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1. Introduction

Recently, various applications of Malliavin’s calculus are studied by several
authors. In particular, Kusuoka-Stroock applied Malliavin’s calculus to the
investigation of second order differential operators of Hormander type ([5]).
In fact, they have shown that the semigroup generated by a differential operator

L=—;—Z‘,§(V,.)2+ Vo V;'s being all Cy-vector fields on R? has a C>-kernel if

V,'s satisfy the restricted Hormander condition (cf. [8], [5]). Furthermore,
they showed that the above L is hypoelliptic when the general Hérmander con-
dition is satisfied ([5]). Our aim of this paper is to extend their result to a
time-dependent system associated with an operator A(s): C~(R?; R*)—C*~(R’;
R?), where C~(R?; R?) is the space of all C~-mappings of R? into itself. Indeed,
suppose that the operator A(s) is represented as

(1) (A($) N)i(*) = ([—;— St (Vi(o)y+Vo(91f) (%)
+337e1 a1 @"(5, ) (Vil5) fon) (8)+ o1 €7(5; %) f (%) 5

where f=(f1, *, fi) EC~(R?; R?), V(s)’s are time-dependent C=-vector fields
on R¢ and ai"(s), c?(s)€C=(R?) for every s€[0, o0). We will show the fun-
damental solution P(s, #): C=(R*; R*)—C=(R’; R?) for the system of heat
equations:

(1.2) (6%+A(s))u —0
u(t) = geC7(R%; RY)

has a C'=-density function if
(1.3) mappings (s, x)—05 k(s, x), k< {ai™, c?, V'i} are all bounded and con-

(1) This work was partially supported by Grand-in-Aid Science Research (No. 59740112),
Ministry of Education.
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tinuous, where V} is the i-th component of V, i.e. the function Vi(s, x) on
[0, «0)x R? is defined by V(#)=31., Vi(t, - )ai, and
X

(1.4) either of the following assumptions (A.1) and (A.2) is satisfied:
(A.1) (i) Lie(Vy(s), -+, V,(s)) (x)=R* for all (s, x)[0, o0)x R,

(i) 93Vi(s, x) is continuously differentiable with respect to (s, x) for
each 1<i=<d, 1=<j=r and multiindex «,

(iii) for every multiindex @ and R>0, there exists a constant C such that

'aia‘: Vi(s, x)|<C, (s, x)€[0, RIx R?, 1<i=<d, 1<j<r.
)

(A.2) for all 0=<a<b, there exist families {f;}§ of Holder continuous functions
on [a, b] and {W;}{§ of C-vector fields on R? with the properties that

() Vis)=f (W, 0=i<r

(if) there exists a positive number §, such that §,<| f;(s)| =87, s€
[a, b], 0=i=<7,

(ili) R?=span {W(x); W=W, or [W,
;;=<r, 1=j=q, q= N}® for all x&R".
Note that Assumption (A.l) appears stronger compared with the time-inde-
pendent case, where the restricted Hormander condition assures the existence
of C~-density function. We will see that the condition analogous to the restricted
Hormander condition is not sufficient for the time-dependent systems (see
Remark 2.1.).

To show the above assertion, we apply Malliavin’s calculus to the diffusion

processes generated by the time-dependent second order differential operator

°ty [W I/Vio]'“]’ léioér, Oé

?? 1’

L(s):% SU(Vi($))?4Vo(s). We will show that the inverse of the Malliavin

covariance of such diffusion processes has nice bounds in L,-spaces with respect
to the Wiener measure under either of Assumptions (A.1) and (A.2). To obtain
the estimations in L,-spaces, we follow the idea of Kusuoka-Stroock used in
[8]. Then we will apply the integration by parts formula with respect to the
Wiener measure. For this purpose, we will discuss the probabilistic con-
struction of P(s, t) in Section 3.

Section 2 is devoted to the estimations of the Malliavin covariance and the
proof of our conclusion will be done in Section 3. We will also give a brief
introduction to the probabilistic construction of P(s, ¢) in Section 3.

Finally, we would like to thank S. Kusuoka and D. Stroock for their valuable

suggestions and encouragements.

