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Preface

This dissertation presents my research on physical parameter estimation using sparse
spectrum learning methods in Mass Spectrometry (MS), conducted during my Ph.D. stud-
ies at the Department of Information and Communications Technology, Graduate School
of Engineering, Osaka University.

Mass spectrometry is a powerful analytical technique employed across various ap-
plications, including drug development, quality assurance, food inspection, and monitor-
ing environmental pollutants. Recently, the production of antibodies and nucleic acid
pharmaceuticals has led to the formation of impurities with various modifications. These
impurities can adversely affect drug stability, pharmacokinetics, and efficacy, making it
essential to accurately distinguish and quantify them. This dissertation focuses on esti-
mating the number of constituents and their monoisotopic masses in mass spectrometry,
addressing these critical issues. Traditional methods have proven insufficient for meeting
these requirements.

The dissertation is structured as follows:

Chapter 1 outlines the background, motivation, and purpose of this research. Mass
spectrometry is a versatile analytical technique used in drug development, quality assur-
ance, food inspection, and environmental pollutant monitoring. Recent advancements in
antibody and nucleic acid pharmaceuticals have led to the production of impurities that
affect drug stability, pharmacokinetics, and efficacy, underscoring the importance of this
research for pharmaceutical quality control.

Chapter 2 delves into modeling mass spectrometry and Bayesian inference to esti-
mate the number of constituents and their monoisotopic masses from an MS spectrum.

By modeling mass spectrometry for various constituent counts using parameters like
i



monoisotopic mass and ion counts, and employing Markov chain Monte Carlo methods
(MCMC) to explore those parameters, we determine the optimal parameters and maxi-
mum posterior probabilities. The chapter discusses how we compare these probabilities
across models to select the optimal constituent counts and estimate their properties.

Chapter 3 addresses challenges related to the vanishing gradient problem in sparse
spectra with a high-speed parameter search method. Standard optimization techniques
struggle with MS spectra's sparse and predominantly flat nature, which can lead to van-
ishing gradients. To overcome this, we refine our approach by blurring comparative spec-
tra and gradually reducing the blur, thus enabling more accurate estimation without the
extensive time demands of previous MCMC methods.

Chapter 4 integrates a hybrid mass spectrometry (MS/MS) system into the physical
model, enhancing the accuracy of estimation. By incorporating additional MS/MS spectra,
the model leverages more information, which improves parameter estimation accuracy
and reduces mass errors.

Chapter 5 concludes the dissertation, summarizing the findings and their implica-

tions for future research and practical applications.
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Chapter 1.
Introduction

1.1. Background

In the pharmaceutical industry, the development of antibody-based and nucleic acid-
based therapeutics has rapidly accelerated in recent years. Alongside these advancements,
a range of modified molecular species—commonly referred to as impurities—has
emerged during manufacturing and formulation processes. These impurities can have a
significant impact on the safety and effectiveness of pharmaceutical products, potentially
altering their stability, pharmacokinetics, or biological activity [1]-[4]. Therefore, it is
essential to detect and characterize these impurity profiles as part of rigorous quality con-
trol and assurance practices.

A fundamental part of this analysis involves understanding the molecular mass of
constituents, particularly the monoisotopic mass, which refers to the exact mass of a mol-
ecule using the most abundant isotopes. This parameter is crucial for identifying subtle
differences in molecular structure that may lead to impurity formation. Moreover, quan-
tifying the ion concentrations of these molecular species provides insight into their rela-
tive abundance and possible influence on the drug product.

Mass spectrometry (MS) has become a key analytical technique in this context. It
allows for both qualitative and quantitative examination of mixtures, helping to detect,
identify, and quantify impurities with high sensitivity and specificity. As such, MS is ex-

tensively employed in drug development and production.



1.2. What is Mass Spectrometry?

Mass spectrometry is an analytical method that identifies and quantifies chemical sub-
stances by converting them into ions and measuring their mass-to-charge (m/z) ratios.
The process typically follows a structured workflow: sample introduction and preparation,
ionization of the analytes, separation of ions based on m/z in the mass analyzer, and finally,
ion detection. Several ionization techniques are commonly used depending on the nature
of the analyte and analytical goals. These include Electrospray lonization (ESI), Matrix-
Assisted Laser Desorption/lonization (MALDI), and Chemical Ionization (CI).

After ionization, separator such as Time-of-Flight (TOF), quadrupole filters, or ion
traps are employed to segregate ions according to their m/z values. The resulting output,
known as a mass spectrum, displays peaks that correspond to different ions and their rel-
ative intensities. Through interpretation of these spectra, analysts can deduce the chemical
structure and identity of constituents in the sample, enabling tasks such as identification
of unknown substances, structural elucidation of compounds, and assessment of sample

purity. Figure 1-1 illustrates a typical mass spectrometry setup.
lonized sample Ordered ions Detect
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Figure 1-1. Schematic diagram of mass spectrometry.



Mass spectrometry is particularly valued for its sensitivity and specificity, making it
indispensable in analytical laboratories. It can detect trace amounts of materials, which is
essential for applications requiring the detection of very low concentrations of substances,
such as in the detection of contaminants in food products or environmental samples. In
pharmaceutical development, MS is used to confirm the identity of compounds, deter-
mine molecular structure, and assess the purity of the final product.

Advanced configurations, such as hybrid mass spectrometry (MS/MS), offer deeper
insights by enabling structural analysis of ions. In this approach, precursor ions selected
by the first analyzer (MS1) are fragmented within a collision cell, usually by interaction
with an inert gas like argon. The resulting product ions are then analyzed in a second stage
(MS2). This two-stage separation allows for detailed structural information that cannot
be obtained through a single stage alone. Figure 1-2 depicts the layout of a typical MS/MS

system.

Selected Cleaved ions Ordered

lonized sample . .
P precursor ions (Fragment lons) fragment ions

. - Ms1 Collision - Ms2 - Detect
Separation Cell Separation

o)

Selections Cleave the
based on m/z selected ions

Figure 1-2. Schematic diagram of hybrid mass spectrometry (MS/MS).

The versatility of mass spectrometry makes it a powerful tool not only in scientific
research but also in industries like biotechnology, environmental sciences, and forensic
science. It plays a pivotal role in proteomics, metabolomics, and toxicology by providing

precise molecular weight information and structural data. This allows researchers and
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professionals to undertake a wide range of tasks from basic biological research to com-
plex clinical diagnostics and therapeutic monitoring, offering invaluable insights into the

molecular mechanisms of diseases and the effects of therapeutic interventions.

1.3. Issues in Mass Spectrometry

In current mass spectrometry practices, it remains a significant challenge to accurately
detect and characterize impurities that occur in medium- to high-molecular-weight sub-
stances, especially when these impurities arise from subtle chemical modifications. These
molecules—such as proteins or large nucleic acid chains—often undergo slight changes
during synthesis or storage, resulting in forms that are chemically similar to the desired
product but may still influence its behavior or efficacy. Conventional separation tech-
niques, like chromatography, which aim to isolate individual constituents based on their
chemical properties, often fall short in distinguishing these nearly identical impurities [5].
Furthermore, even when using mass spectrometry itself, it becomes increasingly dif-
ficult to resolve such impurities due to the complexity of the resulting spectra. One con-
tributing factor is the presence of isotopic variants—molecules that differ only in the nat-
ural isotopes of their atoms—which produce overlapping signals. Another complicating
factor is the formation of multivalent ions, especially common in techniques like elec-
trospray ionization (ESI), where a single molecule carries multiple electric charges. These
multicharged states generate numerous peaks for each species, further crowding the mass
spectrum and making it hard to distinguish individual constituents.
High-resolution mass spectrometers, such as those utilizing Fourier Transform Ion
Cyclotron Resonance (FT-ICR) [6]—[8], can resolve minute differences in m/z, but these

instruments are typically expensive and bulky, restricting their use to specialized
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laboratories. More commonly, laboratories rely on instruments like Triple Quadrupole
MS and Quadrupole Time-of-Flight MS (Q-TOF-MS), which, while practical and acces-
sible, may lack the resolution needed for distinguishing isomeric or closely related impu-
rities. As a result, analytical software plays a crucial role in augmenting mass spectromet-
ric data interpretation.

Various software solutions have been developed to extract detailed mass information
from complex spectra. For instance, algorithms that perform wavelet-based spectral anal-
ysis [9] can generate peak lists from raw data. However, when analyzing spectra of me-
dium to high-molecular-weight compounds ionized by methods like ESI [10]-[12], the
interpretation becomes more difficult. ESI often produces ions with multiple charges,
which broadens the isotopic distribution and complicates the identification of monoiso-

topic peaks. Simple peak-picking techniques often fall short in these scenarios [13].

1.4. Related Works

To address these challenges, researchers have developed various algorithms for deconvo-
luting charge states and deisotoping multivalent spectra. One such approach involves fit-
ting Gaussian models to observed peaks using nonlinear least squares methods [14].
Charge deconvolution is the process of determining the neutral mass of an ion from its
various charged forms, which is essential for accurately interpreting complex mass spec-
tra.

The ReSpect algorithm, which employs a Maximum Entropy strategy [15], has seen
widespread use [16]-[18]. It estimates m/z values by applying statistical constraints on
the charge distribution to identify the most likely monoisotopic masses. However, this

method does not explicitly estimate the number of unique molecular species (denoted as
5



k), nor does it evaluate discrete likelihoods, such as the probability of observing k versus
k + 1 constituents. Additionally, as the complexity of a spectrum increases, the entropy
term in the optimization function may cause the algorithm to overfit, resulting in overes-
timation of constituent numbers and inaccuracies in both monoisotopic mass and ion
count predictions [19].

Recently, Bayesian approaches such as UniDec have been introduced to improve
deconvolution performance [20], [21]. UniDec, inspired by the Richardson-Lucy decon-
volution algorithm [22], [23], offers faster performance than ReSpect. Nonetheless, it too
encounters limitations when it comes to evaluating the likelihood of a specific number of

constituents within the spectrum.

1.5. Purpose and Direction of QOur Research

The primary goal of our research is to evaluate the probability of constituent counts from
spectral data analyzed using Mass Spectrometry (MS), and to determine optimal physical
parameters such as monoisotopic masses. This is crucial for detecting and analyzing im-
purities in the manufacture and development of pharmaceuticals.

We use Bayesian inference to leverage prior knowledge. This enables probabilistic
evaluation and accurate estimation of physical parameters. Additionally, by modeling for
each possible number of constituents, we become able to evaluate discrete probabilities
that means which number of constituents is optimal. Figure 1-3 shows the overview of
our analysis method.

First, prior knowledge, such as parameter ranges and probability distributions, is in-
corporated to explore the parameter space using Markov Chain Monte Carlo (MCMC) or

Stochastic Variational Inference (SVI). MCMC is a probabilistic sampling method that
6



generates samples from a posterior distribution by constructing a Markov chain. This al-

lows us to approximate posterior probabilities even in high-dimensional parameter spaces.

SVI, on the other hand, is a deterministic approach for approximating posterior distribu-

tions. It optimizes variational parameters by iteratively minimizing the Kullback-Leibler

divergence between the true posterior and an approximating distribution.

Proposal parameters are input into the physical model of mass spectrometry, which

then generates estimated spectra. By comparing these with observed spectra, the likeli-

hood of the parameters is obtained. This process is repeated to derive subsequent param-

eters from this likelihood and prior knowledge. The log-likelihood is utilized in MCMC

to calculate the acceptance probability for the next sampling and in SVI to compute the

objective function to be minimized.

Prior 2. Bayesian Inference
Knowledge (Chapter2, 3)

4. Compare & Calculate
Likelihood
(Chapter2, 4)

Additional
Information

3. Additional Framework
(Chapter 4)

Proposal
Parameters

Generated
Spectrum

Observed
Spectrum

Figure 1-3. Overview of analysis method.

1. Physical Model
(Chapter 2)



After performing this process for models corresponding to possible numbers of con-

stituents, we compare their posterior probabilities to determine the most plausible number

of constituents and their parameters.

1.6. Technical Issues Tackled in This Thesis

To realize this approach, we must address several technical challenges as follows:

1.

Building Physical Models: it is necessary to model the mass spectrometry sys-
tem using parameters such as the monoisotopic mass.

Exploring Sparse Posterior Probability Space: The posterior probability of the
monoisotopic mass exhibits multiple steep peaks and is locally abrupt, present-
ing a significant challenge in how to explore this sparse parameter space. Such
a parameter space can induce the vanishing gradient problem, making simple
gradient-based methods of parameter exploration inappropriate.

Enhancement of Information Quantity: To improve accuracy, it is crucial to in-
tegrate information beyond the MS spectra, leveraging complementary data
sources such as MS/MS spectra.

Establishing Appropriate Likelihood Estimation Methods: Developing accurate
methods for estimating the likelihood of MS spectra is necessary to ensure reli-

able parameter estimation.



1.7. Summary of Contributions

This dissertation addresses the technical challenges outlined in Section 1.6 through the
following contributions:

In Chapter 2, we addressed Technical Issue 1 (Building Physical Models) by con-
structing a mass spectrometry model based on Bayesian inference. This model incorpo-
rates parameters such as monoisotopic mass to estimate the number of constituents and
their identities from MS spectra, leveraging prior knowledge. Additionally, we initiated
parameter exploration in sparse posterior probability spaces using MCMC, partially ad-
dressing Technical Issue 2 (Exploring Sparse Posterior Probability Spaces). Chapter 2 is
based on Tomono, Hara, Nakai, Takahara, lida and Washio (2023a) [24].

In Chapter 3, to solve Technical Issue 2 (Exploring Sparse Posterior Probability
Spaces), we developed a faster parameter exploration technique that mitigates the vanish-
ing gradient problem. This was achieved by integrating gradient-based methods with
techniques tailored to handle sparsity in the parameter space. Chapter 3 is based on
Tomono, Hara, lida and Washio (2024b) [25].

In Chapter 4, in response to Technical Issue 3 (Enhancement of Information Utiliza-
tion), we incorporated additional data, such as MS/MS spectral information, to refine the
accuracy of the analysis. Additionally, we tackled Technical Issue 4 (Establishing Appro-
priate Likelihood Estimation Methods) by improving the methods for likelihood estima-
tion, enhancing the precision of determining the number of constituents and their monoi-
sotopic masses. Chapter 4 is based on Tomono, Hara, lida and Washio (2024c, 2024d)

[26], [27].



Chapter 2.
Study on Estimating the Number of Constituents and
Their Identities from MS Spectrum

2.1. Overview

Chapter 2 is based on Tomono, Hara, Nakai, Takahara, lida and Washio (2023a) [24]. In
this chapter, we newly propose a method to select the optimal number of constituents by
comparing the probability of each constituent count, and to estimate the monoisotopic
mass and ion counts under that condition. This can suggest the presence of impurities in
pharmaceuticals, assist in the search for better synthesis conditions for middle to high
molecular pharmaceuticals, and be useful for quality assurance in factories.

