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Preface 
This dissertation presents my research on physical parameter estimation using sparse 

spectrum learning methods in Mass Spectrometry (MS), conducted during my Ph.D. stud-

ies at the Department of Information and Communications Technology, Graduate School 

of Engineering, Osaka University. 

Mass spectrometry is a powerful analytical technique employed across various ap-

plications, including drug development, quality assurance, food inspection, and monitor-

ing environmental pollutants. Recently, the production of antibodies and nucleic acid 

pharmaceuticals has led to the formation of impurities with various modifications. These 

impurities can adversely affect drug stability, pharmacokinetics, and efficacy, making it 

essential to accurately distinguish and quantify them. This dissertation focuses on esti-

mating the number of constituents and their monoisotopic masses in mass spectrometry, 

addressing these critical issues. Traditional methods have proven insufficient for meeting 

these requirements. 

The dissertation is structured as follows: 

Chapter 1 outlines the background, motivation, and purpose of this research. Mass 

spectrometry is a versatile analytical technique used in drug development, quality assur-

ance, food inspection, and environmental pollutant monitoring. Recent advancements in 

antibody and nucleic acid pharmaceuticals have led to the production of impurities that 

affect drug stability, pharmacokinetics, and efficacy, underscoring the importance of this 

research for pharmaceutical quality control. 

Chapter 2 delves into modeling mass spectrometry and Bayesian inference to esti-

mate the number of constituents and their monoisotopic masses from an MS spectrum. 

By modeling mass spectrometry for various constituent counts using parameters like 
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monoisotopic mass and ion counts, and employing Markov chain Monte Carlo methods 

(MCMC) to explore those parameters, we determine the optimal parameters and maxi-

mum posterior probabilities. The chapter discusses how we compare these probabilities 

across models to select the optimal constituent counts and estimate their properties. 

Chapter 3 addresses challenges related to the vanishing gradient problem in sparse 

spectra with a high-speed parameter search method. Standard optimization techniques 

struggle with MS spectra's sparse and predominantly flat nature, which can lead to van-

ishing gradients. To overcome this, we refine our approach by blurring comparative spec-

tra and gradually reducing the blur, thus enabling more accurate estimation without the 

extensive time demands of previous MCMC methods. 

Chapter 4 integrates a hybrid mass spectrometry (MS/MS) system into the physical 

model, enhancing the accuracy of estimation. By incorporating additional MS/MS spectra, 

the model leverages more information, which improves parameter estimation accuracy 

and reduces mass errors. 

Chapter 5 concludes the dissertation, summarizing the findings and their implica-

tions for future research and practical applications. 
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1.1. Background 

In the pharmaceutical industry, the development of antibody-based and nucleic acid-

based therapeutics has rapidly accelerated in recent years. Alongside these advancements, 

a range of modified molecular species—commonly referred to as impurities—has 

emerged during manufacturing and formulation processes. These impurities can have a 

significant impact on the safety and effectiveness of pharmaceutical products, potentially 

altering their stability, pharmacokinetics, or biological activity [1]–[4]. Therefore, it is 

essential to detect and characterize these impurity profiles as part of rigorous quality con-

trol and assurance practices. 

A fundamental part of this analysis involves understanding the molecular mass of 

constituents, particularly the monoisotopic mass, which refers to the exact mass of a mol-

ecule using the most abundant isotopes. This parameter is crucial for identifying subtle 

differences in molecular structure that may lead to impurity formation. Moreover, quan-

tifying the ion concentrations of these molecular species provides insight into their rela-

tive abundance and possible influence on the drug product. 

Mass spectrometry (MS) has become a key analytical technique in this context. It 

allows for both qualitative and quantitative examination of mixtures, helping to detect, 

identify, and quantify impurities with high sensitivity and specificity. As such, MS is ex-

tensively employed in drug development and production. 

 

Chapter 1.  

Introduction 
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1.2. What is Mass Spectrometry? 

Mass spectrometry is an analytical method that identifies and quantifies chemical sub-

stances by converting them into ions and measuring their mass-to-charge (𝑚/𝑧) ratios. 

The process typically follows a structured workflow: sample introduction and preparation, 

ionization of the analytes, separation of ions based on m/z in the mass analyzer, and finally, 

ion detection. Several ionization techniques are commonly used depending on the nature 

of the analyte and analytical goals. These include Electrospray Ionization (ESI), Matrix-

Assisted Laser Desorption/Ionization (MALDI), and Chemical Ionization (CI). 

After ionization, separator such as Time-of-Flight (TOF), quadrupole filters, or ion 

traps are employed to segregate ions according to their m/z values. The resulting output, 

known as a mass spectrum, displays peaks that correspond to different ions and their rel-

ative intensities. Through interpretation of these spectra, analysts can deduce the chemical 

structure and identity of constituents in the sample, enabling tasks such as identification 

of unknown substances, structural elucidation of compounds, and assessment of sample 

purity. Figure 1-1 illustrates a typical mass spectrometry setup. 

 

Figure 1-1. Schematic diagram of mass spectrometry. 
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Mass spectrometry is particularly valued for its sensitivity and specificity, making it 

indispensable in analytical laboratories. It can detect trace amounts of materials, which is 

essential for applications requiring the detection of very low concentrations of substances, 

such as in the detection of contaminants in food products or environmental samples. In 

pharmaceutical development, MS is used to confirm the identity of compounds, deter-

mine molecular structure, and assess the purity of the final product. 

Advanced configurations, such as hybrid mass spectrometry (MS/MS), offer deeper 

insights by enabling structural analysis of ions. In this approach, precursor ions selected 

by the first analyzer (MS1) are fragmented within a collision cell, usually by interaction 

with an inert gas like argon. The resulting product ions are then analyzed in a second stage 

(MS2). This two-stage separation allows for detailed structural information that cannot 

be obtained through a single stage alone. Figure 1-2 depicts the layout of a typical MS/MS 

system. 

 

Figure 1-2. Schematic diagram of hybrid mass spectrometry (MS/MS). 

 

The versatility of mass spectrometry makes it a powerful tool not only in scientific 

research but also in industries like biotechnology, environmental sciences, and forensic 

science. It plays a pivotal role in proteomics, metabolomics, and toxicology by providing 

precise molecular weight information and structural data. This allows researchers and 
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professionals to undertake a wide range of tasks from basic biological research to com-

plex clinical diagnostics and therapeutic monitoring, offering invaluable insights into the 

molecular mechanisms of diseases and the effects of therapeutic interventions. 

 

1.3. Issues in Mass Spectrometry 

In current mass spectrometry practices, it remains a significant challenge to accurately 

detect and characterize impurities that occur in medium- to high-molecular-weight sub-

stances, especially when these impurities arise from subtle chemical modifications. These 

molecules—such as proteins or large nucleic acid chains—often undergo slight changes 

during synthesis or storage, resulting in forms that are chemically similar to the desired 

product but may still influence its behavior or efficacy. Conventional separation tech-

niques, like chromatography, which aim to isolate individual constituents based on their 

chemical properties, often fall short in distinguishing these nearly identical impurities [5]. 

Furthermore, even when using mass spectrometry itself, it becomes increasingly dif-

ficult to resolve such impurities due to the complexity of the resulting spectra. One con-

tributing factor is the presence of isotopic variants—molecules that differ only in the nat-

ural isotopes of their atoms—which produce overlapping signals. Another complicating 

factor is the formation of multivalent ions, especially common in techniques like elec-

trospray ionization (ESI), where a single molecule carries multiple electric charges. These 

multicharged states generate numerous peaks for each species, further crowding the mass 

spectrum and making it hard to distinguish individual constituents. 

High-resolution mass spectrometers, such as those utilizing Fourier Transform Ion 

Cyclotron Resonance (FT-ICR) [6]–[8], can resolve minute differences in m/z, but these 

instruments are typically expensive and bulky, restricting their use to specialized 
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laboratories. More commonly, laboratories rely on instruments like Triple Quadrupole 

MS and Quadrupole Time-of-Flight MS (Q-TOF-MS), which, while practical and acces-

sible, may lack the resolution needed for distinguishing isomeric or closely related impu-

rities. As a result, analytical software plays a crucial role in augmenting mass spectromet-

ric data interpretation. 

Various software solutions have been developed to extract detailed mass information 

from complex spectra. For instance, algorithms that perform wavelet-based spectral anal-

ysis [9] can generate peak lists from raw data. However, when analyzing spectra of me-

dium to high-molecular-weight compounds ionized by methods like ESI [10]–[12], the 

interpretation becomes more difficult. ESI often produces ions with multiple charges, 

which broadens the isotopic distribution and complicates the identification of monoiso-

topic peaks. Simple peak-picking techniques often fall short in these scenarios [13]. 

 

1.4. Related Works 

To address these challenges, researchers have developed various algorithms for deconvo-

luting charge states and deisotoping multivalent spectra. One such approach involves fit-

ting Gaussian models to observed peaks using nonlinear least squares methods [14]. 

Charge deconvolution is the process of determining the neutral mass of an ion from its 

various charged forms, which is essential for accurately interpreting complex mass spec-

tra. 

The ReSpect algorithm, which employs a Maximum Entropy strategy [15], has seen 

widespread use [16]–[18]. It estimates m/z values by applying statistical constraints on 

the charge distribution to identify the most likely monoisotopic masses. However, this 

method does not explicitly estimate the number of unique molecular species (denoted as 
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𝑘), nor does it evaluate discrete likelihoods, such as the probability of observing 𝑘 versus 

𝑘 + 1 constituents. Additionally, as the complexity of a spectrum increases, the entropy 

term in the optimization function may cause the algorithm to overfit, resulting in overes-

timation of constituent numbers and inaccuracies in both monoisotopic mass and ion 

count predictions [19]. 

Recently, Bayesian approaches such as UniDec have been introduced to improve 

deconvolution performance [20], [21]. UniDec, inspired by the Richardson-Lucy decon-

volution algorithm [22], [23], offers faster performance than ReSpect. Nonetheless, it too 

encounters limitations when it comes to evaluating the likelihood of a specific number of 

constituents within the spectrum. 

 

1.5. Purpose and Direction of Our Research 

The primary goal of our research is to evaluate the probability of constituent counts from 

spectral data analyzed using Mass Spectrometry (MS), and to determine optimal physical 

parameters such as monoisotopic masses. This is crucial for detecting and analyzing im-

purities in the manufacture and development of pharmaceuticals. 

We use Bayesian inference to leverage prior knowledge. This enables probabilistic 

evaluation and accurate estimation of physical parameters. Additionally, by modeling for 

each possible number of constituents, we become able to evaluate discrete probabilities 

that means which number of constituents is optimal. Figure 1-3 shows the overview of 

our analysis method.  

First, prior knowledge, such as parameter ranges and probability distributions, is in-

corporated to explore the parameter space using Markov Chain Monte Carlo (MCMC) or 

Stochastic Variational Inference (SVI). MCMC is a probabilistic sampling method that 
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generates samples from a posterior distribution by constructing a Markov chain. This al-

lows us to approximate posterior probabilities even in high-dimensional parameter spaces. 

SVI, on the other hand, is a deterministic approach for approximating posterior distribu-

tions. It optimizes variational parameters by iteratively minimizing the Kullback-Leibler 

divergence between the true posterior and an approximating distribution.  

Proposal parameters are input into the physical model of mass spectrometry, which 

then generates estimated spectra. By comparing these with observed spectra, the likeli-

hood of the parameters is obtained. This process is repeated to derive subsequent param-

eters from this likelihood and prior knowledge. The log-likelihood is utilized in MCMC 

to calculate the acceptance probability for the next sampling and in SVI to compute the 

objective function to be minimized. 

 

 

Figure 1-3. Overview of analysis method. 
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After performing this process for models corresponding to possible numbers of con-

stituents, we compare their posterior probabilities to determine the most plausible number 

of constituents and their parameters. 

 

1.6. Technical Issues Tackled in This Thesis 

To realize this approach, we must address several technical challenges as follows: 

1. Building Physical Models: it is necessary to model the mass spectrometry sys-

tem using parameters such as the monoisotopic mass.  

2. Exploring Sparse Posterior Probability Space: The posterior probability of the 

monoisotopic mass exhibits multiple steep peaks and is locally abrupt, present-

ing a significant challenge in how to explore this sparse parameter space. Such 

a parameter space can induce the vanishing gradient problem, making simple 

gradient-based methods of parameter exploration inappropriate.  

3. Enhancement of Information Quantity: To improve accuracy, it is crucial to in-

tegrate information beyond the MS spectra, leveraging complementary data 

sources such as MS/MS spectra. 

4. Establishing Appropriate Likelihood Estimation Methods: Developing accurate 

methods for estimating the likelihood of MS spectra is necessary to ensure reli-

able parameter estimation. 
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1.7. Summary of Contributions 

This dissertation addresses the technical challenges outlined in Section 1.6 through the 

following contributions: 

In Chapter 2, we addressed Technical Issue 1 (Building Physical Models) by con-

structing a mass spectrometry model based on Bayesian inference. This model incorpo-

rates parameters such as monoisotopic mass to estimate the number of constituents and 

their identities from MS spectra, leveraging prior knowledge. Additionally, we initiated 

parameter exploration in sparse posterior probability spaces using MCMC, partially ad-

dressing Technical Issue 2 (Exploring Sparse Posterior Probability Spaces). Chapter 2 is 

based on Tomono, Hara, Nakai, Takahara, Iida and Washio (2023a) [24]. 

In Chapter 3, to solve Technical Issue 2 (Exploring Sparse Posterior Probability 

Spaces), we developed a faster parameter exploration technique that mitigates the vanish-

ing gradient problem. This was achieved by integrating gradient-based methods with 

techniques tailored to handle sparsity in the parameter space. Chapter 3 is based on 

Tomono, Hara, Iida and Washio (2024b) [25]. 

In Chapter 4, in response to Technical Issue 3 (Enhancement of Information Utiliza-

tion), we incorporated additional data, such as MS/MS spectral information, to refine the 

accuracy of the analysis. Additionally, we tackled Technical Issue 4 (Establishing Appro-

priate Likelihood Estimation Methods) by improving the methods for likelihood estima-

tion, enhancing the precision of determining the number of constituents and their monoi-

sotopic masses. Chapter 4 is based on Tomono, Hara, Iida and Washio (2024c, 2024d) 

[26], [27]. 
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2.1. Overview 

Chapter 2 is based on Tomono, Hara, Nakai, Takahara, Iida and Washio (2023a) [24]. In 

this chapter, we newly propose a method to select the optimal number of constituents by 

comparing the probability of each constituent count, and to estimate the monoisotopic 

mass and ion counts under that condition. This can suggest the presence of impurities in 

pharmaceuticals, assist in the search for better synthesis conditions for middle to high 

molecular pharmaceuticals, and be useful for quality assurance in factories. 

MS spectra are determined by the m/z (mass-to-charge) ratio and intensity axis. Es-

sentially, MS spectra are defined by the ion quantities, monoisotopic mass, isotopic dis-

tribution, charge distribution of each constituent in a sample, and the detector's response. 

The detector's response is known, so by modeling the MS spectrum from parameters that 

dictate ion quantities, monoisotopic mass, isotopic distribution, and charge distribution, 

and fitting these models to the observed spectrum, we can accurately estimate the monoi-

sotopic mass and ion quantities. 

First, we model the mass spectrometry system based on parameters like the mass 

and charge of each constituent, assuming a certain number of constituents in a sample. 

Here, a constituent is defined as a substance with a specific monoisotopic mass. We then 

perform a MAP (Maximum A Posteriori) estimation of these parameters from the ob-

served spectrum. By comparing the maximum posterior probability in models with 

Chapter 2.  

Study on Estimating the Number of Constituents and 

Their Identities from MS Spectrum 
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different numbers of constituents, we determine the model with the most appropriate 

number of constituents. 

However, this model has a large dimensionality of the number of constituents mul-

tiplied by 6, where 6 represents the number of parameters per constituent in the physical 

model. Moreover, the posterior probability for one of the parameters, the monoisotopic 

mass, is flat over a large portion of the search space and has several sharp peaks locally. 

Hence, gradient-based methods are not suitable for this case due to anticipated gradient 

vanishing. Figure 2-1 is a schematic diagram of this issue. When the spectrum is sparse, 

changes in parameters do not affect the posterior probability of the spectrum. This leads 

to the problem of vanishing gradients. 

 

 

Figure 2-1. Schematic diagram of the vanishing gradient problem in sparse spectra. 

 

Therefore, to estimate the parameters, we combine the No-U-Turn Sampler (NUTS 

[28]), a type of Markov Chain Monte Carlo (MCMC), with Simulated Annealing [29]. 

The purpose of using Simulated Annealing is to introduce a temperature parameter. By 

selecting a high-temperature exploration parameter distribution, we can actively explore 

parameters even in areas where the posterior probability is flat or has sharp peaks. This 

ensures a broader search across the parameter space, reducing the chance of overlooking 
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the global solution and getting trapped in local minima. 

Furthermore, NUTS can explore parameters sparsely in areas with small gradients 

and can explore parameters in detail in areas with large gradients. Thus, introducing 

NUTS allows efficient exploration of the vast, high-dimensional parameter space. 

On the other hand, while MCMC is good at searching for global solutions, it does 

not always reach the optimal solution within a certain number of search steps. Therefore, 

we use the parameters with the highest posterior probabilities obtained from NUTS and 

Simulated Annealing as initial values and apply stochastic variational inference. By doing 

this, we search for the optimal parameter where the posterior probability is maximized in 

the vicinity of that initial value, aiming to improve the accuracy of parameter estimation. 

However, simultaneously searching for parameters for all possible numbers of con-

stituents leads to a curse of dimensionality, where the search space explosively expands 

as the number of constituents increases, potentially reducing search efficiency and accu-

racy. To avoid this problem, we sequentially increase the number of constituents from 

𝑘 = 1 to the maximum conceivable number 𝑘 = 𝑘𝑚𝑎𝑥. The value of 𝑘𝑚𝑎𝑥 is determined 

based on prior knowledge, such as the expected complexity of the sample or physical 

constraints. For 𝑘 constituents calculate the optimal parameters and their posterior prob-

abilities. These posterior probabilities are then used to efficiently focus the parameter 

search areas for the 𝑘 + 1 constituents. 

To balance the complexity of the model (number of constituents) and its fit (loss 

against the data), in addition to the prior distribution of each parameter, we introduce a 

prior distribution for the number of constituents. We also incorporate a prior distribution 

on the differences between the monoisotopic masses of multiple constituents. For analyt-

ical purposes, we have defined a single constituent as a substance with a distinct 
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monoisotopic mass, thereby ensuring that their masses don't mutually take the same value. 

When seeking to separate isomers, it is essential to integrate other techniques such as 

fragmentation, ion mobility spectrometry, and chromatography, in addition to the pro-

posed method. We first construct a model with 𝑘 = 1 constituent, obtain the optimal pa-

rameters and the maximum posterior probability based on the above prior distributions 

and observed data. 

