka, 1-3, Machikaneyama,
Toyonaka, Osaka, Japan

Published online: 19 September 2025 &\ Springer


https://doi.org/10.1007/s10700-025-09463-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10700-025-09463-z&domain=pdf&date_stamp=2025-9-17

S. Innan, M. Inuiguchi

1 Introduction

The analytic hierarchy process (AHP) Saaty (1980) is one of the most widely used
methods for multiple criteria decision analysis. It is applied to many decision making
problems in various fields. In AHP, the decision maker (DM) makes pairwise com-
parisons between items such as alternatives and criteria. The DM evaluates the rela-
tive importance between items in each pairwise comparison. The conventional AHP
requires the DM to give precise evaluations of the relative importance. However, it
would be difficult for the DM to give consistent evaluations because human evalua-
tions are often vague and imprecise. To overcome this difficulty, a method of repre-
senting relative importance by intervals (Sugihara et al., 2004; Wang & Elhag, 2007,
Mikhailov, 2004), fuzzy numbers (Buckley, 1985; Laarhoven & Pedrycz, 1983)
and twofold intervals (Inuiguchi & Innan, 2022) has been proposed. Using such a
method, we eventually obtain a pairwise comparison matrix (PCM) with intervals,
fuzzy numbers, or twofold intervals.

In this paper, we focus on the case where the components of a PCM are fuzzy
numbers, i.e., a fuzzy AHP, or more simply, an FAHP (Buckley, 1985). The FAHP
has been widely applied in various fields, as reported in the literature. In the FAHP,
several methods have been proposed to estimate priority weights from a PCM with
fuzzy components. A PCM with fuzzy components is called simply an FPCM, as an
abbreviation of a fuzzy PCM, in what follows. One of the earliest FAHP methods
was proposed by Buckley (1985), who introduced the use of fuzzy positive recipro-
cal matrices and derived a fuzzy priority weight vector using the geometric mean
method. His approach laid the foundation for many subsequent methods. The method
of extent analysis proposed by Chang (1996), which derives a fuzzy priority weight
vector from synthetic extent values and fuzzy dominance comparisons. This method
has been adopted in FAHP applications, mainly because of its computational and
implementation simplicity. The estimated priority weights are crisp in some methods
and fuzzy in others. In Mikhailov (2003), an estimation method of crisp priority
weights from an FPCM has been proposed based on fuzzy preference programming.
There are many approaches to estimating a normalized fuzzy priority weight vector
from an FPCM. In Wang et al. (2006a), a normalized fuzzy priority weight vector
is estimated by the logarithmic least squares method. The linear goal programming
approach is proposed for estimating a normalized fuzzy priority weight vector in
Wang and Chin (2008). Similar to the eigenvalue method in the classical AHP, the
fuzzy maximal eigenvector of an FPCM is defined and used for the estimation of
fuzzy priority weights (Krejci, 2017). On the other hand, the geometric mean method
in the classical AHP is extended to the case of PCM with triangular fuzzy numbers
so that three parameters of fuzzy priority weights expressed by triangular fuzzy num-
bers are obtained by applying the geometric mean method to lower-bound, middle
and upper-bound PCMs (Liu et al., 2017; Ramik & Korviny, 2010). Moreover, a heu-
ristic-based approach is proposed for obtaining fuzzy priority weights from a PCM
with triangular fuzzy numbers (Wang, 2019).

The FPCM components are supposed to show the ratios of fuzzy priority weights.
From this fact, the deviations between them are considered natural criteria for eval-
uating solutions of the estimation problem. If a normalized fuzzy priority weight
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vector has the same deviations as a solution to the estimation problem, it can be
another solution. Such solutions can be found, and the estimation problem can have
non-unique solutions, as demonstrated in Inuiguchi (2016) in the interval case. How-
ever, most existing FAHP methods estimate a unique fuzzy priority weight vector.
Moreover, minimizing the deviations between the FPCM components and ratios of
fuzzy priority weights becomes more complex than the previous estimation meth-
ods because of the multiplicity of component-wise deviations and the nonlinear-
ity. Then, we adopt a solution of a conventional method and extend it to a set of
solutions by adding normalized fuzzy priority vectors that have the same deviations
between FPCM components and ratios of fuzzy priority weights as the adopted solu-
tion. Obtaining the set of solutions enables us to analyze the decision problem more
deeply, as we know the DM’s hesitation among potential solutions.

In this paper, we investigate the decision analysis using the set of solutions to the
problem of estimating the normalized fuzzy priority weight vector from an FPCM.
We treat the case where all fuzzy components of both the pairwise comparison matrix
and the fuzzy priority weight vector are given by triangular or trapezoidal fuzzy num-
bers. Namely, we treat the case where the DM expresses her/his evaluation of the
relative importance of the i-th item to the j-th one by a triangular or trapezoidal
fuzzy number for all pairs of items. Triangular fuzzy numbers are used when the DM
evaluates the relative importance by a plausible value and the range of all possible
values. On the other hand, trapezoidal fuzzy numbers are used when the DM evalu-
ates the relative importance by a range of most plausible values and a range of all
possible values. Those cases would be more often than the general FPCMs as human
evaluations, because giving general fuzzy numbers is not an easy task for humans.
For the sake of simplicity, we call a PCM with triangular fuzzy numbers a triangular
fuzzy pairwise comparison matrix (TFPCM) and a PCM with trapezoidal fuzzy num-
bers a trapezoidal fuzzy pairwise comparison matrix (TZFPCM). The fuzzy priority
weights are assumed to be triangular fuzzy numbers for a TFPCM and trapezoidal
fuzzy numbers for a TZFPCM. An estimation method for a normalized triangular or
trapezoidal fuzzy priority weight vector has already been proposed (Wang & Chin,
2008). In the paper (Wang & Chin, 2008), a sound and simple method for estimating
fuzzy priority weights from an FPCM is proposed. The fuzzy priority weights are
obtained simply by solving a linear goal programming (LGP) problem. It is dem-
onstrated that the fuzzy priority weights obtained by the LGP method are more rea-
sonable than those obtained by the extent analysis method (Chang, 1996). The LGP
method is considered one of the reasonable and well-investigated approaches to the
estimation of normalized fuzzy priority weights. Therefore, we adopt a solution of
the LGP method (LGP solution) and extend it to a set of solutions having the same
deviations between FPCM components and ratios of fuzzy priority weights. Because
scalar multiplications of the upper and lower bases of the LGP solution by any posi-
tive numbers preserve the deviations of ratios of fuzzy priority weights from FPCM
components, we easily obtain the required set of solutions simply by taking care of
the normality conditions. Owing to this property, the set of solutions is obtained eas-
ily as a line segment in the TFPCM case and a polygon in the TZFPCM case. As we
obtain the set of solutions, the decision analysis using the LGP solution is extended
to the analysis with a set of solutions. Throughout this paper, we demonstrate that
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the introduction of the non-uniqueness of the solution to the estimation problem of
normalized fuzzy priority weights enables us to obtain all potential preference orders
of alternatives that the DM may agree on, and to analyze the DM’s preference in
more detail. The DM can select the final solution from several recommended orders
of alternatives according to her/his consent.

This paper is organized as follows. In the next section, we briefly introduce the
linear goal programming (LGP) method (Wang & Chin, 2008) for estimating a nor-
malized triangular/trapezoidal fuzzy priority weight vector from a given triangular/
trapezoidal fuzzy pairwise comparison matrix. In Section 3, we explain that the prob-
lem of estimating a triangular/trapezoidal normalized fuzzy priority weight vector
can have a non-unique solution. A simple method for obtaining a solution set from a
normalized fuzzy priority weight vector obtained by the LGP method is given. The
LGP method is extended by introducing the solution set. In Section 4, we describe
the calculation of the total utility value of each alternative as a fuzzy number. The
ordering methods based on the total utility value are shown based on Wang (2009);
Wang et al. (2006b). In Section 5, a numerical example is given to demonstrate the
usefulness and advantages of the proposed modification. In Section 6, the concluding
remarks are given.