MS spectra are determined by the m/z (mass-to-charge) ratio and intensity axis. Es-
sentially, MS spectra are defined by the ion quantities, monoisotopic mass, isotopic dis-
tribution, charge distribution of each constituent in a sample, and the detector's response.
The detector's response is known, so by modeling the MS spectrum from parameters that
dictate ion quantities, monoisotopic mass, isotopic distribution, and charge distribution,
and fitting these models to the observed spectrum, we can accurately estimate the monoi-
sotopic mass and ion quantities.

First, we model the mass spectrometry system based on parameters like the mass
and charge of each constituent, assuming a certain number of constituents in a sample.
Here, a constituent is defined as a substance with a specific monoisotopic mass. We then
perform a MAP (Maximum A Posteriori) estimation of these parameters from the ob-

served spectrum. By comparing the maximum posterior probability in models with
10



different numbers of constituents, we determine the model with the most appropriate
number of constituents.

However, this model has a large dimensionality of the number of constituents mul-
tiplied by 6, where 6 represents the number of parameters per constituent in the physical
model. Moreover, the posterior probability for one of the parameters, the monoisotopic
mass, is flat over a large portion of the search space and has several sharp peaks locally.
Hence, gradient-based methods are not suitable for this case due to anticipated gradient
vanishing. Figure 2-1 is a schematic diagram of this issue. When the spectrum is sparse,
changes in parameters do not affect the posterior probability of the spectrum. This leads

to the problem of vanishing gradients.

4 Posterior Probability

/ does not Change
«

Intensity

» Generated
> Observed

m/z

Figure 2-1. Schematic diagram of the vanishing gradient problem in sparse spectra.

Therefore, to estimate the parameters, we combine the No-U-Turn Sampler (NUTS
[28]), a type of Markov Chain Monte Carlo (MCMC), with Simulated Annealing [29].
The purpose of using Simulated Annealing is to introduce a temperature parameter. By
selecting a high-temperature exploration parameter distribution, we can actively explore
parameters even in areas where the posterior probability is flat or has sharp peaks. This

ensures a broader search across the parameter space, reducing the chance of overlooking

11



the global solution and getting trapped in local minima.

Furthermore, NUTS can explore parameters sparsely in areas with small gradients
and can explore parameters in detail in areas with large gradients. Thus, introducing
NUTS allows efficient exploration of the vast, high-dimensional parameter space.

On the other hand, while MCMC is good at searching for global solutions, it does
not always reach the optimal solution within a certain number of search steps. Therefore,
we use the parameters with the highest posterior probabilities obtained from NUTS and
Simulated Annealing as initial values and apply stochastic variational inference. By doing
this, we search for the optimal parameter where the posterior probability is maximized in
the vicinity of that initial value, aiming to improve the accuracy of parameter estimation.

However, simultaneously searching for parameters for all possible numbers of con-
stituents leads to a curse of dimensionality, where the search space explosively expands
as the number of constituents increases, potentially reducing search efficiency and accu-
racy. To avoid this problem, we sequentially increase the number of constituents from
k = 1 to the maximum conceivable number k = k,,,,,. The value of k,,,, is determined
based on prior knowledge, such as the expected complexity of the sample or physical
constraints. For k constituents calculate the optimal parameters and their posterior prob-
abilities. These posterior probabilities are then used to efficiently focus the parameter
search areas for the k + 1 constituents.

To balance the complexity of the model (number of constituents) and its fit (loss
against the data), in addition to the prior distribution of each parameter, we introduce a
prior distribution for the number of constituents. We also incorporate a prior distribution
on the differences between the monoisotopic masses of multiple constituents. For analyt-

ical purposes, we have defined a single constituent as a substance with a distinct

12



monoisotopic mass, thereby ensuring that their masses don't mutually take the same value.
When seeking to separate isomers, it is essential to integrate other techniques such as
fragmentation, ion mobility spectrometry, and chromatography, in addition to the pro-
posed method. We first construct a model with k = 1 constituent, obtain the optimal pa-
rameters and the maximum posterior probability based on the above prior distributions
and observed data.

Next, we construct a model with k = 2 constituents. For one of the two constituents,
we use a prior distribution centered on the optimal parameters already estimated for k =
1, narrowing its range. This suppresses the significant increase in the parameter search
space. Based on this new prior distribution, we estimate the optimal parameters and obtain
the maximum posterior probability.

Subsequently, we seek the maximum posterior probability for each model with con-
stituent numbers up to the upper limit k,,,, by efficiently exploring the optimal parame-
ters in the same manner.

Finally, we compare the maximum posterior probabilities corresponding to each
model with different numbers of constituents. We select the model with the highest prob-
ability and obtain the estimates for the monoisotopic masses and ion counts.

The analytical workflow is shown in Figure 2-2. The input is the MS Spectrum. The
outputs of estimation are the number of constituents in the analyte, their monoisotopic

masses, and 1on quantities.
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( Input Observe Data )

!

Assume the number of constituents
k=1, kK= Koo k++

Obtain optimal parameters with MCMC

!

Optimize parameters by gradient method

!

—L Increase the number of constituents J
v

Compare the posterior probabilities between models

|

C Select the model with the optimal posterior probability )

Obtain the best parameters at that time

Figure 2-2. Schematic diagram of analytical workflow.

2.2. Proposed Method

2.2.1. Physically Modeling MS

The spectrum in mass spectrometry is composed of two primary axes: the mass-to-charge
(m/z) axis and the intensity axis. The spectra are determined by the distribution of sample
mass and charge. Specifically, the mass p;(m) and charge q;(z) distributions for each

constituent are defined as follows:

pj(m)=z 6 m—zjmfx 1_][“1;(' M)

{M;} Jx=1 Jx=1
L L
4@=Y [8{z=> a;, |[ [} @
{Qj} Jjp=1 Jjp=1
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m: a variable in the mass space where m = 0 ,
z:avariable representing the absolute value of charge,

where z > 1 and z is an integer,

j:constituent IDs (j = 1,2, , k),

k:number of constituents in the sample,

n;: total number of atoms in constituent j,

Jjy+ index of atoms in constituent j,

m;, :mass of atom Ty

M;: vector of masses for atoms (mjl,mjz, ...,mjnj),

(% natural isotopic abundance of atom j,,

l;: total number of chargeable sites in constituent j,
Jp:index of chargeable sites in constituent j,
qj,:charge of chargable site jy,,

Q;: vector of charges for chargable sites (qh' Qjys v qjl_),
]

v;, : probability that the chargeable site j, attains its charge q;,, and

§: Kronecker delta function.

The number of parameters in this model, which are based on the count of elements
and chargeable sites, makes practical computation and search unfeasible due to their high
count. To manage this, we approximate isotope and charge distributions using a binomial
distribution, which simplifies the complexity of the model and ensures that mass spec-

trometry analysis remains computationally feasible.
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The spectrum in mass spectrometry can be approximated using the following model

[24]. The probability distribution of mass of constituent j can be described by a binomial

!

m—mj

distribution p; (wj). Here, w; = round( ) is the increase in neutron number from
the monoisotopic ions of constituent j, where m]f represents the monoisotopic mass of
constituent j. m represents a variable in the mass space, and m > 0. & represents the mass
of neutron, 1.008664 Da. We postulate w; = 0, because, in the biochemical domain, the
most abundant isotope is usually also the lightest. In this model, we assume that n; atoms
within a molecule can be replaced by isotopes with a mass increase of € Da at a probabil-
ity of u;. Additionally, for the charge distribution §;(z), we assume that [; chargeable
sites can acquire a charge of +1 (in the case the mass spectrometry system is in positive
mode) at a charge rate of v;. z denotes the variable representing the absolute value of

charge, where z > 1 and z is an integer.

The mathematical expressions of the distributions generated by these binominal pro-

cesses are:
n; nj—wj
ﬁ](a)]) _ (wj) Uj 1(1 — u]) for wj =0, 3)
0 otherwise, and
q](Z) = (lZ]) sz(l - Uj)lj_z. (4‘)
Here,

u;: isotopic replacing rate of constituent j,
v;: charge rate of chargeable sites of constituent j, and

€:the mass of a neutron.
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Typically, the spectrum obtained from a mass spectrometer is represented along the mass-
to-charge ratio m/z axis. Here, we define ¢ as the variable representing m/z. The total
number of ions belonging to a set, i.e., a constituent j, is denoted by I;. Each ion in the
set is indexed by i;. The mass and charge of each individual ion i; are denoted as w;;~Dj

and Zij~(7 j - When an ion i; is detected, its observed ideal spectrum would be
o ((p — (m]’ + ea)ij) / Zij) where § is Kronecker delta function. Regardless of its charge

state or mass, a single ion contributes to the observed spectrum as a single delta function.
Therefore, the ideal spectrum formed by this set of ions (from i; = 1 to I;), D;(¢), can be
represented as shown in equation (5). In this equation, ¢ is a variable representing the

mass-to-charge ratio, and § denotes the Kronecker delta function.

D) = ) 8¢ (mj +ew;)/z,). (5)

The theoretical probability distribution U;(¢) of the ions belonging to constituent j
on the ¢ axis is determined solely by w; and z, which are mutually independent. Their
independence comes from the facts that w; is a function of m, and a chemical property z
is hardly affected by the isotope mass m. Accordingly, U;(¢) is obtained by summing
the product of the probabilities of wj, the probabilities of z, and the Kronecker delta func-
tion 5((/) — (m]’ + ea)j)/z) over all w; and z as follows.

Ui(p) =Z Z ﬁj(a)j)-qj(z)-6((p—(m}f+ewj)/z). (6)

z=1 wj=1

As previously stated, regardless of its charge state or mass, a single ion contributes

as a single delta function. Therefore, the observed spectrum of ions is proportional to the
17



probability distribution of ions along the ¢ axis. According to the Glivenko-Cantelli The-
orem [30], [31], the empirical spectrum D;(¢) converges uniformly to the theoretical dis-
tribution U; (@) as sample size increases as far as our physical assumptions argued in the
former explanation is valid. Therefore, the ideal spectrum of constituent j, D; (¢), can be

approximated by U;(¢) as shown in equation (7).
I

(@) = Z 5 ((p — (m]’ + ewij)/zij) ~ I-Ui(p) (I > 1). (7

ij=1

Due to the point spread of the detector’s response R(¢), the observed spectrum be-
comes the convolution of approximated spectrum of constituent j, denoted as I; - U;(¢),
with R(¢), resulting in ; - (Uj * R )((p). Consequently, the summation of the spectra over
all constituents contained in the sample yields the spectrum estimated to be observed,
Sins (@) as shown in Equation (8). In this context, k represents the number of constituents
in the sample.

k
Sms(@) = D 1+ (U < R)(@). (8
Z,

J

2.2.2. Sensitivity Analysis of Parameters
Before exploring parameters, a sensitivity analysis was conducted within the exploration
range of each parameter. Parameters that were manually fitted to the spectrum were taken
as the true values. From these, only one parameter was varied within the exploration range
to generate a spectrum, and the difference from the observed data was calculated.

As aresult, as shown in Figure 2-3, it was found that the monoisotopic mass exhibits

a steep sensitivity characteristic. This is due to the peak width of the detector response
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being at most 0.05 Th at m/z: 1,972, which is extremely small (0.0025%) relative to the
mass space analyzable by Q-TOF, ranging from 10 to 40,000 Th. It was also confirmed
that the monoisotopic mass exhibits multi-modality within the exploration space.

The parameters of charge state influence the macro distribution shape, but do not
affect the intervals between the comb-like peaks of mass-to-charge ratio, resulting in a
broad sensitivity characteristic as shown in Figure 2-5 and Figure 2-6. Likewise, the iso-
topic parameters influence the micro peak width, but do not significantly change the mass,

resulting in a broad sensitivity characteristic as seen in Figure 2-7 and Figure 2-8.
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Figure 2-3. Sensitivity characteristic of monoisotopic mass.

(a) Overall view; and (b) Enlarged view.
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Figure 2-4. Sensitivity characteristic of ion counts.
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Figure 2-5. Sensitivity characteristic of representative number of functional groups.
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Figure 2-6. Sensitivity characteristic of representative charge rate.
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Figure 2-7. Sensitivity characteristic of representative number of atoms.
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Figure 2-8. Sensitivity characteristic of representative isotopic abundance.

2.2.3. Bayesian Inference of Number of Constituents and Parameters

When the observation data from the mass spectrometer S,;¢(¢@) is obtained, assuming the
number of constituents as k, the posterior probability distribution Py (6x|S,ps) for param-
eters Oy: [(my, I, nq, uq, Iy, V1), -+, (Mg, I, N, Uy, L, v )] is defined as per Bayes' theo-
rem. Note that P, (0;|S,ps) represents the likelihood of parameters ), when S,¢(t) is

provided, and Py (6;) denotes the prior distribution.

Pk (Hklsobs) x Pk(Sobslgk)Pk(ek)- (9)
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We determine the posterior probability and optimal parameters by maximizing log-
arithmic posterior probability LP;, defined as Equation (10). Here, 8 represents the in-
verse temperature. We use Simulated Annealing to ensure active parameter exploration in
flat areas or sharp peaks of posterior probability. This is achieved by multiplying the in-
verse temperature f (< 1) to the posterior probability. Initially starting from a low in-
verse temperature value (i.e., high temperature) and gradually increasing to a higher value
(i.e., low temperature). At low inverse temperatures (high temperatures), the system ex-
plores a wide parameter space. Conversely, at high inverse temperatures (low tempera-
tures), the system converges to the optimal solution. This time, we set the temperature

change in three stages: f = 0.2°> - 0.2* > 0.23, and

LPy. = Blog(Py(Sops|Ok)) +log(P(61)) . (10)

Here, in addition to the prior distribution of each parameter (uniform distribution),
we incorporate a regularization term, wy;.(k) to achieve a suitable balance between
model complexity (number of constituents) and model fit (loss with respect to data). We
also introduce a regularization term, w,, (k, m} ...my,), to prevent multiple constituents
within the same model from assuming the same monoisotopic mass. Hence, we introduce

the following logarithmic prior distribution:

log(Pk(Hk)) % —(Wbl-c(k) + w,, (k, m} ...m;c)). (11D

To determine the appropriate number of constituents k, we define the regularization
term wy;. (k) representing the complexity of the model with k based on the Bayesian In-

formation Criterion (BIC) [32]. The BIC is a statistical measure that balances the fit to
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the data and model complexity [32], [33]. Here, N represents the dimension of the obser-
vation data S, (@), which in this study is the number of data points in the mass-to-charge
ratio (¢) direction. For example, if S,,s(¢) represents the signal from a TOF-type MS,
N corresponds to the value obtained by dividing the observation time by the time resolu-

tion of the detection system.
k
Wyic(k) = A-E- log N,and (12)

A:300 (hyperparameter).