Next, we construct a model with 𝑘 = 2 constituents. For one of the two constituents, 

we use a prior distribution centered on the optimal parameters already estimated for 𝑘 =

1, narrowing its range. This suppresses the significant increase in the parameter search 

space. Based on this new prior distribution, we estimate the optimal parameters and obtain 

the maximum posterior probability. 

Subsequently, we seek the maximum posterior probability for each model with con-

stituent numbers up to the upper limit 𝑘𝑚𝑎𝑥 by efficiently exploring the optimal parame-

ters in the same manner. 

Finally, we compare the maximum posterior probabilities corresponding to each 

model with different numbers of constituents. We select the model with the highest prob-

ability and obtain the estimates for the monoisotopic masses and ion counts. 

The analytical workflow is shown in Figure 2-2. The input is the MS Spectrum. The 

outputs of estimation are the number of constituents in the analyte, their monoisotopic 

masses, and ion quantities. 
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Figure 2-2. Schematic diagram of analytical workflow. 

 

2.2. Proposed Method 

2.2.1. Physically Modeling MS 

The spectrum in mass spectrometry is composed of two primary axes: the mass-to-charge 

(𝑚/𝑧) axis and the intensity axis. The spectra are determined by the distribution of sample 

mass and charge. Specifically, the mass 𝑝𝑗(𝑚) and charge 𝑞𝑗(𝑧) distributions for each 

constituent are defined as follows: 

𝑝𝑗(𝑚) = ∑ [𝛿 (𝑚 − ∑ 𝑚𝑗𝜒

𝑛𝑗

𝑗𝜒=1

) ∏ 𝑢𝑗𝜒

𝑛𝑗

𝑗𝜒=1

]
{𝑀𝑗}

, (1) 

𝑞𝑗(𝑧) = ∑ [𝛿 (𝑧 − ∑ 𝑞𝑗𝑏

𝑙𝑗

𝑗𝑏=1

) ∏ 𝑣𝑗𝑏

𝑙𝑗

𝑗𝑏=1

]
{𝑄𝑗}

, (2) 
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𝑚: 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑠𝑝𝑎𝑐𝑒 𝑤ℎ𝑒𝑟𝑒 𝑚 ≥ 0 , 

𝑧: 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒, 

𝑤ℎ𝑒𝑟𝑒 𝑧 ≥ 1 𝑎𝑛𝑑 𝑧 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 

𝑗: 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝐼𝐷𝑠 (𝑗 = 1,2, ⋯ , 𝑘), 

𝑘: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑛𝑗:  𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑗, 

𝑗𝜒:  𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑗, 

𝑚𝑗𝜒: 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑗𝜒, 

𝑀𝑗: 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠𝑒𝑠 𝑓𝑜𝑟 𝑎𝑡𝑜𝑚𝑠 (𝑚𝑗1, 𝑚𝑗2, … , 𝑚𝑗𝑛𝑗
), 

𝑢𝑗𝜒: 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑖𝑠𝑜𝑡𝑜𝑝𝑖𝑐 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑡𝑜𝑚 𝑗𝜒, 

𝑙𝑗: 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒𝑎𝑏𝑙𝑒 𝑠𝑖𝑡𝑒𝑠 𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑗, 

𝑗𝑏: 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒𝑎𝑏𝑙𝑒 𝑠𝑖𝑡𝑒𝑠 𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑗, 

𝑞𝑗𝑏: 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑎𝑏𝑙𝑒 𝑠𝑖𝑡𝑒 𝑗𝑏, 

𝑄𝑗: 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑎𝑏𝑙𝑒 𝑠𝑖𝑡𝑒𝑠 (𝑞𝑗1, 𝑞𝑗2, … , 𝑞𝑗𝑙𝑗
), 

𝑣𝑗𝑏: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑐ℎ𝑎𝑟𝑔𝑒𝑎𝑏𝑙𝑒 𝑠𝑖𝑡𝑒 𝑗𝑏 𝑎𝑡𝑡𝑎𝑖𝑛𝑠 𝑖𝑡𝑠 𝑐ℎ𝑎𝑟𝑔𝑒 𝑞𝑗𝑏, and  

𝛿: 𝐾𝑟𝑜𝑛𝑒𝑐𝑘𝑒𝑟 𝑑𝑒𝑙𝑡𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

 

The number of parameters in this model, which are based on the count of elements 

and chargeable sites, makes practical computation and search unfeasible due to their high 

count. To manage this, we approximate isotope and charge distributions using a binomial 

distribution, which simplifies the complexity of the model and ensures that mass spec-

trometry analysis remains computationally feasible. 
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The spectrum in mass spectrometry can be approximated using the following model 

[24]. The probability distribution of mass of constituent 𝑗 can be described by a binomial 

distribution 𝑝𝑗(𝜔𝑗). Here, 𝜔𝑗 = round (
𝑚−𝑚𝑗

′

𝜀
) is the increase in neutron number from 

the monoisotopic ions of constituent 𝑗, where 𝑚𝑗
′ represents the monoisotopic mass of 

constituent 𝑗. 𝑚 represents a variable in the mass space, and 𝑚 ≥ 0. 𝜀 represents the mass 

of neutron, 1.008664 Da. We postulate 𝜔𝑗 ≥ 0, because, in the biochemical domain, the 

most abundant isotope is usually also the lightest. In this model, we assume that 𝑛𝑗  atoms 

within a molecule can be replaced by isotopes with a mass increase of 𝜀 Da at a probabil-

ity of 𝑢𝑗  . Additionally, for the charge distribution 𝑞̃𝑗(𝑧) , we assume that 𝑙𝑗  chargeable 

sites can acquire a charge of +1 (in the case the mass spectrometry system is in positive 

mode) at a charge rate of 𝑣𝑗 . z denotes the variable representing the absolute value of 

charge, where 𝑧 ≥ 1 and 𝑧 is an integer. 

The mathematical expressions of the distributions generated by these binominal pro-

cesses are: 

𝑝𝑗(𝜔𝑗) = {(
𝑛𝑗
𝜔𝑗

) 𝑢𝑗
𝜔𝑗(1 − 𝑢𝑗)

𝑛𝑗−𝜔𝑗 for 𝜔𝑗 ≥ 0,

0 otherwise, and
(3) 

𝑞̃𝑗(𝑧) = (𝑙𝑗
𝑧) 𝑣𝑗

𝑧(1 − 𝑣𝑗)
𝑙𝑗−𝑧

. (4) 

Here, 

𝑢𝑗: 𝑖𝑠𝑜𝑡𝑜𝑝𝑖𝑐 𝑟𝑒𝑝𝑙𝑎𝑐𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑗, 

𝑣𝑗: 𝑐ℎ𝑎𝑟𝑔𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑒𝑎𝑏𝑙𝑒 𝑠𝑖𝑡𝑒𝑠 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑒𝑛𝑡 𝑗, and 

𝜀: 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑛𝑒𝑢𝑡𝑟𝑜𝑛. 
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Typically, the spectrum obtained from a mass spectrometer is represented along the mass-

to-charge ratio 𝑚 𝑧⁄  axis. Here, we define 𝜑 as the variable representing 𝑚 𝑧⁄ . The total 

number of ions belonging to a set, i.e., a constituent 𝑗, is denoted by 𝐼𝑗. Each ion in the 

set is indexed by 𝑖𝑗. The mass and charge of each individual ion 𝑖𝑗 are denoted as 𝜔𝑖𝑗~𝑝𝑗 

and 𝑧𝑖𝑗~𝑞̃𝑗 . When an ion 𝑖𝑗  is detected, its observed ideal spectrum would be 

𝛿 (𝜑 − (𝑚𝑗
′ + 𝜀𝜔𝑖𝑗) 𝑧𝑖𝑗⁄ ) where 𝛿 is Kronecker delta function. Regardless of its charge 

state or mass, a single ion contributes to the observed spectrum as a single delta function. 

Therefore, the ideal spectrum formed by this set of ions (from 𝑖𝑗 = 1 to 𝐼𝑗), 𝐷𝑗(𝜑), can be 

represented as shown in equation (5). In this equation, 𝜑 is a variable representing the 

mass-to-charge ratio, and 𝛿 denotes the Kronecker delta function. 

𝐷𝑗(𝜑) = ∑ 𝛿 (𝜑 − (𝑚𝑗
′ + 𝜀𝜔𝑖𝑗) 𝑧𝑖𝑗⁄ )

𝐼𝑗

𝑖𝑗=1

. (5) 

 

The theoretical probability distribution 𝑈𝑗(𝜑) of the ions belonging to constituent 𝑗 

on the 𝜑 axis is determined solely by 𝜔𝑗 and 𝑧, which are mutually independent. Their 

independence comes from the facts that 𝜔𝑗 is a function of 𝑚, and a chemical property 𝑧 

is hardly affected by the isotope mass 𝑚.  Accordingly, 𝑈𝑗(𝜑) is obtained by summing 

the product of the probabilities of 𝜔𝑗, the probabilities of 𝑧, and the Kronecker delta func-

tion 𝛿(𝜑 − (𝑚𝑗
′ + 𝜀𝜔𝑗) 𝑧⁄ ) over all 𝜔𝑗 and 𝑧 as follows. 

𝑈𝑗(𝜑) = ∑ ∑ 𝑝𝑗(𝜔𝑗) ∙ 𝑞̃𝑗(𝑧) ∙ 𝛿(𝜑 − (𝑚𝑗
′ + 𝜀𝜔𝑗) 𝑧⁄ )

∞

𝜔𝑗=1

∞

𝑧=1

. (6) 

 

As previously stated, regardless of its charge state or mass, a single ion contributes 

as a single delta function. Therefore, the observed spectrum of ions is proportional to the 
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probability distribution of ions along the 𝜑 axis. According to the Glivenko-Cantelli The-

orem [30], [31], the empirical spectrum 𝐷𝑗(𝜑) converges uniformly to the theoretical dis-

tribution 𝑈𝑗(𝜑) as sample size increases as far as our physical assumptions argued in the 

former explanation is valid. Therefore, the ideal spectrum of constituent 𝑗, 𝐷𝑗(𝜑), can be 

approximated by 𝑈𝑗(𝜑) as shown in equation (7). 

 
 

Due to the point spread of the detector’s response 𝑅(𝜑), the observed spectrum be-

comes the convolution of approximated spectrum of constituent 𝑗, denoted as 𝐼𝑗 ∙ 𝑈𝑗(𝜑), 

with 𝑅(𝜑), resulting in 𝐼𝑗 ∙ (𝑈𝑗 ∗ 𝑅)(𝜑). Consequently, the summation of the spectra over 

all constituents contained in the sample yields the spectrum estimated to be observed, 

𝑆̂𝑚𝑠(𝜑) as shown in Equation (8). In this context, 𝑘 represents the number of constituents 

in the sample. 

 
 

2.2.2. Sensitivity Analysis of Parameters 

Before exploring parameters, a sensitivity analysis was conducted within the exploration 

range of each parameter. Parameters that were manually fitted to the spectrum were taken 

as the true values. From these, only one parameter was varied within the exploration range 

to generate a spectrum, and the difference from the observed data was calculated. 

As a result, as shown in Figure 2-3, it was found that the monoisotopic mass exhibits 

a steep sensitivity characteristic. This is due to the peak width of the detector response 

𝐷𝑗(𝜑) = ∑ 𝛿 (𝜑 − (𝑚𝑗
′ + 𝜀𝜔𝑖𝑗) 𝑧𝑖𝑗⁄ )

𝐼𝑗

𝑖𝑗=1

≈  𝐼𝑗 ∙ 𝑈𝑗(𝜑)   (𝐼𝑗 ≫ 1). (7) 

𝑆̂𝑚𝑠(𝜑) = ∑ 𝐼𝑗 ∙ (𝑈𝑗 ∗ 𝑅)(𝜑)
𝑘

𝑗=1

. (8) 
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being at most 0.05 Th at m/z: 1,972, which is extremely small (0.0025%) relative to the 

mass space analyzable by Q-TOF, ranging from 10 to 40,000 Th. It was also confirmed 

that the monoisotopic mass exhibits multi-modality within the exploration space. 

The parameters of charge state influence the macro distribution shape, but do not 

affect the intervals between the comb-like peaks of mass-to-charge ratio, resulting in a 

broad sensitivity characteristic as shown in Figure 2-5 and Figure 2-6. Likewise, the iso-

topic parameters influence the micro peak width, but do not significantly change the mass, 

resulting in a broad sensitivity characteristic as seen in Figure 2-7 and Figure 2-8.  

 

 
Figure 2-3. Sensitivity characteristic of monoisotopic mass. 

(a) Overall view; and (b) Enlarged view. 

  

(a) 

(b) 
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Figure 2-4. Sensitivity characteristic of ion counts. 

 
Figure 2-5. Sensitivity characteristic of representative number of functional groups. 

 
Figure 2-6. Sensitivity characteristic of representative charge rate. 
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Figure 2-7. Sensitivity characteristic of representative number of atoms. 

 
Figure 2-8. Sensitivity characteristic of representative isotopic abundance. 

 

2.2.3. Bayesian Inference of Number of Constituents and Parameters 

When the observation data from the mass spectrometer 𝑆𝑜𝑏𝑠(𝜑) is obtained, assuming the 

number of constituents as 𝑘, the posterior probability distribution 𝑃𝑘(𝜃𝑘|𝑆𝑜𝑏𝑠) for param-

eters 𝜃𝑘: [(𝑚1
′ , 𝐼1, 𝑛1, 𝑢1, 𝑙1, 𝑣1), ⋯ , (𝑚𝑘

′ , 𝐼𝑘, 𝑛𝑘, 𝑢𝑘, 𝑙𝑘, 𝑣𝑘)] is defined as per Bayes' theo-

rem. Note that 𝑃𝑘(𝜃𝑘|𝑆𝑜𝑏𝑠)  represents the likelihood of parameters 𝜃𝑘  when 𝑆𝑜𝑏𝑠(𝑡)  is 

provided, and 𝑃𝑘(𝜃𝑘) denotes the prior distribution. 

𝑃𝑘(𝜃𝑘|𝑆𝑜𝑏𝑠) ∝ 𝑃𝑘(𝑆𝑜𝑏𝑠|𝜃𝑘)𝑃𝑘(𝜃𝑘). (9) 
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We determine the posterior probability and optimal parameters by maximizing log-

arithmic posterior probability 𝐿𝑃𝑘, defined as Equation (10). Here, 𝛽 represents the in-

verse temperature. We use Simulated Annealing to ensure active parameter exploration in 

flat areas or sharp peaks of posterior probability. This is achieved by multiplying the in-

verse temperature 𝛽 (< 1) to the posterior probability. Initially starting from a low in-

verse temperature value (i.e., high temperature) and gradually increasing to a higher value 

(i.e., low temperature). At low inverse temperatures (high temperatures), the system ex-

plores a wide parameter space. Conversely, at high inverse temperatures (low tempera-

tures), the system converges to the optimal solution. This time, we set the temperature 

change in three stages: 𝛽 = 0.25 → 0.24 → 0.23, and  

𝐿𝑃𝑘 ≔ βlog(𝑃𝑘(𝑆𝑜𝑏𝑠|𝜃𝑘)) +log(𝑃𝑘(𝜃𝑘)) . (10) 

 

Here, in addition to the prior distribution of each parameter (uniform distribution), 

we incorporate a regularization term, 𝑤𝑏𝑖𝑐(𝑘)  to achieve a suitable balance between 

model complexity (number of constituents) and model fit (loss with respect to data). We 

also introduce a regularization term, 𝑤𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ ), to prevent multiple constituents 

within the same model from assuming the same monoisotopic mass. Hence, we introduce 

the following logarithmic prior distribution: 

log(𝑃𝑘(𝜃𝑘)) ∝ −(𝑤𝑏𝑖𝑐(𝑘) + 𝑤𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ )). (11) 

 

To determine the appropriate number of constituents 𝑘, we define the regularization 

term 𝑤𝑏𝑖𝑐(𝑘) representing the complexity of the model with 𝑘 based on the Bayesian In-

formation Criterion (BIC) [32]. The BIC is a statistical measure that balances the fit to 
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the data and model complexity [32], [33]. Here, 𝑁 represents the dimension of the obser-

vation data 𝑆𝑜𝑏𝑠(𝜑), which in this study is the number of data points in the mass-to-charge 

ratio (𝜑) direction. For example, if 𝑆𝑜𝑏𝑠(𝜑) represents the signal from a TOF-type MS, 

𝑁 corresponds to the value obtained by dividing the observation time by the time resolu-

tion of the detection system. 

𝑤𝑏𝑖𝑐(𝑘) = 𝜆 ⋅
𝑘
2

⋅ log 𝑁 , and (12) 

𝜆: 300 (ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟). 

 

Furthermore, we define a constituent by its unique monoisotopic mass. Therefore, if 

the estimated values of the monoisotopic mass parameters of multiple constituents are the 

same in the algorithm, the count of constituents won't be accurate. Here, we define the 

logarithmic prior distribution (regularization term) 𝑤𝑒𝑥 as shown in Equation (13), using 

a penalty that increases exponentially according to the difference in estimated monoiso-

topic mass values, as shown in Figure 2-9. The integral of the spectrum ∫ 𝑆𝑜𝑏𝑠(𝜑) 𝑑𝜑∞
0  

is also multiplied as a coefficient to ensure that the impact of the penalty does not change 

depending on the scale of the observed data. Here, 𝑚𝑖 and 𝑚𝑗 represent the monoisotopic 

masses of the 𝑖th and 𝑗th constituents, respectively. This 𝑤𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ ) increases as 

the monoisotopic masses of constituents become closer, preventing the algorithm from 

estimating the same constituent for both constituent 𝑖 and constituent 𝑗. 

𝑤𝑒𝑥(𝑘, 𝑚1
′ , … , 𝑚𝑘

′ ) = ∑ ∑
𝑎 ∫ 𝑆𝑜𝑏𝑠(𝜑) 𝑑𝜑∞

0
2𝑏

exp (−
|𝑚𝑖 − 𝑚𝑗|

𝑏
)

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

, (13) 

𝑎 = 0.001, and 𝑏 = 0.1 (ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟). 
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Figure 2-9. Characteristics of the regularization term 𝑤𝑒𝑥. 

 

Here, by substituting the parameter 𝜃𝑘 generated from MCMC into model (8), we obtain 

the spectrum as 𝑆̂(𝜑). We assume a normal distribution for the noise. The standard devi-

ation of the noise denoted as 𝜎 is set to 2,000. We obtain likelihood from the normal dis-

tribution based on the differences between generated and observed spectra at each 𝜑 . 