2 Linear goal programming method in fuzzy AHP

In the AHP, first, the criteria and alternatives involved in a multiple criteria decision
making problem are arranged in a hierarchy. Then, the criteria and alternatives are
evaluated at each level of the hierarchy. In the AHP, priority weights of criteria and
alternatives for each criterion are estimated from PCMs given by the DM. However,
the normalization of priority weights of alternatives for each criterion can be con-
troversial (Belton, 1986). Then, in this paper, we assume that the priority weights
(marginal utility values) of alternatives for each criterion are given in some way by
the decision maker or by experts knowing alternatives well, to avoid the discussion of
the adequateness of their normalization. Accordingly, the sum of the marginal utility
values of all alternatives for each criterion is not always one, i.e., the normalization
is not assumed for the marginal utility values. On the other hand, we estimate the
priority weights of the criteria through pairwise comparisons evaluated by the DM
because the normalization of priority weights does not change the preference order
of alternatives.

In the conventional AHP, a priority weight vector w = (wy, ws, . .., wy)"T for cri-
teria is estimated from a PCM A = (a;;)n xn. In the conventional AHP, (i, )-th com-
ponent a;; of PCM A shows the relative importance of the i-th criterion over the j-th
criterion. It assumes that a,; is equal to w;/w;, i,j € N = {1,2,...,n}, if human
judgements are precise. However, due to the vagueness of the DM’s judgments, we
may assume only a;; ~ w;/wj, i,j € N. Then, priority weights w;,? € N are esti-
mated by the eigenvalue method (Saaty, 1980) or the geometric mean method (Craw-
ford, 1987). Both methods minimize the sum of deviations between a;; and w; /wj,
i,j € N (Innan & Inuiguchi, 2024), where the deviations are defined differently.
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On the other hand, in a type of FAHP (Wang & Chin, 2008), to reflect the vague-
ness of the DM’s judgments in a PCM, a FPCM is considered by representing the
vagueness of the components a;;, ¢,j € N (i # j), by fuzzy numbers. Accordingly,
fuzzy priority weight vector W = (0, s, . .., w,) " is estimated from a FPCM A
and used for comparing alternatives.

In this paper, we consider the cases where components a;;, ¢,j € N (i # j) of
FPCM A are specified by triangular fuzzy numbers, and by trapezoidal fuzzy num-
bers as shown in Fig. 1. As marginal utility values of alternatives for each criterion
are assumed to be given in some way by the DM or by experts knowing the alterna-
tives well, alternatives are compared using the estimated fuzzy priority weights for
criteria and the marginal utility values.

We describe the method when a TFPCM A4, i.e., each component @;; is a trian-

gular fuzzy number (a{»“j7 a%[, U) where al’ a% and ain are the lower bound, the

179
most plausible value and the upper bound for conceivable values for the relative
importance of the i-th criterion over the j-th criterion. Accordingly, the FPCM is

represented by

L 11\/[ U (aTp,al%,ath) -+ (ai"’aﬁl’ag")
A = (i) nxn = (a217a?1va21) 1 (a2n’a?n7a2n) O
(ag1, aé{ﬁ, ady) (ak,, ai\fz, a%) - N 1
where ak <aM<aUa i —l/aﬂ, a;j —1/aﬂ, i,j €N, but i#j, and

M U
1]7 z]’

component of A has a membership function shown on the left side of Fig. 1. Then,
the TFPCM A can be split into the following three crisp matrices:

=1,i € N. The triangular fuzzy number (a%, a} ) representing the (i, j)-th

L \T U L M N U

Fig. 1 Triangular and trapezoidal fuzzy numbers representing @;;.
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1 ... a%n 1 ... ali/#
AL = (ap)=| , Av=(a)) = | N
L M
aby -1 a1
1o @)
Ay = (aj)) : :
agl 1

Corresponding to TFPCM A, we consider triangular fuzzy numbers
w; = (wl,wM, wY), i € N for the fuzzy priority weights to be estimated. When
there exist triangular fuzzy numbers w; = (wl, wM,wY), i € N satisfying
ay = (ak, aM, al) = wi/w; = (wk/wl, wM /WM, wl jwh) i, 5 € N (i # j), the
given TFPCM A is considered consistent'. From these equations, we obtain the fol-
lowing equations (Wang & Chin, 2008) when the TFPCM A is consistent:

AWy = Wy + (n — L)W, 3)

AyWy = Wy, + (n — 1)Wy, “4)

AWy = nWy, (5)

where W, = (wk, ..., wh)T, Wy = (WM, ..., w)T, Wy = (wV, ..., w))T. As

with crisp PCM in the conventional AHP, it is not usual to obtain a consistent TFPCM
A due to the vagueness of the DM’s judgment. In other words, in real-world applica-
tions, we cannot expect that equations (3)—(5) hold. Therefore, deviational variable
vector for equations (3)—(5) are defined as follows:

Et —E~ = (AL — D)Wy — (n — D)W, 6)

It — I = (Ay = DWi — (n — )Wy, 7

A= (A — nl)War, ®)

where Et = (ef,...,eN)Y, E-=(e7,....e;)Y, I't=(, ....%D)",
'~ =0y, 7)Y, A= (61,...,6,)7T are deviational variable vectors, and 7 is

an n x n identity matrix. Components ;" , £, ,v;",7;,d; > 0,7 € N are deviational
variables satisfying e/ -7 =0, v;" -7, =0, i € N. Subsequently, the triangular
fuzzy priority weight vector W is estimated from the TFPCM A by minimizing the
sum of the deviational variables in equations (6)—(8).

As priority weights are frequently normalized in the conventional AHP, the nor-
malization condition for the fuzzy priority weight vector is required. The normaliza-

"In Wang and Chin (2008), it is called “precise". However, “precise"is confusable with a case where all
triangular fuzzy numbers in the given FPCM are reduced to real numbers. To avoid this confusion, we call
it “consistent".
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tion conditions (Wang & Elhag, 2006) of the triangular fuzzy priority weight vector
W are expressed as

Sowl+wr>1, Y whtw! <1, jeN, Y wl=1. )

iEN\j iEN\j iEN

Then, a triangular fuzzy priority vector W is estimated from a TFPCM A by mini-
mizing the sum of deviational variables under the constraints of equations (6)—(9).
The resulting problem is the following linear goal programming (LGP) problem:
(Wang & Chin, 2008)

minimize eT(ET +E- +T T+ 1" + A)

subject to (AL — )Wy — (n— )WL — ET + E~ =0,
(Ay =Wy, — (n— )Wy —I'" + T~ =0,
(Ap —n )Wy — A =0,

(10)
Z wlUer;le, Z w}er]Ugl, jEN,Zwi\/Izl,
1EN\J iEN\J i€EN
wiUng/IZwZLZE, 1 €N,
ET,E-,I'",~,A>0,
where e = (1,1,...,1)T and e is a sufficiently small positive number, employed to

treat wr > 0,7 € N, approximately. This model is called “the LGP model"proposed
by Wang and Chin (2008).

Next, we describe the LGP model when the components of FPCM are trapezoidal
fuzzy numbers. In this case, a TZFPCM is given by the DM:

L M 1 N U (aIfZ'r all\%f a11\127 aIUZ) (allljnr all\;bv all\rrm a§n>
pe ~ (az1, a31, a1, azy) 1 o (azy, a3y A3, G3,)
A= (aij)nxn = . . . . ,(11)
(am1, abls apyy ayy)  (anes aph, ab, ags) -+ 1
where, a <a <al <a2], i-—l/aﬂ, az; —l/aﬂ, i,j € N (i #j), and

i = 1,1 6 N. The trapezmdal fuzzy number (a”, a%[, ai\;, a};) representing the
(z, ])-th component of A has a membership function shown on the right side of Fig. 1.
The TZFPCM (11) is reduced to a TFPCM (1) when a%{ = a%\; fori,j € N.