Furthermore, we define a constituent by its unique monoisotopic mass. Therefore, if
the estimated values of the monoisotopic mass parameters of multiple constituents are the
same in the algorithm, the count of constituents won't be accurate. Here, we define the
logarithmic prior distribution (regularization term) w,, as shown in Equation (13), using

a penalty that increases exponentially according to the difference in estimated monoiso-
topic mass values, as shown in Figure 2-9. The integral of the spectrum fooo Sops (@) do

is also multiplied as a coefficient to ensure that the impact of the penalty does not change
depending on the scale of the observed data. Here, m; and m; represent the monoisotopic
masses of the ith and jth constituents, respectively. This w,,(k, m] ...m},) increases as
the monoisotopic masses of constituents become closer, preventing the algorithm from

estimating the same constituent for both constituent i and constituent j.

k-1 k o)
, ) af; Sops(@) do m; —m;
Wer(k,my, ..., my) = Z Z 0 022 exp <— |lb—]|>' (13)

i=1 j=i+1

a = 0.001,and b = 0.1 (hyperparameter).
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Figure 2-9. Characteristics of the regularization term w,,.

Here, by substituting the parameter 8, generated from MCMC into model (8), we obtain
the spectrum as S(¢). We assume a normal distribution for the noise. The standard devi-
ation of the noise denoted as o is set to 2,000. We obtain likelihood from the normal dis-
tribution based on the differences between generated and observed spectra at each ¢.
Since, in reality, spectral data consists of a set of N discrete data points along the ¢ axis,

the integral over ¢ can be approximated as a discrete sum over N measurement points.

! ,SA'mS — Sobs ’
10g( Py (Sons|Or)) = jlog( —— exp <_| (p) — bs(®)| )) ”

1 (., 2 N
= = o [180s0) = Sons (@I dip — N 10g(0) 5 og(2m). (14

Consequently, the logarithm of the posterior probability distribution is as follows:
LPy = B1og(Px(Sons|Ox)) +log(Px(61))
1 (. 2 N
= B<_Ff|5ms((p) - Sobs(go)l dp — N lOg(O') - E lOg(Zﬂ'))

—~ (Whic (k) + Wer (i .mi). (15)

To obtain the maximum posterior probability and parameters 8, that maximize the
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posterior probability (formula (15)), we conduct sampling from this posterior probability

distribution using MCMC.

2.2.4. Parameter Exploration and Optimization
From the posterior probability distribution Py (6x|S,ps), we sample the parameter 6, to
select the one that maximizes the posterior probability. We employ the No-U-Turn Sam-
pler (NUTS) for sampling, a recent and popular variant of the Markov Chain Monte Carlo
(MCMC) method. NUTS is a type of MCMC, especially a derivative of the Hamiltonian
Monte Carlo method (HMC) [34], [35].

After executing MCMC, the parameters of the maximum posterior probability ob-
tained are inherited as initial values, and optimization of the parameters is performed us-

ing Stochastic Variational Inference (SVI [36]-[38]).

2.2.4.1. Parameter Exploration Using the Markov Chain Monte Carlo Method
HMC uses concepts from physics to efficiently sample from high-dimensional probability
distributions. However, choosing an appropriate number of leapfrog [39] steps (the num-
ber of steps the parameter moves during simulation) in HMC can be challenging. If there
are too few steps, the sampler cannot effectively move across the exploration space; and
too many, it will U-turn back toward its starting point.

NUTS dynamically selects an appropriate number of steps to explore the Hamilto-
nian's energy surface based on the principle of stopping the step before the sampler begins
a U-turn. This addresses the problem of adjusting the HMC leapfrog steps, enabling effi-
cient sampling from high-dimensional probability distributions. The max tree depth,

equivalent to the maximum number of search steps in a single iteration, was set to 10.
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The Hamiltonian is defined as:

H(x,{) = V(x) + K(). (16)
where x is the variable (position) we want to sample from the target probability distribu-
tion, { is an auxiliary variable (momentum), V(x) represents potential energy, and
K ({) represents kinetic energy.

First, we randomly initialize the momentum { for the current position . Using the leap-

frog method, we compute a new (x, {) pair. In this process, the momentum ( is initially

updated by half a step g:

n dV(x)

5(”%) ={O-3 %0

(17)
where 1 is the step size, and t represents the current time step. Next, the position x is

updated for the one step:

0K
x(t+n)=x()+ N (18)
a¢ (t + 7)
Finally, the momentum ¢ is updated by another half step:
m N 4
t =((t+z)—5 ——=. 19
Se+m=¢(c43) =3 3zam (19)

If¢(t) - {(t +n) <0, it is determined that the sampler has made a U-turn, and the
exploration is terminated. After all steps are completed, an acceptance/rejection step is
performed using the Metropolis method [40], [41]. During this step, the difference in
Hamiltonian energy is computed to get AH = H(x(t +1n),{(t + 1)) — H(x(t), {(t)).
Here, (x(t),{(t)) is the current sample and (x(t + 1), {(t + 1)) is the new sample. If
the Hamiltonian energy of the new sample is lower or equal to the current one (4AH < 0),

the new sample is accepted. Conversely, if the Hamiltonian energy of the new sample is
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higher (AH > 0), it's accepted with probability min(1, exp(—4H)).

For this study, the step size n of the sampling algorithm was tuned to achieve an
acceptance rate of 0.5. If the acceptance rate is too high, only steps near the current pa-
rameter value might be accepted, possibly preventing full exploration of the parameter
space. If the rate is too low, many proposed steps will be rejected, increasing the time
taken for sampling.

The number of samples in this study was set to 1,000. Although the initial state of
MCMC is chosen randomly, this state often lies in a domain different from the target
probability distribution. Reaching closer to the target distribution requires a certain num-
ber of steps (iterations). However, samples generated in this initial phase often do not
reflect the posterior probability distribution correctly. Therefore, we discard samples from
this initial phase. This process is called "Burn-in," and was set to 1,000 samples in this
study. Before the 1,000 step sampling for the parameter search, this burn-in sampling was
performed.

There's also autocorrelation between samples produced by MCMC, implying that
consecutive samples depend on each other. This autocorrelation can impact statistical es-
timation. To reduce the correlation between acquired samples, we sampled every other
step. Furthermore, MCMC sampling depends on its initial state, which increases the risk
of getting trapped in local optima, especially in high-dimensional spaces. By sampling
from multiple initial values, we can explore the parameter space more broadly and reduce
this risk. In this study, we started from four different initial values.

The domain definitions for each parameter are as per Table 2-1. When the number
of constituents is k = k’'(> 2), from among the k' constituents, the prior distribution of

parameters for constituents 1 to k' — 1 is determined using a narrowed prior distribution
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centered around the optimal parameters estimated in the model for k = k' — 1. Based
on this new prior distribution, we estimate the optimal parameters and acquire the maxi-
mum posterior probability.

m;| =y’ represents the monoisotopic mass when the number of constituents is k’.
When j < k', the search range is limited to + Am from the value obtained at k = k' — 1.
For j = k', the entire pre-set search range is explored, as shown in Table 2-1. The same
applies to Ii|=r, Njlg=k’> Ujlx=r's ljlx=k’ and vj|,—x’. As the number of constituents in-
creases, the area that a single constituent occupies in the observed data spectrum becomes

smaller. Therefore, the lower limit of /;|,—, is divided by k'.
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Table 2-1. The domain of the parameters.

Parameter Range Constant
Moin = 6300.0
m , [mmin' mmax] forj= k',and m — 6400.0
T le=k [(mjl'lk:k’—l — Am), (m]'-lkzkr_1 +Am)| forj<Kk. max = '
Am = 4.0
Umins Imax] ~ forj =k',and L,in = 10000
L=k Lil=r' 1 C
T! [max for] <k. Imax = 300000
o = M=’
min —
[nminrnmax] fOT'j = k,' anc 1,|20
Nilp=r' i , M|y, —'
I lke=k [(njlkzk'—l * (1 - An)),(njlkzkr_1 *(1+ An))] forj<k. Noax = %
An = 0.05
Upnim = 0.001
w , [umin:umax] fOT'j = kll and u = 0.011
ek [(wilemrr—1 = D), (Wliaper—y +Aw)]  forj <K', e
Au = 0.001
l. = M lii!
Ll {[lmin’lmax] forj =k, and min = 7400
ek bl=kr—y  forj <k ] _ M =i/
max 20.0
v; ' {[vmin:vmax] forj =k and Vmin = 0.01,
Tk Vilem'-x  forj <k’ Vmax = 0.05
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2.2.4.2. Parameter Optimization by Stochastic Variational Inference

After executing MCMC, the parameters corresponding to the maximum posterior proba-
bility are inherited as initial values, and optimization is performed using SVI. SVI re-
places the complex posterior probability distribution with a more manageable approxi-
mate distribution (variational posterior Qj (6 |ux)), minimizing the Kullback-Leibler
(KL) divergence between the approximate and true posterior distributions. Since the KL
divergence cannot be computed directly, we instead maximize the Evidence Lower Bound
(ELBO) [42] as a surrogate objective function. The ELBO is defined as the expected log
likelihood of the observed data under the variational distribution, adjusted by a regulari-
zation term that penalizes the divergence between the true posterior and the variational
distribution. For this study, only the MAP values were needed, so Qy (0 |uy) is defined
by a delta function §(8,, — p) to approximate the posterior probability distribution of
each number of constituents. y, is a point in the parameter space 6, and serves as a can-
didate for the parameter set 6y » that maximizes the posterior probability. In the maxi-
mization of ELBO, since the variational distribution Q; (6} |uy) is defined as a delta func-
tion, the integral involving log Q; (6 |) simplifies as its contribution becomes negligi-
ble except at ;. Thus, for practical purposes within this optimization framework, we can
consider its impact to be zero, focusing solely on the log likelihood component evaluated

at uy. Therefore, the desired Hkmap is given by equation (20).

Ok map = arg#rknax(ELBO(Bklyk))

= argmax ([EQk(Hka) [log Pic(Sobs|6k) — log Qi (Bk |Hk)]) - (20)
Hic
Since Qy (0 |uy) is delta function 6 (6 — uy),

Ok map = argmax (log P (Sops|tir) — 10g Qi (B | 1)) (21)
Kk

Given that Q (0 |uy) is represented as a delta function, its contribution to the ELBO
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becomes negligible except at u;, simplifying the calculation by effectively eliminating
the log Q. (0 |1x) term in the optimization.

ekmap = argﬂrknax (IOg Pk (Sobsl:uk))- (22)

To maximize the ELBO, that is, to minimize the negative ELBO, Adam [43] (Adap-
tive Moment Estimation), a type of Stochastic Gradient Descent (SGD), is used. Adam is
widely used in machine learning. By individually adjusting the learning rate a for each
parameter, Adam allows parameters with steeper gradients to receive smaller updates,
while parameters with gentler gradients receive larger updates, automatically scaling the
problem. Additionally, Adam reduces the oscillations that were a challenge with SGD by
considering both the first moment v, and the second moment s; of past gradients.

The parameter 6 is updated in three steps:

1. Compute the gradient G, of the loss function (in this case, the negative ELBO)

at the current step t.
2. Update the first moment v, and the second moment s; as follows:
vy = P11 + (1 — B1)Gyand (23)
Se = BaSe—1 + (1= B2)G,”. (24)

3. Update the parameter 6 using the adjusted moments:

Ve
Jsi+e

Here, f; = 0.9, 5, = 0.999,and £ = 10~8. The initial value of the learning rate o was

(25)

Orv1 =60 —a

set to 0.0005, and the parameter update is performed 20,000 times.
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2.2.5. Workflow for Estimating Constituents in a Sample

The overall picture of the workflow to determine the optimal parameters and posterior
probability for each assumed number of constituents from the observational data of the
mass spectrometer is as shown in Figure 2-10.

First, as described in 2.2.3, (i) input the observational data of the mass spectrometer
with dimensions of flight time and ion counts. Then (ii) assume that the number of con-
stituents, k, contained in the sample is 1. (iii) Set the inverse temperature to 0.2°.

Next, as described in 2.2.4.1, (iv) sample 1,000 X 4 times from the posterior proba-
bility distribution, (v) set the MAP solution obtained by MCMC as the initial value for
the next MCMC. Then (vi) divide the inverse temperature by 0.2. Repeat steps (iv) to (vi)
three times. The number of iterations was determined experimentally.

As described in 2.2.4.2, (vii) set the parameter of the maximum posterior probability
obtained by MCMC as the initial value for SVI. Then (viii) optimize the parameters with
SVI, and (ix) set the parameter of the maximum posterior probability obtained by SVI as
the initial value for the next MCMC.

Following 2.2.3, increase the number of constituents, k, by 1. Repeat steps (iii) to
(vi). (x) Continue this until the maximum possible number of constituents, k,,,,. Finally,
(xi) compare the maximum posterior probabilities of models from constituents k = 1 to
komax, and (xii) select the model with the largest posterior probability. Also, obtain the

optimal parameters at that time.
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Figure 2-10. Estimation process overall workflow.
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2.3. Results

2.3.1. Validation Environment

The specifications of the PC used for verifying the proposed method, as well as the
software versions, are as follows. The proposed method handles data with 1 million di-
mensions along the time axis, requiring a large memory size. Additionally, to rapidly ex-
plore a wide 6-dimensional parameter space (m}, I, nj,u, j, vj) using MCMC, the high-
speed probabilistic programming library, NumPyro, along with its compatible CUDA and
GPU, were used.

Table 2-2. Validation environment.

CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
GPU Tesla V100-DGXS-16GB

RAM 256GB

(0N Ubuntu 20.04.6 LTS

Software Python 3.8.10
Numpyro 0.11.0
jax 0.4.7
CUDA 11.8

2.3.2. Creation of Simulation Data for Validation

Based on the nucleic acid drug Fomivirsen [44] (ID: A), four impurity constituents
with modified base sequences were added, and spectra for a total of five constituents were
generated via simulation. Specific values are as per Table 2-3. This enables the replication
of a system where the principal constituent's isotopic distribution and the impurity spectra

are mixed.
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Ion counts for each constituent were set at 20,000. To facilitate the interpretation of
results and to ensure that the algorithm treats each constituent fairly, we will conduct
evaluations using a 1:1 concentration ratio for each component in the proposed method.
The number of atoms for each element in each constituent was obtained from the molec-
ular formula of the respective constituent. Natural isotopic abundance ratios u; followed
the NIST Atomic Weights and Isotopic Compositions for All Elements [45]. The repre-
sentative functional group number [; and the representative charge rate v; were set to 224
and 0.035, respectively, to ensure that the generated spectra resembled real data.

The procedure involved sampling from the multinomial distribution represented by
Equations (1) and (2) 20,000 times (total incoming ion counts) for each constituent. Sub-
sequently, spectra were formed following the procedures in Equations (6) and (8).

The mutation from C (Cytosine) to U (Uracil) is called deamination and is generated in

the synthesis process due to solvent conditions and thermal stress [46], [47].
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Table 2-3. Settings for constituent spectrum generation.

