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Betweenness Geomelry

By Junji HAsHIMOTO

1. Introduction

Shown by D. Hilbert [2], the postulates on betweenness play
important roles in geometry, but the roles seem to be supplementary to
the postulates on incidence. Making betweenness play the leading part
in the present paper, we intend to construct a geometry upon a system
of postulates concerning betweenness only, and investigate how many
incidence relations can be deduced from those postulates.

Betweenness is defined in many systems. Algebraic betweenness is
a ternary relation (exd) defined in a vector space such that

(axb) S x=caa+(1—a)b, 0 a<l1v.
Order betweenness is defined in a partially ordered set as follows:
(axb) 2 a<x<b or a>y>b.

These relations satisfy many common properties, of which the
following five conditions have been proposed by G. Birkhoff [1] as the
system of postulates for betweenness :

(1) (axb) — (bxa) .

(2) (axb), (abx) > x=0b.

(3) (axd), (ayx) — (ayd).

(4) (axb), (xby), x==b — (aby).

(5) (abc), (acd) — (bcd) .

E. Pitcher and M. F. Smiley [4] have stated the following three
conditions moreover.

(6) (abc), (adc), (bxd) — (axc).

(7) (abc), (abd), (cxd) — (abx) .

(8) (abc), (abd), (xbc) — (xbd) .

1) By — we denote implication, such as A— B (if A holds, then B holds), 4, B—~C (if A
and B hold, then C holds), A— B or C (if A holds, then at least one of B and C holds).
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It seems however that the condition (1)-(8) are not sufficient to charac-
terize usual betweenness. For instance, in a system R={q, b, ¢, d, ¢},
where

(xxx), (xxy) and (xyy) for all x,y€R,
(abc) , (abd), (abe), (ced), (cba), (dba), (eba), (dec),

the conditions (1)-(8) are satisfied but the condition B5 below does not
hold.

Now we consider betweenness spaces or B-spaces, applying to all of
affine spaces, vector spaces and partially ordered systems, in which
(straight) /ines are defined so that

(1) a line be determined by any two points on it,

(2) a line be a partially ordered set,

and (axb) means that

(1) &, b and x lie on a line L,
2) a<x<bor a>x_>b under the ordering defined in L.

Then it is easy to see that in a B-space the following conditions are
satisfied :

Bl. (axb) — (aabd),

B2. (axb) — (bxa),

B3. (axb), (abx) > x=0,

B4. (axb), (ayx) — (yxb),

B5. (axb), (axc), (byc), x=Fa— (abc) or (ach),

B6. (axd), (ayb), (cxd), (cyd), x==y — (axc) or (axd),

B7. (abx), (aby), (cxd), (cyd), a==b, x=Fy — (axc) or (axd),
and

(8) (axb), (axc), (bxd), x=Fa, x==b — (cxd) .

By a B,-space we shall mean below a system R satisfying B1-B7 and (8).

2. Transitivities of betweenness deduced from B1-B6

In this section we shall show that the conditions B1-B6 imply the
conditions (1)-(7) of E. Pitcher and M. F. Smiley and some other
properties which are useful for our geometry below.

LemmA 1. (axb) — (abb).
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Proof. (axb) — (bxa) — (bba) — (abb), by B2 and B1.

LEmMMmA 2. (axb) — (axx).

Proof. (baa), (bxa) — (xaa) — (xxa) — (axx), by B4, Bl and B2.
LemmA 3. (axa) - x =a.

Proof. (axa) — (axx) — (aax), by Lemma 2 and Bl. (aax), (axa) —
x =a, by B3.

LEMMA 4. (axy), (xyb), x==y — (axb), (ayb).

Proof. (bxx), (byx), (axy), (ayy), x=Fy — (bxa) or (bxy), by B6. If
(bxy), then (bxy), (byxr) —>x =y, which is impossible; hence (axb).
Similarly (ayb).

