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Abstract
The fuzzy numbers have been introduced to the analytic hierarchy process (AHP) 
to reflect the vagueness of the decision maker’s judgments. In fuzzy AHP (FAHP), 
a normalized fuzzy priority weight vector is estimated from a fuzzy pairwise com-
parison matrix (FPCM). Because the FPCM components are supposed to show the 
ratios of fuzzy priority weights, the deviations between them are considered natural 
criteria. Thus, if a normalized fuzzy priority weight vector has the same deviations 
as a solution to the estimation problem, it can be considered another solution. We 
may find such solutions, and the estimation problem can have many solutions. In 
this paper, we propose an FAHP approach to decision analysis using a set of solu-
tions to the estimation problem under an FPCM. First, we study the estimation 
problem of the normalized fuzzy priority weight vector under a given FPCM and 
review a conventional approach. Minimizing the deviations between the FPCM 
components and the ratios of fuzzy priority weights becomes more complex than 
the conventional approach. We adopt a solution of the conventional approach. We 
extend it to a set of solutions because we can find other normalized fuzzy priority 
weight vectors having the same deviations as the solution. A decision analysis is 
proposed using all of these normalized fuzzy priority weight vectors. In numerical 
examples, we demonstrate a detailed decision analysis from multiple perspectives, 
considering all potential orders of alternatives. Therefore, the decision maker may 
select the final solution from several recommended orders of alternatives in various 
ideas according to her/his consent.
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1  Introduction

The analytic hierarchy process (AHP) Saaty (1980) is one of the most widely used 
methods for multiple criteria decision analysis. It is applied to many decision making 
problems in various fields. In AHP, the decision maker (DM) makes pairwise com-
parisons between items such as alternatives and criteria. The DM evaluates the rela-
tive importance between items in each pairwise comparison. The conventional AHP 
requires the DM to give precise evaluations of the relative importance. However, it 
would be difficult for the DM to give consistent evaluations because human evalua-
tions are often vague and imprecise. To overcome this difficulty, a method of repre-
senting relative importance by intervals (Sugihara et al., 2004; Wang & Elhag, 2007; 
Mikhailov, 2004), fuzzy numbers (Buckley, 1985; Laarhoven & Pedrycz, 1983) 
and twofold intervals (Inuiguchi & Innan, 2022) has been proposed. Using such a 
method, we eventually obtain a pairwise comparison matrix (PCM) with intervals, 
fuzzy numbers, or twofold intervals.

In this paper, we focus on the case where the components of a PCM are fuzzy 
numbers, i.e., a fuzzy AHP, or more simply, an FAHP (Buckley, 1985). The FAHP 
has been widely applied in various fields, as reported in the literature. In the FAHP, 
several methods have been proposed to estimate priority weights from a PCM with 
fuzzy components. A PCM with fuzzy components is called simply an FPCM, as an 
abbreviation of a fuzzy PCM, in what follows. One of the earliest FAHP methods 
was proposed by Buckley (1985), who introduced the use of fuzzy positive recipro-
cal matrices and derived a fuzzy priority weight vector using the geometric mean 
method. His approach laid the foundation for many subsequent methods. The method 
of extent analysis proposed by Chang (1996), which derives a fuzzy priority weight 
vector from synthetic extent values and fuzzy dominance comparisons. This method 
has been adopted in FAHP applications, mainly because of its computational and 
implementation simplicity. The estimated priority weights are crisp in some methods 
and fuzzy in others. In Mikhailov (2003), an estimation method of crisp priority 
weights from an FPCM has been proposed based on fuzzy preference programming. 
There are many approaches to estimating a normalized fuzzy priority weight vector 
from an FPCM. In Wang et al. (2006a), a normalized fuzzy priority weight vector 
is estimated by the logarithmic least squares method. The linear goal programming 
approach is proposed for estimating a normalized fuzzy priority weight vector in 
Wang and Chin (2008). Similar to the eigenvalue method in the classical AHP, the 
fuzzy maximal eigenvector of an FPCM is defined and used for the estimation of 
fuzzy priority weights (Krejci, 2017). On the other hand, the geometric mean method 
in the classical AHP is extended to the case of PCM with triangular fuzzy numbers 
so that three parameters of fuzzy priority weights expressed by triangular fuzzy num-
bers are obtained by applying the geometric mean method to lower-bound, middle 
and upper-bound PCMs (Liu et al., 2017; Ramík & Korviny, 2010). Moreover, a heu-
ristic-based approach is proposed for obtaining fuzzy priority weights from a PCM 
with triangular fuzzy numbers (Wang, 2019).

The FPCM components are supposed to show the ratios of fuzzy priority weights. 
From this fact, the deviations between them are considered natural criteria for eval-
uating solutions of the estimation problem. If a normalized fuzzy priority weight 
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vector has the same deviations as a solution to the estimation problem, it can be 
another solution. Such solutions can be found, and the estimation problem can have 
non-unique solutions, as demonstrated in Inuiguchi (2016) in the interval case. How-
ever, most existing FAHP methods estimate a unique fuzzy priority weight vector. 
Moreover, minimizing the deviations between the FPCM components and ratios of 
fuzzy priority weights becomes more complex than the previous estimation meth-
ods because of the multiplicity of component-wise deviations and the nonlinear-
ity. Then, we adopt a solution of a conventional method and extend it to a set of 
solutions by adding normalized fuzzy priority vectors that have the same deviations 
between FPCM components and ratios of fuzzy priority weights as the adopted solu-
tion. Obtaining the set of solutions enables us to analyze the decision problem more 
deeply, as we know the DM’s hesitation among potential solutions.

In this paper, we investigate the decision analysis using the set of solutions to the 
problem of estimating the normalized fuzzy priority weight vector from an FPCM. 
We treat the case where all fuzzy components of both the pairwise comparison matrix 
and the fuzzy priority weight vector are given by triangular or trapezoidal fuzzy num-
bers. Namely, we treat the case where the DM expresses her/his evaluation of the 
relative importance of the i-th item to the j-th one by a triangular or trapezoidal 
fuzzy number for all pairs of items. Triangular fuzzy numbers are used when the DM 
evaluates the relative importance by a plausible value and the range of all possible 
values. On the other hand, trapezoidal fuzzy numbers are used when the DM evalu-
ates the relative importance by a range of most plausible values and a range of all 
possible values. Those cases would be more often than the general FPCMs as human 
evaluations, because giving general fuzzy numbers is not an easy task for humans. 
For the sake of simplicity, we call a PCM with triangular fuzzy numbers a triangular 
fuzzy pairwise comparison matrix (TFPCM) and a PCM with trapezoidal fuzzy num-
bers a trapezoidal fuzzy pairwise comparison matrix (TZFPCM). The fuzzy priority 
weights are assumed to be triangular fuzzy numbers for a TFPCM and trapezoidal 
fuzzy numbers for a TZFPCM. An estimation method for a normalized triangular or 
trapezoidal fuzzy priority weight vector has already been proposed (Wang & Chin, 
2008). In the paper (Wang & Chin, 2008), a sound and simple method for estimating 
fuzzy priority weights from an FPCM is proposed. The fuzzy priority weights are 
obtained simply by solving a linear goal programming (LGP) problem. It is dem-
onstrated that the fuzzy priority weights obtained by the LGP method are more rea-
sonable than those obtained by the extent analysis method (Chang, 1996). The LGP 
method is considered one of the reasonable and well-investigated approaches to the 
estimation of normalized fuzzy priority weights. Therefore, we adopt a solution of 
the LGP method (LGP solution) and extend it to a set of solutions having the same 
deviations between FPCM components and ratios of fuzzy priority weights. Because 
scalar multiplications of the upper and lower bases of the LGP solution by any posi-
tive numbers preserve the deviations of ratios of fuzzy priority weights from FPCM 
components, we easily obtain the required set of solutions simply by taking care of 
the normality conditions. Owing to this property, the set of solutions is obtained eas-
ily as a line segment in the TFPCM case and a polygon in the TZFPCM case. As we 
obtain the set of solutions, the decision analysis using the LGP solution is extended 
to the analysis with a set of solutions. Throughout this paper, we demonstrate that 
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the introduction of the non-uniqueness of the solution to the estimation problem of 
normalized fuzzy priority weights enables us to obtain all potential preference orders 
of alternatives that the DM may agree on, and to analyze the DM’s preference in 
more detail. The DM can select the final solution from several recommended orders 
of alternatives according to her/his consent.

This paper is organized as follows. In the next section, we briefly introduce the 
linear goal programming (LGP) method (Wang & Chin, 2008) for estimating a nor-
malized triangular/trapezoidal fuzzy priority weight vector from a given triangular/
trapezoidal fuzzy pairwise comparison matrix. In Section 3, we explain that the prob-
lem of estimating a triangular/trapezoidal normalized fuzzy priority weight vector 
can have a non-unique solution. A simple method for obtaining a solution set from a 
normalized fuzzy priority weight vector obtained by the LGP method is given. The 
LGP method is extended by introducing the solution set. In Section 4, we describe 
the calculation of the total utility value of each alternative as a fuzzy number. The 
ordering methods based on the total utility value are shown based on Wang (2009); 
Wang et al. (2006b). In Section 5, a numerical example is given to demonstrate the 
usefulness and advantages of the proposed modification. In Section 6, the concluding 
remarks are given.

