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1. Introduction

Recently, various applications of Malliavin's calculus are studied by several
authors. In particular, Kusuoka-Stroock applied Malliavin's calculus to the
investigation of second order differential operators of Hϋrmander type ([5]).
In fact, they have shown that the semigroup generated by a differential operator

L=—Σi(Vi)2+V0, Vj's being all CΓ-vector fields on Rd, has a C°°-kernel if
2

Vj's satisfy the restricted Hϋrmander condition (cf. [8], [5]). Furthermore,
they showed that the above L is hypoelliptic when the general Hϋrmander con-
dition is satisfied ([5]). Our aim of this paper is to extend their result to a
time-dependent system associated with an operator A(s): C°°(Rd; Rd)->C°°(Rd\
Rd), where C°°(Rd; Rd) is the space of all C°°-mappings of Rd into itself. Indeed,
suppose that the operator A(s) is represented as

2
4-V^ i Ύ^d i aim(ς x\ (VΌ\ i \ (v^4-yPd 1 r™(ς v\ f (r\

where f=(fu , fd) eO°°(Rd Rd), Vj(s)'& are time-dependent C°°-vector fields
on Rd and a'^is), cJ(s)^C°°(Rd) for every *e[0, oo). We will show the fun-
damental solution P(s, ΐ): C°°(Rd; Rd)-*C°°(Rd; Rd) for the system of heat
equations:

(1.2)

has a C°°-density function if
(1.3) mappings (s, x)\-^da

xh(s, x), h^{a)m, cjy V)} are all bounded and con-

(1) This work was partially supported by Grand-in-Aid Science Research (No. 59740112),
Ministry of Education.
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tinuous, where Vj is the z-th component of Vjy i.e. the function Vj(s, x) on

[0, o o ) χ ^ is defined by F y(f)=Σί-i Vtit, • ) — , and
dXi

(1.4) either of the following assumptions (A.I) and (A.2) is satisfied:

(A.1) (i) Lie(F^), .-, Vr(s)) {x)=Rd for all (s, *)e=[0, oo)χR*y

(ii) d*Vιj(s, x) is continuously differentiable with respect to (s, x) for

each l^itίd, ί^j^r and multiindex α,

(iii) for every multiindex a and i?>0, there exists a constant C such that

^ C , (J, *)e[0, Λ]xi^, 1^'^J, l ^ ^ r .

(A.2) for all 0^a<by there exist families {/}o of Hϋlder continuous functions

on [α, b] and {ίFi}5 of C°°-vector fields on Rd with the properties that

(i) Vi(s)=fi(s)Wi,O^i^r

(ii) there exists a positive number δ0 such that δofg |/, (s)| ^δ^"1, ίG

ij^r, l^j^q, gEΞiV}(2) for all x€ΞRd.

Note that Assumption (A.I) appears stronger compared with the time-inde-

pendent case, where the restricted Hϋrmander condition assures the existence

of O°°-density function. We will see that the condition analogous to the restricted

Hϋrmander condition is not sufficient for the time-dependent systems (see

Remark 2.1.).

To show the above assertion, we apply Malliavin's calculus to the diffusion

processes generated by the time-dependent second order differential operator

L(s)=— Hi(Vi(s))2+V0(s). We will show that the inverse of the Malliavin

covariance of such diffusion processes has nice bounds in Z^-spaces with respect

to the Wiener measure under either of Assumptions (A.I) and (A.2). To obtain

the estimations in L^-spaces, we follow the idea of Kusuoka-Stroock used in

[8]. Then we will apply the integration by parts formula with respect to the

Wiener measure. For this purpose, we will discuss the probabilistic con-

struction of P(s, t) in Section 3.

Section 2 is devoted to the estimations of the Malliavin covariance and the

proof of our conclusion will be done in Section 3. We will also give a brief

introduction to the probabilistic construction oϊP(s> t) in Section 3.

Finally, we would like to thank S. Kusuoka and D. Stroock for their valuable

suggestions and encouragements.