LEMMmA 5. (axb), (ayx) — (ayb).

Proof. (axb), (ayx) — (yxb), by B4. If x==y, then (ayx), (yxb), x==y
— (ayb), by Lemma 4. If x =y, (axd) — (ayb).

By (axyb) we shall mean that all of (axb), (ayb), (axy) and (xyb) are
satisfied. Then B4, Lemma 4 and Lemma 5 imply

LEMMA 6. (axyb) holds in any case of
(1) (ayb), (axy), (2) (axb), (xyb), (3) (axy), (xyb), x==y.

LEMMA 7. (axb), (axc), (byc), x=Fa — (axy).

Proof. (axb), (axc), (byc), x==a — (abc) or (acb), by B5. If (abc),
then (abc), (byc) — (aby), and (aby), (axb) — (axy), by Lemma 6. It is
similar for (acb).

LemMmA 8. (axb), (ayb), (xzy) — (axyb) or (ayxb).

Proof. If x==y, then (yxx), (yyx), (axb), (ayb), x=Fy — (yxa) or (yxb),
by B6. (axy), (ayb) — (axyb) and (yxb), (ayb) — (ayxb). If x=y, it is
evident from Lemma 2.

LEMMA 9. (axd), (ayb), (xzy) — (azb).

Proof. We have (axyb) or (ayxb) by Lemma 8. If (axyb), then (axy),
(xzy) — (azy) and (azy), (ayb) — (azb). It is similar for (ayxb).

LEmMA 10. (axyd), (xuvy) — (auvbd).

Proof. 1If follows from Lemma 9 that (axyb), (xuy) — (aub). Again
(xyb), (xvy) — (xvb) and (xvd), (xuv) — (uvb). Then (aub), (uvb) — (auvbd),
by Lemma 6.
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LemmA 11.  (xuvy), (auvd), (axb), (ayb), u==v — (axyb).

Proof. (axd), (ayb), (xuy) — (axyb) or (ayxb), by Lemma 8. If (ayxb),
then (ayxbd), (yvux) — (avub), by Lemma 10, and (avu), (auv) — u =v.
Hence (axyb).

LEMMA 12. (axyb), (axz), (2yb), x==a, y=Fb — (x2y).

Proof. (axb), (axz), (byz), x==a — (abz) or (azb), by BbL. If (abz),
then (abz), (ayb) — (vbz), which is not compatible with (byz), since y==b.
(azd), (axz) — (x2b) and (x2b), (2yb) — (x2y).

Lemma 13. If (axd), (ayb), (cxd), (cyd), x==y, then either
(1) (axc), (ayc), (bxd), (byd), or (2) (axd), (ayd), (bxc), (byc).

Proof. Case I: (xxy) holds. It follows from Lemma 8 that (axyb)
or (ayxb), and (cxyd) or (cyxd). Combining those, we have four cases,
any of which implies either (1) or (2). For instance, (axyb) and (cxyd)
imply that (axy), (xyd), x==y — (axyd) and (cxvy), (xyb), x==y — (cxyb).

Case II: (xxy) does not hold. x = a implies (xyb) and (xxy); hence
we may assume r==a, b, ¢, d and y==a, b, c,d. It follows from B6 that
either (axc) or (axd). Suppose (axc). Again either (ayc) or (ayd) follows
from B6. If (ayd), then (cxa), (cxd), (acd), c==x — (cxy) — (xxy), by
Lemma 7 and 2; hence (ayc). Further either (bxc) or (bxd) follows from
B6. If (bxc), then (cxa), (cxb), (ayb), c==x — (cxy); hence (bxd). Thus
(axc) implies (ayc), (bxd) and (byd).

Now the conditions (1)-(7) of E. Pitcher and M. F. Smiley correspond
with B2, B3, Lemma 5, Lemma 4, B4, Lemma 9 and Lemma 7. It has
been proved by K. Morinaga and N. Nishigori [3] that Lemma 12 is
independent of the conditions (1)-(8) of E. Pitcher and M. F. Smiley.