. . Representative .
Molecular Monoisotopic . Representative lon
ID Sequence ) Functional Group
Formula  Mass m; [Da] Number [, Charge Rate v;  Counts
gcegttt-
C204H263N63
A gctcttcttctt- P 6361.088 224 0.035 200 000
gcg 134" 20
gcagttt-
C2O4H262N62
B gutcttcttctt- P 6362.072 224 0.035 200 000
gcg 135 20
gugttt-
C204H261N61
C gutcttcttctt- P 6363.057 224 0.035 200 000
gcg 136" 20
gugttt-
C204H260N60
D gutcttcttctt- P 6364.042 224 0.035 200 000
gug 137" 20
gugttt-
C204H259N59
E gutcttuttctt- P 6365.027 224 0.035 200 000
gug 138" 20

The spectra of the generated single constituents A to E were combined according to
equation (8) in the 15 combinations listed in Table 2-4. This allows for a comprehensive
combination of 2-3 constituents based on constituent A, as well as an evaluation of each

individual constituent. We use these as test data.
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Table 2-4. Combinations of constituents when generating spectra.

Mixture No. Constituents
1 AB,C
2 AB,D
3 AB,E
4 A,CD
5 AC,E
6 AD,E
7 AB
8 AC
9 AD

10 AE
11 A
12 B
13 C
14 D
15 E
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2.3.3. Evaluation of Constituent Count Estimation Accuracy

The results of estimating the number of constituents in the spectra of the test data (Mixture
No.1~15) using our proposed method are as shown in Table 2-5. The values within the
table represent the negative logarithm of the maximum posterior probability in the model
of constituent count k. Therefore, the smallest value should be selected.

By choosing the most suitable number of constituents based on this criterion, the
success rate for estimating the true number of constituents was 80% (12/15). Additionally,
the presence or absence of impurities (distinguishing between k = 1 and k = 2) could be
determined with 100% accuracy. We believe this is sufficient as a standard for recognizing
the presence and number of impurities in pharmaceuticals and taking appropriate
measures.

The computation time required for the estimation was approximately 10 hours per
constituent, resulting in a total of 50 hours under the condition of k,,,, = 5 set in this

study.
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Table 2-5. Negative logarithm of the maximum posterior probability assuming each
constituent count.
(Orange background indicates the true number of constituents,

blue text indicates the minimum value across models.)

Mkl‘g’_re k=1 k=2 k=3 k=4 k=5
1 4,373,750 3,756,984 3,752,997 3,758,705 3,763,612
2 4,278,475 3,765,457 3,753,649 3,756,753 3,762,496
3 4,194,715 3,771,155 3,759,534 3,765,155 3,763,712
4 4,219,672 3,748,972 3,754,868 3,761,667 3,763,951
5 4,319,573 3,773,246 3,757,747 3,758,338 3,763,773
6 3,824,787 3,750,045 3,752,258 3,757,899 3,763,075
7 3,798,373 3,746,176 3,747,193 3,752,544 3,758,004
8 3,795,441 3,744,561 3,748,947 3,756,355 3,759,390
9 3,824,787 3,750,045 3,752,258 3,757,899 3,763,075
10 3,825,138 3,769,114 3,758,565 3,769,515 3,771,414
1 3,733,728 3,738,454 3,743,334 3,748,732 3,754,347
12 3,736,354 3,739,259 3,744,921 3,750,142 3,755,513
13 3,734,851 3,738,732 3,743,821 3,751,714 3,754,223
14 3,735,192 3,740,629 3,745,981 3,751,377 3,755,752
15 3,734,867 3,738,788 3,744,300 3,749,556 3,755,907

2.3.4. Accuracy of Parameter Estimation with Maximum Posterior
The optimal monoisotopic masses and ion counts estimated in the model where the pos-
terior probability is maximum for each test data are shown in Table 2-6.

The monoisotopic mass had an average error of 1.348 Da and a maximum error of
4.931 Da. This is insufficient to determine how many mutations have occurred, making
it unsuitable for examining the cause of impurity generation with a difference of 1 Da.

Regarding the ion counts, there was an average error of 4% and a maximum error of 82%.
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For instance, the standards for total desamido impurity and total impurities in injectable
glucagon are 14% or less and 31% or less, respectively [48]. Therefore, the accuracy of
the ion count estimation in the proposed method is insufficient to estimate the impact of

impurities.
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Table 2-6 (Part 1). Optimal monoisotopic masses and ion counts of the model with the

maximum posterior probability.

Mixture Constituents Ma§s[Da] Mass[Da] | Absolute Ion[igﬂ:]n ts Ion[igcr::]n s Relative

No. (Estimated) (True) Error[Da] (Estimated) (True) Error[%]
1 AB,C 6358.073| 6361.088 -3.015 138 290 200 000 -31%
6361.088| 6362.072 -0.984 299 930 200 000 50%

6363.047| 6363.057 -0.010 172 510 200 000 -14%

2 AB,D 6360.088| 6361.088 -1.000 207 760 200 000 4%
6361.043| 6362.072 -1.029 270 470 200 000 35%

6361.081| 6364.042 -2.961 132170 200 000 -34%

3 AB,E 6359.047| 6361.088 -2.041 299 970 200 000 50%
6360.103| 6362.072 -1.969 239 990 200 000 20%

6366.008| 6365.027 0.981 74 160 200 000 -63%

4 ACD 6360.088| 6361.088 -1.000 298 940 200 000 49%
6363.043| 6363.057 -0.014 299 980 200 000 50%

- 6364.042 - - 200 000 -

5 ACE 6360.024| 6361.088 -1.064 238 440 200 000 19%
6361.07| 6363.057 -1.987 296 510 200 000 48%

6361.116| 6365.027 -3.911 80810 200 000 -60%

6 AD,E 6360.079| 6361.088 -1.009 297 500 200 000 49%
6362.027 | 6364.042 -2.015 299 940 200 000 50%

- 6365.027 - - 200 000 -
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Table 2-6 (Part 2). Optimal monoisotopic masses and ion counts of the model with the

maximum posterior probability.

MRS Conitnis | MEBHDS] | MaselDa | bsotte | Phony™ | “pons | Bl
(Estimated) (True)

7 AB 6357.088| 6361.088 -4.000 191 670 200 000 -4%
6362.073| 6362.072 0.001 220 850 200 000 10%
8 AC 6361.043| 6361.088 -0.045 113 870 200 000 -43%
6361.080| 6363.057 -1.977 283 890 200 000 42%
9 AD 6359.044| 6361.088 -2.044 280 530 200 000 40%
6359.111| 6364.042 -4.931 138 700 200 000 -31%

10 AE 6357.088 - - 227 540 - -
6361.029| 6361.088 -0.059 35400 200 000 -82%
6364.010| 6365.027 -1.017 157 560 200 000 -21%
11 A 6361.088| 6361.088 0.000 191 840 200 000 -4%
12 B 6361.072| 6362.072 -1.000 207 340 200 000 4%
13 C 6363.058| 6363.057 0.001 189 640 200 000 -5%
14 D 6363.042| 6364.042 -1.000 205 290 200 000 3%
15 E 6365.027| 6365.027 0.000 190 240 200 000 -5%
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For reference, a comparison between the spectra reconstructed from the estimated
parameters and the original signal is shown in Figure 2-11. The overall view in (a) repre-
sents the charge distribution, and the enlarged view in (b) represents the isotopic distri-
bution. From these results, it is clear that the spectrum we generated closely matches the
observed data. Despite the spectra matching, errors in parameter estimation occurred be-
cause of the high degree of freedom in isotopic parameters that trade-off with monoiso-
topic mass. Even if the monoisotopic mass was lower than the true value, by increasing
the representative atomic number n; or the representative isotopic natural abundance u;,
it's possible to make it fit the observed data to some extent.

Also, the estimated ion counts of each constituent showed errors of up to 82% from
the true values. This is presumed to be due to the trade-off relationship between the ion
counts of each constituent, with a decrease in the ion count of one constituent being com-
pensated by an increase in another. This is further supported by the fact that the average

error in ion counts settles at 4%.
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Figure 2-11. Comparison of observed and estimated spectra for Mixture No. 1.

(a) Overall view; and (b) Enlarged view.
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2.3.5. Comparison with UniDec

Deconvolution of the test data was performed using the existing method, UniDec as well.
Here, deconvolution refers to the process of extracting monoisotopic masses and ion
counts from complex observed spectra. The results of deconvolution for each observed
spectrum by UniDec are shown in Table 2-7. According to these results, the accuracy for
the correct number of constituents was 13% (2/15). This is presumed to be because the
UniDec algorithm, which obtains the number of constituents after multiple iterations of
deconvolution, does not necessarily guarantee the number of constituents. Please note
that this use of UniDec to determine the number of constituents is not its intended appli-
cation. Under these conditions, UniDec completed the deconvolution process within a

few seconds.
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Table 2-7 (Part 1). Deconvolution results for each observed spectrum by UniDec.

MRS | Gonttuenis | MaseDa] | Mossloel | posote | Mgy | gLy | R
. (Estimated) (True)
6359.900| 6361.088 -1.188 100.000 100.000 100%
1 AB,C 6360.900| 6362.072 -1.172 54.614 100.000 55%
- 6363.057 - - 100.000 -
6359.900| 6361.088 -1.188 100.000 100.000 100%
2 AB,D 6360.900| 6362.072 -1.172 68.122 100.000 68%
6361.800| 6364.042 -2.242 23.490 100.000 23%
6359.900 - - 100.000 - -
6360.900 - - 47.326 - -
3 AB,E 6361.800| 6361.088 0.712 22.533 100.000 23%
6362.800| 6362.072 0.728 13.473 100.000 13%
6363.800| 6365.027 -1.227 13.496 100.000 13%
6359.900 - - 100.000 - -
4 ACD 6360.900| 6361.088 -0.188 94.673 100.000 95%
6361.800| 6363.057 -1.257 64.641 100.000 65%
6362.800| 6364.042 -1.242 19.369 100.000 19%
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Table 2-7 (Part 2). Deconvolution results for each observed spectrum by UniDec.

MRS | Constuents | MeselDa) | MasslDa) | vsoe || Ty | ety | Roitue
(Estimated)
6359.900 - - 100.000 - -
6360.900 - - 63.684 - -
5| ACE 6361.800| 6361.088 0.712 56.992 100.000 57%
6362.800| 6363.057 -0.257 33.851 100.000 34%
6363.800| 6365.027 -1.227 19.330 100.000 19%
6359.900 - - 100.000 - -
6360.900 - - 53.209 - -
6| ADE 6361.800| 6361.088 0.712 61.898 100.000 62%
6362.800| 6364.042 -1.242 70.845 100.000 71%
6363.800| 6365.027 - 39.057 100.000 39%
6359.900| 6361.088 -1.188 100.000 100.000 100%
! AR 6361.000| 6362.072 -1.072 11.538 100.000 12%
6359.900 - - 100.000 - -
8 A,C 6361.000| 6361.088 -0.088 40.696 100.000 41%
6361.800| 6363.057 -1.257 10.199 100.000 10%
6359.900 - - 100.000 - -
6361.000| 6361.088 -0.088 41.897 100.000 42%
° AD 6361.800 - - 26.937 - -
6362.800| 6364.042 -1.242 16.351 100.000 16%
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Table 2-7 (Part 3). Deconvolution results for each observed spectrum by UniDec.

MRS | Constuents | MeselDa) | MasslDa) | vsoe || Ty | ety | Roitue
(Estimated)

6359.000 - - 19.045 - -
6359.900 - - 100.000 - -
6360.900 - - 27.472 - -

10 AE 6361.800| 6361.088 0.712 19.107 100.000 19%
6362.800 - - 27.075 - -
6363.900 - - 33.325 - -

6364.800| 6365.027 -0.227 13.659 100.000 14%
6358.900 - - 48.595 - -

" A 6359.800| 6361.088 -1.288 100.000 100.000 100%
6359.900 - - 40.161 - -

12 8 6360.800| 6362.072 -1.272 100.000 100.000 100%
6360.900 - - 41.609 - -

13 ¢ 6361.800| 6363.057 -1.257 100.000 100.000 100%
6361.800 - - 52.753 - -

1 P 6362.800| 6364.042 -1.242 100.000 100.000 100%
6362.800 - - 54.440 - -

1o = 6363.900| 6365.027 -1.127 100.000 100.000 100%
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For the verification above, we used UniDec (Version 6.0.2). The particular set pa-
rameters during this verification are shown in Table 2-8. The Mass Range was set to the
same range as the proposed method, and Sample Mass Every (Da) was set to 0.1 to suf-
ficiently detect impurities with a difference of 1 Da. For parameters not mentioned, de-

fault values were used.

Table 2-8. UniDec setting parameters.

Parameter Setting value
UniDec Parameters Charge Range 1to 50
Mass Range 6300 to 6400 Da
Sample Mass Every (Da) 0.1
Additional Deconvolution Parameters Isotopes Mono
Peak Selection and Plotting Peak Detection Range (Da) 0.1
Peak Detection Threshold 0.01

*The other settings are using default values.

2.4. Discussion

Using NUTS, Simulated Annealing, and stochastic variational inference, we estimated
parameters such as monoisotopic masses from observed data, achieving an accuracy of
80% in selecting the correct number of constituents, which is significantly higher than the
13% accuracy of existing methods. This is thought to be due to the fact that we created
models for each number of constituents, allowing for the comparative evaluation and se-
lection of models for each number of constituents. This made it possible to suggest the
presence of impurities in pharmaceuticals, which is useful for searching for better syn-

thesis conditions for middle to high molecular weight pharmaceuticals, and for quality
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assurance in factories.

On the other hand, as shown in Table 2-6, the estimated monoisotopic mass for con-
stituent j had a maximum error of 4.931Da from the true value. This is thought to be due
to the trade-off relationship between the monoisotopic mass m; and the parameters n; and
u; that determine the isotopic distribution of constituent j. Additionally, there was a rela-
tive error of several tens of percent from the true value in the ion counts of each estimated
constituent. This is speculated to be because the ion counts of each constituent trade off
with each other, with a decrease in one ion being compensated for by an increase in an-
other ion. A potential solution to these problems is to represent monoisotopic masses and
ion counts as probability distributions. By considering the uncertainty in monoisotopic
masses and ion counts of constituents in the sample, improvements in estimation satis-
faction can be expected.