(2) Here and in the sequel, for C°°-vector fields V and W on Rd

t V(x) is the tangent vector at x
associated with V and [V, W] is the bracket product of V and W.
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2. Estimations of Malliavin covariance

In this section, we will study the boundedness of the inverse of the Malliavin

covariance of time-dependent diffusion processes in L^-spaces with respect to the

Wiener measure. Let Θ be the space of Rr-valued continuous functions θ

defined on [0, oo) with (9(0)=0 and P be the Wiener measure on Θ. Throughout

this paper, E stands for the expectation with respect to P. Let {V^s); O^i^r,

s^[0, oo)} be a family of C90-vector fields on Rd such that the mapping (s, #)ι—>

d"Vt(s> x) of [0, oo)χRd into Rd is bounded and measurable for each O^i^r

and multiindex α. Here we used the usual identification of C°°-vector fields

on Rd with C°°-mappings of Rd into itself and in the following we will use this

identification without mentioning it. Given s^0 and x^Rd

y we denote by {X(xy

t; x)}f£S the unique solution to the stochastic integral equation:

(2.1) X(s, t; x) = * + Σ ί ( ' V,(u, X(s, u; *)) <W'(ιι)+Γ Vβ(u, X(s, u; *)) du ,
Js Js

where V,(u, x)=V,(u) (*), 0£i£r, Vh(u)=Vi(u)+Σr

k=1 ΣlU V{{u)-^-
OX

and θ(u)=(θ\u), •••, θr(u)) is an r-dimensional Brownian motion with 0(0)=0

realized on (θy P). By Theorem (2.19) in [4], we note that each z'-th component

X*(s, ΐ; x) of X(s, t; x) is an infinitely differentiable Wiener functional in the

sense of Malliavin (for the definition of the infinite differentiability of Wiener

functonals, see fl], [4] or [8]). Let A(sy t; x) be the Malliavin covariance of

X(sy t; x) (for the definition, see the same articles as above). Then, due to

Lemma (2.9) in [4]> in exactly the same way as in the case of time-independent

stochastic integral equations, we have

(2.2) A(s, t; x) = Σ ί Γ {/(*, t; x)J(s9 u; x)'1 V{(u9 X(s, u; x))}®2 du .
Js

Here/(s, t\ x) is the Jacobian matrix of X(s, t; x) with respect to x and for a

ξ^Rd, we define a dxd-mztήx ?®2=(?t ζj)igi,jgd O u r g°al °f this section is

the following assertion.

Theorem 2.1. Let F f (ί)'ί be as above. Suppose that V^s satisfy either

of Assumptions (A.I) and (A.2) in Section 1. Then, given 0^a<by a compact

set K in Rd andp^N, there exist constnats C ^ 0 and μ^0 such that

(2.3) E[{detA(s9 t; x)}~^C((t-

for every x^K and a^

REMARK 2.1. If Vi(s)'s are all time-independent C°°-vector fields W/s on

Rd

y the restricted Hϋrmander condition (the condition (iii) in Assumption

(A.2)) is sufficient for (2.3) to hold. On the other hand, the condition (i) in
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Assumption (A.I) is stronger than the following condition; for all (s,

(2.4) Sf = span {V(x); V = Vφ) or [Viq(s), ..., [V^s), Vio(s)] ...] ,

Thus, the preceding theorem makes us ask if Condition (2.4), the analogue to
the restricted Hϋrmander condition, leads to the estimation (2.3). In general,
the answer is No. For example, let d=2, τ=\ and

_9_
0Xo

Then the solution to the stochastic integral equation associated with VΊ(s) and
V0(s) is given by

X(s, t; x) = (Xl+Θ(t)-Θ(s), x2+(t~s) (Xl+Θ(t)-Θ(s))2)

where θ(t) is a 1-dimensional Brownian motion with 0(0)=0. Therefore,

, Λl s Λ (f-s 2(t-s)2(Xl+θ(t)-θ(s))\
det A(s, t; x) = det Ξ 0 .