3. Subspaces

It is natural that by a (linear) subspace of B,-space R is meant a
subset S of R satisfying

(1) a beS, (axb) > x€S,

2) abeS, (xay), (xby), a==b —>x €S,

(3) abeS, (xya), (xyb), a==b, x=y >x€S.

Then it is easy to see that a subspace S satisfies moreover

4) a, beS, (xab), a==b—->x€S,
B) a,beS, (xya), (xyb), a==b, x=ky > y€S.
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The intersection of subspaces is also a subspace. So we may define the
subspace S(I") gemerated by a subset I' to mean the intersection of all
subspaces containing I'. We shall call x,, .-, x, linearly independent if
and only if x*€S (x,, -+, %;_1, X;1y, =, %,) for i=1, - n

We have offered to construct a geometry upon the above concepts,
but our attempt has not succeeded. In order to obtain some geometrical
results our conditions on B,-spaces may not yet suffice. So we feel that
it needs to add some other conditions. For this purpose we take up the
spaces in which every straight line is a doubly directed set. We can
show in the following section that such spaces are characterized by the
conditions B1-B7 and that

B8. for any points x, y € R there exist a, b€ R such that (axb), (ayb).

4. B,-spaces

By a B,-space we shall mean a system R satisfying that

Bl. (axb) — (aabd),
B2. (axb) — (bxa),
B3. (axb), (abx) > x =0,
B4. (axd), (ayx) — (yxb),
B5. (axb), (axc), (byc), x==a — (abc) or (acb),
B6. (axbd), (ayb), (cxd), (cyd), x==y — (axc) or (axd),
B7. (abx), (aby), (cxd), (cyd), a==b, x==y — (axc) or (axd),
and B8. for any points x, y€ R there exist a, b€ R such that (axb), (ayb).

In a B,-space R the following lemmas hold.
LemMmA 14. (xxx) for all x€R.
Proof. By B8 we can choose a, b€ R so that (axb), whence (xxx).

LEmMA 15. If (axb), (axc) and x==a, then there exists u € R such that
(abu), (acu).

Proof. If (bbc) holds, then it follows from B5 that (abc) or (ach);
hence we have either (abc), (acc) or (abb), (acb). Suppose that (bbc) does
not hold. Then d==c. By B8 we can choose #, v € R so that (ubv), (ucv).
Then u==b, since u = b implies (bcv) and (bbc). It follows from B7 that
(axb), (axc), (ubv), (ucv), a==x, b==c — (abu) or (abv), and similarly (acu)
or (acv). If (abu) and (acv) hold, then (axbu), (axcv) and hence it follows
from Lemma 12 that (axbu), (axv), (vbu), x=Fa, b==u — (xvb), and (xvbd),
(xcv) — (cvb) — (cbb). So we have either (abu), (acu) or (abv), (acv).
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LEMMA 16. If (axb), (ayb), (cxd), (cyd) and x==y, then there exist
u, V€ R such that (uav), (ubv), (ucv) and (udv).

Proof. Referring to Lemma 13, we may assume that (axc), (ayc),
(bxd) and (byd). Again since x =a and y = a are not compatible, we
assuie xr==a. Then by Lemma 15 we can choose a point # € R so that
(abu), (acu). If c===x, then (acu), (axc) — (xcu) and (ucx), (cxd), x=Fc —
(ucd). It is similar for c¢==y. So we have (uba) and (ucd). Exchanging
a, b, c,d for b, a, d, c respectively in the above facts, we have (vab) and
(vdc) for some ve€R. Then we conclude that (#bav) and(ucdv), since
a==b and c==d.

Now a subspace of a B,~space R is a subset S of R satisfying that
a,beS, a==b, (xay), (xby), (xcy) > c€S.