(2) Here and in the sequel, for C*-vector fields I/ and W on R¢, V'(x) is the tangent vector at x
associated with V7 and [V, W] is the bracket product of I and W.
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2. Estimations of Malliavin covariance

In this section, we will study the boundedness of the inverse of the Malliavin
covariance of time-dependent diffusion processes in L,-spaces with respect to the
Wiener measure. Let © be the space of R'-valued continuous functions 6
defined on [0, o) with §(0)=0 and P be the Wiener measure on ®. Throughout
this paper, E stands for the expectation with respect to P. Let {V(s); 0=:=7,
s&€[0, o)} be a family of C~-vector fields on R? such that the mapping (s, x)—
83Vy(s, x) of [0, c©) X R? into R? is bounded and measurable for each 0=i=r
and multiindex . Here we used the usual identification of C*=-vector fields
on R? with C~-mappings of R’ into itself and in the following we will use this
identification without mentioning it. Given s=0 and xE R¢, we denote by {X(x,
t; x)} >, the unique solution to the stochastic integral equation:

@2.1) X(s, t; %) — x+z;§: Vi(u, XG5, u; %)) dﬁ‘(u)+S: Vi, X(s, u; ) du ,

0 17i

o, i(u)
and 0(u)=(60"(u), -+, "(u)) is an r-dimensional Brownian motion with 6(0)=0
realized on (@, P). By Theorem (2.19) in [4], we note that each i-th component
Xi(s, t; x) of X(s, t; x) is an infinitely differentiable Wiener functional in the
sense of Malliavin (for the definition of the infinite differentiability of Wiener
functonals, see [1], [4] or [8]). Let A(s, ¢; x) be the Malliavin covariance of
X(s, t; x) (for the definition, see the same articles as above). Then, due to
Lemma (2.9) in [4], in exactly the same way as in the case of time-independent
stochastic integral equations, we have

where V;(u, x)="V;(u) (), 0<i<r, Vi(w)=Viw)+f-1 %1 Viw)

22)  Als, t; %) = 2;5' s, 25 %) J (s, w3 6)™ Vi, X(s, 3 %)} 2 du .

Here J(s, t; x) is the Jacobian matrix of X(s, ¢; x) with respect to x and for a
£ R%, we define a d X d-matrix £%?=(§; £,),; j<s- Our goal of this section is
the following assertion.

Theorem 2.1. Let V(s)’s be as above. Suppose that V(s)’s satisfy either
of Assumptions (A.1) and (A.2) in Section 1. Then, given 0=a<<b, a compact
set K in R* and p< N, there exist constnats C=0 and ;=0 such that

(2.3) E[{detA(s, t; x)} ?]=C((z—s)) A1)
for every x&K and a<s<<t=<b.

ReEMARK 2.1. If V(s)’s are all time-independent C~-vector fields W;’s on
R¢, the restricted Hormander condition (the condition (iii) in Assumption
(A.2)) is sufficient for (2.3) to hold. On the other hand, the condition (i) in
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Assumption (A.1) is stronger than the following condition; for all (s, x) [0, o)
X R?,
(24) R =span {V(x); V = V,(s) or [V:(8)s ==, [V, (5)s Viy(9)] -],

154, <r, 054,51, 15 j=<q,q= N} .

Thus, the preceding theorem makes us ask if Condition (2.4), the analogue to
the restricted Hormander condition, leads to the estimation (2.3). In general,
the answer is No. For example, let d=2, r=1 and

0 0
V- = 7 { Dex, -2
1($) o, ~+2sx, o,
Vi(s) = (m)?-2- .
0x,

Then the solution to the stochastic integral equation associated with V(s) and
V(s) is given by

X(s, t; ) = (40(2)—0(s), x4 (2—s) (21 +0(£)—0(s))?)
where 4(¢) is a 1-dimensional Brownian motion with §(0)=0. Therefore,

2
det A(s, t; x) = det (t : A=) (x‘+0(t)_6(“'))) =
2(t—s)* (i +0()—0(s))  4(E—9) (x+0()—06(s))’

However, it is easily seen that the family {V(s)}; satisfies Condition (2.4).