Similar to TFPCM, the TZFPCM A can be split into four crisp matrices, Ar,, Awm,
AU of equation (2) with af;, a}}, a;} of trapezoidal fuzzy numbers a;; and Ax with

1] s
a;j N defined by:

An=@)=1| -~ = |. (12)
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We consider trapezoidal fuzzy numbers

w; = (wk, wM, wN, w),i € Nforthefuzzypriorityweightscorrespondingtothe TZF-

PCM A. If there exist trapezoidal fuzzy numbers w; = (w¥, wM, wN, wY),i € N sat-
isfying a;; = (aj;, a3}, agy, a;) = i /w; = (wi /wy, w /wl, wil Jwl, w jwy),
i,j € N (i # j), the TZFPCM is consistent. Then if the TZFPCM is consistent, we
obtain four equations, (3), (4) with Ap, and Ay of TZFPCM A and the following two

equations:

AWy = Wx + (n — 1) W, (13)
AnWa = Wy + (Tl — 1)WN, (14)
where Wy = (wl, ..., w))T.

Due to the vagueness of the DM’s judgments, equations (3), (4), (13), (14) do not
frequently hold. Then we introduce deviational variable vectors £+, E—, 't '~
of equations (6) and (7) with A" and AY of TZFPCM A, and AT, A~, AT and A~
defined by the following equations with AM and AN of TZFPCM A:

At — AT = (Au — D)Wn — (n — 1) Wy, (15)
AF A" = (Ay — D)Whi — (n — 1)Wx, (16)
where At = (5,607, A= =(6y,..,6,)%,
AT =\, a0 TandA™ = (A\], ..., \; ) Taredeviationalvariablevectors. Com-

ponents §;, 3,7, A", A7 > 0,7 € N are deviational variables satisfying §; - §; = 0,

7 Y5
AN =0,i€N.
The normalization condition of the trapezoidal fuzzy priority weight vector com-

posed of 1; = (wr, wM, wl¥,wY), i € N is expressed as

Sowl+wh>1, Y witw! <1, jEN,

iEN\j iEN\j (17)
Zwy—l—w}y{Zl, Zw?/[—i—w}\lgl,jéN.
iEN\j ieN\j

The trapezoidal fuzzy priority weight vector T is estimated from the TZFPCM A
by minimizing the sum of the deviation variables of E*, E—, I't, ', At A~
AT and A~ under the constraints of equations (6), (7), (15) and (16) with trapezoidal
fuzzy numbers. This estimation problem is formulated as the following LGP prob-
lem, similar to the problem from TFPCM A:
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minimize e EY+E + T+ I+ AT+ A" + AT+ A7)

subject to (AL —D)Wy —(n—1)W, —ET+E~ =0

(Ag — DWWy, —(n—1)Wy —-T't 41" =0

(A —DWx—(n—1)Wy - AT+ A" =0

(A —DWy—(n—1)Wx—AT+ 47 =0
Zw?—&—w?Zl,Zw%—&—w}jSl,jeN (18)

i€EN\j ieEN\j
Z w?+w}\421, Z wi»\/[—&—w;-\lgl, jeEN
iEN\j iEN\j

wf >w) >wM >wl>e ieN
Et BT, It I AT AT AT, A7 > 0.

This model is also “an LGP model". While problem (10) estimates a triangular fuzzy
priority weight vector from a TFPCM, problem (18) estimates a trapezoidal fuzzy
priority weight vector from a TZFPCM.

Remark 1 We may see a triangular fuzzy number @ = (a", a™, aV) as a trapezoidal
fuzzy number @’ = (a®, a™, aM, aV) where its core (the upper base) degenerates a
L M U

point. In this way, we may see a TFPCM A = (a;;) with a;; = (ais,azj,a;;) as a

TZFPCM A’ = (aj;) with a;; = (a%j, a%, a%-l, a%). However, the solution to Prob-
lem (10) with TFPCM A will be different from that of Problem (18) with TZFPCM
A’ because the objective functions are different. Using E~, ET, I't, '~ and A in
Problem (10), the objective function of Problem (18) with TZFPCM A’ becomes
eP'(Et+ E~ +I'" + I~ +2A), which is different from the objective function

e"(ET + E- + I't + T~ + A) of Problem (10) with TFPCM A. O

As described earlier, we assume that the marginal utility values u;(0;), j € M of
alternatives 0, j € M = {1,2,...,m} for each criterion ¢;, ¢ € N is given in some
way. Estimated fuzzy priority weights w;, ¢ € N of the criteria ¢;, © € N, we obtain
the total utility values of alternatives o;, j € M as fuzzy numbers U(oj), jeEMis
obtained by

r= Zwiui(oj), Zwi = 1}7 JE M’(19)

1477 (0,)(T) = sup {ng]rvl tap, (wi)
iEN €N

where 1 (o) and fpp;, the membership functions of U (0j) (j € M) and w;,
respectively.

The fuzzy total utility values of alternatives U (0j), j € M are defuzzified by the
centroid defuzzification method, i.e.,
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Jr TG (o (7)dr
UC(0j) = "% je M. 20
J f]R MU(oj)(T)dr ( )

Then the alternatives o;, j € M are ordered in the descending order of U°(o;),
j € M. This ordering method is investigated further in Section 4.

3 The solution sets under given TFPCM and TZFPCM

The previous section reviewed the LGP method Wang and Chin (2008) for estimat-
ing triangular fuzzy priority weights from a TFPCM and trapezoidal fuzzy priority
weights from a TZFPCM. Those estimation problems are reduced to linear program-
ming problems. The LGP method (Wang & Chin, 2008) is useful because fuzzy pri-
ority weights are obtained simply by solving a linear programming problem. The
fuzzy priority weights obtained by solving the linear programming problem are used
for the decision analysis, such as ordering alternatives.

Because components of a given PCM are supposed to show the ratios of the prior-
ity weights, the deviations between them are natural criteria for the evaluation of an
estimated normalized priority weight vector. Then, if a normalized priority vector
has the same deviations as the solution to the estimation problem, it is another solu-
tion. Recently, from this point of view, it has been shown that there are non-unique
solutions to the estimation problem of a normalized interval priority weight vector
in interval AHP (Inuiguchi, 2016). Many normalized interval priority weight vectors
have the same deviations between the ratios of the estimated normalized interval
priority weights and components of a given crisp/interval PCM. Thus, we have non-
unique solutions. A few investigations taking care of the non-uniqueness have been
done in the interval AHP (Inuiguchi et al., 2022).

The estimation problem of a normalized fuzzy priority weight vector can also be
analyzed in the same way. If a normalized fuzzy priority weight vector has the same
deviations as the solution to the estimation problem, it is another solution. When
we have many normalized fuzzy priority vectors having the same deviations, we
would also have non-unique solutions to the estimation problem of a normalized
fuzzy priority weight vector. In this section, we demonstrate the non-uniqueness of
the solution having the same deviations from a given TFPCM/TZFPCM as a given
solution. More concretely, we show the set of normalized fuzzy priority weight
vectors W = (0,19, . .., 1w,) " such that the deviations between w;/ w; and a;;,
i,j € N (i # j) are the same as a given solution.