Since, in reality, spectral data consists of a set of 𝑁 discrete data points along the 𝜑 axis, 

the integral over 𝜑 can be approximated as a discrete sum over 𝑁 measurement points. 

log(𝑃𝑘(𝑆𝑜𝑏𝑠|𝜃𝑘)) = ∫ log (
1

√2𝜋𝜎2
exp (−

|𝑆̂𝑚𝑠(𝜑) − 𝑆𝑜𝑏𝑠(𝜑)|
2

2𝜎2 )) 𝑑𝜑

≈ −
1

2𝜎2 ∫|𝑆̂𝑚𝑠(𝜑) − 𝑆𝑜𝑏𝑠(𝜑)|
2

𝑑𝜑 − 𝑁 log(𝜎) −
𝑁
2

 log(2𝜋). (14)

 

 

Consequently, the logarithm of the posterior probability distribution is as follows: 

𝐿𝑃𝑘 ≔ β log(𝑃𝑘(𝑆𝑜𝑏𝑠|𝜃𝑘)) +log(𝑃𝑘(𝜃𝑘))

= β (−
1

2𝜎2 ∫|𝑆̂𝑚𝑠(𝜑) − 𝑆𝑜𝑏𝑠(𝜑)|
2

𝑑𝜑 − 𝑁 log(𝜎) −
𝑁
2

 log(2𝜋))

    −(𝑤𝑏𝑖𝑐(𝑘) + 𝑤𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ )). (15)

 

 

To obtain the maximum posterior probability and parameters 𝜃𝑘 that maximize the 



25 

 

posterior probability (formula (15)), we conduct sampling from this posterior probability 

distribution using MCMC. 

 

2.2.4. Parameter Exploration and Optimization 

From the posterior probability distribution 𝑃𝑘(𝜃𝑘|𝑆𝑜𝑏𝑠), we sample the parameter 𝜃𝑘 to 

select the one that maximizes the posterior probability. We employ the No-U-Turn Sam-

pler (NUTS) for sampling, a recent and popular variant of the Markov Chain Monte Carlo 

(MCMC) method. NUTS is a type of MCMC, especially a derivative of the Hamiltonian 

Monte Carlo method (HMC) [34], [35].  

After executing MCMC, the parameters of the maximum posterior probability ob-

tained are inherited as initial values, and optimization of the parameters is performed us-

ing Stochastic Variational Inference (SVI [36]–[38]). 

 

2.2.4.1. Parameter Exploration Using the Markov Chain Monte Carlo Method 

HMC uses concepts from physics to efficiently sample from high-dimensional probability 

distributions. However, choosing an appropriate number of leapfrog [39] steps (the num-

ber of steps the parameter moves during simulation) in HMC can be challenging. If there 

are too few steps, the sampler cannot effectively move across the exploration space; and 

too many, it will U-turn back toward its starting point. 

NUTS dynamically selects an appropriate number of steps to explore the Hamilto-

nian's energy surface based on the principle of stopping the step before the sampler begins 

a U-turn. This addresses the problem of adjusting the HMC leapfrog steps, enabling effi-

cient sampling from high-dimensional probability distributions. The max tree depth, 

equivalent to the maximum number of search steps in a single iteration, was set to 10. 
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The Hamiltonian is defined as: 

𝐻(𝑥, 𝜁) =  𝑉(𝑥) +  𝐾(𝜁). (16) 

where 𝑥 is the variable (position) we want to sample from the target probability distribu-

tion, 𝜁  is an auxiliary variable (momentum), 𝑉(𝑥)  represents potential energy, and 

𝐾(𝜁) represents kinetic energy. 

First, we randomly initialize the momentum 𝜁 for the current position 𝜁. Using the leap-

frog method, we compute a new (𝑥, 𝜁) pair. In this process, the momentum 𝜁 is initially 

updated by half a step 𝜂
2
: 

𝜁 (𝑡 +
𝜂
2

) =  𝜁(𝑡) −
𝜂
2

∙
𝜕𝑉(𝑥)
𝜕𝑥(𝑡) . (17) 

where 𝜂  is the step size, and 𝑡  represents the current time step. Next, the position 𝑥  is 

updated for the one step: 

𝑥(𝑡 + 𝜂) = 𝑥(𝑡) +  𝜂 ∙
𝜕𝐾

𝜕𝜁 (𝑡 + 𝜂
2)

 . (18) 

Finally, the momentum 𝜁 is updated by another half step: 

𝜁(𝑡 + 𝜂) = 𝜁 (𝑡 +
𝜂
2

) −
𝜂
2

∙
𝜕𝑉

𝜕𝑥(𝑡 + 𝜂) . (19) 

 

If 𝜁(𝑡) ∙ 𝜁(𝑡 + 𝜂) ≤ 0, it is determined that the sampler has made a U-turn, and the 

exploration is terminated. After all steps are completed, an acceptance/rejection step is 

performed using the Metropolis method [40], [41]. During this step, the difference in 

Hamiltonian energy is computed to get 𝛥𝐻 = 𝐻(𝑥(𝑡 + 𝜂), 𝜁(𝑡 + 𝜂)) − 𝐻(𝑥(𝑡), 𝜁(𝑡)) . 

Here, (𝑥(𝑡), 𝜁(𝑡)) is the current sample and (𝑥(𝑡 + 𝜂), 𝜁(𝑡 + 𝜂)) is the new sample. If 

the Hamiltonian energy of the new sample is lower or equal to the current one (𝛥𝐻 ≤ 0), 

the new sample is accepted. Conversely, if the Hamiltonian energy of the new sample is 
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higher (𝛥𝐻 > 0), it's accepted with probability 𝑚𝑖𝑛(1, exp(−𝛥𝐻)). 

For this study, the step size 𝜂 of the sampling algorithm was tuned to achieve an 

acceptance rate of 0.5. If the acceptance rate is too high, only steps near the current pa-

rameter value might be accepted, possibly preventing full exploration of the parameter 

space. If the rate is too low, many proposed steps will be rejected, increasing the time 

taken for sampling.  

The number of samples in this study was set to 1,000. Although the initial state of 

MCMC is chosen randomly, this state often lies in a domain different from the target 

probability distribution. Reaching closer to the target distribution requires a certain num-

ber of steps (iterations). However, samples generated in this initial phase often do not 

reflect the posterior probability distribution correctly. Therefore, we discard samples from 

this initial phase. This process is called "Burn-in," and was set to 1,000 samples in this 

study. Before the 1,000 step sampling for the parameter search, this burn-in sampling was 

performed. 

There's also autocorrelation between samples produced by MCMC, implying that 

consecutive samples depend on each other. This autocorrelation can impact statistical es-

timation. To reduce the correlation between acquired samples, we sampled every other 

step. Furthermore, MCMC sampling depends on its initial state, which increases the risk 

of getting trapped in local optima, especially in high-dimensional spaces. By sampling 

from multiple initial values, we can explore the parameter space more broadly and reduce 

this risk. In this study, we started from four different initial values. 

The domain definitions for each parameter are as per Table 2-1. When the number 

of constituents is 𝑘 = 𝑘’(> 2), from among the 𝑘′ constituents, the prior distribution of 

parameters for constituents 1 to 𝑘′ − 1 is determined using a narrowed prior distribution 
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centered around the optimal parameters estimated in the model for 𝑘 =  𝑘′ − 1. Based 

on this new prior distribution, we estimate the optimal parameters and acquire the maxi-

mum posterior probability. 

𝑚𝑗
′|𝑘=𝑘′ represents the monoisotopic mass when the number of constituents is 𝑘’. 

When 𝑗 < 𝑘′, the search range is limited to ± Δ𝑚 from the value obtained at 𝑘 = 𝑘’ − 1. 

For 𝑗 = 𝑘′, the entire pre-set search range is explored, as shown in Table 2-1. The same 

applies to 𝐼𝑗|𝑘=𝑘′, 𝑛𝑗|𝑘=𝑘′, 𝑢𝑗|𝑘=𝑘′, 𝑙𝑗|𝑘=𝑘′ and 𝑣𝑗|𝑘=𝑘′. As the number of constituents in-

creases, the area that a single constituent occupies in the observed data spectrum becomes 

smaller. Therefore, the lower limit of 𝐼𝑗|𝑘=𝑘′ is divided by 𝑘’. 
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Table 2-1. The domain of the parameters. 

Parameter Range Constant 

𝑚𝑗
′|𝑘=𝑘′ {

[𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑
[(𝑚𝑗

′|𝑘=𝑘′−1 − ∆𝑚), (𝑚𝑗
′|𝑘=𝑘′−1 + ∆𝑚)] 𝑓𝑜𝑟 𝑗 < 𝑘′.  

𝑚𝑚𝑖𝑛 = 6300.0 

𝑚𝑚𝑎𝑥 = 6400.0 

∆𝑚 = 4.0 

𝐼𝑗|𝑘=𝑘′ {
[𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

[
𝐼𝑗|𝑘=𝑘′−1

3𝑘′
, 𝐼𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 < 𝑘′.

 
𝐼𝑚𝑖𝑛 = 10000 

𝐼𝑚𝑎𝑥 = 300000 

𝑛𝑗|𝑘=𝑘′ {
[𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

[(𝑛𝑗|𝑘=𝑘′−1 ∗ (1 − ∆𝑛)) , (𝑛𝑗|𝑘=𝑘′−1 ∗ (1 + ∆𝑛))] 𝑓𝑜𝑟 𝑗 < 𝑘′.  

𝑛𝑚𝑖𝑛 =
𝑚𝑗

′|𝑘=𝑘′

12.0
 

𝑛𝑚𝑎𝑥 =
𝑚𝑗

′|𝑘=𝑘′

8.0
 

∆𝑛 = 0.05 

𝑢𝑗|𝑘=𝑘′ {
[𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

[(𝑢𝑗|𝑘=𝑘′−1 − ∆𝑢), (𝑢𝑗|𝑘=𝑘′−1 + ∆𝑢)] 𝑓𝑜𝑟 𝑗 < 𝑘′.  

𝑢𝑚𝑖𝑛 = 0.001 

𝑢𝑚𝑎𝑥 = 0.011 

∆𝑢 = 0.001 

𝑙𝑗|𝑘=𝑘′ {
[𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

𝑙𝑗|𝑘=𝑘′−1 𝑓𝑜𝑟 𝑗 < 𝑘′.  
𝑙𝑚𝑖𝑛 =

𝑚𝑗
′|𝑘=𝑘′

40.0
 

𝑙𝑚𝑎𝑥 =
𝑚𝑗

′|𝑘=𝑘′

20.0
 

𝑣𝑗|𝑘=𝑘′ {
[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

𝑣𝑗|𝑘=𝑘′−1 𝑓𝑜𝑟 𝑗 < 𝑘′.  
𝑣𝑚𝑖𝑛 = 0.01, 

𝑣𝑚𝑎𝑥 = 0.05 
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2.2.4.2. Parameter Optimization by Stochastic Variational Inference 

After executing MCMC, the parameters corresponding to the maximum posterior proba-

bility are inherited as initial values, and optimization is performed using SVI. SVI re-

places the complex posterior probability distribution with a more manageable approxi-

mate distribution (variational posterior 𝑄𝑘(𝜃𝑘|𝜇𝑘) ), minimizing the Kullback-Leibler 

(KL) divergence between the approximate and true posterior distributions. Since the KL 

divergence cannot be computed directly, we instead maximize the Evidence Lower Bound 

(ELBO) [42] as a surrogate objective function. The ELBO is defined as the expected log 

likelihood of the observed data under the variational distribution, adjusted by a regulari-

zation term that penalizes the divergence between the true posterior and the variational 

distribution. For this study, only the MAP values were needed, so 𝑄𝑘(𝜃𝑘|𝜇𝑘) is defined 

by a delta function 𝛿(𝜃𝑘 − 𝜇𝑘) to approximate the posterior probability distribution of 

each number of constituents. 𝜇𝑘 is a point in the parameter space 𝜃𝑘 and serves as a can-

didate for the parameter set 𝜃𝑘𝑚𝑎𝑝 that maximizes the posterior probability. In the maxi-

mization of ELBO, since the variational distribution 𝑄𝑘(𝜃𝑘|𝜇𝑘) is defined as a delta func-

tion, the integral involving log 𝑄𝑘(𝜃𝑘|𝜇𝑘) simplifies as its contribution becomes negligi-

ble except at 𝜇𝑘. Thus, for practical purposes within this optimization framework, we can 

consider its impact to be zero, focusing solely on the log likelihood component evaluated 

at 𝜇𝑘. Therefore, the desired 𝜃𝑘𝑚𝑎𝑝 is given by equation (20). 

𝜃𝑘𝑚𝑎𝑝 = arg max
𝜇𝑘

(ELBO(𝜃𝑘|𝜇𝑘))

= arg max
𝜇𝑘

(𝔼𝑄𝑘(𝜃𝑘|𝜇𝑘)[log 𝑃𝑘(𝑆𝑜𝑏𝑠|𝜃𝑘) − log 𝑄𝑘(𝜃𝑘|𝜇𝑘)]) . (20)
 

    Since 𝑄𝑘(𝜃𝑘|𝜇𝑘) is delta function 𝛿(𝜃𝑘 − 𝜇𝑘), 

𝜃𝑘𝑚𝑎𝑝 = arg max
𝜇𝑘

(log 𝑃𝑘(𝑆𝑜𝑏𝑠|𝜇𝑘) − log 𝑄𝑘(𝜃𝑘|𝜇𝑘)). (21) 

Given that 𝑄𝑘(𝜃𝑘|𝜇𝑘) is represented as a delta function, its contribution to the ELBO 
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becomes negligible except at 𝜇𝑘, simplifying the calculation by effectively eliminating 

the log 𝑄𝑘(𝜃𝑘|𝜇𝑘) term in the optimization. 

𝜃𝑘𝑚𝑎𝑝 = arg max
𝜇𝑘

(log 𝑃𝑘(𝑆𝑜𝑏𝑠|𝜇𝑘)). (22) 

 

To maximize the ELBO, that is, to minimize the negative ELBO, Adam [43] (Adap-

tive Moment Estimation), a type of Stochastic Gradient Descent (SGD), is used. Adam is 

widely used in machine learning. By individually adjusting the learning rate α for each 

parameter, Adam allows parameters with steeper gradients to receive smaller updates, 

while parameters with gentler gradients receive larger updates, automatically scaling the 

problem. Additionally, Adam reduces the oscillations that were a challenge with SGD by 

considering both the first moment 𝑣𝑡 and the second moment 𝑠𝑡 of past gradients.  

The parameter 𝜃 is updated in three steps: 

1. Compute the gradient 𝐺𝑡 of the loss function (in this case, the negative ELBO) 

at the current step 𝑡. 

2.  Update the first moment 𝑣𝑡 and the second moment 𝑠𝑡 as follows: 

𝑣𝑡 = 𝛽1𝑣𝑡−1 + (1 − 𝛽1)𝐺𝑡, and (23) 

𝑠𝑡 = 𝛽2𝑠𝑡−1 + (1 − 𝛽2)𝐺𝑡
2. (24) 

3. Update the parameter 𝜃 using the adjusted moments: 

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
v𝑡

√𝑠𝑡 + 𝜀
. (25) 

Here, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜀 = 10−8. The initial value of the learning rate α was 

set to 0.0005, and the parameter update is performed 20,000 times. 
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2.2.5. Workflow for Estimating Constituents in a Sample 

The overall picture of the workflow to determine the optimal parameters and posterior 

probability for each assumed number of constituents from the observational data of the 

mass spectrometer is as shown in Figure 2-10. 

First, as described in 2.2.3, (i) input the observational data of the mass spectrometer 

with dimensions of flight time and ion counts. Then (ii) assume that the number of con-

stituents, 𝑘, contained in the sample is 1. (iii) Set the inverse temperature to 0.25. 

Next, as described in 2.2.4.1, (iv) sample 1,000 × 4 times from the posterior proba-

bility distribution, (v) set the MAP solution obtained by MCMC as the initial value for 

the next MCMC. Then (vi) divide the inverse temperature by 0.2. Repeat steps (iv) to (vi) 

three times. The number of iterations was determined experimentally. 

As described in 2.2.4.2, (vii) set the parameter of the maximum posterior probability 

obtained by MCMC as the initial value for SVI. Then (viii) optimize the parameters with 

SVI, and (ix) set the parameter of the maximum posterior probability obtained by SVI as 

the initial value for the next MCMC. 

Following 2.2.3, increase the number of constituents, 𝑘, by 1. Repeat steps (iii) to 

(vi). (x) Continue this until the maximum possible number of constituents, 𝑘𝑚𝑎𝑥. Finally, 

(xi) compare the maximum posterior probabilities of models from constituents 𝑘 = 1 to 

𝑘𝑚𝑎𝑥, and (xii) select the model with the largest posterior probability. Also, obtain the 

optimal parameters at that time. 
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Figure 2-10. Estimation process overall workflow. 
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2.3. Results 

2.3.1. Validation Environment 

The specifications of the PC used for verifying the proposed method, as well as the 

software versions, are as follows. The proposed method handles data with 1 million di-

mensions along the time axis, requiring a large memory size. Additionally, to rapidly ex-

plore a wide 6-dimensional parameter space (𝑚𝑗
′, 𝐼𝑗, 𝑛𝑗, 𝑢𝑗, 𝑙𝑗, 𝑣𝑗) using MCMC, the high-

speed probabilistic programming library, NumPyro, along with its compatible CUDA and 

GPU, were used. 

Table 2-2. Validation environment. 
CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz 

GPU Tesla V100-DGXS-16GB 

RAM 256GB 

OS Ubuntu 20.04.6 LTS 

Software Python 3.8.10 

 Numpyro 0.11.0 

 jax 0.4.7 

 CUDA 11.8 

 

2.3.2. Creation of Simulation Data for Validation 

Based on the nucleic acid drug Fomivirsen [44] (ID: A), four impurity constituents 

with modified base sequences were added, and spectra for a total of five constituents were 

generated via simulation. Specific values are as per Table 2-3. This enables the replication 

of a system where the principal constituent's isotopic distribution and the impurity spectra 

are mixed. 



35 

 

Ion counts for each constituent were set at 20,000. To facilitate the interpretation of 

results and to ensure that the algorithm treats each constituent fairly, we will conduct 

evaluations using a 1:1 concentration ratio for each component in the proposed method. 

The number of atoms for each element in each constituent was obtained from the molec-

ular formula of the respective constituent. Natural isotopic abundance ratios 𝑢𝑗  followed 

the NIST Atomic Weights and Isotopic Compositions for All Elements [45]. The repre-

sentative functional group number 𝑙𝑗 and the representative charge rate 𝑣𝑗  were set to 224 

and 0.035, respectively, to ensure that the generated spectra resembled real data. 

The procedure involved sampling from the multinomial distribution represented by 

Equations (1) and (2) 20,000 times (total incoming ion counts) for each constituent. Sub-

sequently, spectra were formed following the procedures in Equations (6) and (8). 

The mutation from C (Cytosine) to U (Uracil) is called deamination and is generated in 

the synthesis process due to solvent conditions and thermal stress [46], [47]. 
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Table 2-3. Settings for constituent spectrum generation. 