Now we proceed to the proof of Theorem (2.1). The proof is separated
into two part according to Assumptions under which we work: the first part is
devoted to the proof that Assumption (A.1) yields the estimation (2.3) and the
second part is devoted to the proof under Assumption (A.2).
Part 1 Assume that Assumption (A.1) is satisfied. Fix 0=<a<(b and a compact

set K in R4. Define

2.5) Als, t; %) = E;S‘ s, 13 %)™ Vi, X(s, u; 1)} du.

Obviously, it holds
(2.6) A(s, t; x) = J(s, t5 x) A(s, t; x) J(s, t; x)*

where X* denotes the adjoint matrix of a d X d-matrix X. Moreover, we observe
that in order to show (2.3), it suffices to see the existence of constants C, B, A>0
and m,& N such that

2.7) P((n, A(s, t; %) n) <1/N")<B exp(—rN)
for every a<s<t<b, x€K, n€S* '={ycR?; |y|=1} and N=C((t—s)A\1)7~.
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Indeed, note that the inverse matrix of J(s, ¢; x) satisfies the following:
Js t5 37 = I=S%{ Jts, w3 )70, Vi, X, w5 %)) d0'(w)
+§ s w3 )70 (53400, Vw0, Vi) (XG5, w3 ) ds,

where 8, V(u, x)=0, V(u) (x)z(%i(“)(x)) (sce Lemma (8.2) in [8]).

1<j,k=d
Hence, using the standard argument, we can deduce the following estimate
from the boundedness of 87 V}’s, |a| <1,® with respect to (s, x):

(2.8) sup;ets,s1 E[(supret,s1l J (5, t5 )71 Y] <40, p>1.0
Combining this with (2.8), we note that
E[(det A(s, t; x))"?1=<CP (E[(det A(s, t; x))"#])"2 a<s=<t<b, x€K

for some C§"=0. On the other hand, using (2.8) and the same argument as
in Lemma 3.5 in [11], we notice that (2.7) implies the existence of constants
C® and u,, given p& N, such that

E[(det A(s, t; x)) 2] CP((t—s) A1), a<s<t<bh, x€K .

Combining this with the previous inequality, we see that (2.7) yields (2.3).

Now we turn to the proof of (2.7). To this end, we modify the argument
in the proof of Theorem (8.31) in [8]. We first introduce some notations.
Let T={¢p} U {(By, ***, Br); 1=B;=<r, 1=<i<k, ke N}. Fora B and a family
{Y.}§ of C=-vector fields on R?, we set |[3|=0 or k and Y(=0 or [V, -,
[Yei-1, Yg,] -] accordingly as B=¢ or (B, -+, Bs). Take R>0 such that
KcB(0,R)={y=R% |y|<R}. Itfollows from the condition (i) in Assumption
(A.1) and the continuity of 37V (s)’s, 1=i=<7, with respect to (s, x) that there
are an £>0 and a k& N such that

(2.9) infsepo,5417 infye s a-1 Zlﬂlgko (Ve (s, x), 77)2%25 ’

x€B(0,R)

where (, ) is the inner product in R?. In the remaining of this part, we fix
a<s<t=bh, x€K and n&S?'. However, we will mention that the constants
appearing in the sequel are all independent of a particular choice of a<s<<t<3J,
x€K and 8!, Now we define a sequence {o,}7 of stopping times by

(2.10) oy = inf {u=s; | X (s, u; )| A | J(s, u; )" —1|>8 A (E/By)}
/\(s"]"'N-s))

(3) For a multiindex a=(ay, **+, &g), |a| =a;+ - +ag.
(4) For a dxd-matrix X=(xi)isi,sSa | X|=(S4 joy(xi))2
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where §=dist (K, B(0, R)") and By=sup{| Vip(u, x)|;| 8| Zky+1, (4, x) [0, o)
X R?%. Then, there exist constants K;, A,>>0 and B,=1, depending only on
& 8, d and sup {|37Vi(u, x)|; 1=<i=<d, 0=<j=<r,|a| <2, (4, x)E[0, o)X R},
such that