2  Linear goal programming method in fuzzy AHP

In the AHP, first, the criteria and alternatives involved in a multiple criteria decision 
making problem are arranged in a hierarchy. Then, the criteria and alternatives are 
evaluated at each level of the hierarchy. In the AHP, priority weights of criteria and 
alternatives for each criterion are estimated from PCMs given by the DM. However, 
the normalization of priority weights of alternatives for each criterion can be con-
troversial (Belton, 1986). Then, in this paper, we assume that the priority weights 
(marginal utility values) of alternatives for each criterion are given in some way by 
the decision maker or by experts knowing alternatives well, to avoid the discussion of 
the adequateness of their normalization. Accordingly, the sum of the marginal utility 
values of all alternatives for each criterion is not always one, i.e., the normalization 
is not assumed for the marginal utility values. On the other hand, we estimate the 
priority weights of the criteria through pairwise comparisons evaluated by the DM 
because the normalization of priority weights does not change the preference order 
of alternatives.

In the conventional AHP, a priority weight vector w = (w1, w2, . . . , wn)T for cri-
teria is estimated from a PCM A = (aij)n×n. In the conventional AHP, (i, j)-th com-
ponent aij  of PCM A shows the relative importance of the i-th criterion over the j-th 
criterion. It assumes that aij  is equal to wi/wj , i, j ∈ N = {1, 2, . . . , n}, if human 
judgements are precise. However, due to the vagueness of the DM’s judgments, we 
may assume only aij ≈ wi/wj , i, j ∈ N . Then, priority weights wi, i ∈ N  are esti-
mated by the eigenvalue method (Saaty, 1980) or the geometric mean method (Craw-
ford, 1987). Both methods minimize the sum of deviations between aij  and wi/wj , 
i, j ∈ N  (Innan & Inuiguchi, 2024), where the deviations are defined differently.
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On the other hand, in a type of FAHP (Wang & Chin, 2008), to reflect the vague-
ness of the DM’s judgments in a PCM, a FPCM is considered by representing the 
vagueness of the components aij , i, j ∈ N (i ̸= j), by fuzzy numbers. Accordingly, 
fuzzy priority weight vector W̃ = (w̃1, w̃2, . . . , w̃n)T is estimated from a FPCM Ã 
and used for comparing alternatives.

In this paper, we consider the cases where components aij , i, j ∈ N  (i ̸= j) of 
FPCM Ã are specified by triangular fuzzy numbers, and by trapezoidal fuzzy num-
bers as shown in Fig. 1. As marginal utility values of alternatives for each criterion 
are assumed to be given in some way by the DM or by experts knowing the alterna-
tives well, alternatives are compared using the estimated fuzzy priority weights for 
criteria and the marginal utility values.

We describe the method when a TFPCM Ã, i.e., each component ãij  is a trian-
gular fuzzy number (aL

ij , aM
ij , aU

ij), where aL
ij , aM

ij  and aU
ij  are the lower bound, the 

most plausible value and the upper bound for conceivable values for the relative 
importance of the i-th criterion over the j-th criterion. Accordingly, the FPCM is 
represented by

	

Ã = (ãij)n×n =




1 (aL
12, aM

12, aU
12) · · · (aL

1n, aM
1n, aU

1n)
(aL

21, aM
21, aU

21) 1 · · · (aL
2n, aM

2n, aU
2n)

...
...

. . .
...

(aL
n1, aM

n1, aU
n1) (aL

n2, aM
n2, aU

n2) · · · 1


 ,� (1)

where aL
ij ≤ aM

ij ≤ aU
ij , aL

ij = 1/aU
ji, aM

ij = 1/aM
ji , i, j ∈ N , but i ̸= j, and 

ãii = 1, i ∈ N . The triangular fuzzy number (aL
ij , aM

ij , aU
ij) representing the (i, j)-th 

component of Ã has a membership function shown on the left side of Fig. 1. Then, 
the TFPCM Ã can be split into the following three crisp matrices:

Fig. 1  Triangular and trapezoidal fuzzy numbers representing ãij .
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AL = (aL
ij) =




1 · · · aL
1n

...
. . .

...
aL

n1 · · · 1


 , AM = (aM

ij ) =




1 · · · aM
1n

...
. . .

...
aM

n1 · · · 1


 ,

AU = (aU
ij) =




1 · · · aU
1n

...
. . .

...
aU

n1 · · · 1


 .

� (2)

Corresponding to TFPCM Ã, we consider triangular fuzzy numbers 
w̃i = (wL

i , wM
i , wU

i ), i ∈ N  for the fuzzy priority weights to be estimated. When 
there exist triangular fuzzy numbers w̃i = (wL

i , wM
i , wU

i ), i ∈ N  satisfying 
ãij = (aL

ij , aM
ij , aU

ij) = w̃i/w̃j = (wL
i /wU

j , wM
i /wM

j , wU
i /wL

j ), i, j ∈ N  (i ̸= j), the 
given TFPCM Ã is considered consistent1. From these equations, we obtain the fol-
lowing equations (Wang & Chin, 2008) when the TFPCM Ã is consistent:

	 ALWU = WU + (n − 1)WL, � (3)

	 AUWL = WL + (n − 1)WU, � (4)

	 AMWM = nWM, � (5)

where WL = (wL
1 , . . . , wL

n)T, WM = (wM
1 , . . . , wM

n )T, WU = (wU
1 , . . . , wU

n )T. As 
with crisp PCM in the conventional AHP, it is not usual to obtain a consistent TFPCM 
Ã due to the vagueness of the DM’s judgment. In other words, in real-world applica-
tions, we cannot expect that equations (3)–(5) hold. Therefore, deviational variable 
vector for equations (3)–(5) are defined as follows:

	 E+ − E− = (AL − I)WU − (n − 1)WL, � (6)

	 Γ + − Γ − = (AU − I)WL − (n − 1)WU, � (7)

	 ∆ = (AM − nI)WM, � (8)

where E+ = (ε+
1 , . . . , ε+

n )T, E− = (ε−
1 , . . . , ε−

n )T, Γ + = (γ+
1 , . . . , γ+

n )T, 
Γ − = (γ−

1 , . . . , γ−
n )T, ∆ = (δ1, . . . , δn)T are deviational variable vectors, and I is 

an n × n identity matrix. Components ε+
i , ε−

i , γ+
i , γ−

i , δi ≥ 0, i ∈ N  are deviational 
variables satisfying ε+

i · ε−
i = 0, γ+

i · γ−
i = 0, i ∈ N . Subsequently, the triangular 

fuzzy priority weight vector W̃  is estimated from the TFPCM Ã by minimizing the 
sum of the deviational variables in equations (6)–(8).

As priority weights are frequently normalized in the conventional AHP, the nor-
malization condition for the fuzzy priority weight vector is required. The normaliza-

1 In Wang and Chin (2008), it is called “precise". However, “precise"is confusable with a case where all 
triangular fuzzy numbers in the given FPCM are reduced to real numbers. To avoid this confusion, we call 
it “consistent".
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tion conditions (Wang & Elhag, 2006) of the triangular fuzzy priority weight vector 
W̃  are expressed as

	

∑
i∈N\j

wU
i + wL

j ≥ 1,
∑

i∈N\j

wL
i + wU

j ≤ 1, j ∈ N,
∑
i∈N

wM
i = 1.� (9)

Then, a triangular fuzzy priority vector W̃  is estimated from a TFPCM Ã by mini-
mizing the sum of deviational variables under the constraints of equations (6)–(9). 
The resulting problem is the following linear goal programming (LGP) problem: 
(Wang & Chin, 2008)

	

minimize eT(E+ + E− + Γ + + Γ − + ∆)
subject to (AL − I)WU − (n − 1)WL − E+ + E− = 0,

(AU − I)WL − (n − 1)WU − Γ + + Γ − = 0,

(AM − nI)WM − ∆ = 0,∑
i∈N\j

wU
i + wL

j ≥ 1,
∑

i∈N\j

wL
i + wU

j ≤ 1, j ∈ N,
∑
i∈N

wM
i = 1,

wU
i ≥ wM

i ≥ wL
i ≥ ϵ, i ∈ N,

E+, E−, Γ +, Γ −, ∆ ≥ 0,

�(10)

where e = (1, 1, . . . , 1)T and ϵ is a sufficiently small positive number, employed to 
treat wL

i > 0, i ∈ N , approximately. This model is called ”the LGP model"proposed 
by Wang and Chin (2008).

Next, we describe the LGP model when the components of FPCM are trapezoidal 
fuzzy numbers. In this case, a TZFPCM is given by the DM:

	

Ã = (ãij)n×n =




1 (aL
12, aM

12, aN
12, aU

12) · · · (aL
1n, aM

1n, aN
1n, aU

1n)
(aL

21, aM
21, aN

21, aU
21) 1 · · · (aL

2n, aM
2n, aN

2n, aU
2n)

...
...

. . .
...

(aL
n1, aM

n1, aN
n1, aU

n1) (aL
n2, aM

n2, aN
n2, aU

n2) · · · 1


 ,�(11)

where, aL
ij ≤ aM

ij ≤ aN
ij ≤ aU

ij , aL
ij = 1/aU

ji, aM
ij = 1/aN

ji, i, j ∈ N  (i ̸= j), and 
ãii = 1, i ∈ N . The trapezoidal fuzzy number (aL

ij , aM
ij , aN

ij , aU
ij) representing the 

(i, j)-th component of Ã has a membership function shown on the right side of Fig. 1. 
The TZFPCM (11) is reduced to a TFPCM (1) when aM

ij = aN
ij  for i, j ∈ N .