Furthermore, it took about 50 hours for deconvolution assuming 5 constituents per
data. This is long compared to the few seconds to a few minutes processing time of
UniDec. Also, this processing time is expected to increase almost linearly with the as-
sumed number of constituents. Therefore, it is expected to take a long time when analyz-

ing samples with many constituents, such as serum or environmental samples.
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2.5. Conclusion of This Chapter

In this chapter, we aimed to model mass spectrometry, probabilistically estimate the
number of constituents in a sample, and accurately determine their monoisotopic masses
and ion quantities when identifying the optimal number of constituents. To achieve these
goals, we assumed various numbers of constituents within the sample and developed a
mass spectrometry model based on parameters such as monoisotopic masses and ion
counts. We then applied methods like the No-U-Turn Sampler (NUTS), Simulated An-
nealing, and stochastic variational inference to find the maximum posterior probability
for each modeled number of constituents compared against observed data. These efforts
enabled us to accurately estimate the number of constituents, as well as to simultaneously
determine parameters such as monoisotopic masses and ion counts. However, challenges
remain due to the inaccuracy in estimating monoisotopic masses and ion counts, and the

substantial computational time required.
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Chapter 3. Study on Accelerating Estimations Using
Simulated Annealing and Stochastic Variational In-
ference

3.1. Overview

Chapter 3 is based on Tomono, Hara, lida and Washio (2024b) [25]. In the previous chap-
ter, we estimated the number of constituents based on their monoisotopic masses and ion
counts. We used various assumed constituent counts to model these parameters and then
derived the maximum posterior probability and optimal model parameters for each con-
stituent count using the No-U-Turn Sampler (NUTS), Simulated Annealing, and Stochas-
tic Variational Inference (SVI). This process required extensive computing time, render-
ing the method impractical for routine use.

Therefore, we decided to perform all parameter estimations using the faster SVI
method, entirely replacing the time-consuming Markov Chain Monte Carlo (MCMC) ap-
proach. However, as described in the previous chapter, using Stochastic Variational Infer-
ence alone is insufficient for exploring parameters extensively due to the Vanishing Gra-
dient Problem. This issue arises because the posterior probability of the monoisotopic
mass is mostly flat with several sharp peaks localized in certain areas. Consequently,
changes in the generated spectrum do not lead to significant changes in the model's pos-
terior probability, which prevents effective gradient calculation. Applying simple optimi-
zation methods to such data often leads to vanishing gradients, making it difficult to ef-
fectively explore parameters. If a modified version of SVI capable of addressing this issue

could be devised, it would allow for faster and more efficient parameter estimation using
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only the improved SVI method.

To address this challenge, we have developed a method that involves gradually con-
volving Gaussians along the m/z axis between observed and generated spectra, ensuring
that gradients always occur during comparison. We have named this method Spectral An-
nealing Inference (SAI). SAI combines SVI and spectral annealing by Point Spread Func-
tion (PSF) to explore optimal parameters while avoiding vanishing gradients and local
optima. Figure 3-1 is a schematic diagram that illustrates the mechanism of SAI It in-
volves convolving the PSF with the spectrum to create gradients for parameter optimiza-
tion, and this process is repeated while narrowing the variance of the PSF. Ultimately, the
PSF becomes a Kronecker delta function, allowing for the determination of parameters

and posterior probabilities based directly on the observed spectrum.

Convolution

Intensity
*
§
*

PSF
m/z
2
‘»
o
= ~Generated
N »> Observed

m/z

Figure 3-1. Schematic diagram of the gradient generation process in spectral

annealing inference (SAI).
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After calculating optimal parameters and posterior probabilities in all models by SAI,
we select the most probable number of constituents, as well as their monoisotopic masses

and 1on counts.

3.2. Proposed Method

We use the same physical model as described in the previous chapter. To explore and
optimize the parameters, we employ Stochastic Variational Inference (SVI) to estimate
the Maximum A Posteriori (MAP) values of each parameter and to determine the model's
highest posterior probability.

The optimization problem under this setup can be solved using conventional numer-
ical optimization techniques. Recall that k represents the assumed number of constituents
in the sample. In this case, we used Adam [43], a type of stochastic gradient descent
widely used in machine learning, to find the value of y;, that maximizes the likelihood
function. The resulting kaap is the MAP estimation we sought.

However, the MS spectra to be compared are mostly flat with several localized sharp
peaks. Simply applying SVI to such data can result in vanishing gradients, making it dif-
ficult to effectively explore parameters. Therefore, to create appropriate gradients of the
likelihood function, we convolve a Gaussian distribution g(¢) with both the observed
spectra S, and the estimated spectra S,,;(¢) along the mass-to-charge ratio (¢) axis.
We define the mean of g(¢) as zero and the variance as Ty, and g(¢) is represented as

shown in Equation (26).

1
g9(p) = ZeXp <—Fsz(<ﬂ)2)- (26)
2rTy
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Then, we performed SVI and iteratively narrowing the variance of g(¢), T, to ef-
fectively search for 8. This process, resembling annealing, is termed Spectral Annealing
Inference (SAI) in this paper. Let s denote the step of this iteration, and s,,,4, denote the
total number of iterations. We define T as shown in Equation (27). Narrowing the PSF
step-by-step according to the iteration count s, this process repeatedly refines the MAP

estimation.

Smax — S 4
T, = ,1(—) (5= 01,2 ., Spie). @27)

Sm ax

For this study, s,,,4, 1s experimentally set to 46, and the coefficient 4 is set to 8750.
When s = s,,,4,, the spectrum after convolution becomes identical to the spectrum before
convolution.

The blurred spectra at each step are represented as shown in Equations (28) and (29).

5'ops(@) = (Sops * g)(¢), and (28)

S‘Ims(q)) = (SAms * g)(‘/))- (29)

Using these blurred spectra, we derive the modified log-likelihood L'y, , and the
logarithm of the posterior probability log(Py (S’ ,ps10))) is represented as shown in Equa-

tion (30). N represents the number of data points of the observation data S’,,s(¢) and

8" ms(@).

1

! G/ ! 2 N
log(Pk(S obslek)) ~ _Fjls ms(QD) ) obs(QD)l dQD + N log(a) + E log(Zn). (30)
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Here, we define the modified logarithmic likelihood LP’; as follows:

LP'y. == 1og(Py (S ops|60x)) +log(Pi(61))

1 G/ 14 2 N
< =507 [ §'ns (@) = S'ans (@[ dp + N log(0) + 3 log(2m)
_Wbic(k) - Wex(k’ mi m;c) (31)

At each iteration step s (s = 0,1,2, ..., Sypax), We maximize LP'j, to iteratively refine
and determine the parameters 6, and the posterior probability assuming a number of con-
stituents k. 8, from each iteration are carried forward to the next step.

By repeating this process from k = 1 to k4, We obtain the posterior probabilities
of each k. We then compare the posterior probabilities across all k and select the number
of constituents with the highest posterior probability and its corresponding parameter set

as the optimal choice.

3.3. Results

For the validation of our algorithm, we employed simulated MS data shown in Table 2-4.
By using the same data as in Chapter 2, we can compare the estimation speed of the
algorithm developed in the previous chapter. This simulation was based on the nucleic
acid drug Fomivirsen and its four impurities, which exhibit mass differences ranging from
1 to 4 Daltons.

The overview of the results is presented in Table 3-1. For comparison, the estimation
results from the previous chapter using MCMC are also included in the table. Compared
to the methods in the previous chapter, the computation time has been significantly re-
duced while maintaining the accuracy of the number of constituents. However, the accu-

racy of the monoisotopic mass and ion quantities remained unchanged.
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Table 3-1. Results of the estimated performance verification.

Metrics Estimated by SAl Estimated by MCMC
Accuracy of o o
constituent numbers 80%(12/15) 80%(12/15)
Monoisotopic Avg 1.788Da Avg 1.348Da,
mass error Max 3.983Da Max 4.931Da
lon counts error Avg 8% Avg 4%,
Max 89% Max 82%
Calculation time 15 minutes 50 hours

The posterior probabilities for the optimal parameters of each model are as shown in

Table 3-2. Based on this, we selected the number of constituents and were able to maintain

an accuracy rate of 80%.
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Table 3-2. Negative logarithm of the maximum posterior probability assuming each

constituent count.

(Orange background indicates the true number of constituents,

blue text indicates the minimum value across models.)

Mzto“_re k=1 k=2 k=3 k=4 k=5
1 783,837,800 974,980,700 819,785,600 993,572,600  2,523,023,000
2 074,699,600 811,826,400 773,190,500 838,065,400  1,410,565,000
3 1,205,362,000 1,033,501,000 743,789,100 771,244,400  2,321,454,000
4 862455600 834,689,600 801,046,100 927,742,400  1,288,006,000
5  1,119,931,000 627,375,700 666,500,600 688,775,800  1,571,504,000
6 1,379,719,000 1,174,463,000 1,011,143,000 1,157,092,000  1,679,262,000
7 421459200 500,081,400 573,603,100 703,970,000  2,058,994,000
8 409,007,500 390,423,700 430,594,200 439,182,200 _ 1,503,371,000
9 512,957,400 486,925,400 514,162,100 537,291,100 _ 1,080,766,000
10 1,091,095,000 633,016,700 648,982,200 699,068,600  1,186,193,000
11 178,197,400 217,834,500 217,108,800 337,039,700 454,868,900
12 216,080,000 259,813,500 254,528,500 388,611,700 513,887,100
13 161,197,500 193,327,700 209,736,600 310,515,200 434,137,700
14 204,778,000 237,009,400 253,565,400 363,079,600 465,365,200
15 172,407,200 208,542,000 214,153,100 329,143,100 414,737,900

The monoisotopic masses and ion quantities at the time of maximum posterior probability

for each model are shown in Table 3-3. There were no significant differences in the errors

of the monoisotopic masses and ion quantities compared to those obtained through ex-

ploration using MCMC.
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Table 3-3 (Part 1). Optimal monoisotopic masses and ion counts of the model with the

maximum posterior probability.

MRS Constuets (U250 MesslDel  posotte  Tlon™  Frong  Relate
. (Estimated) (True)

6361.102 6361.088 0.014 568,570 200,000 184%

1 AB,C - 6362.072 - - 200,000 -

- 6363.057 - - 200,000 -

6360.102 6361.088 -0.986 273,322 200,000 37%

2 AB,D 6362.107 6362.072 0.035 152,619 200,000 -24%

6364.074  6364.042 0.032 156,850 200,000 -22%

6360.101 6361.088 -0.987 349,775 200,000 75%

3 AB,E 6361.115 6362.072 -0.957 95,267 200,000 -52%

6364.053 6365.027 -0.974 144,265 200,000 -28%

6358.094 6361.088 -2.994 156,851 200,000 -22%

4 ACD 6360.113 6363.057 -2.944 103,492 200,000 -48%

6362.082 6364.042 -1.960 336,362 200,000 68%

6360.102 6361.088 -0.986 359,303 200,000 80%

5 ACE 6364.059 6363.057 1.002 219,789 200,000 10%

- 6365.027 - - 200,000 -

6357.106  6361.088 -3.983 178,322 200,000 -11%

6 AD,E 6360.091 6364.042 -3.951 127,659 200,000 -36%

6362.062 6365.027 -2.965 293,079 200,000 47%
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Table 3-3 (Part 2). Optimal monoisotopic masses and ion counts of the model with the

maximum posterior probability.

lon counts lon counts

Mﬁyre GRS ('\Iélsiisrﬁgtjead]) M?Tsri[ga] é?rsoc;l[lg:] (Es[:i?;‘:t]ed) ([iTC;EZ]) Efrls:'[\;/f]
6361.109  6361.088 0.021 377,724 200,000 89%
! AB - 6362.072 - - 200,000 -
6358.094  6361.088 -2.994 99,031 200,000 -50%
° Ac 6361.103  6363.057 -1.954 293,385 200,000 47%
6357.091  6361.088 -3.997 121,317 200,000 -39%
i AD 6360.097  6364.042 -3.945 271,892 200,000 36%
6357.116  6361.088 -3.972 211,758 200,000 -82%

10 AE
6361.055  6365.027 -3.972 192,770 200,000 -21%
11 A 6360.118  6361.088 -0.970 198,806 200,000 -4%
12 B 6361.102  6362.072 -0.970 199,874 200,000 4%
13 C 6362.087  6363.057 -0.970 197,888 200,000 5%
14 D 6363.072  6364.042 -0.970 198,503 200,000 3%
15 E 6364.059  6365.027 -0.968 198,412 200,000 -5%

For Mixture No. 2, the comparison between the spectrum estimated using the opti-
mal parameters and the observed spectrum is as shown in Figure 3-2. From this, it can be
seen that the generated spectrum matches the observed spectrum, confirming that there

are no issues with the estimation.
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Figure 3-2. Comparison of an observed spectrum and an estimated spectrum.

(a) Overall view; and (b) Enlarged view.
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3.4. Discussion

We successfully reduced the computation time from 50 hours to 15 minutes while main-
taining an 80% accuracy in estimating the number of constituents. This indicates that the
SAI method, which performs parameter exploration through gradient-based methods by
convolving the Point Spread Function (PSF), was functioning effectively.

The maximum error observed in the estimated monoisotopic mass was 3.997 Da
below the target. This is considered to be due to remaining challenges in the trade-offs
among parameters.

Similarly, the relative errors in ion counts were several tens of percent below the
target. This situation has not changed from the previous chapter, and we hypothesize that
it results from trade-offs between different constituents. It implies that a decrease in the

concentration of one constituent appears to be offset by an increase in another.

3.5. Conclusion of This Chapter

In this chapter, we aimed to accelerate the algorithm while maintaining the accuracy of
the number of constituents. To this end, we developed the SAI method, which enables
rapid parameter exploration without the issue of vanishing gradients, even for sparse spec-
tra, by convolving the Point Spread Function (PSF). This allowed us to significantly re-
duce the computation time from 50 hours to 15 minutes. However, the low estimation
accuracy for monoisotopic masses and ion quantities remains a challenge. To solve this
issue, it is necessary to increase the usable information and impose new constraints on

the model.
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Chapter 4.
Study on Improving Estimation Accuracy by Incor-
porating a Physical Model into MS/MS Spectra

4.1. Overview

Chapter 4 is based on Tomono, Hara, [ida and Washio (2024c, 2024d) [26], [27]. In the
prior chapter, we rapidly estimated the number of constituents and their monoisotopic
masses and ion counts using Spectral Annealing Inference (SAI), which allows for esti-
mation while avoiding the vanishing gradient problem by convolving with progressively
narrowing PSFs. In this try, the speed of computation was drastically improved, but the
accuracy of our results was insufficient.

To address the issue, this study introduces an improved methodology to accurately
estimate the optimal number of constituents and their monoisotopic masses and ion counts
using hybrid mass spectrometry (MS/MS) spectra. MS/MS is a technique that combines
multiple mass spectrometry stages to obtain structural information about precursor ions.
It involves isolating specific ions based on their mass-to-charge ratio in the first stage
(MS1), fragmenting these ions in a collision cell, and analyzing the resulting fragment
ions in the second stage (MS2). This allows for more detailed characterization of complex
molecules that cannot be achieved with single-stage MS.

Our method initially models the physical MS and MS/MS system with all possible
numbers of constituents. For each model with a different number of constituents, we es-
timate the optimal monoisotopic masses and ion counts and derived the posterior proba-
bilities. This estimation is achieved by using SAI.