ID Sequence Molecular 
Formula 

Monoisotopic 
Mass 𝑚𝑗

′ [Da] 

Representative 
Functional Group 

Number 𝑙𝑗 

Representative 
Charge Rate 𝑣𝑗 

Ion 
Counts 

A 

gcgttt-

gctcttcttctt-

gcg 

C204H263N63

O134P20 
6361.088 224 0.035 200 000 

B 

gcgttt-

gutcttcttctt-

gcg 

C204H262N62

O135P20 
6362.072 224 0.035 200 000 

C 

gugttt-

gutcttcttctt-

gcg 

C204H261N61

O136P20 
6363.057 224 0.035 200 000 

D 

gugttt-

gutcttcttctt-

gug 

C204H260N60

O137P20 
6364.042 224 0.035 200 000 

E 

gugttt-

gutcttuttctt-

gug 

C204H259N59

O138P20 
6365.027 224 0.035 200 000 

 

The spectra of the generated single constituents A to E were combined according to 

equation (8) in the 15 combinations listed in Table 2-4. This allows for a comprehensive 

combination of 2-3 constituents based on constituent A, as well as an evaluation of each 

individual constituent. We use these as test data.  
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Table 2-4. Combinations of constituents when generating spectra. 
Mixture No. Constituents 

1 A,B,C 

2 A,B,D 

3 A,B,E 

4 A,C,D 

5 A,C,E 

6 A,D,E 

7 A,B 

8 A,C 

9 A,D 

10 A,E 

11 A 

12 B 

13 C 

14 D 

15 E 

 

  



38 

 

 

2.3.3. Evaluation of Constituent Count Estimation Accuracy 

The results of estimating the number of constituents in the spectra of the test data (Mixture 

No.1~15) using our proposed method are as shown in Table 2-5. The values within the 

table represent the negative logarithm of the maximum posterior probability in the model 

of constituent count 𝑘. Therefore, the smallest value should be selected. 

By choosing the most suitable number of constituents based on this criterion, the 

success rate for estimating the true number of constituents was 80% (12/15). Additionally, 

the presence or absence of impurities (distinguishing between 𝑘 = 1 and 𝑘 ≧ 2) could be 

determined with 100% accuracy. We believe this is sufficient as a standard for recognizing 

the presence and number of impurities in pharmaceuticals and taking appropriate 

measures.  

The computation time required for the estimation was approximately 10 hours per 

constituent, resulting in a total of 50 hours under the condition of 𝑘𝑚𝑎𝑥 = 5 set in this 

study. 

  



39 

 

 

Table 2-5. Negative logarithm of the maximum posterior probability assuming each 

constituent count. 

(Orange background indicates the true number of constituents,  

blue text indicates the minimum value across models.) 
Mixture 

No. 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

1 4,373,750 3,756,984 3,752,997 3,758,705 3,763,612 

2 4,278,475 3,765,457 3,753,649 3,756,753 3,762,496 

3 4,194,715 3,771,155 3,759,534 3,765,155 3,763,712 

4 4,219,672 3,748,972 3,754,868 3,761,667 3,763,951 

5 4,319,573 3,773,246 3,757,747 3,758,338 3,763,773 

6 3,824,787 3,750,045 3,752,258 3,757,899 3,763,075 

7 3,798,373 3,746,176 3,747,193 3,752,544 3,758,004 

8 3,795,441 3,744,561 3,748,947 3,756,355 3,759,390 

9 3,824,787 3,750,045 3,752,258 3,757,899 3,763,075 

10 3,825,138 3,769,114 3,758,565 3,769,515 3,771,414 

11 3,733,728 3,738,454 3,743,334 3,748,732 3,754,347 

12 3,736,354 3,739,259 3,744,921 3,750,142 3,755,513 

13 3,734,851 3,738,732 3,743,821 3,751,714 3,754,223 

14 3,735,192 3,740,629 3,745,981 3,751,377 3,755,752 

15 3,734,867 3,738,788 3,744,300 3,749,556 3,755,907 

 

2.3.4. Accuracy of Parameter Estimation with Maximum Posterior 

The optimal monoisotopic masses and ion counts estimated in the model where the pos-

terior probability is maximum for each test data are shown in Table 2-6. 

The monoisotopic mass had an average error of 1.348 Da and a maximum error of 

4.931 Da. This is insufficient to determine how many mutations have occurred, making 

it unsuitable for examining the cause of impurity generation with a difference of 1 Da. 

Regarding the ion counts, there was an average error of 4% and a maximum error of 82%. 
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For instance, the standards for total desamido impurity and total impurities in injectable 

glucagon are 14% or less and 31% or less, respectively [48]. Therefore, the accuracy of 

the ion count estimation in the proposed method is insufficient to estimate the impact of 

impurities. 
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Table 2-6 (Part 1). Optimal monoisotopic masses and ion counts of the model with the 

maximum posterior probability. 

Mixture 
No. Constituents Mass[Da] 

(Estimated) 
Mass[Da] 

(True) 
Absolute 
Error[Da] 

Ion counts 
[ions]  

(Estimated) 

Ion counts 
[ions] 
(True) 

Relative 
Error[%] 

1 A,B,C 6358.073 6361.088 -3.015  138 290 200 000 -31% 

6361.088 6362.072 -0.984  299 930 200 000 50% 

6363.047 6363.057 -0.010  172 510 200 000 -14% 

2 A,B,D 6360.088 6361.088 -1.000  207 760 200 000 4% 

6361.043 6362.072 -1.029  270 470 200 000 35% 

6361.081 6364.042 -2.961  132 170 200 000 -34% 

3 A,B,E 6359.047 6361.088 -2.041  299 970 200 000 50% 

6360.103 6362.072 -1.969  239 990 200 000 20% 

6366.008 6365.027 0.981  74 160 200 000 -63% 

4 A,C,D 6360.088 6361.088 -1.000  298 940 200 000 49% 

6363.043 6363.057 -0.014  299 980 200 000 50% 

- 6364.042 - - 200 000 - 

5 A,C,E 6360.024 6361.088 -1.064  238 440 200 000 19% 

6361.07 6363.057 -1.987  296 510 200 000 48% 

6361.116 6365.027 -3.911  80 810 200 000 -60% 

6 A,D,E 6360.079 6361.088 -1.009  297 500 200 000 49% 

6362.027 6364.042 -2.015  299 940 200 000 50% 

- 6365.027 - - 200 000 - 
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Table 2-6 (Part 2). Optimal monoisotopic masses and ion counts of the model with the 

maximum posterior probability. 

Mixture 
No. Constituents Mass[Da] 

(Estimated) 
Mass[Da] 

(True) 
Absolute 
Error[Da] 

Ion counts 
[ions] 

(Estimated) 

Ion counts 
[ions] 
(True) 

Relative 
Error[%] 

7 A,B 6357.088 6361.088 -4.000  191 670 200 000 -4% 

6362.073 6362.072 0.001  220 850 200 000 10% 

8 A,C 6361.043 6361.088 -0.045  113 870 200 000 -43% 

6361.080 6363.057 -1.977  283 890 200 000 42% 

9 A,D 6359.044 6361.088 -2.044  280 530 200 000 40% 

6359.111 6364.042 -4.931  138 700 200 000 -31% 

10 A,E 6357.088 - - 227 540 - - 

6361.029 6361.088 -0.059  35 400 200 000 -82% 

6364.010 6365.027 -1.017  157 560 200 000 -21% 

11 A 6361.088 6361.088 0.000  191 840 200 000 -4% 

12 B 6361.072 6362.072 -1.000  207 340 200 000 4% 

13 C 6363.058 6363.057 0.001  189 640 200 000 -5% 

14 D 6363.042 6364.042 -1.000  205 290 200 000 3% 

15 E 6365.027 6365.027 0.000  190 240 200 000 -5% 
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For reference, a comparison between the spectra reconstructed from the estimated 

parameters and the original signal is shown in Figure 2-11. The overall view in (a) repre-

sents the charge distribution, and the enlarged view in (b) represents the isotopic distri-

bution. From these results, it is clear that the spectrum we generated closely matches the 

observed data. Despite the spectra matching, errors in parameter estimation occurred be-

cause of the high degree of freedom in isotopic parameters that trade-off with monoiso-

topic mass. Even if the monoisotopic mass was lower than the true value, by increasing 

the representative atomic number 𝑛𝑗  or the representative isotopic natural abundance 𝑢𝑗 , 

it's possible to make it fit the observed data to some extent. 

Also, the estimated ion counts of each constituent showed errors of up to 82% from 

the true values. This is presumed to be due to the trade-off relationship between the ion 

counts of each constituent, with a decrease in the ion count of one constituent being com-

pensated by an increase in another. This is further supported by the fact that the average 

error in ion counts settles at 4%. 
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Figure 2-11. Comparison of observed and estimated spectra for Mixture No. 1. 

(a) Overall view; and (b) Enlarged view. 
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2.3.5. Comparison with UniDec 

Deconvolution of the test data was performed using the existing method, UniDec as well. 

Here, deconvolution refers to the process of extracting monoisotopic masses and ion 

counts from complex observed spectra. The results of deconvolution for each observed 

spectrum by UniDec are shown in Table 2-7. According to these results, the accuracy for 

the correct number of constituents was 13% (2/15). This is presumed to be because the 

UniDec algorithm, which obtains the number of constituents after multiple iterations of 

deconvolution, does not necessarily guarantee the number of constituents. Please note 

that this use of UniDec to determine the number of constituents is not its intended appli-

cation. Under these conditions, UniDec completed the deconvolution process within a 

few seconds.  
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Table 2-7 (Part 1). Deconvolution results for each observed spectrum by UniDec. 

Mixture 
No. Constituents Mass[Da] 

(Estimated) 
Mass[Da] 

(True) 
Absolute 
 Error[Da] 

Intensity 
[a.u.] 

(Estimated) 

Intensity 
[a.u.] 
(True) 

Relative 
 Error[%] 

1 A,B,C 

6359.900  6361.088 -1.188  100.000  100.000  100% 

6360.900  6362.072 -1.172  54.614  100.000  55% 

- 6363.057 - - 100.000  - 

2 A,B,D 

6359.900  6361.088 -1.188  100.000  100.000  100% 

6360.900  6362.072 -1.172  68.122  100.000  68% 

6361.800  6364.042 -2.242  23.490  100.000  23% 

3 A,B,E 

6359.900  - - 100.000  - - 

6360.900  - - 47.326  - - 

6361.800  6361.088 0.712  22.533  100.000  23% 

6362.800  6362.072 0.728  13.473  100.000  13% 

6363.800  6365.027 -1.227  13.496  100.000  13% 

4 A,C,D 

6359.900 - - 100.000  - - 

6360.900 6361.088 -0.188  94.673  100.000  95% 

6361.800 6363.057 -1.257  64.641  100.000  65% 

6362.800 6364.042 -1.242  19.369  100.000  19% 
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Table 2-7 (Part 2). Deconvolution results for each observed spectrum by UniDec. 

Mixture 
No. Constituents Mass[Da] 

(Estimated) 
Mass[Da] 

(True) 
Absolute 
 Error[Da] 

Intensity 
[a.u.] 

(Estimated) 

Intensity 
[a.u.](True) 

Relative 
 Error[%] 

5 A,C,E 

6359.900  - - 100.000  - - 

6360.900  - - 63.684  - - 

6361.800  6361.088 0.712  56.992  100.000  57% 

6362.800  6363.057 -0.257  33.851  100.000  34% 

6363.800  6365.027 -1.227  19.330  100.000  19% 

6 A,D,E 

6359.900  - - 100.000  - - 

6360.900  - - 53.209  - - 

6361.800  6361.088 0.712  61.898  100.000  62% 

6362.800  6364.042 -1.242  70.845  100.000  71% 

6363.800  6365.027 - 39.057  100.000  39% 

7 A,B 
6359.900  6361.088 -1.188  100.000  100.000  100% 

6361.000  6362.072 -1.072  11.538  100.000  12% 

8 A,C 

6359.900  - - 100.000  - - 

6361.000  6361.088 -0.088  40.696  100.000  41% 

6361.800  6363.057 -1.257  10.199  100.000  10% 

9 A,D 

6359.900  - - 100.000  - - 

6361.000  6361.088 -0.088  41.897  100.000  42% 

6361.800  - - 26.937  - - 

6362.800  6364.042 -1.242  16.351  100.000  16% 
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Table 2-7 (Part 3). Deconvolution results for each observed spectrum by UniDec. 

Mixture 
No. Constituents Mass[Da] 

(Estimated) 
Mass[Da] 

(True) 
Absolute 
 Error[Da] 

Intensity 
[a.u.] 

(Estimated) 

Intensity 
[a.u.](True) 

Relative 
 Error[%] 

10 A,E 

6359.000  - - 19.045  - - 

6359.900  - - 100.000  - - 

6360.900  - - 27.472  - - 

6361.800  6361.088 0.712  19.107  100.000  19% 

6362.800  - - 27.075  - - 

6363.900  - - 33.325  - - 

6364.800  6365.027 -0.227  13.659  100.000  14% 

11 A 
6358.900  - - 48.595  - - 

6359.800  6361.088 -1.288  100.000  100.000  100% 

12 B 
6359.900  - - 40.161  - - 

6360.800  6362.072 -1.272  100.000  100.000  100% 

13 C 
6360.900  - - 41.609  - - 

6361.800  6363.057 -1.257  100.000  100.000  100% 

14 D 
6361.800  - - 52.753  - - 

6362.800  6364.042 -1.242  100.000  100.000  100% 

15 E 
6362.800  - - 54.440  - - 

6363.900  6365.027 -1.127  100.000  100.000  100% 
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For the verification above, we used UniDec (Version 6.0.2). The particular set pa-

rameters during this verification are shown in Table 2-8. The Mass Range was set to the 

same range as the proposed method, and Sample Mass Every (Da) was set to 0.1 to suf-

ficiently detect impurities with a difference of 1 Da. For parameters not mentioned, de-

fault values were used. 

 

Table 2-8. UniDec setting parameters. 
Parameter Setting value 

UniDec Parameters Charge Range 1 to 50 

 Mass Range 6300 to 6400 Da 

 Sample Mass Every (Da) 0.1 

Additional Deconvolution Parameters Isotopes Mono 

Peak Selection and Plotting Peak Detection Range (Da) 0.1 

 Peak Detection Threshold 0.01 

*The other settings are using default values. 

 

2.4. Discussion 

Using NUTS, Simulated Annealing, and stochastic variational inference, we estimated 

parameters such as monoisotopic masses from observed data, achieving an accuracy of 

80% in selecting the correct number of constituents, which is significantly higher than the 

13% accuracy of existing methods. This is thought to be due to the fact that we created 

models for each number of constituents, allowing for the comparative evaluation and se-

lection of models for each number of constituents. This made it possible to suggest the 

presence of impurities in pharmaceuticals, which is useful for searching for better syn-

thesis conditions for middle to high molecular weight pharmaceuticals, and for quality 
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assurance in factories. 

On the other hand, as shown in Table 2-6, the estimated monoisotopic mass for con-

stituent 𝑗 had a maximum error of 4.931Da from the true value. This is thought to be due 

to the trade-off relationship between the monoisotopic mass 𝑚𝑗
′ and the parameters 𝑛𝑗  and 

𝑢𝑗  that determine the isotopic distribution of constituent 𝑗. Additionally, there was a rela-

tive error of several tens of percent from the true value in the ion counts of each estimated 

constituent. This is speculated to be because the ion counts of each constituent trade off 

with each other, with a decrease in one ion being compensated for by an increase in an-

other ion. A potential solution to these problems is to represent monoisotopic masses and 

ion counts as probability distributions. By considering the uncertainty in monoisotopic 

masses and ion counts of constituents in the sample, improvements in estimation satis-

faction can be expected. 

Furthermore, it took about 50 hours for deconvolution assuming 5 constituents per 

data. This is long compared to the few seconds to a few minutes processing time of 

UniDec. Also, this processing time is expected to increase almost linearly with the as-

sumed number of constituents. Therefore, it is expected to take a long time when analyz-

ing samples with many constituents, such as serum or environmental samples. 
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2.5. Conclusion of This Chapter 

In this chapter, we aimed to model mass spectrometry, probabilistically estimate the 

number of constituents in a sample, and accurately determine their monoisotopic masses 

and ion quantities when identifying the optimal number of constituents. To achieve these 

goals, we assumed various numbers of constituents within the sample and developed a 

mass spectrometry model based on parameters such as monoisotopic masses and ion 

counts. We then applied methods like the No-U-Turn Sampler (NUTS), Simulated An-

nealing, and stochastic variational inference to find the maximum posterior probability 

for each modeled number of constituents compared against observed data. These efforts 

enabled us to accurately estimate the number of constituents, as well as to simultaneously 

determine parameters such as monoisotopic masses and ion counts. However, challenges 

remain due to the inaccuracy in estimating monoisotopic masses and ion counts, and the 

substantial computational time required. 
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3.1. Overview 

Chapter 3 is based on Tomono, Hara, Iida and Washio (2024b) [25]. In the previous chap-

ter, we estimated the number of constituents based on their monoisotopic masses and ion 

counts. We used various assumed constituent counts to model these parameters and then 

derived the maximum posterior probability and optimal model parameters for each con-

stituent count using the No-U-Turn Sampler (NUTS), Simulated Annealing, and Stochas-

tic Variational Inference (SVI). This process required extensive computing time, render-

ing the method impractical for routine use. 

Therefore, we decided to perform all parameter estimations using the faster SVI 

method, entirely replacing the time-consuming Markov Chain Monte Carlo (MCMC) ap-

proach. However, as described in the previous chapter, using Stochastic Variational Infer-

ence alone is insufficient for exploring parameters extensively due to the Vanishing Gra-

dient Problem. This issue arises because the posterior probability of the monoisotopic 

mass is mostly flat with several sharp peaks localized in certain areas. Consequently, 

changes in the generated spectrum do not lead to significant changes in the model's pos-

terior probability, which prevents effective gradient calculation. Applying simple optimi-

zation methods to such data often leads to vanishing gradients, making it difficult to ef-

fectively explore parameters. If a modified version of SVI capable of addressing this issue 

could be devised, it would allow for faster and more efficient parameter estimation using 

Chapter 3.  Study on Accelerating Estimations Using 

Simulated Annealing and Stochastic Variational In-

ference 
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only the improved SVI method. 

To address this challenge, we have developed a method that involves gradually con-

volving Gaussians along the m/z axis between observed and generated spectra, ensuring 

that gradients always occur during comparison. We have named this method Spectral An-

nealing Inference (SAI). SAI combines SVI and spectral annealing by Point Spread Func-

tion (PSF) to explore optimal parameters while avoiding vanishing gradients and local 

optima. Figure 3-1 is a schematic diagram that illustrates the mechanism of SAI. It in-

volves convolving the PSF with the spectrum to create gradients for parameter optimiza-

tion, and this process is repeated while narrowing the variance of the PSF. Ultimately, the 

PSF becomes a Kronecker delta function, allowing for the determination of parameters 

and posterior probabilities based directly on the observed spectrum. 

 

 

Figure 3-1. Schematic diagram of the gradient generation process in spectral 

annealing inference (SAI). 
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After calculating optimal parameters and posterior probabilities in all models by SAI, 

we select the most probable number of constituents, as well as their monoisotopic masses 

and ion counts. 