Similar to TFPCM, the TZFPCM Ã can be split into four crisp matrices, AL, AM, 
AU of equation (2) with aL

ij , aM
ij , aU

ij  of trapezoidal fuzzy numbers ãij  and AN with 
aN

ij  defined by:

	

AN = (aN
ij) =




1 · · · aN
1n

...
. . .

...
aN

n1 · · · 1


 .� (12)
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We consider trapezoidal fuzzy numbers 
w̃i = (wL

i , wM
i , wN

i , wU
i ), i ∈ N  for the fuzzy priority weights corresponding to the TZF-

PCM Ã. If there exist trapezoidal fuzzy numbers w̃i = (wL
i , wM

i , wN
i , wU

i ), i ∈ N  sat-
isfying ãij = (aL

ij , aM
ij , aN

ij , aU
ij) = w̃i/w̃j = (wL

i /wU
j , wM

i /wN
j , wN

i /wM
j , wU

i /wL
j ), 

i, j ∈ N  (i ̸= j), the TZFPCM is consistent. Then if the TZFPCM is consistent, we 
obtain four equations, (3), (4) with AL and AU of TZFPCM Ã and the following two 
equations:

	 AMWN = WN + (n − 1)WM, � (13)

	 ANWM = WM + (n − 1)WN, � (14)

where WN = (wN
1 , . . . , wN

n )T.
Due to the vagueness of the DM’s judgments, equations (3), (4), (13), (14) do not 

frequently hold. Then we introduce deviational variable vectors E+, E−, Γ +, Γ − 
of equations (6) and (7) with AL and AU of TZFPCM Ã, and ∆+, ∆−, Λ+ and Λ− 
defined by the following equations with AM and AN of TZFPCM Ã:

	 ∆+ − ∆− = (AM − I)WN − (n − 1)WM, � (15)

	 Λ+ − Λ− = (AN − I)WM − (n − 1)WN, � (16)

where ∆+ = (δ+
1 , . . . , δ+

n )T, ∆− = (δ−
1 , . . . , δ−

n )T, 
Λ+ = (λ+

1 , . . . , λ+
n )T, and Λ− = (λ−

1 , . . . , λ−
n )T are deviational variable vectors. Com-

ponents δ+
i , δ−

i , λ+
i , λ−

i ≥ 0, i ∈ N  are deviational variables satisfying δ+
i · δ−

i = 0, 
λ+

i · λ−
i = 0, i ∈ N .

The normalization condition of the trapezoidal fuzzy priority weight vector com-
posed of w̃i = (wL

i , wM
i , wN

i , wU
i ), i ∈ N  is expressed as

	

∑
i∈N\j

wU
i + wL

j ≥ 1,
∑

i∈N\j

wL
i + wU

j ≤ 1, j ∈ N,

∑
i∈N\j

wN
i + wM

j ≥ 1,
∑

i∈N\j

wM
i + wN

j ≤ 1, j ∈ N.
� (17)

The trapezoidal fuzzy priority weight vector W̃  is estimated from the TZFPCM Ã 
by minimizing the sum of the deviation variables of E+, E−, Γ +, Γ −, ∆+, ∆−, 
Λ+ and Λ− under the constraints of equations (6), (7), (15) and (16) with trapezoidal 
fuzzy numbers. This estimation problem is formulated as the following LGP prob-
lem, similar to the problem from TFPCM Ã:
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minimize eT(E+ + E− + Γ + + Γ − + ∆+ + ∆− + Λ+ + Λ−)
subject to (AL − I)WU − (n − 1)WL − E+ + E− = 0

(AU − I)WL − (n − 1)WU − Γ + + Γ − = 0
(AM − I)WN − (n − 1)WM − ∆+ + ∆− = 0
(AN − I)WM − (n − 1)WN − Λ+ + Λ− = 0∑

i∈N\j

wU
i + wL

j ≥ 1,
∑

i∈N\j

wL
i + wU

j ≤ 1, j ∈ N

∑
i∈N\j

wN
i + wM

j ≥ 1,
∑

i∈N\j

wM
i + wN

j ≤ 1, j ∈ N

wU
i ≥ wN

i ≥ wM
i ≥ wL

i ≥ ϵ, i ∈ N

E+, E−, Γ +, Γ −, ∆+, ∆−, Λ+, Λ− ≥ 0.

� (18)

This model is also “an LGP model". While problem (10) estimates a triangular fuzzy 
priority weight vector from a TFPCM, problem (18) estimates a trapezoidal fuzzy 
priority weight vector from a TZFPCM.

Remark 1  We may see a triangular fuzzy number ã = (aL, aM, aU) as a trapezoidal 
fuzzy number ã′ = (aL, aM, aM, aU) where its core (the upper base) degenerates a 
point. In this way, we may see a TFPCM Ã = (ãij) with ãij = (aL

ij , aM
ij , aU

ij) as a 
TZFPCM Ã′ = (ã′

ij) with ã′
ij = (aL

ij , aM
ij , aM

ij , aU
ij). However, the solution to Prob-

lem (10) with TFPCM Ã will be different from that of Problem (18) with TZFPCM 
Ã′ because the objective functions are different. Using E−, E+, Γ +, Γ − and ∆ in 
Problem (10), the objective function of Problem (18) with TZFPCM Ã′ becomes 
eT(E+ + E− + Γ + + Γ − + 2∆), which is different from the objective function 
eT(E+ + E− + Γ + + Γ − + ∆) of Problem (10) with TFPCM Ã. �

As described earlier, we assume that the marginal utility values ui(oj), j ∈ M  of 
alternatives oj , j ∈ M = {1, 2, . . . , m} for each criterion ci, i ∈ N  is given in some 
way. Estimated fuzzy priority weights w̃i, i ∈ N  of the criteria ci, i ∈ N , we obtain 
the total utility values of alternatives oj , j ∈ M  as fuzzy numbers Ũ(oj), j ∈ M  is 
obtained by

	
µŨ(oj)(r) = sup

{
min
i∈N

µw̃i(wi)
∣∣∣∣ r =

∑
i∈N

wiui(oj),
∑
i∈N

wi = 1

}
, j ∈ M,�(19)

where µŨ(oj) and µw̃i  the membership functions of Ũ(oj) (j ∈ M) and w̃i, 
respectively.

The fuzzy total utility values of alternatives Ũ(oj), j ∈ M  are defuzzified by the 
centroid defuzzification method, i.e.,
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UC(oj) =

´
R rµŨ(oj)(r)dr´
R µŨ(oj)(r)dr

, j ∈ M.� (20)

Then the alternatives oj , j ∈ M  are ordered in the descending order of UC(oj), 
j ∈ M . This ordering method is investigated further in Section 4.

3  The solution sets under given TFPCM and TZFPCM

The previous section reviewed the LGP method Wang and Chin (2008) for estimat-
ing triangular fuzzy priority weights from a TFPCM and trapezoidal fuzzy priority 
weights from a TZFPCM. Those estimation problems are reduced to linear program-
ming problems. The LGP method (Wang & Chin, 2008) is useful because fuzzy pri-
ority weights are obtained simply by solving a linear programming problem. The 
fuzzy priority weights obtained by solving the linear programming problem are used 
for the decision analysis, such as ordering alternatives.

Because components of a given PCM are supposed to show the ratios of the prior-
ity weights, the deviations between them are natural criteria for the evaluation of an 
estimated normalized priority weight vector. Then, if a normalized priority vector 
has the same deviations as the solution to the estimation problem, it is another solu-
tion. Recently, from this point of view, it has been shown that there are non-unique 
solutions to the estimation problem of a normalized interval priority weight vector 
in interval AHP (Inuiguchi, 2016). Many normalized interval priority weight vectors 
have the same deviations between the ratios of the estimated normalized interval 
priority weights and components of a given crisp/interval PCM. Thus, we have non-
unique solutions. A few investigations taking care of the non-uniqueness have been 
done in the interval AHP (Inuiguchi et al., 2022).

The estimation problem of a normalized fuzzy priority weight vector can also be 
analyzed in the same way. If a normalized fuzzy priority weight vector has the same 
deviations as the solution to the estimation problem, it is another solution. When 
we have many normalized fuzzy priority vectors having the same deviations, we 
would also have non-unique solutions to the estimation problem of a normalized 
fuzzy priority weight vector. In this section, we demonstrate the non-uniqueness of 
the solution having the same deviations from a given TFPCM/TZFPCM as a given 
solution. More concretely, we show the set of normalized fuzzy priority weight 
vectors W̃ = (w̃1, w̃2, . . . , w̃n)T such that the deviations between w̃i/w̃j  and ãij , 
i, j ∈ N  (i ̸= j) are the same as a given solution.

We define the deviation vectors between the given FPCM components and the 
ratios of fuzzy priority weights. A deviation vector between a TFPCM/TZFPCM 
component and the corresponding ratio between triangular/trapezoidal fuzzy priority 
weights is defined as follows:

Definition 1  The deviation vector between a TFPCM component and the correspond-
ing ratio of fuzzy priority weights is defined as follows:
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Dev

(
ãij ,

w̃i

w̃j

)
=

( ∣∣∣∣∣a
L
ij − wL

i

wU
j

∣∣∣∣∣ ,

∣∣∣∣∣a
M
ij − wM

i

wM
j

∣∣∣∣∣ ,

∣∣∣∣∣a
U
ij − wU

i

wL
j

∣∣∣∣∣

)
, i, j ∈ N (i ̸= j),�(21)

where ãij = (aL
ij , aM

ij , aU
ij) and w̃i = (wL

i , wM
i , wU

i ), i ∈ N .