In fact, (1) if a, b€ S, (axb), then (aab), (abb), (axb) —x€S; (2) if a,b€S,
(xay), (xby), a==b, then (xay), (xby), (xxy) >x€S; and (3) if @, beS,
(xya), (xyb), a==b, x==y, then it follows from Lemma 15 that (xau), (xbu)
for some #€ R and hence x €S follows from (2).

The subspace S(a) generated by a point a contains only a. By a

(straight) /ine we shall mean a subspace S(a, b) generated by two dis-
tinct points «, b.

THEOREM 1. Let a and b be two distinct points in a B,-space R.
Then a point x is on the line S(a, b) if and only if (uav), (ubv) and (uxv)
for some u, veR.

Proof. It is sufficient to prove that the set S = {x; (uav), (ubv),
(uxv) for some u,v€ R} forms a subspace. Suppose that =x,, x,€S,
x,74=%,, (sx,t), (sx,t) and (sx#). Then we have (u,av,), (u,bv), (ux0),
(u,av,), (u,bv,), (u,x0,) for some wu,, v, u,, v,€R. It follows from
Lemma 16 that there exist p, ¢ € R such that (pu.q), (pv.q), (pu,q), (Hpv,q)
and hence (paq), (pbq), (px.9), (px,q), by Lemma 9. Again using Lemma
16, we get (upv), (uqu), (usv), (utv) for some u, v € R, since (px.q), (Hx.9),
(sx.t), (sx,t) and x,=x,. Then (uaw), (ubv) and (uxv); hence x€S and
thus S is a subspace.

CoroOLLARY. A subset S of a B,-space R is a subspace if and only if
a, beS implies S(a, b)S.

LemMA 17. If x, € S(a, b) for i=1, --- , n, then there exist u, v € S(a, b)
such that (ux;v) for i =1, - ,n.

Proof. x€S(a, b) implies that (uav), (ubv) and (uxv) for some u, v € R.
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So we assume that (saf), (sbt) and (sx;#) for i=1,---,n—1. Since
x,€S(a, b), (paqg), (pbg) and (px,q) for some p, g. Using Lemma 16, we
can choose u, v so that (usv), {utv), (upv), (uqv), whence (uav), (vbv) and
(ux,v) for ¢ =1, .-+ ,n. It is obvious that u, ve S{a, b). In the above
proof we have assumed a¢==5b, though if ¢ =05 this lemma is evident,
since all x; coincide with a.

Now suppose that p, g € S(a, b) and p==¢q. Then S(p, q) ZS(a, b). If
x € S(a, b), then it follows from Lemma 17 that there exist », v € R such
that (upv), (ugv) and (uxv); hence x€S(p, g). Thus S(a, b) TS(p, ¢) and
we have the first main theorem.

THEOREM 2. If p, q € S{a, b) and p==q, then S(a, b) = S(p, q) ; namely,
in a B,-space any two distinct points p, q are on one and only one line

S(p, q).

Given p, ¢ € R, there exist @, b€ R with (apb), (agb) and hence S(p, q)
= S(a, b). So a line is written in the form S(a, b) with (aab). Next we
show

THEOREM 3. In a B,-space a line L is a doubly directed set under an
ordering, satisfying that for a, b, x € L

(axb) 2 a<x<b or a>x_>b.