If the MS model and the MS/MS model are not properly linked, simply increasing
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the number of estimated constituents will not impose any meaningful constraints, result-
ing in no improvement in performance. To overcome this, we mathematically combined
the MS and MS/MS models, enabling us to utilize the MS/MS data to enhance the esti-
mation of constituent information contained in the MS spectra. An overview diagram of
the model extension is shown in Figure 4-1. First, we generate MS spectra using the same
method as described in Chapter 2. For the ions contained in these spectra, we then apply

a newly developed fragmentation model to obtain MS/MS spectra.

Prior Bayesian Inference Proposal
Knowledge (SVI) Parameters
Observed Compare & Calculate Generated Physical
MS Spectrum Likelihood MS Spectrum Model(MS)
iy — N
Observed = Compare & Calculate d Generated Physical

MS/MS Spectrum i Likelihood N MS/MS Spectrum Model(MSMS)

New Information New Information

New Constraint

Figure 4-1. Overview of extended analysis method.

4.2. Proposed Method

4.2.1. Physical Model of Mass Spectrometers
We use the model constructed in Chapter 2 to generate MS spectra of intact ions and
develop a new model to generate MS/MS spectra for fragment ions.

In this study, we consider a scenario where ions contained within a specific region
of the MS spectrum, denoted as peak; (d = 1 to d,;4), are selected and forwarded to
the subsequent stage for MS/MS spectral measurement. Neutral molecules formed during

this collision-induced dissociation are not detected.
64



For the intact constituent j before fragmentation in the collision cell, we define a set of
ions sharing the monoisotopic mass ms produced in the collision cell as constituent
f (f = 1to finax)- We assume that totally f,,,,, fragment constituents are produced. As
with intact constituent j, we assume a binomial distribution as the isotopic distribution of

fragment constituent . Here we define the increase in neutron number as wy =

4
m—mf

round( ), where m represents a variable in the mass space, and ¢ represents the

mass of a neutron as before. The distribution is denoted by Py (wf), within the range of
wr = 0. In biomolecules such as nucleic acids and proteins, which consist of repeating
structural units, it is reasonable to regard that elements are uniformly distributed across
the ion of a precursor constituent. Therefore, we assume the number of atoms in an ion

of a fragment constituent is roughly proportional to its monoisotopic mass. Accordingly,

!

the number of atoms in constituent f, ng, is evaluated as n; -#, where n; denotes the
j

number of atoms of constituent j, as defined in Section 2.2.1. Moreover, by similar argu-
ment on the uniformity of the chemical composition across the molecule of a precursor
constituent, its fragments share the same chemical composition with the precursor con-
stituent. Therefore, we assume the rate of isotopes in a fragment, uy, is equal to the iso-
topic replacing rate of the precursor constituent j, u;, which is also defined in Section
2.2.1. Consequently, the isotopic distribution p¢ (a)f) is represented as shown in Equation
(32).

nf nf—wf
pr(wy) = (wf) upr (1 = uy) for ws = 0,and (32)
0 otherwise.

Additionally, we approximate the charge distribution of constituent f, §(z), using a
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binomial distribution, where z denotes a variable representing the absolute value of
charge, as defined earlier. In a manner similar to the discussion on isotopes, it is reason-
able to approximate that chargeable sites, such as phosphate groups in nucleic acids and
side chains in proteins, are uniformly distributed across the entire precursor ion. Therefore,
we assume that the number of chargeable sites that can acquire a charge is also roughly

proportional to the monoisotopic mass of a fragment. Accordingly, the number of charge-

!

) ) ) m . ) )
able sites of constituent f, l¢, is calculated as [; - m—{, where [; is defined in Section 2.2.1
j

as the total number of chargeable sites in constituent j.
q;j(z) is represented as shown in Equation (4) as described in Section 2.2.1. For ref-

erence, it is restated below:

~ L; lj—z

q;(2) = (Z’) v (1—v)" " 4)
Since the distribution of chargeable sites in the fragments are regarded as the same as
those in the precursor constituent j, we also assume that the probability of the chargeable
sites acquiring a charge, vy, is equal to v;. Thus, §s(z) can be expressed as shown in

Equation (33).
~ l lp~z
When the total number of ions of constituent j within peak, is given by Ig, and the

probability that a precursor constituent j dissociates into a fragment constituent f is de-

noted by p;_ s (where p;_,r < 1), the expected number of ions of constituent f produced
from constituent j within peak,, Id]._,f, is calculated as Idj_,f = round (Idj -pj_)f).
Each ion in the Idj_, 7 ions is indexed by idj_, 7- The mass and charge of each individual

ion iq,,r are denoted as w; djor ~Pr and z; aj £~ respectively.
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When an ion idj_>f is detected, its observed ideal spectrum would be § ((p —

(m]’c + cw; aj f) /z; ap f). Regardless of its charge state or mass, a single ion contributes

to the observed spectrum as a single delta function as well as Equation (5). Therefore, the
ideal spectrum formed by this set of ions (from igjnf = 1t0lg;r), Dajsy (), is repre-

sented as shown in Equation (34).

Idj—)f

Dy,~r(@) = Z 5 ((p — (m]'c + ea)idﬁf)/zidﬁf). (34)

idj—>f=1

The probability distribution Udj_>f (¢) of constituent f, which is produced by the

dissociation of constituent j included in peak,, can be calculated using the same ap-
proach as for constituent j. However, when the increase in neutron number from the mo-
noisotopic mass and the charge of the precursor ion of constituent j in the peak, is de-
noted as Wq; and Zq;, the increase in neutron number and charge of the precursor ion of
fragment f produced from constituent j in the peak,, wf and z do not exceed Wq; and
Zg;. Therefore, the domain of the fragment spectrum is limited to wy < Wq; and z < Zg;-
Consequently, the probability distribution of fragment f produced from the ions belong-
ing to constituent j in peak, along the mass-to-charge ratio, ¢, axis, Udj_>f(<p) is de-
scribed by Equation (35).

[OF P

Zd.
d j

J

Uajor @) = > > Brlep) - G5 -6(p = (mj +2wy)/z).  (39)

z=1 wf=1

In a manner similar to the MS spectrum, the observed spectrum of ions is propor-

tional to the probability distribution of ions along the ¢ axis. Then, the empirical

67



spectrum de_,f((p) converges uniformly to the theoretical distribution Ud]._)f(<p) as

sample size increases. Consequently, the spectrum of fragment constituent f produced

from constituent j in the peakq, Dg;- (¢), is approximated by Ud;or (¢) as shown in

Equation (36).
Id],_,f
Dg;~r(p) = Z 6 (<P - (m} + gwif)/zif)
idj—>f=1
~ Idj—>f ’ Udj—)f((p) (Idj—>f > 1) (36)

Therefore, the MS/MS spectrum for peaky, Simsms 4(®), is obtained by summing

la;np - Uajp (¢) over all j and f, as shown in Equation (36). Here, R(¢) represents the

point spread of the detector’s response, as introduced in Section 2.2.1.

k fmax

SAmsmsd(q)) = Z Z Id]-—>f ) (Ud]-—>f * R) (p). (37)

j=1 f=1
Here, we set f,,4, to an appropriate number of potential fragment constituents. In
actual estimation, the fitting progresses from the most prominent fragment constituents
identified by the magnitude of the spectrum. To estimate the number of precursor constit-
uents and their parameters, it is not necessary to identify all the fragment constituents,
and it suffices to cover some key fragments. Consequently, f;,,4, may be set to a number
less than the actual number of fragment constituents produced. The value of f,,4, 1s de-

termined based on prior knowledge.
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4.2.2. Bayesian Inference of Number of Constituents and Parameters

As described in Section 2.2.1, the physical parameters of precursor ions, such as
monoisotopic mass, chargeable sites, number of atoms, isotopic replacement rate, and
charge rate, have already been defined.

Assuming the number of constituents as k, the extended set of parameters for esti-
mation, denoted as 6, is derived from the original parameter set 6;,. This extended pa-
rameter set is represented as:

0’y = {m}, I, nj, u, lj,vj,m]'c,ldj,pj_)f,nf,uf, lg, vg
lj=12,....k,d =12, .., dnac f = 1.2, .., frnax}-
Here, 6’ is defined for each combination of a precursor constituent j, a fragment con-
stituent f and a peak d.

We specifically calculate m}, L,n;,u;, 1, v, m}, Idj and p;_,¢ using the iterative op-
timization algorithm, Adam, from the range specified in Table 4-1. Here, the range for the
newly introduced dissociation rate, p;_r, is also defined. The initial values are randomly
determined within the defined domain. Parameters ny, uy, lf and vy are automatically de-
termined as described in Section 4.2.1. The value of Iy is set to the number of ions con-
tained within the peak interval of the MS spectrum generated from the precursor ion pa-
rameters. The m/z range of the peak interval is determined based on the settings used

during actual analysis on the instrument.
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Table 4-1. The domain of the parameters.

Parameter Range Constant
Mpyin = 100.0
m: ! { i i forj =k, and m mm_ 10000.0
jlk=k [(m]’.|k=k1_1 - Am), (m]’.|k=k1_1 + Am)] forj <k max '
Am = 4.0
[ili=x! 1.|[ Imh,u el Jory =1, and Inin = 100
ek [7’ "";,f,‘l,lmax] forj <K Inax = 100000
_ M|/
- Mmin = 16,0
[Mnins Nimax] forj=k,anc g )
Nilp=p' . ' Myl =k'
jlie=k [(njlkzk’—l *(1— An))!(”jlk:k’—l * (14 An))] forj <k Ny = J6k0k
An = 0.05
Upin = 0.0001
u; / { [Wmin Umax] forj=k,and ;nm =0.01
Tk [(uj|k:k’—1 - Au), (uf|k=k’—1 + Au)] forj <k max .
Au = 0.001
lmin = 10
ll , {[lmin' lmax] fOT'j =k',and _ mjl'lkzk'
jlk=k Lleek'—y  forj <k bmax = 20.0
Al=1.0
v; ’ {[vmint Vmax] forj = k',and Vmin = 0.01,
Jjlk=k vjlk:k’—l fOT'j <k. Vmax = 1.0
o Mumin = 100.0
Mt { [Monins Mmax] forj =k, and m =m
Sk [(m),‘lk=k’—1 - Am), (m}|k=k'—1 + Am)] forj<k. e ’
Am = 4.0
j-f J=Fmin’ P72 max . =
p]_'fmax -

Substituting the number of atoms of constituent j, n;, the isotopic replacing rate of
constituent j, u; into Equation (3) and the number of chargeable sites of constituent j,

l;, and the charge rate of chargeable sites of constituent j, v; into Equation (4), and the
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monoisotopic mass of constituent j, m]f and the number of ions of constituent j, [}, into
Equation (5) yields the MS spectrum S,,;(¢) as derived from Equation (8). Further, sub-
stituting ng, us into Equation (32), l¢, vy into Equation (33), and m]'c, Id]., pjs into Equa-
tion (34) leads to the derivation of the MS/MS spectra S,,sms (@) from Equation (37).

We consider a scenario in which we obtain a set of observed spectra S5, consisting

of MS spectrum S,p, _and MS/MS spectra S, d(d =12, ...,dnge). In the ex-

0bSmsms
tended parameter set 8’y the posterior probability distribution P’ (8’ |S,ps), Where the
combined MS and MS/MS spectra S, are observed, is defined according to Bayes' the-
orem as the following formula. Here P'; (S,,s10')) represents a likelihood of parameters

0’y given under S,ps. P';(8')) denotes a prior distribution.

P (0'k|Sops) % Pk (Sops|0' )P (0'y). (38)

We determine the posterior probability and optimal parameters by maximizing log-

arithmic posterior probability LP"), defined as:

LP" = IOg(P'k(Sobs|9'k)) +10g(Plk(9,k))- (39)

Here, we introduce two likelihoods derived from observation error models. The ob-
served spectrum typically includes thermal noise from detection circuitry, which is as-
sumed to follow a normal distribution. Therefore, we base the observational error, repre-
senting a deviation between observed data and true values, on this distribution. For esti-
mation, we employ square error-based likelihood derived from the normal distribution.
However, because low-intensity regions within the spectrum have less contribution to the
overall error evaluation if we use a square error-based likelihood, relying solely on this

likelihood reduces accuracy of parameter estimation where the errors in the low-intensity
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spectral regions must be reflected. To overcome this difficulty, we additionally introduce
a likelihood function sensitive to errors in the low-intensity parts of the spectrum. To
evaluate the discrepancies between the observed and estimated spectra regardless of spec-
tral intensity, we use the correlation coefficient along the ¢ axis as the additional likeli-
hood. This coefficient, calculated by normalizing the inner product of both spectra against
their intensities, excludes the influence of each spectrum's intensity, thus providing a
measure that assesses the similarity of their shapes over the entire spectrum domain in-
cluding the low-intensity region.

Let Lyyse,,, denote a logarithmic likelihood based on the normal error distribution of

the MS spectrum and Lmsemsmsd denote that of the MS/MS spectrum at peak d, respec-

tively. The standard deviation of the normal distribution, o, is set to 0.5 based on actual
measurements. Ly, and Lmsemsmsd are calculated by summing the logarithms of the
probability densities of the error between the observed spectrum and estimated spectrum

over ¢. Here, N specifically denotes the number of data points on the ¢ axis within a sin-

gle spectrum. Lyyse. » Linse e

~ 2
, _ L |Sms (@) = Sobs,,. ()] p
msens = | l0g| == exp 53 )

1 A 2 N
- Ffb‘ms((p) - Sobsms(¢)| dp + N 108(0) + E 108(27T). and (40)

, are expressed as follows:

Q

A 2
) 1 |Smsmsd (‘p) - Sobsmsmsd ((P)| d
msemsmsy - f 0g Wexp - 20_2 @

1
202

Q

. 2 N
[ [Smomsa®) = Sonsons, (@] dp + N l0g() + 5 og(2m). (41)

To introduce the additional correlation-based likelihood, we employ the von Mises

distribution as an error model, which is defined by the correlation coefficient between
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two vectors representing the observed and estimated spectra. The logarithmic likelihoods

based on the von Mises distribution are denoted as Ly, and L respectively.

COSmsms

The probability density function of the von Mises distribution is given by f (?) =

exp {y l(,;l—l?l} [49]. Here, S and S represent estimated and observed spectra, respec-

2zl (v)

tively, viewed as vectors. (f, S) represents their inner product. The parameter y repre-
sents concentration of the probability distribution. I, is a modified Bessel function of the
first kind of order zero, and 2ml,(y) serves as normalization factor. y is experimentally

determined to be the aforementioned number of data points N. Consequently, the log-

likelihoods, L, and Lcosmsmsd, are calculated as shown in Equations (17) and (18).