For TZFPCM, it is defined in the same way as

	

Dev

(
ãij ,

w̃i

w̃j

)
=

( ∣∣∣∣∣a
L
ij − wL

i

wU
j

∣∣∣∣∣ ,

∣∣∣∣∣a
M
ij − wM

i

wN
j

∣∣∣∣∣ ,

∣∣∣∣∣a
N
ij − wN

i

wM
j

∣∣∣∣∣ ,

∣∣∣∣∣a
U
ij − wU

i

wL
j

∣∣∣∣∣

)
,

i, j ∈ N (i ̸= j),
�(22)

where ãij = (aL
ij , aM

ij , aN
ij , aU

ij) and w̃i = (wL
i , wM

i , wN
i , wU

i ), i ∈ N .

Note that we use the same function name Dev for TFPCM and TZPCM as we sup-
pose that no confusion occurs.
As the deviation vectors between given FPCM components and the ratios of normal-
ized fuzzy priority weights are defined, we can reasonably formulate the estimation 
problem by minimizing these deviation vectors. However, this problem becomes a 
nonlinear multiple objective programming problem. Then the formulated problem is 
less tractable than the LGP method. By the tractability of the formulated problem and 
its multiple research outcomes, we adopt the LGP solution and extend it to a set of 
solutions in this paper.

As shown in the following example in the case of a TZFPCM, we can extend the 
LGP solution to a set of normalized fuzzy priority weight vectors using the deviation 
of (22).

Example 1  Consider a TZFPCM Ã defined by

	
Ã=




(1, 1, 1, 1) ( 2
3 , 7

8 , 3
2 , 2) ( 6

7 , 7
6 , 9

4 , 10
3 )

( 1
2 , 2

3 , 8
7 , 3

2 ) (1, 1, 1, 1) ( 5
7 , 1, 2, 3)

( 3
10 , 4

9 , 6
7 , 7

6 ) ( 1
3 , 1

2 , 1, 7
5 ) (1, 1, 1, 1)


 .

Ã is a consistent FPCM as it satisfies (3), (4), (13), and (14) with the following normalized 
fuzzy priority weight vector W̃ p = (w̃p

1 , w̃p
2 , w̃p

3)T:

	
W̃ p =

( (0.30, 0.35, 0.45, 0.50)
(0.25, 0.30, 0.40, 0.45)
(0.15, 0.20, 0.30, 0.35)

)
.

Consider another normalized fuzzy priority weight vector W̃ q = (w̃q
1, w̃q

2, w̃q
3)T 

defined by
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W̃ q =

( (0.273, 0.336, 0.432, 0.455)
(0.2275, 0.288, 0.384, 0.4095)
(0.1365, 0.192, 0.288, 0.3185)

)
.

Then, we have

	 Dev(ãij , w̃p
i /w̃p

j ) = Dev(ãij , w̃q
i /w̃q

j ) = (0, 0, 0) , i, j ∈ N (i ̸= j).

Therefore, the normalized fuzzy priority weight vector corresponding to a consistent 
FPCM Ã is not always unique.

Example  1 demonstrates the non-uniqueness of the normalized fuzzy prior-
ity weights corresponding to a consistent FPCM. From this example, we know the 
potential non-uniqueness of the solution to the problem for estimating the normalized 
fuzzy priority weight vector W̃ = (w̃1, w̃2, . . . , w̃n)T from a given FPCM Ã because 
a consistent FPCM AW̃ = (w̃i/w̃j) is built from a fuzzy priority weight vector W̃ .

As described above, we adopt the LGP solution, and extend it to a set of normalized 
fuzzy priority weight vectors having the same deviations. We show a simple method for 
obtaining all solutions W̃  satisfying Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗

i /w̃∗
j ), i, j ∈ N  

(i ̸= j) from a normalized fuzzy priority weight vector W̃ ∗ = (w̃∗
1 , w̃∗

2 , . . . , w̃∗
n) 

obtained by solving Problems (10) and (18). Let AW̃  and AW̃ ∗  be FPCMs associated 
with normalized fuzzy priority weight vectors W̃  and W̃ ∗, respectively. The equal-
ity relations Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗

i /w̃∗
j ) for all (i, j) ∈ N × N  such that 

i ̸= j imply AW̃ = AW̃ ∗ . Therefore, FPCMs AW̃  and AW̃ ∗  have the same deviations 
from the given FPCM Ã. All normalized fuzzy priority weight vectors W̃  are reason-
ably considered solutions to the estimation problem if the FPCMs associated with 
them have the same deviations from the given FPCM Ã as the FPCM associated with 
the LGP solution W̃ ∗.

3.1  The solution set under a given TFPCM Ã

We describe a simple way for obtaining the set of normalized triangular fuzzy priority 
weight vectors W̃  such that the ratios of their components w̃i/w̃j , i, j ∈ N  (i ̸= j) 
are the same deviations from components ãij , i, j ∈ N  (i ̸= j) as W̃ ∗, where W̃ ∗ 
is a normalized triangular fuzzy priority weight vector corresponding to an optimal 
solution to Problem (10) with TFPCM Ã. For the sake of convenience, W̃ ∗ is called 
a TF-solution of the LGP method by solving Problem (10), or simply a TF-solution 
of the LGP method.

From the constraints of Problem (10), the solution W̃ ∗ = (w̃∗
1 , w̃∗

2 , . . . , w̃∗
n)T 

composed of w̃∗
i = (wL∗

i , wM∗
i , wU∗

i ), i ∈ N  satisfies

	

∑
i∈N\j

wU∗
i + wL∗

j ≥ 1,
∑

i∈N\j

wL∗
i + wU∗

j ≤ 1, j ∈ N,
∑
i∈N

wM∗
i = 1,

wU∗
i ≥ wM∗

i ≥ wL∗
i > 0, i ∈ N.

� (23)

The other constraints of Problem (10) evaluate the values of deviational variables E+, 
E−, Γ +, Γ − and ∆. Therefore, we are interested in W̃ = (w̃1, w̃2, . . . , w̃n)T satisfying 
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(23) with replacement of w̃∗
i  by w̃i, and Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗

i /w̃j), i, j ∈ N  
(i ̸= j), where w̃i = (wL

i , wM
i , wU

i ), i ∈ N . W composed of w̃L
i = tw̃L∗

i , w̃U
i = tw̃U∗

i , 
w̃M

i = t′w̃M∗
i , i ∈ N  with t, t′ > 0 satisfies Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗

i /w̃∗
j ) 

and thus we should find t > 0 satisfying

	

∑
i∈N\j

twU∗
i + twL∗

j ≥ 1,
∑

i∈N\j

twL∗
i + twU∗

j ≤ 1, j ∈ N,
∑
i∈N

t′wM∗
i = 1,

twU∗
i ≥ t′wM∗

i ≥ twL∗
i > 0, i ∈ N.

�(24)

From 
∑

i∈N wM∗
i = 1 in (23), 

∑
i∈N t′wM∗

i = 1 implies t′ = 1. From the first two 
constraints of (24), we obtain

	
t · min

j∈N


 ∑

i∈N\j

wU∗
i + wL∗

j


 ≥ 1, t · max

j∈N


 ∑

i∈N\j

wL∗
i + wU∗

j


 ≤ 1,� (25)

and from the last equation, we obtain

	
t · min

k∈N

(
wU∗

k

wM∗
k

)
≥ 1, t · max

k∈N

(
wL∗

k

wM∗
k

)
≤ 1.� (26)

Then, eventually, we have the range of t as an interval [tL, tU] defined by

	

tL = max




max
k∈N

wM∗
k

wU∗
k

,
1

min
i∈N


wL∗

i +
∑

j∈N\i

wU∗
j







, � (27)

	

tU = min




min
k∈N

wM∗
k

wL∗
k

,
1

max
i∈N


wU∗

i +
∑

j∈N\i

wL∗
j







. � (28)

In summary, a set WT of solutions W̃  satisfying Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗
i /w̃∗

j ), 
i, j ∈ N  (i ̸= j) is obtained as

	 WT =
{

W̃ = (w̃1, w̃2, . . . , w̃n)T |w̃i = (twL∗
i , wM∗

i , twU∗
i ), i ∈ N, t ∈ [tL, tU]

}
.�(29)

The solution set WT is uniquely obtained for Problem (10) as far as W̃ ∗ is a unique 
TF-solution of the LGP method.

1 3



S. Innan, M. Inuiguchi

Any solution W̄  in WT, composed of w̃∗
i = (twL∗

i , wM∗
i , twU∗

i ), i ∈ N , t ∈ [tL, tU] 
is a feasible solution to Problem (10) together with tE+∗, tE−∗, tΓ +∗, tΓ −∗ and 
∆∗, where E+∗, E−∗, Γ +∗, Γ −∗ and ∆∗ are values of deviational variables E+, 
E−, Γ +, Γ − and ∆ at the optimal solution to Problem (10). Namely, we have

	

(AL − I)(tW ∗
U) − (n − 1)(tW ∗

L) − tE+∗ + tE−∗ = 0,
(AU − I)(tW ∗

L) − (n − 1)(tW ∗
U) − tΓ +∗ + tΓ −∗ = 0,

(AM − nI)(tW ∗
M) − t∆∗ = 0,

(AL − I)tWU − (n − 1)tWL − tE+ + tE− = 0,
(AU − I)tWL − (n − 1)tWU − tΓ + + tΓ − = 0,
(AM − nI)WM − ∆ = 0,∑
i∈N\j

twU∗
i + twL∗

j ≥ 1,
∑

i∈N\j

twL∗
i + twU∗

j ≤ 1, j ∈ N,

∑
i∈N

wM∗
i = 1,

twU∗
i ≥ wM∗

i ≥ twL∗
i > 0, i ∈ N,

tE+∗
, tE−∗

, tΓ +∗
, tΓ −∗

, ∆∗ ≥ 0.