 

3.2. Proposed Method 

We use the same physical model as described in the previous chapter. To explore and 

optimize the parameters, we employ Stochastic Variational Inference (SVI) to estimate 

the Maximum A Posteriori (MAP) values of each parameter and to determine the model's 

highest posterior probability.  

The optimization problem under this setup can be solved using conventional numer-

ical optimization techniques. Recall that 𝑘 represents the assumed number of constituents 

in the sample. In this case, we used Adam [43], a type of stochastic gradient descent 

widely used in machine learning, to find the value of 𝜇𝑘 that maximizes the likelihood 

function. The resulting 𝜃𝑘𝑚𝑎𝑝 is the MAP estimation we sought. 

However, the MS spectra to be compared are mostly flat with several localized sharp 

peaks. Simply applying SVI to such data can result in vanishing gradients, making it dif-

ficult to effectively explore parameters. Therefore, to create appropriate gradients of the 

likelihood function, we convolve a Gaussian distribution 𝑔(𝜑) with both the observed 

spectra 𝑆𝑜𝑏𝑠 and the estimated spectra 𝑆̂𝑚𝑠(𝜑) along the mass-to-charge ratio (𝜑) axis. 

We define the mean of 𝑔(𝜑) as zero and the variance as 𝑇𝑠, and 𝑔(𝜑) is represented as 

shown in Equation (26). 

𝑔(𝜑) =
1

√2𝜋𝑇𝑠
2

exp (−
1

2𝑇𝑠
2 (𝜑)2) . (26) 
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Then, we performed SVI and iteratively narrowing the variance of 𝑔(𝜑), 𝑇𝑠, to ef-

fectively search for 𝜃𝑘. This process, resembling annealing, is termed Spectral Annealing 

Inference (SAI) in this paper. Let 𝑠 denote the step of this iteration, and 𝑠𝑚𝑎𝑥 denote the 

total number of iterations. We define 𝑇𝑠 as shown in Equation (27). Narrowing the PSF 

step-by-step according to the iteration count 𝑠, this process repeatedly refines the MAP 

estimation.  

𝑇𝑠 = 𝜆 ( 
𝑠𝑚𝑎𝑥 − 𝑠

𝑠𝑚𝑎𝑥
)

4
 (𝑠 = 0,1,2, … , 𝑠𝑚𝑎𝑥). (27) 

For this study, 𝑠𝑚𝑎𝑥 is experimentally set to 46, and the coefficient 𝜆 is set to 8750. 

When 𝑠 = 𝑠𝑚𝑎𝑥, the spectrum after convolution becomes identical to the spectrum before 

convolution. 

The blurred spectra at each step are represented as shown in Equations (28) and (29).  

𝑆′
𝑜𝑏𝑠(𝜑) = (𝑆𝑜𝑏𝑠 ∗ 𝑔)(𝜑), and (28) 

𝑆̂′𝑚𝑠(𝜑) = (𝑆̂𝑚𝑠 ∗ 𝑔)(𝜑). (29) 

 

Using these blurred spectra, we derive the modified log-likelihood 𝐿′𝑚𝑠𝑒𝑚𝑠 , and the 

logarithm of the posterior probability log(𝑃𝑘(𝑆′𝑜𝑏𝑠|𝜃𝑘)) is represented as shown in Equa-

tion (30). 𝑁 represents the number of data points of the observation data 𝑆′
𝑜𝑏𝑠(𝜑) and 

𝑆̂′𝑚𝑠(𝜑). 

log(𝑃𝑘(𝑆′𝑜𝑏𝑠|𝜃𝑘)) ≈  −
1

2𝜎2 ∫|𝑆̂′𝑚𝑠(𝜑) − 𝑆′
𝑜𝑏𝑠(𝜑)|

2
𝑑𝜑 + 𝑁 log(𝜎) +

𝑁
2

 log(2𝜋). (30) 
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Here, we define the modified logarithmic likelihood 𝐿𝑃′𝑘 as follows: 

𝐿𝑃′𝑘 ≔ log(𝑃𝑘(𝑆′𝑜𝑏𝑠|𝜃𝑘)) +log(𝑃𝑘(𝜃𝑘))

≈ −
1

2𝜎2 ∫|𝑆̂′𝑚𝑠(𝜑) − 𝑆′
𝑜𝑏𝑠(𝜑)|

2
𝑑𝜑 + 𝑁 log(𝜎) +

𝑁
2

 log(2𝜋)

     −𝑤𝑏𝑖𝑐(𝑘) − 𝑤𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ ). (31)

 

 

At each iteration step 𝑠 (𝑠 = 0,1,2, … , 𝑠𝑚𝑎𝑥), we maximize 𝐿𝑃′𝑘 to iteratively refine 

and determine the parameters 𝜃𝑘 and the posterior probability assuming a number of con-

stituents 𝑘. 𝜃𝑘 from each iteration are carried forward to the next step.  

By repeating this process from 𝑘 = 1 to 𝑘𝑚𝑎𝑥, we obtain the posterior probabilities 

of each 𝑘. We then compare the posterior probabilities across all 𝑘 and select the number 

of constituents with the highest posterior probability and its corresponding parameter set 

as the optimal choice.  

 

3.3. Results 

For the validation of our algorithm, we employed simulated MS data shown in Table 2-4. 

By using the same data as in Chapter 2, we can compare the estimation speed of the 

algorithm developed in the previous chapter. This simulation was based on the nucleic 

acid drug Fomivirsen and its four impurities, which exhibit mass differences ranging from 

1 to 4 Daltons. 

The overview of the results is presented in Table 3-1. For comparison, the estimation 

results from the previous chapter using MCMC are also included in the table. Compared 

to the methods in the previous chapter, the computation time has been significantly re-

duced while maintaining the accuracy of the number of constituents. However, the accu-

racy of the monoisotopic mass and ion quantities remained unchanged. 
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Table 3-1. Results of the estimated performance verification. 

Metrics Estimated by SAI Estimated by MCMC 

Accuracy of  
constituent numbers 80％（12/15） 80％（12/15） 

Monoisotopic  
mass error 

Avg 1.788Da 
Max 3.983Da 

Avg 1.348Da,  
Max 4.931Da 

Ion counts error Avg 8% 
Max 89% 

Avg 4%,  
Max 82% 

Calculation time 15 minutes 50 hours 

 

The posterior probabilities for the optimal parameters of each model are as shown in 

Table 3-2. Based on this, we selected the number of constituents and were able to maintain 

an accuracy rate of 80%. 
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Table 3-2. Negative logarithm of the maximum posterior probability assuming each 

constituent count. 

(Orange background indicates the true number of constituents,  

blue text indicates the minimum value across models.) 
Mixture 

No. 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

1 783,837,800 974,980,700 819,785,600 993,572,600 2,523,023,000 

2 974,699,600 811,826,400 773,190,500 838,065,400 1,410,565,000 

3 1,205,362,000 1,033,501,000 743,789,100 771,244,400 2,321,454,000 

4 862,455,600 834,689,600 801,946,100 927,742,400 1,288,006,000 

5 1,119,931,000 627,375,700 666,500,600 688,775,800 1,571,504,000 

6 1,379,719,000 1,174,463,000 1,011,143,000 1,157,092,000 1,679,262,000 

7 421,459,200 500,081,400 573,603,100 703,970,000 2,058,994,000 

8 409,007,500 390,423,700 430,594,200 439,182,200 1,503,371,000 

9 512,957,400 486,925,400 514,162,100 537,291,100 1,080,766,000 

10 1,091,095,000 633,916,700 648,982,200 699,068,600 1,186,193,000 

11 178,197,400 217,834,500 217,108,800 337,039,700 454,868,900 

12 216,980,000 259,813,500 254,528,500 388,611,700 513,887,100 

13 161,197,500 193,327,700 209,736,600 310,515,200 434,137,700 

14 204,778,900 237,009,400 253,565,400 363,079,600 465,365,200 

15 172,407,200 208,542,900 214,153,100 329,143,100 414,737,900 

 

The monoisotopic masses and ion quantities at the time of maximum posterior probability 

for each model are shown in Table 3-3. There were no significant differences in the errors 

of the monoisotopic masses and ion quantities compared to those obtained through ex-

ploration using MCMC. 
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Table 3-3 (Part 1). Optimal monoisotopic masses and ion counts of the model with the 

maximum posterior probability. 

Mixture 
No. Constituents Mass[Da] 

(Estimated) 
Mass[Da] 

(True) 
Absolute 
 Error[Da] 

Ion counts 
[ions] 

(Estimated)  

Ion counts 
[ions] 
(True) 

Relative 
 Error[%] 

1 A,B,C 

6361.102 6361.088 0.014  568,570 200,000 184% 

- 6362.072 - - 200,000 - 

- 6363.057 - - 200,000 - 

2 A,B,D 

6360.102 6361.088 -0.986  273,322 200,000 37% 

6362.107 6362.072 0.035  152,619 200,000 -24% 

6364.074 6364.042 0.032  156,850 200,000 -22% 

3 A,B,E 

6360.101 6361.088 -0.987  349,775 200,000 75% 

6361.115 6362.072 -0.957  95,267 200,000 -52% 

6364.053 6365.027 -0.974  144,265 200,000 -28% 

4 A,C,D 

6358.094 6361.088 -2.994  156,851 200,000 -22% 

6360.113 6363.057 -2.944  103,492 200,000 -48% 

6362.082 6364.042 -1.960  336,362 200,000 68% 

5 A,C,E 

6360.102 6361.088 -0.986  359,303 200,000 80% 

6364.059 6363.057 1.002  219,789 200,000 10% 

- 6365.027 - - 200,000 - 

6 A,D,E 

6357.106 6361.088 -3.983  178,322 200,000 -11% 

6360.091 6364.042 -3.951  127,659 200,000 -36% 

6362.062 6365.027 -2.965  293,079 200,000 47% 
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Table 3-3 (Part 2). Optimal monoisotopic masses and ion counts of the model with the 

maximum posterior probability. 

Mixture 
No. Constituents Mass[Da] 

(Estimated) 
Mass[Da] 

(True) 
Absolute 
 Error[Da] 

Ion counts 
[ions]  

(Estimated) 

Ion counts 
[ions] 
(True) 

Relative 
 Error[%] 

7 A,B 
6361.109 6361.088 0.021  377,724 200,000 89% 

- 6362.072 - - 200,000 - 

8 A,C 
6358.094 6361.088 -2.994  99,031 200,000 -50% 

6361.103 6363.057 -1.954  293,385 200,000 47% 

9 A,D 
6357.091 6361.088 -3.997  121,317 200,000 -39% 

6360.097 6364.042 -3.945  271,892 200,000 36% 

10 A,E 
6357.116 6361.088 -3.972  211,758 200,000 -82% 

6361.055 6365.027 -3.972  192,770 200,000 -21% 

11 A 6360.118 6361.088 -0.970  198,806 200,000 -4% 

12 B 6361.102 6362.072 -0.970  199,874 200,000 4% 

13 C 6362.087 6363.057 -0.970  197,888 200,000 -5% 

14 D 6363.072 6364.042 -0.970  198,503 200,000 3% 

15 E 6364.059 6365.027 -0.968  198,412 200,000 -5% 

 

For Mixture No. 2, the comparison between the spectrum estimated using the opti-

mal parameters and the observed spectrum is as shown in Figure 3-2. From this, it can be 

seen that the generated spectrum matches the observed spectrum, confirming that there 

are no issues with the estimation. 
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Figure 3-2. Comparison of an observed spectrum and an estimated spectrum. 

(a) Overall view; and (b) Enlarged view. 
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3.4. Discussion 

We successfully reduced the computation time from 50 hours to 15 minutes while main-

taining an 80% accuracy in estimating the number of constituents. This indicates that the 

SAI method, which performs parameter exploration through gradient-based methods by 

convolving the Point Spread Function (PSF), was functioning effectively. 

The maximum error observed in the estimated monoisotopic mass was 3.997 Da 

below the target. This is considered to be due to remaining challenges in the trade-offs 

among parameters. 

Similarly, the relative errors in ion counts were several tens of percent below the 

target. This situation has not changed from the previous chapter, and we hypothesize that 

it results from trade-offs between different constituents. It implies that a decrease in the 

concentration of one constituent appears to be offset by an increase in another. 

 

3.5. Conclusion of This Chapter 

In this chapter, we aimed to accelerate the algorithm while maintaining the accuracy of 

the number of constituents. To this end, we developed the SAI method, which enables 

rapid parameter exploration without the issue of vanishing gradients, even for sparse spec-

tra, by convolving the Point Spread Function (PSF). This allowed us to significantly re-

duce the computation time from 50 hours to 15 minutes. However, the low estimation 

accuracy for monoisotopic masses and ion quantities remains a challenge. To solve this 

issue, it is necessary to increase the usable information and impose new constraints on 

the model. 
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4.1. Overview 

Chapter 4 is based on Tomono, Hara, Iida and Washio (2024c, 2024d) [26], [27]. In the 

prior chapter, we rapidly estimated the number of constituents and their monoisotopic 

masses and ion counts using Spectral Annealing Inference (SAI), which allows for esti-

mation while avoiding the vanishing gradient problem by convolving with progressively 

narrowing PSFs. In this try, the speed of computation was drastically improved, but the 

accuracy of our results was insufficient. 

To address the issue, this study introduces an improved methodology to accurately 

estimate the optimal number of constituents and their monoisotopic masses and ion counts 

using hybrid mass spectrometry (MS/MS) spectra. MS/MS is a technique that combines 

multiple mass spectrometry stages to obtain structural information about precursor ions. 

It involves isolating specific ions based on their mass-to-charge ratio in the first stage 

(MS1), fragmenting these ions in a collision cell, and analyzing the resulting fragment 

ions in the second stage (MS2). This allows for more detailed characterization of complex 

molecules that cannot be achieved with single-stage MS. 

Our method initially models the physical MS and MS/MS system with all possible 

numbers of constituents. For each model with a different number of constituents, we es-

timate the optimal monoisotopic masses and ion counts and derived the posterior proba-

bilities. This estimation is achieved by using SAI. 

If the MS model and the MS/MS model are not properly linked, simply increasing 

Chapter 4.  

Study on Improving Estimation Accuracy by Incor-

porating a Physical Model into MS/MS Spectra  
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the number of estimated constituents will not impose any meaningful constraints, result-

ing in no improvement in performance. To overcome this, we mathematically combined 

the MS and MS/MS models, enabling us to utilize the MS/MS data to enhance the esti-

mation of constituent information contained in the MS spectra. An overview diagram of 

the model extension is shown in Figure 4-1. First, we generate MS spectra using the same 

method as described in Chapter 2. For the ions contained in these spectra, we then apply 

a newly developed fragmentation model to obtain MS/MS spectra.  

 

 
Figure 4-1. Overview of extended analysis method. 

 

4.2. Proposed Method 

4.2.1. Physical Model of Mass Spectrometers 

We use the model constructed in Chapter 2 to generate MS spectra of intact ions and 

develop a new model to generate MS/MS spectra for fragment ions. 

In this study, we consider a scenario where ions contained within a specific region 

of the MS spectrum, denoted as 𝑝𝑒𝑎𝑘𝑑 (𝑑 = 1 𝑡𝑜 𝑑𝑚𝑎𝑥), are selected and forwarded to 

the subsequent stage for MS/MS spectral measurement. Neutral molecules formed during 

this collision-induced dissociation are not detected. 
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For the intact constituent 𝑗 before fragmentation in the collision cell, we define a set of 

ions sharing the monoisotopic mass 𝑚𝑓
′  produced in the collision cell as constituent 

𝑓 (𝑓 = 1 𝑡𝑜 𝑓𝑚𝑎𝑥). We assume that totally 𝑓𝑚𝑎𝑥 fragment constituents are produced. As 

with intact constituent 𝑗, we assume a binomial distribution as the isotopic distribution of 

fragment constituent 𝑓 . Here we define the increase in neutron number as 𝜔𝑓 =

round (
𝑚−𝑚𝑓

′

𝜀
) , where 𝑚  represents a variable in the mass space, and 𝜀  represents the 

mass of a neutron as before. The distribution is denoted by 𝑝𝑓(𝜔𝑓), within the range of 

𝜔𝑓 ≥ 0. In biomolecules such as nucleic acids and proteins, which consist of repeating 

structural units, it is reasonable to regard that elements are uniformly distributed across 

the ion of a precursor constituent. Therefore, we assume the number of atoms in an ion 

of a fragment constituent is roughly proportional to its monoisotopic mass. Accordingly, 

the number of atoms in constituent 𝑓, 𝑛𝑓, is evaluated as 𝑛𝑗 ∙
𝑚𝑓

′

𝑚𝑗
′ , where 𝑛𝑗  denotes the 

number of atoms of constituent 𝑗, as defined in Section 2.2.1. Moreover, by similar argu-

ment on the uniformity of the chemical composition across the molecule of a precursor 

constituent, its fragments share the same chemical composition with the precursor con-

stituent. Therefore, we assume the rate of isotopes in a fragment, 𝑢𝑓, is equal to the iso-

topic replacing rate of the precursor constituent 𝑗, 𝑢𝑗 , which is also defined in Section 

2.2.1. Consequently, the isotopic distribution 𝑝𝑓(𝜔𝑓) is represented as shown in Equation 

(32). 

𝑝̃𝑓(𝜔𝑓) = {(
𝑛𝑓
𝜔𝑓

) 𝑢𝑓
𝜔𝑓(1 − 𝑢𝑓)

𝑛𝑓−𝜔𝑓 for 𝜔𝑓 ≥ 0, and

0 otherwise.
 (32) 

 

Additionally, we approximate the charge distribution of constituent 𝑓 , 𝑞̃𝑓(𝑧) , using a 
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binomial distribution, where 𝑧  denotes a variable representing the absolute value of 

charge, as defined earlier. In a manner similar to the discussion on isotopes, it is reason-

able to approximate that chargeable sites, such as phosphate groups in nucleic acids and 

side chains in proteins, are uniformly distributed across the entire precursor ion. Therefore, 

we assume that the number of chargeable sites that can acquire a charge is also roughly 

proportional to the monoisotopic mass of a fragment. Accordingly, the number of charge-

able sites of constituent 𝑓, 𝑙𝑓, is calculated as 𝑙𝑗 ∙
𝑚𝑓

′

𝑚𝑗
′ , where 𝑙𝑗 is defined in Section 2.2.1 

as the total number of chargeable sites in constituent 𝑗.  

𝑞̃𝑗(𝑧) is represented as shown in Equation (4) as described in Section 2.2.1. For ref-

erence, it is restated below: 

𝑞̃𝑗(𝑧) = (𝑙𝑗
𝑧) 𝑣𝑗

𝑧(1 − 𝑣𝑗)
𝑙𝑗−𝑧

. (4) 

Since the distribution of chargeable sites in the fragments are regarded as the same as 

those in the precursor constituent 𝑗, we also assume that the probability of the chargeable 

sites acquiring a charge, 𝑣𝑓, is equal to 𝑣𝑗 . Thus, 𝑞̃𝑓(𝑧) can be expressed as shown in 

Equation (33). 