L =lo <—1 ex ( (ﬁmS((p)’S"bsms(QU))))
cosms = 108\ 27y P |5 (@) |Sops,,.. (@]

=N <Sm5(¢)'50bsms(¢)> log(ano(N)),and (42)

" 8ms(@)|[Sops,. (@)

1 <§msmsd (QD), Sobsmsmsd (§0)>
Loy = 18| 77, Gy

|§msm5d (§0)| Sobsmsmsd (§0)|

<§msmsd (QD): Sobsmsmsd (§0)>

|§msmsd (90) |

=N

— log(2mly(N)). (43)

Sobsmsmsd (§0)|

The total log-likelihood of the estimated spectrum set (Sp,s(9), Smsms J(@)(d =
1,2, ..., dmax)) under the observed spectrum set S, is expressed as shown in Equation

(44).

dmax dmax

1 Z 1 Z
log(P’k (Sobslelk)) = Lmsems + d Lmsemsmsd + Lcosms + d Lcosmsmsd- (44)
max o= max =4
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In determining the appropriate number of constituents k in Bayesian framework,
we need to prevent the selection of overfitted complex models of its logarithmic posterior
probability LP",. For doing so, we incorporate a modified penalty term w'y;.(k) based
on prior knowledge. w'y;. (k) is defined using the Bayesian Information Criterion (BIC),
a statistical measure that evaluates the trade-off between model fit and complexity [32],
[33]. Incorporating w'y;. (k) into the prior probability allows us to determine the appro-
priate number of constituents k. By applying A = 6.0 X 107 (a hyperparameter) and us-
ing the number of data points N in the spectrum, as defined earlier, w',;. (k) is repre-

sented as shown in Equation (45).

k
Wlbic(k) =1 E : lOgN . (45)

Additionally, to ensure that the monoisotopic masses of the constituents do not over-
lap, we introduce a modified penalty function w',, (k, m] ...m;,), inspired by the Laplace
distribution. The reason why we use such a penalty is because we define a constituent by
its unique monoisotopic mass. Here, we experimentally set the gain coefficient a =
10 x N. If m; and m; differ by more than the mass of neutron, &, they are certainly dif-
ferent constituents. Consequently, we also experimentally determine the appropriate
value below ¢ as the threshold coefficient b = 0.8. We then define w',, (k, m] ...my,),
represented by the assumed number of constituents k and the monoisotopic masses of
each constituent, mj ... my, as shown in Equation (46).

k-1 k
W (k,my..my) = aZ Z max (1 - hngl);m;l, 0). (46)
i=1 j=i+1

This penalty function reaches its maximum value when the monoisotopic masses of
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different constituents completely coincide.
By assuming a uniform prior distribution of each parameter, the logarithmic prior

probability is defined as:

log(P'(0'0)) = —W'pic (k) — W' ore(k, my ... (47)

Here, by substituting Equations (19) and (22) into Equation (14), we obtain the log-

arithmic posterior probability LP", to be maximized as:

LP" = log(P’k(Sobslglk)) 'HOg(P’k(BIk))

dmax dmax
1 1
= Lmsems + dmax le Lmsemsmsd + LCOSms + dmax dzl Lcosmsmsd
_Wlbic(k) - W,ex(ki mi m;c) (48)

4.2.3. Parameter Exploration and Optimization
The parameter exploration method is the same as in Chapter 3. To create appropriate gra-
dients of the likelihood function, we convolve a Gaussian distribution g(¢) with both the

observed spectra Syps, . S and the estimated spectra $,,,5(¢), Sinsms . (@) (where

0bSmsms
d =1,2,...,dpnax)- We define the mean of g(¢) as zero and the variance as Ty, and g(¢)
1s represented as shown in Equation (26).

We performed SVI and iteratively narrowing the variance of g(¢), Ty, to effec-
tively search for 'y, which is termed Spectral Annealing Inference (SAI) in this paper.

Let s denote the step of this iteration, and s,,,,, denote the total number of iterations. We

define T as shown in Equation (27), which is reiterated here for clarity.

Smax — S 4
T, = A(—) (5= 01,2 ., Spi). 27)

Sm ax

For this study, S;,4, 1S set to 46, and the coefficient A is set to 8750, the same value as
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successfully used in Chapter 3 to find global solutions.

The blurred spectra at each step are represented as shown in Equations (49), (50),

(51) and (52).
S’ 0bsms (@) = (Sobsys * 9) (@), (49)
S’ obsmsms (@) = (Sobsmems * 9) (@), (50)
§'ms(9) = (Sms * ) (), and (51)
§'msms (@) = (Smsms * 9) (9. (52)

Using these blurred spectra, we derive the modified log-likelihood L'y,

L L' s, and L' as defined in Equations (53), (54), (55), and (56), re-

msémsmsg° COSmsms 4>
spectively.
I 1 Ar ' 2 N
L msems — _ﬁfls ms(@) =S obsm5(§0)| deo + N log(o) + 5 log(2m), (53)
) 1 o , 2 N
L msemsms, _ﬁf |S msmsd(QD) -S 0bSmsms, ((P)| do + N log(o) + > log(2m), (54)
SA, , Sl
Los,.. = N( ms (@), 5 onsn, (0) log(2mly(N)), and (55)

glms((P) | |S,0b5ms (¢)|

<§’msmsd (QD), Slobsmsmsd (§0)>
L cosmemsy = N , — log(2mly(N)). (56)
|S msmsd(§0)| |S 0bSmsms, (§0)|

Let S',;¢ denote the set of observed spectra S, blurred by the PSF. The logarithm

of the likelihood log(P" (S’ 5ps10"x)) is represented as follows:

dmax 1 dmax
log(P"k(S,obslglk)) = L,msems + d Z L’msemsmsd + L,cosms + d Z L,cosmsmsd . (57)
max o= max o=
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We introduce a prior distribution same as Chapter 3. By substituting Equation (57)
in place of Equation (19) into Equation (14), the modified logarithmic likelihood LP""'),

is obtained as follows:

LP""}, :=log(P" (S ops101)) +log(P'1.(6":))

Admax dmax
o+ 2 Vs + ey 2 S
mseéms dmax : msSémsmsgy COSms dmax o COSmsmsgy
—W'pic(k) — W o (k, m] ...my). (58)

Same as in Chapter 3, at each iteration step s (s = 0,1,2, ..., Sypax)» WE maximize
LP'"} to iteratively refine and determine the parameters '), and the posterior probability
assuming a number of constituents k. 8'; from each iteration are carried forward to the
next step.

As in the previous chapter, by repeating this process from k = 1 to k4, We obtain
the posterior probabilities of each k. We then compare the posterior probabilities across
all k and select the number of constituents with the highest posterior probability and its

corresponding parameter set as the optimal choice.

4.3. Results

In this section, we detail the outcomes of our experiments to validate the estimation
accuracy of constituent counts, monoisotopic mass, and ion quantities in our proposed
method. All the experiments were conducted exclusively using numerical simulations.
These simulations generated data to mimic real-world mass spectrometry analyses. We
specifically focused on simulating the mass spectra of nucleic acid drugs and their im-

purities, such as Fomivirsen and its altered sequences. This is because current analytical
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methodologies have challenges in accurately identifying these substances, due to the
complexities arising from their isotopic and charge distributions. We compared the per-
formance of our proposed method against established baseline method, UniDec. The
performance was evaluated based on accuracy of constituent count estimation, devia-

tions in monoisotopic mass, and discrepancies in ion quantities.

4.3.1. Validation Environment

The specifications of a computer used to verify the proposed method, as well as the soft-
ware versions, are summarized in Table 4-2. The proposed method handled data with high
dimensions along the time axis, requiring a large memory size. Additionally, to rapidly
explore the parameter space using SVI, the high-speed probabilistic programming library,

NumPyro, along with its compatible CUDA and GPU, were used.

Table 4-2. Computational environment used for validation.

CPU Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz
GPU NVIDIAA100
RAM 1,024 GB

OS Ubuntu 20.04.6 LTS
Software Python 3.10.12
Numpyro 0.14.0
jax 0.4.14
CUDA 121

4.3.2. Creation of Simulation Data for Validation
Based on the nucleic acid drug Fomivirsen [44] (ID: A), two impurities with modified
base sequences were added, and MS spectra for a total of three constituents were gener-

ated using simulation methods presented in the prior research [24]. Specific details were
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provided in Table 4-3. This setup replicated a system where the principal constituent's
isotopic distribution was mixed with the spectra of the impurities. The mutation from C
(Cytosine) to U (Uracil), known as deamination, can occur during the synthesis process

due to solvent conditions and thermal stress [46], [47].

Table 4-3. Settings for constituent spectrum generation.

Monoisotopic

ID Sequence Molecular Formula Mass m; [Da]

A gegtttgetettcttcttgeg Cup0H063N630134P o0 6361.088
B  gegtttgutcttcttcttgeg  CopH60N620135 20 6362.072
C gugtttgutcttcttcttgeg  CouaH61Ne1C436P20 6363.057

The single constituents A to C were combined according to the 10 combinations
listed in Table 4-4. To verify the accuracy of ion count estimation, the ion counts of con-
stituents A, B, and C were mixed at a ratio of 20,000:2,000. This was because we wanted
to validate if our proposed algorithm tends to provide moderate ratios of multiple constit-
uents even when their actual ratios were highly imbalanced. When the ratio of ion counts
between constituents was 10:1, the algorithm should not excessively provide less imbal-
anced ratios. This setup enabled the analysis of complex mixtures consisting of a few

constituents.
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Table 4-4. Combinations of constituents when generating spectra.

Mixture No. lon Counts
Constituents A Constituents B Constituents C
1 20 000 20 000 20 000
2 20 000 20 000 2000
3 20 000 2000 20 000
4 2000 20 000 20 000
5 20 000 2000 2000
6 2000 20 000 2000
7 2000 2000 20 000
8 20 000 20 000 -
9 20 000 2000 -
10 2 000 20 000 -

We set the number of chargeable sites of constituent j, [, to 224 and the charge rate
of constituent j, v, to 0.035. This was done to ensure that the generated spectra closely

resembled real data. Then, we generated the test spectra listed in Table 4-4.

Next, we generated the MS/MS spectra of these mixtures. The sequences, molecular
formulas, monoisotopic masses, and conversion rates of the fragments generated from the
dissociation of constituents A, B, and C are defined in Table 4-5. The MS/MS spectra
were generated using these parameters. This time, we selected five peaks in ascending
order of m/z from the most prominent isotopic distribution, based on practical memory
usage constraints. Additionally, and we assumed two fragment constituents, informed by

prior knowledge of dissociation behavior. Thus, d,,4, Was 5, and fp,4, Was 2.
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Table 4-5. Settings for constituent spectrum generation.

Fragment Molecular Monoisotopic  Conversion
Precursor Sequence Eormula Mass m} (Da] Rate
F1 gegtt CoHeN,,O04P, 1494.077 0.3
A F2  tgctettct CgrH114N5, O, Py 2655.810 0.3
F3  tcttgcg CegHgsN,,0,5Ps 2087.450 0.3
F1 gegtt C,oHesN70450P, 1494.077 0.3
B F4  tgutcttet  CgH, N0 P, 2656.795 0.3
F3  tcttgcg CeeHgsN,,0,5Ps 2087.450 0.3
F5  gugtt C,oHesN,7050P, 1495.061 0.3
C F4  tgutcttet  CgH, ,N,,O, P, 2656.795 0.3
F3  tcttgcg CesHgN,,0,,Ps 2088.435 0.3

4.3.3. Evaluation of Accuracy in Estimated Constituent Counts

We estimated the optimal parameters for assumed constituent count models. Table 4-6
presents the logarithm of the maximum posterior probabilities of each model. By select-
ing the constituent count that maximizes the logarithm of the posterior probability in each
mixture, we estimated the number of constituents present in each mixture. Our method
successfully estimated the true number of constituents in 80% of cases (8 out of 10 mix-
ture data). In the two cases where estimation failed, it is possible that the algorithm con-
verged to a different local minimum. We believe this result is a sufficient benchmark for

identifying the presence and number of impurities in pharmaceuticals and implementing

appropriate corrective measures.
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Table 4-6. Negative logarithmic the maximum posterior probability assuming each

constituent count.

Mixture True

o, " k=1 k=2 k=3 k=4 k=5
1 3 47,105,180,000 47,393,730,000 47,483,530,000 47,346,420,000 47,254,300,000
2 3 47,146,890,000 47,366,930,000 47,449,330,000 47,313,370,000 47,175,010,000
3 3 47,014,840,000 47,244,320,000 47,373,050,000 47,250,990,000 47,086,080,000
4 3 47,131,240,000 47,395,780,000 47,471,380,000 47,379,240,000 47,237,030,000
5 3 47,064,820,000 47,151,820,000 47,280,770,000 47,011,780,000 47,037,130,000
6 3 46,905,570,000 47,412,680,000 47,418,450,000 47,312,960,000 47,170,700,000
7 3 45,634,240,000 46,312,830,000 46,127,830,000 46,126,200,000 45,988,160,000
8 2 47,152,970,000 47,406,670,000 47,272,770,000 47,361,900,000 47,229,700,000
9 2 47,063,080,000 47,126,520,000 47,088,670,000 46,960,900,000 46,818,110,000
10 2 47,119,250,000 47,376,490,000 47,405,410,000 47,277,430,000 47,172,650,000

4.3.4. Accuracy of Parameter Estimation

To compare the estimation results, we performed deconvolution on the same mixture

data using UniDec, a popular deconvolution software. For this verification, we used

UniDec (Version 7.0.1). The specific parameter settings used during this verification are

shown in Table 4-7. The Mass Range was aligned to the same range as the proposed

method, and Sample Mass Every (Da) was set to 0.1 to ensure sufficient detection of

impurities with a difference of 1 Da, as described in Chapter 2. Default values were used

for parameters not mentioned.

Table 4-8 shows the optimal monoisotopic mass of the models of the selected num-

ber of constituents for each mixture, as described in Table 4-4, estimated by our algorithm.

The median error was —0.005 Da, the average error in monoisotopic mass was —0.282 Da,

and the maximum error was —1.840 Da, as shown in Table 4-9. The standard deviation



was 0.552 Da. The distribution of these errors is shown in Figure 4-2. As observed in the
box plot in Figure 4-2, the errors in the monoisotopic masses estimated by the proposed
method are discretely distributed approximately 1 Da apart, corresponding to the mass
differences between isotopes. The extreme case of No. 6, which produced the maximum
error of —1.840 Da, can also be explained by this discrete distribution. This large error is
likely caused by the posterior probabilities of the monoisotopic masses being distributed
in a comb-like pattern [24], increasing the chances of the algorithm converging to a local
minimum 1-2 steps away. However, no clear trend was observed between the ion count
ratios of the constituents and the error magnitudes. Using the mean as the representative
value and all data from No. 1 to No. 10, the 95% confidence interval calculated using the
t-distribution [50] ranges from —0.721 Da to +0.157 Da. This indicates the method could
potentially be used to investigate the causes of impurities that occur with a difference of
1 Da [51], [52].

However, the estimated ion counts for each constituent showed errors with a median
of 1.1 times the true values, averaging up to twice the true values, with some errors reach-
ing up to twelve times the true values, as shown in Table 4-10. This discrepancy was
thought to be due to the trade-off relationship between the ion counts of different constit-
uents; that was, a decrease in the ion count of one constituent was compensated by an
increase in another. This was further supported by the fact that the average error across
the total ion counts of all constituents stabilized at 8% of the true value. For instance, the
standard for total desamido impurities and total impurities in injectable glucagon were,
respectively, below 14% and 31%. Therefore, the accuracy of ion count estimation in our
proposed method was insufficient to assess the impact of impurities.