� (30)

The objective function value of this feasible solution to Problem (10) becomes

	 eT(tE+∗ + tE−∗ + tΓ +∗ + tΓ −∗ + ∆∗) = teT(E+∗ + E−∗ + Γ +∗ + Γ −∗) + eT∆∗.�(31)

Because E+∗ + E−∗ + Γ +∗ + Γ −∗ is non-negative, the minimum objective func-
tion value among the feasible solutions corresponding to W̃ ∈ WT is obtained for 
t = tL. From t = 1 ∈ [tL, tU], we obtain

	 tLeT(E+∗ + E−∗ + Γ +∗ + Γ −∗) + eT∆∗ ≤ eT(E+∗ + E−∗ + Γ +∗ + Γ −∗ + ∆∗).�(32)

The right-hand side value of (32) is the optimal value of Problem (10), i.e., the mini-
mum objective function value of feasible solutions to Problem (10). This implied that 
equality should hold in (32). Therefore, we obtain tL = 1.

3.2  The solution set under a given TZFPCM Ã

Let us discuss the solution set in the case where TZFPCM Ã is given. In this case, 
the normalized trapezoidal fuzzy priority weight vector W̃ ∗ = (w̃∗

1 , w̃∗
2 , . . . , w̃∗

n)T 
obtained by solving Problem (18) satisfies

	

∑
i∈N\j

wU∗
i + wL∗

j ≥ 1,
∑

i∈N\j

wL∗
i + wU∗

j ≤ 1, j ∈ N,

∑
i∈N\j

wN∗
i + wM∗

j ≥ 1,
∑

i∈N\j

wM∗
i + wN∗

j ≤ 1, j ∈ N,

wU∗
i ≥ wN∗

i ≥ wM∗
i ≥ wL∗

i > 0, i ∈ N,

� (33)

where w̃∗
i = (wL∗

i , wM∗
i , wN∗

i , wU∗
i ). For the sake of convenience, W̃ ∗ is called a solu-

tion of the LGP method by solving Problem (18), or simply a TZF-solution of the LGP 
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method. In the same way as the case where TFPCM Ã is given, the other constraints of 
Problem (18) evaluate the values of deviational variables E+, E−, Γ +, Γ −, ∆+, ∆−, 
Λ+ and Λ−. Therefore, we are interested in W̃ = (w̃1, w̃2, . . . , w̃n)T satisfying (33) 
with replacement of w̃∗

i  by w̃i, and Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗
i /w̃∗

j ), i, j ∈ N  
(i ̸= j), where w̃i = (wL

i , wM
i , wN

i , wU
i ), i ∈ N . The fuzzy priority weight vector 

W̃  composed of w̃L
i = t1w̃L∗

i , w̃U
i = t1w̃U∗

i , w̃M
i = t2w̃M∗

i , w̃N
i = t2w̃N∗

i , i ∈ N  
with t1, t2 > 0 satisfies Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗

i /w̃∗
j ). Thus, we should find 

t1, t2 > 0 satisfying

	

∑
i∈N\j

t1wU∗
i + t1wL∗

j ≥ 1,
∑

i∈N\j

t1wL∗
i + t1wU∗

j ≤ 1, j ∈ N,

∑
i∈N\j

t2wN∗
i + t2wM∗

j ≥ 1,
∑

i∈N\j

t2wM∗
i + t2wN∗

j ≤ 1, j ∈ N,

t1wU∗
i ≥ t2wN∗

i ≥ t2wM∗
i ≥ t1wL∗

i > 0, i ∈ N.

� (34)

From the first four constraints of (34), we obtain

	
t1 · min

j∈N


 ∑

i∈N\j

wU∗
i + wL∗

j


 ≥ 1, t1 · max

j∈N


 ∑

i∈N\j

wL∗
i + wU∗

j


 ≤ 1, � (35)

	
t2 · min

j∈N


 ∑

i∈N\j

wN∗
i + wM∗

j


 ≥ 1, t2 · max

j∈N


 ∑

i∈N\j

wM∗
i + wN∗

j


 ≤ 1. �(36)

From the fifth constraint of (34), we obtain

	
t2

t1
∈

[
max
i∈N

wL∗
i

wM∗
i

, min
i∈N

wU∗
i

wN∗
i

]
, or equivalently,

t1

t2
∈

[
max
i∈N

wN∗
i

wU∗
i

, min
i∈N

wM∗
i

wL∗
i

]
.�(37)

Thus, from (35) and (36), we define

	

tL1 = 1

min
i∈N


wL∗

i +
∑

j∈N\i

wU∗
j




,tU1 = 1

max
i∈N


wU∗

i +
∑

j∈N\i

wL∗
j




,

� (38)

	

tL2 = 1

min
i∈N


wM∗

i +
∑

j∈N\i

wN∗
j




,tU2 = 1

max
i∈N


wN∗

i +
∑

j∈N\i

wM∗
j




.

� (39)

Finally, introducing (37), the ranges of t1 and t2 are obtained as
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t1 ∈

[
max

(
tL1 , tL2 max

i∈N

wN∗
i

wU∗
i

)
, min

(
tU1 , tU2 min

i∈N

wM∗
i

wL∗
i

)]
, � (40)

	
t2 ∈

[
max

(
tL2 , t1 max

i∈N

wL∗
i

wM∗
i

)
, min

(
tU2 , t1 min

i∈N

wU∗
i

wN∗
i

)]
, � (41)

where we note that the range of t2 depends on variable t1. For the sake of simplicity, 
the lower and upper bounds of those ranges are given by τL

1 , τU
1 , τL

2 (t1) and τU
2 (t1) 

so that we simply write the ranges as t1 ∈
[
τL

1 , τU
1

]
 and t2 ∈

[
τL

2 (t1), τU
2 (t1)

]
. 

Namely, we define

	
τL

1 = max
(

tL1 , tL2 max
i∈N

wN∗
i

wU∗
i

)
, τU

1 = min
(

tU1 , tU2 min
i∈N

wM∗
i

wL∗
i

)
,� (42)

	
τL

2 (t1) = max
(

tL2 , t1 max
i∈N

wL∗
i

wM∗
i

)
, τU

2 (t1) = min
(

tU2 , t1 min
i∈N

wU∗
i

wN∗
i

)
,�(43)

where we write again that wL∗
i , wU∗

i , wM∗
i  and wN∗

i , i ∈ N  are obtained in the opti-
mal solutions to Problem (18). Namely, tL1 , tU1 , tL2 , tU2 , τL

1  and τU
1  are obtained as real 

numbers while τL
2 (t1) and τL

2 (t1) are obtained as functions of a real number t1.
In summary, when TZFPCM Ã is given, a set WTZ of solutions W̃  satisfying 

Dev(ãij , w̃i/w̃j) = Dev(ãij , w̃∗
i /w̃∗

j ), i, j ∈ N  (i ̸= j) is obtained as

	

WTZ =
{

W̃ = (w̃1, w̃2, . . . , w̃n)T |w̃i = (t1wL∗
i , t2wM∗

i , t2wN∗
i , t1wU∗

i ), i ∈ N,

t2 ∈
[
τL

2 (t1), τU
2 (t1)

]
, t1 ∈

[
τL

1 , τU
1

]}
.

�(44)

The solution set WTZ is uniquely obtained for Problem (18) as far as W̃ ∗ is a unique 
TZF-solution of the LGP method.

Remark 2  The ranges given by (41) are the t1-oriented expressions. We also have the 
t2-oriented expressions as

	
t2 ∈

[
max

(
tL2 , tL1 max

i∈N

wL∗
i

wM∗
i

)
, min

(
tU2 , tU1 min

i∈N

wR∗
i

wN∗
i

)]
, � (45)

	
t1 ∈

[
max

(
tL1 , t2 max

i∈N

wN∗
i

wU∗
i

)
, min

(
tU1 , t2 min

i∈N

wM∗
i

wL∗
i

)]
, � (46)

where the range of t1 depends on variable t2. �
Similar to the case where a TFPCM is given, any solution 

W̃ [t1, t2] ∈ WTZ, t2 ∈ [τL
2 (t1), τU

2 (t1)], t1 ∈ [τL
1 , τU

1 ] composed of 
w̃[t1, t2]∗i = (t1wL∗

i , t2wM∗
i , t2wN∗

i , t1wU∗
i ), i ∈ N  is a feasible solution to Problem 

(18) together with t1E+∗, t1E−∗, t1Γ +∗, t1Γ −∗, t2∆+∗, t2∆−∗, t2Λ+∗ and t2Λ−∗, 
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where E+∗, E−∗, Γ +∗, Γ −∗, ∆+∗, ∆−∗, Λ+∗ and Λ−∗ are values of deviational vari-
ables E+, E−, Γ +, Γ −, ∆+, ∆−, Λ+ and Λ− at the optimal solution to Problem (18). 
The objective function value of the solution corresponding to W̃ [t1, t2] is obtained 
as eT(t1E+∗ + t1E−∗ + t1Γ +∗ + t1Γ −∗ + t2∆+∗ + t2∆−∗ + t2Λ+∗ + t2Λ−∗)
= t1eT(E+∗ + E−∗ + Γ +∗ + Γ −∗) + t2eT(∆+∗ + ∆−∗ + Λ+∗ + Λ−∗). As 
E+∗ + E−∗ + Γ +∗ + Γ −∗ and ∆+∗ + ∆−∗ + Λ+∗ + Λ−∗ are nonnegative, among 
feasible solutions corresponding to W̃ [t1, t2], the solution W̃ [τL

1 , τL
2 (τL

1 )], i.e., the 
solution W̃ [t1, t2] with t1 = τL

1  and t2 = τL
2 (τL

1 ) minimizes the objective function 
of Problem (18). On the other hand, this solution corresponds to W̃ ∗ and thus, it is 
optimal for Problem (18). This implies τL

1 = 1 and τL
2 (1) = 1.