We define the deviation vectors between the given FPCM components and the
ratios of fuzzy priority weights. A deviation vector between a TFPCM/TZFPCM
component and the corresponding ratio between triangular/trapezoidal fuzzy priority
weights is defined as follows:

Definition 1 The deviation vector between a TFPCM component and the correspond-
ing ratio of fuzzy priority weights is defined as follows:
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w; L wy’ M M U w]
_ i B i . .
Dev (aij7 ?) = Qi — —g | |y M| % T T L y 1) € N (’L # j),(zl)
wy W w; W
J J J
- L M U = _ (L M Uy -
where @;; = (a;, a;j,a;;) and w; = (w;', w;",w;’),1 € N.
For TZFPCM, it is defined in the same way as
~ L M N U
s Wi L i M W N W U i
Dev(ai-—>= a;; — —= a; — al. — ol —
I ij U | % N |0 %4 | % L )
w; w; w; w; wy | ) (22)
i,j €N (i #j),

where a;; = (af;, a}], aly, a;;) and @; = (wi, w}', wi, wy),i € N.

Note that we use the same function name Dev for TFPCM and TZPCM as we sup-
pose that no confusion occurs.
As the deviation vectors between given FPCM components and the ratios of normal-
ized fuzzy priority weights are defined, we can reasonably formulate the estimation
problem by minimizing these deviation vectors. However, this problem becomes a
nonlinear multiple objective programming problem. Then the formulated problem is
less tractable than the LGP method. By the tractability of the formulated problem and
its multiple research outcomes, we adopt the LGP solution and extend it to a set of
solutions in this paper.

As shown in the following example in the case of a TZFPCM, we can extend the

LGP solution to a set of normalized fuzzy priority weight vectors using the deviation
of (22).

Example 1 Consider a TZFPCM A defined by

. (1L,1,1,1)  (3,%,2,2) (&1,2 1)
A: (é’%}’ %}’ %7) (}7}7 ’17) (%71’2,3)
(f5:5:76) G LE) (1,1,1,1)

Ais a consistent FPCM as it satisfies (3), (4), (13), and (14) with the following normalized
fuzzy priority weight vector WP = (w7}, w5, w5)™:

) (0.30,0.35,0.45, 0.50)
WP = [ (0.25,0.30,0.40,0.45) | .
(0.15,0.20,0.30, 0.35)

Consider another normalized fuzzy priority weight vector W7 = (@], w3, w3
defined by
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W4 = [ (0.2275,0.288,0.384,0.4095)

i ( (0.273,0.336,0.432, 0.455) >
(0.1365,0.192, 0.288,0.3185) /)

Then, we have
Dev(aij, w; /0F) = Dev(a;j, wi /w]) = (0, 0, 0), 4,5 € N (i # j).

Therefore, the normalized fuzzy priority weight vector corresponding to a consistent
FPCM A is not always unique.

Example 1 demonstrates the non-uniqueness of the normalized fuzzy prior-
ity weights corresponding to a consistent FPCM. From this example, we know the
potential non-uniqueness of the solution to the problem for estimating the normalized
fuzzy priority weight vector W = (i, Wy, . . . , i, )" from a given FPCM A because
a consistent FPCM Az, = (1;/4;) is built from a fuzzy priority weight vector TW.

As described above, we adopt the LGP solution, and extend it to a set of normalized
fuzzy priority weight vectors having the same deviations. We show a simple method for
obtaining all solutions W satisfying Dev(a;;, w;/;) = Dev(aj, w; /w]),i,5 € N
(¢ # j) from a normalized fuzzy priority weight vector W* = (0}, w3, ..., w})
obtained by solving Problems (10) and (18). Let A;, and A3, be FPCMs associated
with normalized fuzzy priority weight vectors W and W*, respectively. The equal-
ity relations Dev(a;;, w;/w;) = Dev(a;;, w; /w}) for all (4, j) € N x N such that
i # jimply Az, = Ay, .. Therefore, FPCMs A3, and A ;. have the same deviations
from the given FPCM A. All normalized fuzzy priority weight vectors TV are reason-
ably considered solutions to the estimation problem if the FPCMs associated with
them have the same deviations from the given FPCM A as the FPCM associated with
the LGP solution WW*.

3.1 The solution set under a given TFPCM A

We describe a simple way for obtaining the set of normalized triangular fuzzy priority
weight vectors T such that the ratios of their components w; /10, i,5 € N (i # j)
are the same deviations from components d;;, i,7 € N (i # j) as W*, where W*
is a normalized triangular fuzzy priority weight vector corresponding to an optimal
solution to Problem (10) with TEPCM A. For the sake of convenience, W* is called
a TF-solution of the LGP method by solving Problem (10), or simply a TF-solution
of the LGP method.
From the constraints of Problem (10), the solution W* = (%, @3, ..., w%)T
composed of W} = (wr*, wM* wl*),i € N satisfies
Swtwt =1 Y wttwt <1, jeN Y wlt =1,
iEN\S iEN\S iEN (23)

sz*ZwZM*Zw%*>O, i€ N.

The other constraints of Problem (10) evaluate the values of deviational variables ET,
E~, ', "~ and A. Therefore, we are interestedin W = (i, o, . . . , W, )T satisfying
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(23)withreplacementofw; by w;,and Dev(a;;, w; /W;) = Dev(a;j, W} /w;),i,5 € N

i # j),wherew; = (w=,w™M, wY),i € N. Wcomposed of 0" = twl*, &V = twV*,
-] 1 1 1 p K3 1 K3 1
wM = t'w*, i € N with ¢,t' > 0 satisfies Dev(aq;, w;/w;) = Dev(aq;, w; /w})

and thus we should find ¢ > 0 satisfying

Sotw ttwpt =1, > twft +twl* <1, jEN, Y twd =1,
iEN\S iEN\] ieN
twd* > twM* > twk* >0, i € N.

24

From > .y wM* = 11in (23), 3.y 'wM* = 1 implies ¢’ = 1. From the first two
€N 1 1€EN 7

constraints of (24), we obtain

t - min
JEN

max

Zw?*—l—wm >1, t-n
J JEN

1EN\J

S wrr+wit | <1, (25
1EN\J

and from the last equation, we obtain

,wU* wL*
t - min ’K/I >1, t-max —{\“A <1 (26)
keN \ wy* keN \ w, ™
Then, eventually, we have the range of ¢ as an interval [t", Y] defined by
wt* 1
t¥ =max { max ’I“J , ) 27
keN w*
. Lx Ux
min | 0"+ ), wj
JEN\G
M
w 1
tY =min { min ’i , (28)
keEN wg*
Usx Lx
max (w4 D w;
JEN\G

Insummary,aset Wy ofsolutions W satisfying Dev(a, w; /w;) = Dev(a;, W} [w5),
i,7 € N (i # 7) is obtained as

Wr = {W: (@1, s, . ..

,wn)T |@; = (tw

Lx
]

M=
w; s

tw?*), i€ N, t € [tL,tU]}.(29)

The solution set W is uniquely obtained for Problem (10) as far as W* is a unique
TF-solution of the LGP method.
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Any solution T in Wi, composed of 0} = (tw!*, wM* twP*),i € N,t € [t&, Y]
is a feasible solution to Problem (10) together with tE+", tE~", tI't*, tI'~" and
A*, where ET*, E=", ', '~ and A* are values of deviational variables ET,
E-,I't, I'" and A at the optimal solution to Problem (10). Namely, we have

(AL — D(WE) — (n — 1) (tW}) —tE" +tE~" =0,
(Ay — D(W}) — (n — 1) (W) —tIT" +tI~" =0,
(A — nI)(tW3;) —tA* =0,

(A, — DtWy — (n — D)tW, —tET +tE~ =0,
(AU— )tWL—(ﬂ—l)tWU—tFJr—FtFi =0,

( M—nI)WM—A:(),

Yo otttk > 1, 3wl r el <1, je N, (30)
iEN\j iEN\j]

Z wM* =1

1EN

twl* > wM* > twk* >0, i € N,
tET  tE= It 0 A > 0.
The objective function value of this feasible solution to Problem (10) becomes

TAET 4B DT T+ A =tV (BT BT 4 T 4 T 4T A% (31)

Because EY" + E~" + I't" + """ is non-negative, the minimum objective func-
tion value among the feasible solutions corresponding to W € Wr is obtained for
t =t~ Fromt = 1 € [t¥ Y], we obtain

treT" (B + B 4 T 4 D) 4 TA < NEY BT+ T 47T 4+ AY).(32)

The right-hand side value of (32) is the optimal value of Problem (10), i.e., the mini-
mum objective function value of feasible solutions to Problem (10). This implied that
equality should hold in (32). Therefore, we obtain ¢ = 1.