The accuracy of estimating the number of constituents was 40% (4 out of 10). This
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was obtained by comparing the number of estimated monoisotopic masses output by
UniDec with the true number of constituents, as shown in Table 4-8. This was thought to
be because the UniDec algorithm, which iterated through multiple deconvolutions to ar-
rive at the number of constituents, did not necessarily guarantee the accuracy of the con-
stituent count. Note that using UniDec to determine the number of constituents was not
its intended application. The median error of the monoisotopic mass estimated using
UniDec was —0.008 Da, which is slightly worse than that of the proposed method. On the
other hand, the average error was 0.091 Da, and the maximum error was 0.993 Da, both
slightly better than those of the proposed method. However, in principle, accurate estima-
tion on the monoisotopic mass required precise identification of the number of constitu-
ents. As shown in Table 4-11, the error in estimating the number of ions was, on average,
3.2 times the true value and up to 17 times at maximum. This result was not better than

that of the proposed method.

Table 4-7. UniDec setting parameters.

Parameter Setting value
UniDec Parameters Charge Range 1-20
Mass Range 6000 - 6800
Sample Mass Every (Da) 0.1
Additional Deconvolution Parameters  Isotopes Mono
Peak Selection and Plotting Peak Detection Range (Da) 0.1

Peak Detection Threshold 0.1

*The other parameters were set at their default values-
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Table 4-8 (Part 1). Optimal monoisotopic masses of the model with the maximum poste-

rior probability.
Mixture TRUE SAl UniDec
No. Mass [Da] Mass [Da] Error [Da] Mass [Da] Error [Da]
6361.088 6361.086 -0.002 6361.070 -0.018
1 6362.072 6362.273 0.201 6362.070 -0.002
6363.057 6363.055 -0.002 - -
6361.088 6361.084 -0.004 6361.080 -0.008
2 6362.072 6362.277 0.205 6362.070 -0.002
6363.057 6363.056 -0.001 - -
6361.088 6361.099 0.011 6361.080 -0.008
3 6362.072 6362.059 -0.013 6362.070 -0.002
6363.057 6363.265 0.208 - -
6361.088 6360.231 -0.857 6361.070 -0.018
4 6362.072 6362.066 -0.006 6362.060 -0.012
6363.057 6363.054 -0.003 6364.050 0.993
6361.088 6360.146 -0.942 6361.080 -0.008
5 6362.072 6361.073 -0.999 - -
6363.057 6363.282 0.225 - -
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Table 4-8 (Part 2). Optimal monoisotopic masses of the model with the maximum poste-

rior probability.
Mixture TRUE SAIl UniDec
No. Mass [Da] Mass [Da] Error [Da] Mass [Da] Error [Da]
6361.088 6359.248 -1.840 6361.070 -0.018
6 6362.072 6361.069 -1.003 6362.070 -0.002
6363.057 6362.068 -0.989 - -
6361.088 - - 6361.060 -0.028
7 6362.072 6362.064 -0.008 6362.060 -0.012
6363.057 6363.264 0.207 6364.050 0.993
6361.088 6360.224 -0.864 6361.080 -0.008
8 6362.072 6361.072 -1.000 6362.080 0.008
6361.088 6361.102 0.014 6361.090 0.002
° 6362.072 6362.041 -0.031 - -
- 6360.075 - - -
10 6361.088 6361.071 -0.017 6361.070 -0.018
6362.072 6362.257 0.185 6362.070 -0.002
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Table 4-9. Statistical summary of monoisotopic mass estimation

errors for SAI and UniDec.
SAl UniDec
Error [Da] Error [Da]
Max. 0.225 0.993
Min. -1.840 -0.028
Average -0.282 0.091
Median -0.005 -0.008
SD 0.552 0.301
1.0 A
0.5 A
. 0.04 = T e
©
e
§ —-0.5
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Figure 4-2. Distribution of errors in the estimated monoisotopic masses.

(Excluding points that the algorithm could not estimate.)
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Table 4-10 (Part 1). Optimal ion counts and relative quantities of the model with the

maximum posterior probability.

TRUE SAl UniDec
Mixture No. Relative

Count Count  Error [%] Quantity Error [%]
20000 33690 68.4 100.0 200.0
1 20000 8179 -59.1 41.1 23.2
20000 22228 111 - -
20000 31058 55.3 100.0 110.0
2 20000 5900 -70.5 18.0 -62.3
2000 8098 304.9 - -
20000 13215 -33.9 100.0 110.0
3 2000 26190 1209.5 34.1 615.7
20000 5580 -72.1 - -
2000 10643 4321 85.8 1700.8
4 20000 19684 -1.6 100.0 110.0
20000 17031 -14.8 14.6 -69.4
20000 6889 -65.6 100.0 20.0
5 2000 16208 710.4 - -
2000 2328 16.4 - -
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Table 4-10 (Part 2). Optimal ion counts and relative quantities of the model with the

maximum posterior probability.

TRUE SAl UniDec
Mixture No. Relative
Count Count Error [%] Error [%]
Quantity
2000 5143 157.2 100.0 1100.0
6 20000 3697 -81.5 56.4 -32.3
2000 17125 756.3 - -
2000 - - 57.0 583.5
7 2000 22439 1022.0 100.0 1100.0
20000 3287 -83.6 26.1 -68.6
20000 10689 -46.6 100.0 100.0
8 20000 34062 70.3 15.0 -70.0
20000 18739 -6.3 100.0 10.0
° 2000 3369 68.4 - -
- 616 - - -
10 2000 21303 965.1 100.0 1000.0
20000 3867 -80.7 48.6 -46.6
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Table 4-11. Statistical summary of ion counts estimation errors for SAI and UniDec.

SAl UniDec

Error{%] Error[%]
Max. 1209.487 1700.772
Min. -83.564 -69.964
Average 201.203 321.698
Median 13.772 105.000
SD 383.640 503.549

For reference, Figure 4-3 presents a comparison between the spectrum of Mixture
No.1 and the spectrum reconstructed from its estimated parameters. Figure 4-3 (a) pro-
vides an overview of the charge distribution, while Figure 4-3 (b) offers a detailed view
of the isotopic distribution. The gray vertical dashed lines in Figure 4-3 (a) and (b) indi-
cate the m/z of the fragmented ions. Additionally, Figure 4-3 (c) and (d) display the
MS/MS spectrum of the fragmented ion groups and its detailed view, respectively. The
five graphs correspond to the five peaks in Figure 4-3 (b), each representing the MS/MS
spectra of the ions contained in those peaks when they are fragmented. These results
demonstrated that the generated spectrum closely matched with the observed data. Fur-
thermore, the appearance of the MS/MS spectra was consistent with findings from prior

research cited in references [53]-[55].
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Figure 4-3 (Part 1). Comparison of observed and estimated spectra for Mixture No. 1.

(a) MS spectrum overall view; and (b) MS spectrum enlarged view.
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Figure 4-3 (Part 2). Comparison of observed and estimated spectra for Mixture No. 1.
(c) MS/MS spectrum overall view; and (d) MS/MS spectrum enlarged

view.
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4.4. Discussion

We confirmed that our proposed method allowed for accurate estimation of parameters
such as monoisotopic masses from simulated MS and MS/MS data of the nucleic acid
drug Fomivirsen and its impurities, and it also successfully selected the correct number
of constituents with an 80% accuracy, even in datasets containing more challenging ion
count ratios of 10:1. These results were better compared to the 40% accuracy rate
achieved with UniDec. This success was attributed to our approach of creating models
for each constituent count, enabling comparative evaluation and selection of models for
each constituent count. This capability suggests the presence of impurities in pharmaceu-
ticals and could aid in the search for better synthesis conditions for medium to high mo-
lecular weight drugs, as well as in quality assurance in manufacturing facilities.

As shown in Table 4-8, we were able to estimate monoisotopic mass with higher
accuracy than previous chapter’s studies [24], with an average estimation error of 0.282
Da, which was an improvement over the 1.348 Da error reported in prior research. Alt-
hough this accuracy was slightly inferior to UniDec's 0.091 Da, it was sufficient for dis-
tinguishing differences as small as 1 Da due to deamidation. We believe this improvement
is due to the incorporation of the MS/MS spectra into the physical model, which increased
the constraints on the model's degrees of freedom. Additionally, the use of the correlation-
based likelihood contributed to more stringent constraints on the spectral shape.

As indicated in Table 4-10, the estimated ion quantities for each constituent showed
an average relative error of twice the true value. Although a direct comparison with the
prior studies, which used a 1:1 mixing ratio, was not straightforward due to our use of a

10:1 ratio, the results were favorable compared to UniDec, which had an average error of
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3.2 times the true value. The errors observed in our proposed method might result from a
trade-off among the ion quantities of each constituent, where a decrease in one was offset
by an increase in another. Despite our expectations that incorporating MS/MS spectra
would tighten estimation constraints and enhance both mass and ion quantity accuracy,
the performance fell short of expectations, failing to reduce the relative error to below the
10% threshold required for impurity analysis in nucleic acid drugs. A possible solution to
these issues would be to represent the ion quantities as probability distributions. By ac-
counting for the uncertainty in the ion quantities of constituents in the sample, an im-
provement in estimation accuracy was expected.

Despite the sixfold increase in data volume—comprising one MS spectrum and five
MS/MS spectra corresponding to five peaks—the analysis time per data point remained
13 hours. While this duration did not match the few seconds required by UniDec, it was
less than half the time required by our previous method [24] described in Chapter 2 that
use MCMC. Replacing the estimation mechanism with a neural network or similar ap-

proaches is one potential solution for achieving faster processing.

4.5. Conclusion of This Chapter

In this chapter, we assumed the numbers of constituents in a given sample and created
models of MS and MS/MS mass spectrometry based on parameters such as monoisotopic
mass and ion quantity. We then applied our proposed method from Chapter 3, Spectral
Annealing Inference (SAI), which effectively seeks the maximum posterior probability
by optimizing parameters for the observed data. After obtaining the maximum posterior
probability for each constituent count model, we selected the model that had the highest

maximum posterior probability across all models. As a result, we successfully estimated
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the number of constituents and simultaneously estimated the monoisotopic mass with
high accuracy. We think this achievement is attributed to the increased amount of con-
straint information provided by leveraging MS/MS spectra. While the accuracy of mo-
noisotopic mass estimation was improved, future challenges include improving the accu-

racy of ion count estimation and achieving further computational speedup.
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Chapter S.

Conclusion and Future Challenges

Our objective was to accurately determine the number of constituents, monoisotopic
masses, and ion counts from mass spectrometry (MS) data to contribute to impurity de-
tection and analysis in pharmaceutical development and manufacturing.

In this study, we first constructed mass spectrometry models for each possible num-
ber of constituents and applied a Bayesian inference framework. This allowed us to de-
velop a methodology for estimating the most probable number of constituents along with
their corresponding parameters, such as monoisotopic masses and ion counts.

In Chapter 2, to handle systems with sparse posterior probability distributions, which
are characteristic of mass spectrometry data, we initially employed MCMC (Markov
Chain Monte Carlo) for parameter exploration. While this approach successfully deter-
mined the optimal number of constituents and associated parameters, such as monoiso-
topic masses, it required an extensive amount of computation time. Furthermore, the ac-
curacy of monoisotopic mass and ion count estimation was insufficient for achieving the
goal of detecting impurities with a mass difference of 1 Da.

In Chapter 3, we addressed this issue by developing a faster parameter exploration
method to replace MCMC. We introduced a novel approach named Spectral Annealing
Inference (SAI), which involves convolving spectra with a PSF (Point Spread Function)
that progressively approaches a delta function, thereby enabling rapid and convergent

estimation. As a result, estimation times were reduced from 50 hours to just 15 minutes.
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However, challenges remained in improving the accuracy of estimated monoisotopic
masses and ion counts.

To address these challenges, in Chapter 4, we incorporated MS/MS information and
refined the likelihood function to enhance estimation accuracy. By mathematically com-
bining the MS and MS/MS models, we utilized MS/MS spectra to improve the parameter
estimation of MS spectra. As a result, monoisotopic mass estimation accuracy was im-
proved to a level sufficient for distinguishing mass differences of 1 Da.

The results of this development will contribute to the detection of impurities, the
evaluation of their impact, and the investigation of their causes in the manufacturing and
development of biopharmaceuticals.

Nevertheless, challenges still remain in enhancing the accuracy of ion count estima-
tion. Currently, there are no established guidelines for the quality control of nucleic acid-
based pharmaceuticals [56], [57]. Therefore, the results of this study hold a certain sig-
nificance for identifying the presence and quantity of impurities in pharmaceuticals and
implementing appropriate corrective measures. That said, for future use in quality control,
an estimation accuracy of less than 10% will likely be required.

Additionally, as the number of constituents increases, the computational time also
grows, posing a limitation of the proposed method. Replacing the estimation framework
with neural networks or similar advanced techniques to handle multi-constituent systems
is a promising direction for future development. Such advancements will be crucial for
expanding the application of this method to fields like metabolomics and environmental
analysis.

Furthermore, the SAI method developed in this study may also be applicable to other

spectroscopic techniques that produce sparse and complex signals, such as Nuclear
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Magnetic Resonance (NMR) spectroscopy [58], Raman spectroscopy [59], and various
X-ray-based methods. NMR is widely used in structural biology and organic chemistry
to analyze molecular structures based on nuclear spin interactions. Raman spectroscopy
provides information on vibrational modes, which is useful for material characterization.

Additionally, techniques like X-ray Photoelectron Spectroscopy (XPS) [60], X-ray
Diffraction (XRD) [61], X-ray Fluorescence (XRF, also known as Energy-Dispersive X-
ray Spectroscopy, EDX) [62], and X-ray Absorption Spectroscopy (XAS) [63] are com-
monly used in material science and chemistry. XPS analyzes surface composition by
measuring the kinetic energy of emitted photoelectrons. XRD identifies crystal structures
through diffraction patterns. XRF (EDX) determines elemental composition based on
characteristic X-ray emissions, and XAS provides insight into local electronic structures
and bonding environments.

By adapting SAI to these techniques, it may be possible to improve the extraction of
physical parameters from spectral data. This approach could be useful in fields such as
metabolomics, environmental analysis, and material characterization, where precise pa-
rameter estimation is important. For instance, SAI might help in analyzing NMR spectra
for protein structure determination or in processing Raman and infrared spectroscopy
[64] data for quality control. Its application to XPS, XRD, XRF (EDX), and XAS could
also support more detailed structural and elemental analysis.

Further investigation is needed to assess the feasibility and effectiveness of applying
SAI to these areas. However, the methodology presented in this study provides a potential

foundation for refining spectral analysis across various analytical techniques.
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