A numerical example illustrating the calculation of the ranges of t1 and t2 and the 
decision analysis with solution set WTZ is given in Section 5.2.

4  Decision analysis using the set of fuzzy priority weight vectors

This paper adopts the fuzzy total utility values (20) for evaluating alternatives. As 
described in Section 2, we assume that marginal utility values ui(oj), j ∈ M  of alter-
natives oj , j ∈ M = {1, 2, . . . , m} for each criterion ci, i ∈ N  is given. As described 
in the previous section, we obtain a set of fuzzy priority weight vectors from the solu-
tion obtained by the LGP method. Since we assume that the DM has a flexible mind 
from a wide perspective and evaluates vaguely, we regard each fuzzy priority weight 
vector in the set as an acceptable opinion for the DM. Namely, the DM may accept 
each fuzzy priority weight vector in the set. Therefore, we calculate the fuzzy total 
utility values of alternatives for each fuzzy priority weight vector in the set. Utilizing 
the centroid method for the defuzzification of fuzzy total utility values of alternatives, 
we obtain a preference order among alternatives for each fuzzy priority weight vector 
in the set. As the fuzzy priority weight vector varies with parameter t or parameters t1 
and t2, we reveal the DM’s flexible thinking by showing the variations of defuzzified 
fuzzy total utility values of alternatives with parameter t under a given TFPCM, and 
by a map of the preference orders of alternatives in the t1-t2 parameter space under a 
given TZFPCM. Those are shown in the next section.

Let ui(oj), i ∈ N  be the marginal utility value of the j-th alternative oj  for the i-th 
criterion. Given a fuzzy priority weight vector W̃ = (w̃1, w̃2, . . . , w̃n)T, the fuzzy 
total utility value Ũ(oj) and the defuzzified total utility value UC(oj) are calculated 
by (19) and (20), respectively, where the calculation of Ũ(oj) is shown by its mem-
bership function. In the remaining of this section, we show the simple calculation 
of the defuzzified total utility value when w̃i, i ∈ N  are triangular fuzzy priority 
weights (wL

i , wM
i , wU

i ), i ∈ N .
Let [Ũ(oj)]α and [w̃i]α be the α-level sets of Ũ(oj) and w̃i for α ∈ (0, 1], respec-

tively. From (19), we obtain
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[Ũ(oj)]α =
{

r|µŨ(oj)(r) ≥ α
}

=

{
r

∣∣∣ r =
∑
i∈N

wiui(oj),
∑
i∈N

wi = 1, wi ∈ [w̃i]α

}
,
� (47)

where [w̃i]α = {r|w̃i(r) ≥ α} = [αwM
i + (1 − α)wL

i , αwM
i + (1 − α)wU

i ].
The lower and upper bounds of Ũ(oj)α are obtained respectively by

	
[Ũ(oj)]Lα = min

{∑
i∈N

wiui(oj)
∣∣∣

∑
i∈N

wi = 1, wi ∈ [w̃i]α, i ∈ N

}
, � (48)

	
[Ũ(oj)]α

U = max

{∑
i∈N

wiui(oj)
∣∣∣

∑
i∈N

wi = 1, wi ∈ [w̃i]α, i ∈ N

}
. � (49)

These equations show that the lower and upper bounds of [Ũ(oj)]α are obtained by 
solving continuous knapsack problems.

For the sake of simplicity, we define wL
i (α) = αwM

i + (1 − α)wL
i  and 

wU
i (α) = αwM

i + (1 − α)wU
i . We obtain [Ũ(oj)]Lα =

∑
i∈N wM

i ui(oj) for 
α = 1. For the calculation of [Ũ(oj)]Lα for α ∈ (0, 1), we consider a permu-
tation π : N → N  satisfying uπ(1)(oj) ≤ uπ(2)(oj) ≤ · · · ≤ uπ(n)(oj) and 
π(s) < π(s + 1) if uπ(s)(oj) = uπ(s+1)(oj), s ≤ n − 1. Then a priority weight vec-
tor w = (w1, w2, . . . , wn) satisfying wπ(i) = wU

π(i)(α), for i < k, wπ(i) = wL
π(i)(α), 

for i > k, and wπ(k) = 1 −
∑

i̸=k wπ(i), where integer k ∈ N  satisfies

	

∑
i≤k

wU
π(i)(α) +

∑
i>k

wL
π(i)(α) > 1 >

∑
i<k

wU
π(i)(α) +

∑
i≥k

wL
π(i)(α).� (50)

From the definitions of wL
i (α) and wU

i (α) and 
∑

i∈N wM
π(i) =

∑
j∈N wM

j = 1, for 
any α ∈ (0, 1), this equation is rewritten as

	

∑
i≤k

wU
π(i) +

∑
i>k

wL
π(i) > 1 >

∑
i<k

wU
π(i) +

∑
i≥k

wL
π(i).� (51)

This equation implies that k is the same for any α ∈ (0, 1).
As the continuous knapsack problem in (48) can be solved by the greedy method, 

w defined above is the optimal solution. Eventually, for any α ∈ (0, 1], [Ũ(oj)]Lα is 
obtained as

	

[Ũ(oj)]Lα

=
∑
i<k

wU
π(i)(α)uπ(i) +

∑
i>k

wL
π(i)(α)uπ(i) +

(
1 −

∑
i<k

wU
π(i)(α) −

∑
i>k

wL
π(i)(α)

)
uπ(k),

�(52)
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where α = 1 is included because the right-hand side value of (52) equals to ∑
i∈N wM

i ui(oj).
In the same discussion, we obtain

	

[Ũ(oj)]Uα

=
∑
i<l

wU
ν(i)(α)uν(i) +

∑
i>l

wL
ν(i)(α)uν(i) +

(
1 −

∑
i<l

wU
ν(i)(α) −

∑
i>l

wL
ν(i)(α)

)
uν(k),

�(53)

where ν : N → N  is a permutation satisfying uν(1)(oj) ≥ uν(2)(oj) ≥ · · · ≥ uν(n)(oj) 
and and ν(s) < ν(s + 1) if uν(s)(oj) = uν(s+1)(oj), s ≤ n − 1. Integer l ∈ N  
satisfies

	

∑
i≤l

wU
ν(i)(α) +

∑
i>l

wL
ν(i)(α) > 1 >

∑
i<l

wU
ν(i)(α) +

∑
i≥l

wL
ν(i)(α).� (54)

As shown in (52) and (53), [Ũ(oj)]Lα and [Ũ(oj)]Uα  are linear with respect to 
α. Then the fuzzy total utility value Ũ(oj) becomes a triangular fuzzy number 
Ũ(oj) = (UL(oj), UM(oj), UU(oj)), where

	
UL(oj) =

∑
i<k

wU
π(i)uπ(i) +

∑
i>k

wL
π(i)uπ(i) +

(
1 −

∑
i<k

wU
π(i) −

∑
i>k

wL
π(i)

)
uπ(k), �(55)

	
UM(oj) =

∑
i∈N

wM
i ui(oj), � (56)

	
UL(oj) =

∑
i<l

wU
ν(i)uν(i) +

∑
i>l

wL
ν(i)uν(i) +

(
1 −

∑
i<l

wU
ν(i) −

∑
i>l

wL
ν(i)

)
uν(k), �(57)

where integers k and l are defined by (50) and (54).
The result of the centroid defuzzification (Wang, 2009) of the triangular fuzzy 

number Ũ(oj) = (UL(oj), UM(oj), UU(oj)) is obtained as

	
UC(oj) =

´
R rµŨ(oj)(r)dr´
R µŨ(oj)(r)dr

= 1
3

(UL(oj) + UM(oj) + UU(oj)).� (58)

Therefore, under triangular fuzzy priority weights (wL
i , wM

i , wU
i ), i ∈ N , fuzzy total 

utility values UC(oj), j ∈ M  are easily calculated, and the alternatives oj , j ∈ M  
are ordered by UC(oj), j ∈ M . On the other hand, under trapezoidal fuzzy prior-
ity weights (wL

i , wM
i , wN

i , wU
i ), i ∈ N , fuzzy total utility values UC(oj), j ∈ M  are 

obtained by numerical calculations of (20).
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5  Numerical example

In this section, we show two examples of multiple criteria decision problems to illus-
trate the decision analysis based on the FAHP when marginal utility values of alter-
natives are given for each criterion. One of the two examples treats a TFPCM, and 
the other treats a TZFPCM. In these examples, we demonstrate the decision analysis 
taking care of the non-uniqueness of the solution to the estimation problem of a nor-
malized fuzzy priority weight vector.

5.1  Decision Analysis under a given triangular FPCM

We consider a hypothetical multiple criteria decision problem with five criteria 
ci, i ∈ N = {1, 2, . . . , 5} and three alternatives o1, o2, o3. The problem is given 
abstractly, but, for example, we may imagine a problem where ci, i = 1, 2, . . . , 5 are 
subjects such as ‘mathematics’, ‘physics’, ‘foreign language’, ‘chemistry’ and ‘litera-
ture’, and oj , j = 1, 2, 3 are students. In this imagination, the problem is to rank these 
three students based on the given scores of the subjects, i.e., marginal utility values.