However, it is easily seen that the family {Vi(s)}l satisfies Condition (2.4).
Now we proceed to the proof of Theorem (2.1). The proof is separated

into two part according to Assumptions under which we work: the first part is
devoted to the proof that Assumption (A.I) yields the estimation (2.3) and the
second part is devoted to the proof under Assumption (A.2).
Part 1 Assume that Assumption (A.I) is satisfied. Fix 0^a<b and a compact
set K in Rd. Define

(2.5) A(sy t; x) = Σ ί Γ ij(s, u; x)'1 Vfa X(s, u; x))}®2 du .
Js

Obviously, it holds

(2.6) A(s, t;x)= J(s, t; x) A(s, t\ x) J(s, t; x)*

where X* denotes the adjoint matrix of a dx ^-matrix X. Moreover, we observe
that in order to show (2.3), it suffices to see the existence of constants C, B, λ > 0
and mo^N such that

(2.7) P((τ7, iϊ(j, t; x) n) ^ 1/Aro)^5 eXp(-χΛΓ)

for every a£s<t^by x^K, ηtΞSd-ιΞΞ{yEΞRd\ \y\ = \} and N^C{{t-s)Λiyι/z.
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Indeed, note that the inverse matrix oίj(s, t; x) satisfies the following:

J(s, t; x)-1 = I-ΈrXj(s, u; x)~ι dx V{{uy X(s, u; x)) dθ\u)
Js

(s, u; x)-1 [Σί(9, * » ) 2 - 9 , Ϋ0(U)] (X(S, «; *)) du ,

where 9, Vi(u,x)=dx F,(«)(*)=f^i ί^(*)) (see Lemma (8.2) in [8]).
\ OXk /l^j,k^d

Hence, using the standard argument, we can deduce the following estimate
from the boundedness of d* V/s, \a\ ^ 1 , ( 3 ) with respect to (s, x):

(2.8) s u p f Λ i r t E[(supteίttΛ\J(s, t; x)-1\

Combining this with (2.8), we note that

(s, t; x))-p]^CP (E[(det A(s, t; x)Y2p])y\ a^s^

for some C ^ ^ O . On the other hand, using (2.8) and the same argument as
in Lemma 3.5 in [11], we notice that (2.7) implies the existence of constants
Cψ and μp, given p^N, such that

E[(detA(s, t; x))-2p]^Cf\(t-s)Al)-% a£s<t£b, x^K.

Combining this with the previous inequality, we see that (2.7) yields (2.3).
Now we turn to the proof of (2.7). To this end, we modify the argument

in the proof of Theorem (8.31) in [8]. We first introduce some notations.
Let &={φ} U {(A, —, βk)\ l^βi^r, l^t^k, k<=N}. For a β and a family
{Yi\l of e°°-vector fields on Rd

y we set \β\=0 or k and Y(β)=0 or [Yβj, •••,
[Yβt-t, Yβk] —] accordingly as β=φ or (βu •••, βk). Take R>0 such that
KaB(0, R) = {y e Rd | y\ <R}. It follows from the condition (i) in Assumption
(A.I) and the continuity of d^V^sys, 1^/^r, with respect to (s , x) that there
are an £>0 and a AoeiVsuch that

(2.9) inf.eno.a+i] infηeS^-i Σiβi^*0 (V(β)(s, x), y)2^2β ,
R)

where ( , ) is the inner product in Rd. In the remaining of this part, we fix
a^s<Ct^by xEϊK and ηEzS0"1. However, we will mention that the constants
appearing in the sequel are all independent of a particular choice of a^s<.t^b,

and η&S4"1. Now we define a sequence {<rN}T of stopping times by

(2.10) σN = inf iu^s; \X(s, u; x)\ A \J(s, u; x)~1-I\>S A(SlB0)}

(3) For a multϋndex a=(alf •••, ad)t \a\ =ax-\ \-ad.