𝑞̃𝑓(𝑧) = (𝑙𝑓
𝑧 ) 𝑣𝑓

𝑧(1 − 𝑣𝑓)
𝑙𝑓−𝑧

. (33) 

When the total number of ions of constituent 𝑗 within 𝑝𝑒𝑎𝑘𝑑 is given by 𝐼𝑑𝑗  and the 

probability that a precursor constituent 𝑗 dissociates into a fragment constituent 𝑓 is de-

noted by 𝜌𝑗→𝑓  (where 𝜌𝑗→𝑓 < 1), the expected number of ions of constituent 𝑓 produced 

from constituent 𝑗  within 𝑝𝑒𝑎𝑘𝑑 , 𝐼𝑑𝑗→𝑓 , is calculated as 𝐼𝑑𝑗→𝑓 = round (𝐼𝑑𝑗 ∙ 𝜌𝑗→𝑓) . 

Each ion in the 𝐼𝑑𝑗→𝑓 ions is indexed by 𝑖𝑑𝑗→𝑓. The mass and charge of each individual 

ion 𝑖𝑑𝑗→𝑓 are denoted as 𝜔𝑖𝑑𝑗→𝑓~𝑝𝑓 and 𝑧𝑖𝑑𝑗→𝑓~𝑞̃𝑓, respectively. 



67 

 

When an ion 𝑖𝑑𝑗→𝑓  is detected, its observed ideal spectrum would be 𝛿 (𝜑 −

(𝑚𝑓
′ + 𝜀𝜔𝑖𝑑𝑗→𝑓) 𝑧𝑖𝑑𝑗→𝑓⁄ ). Regardless of its charge state or mass, a single ion contributes 

to the observed spectrum as a single delta function as well as Equation (5). Therefore, the 

ideal spectrum formed by this set of ions (from 𝑖𝑑𝑗→𝑓 = 1 to 𝐼𝑑𝑗→𝑓), 𝐷𝑑𝑗→𝑓(𝜑), is repre-

sented as shown in Equation (34). 

𝐷𝑑𝑗→𝑓(𝜑) = ∑ 𝛿 (𝜑 − (𝑚𝑓
′ + 𝜀𝜔𝑖𝑑𝑗→𝑓) 𝑧𝑖𝑑𝑗→𝑓⁄ )

𝐼𝑑𝑗→𝑓

𝑖𝑑𝑗→𝑓=1

. (34) 

 

The probability distribution 𝑈𝑑𝑗→𝑓(𝜑)  of constituent 𝑓 , which is produced by the 

dissociation of constituent 𝑗  included in 𝑝𝑒𝑎𝑘𝑑 , can be calculated using the same ap-

proach as for constituent 𝑗. However, when the increase in neutron number from the mo-

noisotopic mass and the charge of the precursor ion of constituent 𝑗 in the 𝑝𝑒𝑎𝑘𝑑 is de-

noted as 𝜔𝑑𝑗 and 𝑧𝑑𝑗 , the increase in neutron number and charge of the precursor ion of 

fragment 𝑓  produced from constituent 𝑗  in the 𝑝𝑒𝑎𝑘𝑑 , 𝜔𝑓  and 𝑧  do not exceed 𝜔𝑑𝑗  and 

𝑧𝑑𝑗 . Therefore, the domain of the fragment spectrum is limited to 𝜔𝑓 < 𝜔𝑑𝑗 and 𝑧 < 𝑧𝑑𝑗 . 

Consequently, the probability distribution of fragment 𝑓 produced from the ions belong-

ing to constituent 𝑗  in 𝑝𝑒𝑎𝑘𝑑  along the mass-to-charge ratio, 𝜑 , axis, 𝑈𝑑𝑗→𝑓(𝜑)  is de-

scribed by Equation (35). 

𝑈𝑑𝑗→𝑓(𝜑) = ∑ ∑ 𝑝𝑓(𝜔𝑓) ∙ 𝑞̃𝑓(𝑧) ∙ 𝛿(𝜑 − (𝑚𝑓
′ + 𝜀𝜔𝑓) 𝑧⁄ ).

𝜔𝑑𝑗

𝜔𝑓=1

𝑧𝑑𝑗

𝑧=1

(35) 

 

In a manner similar to the MS spectrum, the observed spectrum of ions is propor-

tional to the probability distribution of ions along the 𝜑  axis. Then, the empirical 
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spectrum 𝐷𝑑𝑗→𝑓(𝜑)  converges uniformly to the theoretical distribution 𝑈𝑑𝑗→𝑓(𝜑)  as 

sample size increases. Consequently, the spectrum of fragment constituent 𝑓 produced 

from constituent 𝑗 in the 𝑝𝑒𝑎𝑘𝑑, 𝐷𝑑𝑗→𝑓(𝜑), is approximated by 𝑈𝑑𝑗→𝑓(𝜑) as shown in 

Equation (36). 

 
 

Therefore, the MS/MS spectrum for 𝑝𝑒𝑎𝑘𝑑, 𝑆̂𝑚𝑠𝑚𝑠𝑑(𝜑), is obtained by summing 

𝐼𝑑𝑗→𝑓 ∙ 𝑈𝑑𝑗→𝑓(𝜑) over all 𝑗 and 𝑓, as shown in Equation (36). Here, 𝑅(𝜑) represents the 

point spread of the detector’s response, as introduced in Section 2.2.1. 

𝑆̂𝑚𝑠𝑚𝑠𝑑(𝜑) = ∑ ∑ 𝐼𝑑𝑗→𝑓 ∙ (𝑈𝑑𝑗→𝑓 ∗ 𝑅) (𝜑)
𝑓𝑚𝑎𝑥

𝑓=1

𝑘

𝑗=1

. (37) 

    Here, we set 𝑓𝑚𝑎𝑥 to an appropriate number of potential fragment constituents. In 

actual estimation, the fitting progresses from the most prominent fragment constituents 

identified by the magnitude of the spectrum. To estimate the number of precursor constit-

uents and their parameters, it is not necessary to identify all the fragment constituents, 

and it suffices to cover some key fragments. Consequently, 𝑓𝑚𝑎𝑥 may be set to a number 

less than the actual number of fragment constituents produced. The value of 𝑓𝑚𝑎𝑥 is de-

termined based on prior knowledge. 

  

𝐷𝑑𝑗→𝑓(𝜑) = ∑ 𝛿 (𝜑 − (𝑚𝑓
′ + 𝜀𝜔𝑖𝑓) 𝑧𝑖𝑓⁄ )

𝐼𝑑𝑗→𝑓

𝑖𝑑𝑗→𝑓=1

≈  𝐼𝑑𝑗→𝑓 ∙ 𝑈𝑑𝑗→𝑓(𝜑)   (𝐼𝑑𝑗→𝑓 ≫ 1) . (36)
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4.2.2. Bayesian Inference of Number of Constituents and Parameters 

As described in Section 2.2.1, the physical parameters of precursor ions, such as 

monoisotopic mass, chargeable sites, number of atoms, isotopic replacement rate, and 

charge rate, have already been defined. 

Assuming the number of constituents as 𝑘, the extended set of parameters for esti-

mation, denoted as 𝜃′
𝑘, is derived from the original parameter set 𝜃𝑘. This extended pa-

rameter set is represented as: 

𝜃′
𝑘 = {𝑚𝑗

′, 𝐼𝑗, 𝑛𝑗, 𝑢𝑗, 𝑙𝑗, 𝑣𝑗, 𝑚𝑓
′ , 𝐼𝑑𝑗, 𝜌𝑗→𝑓, 𝑛𝑓, 𝑢𝑓, 𝑙𝑓, 𝑣𝑓 

                              | 𝑗 = 1,2, … , 𝑘, 𝑑 = 1,2, … , 𝑑𝑚𝑎𝑥, 𝑓 = 1,2, … , 𝑓𝑚𝑎𝑥}. 

Here, 𝜃′
𝑘 is defined for each combination of a precursor constituent 𝑗, a fragment con-

stituent 𝑓 and a peak 𝑑. 

We specifically calculate 𝑚𝑗
′, 𝐼𝑗, 𝑛𝑗, 𝑢𝑗, 𝑙𝑗, 𝑣𝑗, 𝑚𝑓

′ , 𝐼𝑑𝑗 𝑎𝑛𝑑 𝜌𝑗→𝑓 using the iterative op-

timization algorithm, Adam, from the range specified in Table 4-1. Here, the range for the 

newly introduced dissociation rate, 𝜌𝑗→𝑓, is also defined. The initial values are randomly 

determined within the defined domain. Parameters 𝑛𝑓, 𝑢𝑓, 𝑙𝑓 𝑎𝑛𝑑 𝑣𝑓 are automatically de-

termined as described in Section 4.2.1. The value of 𝐼𝑑𝑗 is set to the number of ions con-

tained within the peak interval of the MS spectrum generated from the precursor ion pa-

rameters. The m/z range of the peak interval is determined based on the settings used 

during actual analysis on the instrument. 
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Table 4-1. The domain of the parameters. 

Parameter Range Constant 

𝑚𝑗
′|𝑘=𝑘′ {

[𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑
[(𝑚𝑗

′|𝑘=𝑘′−1 − ∆𝑚), (𝑚𝑗
′|𝑘=𝑘′−1 + ∆𝑚)] 𝑓𝑜𝑟 𝑗 < 𝑘′.  

𝑚𝑚𝑖𝑛 = 100.0 
𝑚𝑚𝑎𝑥 = 10000.0 

∆𝑚 = 4.0 

𝐼𝑗|𝑘=𝑘′ {
[𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

[
𝐼𝑗|𝑘=𝑘′−1

3𝑘′
, 𝐼𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 < 𝑘′.

 
𝐼𝑚𝑖𝑛 = 100 

𝐼𝑚𝑎𝑥 = 100000 

𝑛𝑗|𝑘=𝑘′ {
[𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

[(𝑛𝑗|𝑘=𝑘′−1 ∗ (1 − ∆𝑛)) , (𝑛𝑗|𝑘=𝑘′−1 ∗ (1 + ∆𝑛))] 𝑓𝑜𝑟 𝑗 < 𝑘′.  

𝑛𝑚𝑖𝑛 =
𝑚𝑗

′|𝑘=𝑘′

16.0
 

𝑛𝑚𝑎𝑥 =
𝑚𝑗

′|𝑘=𝑘′

6.0
 

∆𝑛 = 0.05 

𝑢𝑗|𝑘=𝑘′ {
[𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

[(𝑢𝑗|𝑘=𝑘′−1 − ∆𝑢), (𝑢𝑗|𝑘=𝑘′−1 + ∆𝑢)] 𝑓𝑜𝑟 𝑗 < 𝑘′.  
𝑢𝑚𝑖𝑛 = 0.0001 

𝑢𝑚𝑎𝑥 = 0.01 
∆𝑢 = 0.001 

𝑙𝑗|𝑘=𝑘′ {
[𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

𝑙𝑗|𝑘=𝑘′−1 𝑓𝑜𝑟 𝑗 < 𝑘′.  

𝑙𝑚𝑖𝑛 = 1.0 

𝑙𝑚𝑎𝑥 =
𝑚𝑗

′|𝑘=𝑘′

20.0
 

∆𝑙 = 1.0 

𝑣𝑗|𝑘=𝑘′ {
[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑

𝑣𝑗|𝑘=𝑘′−1 𝑓𝑜𝑟 𝑗 < 𝑘′.  
𝑣𝑚𝑖𝑛 = 0.01,  
𝑣𝑚𝑎𝑥 = 1.0 

𝑚𝑓
′ |𝑘=𝑘′ {

[𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥] 𝑓𝑜𝑟 𝑗 = 𝑘′, 𝑎𝑛𝑑
[(𝑚𝑓

′ |𝑘=𝑘′−1 − ∆𝑚), (𝑚𝑓
′ |𝑘=𝑘′−1 + ∆𝑚)] 𝑓𝑜𝑟 𝑗 < 𝑘′.  

𝑚𝑚𝑖𝑛 = 100.0 
𝑚𝑚𝑎𝑥 = 𝑚𝑗

′ 

∆𝑚 = 4.0 

𝜌𝑗→𝑓 [𝜌𝑗→𝑓𝑚𝑖𝑛
, 𝜌𝑗→𝑓𝑚𝑎𝑥

] 
𝜌𝑗→𝑓𝑚𝑖𝑛

= 0.1 

𝜌𝑗→𝑓𝑚𝑎𝑥
= 1.0 

 

Substituting the number of atoms of constituent 𝑗, 𝑛𝑗, the isotopic replacing rate of 

constituent 𝑗, 𝑢𝑗  into Equation (3) and the number of chargeable sites of constituent 𝑗, 

𝑙𝑗, and the charge rate of chargeable sites of constituent 𝑗, 𝑣𝑗  into Equation (4), and the 
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monoisotopic mass of constituent 𝑗, 𝑚𝑗
′ and the number of ions of constituent 𝑗, 𝐼𝑗, into 

Equation (5) yields the MS spectrum 𝑆̂𝑚𝑠(𝜑) as derived from Equation (8). Further, sub-

stituting 𝑛𝑓, 𝑢𝑓 into Equation (32), 𝑙𝑓, 𝑣𝑓 into Equation (33), and 𝑚𝑓
′ , 𝐼𝑑𝑗, 𝜌𝑗→𝑓 into Equa-

tion (34) leads to the derivation of the MS/MS spectra 𝑆̂𝑚𝑠𝑚𝑠𝑑
(𝜑) from Equation (37). 

We consider a scenario in which we obtain a set of observed spectra 𝑺𝑜𝑏𝑠, consisting 

of MS spectrum 𝑆𝑜𝑏𝑠𝑚𝑠  and MS/MS spectra 𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑
(𝑑 = 1,2, … , 𝑑𝑚𝑎𝑥) . In the ex-

tended parameter set 𝜃′𝑘, the posterior probability distribution 𝑃′𝑘(𝜃′𝑘|𝑆𝑜𝑏𝑠), where the 

combined MS and MS/MS spectra 𝑺𝑜𝑏𝑠 are observed, is defined according to Bayes' the-

orem as the following formula. Here 𝑃′𝑘(𝑺𝑜𝑏𝑠|𝜃′𝑘) represents a likelihood of parameters 

𝜃′𝑘 given under 𝑺𝑜𝑏𝑠. 𝑃′𝑘(𝜃′𝑘) denotes a prior distribution. 

𝑃′𝑘(𝜃′𝑘|𝑺𝑜𝑏𝑠) ∝ 𝑃′
𝑘(𝑺𝑜𝑏𝑠|𝜃′

𝑘)𝑃′
𝑘(𝜃′

𝑘). (38) 

 

We determine the posterior probability and optimal parameters by maximizing log-

arithmic posterior probability 𝐿𝑃"𝑘, defined as:  

𝐿𝑃"𝑘 ≔ log(𝑃′
𝑘(𝑺𝑜𝑏𝑠|𝜃′

𝑘)) +log(𝑃′
𝑘(𝜃′

𝑘)) . (39) 

 

Here, we introduce two likelihoods derived from observation error models. The ob-

served spectrum typically includes thermal noise from detection circuitry, which is as-

sumed to follow a normal distribution. Therefore, we base the observational error, repre-

senting a deviation between observed data and true values, on this distribution. For esti-

mation, we employ square error-based likelihood derived from the normal distribution. 

However, because low-intensity regions within the spectrum have less contribution to the 

overall error evaluation if we use a square error-based likelihood, relying solely on this 

likelihood reduces accuracy of parameter estimation where the errors in the low-intensity 
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spectral regions must be reflected. To overcome this difficulty, we additionally introduce 

a likelihood function sensitive to errors in the low-intensity parts of the spectrum. To 

evaluate the discrepancies between the observed and estimated spectra regardless of spec-

tral intensity, we use the correlation coefficient along the 𝜑 axis as the additional likeli-

hood. This coefficient, calculated by normalizing the inner product of both spectra against 

their intensities, excludes the influence of each spectrum's intensity, thus providing a 

measure that assesses the similarity of their shapes over the entire spectrum domain in-

cluding the low-intensity region. 

Let 𝐿𝑚𝑠𝑒𝑚𝑠  denote a logarithmic likelihood based on the normal error distribution of 

the MS spectrum and 𝐿𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑
 denote that of the MS/MS spectrum at peak 𝑑, respec-

tively. The standard deviation of the normal distribution, 𝜎, is set to 0.5 based on actual 

measurements. 𝐿𝑚𝑠𝑒𝑚𝑠  and 𝐿𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑
 are calculated by summing the logarithms of the 

probability densities of the error between the observed spectrum and estimated spectrum 

over 𝜑. Here, 𝑁 specifically denotes the number of data points on the 𝜑 axis within a sin-

gle spectrum. 𝐿𝑚𝑠𝑒𝑚𝑠 , 𝐿𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑
 are expressed as follows: 

𝐿𝑚𝑠𝑒𝑚𝑠 = ∫ log (
1

√2𝜋𝜎2
exp (−

|𝑆̂𝑚𝑠(𝜑) − 𝑆𝑜𝑏𝑠𝑚𝑠(𝜑)|
2

2𝜎2 )) 𝑑𝜑

≈  −
1

2𝜎2 ∫|𝑆̂𝑚𝑠(𝜑) − 𝑆𝑜𝑏𝑠𝑚𝑠(𝜑)|
2

𝑑𝜑 + 𝑁 log(𝜎) +
𝑁
2

 log(2𝜋), and  (40)

 

𝐿𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑
= ∫ log (

1
√2𝜋𝜎2

exp (−
|𝑆̂𝑚𝑠𝑚𝑠𝑑

(𝜑) − 𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑
(𝜑)|

2

2𝜎2 )) 𝑑𝜑

≈ −
1

2𝜎2 ∫ |𝑆̂𝑚𝑠𝑚𝑠𝑑
(𝜑) − 𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑

(𝜑)|
2

𝑑𝜑 + 𝑁 log(𝜎) +
𝑁
2

 log(2𝜋). (41)

 

 

To introduce the additional correlation-based likelihood, we employ the von Mises 

distribution as an error model, which is defined by the correlation coefficient between 
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two vectors representing the observed and estimated spectra. The logarithmic likelihoods 

based on the von Mises distribution are denoted as 𝐿𝑐𝑜𝑠𝑚𝑠 and 𝐿𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑
, respectively. 

The probability density function of the von Mises distribution is given by 𝑓(𝑺̂) =

1
2𝜋𝐼0(𝛾) exp {𝛾 ⟨𝑺,𝑺⟩

|𝑺||𝑺|} [49]. Here, 𝑺̂ and 𝑺 represent estimated and observed spectra, respec-

tively, viewed as vectors. ⟨𝑺̂, 𝑺⟩ represents their inner product. The parameter 𝛾 repre-

sents concentration of the probability distribution. 𝐼0 is a modified Bessel function of the 

first kind of order zero, and 2𝜋𝐼0(𝛾) serves as normalization factor. 𝛾 is experimentally 

determined to be the aforementioned number of data points 𝑁. Consequently, the log-

likelihoods, 𝐿𝑐𝑜𝑠𝑚𝑠 and 𝐿𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑
, are calculated as shown in Equations (17) and (18). 