(2.11) P(oy*+s+N3)=K; exp(—MN?), N=B,
(cf. Theorem 4.2.1 in [10]). Moreover, the direct calculation shows that
(212) Shpra| " (65 %)™ Vip(t, X(s, 43 9), 7 duze(on—s), NZ1.
Define Ey(N), N=1, 0=k=k, by
E(N) = {2 ipiss SjN (J (s, w5 2)7 Vigy(u, X(s, u; %)), n)* dusr*[N"s} ,
where m,=4*%"*x5. Then, obviously,
{(m As, t5 x) ) <1IN™} CE(N) if N=((t—s)a1)7~.
Furthermore, noting that m,_,=4m,, we have, on E,_;(N) N E(N)’,
2ipisk-1 Z{SZN (J (s, ws )7 [V(w), Vig(w)] (X (s, u; %)), n)* du

= Sharms| " (6327 Vi, XG5, w5), n) ds

= (7 [N™)— (P~ [N"s-3)
=7 /2N"™s

N

if N=2. Then at least one of the above term 2{5

7/2k,N™, because #{B; |B| <k—1}=zlr'<k,7*"!. 'Therefore, noting the
inequality 77 [N™-1 < 1/N*~9 if 7% < N®, we have

Ey(N)NE(NY
(213)  CUpisi {S:’” (J (s, u; %)™ Vigy(u, X(s, u; %)), n)? du=1/N*m~9
S (7 (6 w307 [V,0), V@] (XG5, w3 ), 7 duzr 26N}
Also, due to the inequality (2.12), we obtain, if N2=r%/¢,
(2.14) E(N) N {ow=s+N"} = ¢.

Therefore we have

-+« ds is greater or equal to

(215) A Als 1) SN C low kst N1 U piaiH(B, B, ),

where N Z=((t—s) A1)718V (r*o\/ 2)Y0\/ (r*0/€)2 and
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H(By k, N) = {S w (](s, u, x)‘l V(B)(u: X(S, u; x)), 7])2 du§1/N4"'r9 ,
S (7 (61507 V30, Vip@)] (X, w3 ), ) d
=7/2kN™, oy = s+N"3} .

On the other hand, it follows from Ito’s formula that for every C~-vector field
V="V{s, x) on R#*,
J(s, 5 %)™t V(t, X(s, t; %))
t .
= V(s, x)+ 31 Ss](s, u; x)7 [Vi(u), V()] (X(s, u; x)) d6*(u)
t
+{ 706,307 -2 v+ @) (V@) | (X6, w3 )
s ou

[
s

where T'(u) (W)=[V(u), VVJ—F% 31 [Vi(w), [Vi(u), W]] for a C=-vector field
W on R’. Applying Theorem (8.26) in [8], we can find a constant A,>0,
depending only on B, and sup{l—% Ve (s, x)|; 1B =k, 41, (5, x)€[0, b4+1] X
R%, such that

(2.16) P(H(B, k, N))=+/2N"™° exp(—.N)

for all N=1and B with |@| <k,. Thus combining (2.15) with (2.11) and (2.16),
we obtain the desired estimate (2.7).

Part 2 Assume that Assumption (A.2) holds. Fix 0<a=b and a compact set
Kin R, Let A(s, t; x) be as defined by (2.5). Then, similarly to the preceding
part, in order to obtain the estimation (2.3) it suffices to show the existence of
constants C, B, A, x>0 and m,& N such that

(2.17) P((n, A(s, t; x) ) <1/N™)<B exp (—AN"),

for every a<s<<t<bh, x&K, n&€S* ! and N=C((t—s)A\1)7'A,

We now proceed to the proof of (2.17). Choose a family {f;}7 of Holder
continuous functions on [0, 541] and a family {W;}§ of C=-vector fields on R?
as in Assumption (A.2). Define families 0,, k€ {0} U NN, inductively by

Cy= {W,, -+, W,} and C, = {{W,, W]; 0<k<r, WeC,_}, k=1.

Take an R>0 such that KC B(0, R). Then by the condition (iii) in Assumption
(A.2), there are an €>0 and a k,& {0} U NV such that

(2-18) infxEB(O,R) inf,csd-1 2211 ZWEC,, (W(x), 77)2225 .