(4) For a </X^-matrix X^Xijtei,,** \X\ =(Σ?,i=i(
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where S=dist (K, fi(O, R)e) and 5 0 =sup{ | V(β)(u, x) | | β | ^ko+l, («, * ) e [0, oo)
χRd}. Then, there exist constants Ku λ i > 0 and -Bi^l, depending only on
6, 8, d and sup {|9JFj(«, * ) | l£i£d,
such that

(2.11) Piσ

(cf. Theorem 4.2.1 in [10]). Moreover, the direct calculation shows that

(2.12) Σ i β i s J * * (/(ί, «5 Λ )̂-1 V(β)(u, X(s, u; x)), y)2 du^ε(<rN-s), N^l .
Js

Define Ek(N), N^l, 0^k^k0, by

Ek(N) = {Σ ιβ)£λ Γ ^ (7(ί,«; x)-1 F t f )(β, X(ί, «; *)), v)2 du^r*INm*} ,
J s

where mk=4 ko~k X 5. Then, obviously,

{(*, iί(ί, ί Λ) v)£llNmo} dE0(N) if N^((t-s) Λ 1)"1 / 3.

Furthermore, noting that mk-ι=4rnk, we have, on Ek^(N) f)Ek(N)c,

ί, ft; *)), ^ ) 2 ώ

••• ds is greater or equal to

rl2koN\ because #{/3; |/S| ^Λ—l}=Σ*-ίr y^A or*" 1. Therefore, noting the
inequality r*-1INm*-^l/N4m*-9 if Λ^iV9, we have

(2.13) c U wa-iύ*" (J(s, u; x)-1 Vw(u, X(sy u; *)), v)
2du^l/N^'9,

Js

Σ ί Γ ' (7(ί, «; ^c)-1 [Vj(u), V(β)(u)] (X(s, u; x)),
Js

Also, due to the inequality (2.12), we obtain, if JΨ^Ajε,

(2.14) Ek(N) Π {σN=s+N~3} = φ .

Therefore we have

(2.15) \(v,A(s,t;x)v)^llNmo}cz{<rNΦs+N-3}U

where ΛΓ^((ί-ί)Λl)- I / 3V(AV2)1 / 9V(/ *o/£)1/2 and
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H(β, k,N)= {{"'(J(s,u; x)-1 Vw(u,X(s, u;x)), vf du^ l/iV4**"9,

J s

Σί J ' ' (J(s,«; x)-1 [F/α), Vw(μ)] (X(s, «; *)), vf du

*, σN =

On the other hand, it follows from Ito's formula that for every C°°-vector field
V=V(s, x)onRd+\

J(s, t; x)-1 V(t, X(s, t; x))

= V(s, * ) + Σ ί ('/(*. «; x)-1 {V,{u)t V(u)] (X(s, u; *)) rfβ'(«)

where Γ(«) (W)=[VJu), W]+— Σ ί [F*(«), [F»(β), ΪΓ|] for a C~-vector field

W on Rd. Applying Theorem (8.26) in [8], we can find a constant λ 2 >0,

depending only on BQ and sup{|-^- V(β)(s, x)\; \β\^ko+ly (s, Λ?)e[0, b+ΐ]x
OS

Rd}, such that

(2.16) P(H(β, k, N))^V2N5m*-5 exp(-λ2iV)

for all N^ 1 and β with | β \ ̂ k0. Thus combining (2.15) with (2.11) and (2.16),
we obtain the desired estimate (2.7).
Part 2 Assume that Assumption (A.2) holds. Fix Q<^a^b and a compact set
K in Rd. Let A(s> t x) be as defined by (2.5). Then, similarly to the preceding
part, in order to obtain the estimation (2.3) it suffices to show the existence of
constants C, B, λ, μ>0 and mQ^N such that

(2.17) P((v, A(s, t; x) v)^ίlNmo)^B exp

for every a^s<t^by x£ϊKy ^ G ^ " 1 and
We now proceed to the proof of (2.17). Choose a family ifάΌ of Holder

continuous functions on [0, 6+1] and a family {H^ }5 of C°°-vector fields on Rd

as in Assumption (A.2). Define families Ok, k^{Q}U N, inductively by

Co= {Wu •.., Wr\ and Ck = {[Wky W];0£k£r, J F e C ^ } , A^l .