Proof. We may write L = S(a, b) with (aab) and a==b. Define
x<y to mean that (uabv), (uxyv) for some u, . Then for any x € S(a, )
we can choose u,v so that (uabv), (uxxv), by using Theorem 1 and
Lemma 8; hence x<<x. If <y and y<z, then (pabq), (pxyq), (sabt),
(syzt) for some p, q, s, {. We can choose by Lemma 16 %, v so that (upv),
(uqv), (usv) and (utv). Then it follows that (upqv) or (ugpv). We may
assume (upgv). Then we get (uabv) and (uxyv), by Lemma 10, and then
(ustv), by Lemma 11, whence (uyzv). We can deduce (uxy), (uyz) — (ux2)
and (ux2), (uzv) — (uxzv); hence x<z. Again if x<y and y<x, then
we get (uxyv) and (uyxv) in the same way as above, and (uxy), (#yx)
imply x#=1y. Thus L is a partially ordered set. Now suppose x,y, 2€L
and (xyz). It follows from Lemma 17 that (uabv), (uxv), (uyv), (uzv) for
some u, v € L and we deduce (uxv), (#zv), (xy2) — (uxzv) or (uzxv). (uxzv)
implies (uxyv) and (uyzv); hence x<y<z. (uzxv) implies similarly
z2<y<x. Conversely if x<y< z, then we obtain #, v so that (uxyv),
(uyzv) and (uxzv) in the same way as the proof of the transitivity of
<; then it is easy to show (xyz). It remains to show that L is doubly
directed. Given x,y€L, we can choose u,v€L so that (uxv), (uyv),
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which imply either #<<x<v, u<y<v, or u>x>v, u>y_>v, com-
pleting the proof.

By the way, if one rearranges the above proof, it is easy to obtain
the characterization of doubly directed sets by betweenness® ; namely

CoroLLARY. Let D be any system in which a ternary relation (axb)
is defined so that

(1) (axb) — (aab), 2) (axb) — (bxa) ,

(3) (axb), (abx) >x=0, (4) (axd), (ayx) — (vxb),

(5) (axb), (ayx) — (ayd),

(6) (axd), (ayd), (xzy) — (axy) or (bxy),

(7) for any x,v, 2€ D there exist a, b€ D such that (axb), (ayb), (azb).

Then D is a doubly directed set under an ovdering, satisfying that
(axb) 2 a<x<b or a>x_>b.

Now it is natural that by a plarne is meant a subspace S(a, b, ¢),
where @, b and ¢ are linearly independent. Then Cor. of Theorem 1 and
Theorem 2 imply

THEOREM 4. If two distinct points p, q lie on a plane P, then every
point on the line passing through p, q lies on P.

In order to consider the plane geometry, however, it needs to admit
a condition corresponding to Pasch’s axiom®. We shall deal with this
for B,-spaces which are defined below under stronger conditions than
B,-spaces.

5. B,-spaces
By a B,-space we shall mean a system R satisfying that

B1*. (aab) for all a, bER,

B2. (axb) — (bxa),

B3. (axdb), (abx) > x =0,

B4. (axb), (ayx) — (vxb),

B5. (axd), (axc), (byc), x==a — (abc) or (ach),

B6. (axb), (ayb), (cxd), (cyd), x==y — (axc) or (axd).

2) A characterization of partially ordered sets by betweenness is obtained by K. Morinaga
and N. Nishigori [3].
3) Axiom der Anordnung II 4. of D. Hilbert [2].
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THEOREM 5. A B,-space R is a B,-space.

Proof. 1t suffices to prove B7 and B8. For any points x, y€ R we
have (xxy) and (xyy); hence B8 holds. Suppose that (abx), (aby), (cxd),
(cyd), a==b and x==y. (abx), (aby), (xxy), a==b — (axy) or (ayx), by B5;
and (cxd), (cyd), (xxy) — (cxyd) or (cyxd), by Lemma 8, which is deduced
from B1-B6. Then there occur four cases, any of which implies either
(axc) or (axd). For instance (axy) and (cxyd) with x==y imply (axd), by
Lemma 4.

THEOREM 6. In a B,-space a line L is a linearly ordered set under
the ordering introduced into L as a line in a B,-space.

Proof. Suppose a,beL. Then (aab) means that a<a<b or
a>a>b under the ordering mentioned above; hence L is linearly
ordered.

COROLLARY. If x,y and z lie on a line in a B,-space, then one of the
relations (xyz), (vzx), (2xy) holds.