3.2 The solution set under a given TZFPCM A

Let us discuss the solution set in the case where TZFPCM A is given. In this case,
the normalized trapezoidal fuzzy priority weight vector W* = (wf, @, ..., w5)T
obtained by solving Problem (18) satisfies

Z w?*—i—w;*Zl, Z wf*—i—w}}*gl, j €N,

iEN\j 1€EN\j
Z wi* +wi™ > 1, Z w™ +wi* <1, jEN, (33)
iEN\j iEN\j

wi* 2w = wl* > wit >0, i €N,

where @} = (w*, wM* wl* wI*). For the sake of convenience, W * is called a solu-

tion of the LGP method by solving Problem (18), or simply a TZF-solution of the LGP
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method. In the same way as the case where TFPCM A is given, the other constraints of
Problem (18) evaluate the values of deviational variables E*, E=, I't, '~ AT, A~
AT and A~ . Therefore, we are interested in W = (w1, s, . . ., w,)" satisfying (33)
with replacement of w; by w;, and Dev(a;;, w;/w;) = Dev(ai;, w; /w}),i,j € N
(i # j), where w; = (wF, wM, wl¥,wY), i € N. The fuzzy priority weight vector
W composed of Wl = t1wr*, Wl = tywl*, WM = towM*, WY = towl*, i € N
with t1, ¢y > 0 satisfies Dev(a;j, w;/w;) = Dev(aij, w; /w}). Thus, we should find
t1,t2 > 0 satisfying

Z tlw?*—l—tlw;*Zl, Z tlw}*—&—tlw}”gl? _].E.N'7

i€EN\j 1EN\j
>t} +tw)™ =1, Y bwd™ + twlT <1, j €N, (34)
iEN\j iEN\j

twl* > tawl* > towM* > tywk* >0, i € N.
From the first four constraints of (34), we obtain
tpomin [ > wwp | 21t max [ > wit+wt | <1, (35)

JEN |\ . JEN \ . .
1EN\J 1EN\J

. N Mx Mx N
t2 - min Zw + w) 21,152.1;16% Zw +wi* | <1 (36)
PEN\] iEN\j

From the fifth constraint of (34), we obtain

Le W i ivalently, e C o Y] 37)
= max ——,min —— |, or equivalently, — max ,min .
ty ieN wM*7ieN wl* d Y to iEN wI* ieN wi*
Thus, from (35) and (36), we define
1 1
L U
t]. = 7t1 = 9
. Lx* Usx Ux Lx (38)
min (wit+ ) v max | wf"+ ) w
JEN\G JEN\i
1 1
L U
th = R .
: M N N M (39)
min | 0"+ D u] max (w4 D w;
JEN\ JEN\i

Finally, introducing (37), the ranges of ¢; and ¢ are obtained as
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N M
tr € [max (5, L max 2t ) min (Y, ) min (40)
1 1> 2iEN wf* ) 1592 ieN wL )
Lx Ux
w; w,
to € |max (5, ¢ty max —— | ,min ( tY, ¢ min —— ) |, 41
’ {m (2 lieN wz-M*> (2 VieN w @b

where we note that the range of ¢2 depends on variable ¢;. For the sake of simplicity,
the lower and upper bounds of those ranges are given by 71, 7, 74*(¢1) and 73 (¢1)
so that we simply write the ranges as t; € [71',7{’] and t5 € [r(t1), 73 (t1)].

Namely, we define

7 = max ( ¥, t& max 5 | 70 = min ( ¢V, tY min — ], (42)
ieN w; " EN wy
Lx U
L L Wy U : wy
75'(t1) = max <t2,t1 rgé%\)/( wM*> , Ty (t1) = min <t2 t Hellj{,l N ) (43)
'3 3

where we write again that wr*, w*, wM* and wi*, i € N ate obtained in the opti-

mal solutions to Problem (18). Namely, t U 5,19, 7l and 77 are obtained as real
numbers while 73 (1) and 73'(¢1) are obtamed as functlons of a real number #;.
In summary, when TZFPCM A is given, a set Wryz of solutions W satisfying
Dev(aij, w;/w;) = Dev(aij, w; /w;),i,j € N (i # j) is obtained as
WTZ = {W == (1D1, ’@27 N ,’LD,,L)T |LZ) (tlw thM* tg’LUN* tl LUU*) 1€ ]\/v7
(44)
to € [TQL(tl),T;J(tl)] t1 € [Tl,TlU]}
The solution set Wy is uniquely obtained for Problem (18) as far as W* is a unique

TZF-solution of the LGP method.

Remark 2 The ranges given by (41) are the ¢1-oriented expressions. We also have the
to-oriented expressions as

’LUL* U}R*
to € |max | t5, 17 max ,min | t5,¢t; min , 45
o e () oo (Ve 3) | @
Nx Mk
w; w,
t1 € |max ( t&, tomax —— | ,min ( tY, to min —— |} |, 46
& o (ot e ) i (e S o

where the range of ¢; depends on variable 5. O

Similar to the case where a TFPCM is given, any solution
Wit ta] € Wrgz,  to € [1a(t1), 73 (t1)],  t1 € [tF, 7]  composed  of
W[ty, ] = (Lrwr*, tawM* towlN* t1wl*), i € N is a feasible solution to Problem
(] 8) together with t1E+*, tlEi*, t1F+*, tlpi*, tQAJr*, tzAi*, tQAJr* and tg/li*,
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where Et*, =", T, =", At* A="  At" and A~ " are values of deviational vari-
ables EY, E—,'T, I'~, At A=, AT and A~ at the optimal solution to Problem (18).
The objective function value of the solution corresponding to W [ty, t] is obtained
as V(BT + U E T T 0 DT AT AT g AT F AT
=t el (EYV + B+ T + I ) + et (AT + A+ AT+ A7), As
Et" + B~ 4+ Tt "+ I "and AT" + A~" + A" + A~ are nonnegative, among
feasible solutions corresponding to W [t1,t5], the solution W[rk, 74 (1)), i.e., the
solution W [ty, 5] with t; = 71* and ty = 7F(71) minimizes the objective function
of Problem (18). On the other hand, this solution corresponds to W* and thus, it is
optimal for Problem (18). This implies 7+ = 1 and 74*(1) = 1.

A numerical example illustrating the calculation of the ranges of 1 and ¢5 and the
decision analysis with solution set Wy is given in Section 5.2.

4 Decision analysis using the set of fuzzy priority weight vectors

This paper adopts the fuzzy total utility values (20) for evaluating alternatives. As
described in Section 2, we assume that marginal utility values u; (o), j € M of alter-
natives 0j, j € M = {1,2,...,m} for each criterion ¢;, ¢ € N is given. As described
in the previous section, we obtain a set of fuzzy priority weight vectors from the solu-
tion obtained by the LGP method. Since we assume that the DM has a flexible mind
from a wide perspective and evaluates vaguely, we regard each fuzzy priority weight
vector in the set as an acceptable opinion for the DM. Namely, the DM may accept
each fuzzy priority weight vector in the set. Therefore, we calculate the fuzzy total
utility values of alternatives for each fuzzy priority weight vector in the set. Utilizing
the centroid method for the defuzzification of fuzzy total utility values of alternatives,
we obtain a preference order among alternatives for each fuzzy priority weight vector
in the set. As the fuzzy priority weight vector varies with parameter ¢ or parameters ¢
and t9, we reveal the DM’s flexible thinking by showing the variations of defuzzified
fuzzy total utility values of alternatives with parameter ¢ under a given TFPCM, and
by a map of the preference orders of alternatives in the ¢;-t5 parameter space under a
given TZFPCM. Those are shown in the next section.