Take an i?>0 such that K(ZB(0, R). Then by the condition (iii) in Assumption
(A.2), there are an 6>0 and a &oe {0} U N such that

(2.18) infseB(OfΛ) inf.^-1 Σ J ! B 1 Σ ^ e C f t (ίF(x), ̂ ) 2^2ε .

In the following, we fix a^s<t^b, x^K and η^S4'1 but we will see that all
constants appearing in the following are independent of a particular choice of
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s, ty x and η. We define a sequence {τN} of stopping times by

rN = inf iu^s; \X(s, u; x)-x\ A \J(s, u; x)-I\^8A(SSllB)} A(s+N~3),

where δ=dist (K, B(0, R)c) and i?=max{| W{x)\ W(=Gky O^k^ko+2, x<=Rd}.
Then, by Theorem 4.2.1 in [10], there exist constants Ku λ i>0 and iVΊeiVsuch
that

(2.19) Pir^s+N-η^K, exp (-λx N3) if N^

Also, (2.18) implies the following inequality:

(2.20) Σ k 0 Σwecfi" (J(s, «ί x)-1 W{X{s, «; *)), v

Moreover, the conditions fi) and fii) imply that

(2.21) 8l([Wk, W] (*), ζf^{[Vk{u\ W] (x), ξ)2mWk, W] (x), ξ)2/S2

0,

for every (u, x) e [0, b+1] X Rd, ξ^Rd and C°°-vector field W on Rd. Hence we
have

(2.22) {{v,A{s,t,

( V * . « ; Λ ; ) - 1 ^ . ^ , X ( S , U ; *)),

if N^(t-s)Λ I)"173. Furtheimote let

F, N) = {[' (J(s, «; x)-1 PF(X(ί, «; *)), ^)2 άu£ 1/iV20"*"9,

where mk=20ko~kχ6. Then, using the same argument as in the previous part,
we deduce from (2.20) the existence of a number N2^N, independent of s, t, x
and 97, such that if N^N2r then the right hand side in (2.22) with m=m0 is

contained in the set {τ^+0+iV"3} U U U Wech-i Hk{W, N). Therefore, combin-
1

ing this with (2.22) and (2.19), the proof of estimation (2.17) is completed once
we show that there exist constants K2, λ2 and μ2>0y depending only on B in
the definition of τN, such that

(2.23) P{Hk{W, N))^K2 exp(-\2N
μ2)y JV^l, W^Ck.ly l^k^kQ.

To this end, we note that it follows from (2.21) that for all « e [0, ft+1], x,
and C°°-vector field W on Rd

SI Σ5 ([Wky W] (x), v)
2^Έro([Vk(u), W] (x)9 η)

2
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where T{u){W)={V0{u), W}+\τλ [Vk(u), [Vk(u), W]]. Thus, if we fix

£ka and W^Ck-λ and set

"(J(s, u; x)-1 Γ(«

rN = s+N-3}

and

(J(s, u; x)-1 [ F » , [Wj, W]] (X(s, u; *)),

then we have

fl^JΓ, N)CFUGU ΌHj.

Therefore, noting that

H,<Z {[" (/(*, «; Λ)"1 W(X(s, «; *)),
Js

2 i J ' ' ( / ( i , «; x)-1 [Vk(u), W] (X(s, u; x)), v

rN = s+N-3}

U {[" (J(s, u; x)-1 [Wj, W] (X(s, u; x)), v)
2 du^

J s

Σ ί ί V (
J s

τN =

and it holds, for a C~-vector field V on
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/(*, t; x)-1 V(X(s, t; «)) = V(x)+Σ,rXj(s,u;x)-1 [V,(u), V](X(s, u; *)) dθ\u)
Js

+ \'j(s, u; x)-1 Γ(«) (V) (X(s, u; *)) <&,

we obtain the desired conclusion (2.23) by applying Theorem (8.26) and (8.29)

in [8].

The proof is completed.

3. Application

In this section, we discuss an application of the previous theorem to the

time-dependent system of heat equations.