𝐿𝑐𝑜𝑠𝑚𝑠 = log (
1

2𝜋𝐼0(𝑁) exp (𝑁
⟨𝑆̂𝑚𝑠(𝜑), 𝑆𝑜𝑏𝑠𝑚𝑠(𝜑)⟩
|𝑆̂𝑚𝑠(𝜑)||𝑆𝑜𝑏𝑠𝑚𝑠(𝜑)|

))

= 𝑁
⟨𝑆̂𝑚𝑠(𝜑), 𝑆𝑜𝑏𝑠𝑚𝑠(𝜑)⟩
|𝑆̂𝑚𝑠(𝜑)||𝑆𝑜𝑏𝑠𝑚𝑠(𝜑)|

−  log(2𝜋𝐼0(𝑁)), and (42)
 

 

𝐿𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑
= log (

1
2𝜋𝐼0(𝑁) exp (𝑁

⟨𝑆̂𝑚𝑠𝑚𝑠𝑑
(𝜑), 𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑

(𝜑)⟩

|𝑆̂𝑚𝑠𝑚𝑠𝑑
(𝜑)| |𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑

(𝜑)|
))

= 𝑁
⟨𝑆̂𝑚𝑠𝑚𝑠𝑑

(𝜑), 𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑
(𝜑)⟩

|𝑆̂𝑚𝑠𝑚𝑠𝑑
(𝜑)| |𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑

(𝜑)|
−  log(2𝜋𝐼0(𝑁)). (43)

 

 

The total log-likelihood of the estimated spectrum set (𝑆̂𝑚𝑠(𝜑) , 𝑆̂𝑚𝑠𝑚𝑠𝑑
(𝜑)(𝑑 =

1,2, … , 𝑑𝑚𝑎𝑥)) under the observed spectrum set 𝑆𝑜𝑏𝑠 is expressed as shown in Equation 

(44). 

log(𝑃′𝑘(𝑆𝑜𝑏𝑠|𝜃′𝑘)) = 𝐿𝑚𝑠𝑒𝑚𝑠 +
1

𝑑𝑚𝑎𝑥
∑ 𝐿𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑

𝑑𝑚𝑎𝑥

𝑑=1

+ 𝐿𝑐𝑜𝑠𝑚𝑠 +
1

𝑑𝑚𝑎𝑥
∑ 𝐿𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑

.
𝑑𝑚𝑎𝑥

𝑑=1

(44) 
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In determining the appropriate number of constituents 𝑘 in Bayesian framework, 

we need to prevent the selection of overfitted complex models of its logarithmic posterior 

probability 𝐿𝑃"𝑘. For doing so, we incorporate a modified penalty term 𝑤′𝑏𝑖𝑐(𝑘) based 

on prior knowledge. 𝑤′𝑏𝑖𝑐(𝑘) is defined using the Bayesian Information Criterion (BIC), 

a statistical measure that evaluates the trade-off between model fit and complexity [32], 

[33]. Incorporating 𝑤′𝑏𝑖𝑐(𝑘) into the prior probability allows us to determine the appro-

priate number of constituents 𝑘. By applying 𝜆 = 6.0 × 107 (a hyperparameter) and us-

ing the number of data points 𝑁 in the spectrum, as defined earlier, 𝑤′𝑏𝑖𝑐(𝑘) is repre-

sented as shown in Equation (45). 

𝑤′𝑏𝑖𝑐(𝑘) = 𝜆 ⋅
𝑘
2

⋅ log 𝑁 . (45) 

 

Additionally, to ensure that the monoisotopic masses of the constituents do not over-

lap, we introduce a modified penalty function 𝑤′𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ ), inspired by the Laplace 

distribution. The reason why we use such a penalty is because we define a constituent by 

its unique monoisotopic mass. Here, we experimentally set the gain coefficient 𝑎 =

10 × 𝑁. If 𝑚𝑖
′ and 𝑚𝑗

′ differ by more than the mass of neutron, 𝜀, they are certainly dif-

ferent constituents. Consequently, we also experimentally determine the appropriate 

value below 𝜀  as the threshold coefficient 𝑏 = 0.8 . We then define 𝑤′𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ ) , 

represented by the assumed number of constituents 𝑘 and the monoisotopic masses of 

each constituent, 𝑚1
′ … 𝑚𝑘

′ , as shown in Equation (46).  

𝑤′𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ ) = 𝑎 ∑ ∑ max (1 −
|𝑚𝑖

′ − 𝑚𝑗
′|

𝑏
, 0)

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

. (46) 

This penalty function reaches its maximum value when the monoisotopic masses of 
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different constituents completely coincide. 

By assuming a uniform prior distribution of each parameter, the logarithmic prior 

probability is defined as: 

log(𝑃′𝑘(𝜃′𝑘)) = −𝑤′𝑏𝑖𝑐(𝑘) − 𝑤′𝑒𝑥(𝑘, 𝑚1
′ … 𝑚𝑘

′ ). (47) 

 

Here, by substituting Equations (19) and (22) into Equation (14), we obtain the log-

arithmic posterior probability 𝐿𝑃"𝑘 to be maximized as: 

𝐿𝑃"𝑘 ≔ log(𝑃′𝑘(𝑺𝑜𝑏𝑠|𝜃′𝑘)) +log(𝑃′𝑘(𝜃′𝑘))

= 𝐿𝑚𝑠𝑒𝑚𝑠 +
1

𝑑𝑚𝑎𝑥
∑ 𝐿𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑

𝑑𝑚𝑎𝑥

𝑑=1

+ 𝐿𝑐𝑜𝑠𝑚𝑠 +
1

𝑑𝑚𝑎𝑥
∑ 𝐿𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑

𝑑𝑚𝑎𝑥

𝑑=1
     −𝑤′𝑏𝑖𝑐(𝑘) − 𝑤′𝑒𝑥(𝑘, 𝑚1

′ … 𝑚𝑘
′ ). (48)

 

 

4.2.3. Parameter Exploration and Optimization 

The parameter exploration method is the same as in Chapter 3. To create appropriate gra-

dients of the likelihood function, we convolve a Gaussian distribution 𝑔(𝜑) with both the 

observed spectra 𝑆𝑜𝑏𝑠𝑚𝑠, 𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠 and the estimated  spectra 𝑆̂𝑚𝑠(𝜑), 𝑆̂𝑚𝑠𝑚𝑠𝑑
(𝜑) (where 

𝑑 = 1,2, … , 𝑑𝑚𝑎𝑥). We define the mean of 𝑔(𝜑) as zero and the variance as 𝑇𝑠, and 𝑔(𝜑) 

is represented as shown in Equation (26). 

    We performed SVI and iteratively narrowing the variance of 𝑔(𝜑), 𝑇𝑠, to effec-

tively search for 𝜃′𝑘, which is termed Spectral Annealing Inference (SAI) in this paper. 

Let 𝑠 denote the step of this iteration, and 𝑠𝑚𝑎𝑥 denote the total number of iterations. We 

define 𝑇𝑠 as shown in Equation (27), which is reiterated here for clarity. 

𝑇𝑠 = 𝜆 ( 
𝑠𝑚𝑎𝑥 − 𝑠

𝑠𝑚𝑎𝑥
)

4
 (𝑠 = 0,1,2, … , 𝑠𝑚𝑎𝑥). (27) 

For this study, 𝑠𝑚𝑎𝑥 is set to 46, and the coefficient 𝜆 is set to 8750, the same value as 
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successfully used in Chapter 3 to find global solutions. 

The blurred spectra at each step are represented as shown in Equations (49), (50), 

(51) and (52). 

𝑆′
𝑜𝑏𝑠𝑚𝑠(𝜑) = (𝑆𝑜𝑏𝑠𝑚𝑠 ∗ 𝑔)(𝜑), (49) 

𝑆′
𝑜𝑏𝑠𝑚𝑠𝑚𝑠(𝜑) = (𝑆𝑜𝑏𝑠𝑚𝑠𝑚𝑠 ∗ 𝑔)(𝜑), (50) 

        𝑆̂′𝑚𝑠(𝜑) = (𝑆̂𝑚𝑠 ∗ 𝑔)(𝜑), and (51) 

𝑆̂′𝑚𝑠𝑚𝑠(𝜑) = (𝑆̂𝑚𝑠𝑚𝑠 ∗ 𝑔)(𝜑). (52) 

 

Using these blurred spectra, we derive the modified log-likelihood 𝐿′𝑚𝑠𝑒𝑚𝑠 , 

𝐿′𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑
, 𝐿′𝑐𝑜𝑠𝑚𝑠 and 𝐿′𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑

, as defined in Equations (53), (54), (55), and (56), re-

spectively. 

𝐿′
𝑚𝑠𝑒𝑚𝑠 =  −

1
2𝜎2 ∫|𝑆̂′𝑚𝑠(𝜑) − 𝑆′

𝑜𝑏𝑠𝑚𝑠(𝜑)|
2

𝑑𝜑 + 𝑁 log(𝜎) +
𝑁
2

 log(2𝜋), (53)

𝐿′
𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑

= −
1

2𝜎2 ∫ |𝑆̂′𝑚𝑠𝑚𝑠𝑑
(𝜑) − 𝑆′

𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑
(𝜑)|

2
𝑑𝜑 + 𝑁 log(𝜎) +

𝑁
2

 log(2𝜋), (54)

𝐿′
𝑐𝑜𝑠𝑚𝑠 = 𝑁

⟨𝑆̂′𝑚𝑠(𝜑), 𝑆′
𝑜𝑏𝑠𝑚𝑠(𝜑)⟩

|𝑆̂′𝑚𝑠(𝜑)||𝑆′
𝑜𝑏𝑠𝑚𝑠(𝜑)|

−  log(2𝜋𝐼0(𝑁)), and (55)

𝐿′
𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑

= 𝑁
⟨𝑆̂′𝑚𝑠𝑚𝑠𝑑

(𝜑), 𝑆′
𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑

(𝜑)⟩

|𝑆̂′𝑚𝑠𝑚𝑠𝑑
(𝜑)| |𝑆′

𝑜𝑏𝑠𝑚𝑠𝑚𝑠𝑑
(𝜑)|

−  log(2𝜋𝐼0(𝑁)). (56)

 

 

Let 𝑺′𝑜𝑏𝑠 denote the set of observed spectra 𝑺𝑜𝑏𝑠 blurred by the PSF. The logarithm 

of the likelihood log(𝑃"𝑘(𝑺′𝑜𝑏𝑠|𝜃′𝑘)) is represented as follows: 

log(𝑃"𝑘(𝑺′𝑜𝑏𝑠|𝜃′𝑘)) = 𝐿′𝑚𝑠𝑒𝑚𝑠 +
1

𝑑𝑚𝑎𝑥
∑ 𝐿′𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑

𝑑𝑚𝑎𝑥

𝑑=1

+ 𝐿′𝑐𝑜𝑠𝑚𝑠 +
1

𝑑𝑚𝑎𝑥
∑ 𝐿′𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑

𝑑𝑚𝑎𝑥

𝑑=1

. (57) 
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We introduce a prior distribution same as Chapter 3. By substituting Equation (57) 

in place of Equation (19) into Equation (14), the modified logarithmic likelihood 𝐿𝑃′′′𝑘 

is obtained as follows: 

𝐿𝑃′′′𝑘 ≔ log(𝑃"𝑘(𝑆′𝑜𝑏𝑠|𝜃′𝑘)) +log(𝑃′𝑘(𝜃′𝑘))

≈ 𝐿′
𝑚𝑠𝑒𝑚𝑠 +

1
𝑑𝑚𝑎𝑥

∑ 𝐿′
𝑚𝑠𝑒𝑚𝑠𝑚𝑠𝑑

𝑑𝑚𝑎𝑥

𝑑=1

+ 𝐿′
𝑐𝑜𝑠𝑚𝑠 +

1
𝑑𝑚𝑎𝑥

∑ 𝐿′
𝑐𝑜𝑠𝑚𝑠𝑚𝑠𝑑

𝑑𝑚𝑎𝑥

𝑑=1
     −𝑤′𝑏𝑖𝑐(𝑘) − 𝑤′𝑒𝑥(𝑘, 𝑚1

′ … 𝑚𝑘
′ ). (58)

 

 

Same as in Chapter 3, at each iteration step 𝑠 (𝑠 = 0,1,2, … , 𝑠𝑚𝑎𝑥), we maximize 

𝐿𝑃′′′𝑘 to iteratively refine and determine the parameters 𝜃′𝑘 and the posterior probability 

assuming a number of constituents 𝑘. 𝜃′𝑘 from each iteration are carried forward to the 

next step.  

As in the previous chapter, by repeating this process from 𝑘 = 1 to 𝑘𝑚𝑎𝑥, we obtain 

the posterior probabilities of each 𝑘. We then compare the posterior probabilities across 

all 𝑘 and select the number of constituents with the highest posterior probability and its 

corresponding parameter set as the optimal choice.  

 

4.3. Results 

In this section, we detail the outcomes of our experiments to validate the estimation 

accuracy of constituent counts, monoisotopic mass, and ion quantities in our proposed 

method. All the experiments were conducted exclusively using numerical simulations. 

These simulations generated data to mimic real-world mass spectrometry analyses. We 

specifically focused on simulating the mass spectra of nucleic acid drugs and their im-

purities, such as Fomivirsen and its altered sequences. This is because current analytical 
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methodologies have challenges in accurately identifying these substances, due to the 

complexities arising from their isotopic and charge distributions. We compared the per-

formance of our proposed method against established baseline method, UniDec. The 

performance was evaluated based on accuracy of constituent count estimation, devia-

tions in monoisotopic mass, and discrepancies in ion quantities. 

 

4.3.1. Validation Environment 

The specifications of a computer used to verify the proposed method, as well as the soft-

ware versions, are summarized in Table 4-2. The proposed method handled data with high 

dimensions along the time axis, requiring a large memory size. Additionally, to rapidly 

explore the parameter space using SVI, the high-speed probabilistic programming library, 

NumPyro, along with its compatible CUDA and GPU, were used. 

 

Table 4-2. Computational environment used for validation. 
CPU Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz 

GPU NVIDIA A100 

RAM 1,024 GB 

OS Ubuntu 20.04.6 LTS 

Software Python 3.10.12 

 Numpyro 0.14.0 

 jax 0.4.14 

 CUDA 12.1 

 

4.3.2. Creation of Simulation Data for Validation 

Based on the nucleic acid drug Fomivirsen [44] (ID: A), two impurities with modified 

base sequences were added, and MS spectra for a total of three constituents were gener-

ated using simulation methods presented in the prior research [24]. Specific details were 
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provided in Table 4-3. This setup replicated a system where the principal constituent's 

isotopic distribution was mixed with the spectra of the impurities. The mutation from C 

(Cytosine) to U (Uracil), known as deamination, can occur during the synthesis process 

due to solvent conditions and thermal stress [46], [47]. 

 

Table 4-3. Settings for constituent spectrum generation. 

ID Sequence Molecular Formula 
Monoisotopic 

Mass 𝑚𝑗
′ [Da] 

A gcgtttgctcttcttcttgcg C204H263N63O134P20 6361.088 

B gcgtttgutcttcttcttgcg C204H262N62O135P20 6362.072 

C gugtttgutcttcttcttgcg C204H261N61O136P20 6363.057 

 

The single constituents A to C were combined according to the 10 combinations 

listed in Table 4-4. To verify the accuracy of ion count estimation, the ion counts of con-

stituents A, B, and C were mixed at a ratio of 20,000:2,000. This was because we wanted 

to validate if our proposed algorithm tends to provide moderate ratios of multiple constit-

uents even when their actual ratios were highly imbalanced. When the ratio of ion counts 

between constituents was 10:1, the algorithm should not excessively provide less imbal-

anced ratios. This setup enabled the analysis of complex mixtures consisting of a few 

constituents. 
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Table 4-4. Combinations of constituents when generating spectra. 

Mixture No. 
Ion Counts 

Constituents A Constituents B Constituents C 

1 20 000 20 000 20 000 

2 20 000 20 000 2 000 

3 20 000 2 000 20 000 

4 2 000 20 000 20 000 

5 20 000 2 000 2 000 

6 2 000 20 000 2 000 

7 2 000 2 000 20 000 

8 20 000 20 000 - 

9 20 000 2 000 - 

10 2 000 20 000 - 

 

We set the number of chargeable sites of constituent 𝑗, 𝑙𝑗, to 224 and the charge rate 

of constituent 𝑗, 𝑣𝑗 , to 0.035. This was done to ensure that the generated spectra closely 

resembled real data. Then, we generated the test spectra listed in Table 4-4. 

 

Next, we generated the MS/MS spectra of these mixtures. The sequences, molecular 

formulas, monoisotopic masses, and conversion rates of the fragments generated from the 

dissociation of constituents A, B, and C are defined in Table 4-5. The MS/MS spectra 

were generated using these parameters. This time, we selected five peaks in ascending 

order of 𝑚/𝑧 from the most prominent isotopic distribution, based on practical memory 

usage constraints. Additionally, and we assumed two fragment constituents, informed by 

prior knowledge of dissociation behavior. Thus, 𝑑𝑚𝑎𝑥 was 5, and 𝑓𝑚𝑎𝑥 was 2. 
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Table 4-5. Settings for constituent spectrum generation. 

Precursor 
Fragment 

ID 
Sequence 

Molecular 

Formula 

Monoisotopic 

Mass 𝑚𝑗
′ [Da] 

Conversion 

Rate 𝜌 

A 

F1 gcgtt C49H63N17O30P4 1494.077 0.3 

F2 tgctcttct C87H114N24O57P8 2655.810 0.3 

F3 tcttgcg C68H88N22O43P6 2087.450 0.3 

B 

F1 gcgtt C49H63N17O30P4 1494.077 0.3 

F4 tgutcttct C87H113N23O58P8 2656.795 0.3 

F3 tcttgcg C68H88N22O43P6 2087.450 0.3 

C 

F5 gugtt  C49H63N17O30P4 1495.061 0.3 

F4 tgutcttct C87H113N23O58P8 2656.795 0.3 

F3 tcttgcg C68H87N21O44P6 2088.435 0.3 

 

4.3.3. Evaluation of Accuracy in Estimated Constituent Counts 

We estimated the optimal parameters for assumed constituent count models. Table 4-6 

presents the logarithm of the maximum posterior probabilities of each model. By select-

ing the constituent count that maximizes the logarithm of the posterior probability in each 

mixture, we estimated the number of constituents present in each mixture. Our method 

successfully estimated the true number of constituents in 80% of cases (8 out of 10 mix-

ture data). In the two cases where estimation failed, it is possible that the algorithm con-

verged to a different local minimum. We believe this result is a sufficient benchmark for 

identifying the presence and number of impurities in pharmaceuticals and implementing 

appropriate corrective measures. 

  



82 

 

 

Table 4-6. Negative logarithmic the maximum posterior probability assuming each 

constituent count. 
Mixture 

No. 