In order to deal with planes in B,-spaces we shall assume the follow-
ing postulate (Pasch’s axiom).

(P) If x and y are two distinct points in S(a, b, ¢) and S(x, y) contains
a point p satisfying (bpc), then S(x, y) contains a point q satisfying either
(agb) or (aqc).

In a B,-space R satisfying (P) the following lemmas hold.

LEmMMA 18. If (abx), as=b==x and (bpc), then S(x, p) contains a point
q such that (aqc).

Proof. If x=p, then (abx), (bxc), b==x — (abxc); hence S(x, p)>x
with (axc). If x==p, then it follows from (P) that x, p€S(a, b, c),
S(x, p)>p and (bpc) imply S(x, p) 3q with either (agb) or (agc). (agb)
implies (aqbx) and x==¢; hence S(x, p) = S(x, q) 2 @ with (aac). In any
case q € S(x, p) exists with (agc).

In the same way as above we can show

LemMma 19. If (xab), x==a==b and (bpc), then S(x, p) contains a point
q such that (aqc).

LEMMA 20. Let a,b,c,d, e and f be distinct points satisfying (bdc),
(cea) and (afb). If d,e and f are on a line, then a, b and c are also on
that line,
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Proof. We may assume without loss of generality (def). Then
using Lemma 18, we obtain ¢ € S(c, e) with (bgf), since (bdc), b==d==c
and (def). It follows from (cea) and (afgb) that S(c, e) contains g, a, f, b.

LemMmA 21. Let a, b and c be linearly independent. If x € S(a, b, c)
and x €S(b, ¢), then S(a, b, ¢) = S(x, b, ¢),

Proof. 1t is sufficient to show a€S(x, b, ¢). If x€S(a, b), then it
follows from Theorem 2 that a € S(x, b) S(x, b, ¢) ; hence we may assume
that x€S(a, b) and x€S(a, ¢). If any of the lines S(b, ¢), S(c, @) and
S(a, b) contains no point other than «, b, ¢ then three points a, b, ¢ form
a subspace and we have nothing but x =a. So we may assume that
some one of them contains a point d such that d==a, b, c. We first con-
sider the case that S(b, ¢) contains d.

Case I: (bdc). Since S(x,d)>d, (bdc) and x==d, we obtain
q € S(x, d) with either (agb) or (agc). Without loss of generality assume
(agb). If g =0, then beS(x, d) with b==d, whence x¢€ S(b, d) = S(b, c).
So g==b. Then deS(b,c), geS(x,d) and a€S(b, q); hence a€ S(x, b, c).

Case II: (bcd). Since ce€S(a,b,d), Sla, b, d)=S(a, b, c)>x and
x€S(b, d). Then, exchanging c¢ for d in Case I, we get S(a,b,d)
= S(x, b, d) and accordingly S(a, b, ¢) = S(x, b, ¢).

Next we deal with the case that S(a, b) contains d.

Case III: (adb). It follows from (P) that S(x, d)>e with either
(cea) or (ceb). If (ceb), then we get e€ S(b, c), d € S(x, ¢), a € S(b, d) and
a€S(x, b, c). If e=a, then x€8S(d, ¢) = S(a, b), contradicting the as-
sumption. So we may assume that (@ec) with e==a, b, ¢ and look over
the three cases (dex), (edx), (dxe). (bda), b4=d==a and (dex) imply
S(a, ¢) > q with (bgx), by Lemma 18, and hence g==c¢, g€ S(b, x), a € (a, )
=3S(c, q), so a€S(x, b, c). Similarly (cea), c==e==a and (edx) imply
a€S(x, b, ¢). Further (adb), a==d==b and (dxe) imply S(b, x)>q with
(age), whence also g € S(b, x), a € S(a, ¢) = S(c, q) and a € S(x, b, ¢).