Let {Vi(s); O^z^r, *e[0, 00)} be a family of C°°-vector fields on Rd and

let {a)m(s)\ ί^i^r, l^mj^d, *GΞ[0, 00)} and {c*(s); l^mj^d, *e[0, 00)}

be families of C7-functions on Rd. Throughout this section, we assume that

for each multiindex α, mapping (s, x)\^>d* Vfo, x), (s, x)h^>d" a1™^, x) and (s, x)t-+

d* c™(sy x) are all continuous and bounded. Define a time-dependent operator

i4(f)onCβ β(if f;/f f)by

(3.1) (A(s)f)j = [ 1

We first give a brief introduction to the probabilistic construction of the

fundamental solution P(s, t) to the time-dependent system of heat equations:

(3.2) (JL+A(s) )u=0, O^s^t

u{t)=gtΞCV(Rd-Rd).

Let {X(sy t; x)}t ̂ s be the unique solution to the stochastic integral equation

(2.1) and {M(sy t; x)}t^s-={(M){sy t; x))i^i,j^d}t^s be the unique solution to the

following stochastic integral equation:

(3.3) M'j(s, t; x) = δj+Σί-i Σt- iΓ akj(«, X(s, u; x)) MJ{s, u; x) dθk(v)
Js

+Σi- iΓ ci(β, X(s, »; *)) Mf(s, u; x) du ,
J s

where δj-= 1 or 0 accordingly as i=j or tΦj. We define an operator P(s, t) by

(3.4) (P(sy t)g) (x) = (Σί E[MKs, t; x)gi(X(s, t; x)

Due to the result in [3] (also see [1]), it is easily seen that P(s, t) maps Cb(Rd\
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Rd) into itself. Moreover, we have the following.

Proposition 3.1. Forg^Cΐ(Rd; R% define u{sy x) by

Then, u is a solution to (3.3) with u(t)=g.

Proof. By Ito's formula, we have

P(s, t)g = g+\'P(s, v) (A(v)g) dv, g^Ct{Rd\ Rd).
J s

Moreover, because of the multiplicativity of M(s, t; x) and the Markov property
of X(s, t; x), we obtain

P(s, u) P(u, t) = P(sy t), s^u^t.

Applying the standard argument, it follows from these two identities that

Since P(t, t)=identity, this completes the proof.

REMARK 3.1. Under the assumption that L(s)=—Σi(Vi(s))2+V0(s) is

elliptic, Stroock showed the result similar to the above proposition ([7]). On
the multiplicativity, Pinsky ([6]) studied in more general scheme.

Now we are ready to state our main result in this section. Our conclusion
is the following.

Theorem 3.1. Let P(s, t) be as before. Assume that V^sys which appeared
in (3.1) satisfy either of Assumptions (A.I) and (A.2) in Section 1. Then, there
exists a family {qfa t); l^i, j<^d, O^s<t< + oo} of C°°-functions on (Rd)2 such
that

(3.5) (P(sf t) ?)y (*) = Σίj^ftϋO ϊfa. t\ x,y) dy9 g^C~(Ed; Ed).

In particular, if we define u(s, x)=(Σί\ gi(y) qfo, t\ x, y) dy)λ^j^dy then u is a

solution to (3.2) with u(t)=g. Moreover, let 0^a<b and K be a compact set in Ed.
Then, for each δ > 0 and wultiindeces a and β, there exist constants C=C(a, g, K>
a. β), C8=C(a, b, K, S)>0> S>0 and μ^O such that

(3.6) |8Ϊ 95 qj(sy t; x, -

(5) For an ΩcRd and a continuous function/ on Rd, |/|i7j(Q)=supxeQ|/(^)|.



318 S. TANIGUCHI

(3.7) |9"9??j(M;*,

exp [-Cδl((t-s)

for a^s<t^b and χ(=K, where B(xy 8)={y^Rd; \x— y\ < δ } .

Before proceeding to the proof of Theorem (3.7), we prepare a lemma on the
existence of a C°°-kernel function of the finite measure p(x, dy) on Rd para-
meterized by x^Rd.