True 

𝑘 
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

1 3 47,105,180,000 47,393,730,000 47,483,530,000 47,346,420,000 47,254,300,000 

2 3 47,146,890,000 47,366,930,000 47,449,330,000 47,313,370,000 47,175,010,000 

3 3 47,014,840,000 47,244,320,000 47,373,050,000 47,250,990,000 47,086,080,000 

4 3 47,131,240,000 47,395,780,000 47,471,380,000 47,379,240,000 47,237,030,000 

5 3 47,064,820,000 47,151,820,000 47,280,770,000 47,011,780,000 47,037,130,000 

6 3 46,905,570,000 47,412,680,000 47,418,450,000 47,312,960,000 47,170,700,000 

7 3 45,634,240,000 46,312,830,000 46,127,830,000 46,126,200,000 45,988,160,000 

8 2 47,152,970,000 47,406,670,000 47,272,770,000 47,361,900,000 47,229,700,000 

9 2 47,063,080,000 47,126,520,000 47,088,670,000 46,960,900,000 46,818,110,000 

10 2 47,119,250,000 47,376,490,000 47,405,410,000 47,277,430,000 47,172,650,000 

 

4.3.4. Accuracy of Parameter Estimation 

To compare the estimation results, we performed deconvolution on the same mixture 

data using UniDec, a popular deconvolution software. For this verification, we used 

UniDec (Version 7.0.1). The specific parameter settings used during this verification are 

shown in Table 4-7. The Mass Range was aligned to the same range as the proposed 

method, and Sample Mass Every (Da) was set to 0.1 to ensure sufficient detection of 

impurities with a difference of 1 Da, as described in Chapter 2. Default values were used 

for parameters not mentioned. 

Table 4-8 shows the optimal monoisotopic mass of the models of the selected num-

ber of constituents for each mixture, as described in Table 4-4, estimated by our algorithm. 

The median error was −0.005 Da, the average error in monoisotopic mass was −0.282 Da, 

and the maximum error was −1.840 Da, as shown in Table 4-9. The standard deviation 
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was 0.552 Da. The distribution of these errors is shown in Figure 4-2. As observed in the 

box plot in Figure 4-2, the errors in the monoisotopic masses estimated by the proposed 

method are discretely distributed approximately 1 Da apart, corresponding to the mass 

differences between isotopes. The extreme case of No. 6, which produced the maximum 

error of −1.840 Da, can also be explained by this discrete distribution. This large error is 

likely caused by the posterior probabilities of the monoisotopic masses being distributed 

in a comb-like pattern [24], increasing the chances of the algorithm converging to a local 

minimum 1-2 steps away. However, no clear trend was observed between the ion count 

ratios of the constituents and the error magnitudes. Using the mean as the representative 

value and all data from No. 1 to No. 10, the 95% confidence interval calculated using the 

t-distribution [50] ranges from −0.721 Da to +0.157 Da. This indicates the method could 

potentially be used to investigate the causes of impurities that occur with a difference of 

1 Da [51], [52]. 

However, the estimated ion counts for each constituent showed errors with a median 

of 1.1 times the true values, averaging up to twice the true values, with some errors reach-

ing up to twelve times the true values, as shown in Table 4-10. This discrepancy was 

thought to be due to the trade-off relationship between the ion counts of different constit-

uents; that was, a decrease in the ion count of one constituent was compensated by an 

increase in another. This was further supported by the fact that the average error across 

the total ion counts of all constituents stabilized at 8% of the true value. For instance, the 

standard for total desamido impurities and total impurities in injectable glucagon were, 

respectively, below 14% and 31%. Therefore, the accuracy of ion count estimation in our 

proposed method was insufficient to assess the impact of impurities. 

The accuracy of estimating the number of constituents was 40% (4 out of 10). This 
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was obtained by comparing the number of estimated monoisotopic masses output by 

UniDec with the true number of constituents, as shown in Table 4-8. This was thought to 

be because the UniDec algorithm, which iterated through multiple deconvolutions to ar-

rive at the number of constituents, did not necessarily guarantee the accuracy of the con-

stituent count. Note that using UniDec to determine the number of constituents was not 

its intended application. The median error of the monoisotopic mass estimated using 

UniDec was −0.008 Da, which is slightly worse than that of the proposed method. On the 

other hand, the average error was 0.091 Da, and the maximum error was 0.993 Da, both 

slightly better than those of the proposed method. However, in principle, accurate estima-

tion on the monoisotopic mass required precise identification of the number of constitu-

ents. As shown in Table 4-11, the error in estimating the number of ions was, on average, 

3.2 times the true value and up to 17 times at maximum. This result was not better than 

that of the proposed method. 

 

Table 4-7. UniDec setting parameters. 
Parameter Setting value 

UniDec Parameters Charge Range 1 - 20 

 Mass Range 6000 - 6800 

 Sample Mass Every (Da) 0.1 

Additional Deconvolution Parameters Isotopes Mono 

Peak Selection and Plotting Peak Detection Range (Da) 0.1 

 Peak Detection Threshold 0.1 

*The other parameters were set at their default values. 
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Table 4-8 (Part 1). Optimal monoisotopic masses of the model with the maximum poste-

rior probability. 

Mixture 

No. 

  TRUE  SAI  UniDec 

  Mass [Da]  Mass [Da] Error [Da]  Mass [Da] Error [Da] 

1 

 6361.088  6361.086 -0.002  6361.070 -0.018 

 6362.072  6362.273 0.201  6362.070 -0.002 

  6363.057   6363.055 -0.002   - - 

2 

 6361.088  6361.084 -0.004  6361.080 -0.008 

 6362.072  6362.277 0.205  6362.070 -0.002 

  6363.057   6363.056 -0.001   - - 

3 

 6361.088  6361.099 0.011  6361.080 -0.008 

 6362.072  6362.059 -0.013  6362.070 -0.002 

  6363.057   6363.265 0.208   - - 

4 

 6361.088  6360.231 -0.857  6361.070 -0.018 

 6362.072  6362.066 -0.006  6362.060 -0.012 

  6363.057   6363.054 -0.003   6364.050 0.993 

5 

 6361.088  6360.146 -0.942  6361.080 -0.008 

 6362.072  6361.073 -0.999  - - 

  6363.057   6363.282 0.225   - - 
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Table 4-8 (Part 2). Optimal monoisotopic masses of the model with the maximum poste-

rior probability. 

Mixture 

No. 

  TRUE  SAI  UniDec 

  Mass [Da]  Mass [Da] Error [Da]  Mass [Da] Error [Da] 

6 

 6361.088  6359.248 -1.840  6361.070 -0.018 

 6362.072  6361.069 -1.003  6362.070 -0.002 

  6363.057   6362.068 -0.989   - - 

7 

 6361.088  - -  6361.060 -0.028 

 6362.072  6362.064 -0.008  6362.060 -0.012 

  6363.057   6363.264 0.207   6364.050 0.993 

8 
 6361.088  6360.224 -0.864  6361.080 -0.008 

  6362.072   6361.072 -1.000   6362.080 0.008 

9 
 6361.088  6361.102 0.014  6361.090 0.002 

  6362.072   6362.041 -0.031   - - 

10 

 -  6360.075 -  - - 

 6361.088  6361.071 -0.017  6361.070 -0.018 

  6362.072   6362.257 0.185   6362.070 -0.002 
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Table 4-9. Statistical summary of monoisotopic mass estimation 

errors for SAI and UniDec. 
  SAI  UniDec 

  Error [Da]  Error [Da] 

Max.  0.225  0.993 

Min.  -1.840  -0.028 

Average  -0.282  0.091 

Median  -0.005  -0.008 

SD   0.552   0.301 

 

Figure 4-2. Distribution of errors in the estimated monoisotopic masses. 

(Excluding points that the algorithm could not estimate.) 
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Table 4-10 (Part 1). Optimal ion counts and relative quantities of the model with the 

maximum posterior probability. 

Mixture No. 

 TRUE  SAI  UniDec 

 Count  Count Error [%]  
Relative 

Quantity 
Error [%] 

1 

 20000  33690 68.4  100.0 200.0 

 20000  8179 -59.1  41.1 23.2 

  20000   22228 11.1   - - 

2 

 20000  31058 55.3  100.0 110.0 

 20000  5900 -70.5  18.0 -62.3 

  2000   8098 304.9   - - 

3 

 20000  13215 -33.9  100.0 110.0 

 2000  26190 1209.5  34.1 615.7 

  20000   5580 -72.1   - - 

4 

 2000  10643 432.1  85.8 1700.8 

 20000  19684 -1.6  100.0 110.0 

  20000   17031 -14.8   14.6 -69.4 

5 

 20000  6889 -65.6  100.0 20.0 

 2000  16208 710.4  - - 

  2000   2328 16.4   - - 
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Table 4-10 (Part 2). Optimal ion counts and relative quantities of the model with the 

maximum posterior probability. 

Mixture No. 

 TRUE  SAI  UniDec 

 Count  Count Error [%]  
Relative 

Quantity 
Error [%] 

6 

 2000  5143 157.2  100.0 1100.0 

 20000  3697 -81.5  56.4 -32.3 

  2000   17125 756.3   - - 

7 

 2000  - -  57.0 583.5 

 2000  22439 1022.0  100.0 1100.0 

  20000   3287 -83.6   26.1 -68.6 

8 
 20000  10689 -46.6  100.0 100.0 

  20000   34062 70.3   15.0 -70.0 

9 
 20000  18739 -6.3  100.0 10.0 

  2000   3369 68.4   - - 

10 

 -  616 -  - - 

 2000  21303 965.1  100.0 1000.0 

  20000   3867 -80.7   48.6 -46.6 
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Table 4-11. Statistical summary of ion counts estimation errors for SAI and UniDec. 
  SAI  UniDec 

  Error[%]  Error[%] 

Max.  1209.487  1700.772 

Min.  -83.564  -69.964 

Average  201.203  321.698 

Median  13.772  105.000 

SD   383.640   503.549 

 

For reference, Figure 4-3 presents a comparison between the spectrum of Mixture 

No.1 and the spectrum reconstructed from its estimated parameters. Figure 4-3 (a) pro-

vides an overview of the charge distribution, while Figure 4-3 (b) offers a detailed view 

of the isotopic distribution. The gray vertical dashed lines in Figure 4-3 (a) and (b) indi-

cate the m/z of the fragmented ions. Additionally, Figure 4-3 (c) and (d) display the 

MS/MS spectrum of the fragmented ion groups and its detailed view, respectively. The 

five graphs correspond to the five peaks in Figure 4-3 (b), each representing the MS/MS 

spectra of the ions contained in those peaks when they are fragmented. These results 

demonstrated that the generated spectrum closely matched with the observed data. Fur-

thermore, the appearance of the MS/MS spectra was consistent with findings from prior 

research cited in references [53]–[55]. 
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Figure 4-3 (Part 1). Comparison of observed and estimated spectra for Mixture No. 1. 

(a) MS spectrum overall view; and (b) MS spectrum enlarged view. 

 

( b ) 

( a ) 
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Figure 4-3 (Part 2). Comparison of observed and estimated spectra for Mixture No. 1. 

(c) MS/MS spectrum overall view; and (d) MS/MS spectrum enlarged 

view. 

  

( c ) 

( d ) 
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4.4. Discussion 

We confirmed that our proposed method allowed for accurate estimation of parameters 

such as monoisotopic masses from simulated MS and MS/MS data of the nucleic acid 

drug Fomivirsen and its impurities, and it also successfully selected the correct number 

of constituents with an 80% accuracy, even in datasets containing more challenging ion 

count ratios of 10:1. These results were better compared to the 40% accuracy rate 

achieved with UniDec. This success was attributed to our approach of creating models 

for each constituent count, enabling comparative evaluation and selection of models for 

each constituent count. This capability suggests the presence of impurities in pharmaceu-

ticals and could aid in the search for better synthesis conditions for medium to high mo-

lecular weight drugs, as well as in quality assurance in manufacturing facilities. 

As shown in Table 4-8, we were able to estimate monoisotopic mass with higher 

accuracy than previous chapter’s studies [24], with an average estimation error of 0.282 

Da, which was an improvement over the 1.348 Da error reported in prior research. Alt-

hough this accuracy was slightly inferior to UniDec's 0.091 Da, it was sufficient for dis-

tinguishing differences as small as 1 Da due to deamidation. We believe this improvement 

is due to the incorporation of the MS/MS spectra into the physical model, which increased 

the constraints on the model's degrees of freedom. Additionally, the use of the correlation-

based likelihood contributed to more stringent constraints on the spectral shape.  

As indicated in Table 4-10, the estimated ion quantities for each constituent showed 

an average relative error of twice the true value. Although a direct comparison with the 

prior studies, which used a 1:1 mixing ratio, was not straightforward due to our use of a 

10:1 ratio, the results were favorable compared to UniDec, which had an average error of 
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3.2 times the true value. The errors observed in our proposed method might result from a 

trade-off among the ion quantities of each constituent, where a decrease in one was offset 

by an increase in another. Despite our expectations that incorporating MS/MS spectra 

would tighten estimation constraints and enhance both mass and ion quantity accuracy, 

the performance fell short of expectations, failing to reduce the relative error to below the 

10% threshold required for impurity analysis in nucleic acid drugs. A possible solution to 

these issues would be to represent the ion quantities as probability distributions. By ac-

counting for the uncertainty in the ion quantities of constituents in the sample, an im-

provement in estimation accuracy was expected.  

Despite the sixfold increase in data volume—comprising one MS spectrum and five 

MS/MS spectra corresponding to five peaks—the analysis time per data point remained 

13 hours. While this duration did not match the few seconds required by UniDec, it was 

less than half the time required by our previous method [24] described in Chapter 2 that 

use MCMC. Replacing the estimation mechanism with a neural network or similar ap-

proaches is one potential solution for achieving faster processing. 

 

4.5. Conclusion of This Chapter 

In this chapter, we assumed the numbers of constituents in a given sample and created 

models of MS and MS/MS mass spectrometry based on parameters such as monoisotopic 

mass and ion quantity. We then applied our proposed method from Chapter 3, Spectral 

Annealing Inference (SAI), which effectively seeks the maximum posterior probability 

by optimizing parameters for the observed data. After obtaining the maximum posterior 

probability for each constituent count model, we selected the model that had the highest 

maximum posterior probability across all models. As a result, we successfully estimated 
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the number of constituents and simultaneously estimated the monoisotopic mass with 

high accuracy. We think this achievement is attributed to the increased amount of con-

straint information provided by leveraging MS/MS spectra. While the accuracy of mo-

noisotopic mass estimation was improved, future challenges include improving the accu-

racy of ion count estimation and achieving further computational speedup. 
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Our objective was to accurately determine the number of constituents, monoisotopic 

masses, and ion counts from mass spectrometry (MS) data to contribute to impurity de-

tection and analysis in pharmaceutical development and manufacturing.  

In this study, we first constructed mass spectrometry models for each possible num-

ber of constituents and applied a Bayesian inference framework. This allowed us to de-

velop a methodology for estimating the most probable number of constituents along with 

their corresponding parameters, such as monoisotopic masses and ion counts.   

In Chapter 2, to handle systems with sparse posterior probability distributions, which 

are characteristic of mass spectrometry data, we initially employed MCMC (Markov 

Chain Monte Carlo) for parameter exploration. While this approach successfully deter-

mined the optimal number of constituents and associated parameters, such as monoiso-

topic masses, it required an extensive amount of computation time. Furthermore, the ac-

curacy of monoisotopic mass and ion count estimation was insufficient for achieving the 

goal of detecting impurities with a mass difference of 1 Da. 

In Chapter 3, we addressed this issue by developing a faster parameter exploration 

method to replace MCMC. We introduced a novel approach named Spectral Annealing 

Inference (SAI), which involves convolving spectra with a PSF (Point Spread Function) 

that progressively approaches a delta function, thereby enabling rapid and convergent 

estimation. As a result, estimation times were reduced from 50 hours to just 15 minutes. 

Chapter 5.  

Conclusion and Future Challenges  
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However, challenges remained in improving the accuracy of estimated monoisotopic 

masses and ion counts.   

To address these challenges, in Chapter 4, we incorporated MS/MS information and 

refined the likelihood function to enhance estimation accuracy. By mathematically com-

bining the MS and MS/MS models, we utilized MS/MS spectra to improve the parameter 

estimation of MS spectra. As a result, monoisotopic mass estimation accuracy was im-

proved to a level sufficient for distinguishing mass differences of 1 Da. 

The results of this development will contribute to the detection of impurities, the 

evaluation of their impact, and the investigation of their causes in the manufacturing and 

development of biopharmaceuticals.  

Nevertheless, challenges still remain in enhancing the accuracy of ion count estima-

tion. Currently, there are no established guidelines for the quality control of nucleic acid-

based pharmaceuticals [56], [57]. Therefore, the results of this study hold a certain sig-

nificance for identifying the presence and quantity of impurities in pharmaceuticals and 

implementing appropriate corrective measures. That said, for future use in quality control, 

an estimation accuracy of less than 10% will likely be required. 

Additionally, as the number of constituents increases, the computational time also 

grows, posing a limitation of the proposed method. Replacing the estimation framework 

with neural networks or similar advanced techniques to handle multi-constituent systems 

is a promising direction for future development. Such advancements will be crucial for 

expanding the application of this method to fields like metabolomics and environmental 

analysis. 

Furthermore, the SAI method developed in this study may also be applicable to other 

spectroscopic techniques that produce sparse and complex signals, such as Nuclear 
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Magnetic Resonance (NMR) spectroscopy [58], Raman spectroscopy [59], and various 

X-ray-based methods. NMR is widely used in structural biology and organic chemistry 

to analyze molecular structures based on nuclear spin interactions. Raman spectroscopy 

provides information on vibrational modes, which is useful for material characterization. 

Additionally, techniques like X-ray Photoelectron Spectroscopy (XPS) [60], X-ray 

Diffraction (XRD) [61], X-ray Fluorescence (XRF, also known as Energy-Dispersive X-

ray Spectroscopy, EDX) [62], and X-ray Absorption Spectroscopy (XAS) [63] are com-

monly used in material science and chemistry. XPS analyzes surface composition by 

measuring the kinetic energy of emitted photoelectrons. XRD identifies crystal structures 

through diffraction patterns. XRF (EDX) determines elemental composition based on 

characteristic X-ray emissions, and XAS provides insight into local electronic structures 

and bonding environments. 

By adapting SAI to these techniques, it may be possible to improve the extraction of 

physical parameters from spectral data. This approach could be useful in fields such as 

metabolomics, environmental analysis, and material characterization, where precise pa-

rameter estimation is important. For instance, SAI might help in analyzing NMR spectra 

for protein structure determination or in processing Raman and infrared spectroscopy 

[64] data for quality control. Its application to XPS, XRD, XRF (EDX), and XAS could 

also support more detailed structural and elemental analysis.   

Further investigation is needed to assess the feasibility and effectiveness of applying 

SAI to these areas. However, the methodology presented in this study provides a potential 

foundation for refining spectral analysis across various analytical techniques.  
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