Let u;(0j),i € N be the marginal utility value of the j-th alternative o; for the i-th
criterion. Given a fuzzy priority weight vector W = (1, s, . . ., W,) ", the fuzzy
total utility value U(o;) and the defuzzified total utility value U (o0;) are calculated

by (19) and (20), respectively, where the calculation of I (0;) is shown by its mem-
bership function. In the remaining of this section, we show the simple calculation
of the defuzzified total utility value when w;, ¢« € N are triangular fuzzy priority
weights (wl, wM, wY),i € N.

Let [U(0;)] and [t;], be the a-level sets of U(o;) and w; for a € (0, 1], respec-
tively. From (19), we obtain
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(47)
= {7’ ‘ r= Zwiui(oj), Zwl =1, w; € [’lZ)i]a},

iEN iEN

where [W;]o = {r|a, (1) > a} = [awM + (1 — a)wl, awM + (1 — a)w].

7

The lower and upper bounds of U (0;),, are obtained respectively by

[U(oj)]g :min{Zwul (05) ‘ Zwl =1,w; € [Wia, © € N}, (48)

[(?(oj)]aU = max {Zwiui(oj) ‘ sz =1,w; € [Wila, i € N} . (49)

i€EN €N

These equations show that the lower and upper bounds of [[/(0;)] are obtained by
solving continuous knapsack problems.

For the sake of simplicity, we define wX(a)=awM + (1 —a)wl and
wY(a) = awM 4+ (1 —a)w?. We obtain [U(o;)]k EieN wMu;(oj)  for
o = 1. For the calculation of [U(0;)]% for o € (0,1), we consider a permu-
tation 7: N — N satisfying  wur(1)(0j) < Ur2)(05) < -+ < ur(ny(o;) and
m(s) < m(s+ 1) if ur(5)(0;) = Ur(s41)(0j), 5 <1 — 1. Then apriority weight vec-
torw = (w1, wa, ..., wy,) satisfying w.;y = w}g(i)(a), fori < k, wr) = wk(i)(a),

fori >k, and wry =1 — Z#k Wq(i), where integer k € N satisfies

Z w}rj(i) () + Zwk(i)(a) >1> Z w}rj(i)(a) + Z wf;(i)(a)' (50)

i<k i>k i<k i>k
. L U M _ M _
From the definitions of w;(«) and w; (o) and ), Wy = djenwy =1, for
any a € (0, 1), this equation is rewritten as

D Whi D Wy > 1> Y wie + > wi). 1)

i<k i>k i<k i>k

This equation implies that & is the same for any « € (0, 1).
As the continuous knapsack problem in (48) can be solved by the greedy method,
w defined above is the optimal solution. Eventually, for any a € (0,1], [U(0;)]% is

obtained as
[U(0))]e
_ U L (52)
- Z wﬂ'(i) (a)uﬂ'(’i) + Z wﬂ(i) (a Un (i) +11- Z uﬂ'(z) Z wﬂ' 1) Ur(k)>

i<k i>k i<k i>k
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where o =1 is included because the right-hand side value of (52) equals to
dieN wi\/[ui(oj)

In the same discussion, we obtain
[T ()5
53
= win (@ + D wi (@u) + (1 =D win(e) = 3wl (e ) (k) &)

i<l i>1 i<l >l
wherev : N — Nisapermutationsatisfyingu,,1y(0j) > uy(2)(0j) > -+ > Uy(n)(05)

and and v(s) < v(s+1) if u,(s(05) = ups+1)(0j), s <n—1. Integer [ € N
satisfies

Z wy(i)(a) + Zw{:(i)(a) >1> Z w}zj(i)(a) + ng(i)(a)' (54)

i<l i>1 i<l i>1

As shown in (52) and (53), [U(0;)]% and [U(0;)]Y are linear with respect to
. Then the fuzzy total utility value U (0;) becomes a triangular fuzzy number
U(oj) = (U™(05), UM(0;),U"(0;)), where

L U L U L
0j) = wa(i)“ﬂi) + an(i)“ﬂ(i) + (1 - Zwﬂ(i) - wa(i)> Ur(k), (55)

i<k i>k i<k i>k

Y (0;) :Zwyui(oj), (56)

ieN

L _ 19) L 19) L
0j) =D wWipytu(i) + Y Wit + (1 =D W =Y wuu)) Uy(ky,  (57)

i<l i>1 i<l i>1

where integers k and / are defined by (50) and (54).
The result of the centroid defuzzification (Wang, 2009) of the triangular fuzzy
number U(0;) = (U*(0;), UM(0;),UY(0;)) is obtained as

f]R rMU(Oj)(r)dT

Clo.) =
U on) fRMU(oj)(T)dT

= LU (o) + UM(0) + UV (0). (s®)

Therefore, under trlangular fuzzy priority weights (wr, wM, w}), i € N, fuzzy total
utility values U (o), j € M are easily calculated, and the altematlves oj,j€M
are ordered by U C(Oj) j € M. On the other hand, under trapezoidal fuzzy prior-
ity weights (wF, wM, wlN,w?), i € N, fuzzy total utility values U(0;), j € M are

obtained by numerlcal calculatlons of (20).
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5 Numerical example

In this section, we show two examples of multiple criteria decision problems to illus-
trate the decision analysis based on the FAHP when marginal utility values of alter-
natives are given for each criterion. One of the two examples treats a TFPCM, and
the other treats a TZFPCM. In these examples, we demonstrate the decision analysis
taking care of the non-uniqueness of the solution to the estimation problem of a nor-
malized fuzzy priority weight vector.

5.1 Decision Analysis under a given triangular FPCM

We consider a hypothetical multiple criteria decision problem with five criteria
ci,t € N={1,2,...,5} and three alternatives o1, 02, 03. The problem is given
abstractly, but, for example, we may imagine a problem where ¢;, 7 = 1,2,...,5 are
subjects such as ‘mathematics’, ‘physics’, ‘foreign language’, ‘chemistry’ and ‘litera-
ture’, and 04, j = 1, 2, 3 are students. In this imagination, the problem is to rank these
three students based on the given scores of the subjects, i.e., marginal utility values.

The marginal utility values of the alternatives for each of the five criteria are given
in Table 1. The DM gives the following TFPCM for showing the relative importance
between criteria:

1,51 (3,23) (?3,%) (?&é) (é#h%)
- (%7%73) (17171) (572,5) (2’2,3) (3737g)
A= (??%) (%7%7%) (1,L,1) (5,1,35) (?27?)
(Z7§7§) (ga?ag) (§a17 %) (17171) (57275)
G o7 G357 333 (.33 GLLIL

Solving Problem (10), we obtain the following normalized triangular fuzzy priority
weight vector:

(wy, wi’, wy) (0.3672, 0.4045, 0.4045)
} (w, wit wd) (0.2106, 0.2450, 0.2609)
W= (whwl,wd) [=] (0.1128, 0.1369, 0.1561)
(wy, wy", wy') (0.1128, 0.1369, 0.1561)
(wh, wM, wl) (0.0671, 0.0767, 0.0849)

Applying (27) and (28), we obtain t* = 1 and tY = 1.0859. Then the solution set is
obtained as

Wr = {W = (i, @, ..., 0,)" | (twl,w},tw)), i € N, t € [1,1.0859]} .(59)

Table 1 The marginal utility 1 s c3 ca s
Va}ue§ of alternatives for each o1 0.24 023 0.08 023 022
criterion
02 0.12 0.46 0.21 0.10 0.11
03 0.22 0.19 0.45 0.06 0.08
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For each W € Wr, we calculate U(o;) = (U"(0;), UM (0;),UY(0;)), 5 = 1,2,3
by (55), (56) and (57). For example, for ¢t = t*, we obtain k(01) = 4, I(01) = 3,
k(o2) = 4,1(02) = 3, k(o3) = 4and l(03) = 3 as integers k and / satisfying (50) and
(54) for each object. Then we obtain the following fuzzy total utility values:

) (0.2094,0.2127,0.2164)
Upep = | (0.2006,0.2121,0.2198) | .
(0.2013,0.2115,0.2207)

From (58), we have U€(0;) = 0.2129, U€(05) = 0.2108 and U€(03) = 0.2114.
Therefore, we obtain 01 = 03 = 0y from UC(01) > U€(03) > U€(03).