The marginal utility values of the alternatives for each of the five criteria are given 
in Table 1. The DM gives the following TFPCM for showing the relative importance 
between criteria:

	

Ã=




(1, 1, 1) ( 3
2 , 2, 5

2 ) ( 5
2 , 3, 7

2 ) ( 5
2 , 3, 7

2 ) ( 7
2 , 4, 9

2 )
( 2

5 , 1
2 , 2

3 ) (1, 1, 1) ( 3
2 , 2, 5

2 ) ( 3
2 , 2, 5

2 ) ( 5
2 , 3, 7

2 )
( 2

7 , 1
3 , 2

5 ) ( 2
3 , 1

2 , 2
5 ) (1, 1, 1) ( 2

3 , 1, 3
2 ) ( 3

2 , 2, 5
2 )

( 2
7 , 1

3 , 2
5 ) ( 2

3 , 1
2 , 2

5 ) ( 2
3 , 1, 3

2 ) (1, 1, 1) ( 3
2 , 2, 5

2 )
( 2

9 , 1
4 , 2

7 ) ( 2
5 , 1

3 , 2
7 ) ( 2

3 , 1
2 , 2

5 ) ( 2
5 , 1

2 , 2
3 ) (1, 1, 1)




.

Solving Problem (10), we obtain the following normalized triangular fuzzy priority 
weight vector:

	

W̃ =




(wL
1 , wM

1 , wU
1 )

(wL
2 , wM

2 , wU
2 )

(wL
3 , wM

3 , wU
3 )

(wL
4 , wM

4 , wU
4 )

(wL
5 , wM

5 , wU
5 )


 =




(0.3672, 0.4045, 0.4045)
(0.2106, 0.2450, 0.2609)
(0.1128, 0.1369, 0.1561)
(0.1128, 0.1369, 0.1561)
(0.0671, 0.0767, 0.0849)


 .

Applying (27) and (28), we obtain tL = 1 and tU = 1.0859. Then the solution set is 
obtained as

	 WT =
{

W̃ = (w̃1, w̃2, . . . , w̃n)T
∣∣ (twL

i , wM
i , twU

i ), i ∈ N, t ∈ [1, 1.0859]
}

.�(59)

c1 c2 c3 c4 c5

o1 0.24 0.23 0.08 0.23 0.22
o2 0.12 0.46 0.21 0.10 0.11
o3 0.22 0.19 0.45 0.06 0.08

Table 1  The marginal utility 
values of alternatives for each 
criterion
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For each W̃ ∈ WT, we calculate Ũ(oj) = (UL(oj), UM(oj), UU(oj)), j = 1, 2, 3 
by (55), (56) and (57). For example, for t = tL, we obtain k(o1) = 4, l(o1) = 3, 
k(o2) = 4, l(o2) = 3, k(o3) = 4 and l(o3) = 3 as integers k and l satisfying (50) and 
(54) for each object. Then we obtain the following fuzzy total utility values:

	
Ũ|t=tL =

( (0.2094, 0.2127, 0.2164)
(0.2006, 0.2121, 0.2198)
(0.2013, 0.2115, 0.2207)

)
.

From (58), we have UC(o1) = 0.2129, UC(o2) = 0.2108 and UC(o3) = 0.2114. 
Therefore, we obtain o1 ≻ o3 ≻ o2 from UC(o1) > UC(o3) > UC(o2).

Similarly, for t = tU, we obtain we obtain k(o1) = 2, l(o1) = 2, k(o2) = 2, 
l(o2) = 2, k(o3) = 2 and l(o3) = 2 as integers k and l satisfying (50) and (54) for 
each object. Then we obtain the following fuzzy total utility values:

	
Ũ|t=tU =

( (0.2078, 0.2127, 0.2153)
(0.2046, 0.2121, 0.2242)
(0.2029, 0.2115, 0.2223)

)
.

From (58), we have UC(o1) = 0.2119, UC(o2) = 0.2136 and UC(o3) = 0.2122. 
Therefore, we obtain o2 ≻ o3 ≻ o1 from UC(o2) > UC(o3) > UC(o1). The order of 
the alternatives changed by changing t from tL to tU.

The variation in the order of the alternatives with t changing from tL to tU is 
shown in Fig. 2. Figure 2 is useful to understand intuitively all possible orders of 
alternatives and their situation derived from the given TZFPCM. We can also see the 
changes of UC(oj), j = 1, 2, 3 with t in Fig. 2.

Fig. 2  Transitions of the defuzzified total fuzzy utility values UC(oi), i = 1, 2, 3.
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To see Fig. 2, we observe that UC(o2) and UC(o3) increase with t while UC(o1) 
decreases. UC(o2) increases more than UC(o3). As each two of UC(oj), j = 1, 2, 3 
have an intersection, the order of the alternatives changes at three values, i.e., where 
t is around 1.01, around 1.045, and around 1.08. Therefore, we understand that there 
are four possible orders of the alternatives. In the conventional LGP method, only 
o1 ≻ o3 ≻ o2 was obtained, and this order has been considered the DM’s prefer-
ence. However, by considering the non-uniqueness of the solution of fuzzy prior-
ity weights, we found that the DM may consider those four possible orders, and 
s/he may hesitate to choose one of the four orders. However, we understand that 
o3 is never the most preferred alternative. The length of the range of t where o1 
is better than o2 is 1.0452 − 1 = 0.452, while that where o2 is better than o1 is 
1.0859 − 1.0452 = 0.407. If the DM agrees that the difference between 0.452 and 
0.407 is significant, o1 would be better than o2 for the DM. Otherwise, the DM is 
asked to provide additional preference data or employ some other techniques for 
decision making.

5.2  Example of trapezoidal FPCM

We consider a decision making problem in which a faculty member must select the 
most suitable student for a part-time research assistant position. Three students oj , 
j = 1, 2, 3 have applied. As the characters of those students are good for the research 
assistant position, the decision is to be made based on their academic performance 
in five subjects: c1: mathematics (MA), c2: physics (PH), c3: chemistry (CH), c4: 
computer programming (PR), and c5: English (EN). The scores, i.e., marginal utility 
values, of those students in the five subjects are shown in Table 2. Student o1 takes 
the best scores in MA, PR, and EN, but the differences from the second scores are 
not very large. Student o2 takes by far the best score in PH than others, but the worst 
score in MA. Student o3 takes by far the best score in CH, but the worst score in PH, 
PR, and EN. Each student has her/his merit and demerit. The importance of these 
subjects varies depending on the role of the position in the research project. A proper 
analysis is necessary for a reasonable solution. Then, the DM required to make pair-
wise comparisons among the five subjects for obtaining a PCM. We assume that the 
DM gives the following 5 × 5 TZFPCM:

	

Ã=




(1, 1, 1, 1) ( 5
6 , 29

26 , 31
24 , 7

4 ) (1, 29
21 , 31

19 , 7
3 ) ( 5

4 , 29
16 , 31

14 , 7
2 ) ( 5

3 , 29
11 , 31

9 , 7)
( 4

7 , 24
31 , 26

29 , 6
5 ) (1, 1, 1, 1) ( 4

5 , 8
7 , 26

19 , 2) (1, 3
2 , 13

7 , 3) ( 4
3 , 24

11 , 26
9 , 6)

( 3
7 , 19

31 , 21
29 , 1) ( 1

2 , 19
26 , 7

8 , 5
4 ) (1, 1, 1, 1) ( 3

4 , 19
16 , 3

2 , 5
2 ) (1, 19

11 , 7
3 , 5)

( 2
7 , 14

31 , 16
29 , 4

5 ) ( 1
3 , 7

13 , 2
3 , 1) ( 2

5 , 2
3 , 16

19 , 4
3 ) (1, 1, 1, 1) ( 2

3 , 14
11 , 16

9 , 4)
( 1

7 , 9
31 , 11

29 , 3
5 ) ( 1

6 , 9
26 , 11

24 , 3
4 ) ( 1

5 , 3
7 , 11

19 , 1) ( 1
4 , 9

16 , 11
14 , 3

2 ) (1, 1, 1, 1)




.�(60)

Students MA PH CH PR EN
o1 79 79 57 70 65
o2 62 98 68 62 60
o3 71 68 97 57 57

Table 2  The marginal util-
ity values of students in each 
subject
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Each component of Ã shows the fuzzy evaluation of the relative importance between 
subjects ci and cj .

By solving the trapezoidal fuzzy priority weight estimation model (18) for the 
above trapezoidal fuzzy comparison matrix, we obtain the following normalized 
trapezoidal fuzzy priority weight vector:

	

W̃ =




(0.2174, 0.2816, 0.3010, 0.3044)
(0.1739, 0.2330, 0.2524, 0.2609)
(0.1304, 0.1845, 0.2039, 0.2174)
(0.0870, 0.1359, 0.1553, 0.1739)
(0.0435, 0.0874, 0.1068, 0.1304)


 .� (61)

We know that MA is the most important subject, and the importance decreases in the 
following order: MA, PH, CH, PR, and EN.