In the following, we fix a<s<<t<b, x€ K and < S5?"! but we will see that all
constants appearing in the following are independent of a particular choice of
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s, t, x and . We define a sequence {ry} of stopping times by
Ty = inf {u=s; | X(s, u; x)—x| A | J(s, u; x)—1| =8N (ESS/B)} A(s+N73),

where §=dist (K, B(0, R)°) and B=max{| W(x)|; W 0,, 0<k<k,+2, xR‘}.
Then, by Theorem 4.2.1 in [10], there exist constants K;, A,>0 and N, & N such
that

(2.19) P(ry+s+N3)=K,exp(— N°) if N=N;.

Also, (2.18) implies the following inequality:

(2200 Soo Swea,] " (J(5 1397 WX(s, 5 ), n) duze(ry—9).
Moreover, the conditions fi) and fii) imply that

(221)  3([Wi W] (%), E)=([Vi(w), W] (), EP=([W}, W] (), £)*/35,

for every (u, x)€[0, b+1]x R?, E=R? and C*~-vector field W on R’. Hence we
have .

(222)  {(n, Als, t; %) ) < SN}
c {E{STN (J (s, u; x)'Wi(u, X(s, u; x)), n)? du=1/N"}, meN,

if N=(2—s)A1)"2.  Furthetmore let
H(W,N) = {ST” (J (s us %)™ W(X(s, u; x)), 7)? du<1/N?®™2
S (T s 27 W, W (X(s, w5 ), 2)F duz 5133 N™,
Ty = S+N—3} y

where m,=20%"%x 6. 'Then, using the same argument as in the previous part,
we deduce from (2.20) the existence of a number N,& N, independent of s, ¢, x
and 7, such that if N=N,, then the right hand side in (2.22) with m=m, is

k
contained in the set {7y=+s+N"3} U Lj Uwecs-: H(W, N). Therefore, combin-

ing this with (2.22) and (2.19), the proof of estimation (2.17) is completed once
we show that there exist constants K,, A, and u,>0, depending only on B in
the definition of 7, such that

(2.23)  P(H(W, N))=K, exp(—\,N*2), Nz1, Wely,, 15k=k, .

To this end, we note that it follows from (2.21) that for all [0, 6+1), x, E€R?
and C~-vector field W on R?

88 338 ([Wh, W1 (%), n)*=ZW([Vi(w), W1 (%), 7)°
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= 3([Va(w), W(#)], 2)*+2(T(w) (W), 7)*

+§ra—g 2{([171:(”)) [Wln W]] (x)’ 77)2

where T'(u)(W)=[V,(u), W]—l—% S [Vi(w), [Vi(w), W]]. Thus, if we fix 1=
k=k, and WeC,_, and set
F= {ST” s, w3 2)™ W(X(s, u; x)), ) dus1/ N2~
S (763 007 Vi), WX, 5 ), 2 duz1 (N,
TN — S—I_N—s} [}
G ={["" (TG w5 )7 W(X(s, w5 ), 0 du= 1 NP2,
[ (766 w3 27 T () (X6, w3 ), P duz N,
Ty = s+N7%
and
Hy = A7 (705, 1597 WX, 5 ), 0 dus 1N,
[ (765 907 700, D00 WD (X, 5 90, ) dez 48802 N
T™N = S+N_3} ’
then we have
H(W, N)cFUGU UH;.
Therefore, noting that
H,c {ST” (J (s, w3 2)™ W(X(s, u; ), n)2 duss 1/N#m=9
[ (6 w5 )7 Vi), WX, w5 9), ) duz 83 Nomss,
Ty = s+N7%
U™ (105 3 007 D0, WY (XG5 ), 7 dusS 1N,
S (G5 w507 V400, W WI) (XG5, 03 2), 7 duZ 482N
Ty = s+N"3%
and it holds, for a C~-vector field ¥ on R¢
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J(s, t; )" V(X(s, t; u)) = V(x)—O—Z{S:](s, u; x)7 [Vi(w), V](X(s, u; x)) d6'(u)
+{ 705, w397 T (V) (X, w3 ) s

we obtain the desired conclusion (2.23) by applying Theorem (8.26) and (8.29)
in [8].
The proof is completed.

3. Application

In this section, we discuss an application of the previous theorem to the
time-dependent system of heat equations.