Similarly, for ¢t = tY, we obtain we obtain k(o1) =2, l(01) = 2, k(02) = 2,
1(02) =2, k(03) = 2 and I(03) = 2 as integers k and [ satisfying (50) and (54) for
each object. Then we obtain the following fuzzy total utility values:

i (0.2078,0.2127, 0.2153)
Upepo = | (0.2046,0.2121,0.2242) |.
(0.2029,0.2115, 0.2223)

From (58), we have U€(0;) = 0.2119, U€(05) = 0.2136 and U€(03) = 0.2122.
Therefore, we obtain 0y = 03 = 01 from U€(02) > U€(03) > U®(0;). The order of
the alternatives changed by changing ¢ from t" to tU.

The variation in the order of the alternatives with ¢ changing from " to tV is
shown in Fig. 2. Figure 2 is useful to understand intuitively all possible orders of
alternatives and their situation derived from the given TZFPCM. We can also see the
changes of U¢(0;), j = 1,2, 3 with ¢ in Fig. 2.

1.0859

e 1 3!
U™(00) (4Ly 10115 1.0452 1.0792 (tV)

0.214
ozoszorli o1z onTos laXoifos] [mzoza

0.2135 -

0.213 o

0.2125 . -

0.212

0.2115 : - Cpome

0211 -

0.2105 5 i ? 3
1 101 102 1.03 104 105 1.06 1.07 1.08 1.09

Fig. 2 Transitions of the defuzzified total fuzzy utility values U (0;), i = 1,2, 3.
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To see Fig. 2, we observe that U (05) and U®(03) increase with ¢ while U (01)
decreases. U (02) increases more than U (03). As each two of U¢(0;), j = 1,2,3
have an intersection, the order of the alternatives changes at three values, i.e., where
¢t is around 1.01, around 1.045, and around 1.08. Therefore, we understand that there
are four possible orders of the alternatives. In the conventional LGP method, only
01 > 03 > 02 was obtained, and this order has been considered the DM’s prefer-
ence. However, by considering the non-uniqueness of the solution of fuzzy prior-
ity weights, we found that the DM may consider those four possible orders, and
s/he may hesitate to choose one of the four orders. However, we understand that
o3 is never the most preferred alternative. The length of the range of ¢ where oy
is better than oo is 1.0452 — 1 = 0.452, while that where o is better than o is
1.0859 — 1.0452 = 0.407. If the DM agrees that the difference between 0.452 and
0.407 is significant, o; would be better than oy for the DM. Otherwise, the DM is
asked to provide additional preference data or employ some other techniques for
decision making.

5.2 Example of trapezoidal FPCM

We consider a decision making problem in which a faculty member must select the
most suitable student for a part-time research assistant position. Three students oj,
7 =1,2,3 have applied. As the characters of those students are good for the research
assistant position, the decision is to be made based on their academic performance
in five subjects: ¢;: mathematics (MA), co: physics (PH), c3: chemistry (CH), c4:
computer programming (PR), and c¢5: English (EN). The scores, i.e., marginal utility
values, of those students in the five subjects are shown in Table 2. Student o; takes
the best scores in MA, PR, and EN, but the differences from the second scores are
not very large. Student o2 takes by far the best score in PH than others, but the worst
score in MA. Student o3 takes by far the best score in CH, but the worst score in PH,
PR, and EN. Each student has her/his merit and demerit. The importance of these
subjects varies depending on the role of the position in the research project. A proper
analysis is necessary for a reasonable solution. Then, the DM required to make pair-
wise comparisons among the five subjects for obtaining a PCM. We assume that the
DM gives the following 5 x 5 TZFPCM:

1,1,1,1 5‘572‘1 17@4£71 §7@,£7Z §.E7ﬂ.7
Mgty Gend Gapgg) s el
( 5 ) 75) (1717171) (5777 1972) (17 s T 73) (37 ) ~6)
A FWH N 1w T 3710 %5y G W7 60
- (> ) 7) (7 9 74) (’77) (4’167272) (7 ) 7) ( )
Zﬁﬁ)é izﬁﬁl 2 2 16 4 1.1.1.1 Eﬁﬁzl
(17%1)%?7§) (137&371%a r{) (q?ga]lgfg) 1( ’()’1,1 )'g (37117 9 )
(z302005) (a1 Gohwld Gz GLLLD
TabIeZ The marginal.util— Students MA PH CH PR EN
;tzbysitles of students in each o1 7 79 57 70 65
) 09 62 98 68 62 60
03 71 68 97 57 57
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Each component of A shows the fuzzy evaluation of the relative importance between
subjects ¢; and c;.

By solving the trapezoidal fuzzy priority weight estimation model (18) for the
above trapezoidal fuzzy comparison matrix, we obtain the following normalized
trapezoidal fuzzy priority weight vector:

(0.2174, 0.2816, 0.3010, 0.3044)
(0.1739, 0.2330, 0.2524, 0.2609)
W= (0.1304, 0.1845, 0.2039, 0.2174) | . (61)
(0.0870, 0.1359, 0.1553, 0.1739)
(0.0435, 0.0874, 0.1068, 0.1304)

We know that MA is the most important subject, and the importance decreases in the
following order: MA, PH, CH, PR, and EN.

From this estimated trapezoidal fuzzy priority weight vector W, we obtain the set
of all trapezoidal fuzzy priority weight vectors having the same distance between @,
and W; /W, i,j € N,i# j as

Wrg = {W = (1[)1,’[2)2, . ,’lI)n)T |’J)Z = (tlw tg’w tg’w tle) i €N,

(62)

to € [TQL(fl),TQU(tl)] t; € [7'1 ,TlU]}
where 7, 7, T2(t1)" and 75 (t1)Y are obtained by (42) and (43) with ¢}, tV, t&
and tY calculated by (38) and (39). Indeed, from ¢t} = 1, t{ = 1.3528, t} = 1 and
tS = 1.0618, we obtain

=1, 77 = 1.3528, (1) = max(1,0.7721t;), 75 (t;) = min(1.0618,1.0112¢1).(63)

The alternatives (students) o;, @ = 1,2,3 are ordered by using the estimated
fuzzy priority weight vectors of the criteria (twl, towM, towl, tHw?),
i €N, ty € [ty ).ty t1 € [th.t1]. We calculate the fuzzy total utility values
of the three alternatives using a-cuts of the estimated trapezoidal fuzzy priority
weights. From these results, the vector of centroids of the fuzzy total utility values,
ie., UY =[U%o0y), UC(OQ) UC(03)]", is calculated by (20). In this example, we
use the a-cuts with o = 0, 0.2, 0.4, 0.6, 0.8, and 1.