From this estimated trapezoidal fuzzy priority weight vector W̃ , we obtain the set 
of all trapezoidal fuzzy priority weight vectors having the same distance between ãij  
and w̃i/w̃j , i, j ∈ N , i ̸= j as

	

WT Z =
{

W̃ = (w̃1, w̃2, . . . , w̃n)T |w̃i = (t1wL
i , t2wM

i , t2wN
i , t1wU

i ), i ∈ N,

t2 ∈
[
τL

2 (t1), τU
2 (t1)

]
, t1 ∈

[
τL

1 , τU
1

]}
,

�(62)

where τL
1 , τU

1 , τ2(t1)L and τ2(t1)U are obtained by (42) and (43) with tL1 , tU1 , tL2  
and tU2  calculated by (38) and (39). Indeed, from tL1 = 1, tU1 = 1.3528, tL2 = 1 and 
tU2 = 1.0618, we obtain

	 τL
1 = 1, τU

1 = 1.3528, τL
2 (t1) = max(1, 0.7721t1), τU

2 (t1) = min(1.0618, 1.0112t1).�(63)

The alternatives (students) oi, i = 1, 2, 3 are ordered by using the estimated 
fuzzy priority weight vectors of the criteria (t1wL

i , t2wM
i , t2wN

i , t1wU
i ), 

i ∈ N , t2 ∈ [tL2(t1), tU2(t1)], t1 ∈ [tL1 , tU1 ]. We calculate the fuzzy total utility values 
of the three alternatives using α-cuts of the estimated trapezoidal fuzzy priority 
weights. From these results, the vector of centroids of the fuzzy total utility values, 
i.e., UC = [UC(o1), UC(o2), UC(o3)]T, is calculated by (20). In this example, we 
use the α-cuts with α = 0, 0.2, 0.4, 0.6, 0.8, and 1.

By changing the values of t1 and t2 in the range t2 ∈ [τL
2 (t1), τU

2 (t1)] and 
t1 ∈ [τL

1 , τU
1 ], we obtain different UC. For example, we show UC for a few settings 

of t1 and t2. Wen t1 = 1 and t2 = 1, we obtain

	 UC = (71.33, 70.79, 70.87)T.� (64)

Therefore, UC(o1) > UC(o3) > UC(o2), which implies o1 ≿ o3 ≿ o2. This result is 
obtained for the conventional LGP method with the TZFPCM of (60). When t = 1.15 
and t2 = 1.03, we obtain
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	 UC = (71.40, 71.54, 71.50)T.� (65)

Although the centroids of fuzzy total utility values of alternatives are similar, it shows 
UC(o2) > UC(o3) > UC(o1). Then we obtain o2 ≿ o3 ≿ o1. The orders of alterna-
tives obtained are different between those cases. That is, the order of alternatives 
depends on the parameter setting. Therefore, the potentially recommendable order of 
alternatives under the given TZFPCM is not unique, and it will be worthwhile pre-
senting all potentially recommendable orders of alternatives to the DM for making a 
reasonable decision support.

Exploring all possible orders of alternatives and their areas by changing the param-
eters t1 and t2 within the range defined by t2 ∈ [τL

2 (t1), τU
2 (t1)] and t1 ∈ [τL

1 , τU
1 ], 

we obtain Fig. 3. Fig. 3 shows the map of possible orders of alternatives in the range 
of parameters t1 and t2. The orders of alternatives are indicated in the figure. We 
observe four possible orders of alternatives in Fig. 3. If the possible order is unique, 
the DM’s decision to order alternatives is decisive. However, in this example, we 
have four. Then, we infer that the DM focuses on the four orders of alternatives. If 
the DM selects an order intuitively from the figure, the decision problem is solved. 
Otherwise, we analyze Fig. 3. Alternative o3 becomes better than o2 as t1 decreases. 
Moreover, o1 also becomes better as t1 decreases and it becomes the best when t1 
is small. In this example, parameter t1 is more important than parameter t2 because 
it changes the order of alternatives. However, the selection of parameters t1 and t2 
is not an easy task, we may select the order of alternatives with the largest area, 
or the order of alternatives at the gravity center of the range of parameters, as the 
recommended order of alternatives for the DM. In this example, the area of order 
o2 ≿ o3 ≿ o1 is the largest, and the area includes the gravity center. Indeed, the sizes 
of the yellow, blue, green and pink areas are 0.004019 (20.87%), 0.001939 (10.07%), 
0.001099 (5.71%) and 0.012199 (63.35%), respectively, where the percentage in the 

Fig. 3  Variety of possible orders of alternatives and their areas in t1-t2 coordinate.
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parenthesis shows the ratio to the area of the hexagon where parameters t1 and t2 
take. The pink area is the largest and corresponds to the order o2 ≿ o3 ≿ o1. On 
the other hand, the gravity center is obtained as t1 = 1.176431 and t2 = 1.03105, 
included in the pink area. Therefore, in both ways, we may recommend the DM to 
select the order o2 ≿ o3 ≿ o1, which is very different from the order obtained in the 
conventional LGP method, in this example.

Another possible way to select a recommendable order is to utilize the Borda 
count (Emerson, 2013) developed in the collective decision science. Borda count 
aggregates multiple individual orders of alternatives into a consensus order of alter-
natives. In the Borda count, alternative oj  ranked the k-th in an order of n alternatives 
gets (n − k) points. Then, an alternative gets points from all individual orders. The 
consensus order of alternatives is obtained as the descending order of the total points 
of alternatives. In our problem setting, each point (t1, t2) can be seen as individu-
als. However, there are infinitely many (t1, t2) in the range t2 ∈ [τL

2 (t1), τU
2 (t1)], 

t1 ∈ [τL
1 , τU

1 ]. Then we regard the size of the area of each order as the population of 
individuals supporting the order. As we have shown the sizes of areas of all possible 
orders, we obtain the total points B(oi), i = 1, 2, 3 of alternatives as

	

B(o1) =2 × 0.004019 + 1 × 0.001939 + 0 × 0.001099 + 0 × 0.012199 = 0.009977,

B(o2) =0 × 0.004019 + 0 × 0.001939 + 1 × 0.001099 + 2 × 0.012199 = 0.025497,

B(o3) =1 × 0.004019 + 2 × 0.001939 + 2 × 0.001099 + 1 × 0.012199 = 0.022294.

Then, from B(o2) > B(o3) > B(o1), we obtain the order o2 ≿ o3 ≿ o1 as a recom-
mendable order by the Borda count,

The above way to select a recommendable order does not consider the differ-
ences between the centroids of the fuzzy total utility values of alternatives but only 
their orders. The other possible recommendation is based simply on the average of 
the centroids of the fuzzy total utility values UC(oi). Calculating them, we obtain 
ŪC(o1) = 71.4002, ŪC(o2) = 71.6716 and ŪC(o3) = 71.5767, where ŪC(oi) 
shows the average of the centroids of the fuzzy total utility values of oi, i = 1, 2, 3. 
Therefore, although the differences are small, we obtain ŪC(o2) ≥ ŪC(o3) ≥ ŪC(o1) 
which implies o2 ≿ o3 ≿ o1.

In this example, o2 ≿ o3 ≿ o1 is recommended from multiple perspectives derived 
from the set of normalized fuzzy priority weight vectors. Namely, student o2 taking 
a good score in PH is recommended as the best solution, and student o1 with no very 
remarkable subject scores is ranked at the last position. The result is very differ-
ent from that of the LGP solution, which recommends o1 ≿ o3 ≿ o3 in this exam-
ple, although the fuzzy total utility values are similar between the three students. 
Normalized fuzzy priority vectors having the same deviations between the FPCM 
components and ratios of fuzzy priority weights as the LGP solution are reasonably 
considered other solutions to the problem of estimating a normalized fuzzy priority 
weight vector, because FPCM components are supposed to show ratios of fuzzy pri-
ority weights. The result o2 ≿ o3 ≿ o1 is supported by multiple perspectives, taking 
into account the set of normalized fuzzy priority weight vectors. Therefore, the DM 
can agree to adopt this order as the final selection.
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Finally, we note that the result of the decision analysis with the set of solutions is 
not always different from that of the LGP method. When both results coincide, we 
can confirm that the result is robust.

6  Conclusion

In this paper, the non-uniqueness of the solution to the estimation problem of the 
normalized fuzzy priority weight vector is considered under a given triangular or 
trapezoidal fuzzy pairwise comparison matrix. It is shown that all solutions are easily 
obtained by parameters under a given solution of the conventional estimation method. 
In the estimation problem with a triangular fuzzy pairwise comparison matrix, the 
solution set becomes a line segment as far as the solution of the conventional estima-
tion method is unique. On the other hand, in the estimation problem with a trapezoi-
dal fuzzy pairwise comparison matrix, the solution set usually configures a hexagon, 
pentagon, or tetragon. We depicted the situations about the orders of alternatives over 
the set of estimated normalized fuzzy priority weight vectors in the figures. If all 
estimated normalized fuzzy priority weight vectors suggest an order of alternatives, 
it is a unique recommendable order, and this order is robust. Similarly, if all estimated 
normalized fuzzy priority weight vectors suggest an alternative as the best, the alter-
native is a robust solution to the given multiple criteria decision making problem. 
The figure of the situation about the orders of alternatives over the set of estimated 
normalized fuzzy priority weight vectors will be useful for the DM to understand the 
potential solutions intuitively. Together with the size of the area in the figure as well 
as the Borda count, it may help the DM to make up her/his mind to select a solution.

Depicting the figure requires heavy calculations of the centroids of the fuzzy total 
utility values for many t1 and t2 in the problem with a trapezoidal fuzzy pairwise 
comparison matrix. Their simple calculations should be investigated. In this paper, 
we consider the fuzzy pairwise comparison matrix only in the highest layer of the 
hierarchy of the decision problem. The introduction of fuzzy pairwise comparison 
matrices in the other layers of the hierarchy of the decision problem is one of the 
future topics.
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