Let {V(s); 0=<i=r, s€[0, o)} be a family of C~-vector fields on R? and
let {ai"(s); 1=<i<r, 1=m, j<d, s€[0, o)} and {c?(s); 1=<m, j<d, s€[0, =)}
be families of Cy-functions on R?. Throughout this section, we assume that
for each multiindex a, mapping (s, x)—07 Vi(s, x), (s, x)—07 ai"(s, x) and (s, x)—
9% c?(s, x) are all continuous and bounded. Define a time-dependent operator

A(s) on C=(R*; R%) by
(D) AON, =L T+ s

+ 30 a1 D1 @57(8) Vi(8) fut-220 €7(9) o 1=7=d,
for f=(fi, ***, f))EC=(R?; R?).

We first give a brief introduction to the probabilistic construction of the
fundamental solution P(s, ) to the time-dependent system of heat equations:

(3.2) (%—}—A(s)) u=0, 0=<s=<¢
u(t) = g=C(RY; RY).

Let {X(s, t; %)}, be the unique solution to the stochastic integral equation
(2.1) and {M(s, t; %)} o= {(M(s, t; %))1<i,j<a}r=s De the unique solution to the
following stochastic integral equation:

(3.3) Mi(s, t; x) = 8i+>ka ',’,,,IS’ aki(u, X(s, u; x)) M7(s, u; x) do*(u)
—{—Z‘,‘,’nslst ci(u, X(s, u; x)) M%(s, u; x) du ,
where 8{=1 or 0 accordingly as /=j or i#j. We define an operator P(s, t) by

(3.4 (P(s, 2) 8) (%) = (24 E[M(s, t; %) g(X(s, t; %)) Disjsa »
8= (gh ""gd)ec?(Rd; Rd) .

Due to the result in [3] (also see [1]), it is easily seen that P(s, £) maps Cy(R%;
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RY) into itself. Moreover, we have the following.
Proposition 3.1. For g C7(R%; R%), define u(s, x) by
u(s, x) = (P(s, ) &) (%) -
Then, u is a solution to (3.3) with u(t)=g.

Proof. By Ito’s formula, we have
t
P(s,1)g = g+ P(s,0) (A(0)8) dv, gECF(RY RY).

Moreover, because of the multiplicativity of M(s, ¢; x) and the Markov property
of X(s, t; x), we obtain

P(s, u) P(u, t) = P(s, t), s=u=t.

Applying the standard argument, it follows from these two identities that
D p(s, ) = —A(s) P(s, 1) .
os
Since P(t, t)=identity, this completes the proof.

ReEmMARK 3.1. Under the assumption that L(s)=—;- (Vi) +Vo(s) is

elliptic, Stroock showed the result similar to the above proposition ([7]). On
the multiplicativity, Pinsky ([6]) studied in more general scheme.

Now we are ready to state our main result in this section. Our conclusion
is the following.

Theorem 3.1. Let P(s, t) be as before. Assume that V (s)’s which appeared
in (3.1) satisfy either of Assumptions (A.1) and (A.2) in Section 1. Then, there
exists a family {qi(s, t); 1=¢, j<d, 0<s<t<<+ oo} of C*-functions on (R®)* such
that

3.3)  (Pls9)9);(x = Z?SRdg:(y) qi(s, t; %, ) dy, gECT(E”; EY).

In particular, if we define u(s, x)=(5‘_,‘{SRd () ¢i(s, t; %, ¥) dY)i<j<a then u is a

solution to (3.2) with u(t)=g. Moreover, let 0=a<b and K be a compact set in E°.
Then, for each >0 and wultiindeces oo and (3, there exist constants C=C(a, g, K,
a, B), Cs=C(a, b, K, 8)>0, >0 and =0 such that

(3.6) 0% 95 gi(s, £5 %, *)lc,ed SC((E—s5) A1), @

(5) For an 2C R4 and a continuous function f on RY, |fl¢,a) =sup.ealf(*)].
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(37) Ia: 6g q;(s, t; X, ')IC,,(R”\B(:,S))
SC((—s)N\1)" exp [—Cy/((t—5) )],
for a<s<t<b and x=K, where B(x, 8)={yER*; |x—y| <8}.

Before proceeding to the proof of Theorem (3.7), we prepare a lemma on the
existence of a C*~-kernel function of the finite measure p(x, dy) on R* para-
meterized by x& R.