By changing the values of t; and ¢, in the range ty € [175(t1), 75 (t1)] and
t; € [7F, 7], we obtain different U For example, we show U for a few settings
of t; and to. Wen t1 = 1 and t5 = 1, we obtain

UC = (71.33,70.79,70.87)". (64)
Therefore, UC(01) > U€(03) > U (03), which implies 0y = 03 = 0o. This result is

obtained for the conventional LGP method with the TZFPCM of (60). When ¢t = 1.15
and to = 1.03, we obtain
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03i01t02\

03 77 02 77 01
1.0713 1.0969/

1.1158

— T --1- 1.0618
1.06/ E | l
1.05
--1- 1.0445
1.04
to 1.03;
1.02/
1.0112) :
1.01 01 %03 7 02 03 7,03 7 01
1.007-; : : :
1.00 1.05 1.10' 1.15 1.20 1.25 1.30 1.35
1.1112 1.14011.1546 1.2052 1.3528
131
Fig.3 Variety of possible orders of alternatives and their areas in ¢1-t2 coordinate.
UC = (71.40,71.54,71.50)T. (65)

Although the centroids of fuzzy total utility values of alternatives are similar, it shows
UC(09) > U(03) > U€(01). Then we obtain 0y >~ 03 5 01. The orders of alterna-
tives obtained are different between those cases. That is, the order of alternatives
depends on the parameter setting. Therefore, the potentially recommendable order of
alternatives under the given TZFPCM is not unique, and it will be worthwhile pre-
senting all potentially recommendable orders of alternatives to the DM for making a
reasonable decision support.

Exploring all possible orders of alternatives and their areas by changing the param-
eters t1 and t5 within the range defined by t5 € [r3'(¢1), 74 (t1)] and t; € [7{, 7],
we obtain Fig. 3. Fig. 3 shows the map of possible orders of alternatives in the range
of parameters ¢; and ¢5. The orders of alternatives are indicated in the figure. We
observe four possible orders of alternatives in Fig. 3. If the possible order is unique,
the DM’s decision to order alternatives is decisive. However, in this example, we
have four. Then, we infer that the DM focuses on the four orders of alternatives. If
the DM selects an order intuitively from the figure, the decision problem is solved.
Otherwise, we analyze Fig. 3. Alternative o3 becomes better than o, as ¢; decreases.
Moreover, o1 also becomes better as ¢; decreases and it becomes the best when ¢
is small. In this example, parameter ¢; is more important than parameter ¢ because
it changes the order of alternatives. However, the selection of parameters ¢; and ¢,
is not an ecasy task, we may select the order of alternatives with the largest area,
or the order of alternatives at the gravity center of the range of parameters, as the
recommended order of alternatives for the DM. In this example, the area of order
09 7 03 77, 07 is the largest, and the area includes the gravity center. Indeed, the sizes
of the yellow, blue, green and pink areas are 0.004019 (20.87%), 0.001939 (10.07%),
0.001099 (5.71%) and 0.012199 (63.35%), respectively, where the percentage in the
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parenthesis shows the ratio to the area of the hexagon where parameters ¢; and to
take. The pink area is the largest and corresponds to the order os =~ 03 7~ 01. On
the other hand, the gravity center is obtained as ¢t; = 1.176431 and t» = 1.03105,
included in the pink area. Therefore, in both ways, we may recommend the DM to
select the order 0y 7~ 03 7~ 01, which is very different from the order obtained in the
conventional LGP method, in this example.

Another possible way to select a recommendable order is to utilize the Borda
count (Emerson, 2013) developed in the collective decision science. Borda count
aggregates multiple individual orders of alternatives into a consensus order of alter-
natives. In the Borda count, alternative o; ranked the 4-th in an order of # alternatives
gets (n — k) points. Then, an alternative gets points from all individual orders. The
consensus order of alternatives is obtained as the descending order of the total points
of alternatives. In our problem setting, each point (¢1,t2) can be seen as individu-
als. However, there are infinitely many (¢;,%2) in the range t2 € [7X (1), 74 (t1)],
t; € [7F, 7). Then we regard the size of the area of each order as the population of
individuals supporting the order. As we have shown the sizes of areas of all possible
orders, we obtain the total points B(0;), 7 = 1,2, 3 of alternatives as

B(o1) =2 x 0.004019 + 1 x 0.001939 4 0 x 0.001099 + 0 x 0.012199 = 0.009977,
B(o2) =0 x 0.004019 + 0 x 0.001939 + 1 x 0.001099 + 2 x 0.012199 = 0.025497,
B(o3) =1 x 0.004019 + 2 x 0.001939 + 2 x 0.001099 + 1 x 0.012199 = 0.022294.

Then, from B(oz) > B(o3) > B(01), we obtain the order 03 7~ 03 2 01 as a recom-
mendable order by the Borda count,

The above way to select a recommendable order does not consider the differ-
ences between the centroids of the fuzzy total utility values of alternatives but only
their orders. The other possible recommendation is based simply on the average of
the centroids of the fuzzy total utility values U (0;). Calculating them, we obtain
UC(01) = 71.4002, U€(0) = 71.6716 and U€(03) = 71.5767, where U (0;)
shows the average of the centroids of the fuzzy total utility values of 0;, 7 = 1,2, 3.
Therefore, although the differences are small, we obtain U (05) > U€(03) > U®(0;)
which implies 02 2~ 03 7~ 01.

In this example, 02 77 03 = 01 is recommended from multiple perspectives derived
from the set of normalized fuzzy priority weight vectors. Namely, student oo taking
a good score in PH is recommended as the best solution, and student o; with no very
remarkable subject scores is ranked at the last position. The result is very differ-
ent from that of the LGP solution, which recommends 07 27 03 77 03 in this exam-
ple, although the fuzzy total utility values are similar between the three students.
Normalized fuzzy priority vectors having the same deviations between the FPCM
components and ratios of fuzzy priority weights as the LGP solution are reasonably
considered other solutions to the problem of estimating a normalized fuzzy priority
weight vector, because FPCM components are supposed to show ratios of fuzzy pri-
ority weights. The result 0o 7, 03 7, 01 is supported by multiple perspectives, taking
into account the set of normalized fuzzy priority weight vectors. Therefore, the DM
can agree to adopt this order as the final selection.
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Finally, we note that the result of the decision analysis with the set of solutions is
not always different from that of the LGP method. When both results coincide, we
can confirm that the result is robust.

6 Conclusion

In this paper, the non-uniqueness of the solution to the estimation problem of the
normalized fuzzy priority weight vector is considered under a given triangular or
trapezoidal fuzzy pairwise comparison matrix. It is shown that all solutions are easily
obtained by parameters under a given solution of the conventional estimation method.
In the estimation problem with a triangular fuzzy pairwise comparison matrix, the
solution set becomes a line segment as far as the solution of the conventional estima-
tion method is unique. On the other hand, in the estimation problem with a trapezoi-
dal fuzzy pairwise comparison matrix, the solution set usually configures a hexagon,
pentagon, or tetragon. We depicted the situations about the orders of alternatives over
the set of estimated normalized fuzzy priority weight vectors in the figures. If all
estimated normalized fuzzy priority weight vectors suggest an order of alternatives,
it is a unique recommendable order, and this order is robust. Similarly, if all estimated
normalized fuzzy priority weight vectors suggest an alternative as the best, the alter-
native is a robust solution to the given multiple criteria decision making problem.
The figure of the situation about the orders of alternatives over the set of estimated
normalized fuzzy priority weight vectors will be useful for the DM to understand the
potential solutions intuitively. Together with the size of the area in the figure as well
as the Borda count, it may help the DM to make up her/his mind to select a solution.

Depicting the figure requires heavy calculations of the centroids of the fuzzy total
utility values for many ¢; and to in the problem with a trapezoidal fuzzy pairwise
comparison matrix. Their simple calculations should be investigated. In this paper,
we consider the fuzzy pairwise comparison matrix only in the highest layer of the
hierarchy of the decision problem. The introduction of fuzzy pairwise comparison
matrices in the other layers of the hierarchy of the decision problem is one of the
future topics.
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