Case IV: (dab). If x€S(c,d), then it is easy to see S(x, b, ¢)
=S(d, b,c)>a. So we may assume x € S(c, d). Then exchanging a for
d in Caselll, we obtain S(d, b, c) =S(x, b, ¢), since x€S(a,b,c)
=S8(d, b,¢c) and x€S(b,c), S, d), S(d,b). Consequently S(a, b, ¢)
= S(x, b, ¢).

Case V: (abd). Since x€S(a, b, ¢c) = S(a, d, ¢), S(b, x) b and (abd),
we obtain ¢ € S(b, x) with either (cga) or (cqd). ¢ = q implies x € S(, ¢);
hence c¢==q. If (cqa), then we infer q € S(x, b), a € S(c, ¢) and a € S(x, b, ¢).
If (cqd), then we infer similarly d < S(x, b, ¢), whence S(x, b, ¢) = S(d, b, ¢)
= S(a, b, c). '
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Also for the case d € S(a, ¢) we can show in the same way S(a, b, c)
= S(x, b, ¢), completing the proof.

Using these lemmas, we can deduce the fundamental properties of
planes.

THEOREM 7. If x,v and z are linearly independent points on S(a, b, c),
then S(a, b, c) = S(x, v, 2) ; namely, in a B,-space satisfying (P) any three
points not lying on a line arve on one and only one plane.

Proof. Some of x,y, z say, x is not on S(b, ¢), so it follows from
the above lemma that S(a, b, ¢) = S(x, b, ¢). Either y or z is not on
S(x, ¢); hence S(x, b, ¢)=3S(x, ¥, ¢). Since z€ S(x, y), S(x, y, ¢) =S(x, ¥, 2).

Now all points x of a plane S(a, b, ¢) not lying on the line S(b, ¢)
are divided into two parts P,, P, as follows: if S(b, ¢) contains p such
that (apx), then x€ P,; if S(b, ¢) does not contain such a point p, then
x€P,. Let x,y be two points of S(q, b, ¢) and a, x, ¥ be not on a line.
If x,yeP,, then (xry) and 7€ S(b, ¢) contradict Lemma 20, and hence
S(b, ¢) cannot contain such a point » as (xry). If x, y€P,, it follows
from (P) that S(b, ¢) cannot contain 7 such that (xry), since b, c € S(a, b, ¢)
= S(a, x, ). However if x€ P, and y € P,, then (P) implies that S(d, c)
contains # such that (x7y). For the case that «, x, ¥y are on a line it is
easy to derive the same results as above. Hence, defining a segment
ab to mean the set of points x such that (axb), we infer

THEOREM 8. A line L, which lies in a plane P, divide points of P
not lying on L into two sides so that: any point a on one side determine
with any point b on the other side a segment ab, in which a point of L
lies; any two points a, b on the same side determine a segment ab,
which contains no point of L.

One side of a line, however, may contain no point. The author
asks whether Theorems 7 and 8 can be extended for subspaces of higher
dimension, though it may be possible if we admit the fact that any two
planes through a point p contain another point ¢ in common.

Mathematical Institute
Kobe University,

(Received May 7, 1958)




158

[1]

[2]
[31]

[4]
(5]

J. HAsHIMOTO

References

G. Birkhoff : Lattice Theory, Revised ed., Amer. Math. Soc. Coll. Publ., vol.
25, New York, 1948.

D. Hilbert: Grundlagen der Geometrie, 8 Aufl.,, Stuttgart, 1956.

K. Morinaga and N. Nishigori: On axiom of betweenness, Jour. Sci. Hiroshima
Univ. Ser. A, 16 (1952-3).

E. Pitcher and M. F. Smiley: Traunsitivities of betweenness, Trans. Amer.
Math. Soc. 52 (1942).

M. F. Smiley: A comparison of algebraic, metric and lattice betweenness,
Bul]l. Amer. Math. Soc. 49 (1943),