Lemma 3.1. Let {p(x, dy)}xGRd be a family of finite measures on Rd such

that [ df(y)p(-, dy)<=C°°(Rd) for every f(ΞC"(Rd). Assume that for each R>0

and multiindeces a and β, there exists a constant Ca>p(R) such that

(3.8) 19?\Rd d
βf(y)p(x, dy)\ ^CΛ,β(i?) | / | c # α r t f f<ΞCΐ{R% xtΞB(Oy R).

Then there exist a p^C°°(RdxRd) such that

(3.9) p{x,dy)=p{x,y)dy.

Moreover, for every r<R andn^N, there are constants C and m^.N, depending
only on n and ry such that

(3.10) |

holds for every x6fi(0, r) and a, β with \a\-\-\β\^n.

Proof. By Lemma (3.1) in [9], for each x^Rd, there exists a p(x, ) G C ° °

(Rd) satisfying (3.13). Choose ψ(=Co(Rd) such that | = 1 on B(0, r) and = 0
outside of 5(0, R) and set p(x, y)=ψ(x)p(x, y). Then, by (3.12), for each &<Ξ N,
there is a Ck such that

RdxRd

where Δ is the Laplacian on Rd. Thus, by Sobolev's inequality ([2]),
(Rd X Rd) and satisfies (3.14). Hence so does p.

Now we proceed to the proof of the theorem.

Proof of Theorem 3.1. By Theorem (2.19) in [4], we have

s u p , e Λ * s u p O £ β < ί £ , + 1 E[(\L* d« X\s, t;x)\ + \Lk~1d*x M){s, t x ) \ ) p

for every multiindex a and k,p^N. Here L is the Ornstein-Uhlenbeck operator
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on Θ (cf. [1] or [4]). Hence, using the integration by parts formula with respect
to the Wiener measure (cf. [4]), we see that, given multiindeces a and βy there
exists a constant C with the following properties:

(3.11) IK E[M){s, t; x) (dβh) (X(s, t; x))]|

^ C | A|c^*) E[(det A(s, t; *))-*(i-i+i"i«)], h<=C7(Rd),

(3.12) 13« E[M){s, t; x) (8βh) (X((s, t; x)) φ(X(s, t; *))] |

X (E[det A(s, t; x))~«m+^+1ψ2 x (P(X(s, t; x)

heCΐ(Rd) and φ&Cϊ(Rd) such that ψ = 0 on 5(0, δ/2).

Moreover, due to Theorem 4.2.1 in [10], for each δ>0, there exist constants
C^O, C s >0 and £ > 0 such that

(3.13) P(X(s, t; x)(£B(x, δ/2))^O exp [-C,/((f-ί)Λ£)].

Now let q'j(s, t x, dy) be a finite measure on Rd defined by

(3.14) \RJ{y) q'j(s, t; x; dy) = E[M){s, t; x)f(X(s, t; *))], f&Cb{R").

By (3.11) and Theorem 2.1, given multiindeces a and β and an i?>0, we can
find constants Catβ(R) and μ^O such that

(3.15) 13?\Rd d?f(y) q}(sy t;x,dy)\£Ca>β(R) ( (*-*)Λl)- μ | / |

0y R).

Combining this with Lemma 3.1, we see the existence of qj(s9 t)
ys in C°°(RdχRd)

satisfying (3.5). Moreover, combined with Lemma 3.1, (3.15) yields (3.6). To
show (3.7), choose ψ^CT(R}) such that ψ~0 on (—1/2, 1/2) and = 1 outside
of ( - 1 , 1) and set q)(s, t; x, dy)=ψ(\x~y\2/S2) q)(s, t\ x, dy). Then, by (3.12),
(3.13) and Theorem 2.1, given multiindeces a and β and an i?>0, there exist
constants Ca^(R) and μ^O such that

(3.16) 19? \Rd dβf(y) q){sy t; xy dy) \ ̂ Ca>β(R) (t-s)Λ l)

X exp [-CBβ((t~s

Since qj(s, t; xy dy)—q){sy t\ xy dy) outside of B(xy δ), combining this with Lemma
3.1, we obtain (3.7).
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