Lemma 3.1. Let {p(x, dy)}.cxi be a family of finite measures on R® such
that S S o, dy)ECT(R?) for every fECT(R?). Assume that for each R>0
R

and multiindeces o and (3, there exists a constant C, g(R) such that
(3:8) 10:[ 9 1(5) b, d)| < Cop(R) | loycesy FECT(RY), xEBO, R) .
Then there exist a pE C~(R? X R?) such that

(3.9) p(x, dy) = p(x,y) dy .

Moreover, for every <R and nE N, there are constants C and me N, depending
only on n and v, such that

(3.10) [07 85 p(%, *)lc, e =C X 1a1+1515m Ca,3(R)
holds for every x&€ B(0, r) and o, B with |a|+ |G| =n.

Proof. By Lemma (3.1) in [9], for each x& R?, there exists a p(x, -)=C*
(R?) satisfying (3.13). Choose Jr&C7(R?) such that 4»=1 on B(0, 7) and =0
outside of B(0, R) and set p(x, y)=+r(x) p(x, y). Then, by (3.12), for each kE N,
there is a C, such that

= ir |§11+ |77|?)"I SRdXRd (1+A,+A) evfl((E,-)(n,.))(x’ ) B(x, y) dx dy|

SCZai+pisa Ca3(R)/(1+ €1+ 917, & nER?,

where A is the Laplacian on R?. Thus, by Sobolev’s inequality ([2]), p=C~
(R?x R?) and satisfies (3.14). Hence so does p.

Now we proceed to the proof of the theorem.

Proof of Theorem 3.1. By Theorem (2.19) in [4], we have
SUp,epd SUPoss<rss+r B[(| L* 87 X'(s, 25 %) |+ | L*71 07 M(s, t; x) | )] <40,

for every multiindex ¢ and 2, p& N. Here L is the Ornstein-Uhlenbeck operator
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on © (cf. [1] or [4]). Hence, using the integration by parts formula with respect
to the Wiener measure (cf. [4]), we see that, given multiindeces @ and 3, there
exists a constant O with the following properties:

(3.11) |02 E[Mi(s, t; x) (0°h) (X(s, ¢; x))]|
<C| k|, E[(det A(s, t; x)) 21 +PID] - peCH(RY),
(3.12) |02 E[Mi(s, 5 %) (8°) (X((s, £ ) $(X(s, £ %)
SC|alc,an(max {| 8¢ [c s lY = la|+181})
X (E[det A(s, t; x))" ¥+ BIED))2 5 (P(X(s, t; x) & B(x, 8/2)))'2,
heCy(R%) and ¢ C7(R?) such that =0 on B(0, §/2) .
Moreover, due to Theorem 4.2.1 in [10], for each §>0, there exist constants
C=0, C;>0 and £€>0 such that
(3.13) P(X(s, t; x)eE B(x, 8§/2)) = C exp [—Cs/((t—5)\E)] .
Now let gi(s, t; x, dy) be a finite measure on R? defined by

(3.14) gR,,f(y)qf(s,t;x: dy) = E[M(s, t; x) (X(s, 2; %))}, fECKR).

By (3.11) and Theorem 2.1, given multiindeces & and 8 and an R>0, we can
find constants C, g(R) and =0 such that

3.15) 0% SR,, O f(9) 4i(s, t; %, dy) | < Cao(R) (E—)AD) I fleyats »
feCs(RY, x=B(0, R).

Combining this with Lemma 3.1, we see the existence of gi(s, £)’s in C~(R? X R%)
satisfying (3.5). Moreover, combined with Lemma 3.1, (3.15) yields (3.6). To
show (3.7), choose Y»&C7(R") such that ¥»=0 on (—1/2, 1/2) and =1 outside
of (—1, 1) and set gi(s, #; x, dy)=+(|x—y|%/8%) qi(s, t; x,dy). Then, by (3.12),
(3.13) and Theorem 2.1, given multiindeces « and 8 and an R>0, there exist
constants C, g(R) and =0 such that

@16) 102 0P Ts 15 ) SCuplR) (- A D
X exp [—Col2((t—5) )l fleyaet -

Since ¢i(s, ¢; x, dy)=4qi(s, t; x, dy) outside of B(x, §), combining this with Lemma
3.1, we obtain (3.7).
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