

Title	Gold Nanoparticles Synthesis using Microchip Laser Ablation in Liquids
Author(s)	Hettiarachchi, Barana Sandakelum
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103115
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (HETTIARACHCHI BARANA SANDAKELUM)	
Title	Gold Nanoparticles Synthesis using Microchip Laser Ablation in Liquids (マイクロチップレーザーを用いた液中レーザーアブレーションによる金ナノ粒子の合成)
<p>Abstract of Thesis</p> <p>Gold has always fascinated people, from ancient treasures to modern-day. The true transmutation occurs not in the production of bulk gold but in its conversion into gold nanoparticles (Au NPs). This shift from bulk to nanoscale brings about remarkable changes in the properties of gold, such as a high surface area to volume ratio, quantum effects, and surface plasmon resonance. These unique characteristics open up diverse applications in catalysis, bio-medical, and electronics fields. Various synthesis methods exist, including chemical reduction and vapor deposition, but pulsed laser ablation in liquids (PLAL) stands out for its purity and versatility. However, conventional high-power lasers pose challenges, limiting solvent choices and requiring precise optical alignment. To overcome these barriers, compact, low-power microchip lasers (MCLs) have been developed, enabling accessible, space-efficient NP synthesis.</p> <p>In this doctoral thesis, the author investigates using the MCL with a short pulse duration of 0.9 ns and a low repetition rate of 100 Hz for PLAL of bulk gold in both aqueous and organic media. Chapter 1 focuses on the effects of laser specifications, particularly examining solution viscosity, which is controlled by the concentration and chain length of poly(<i>N</i>-vinyl-2-pyrrolidone) (PVP). The generated Au NPs with a relatively small particle size of 2-5 nm are likely due to the small cavitation bubble created by the low pulse energy and small spot size. The solution viscosity notably influenced the yield of NPs, which affects gas bubble diffusion and, consequently, the laser energy transfer to the system. Despite the low repetition rate resulting in a smaller yield of AuNPs, the short 0.9 ns pulse duration mitigated the energy shielding effect, enabling relatively high ablation efficiency even with much lower pulse energy than other systems.</p> <p>Chapter 2 presents a comprehensive study on the preparation of Au NPs within various organic solvents commonly used in organic synthesis, including CH_2Cl_2, CHCl_3, 2-PrOH, MeCN, DMF, EtOH, NMP, and DMSO. Using PVP as a stabilizing agent, this chapter examines how different organic solvents affect the size of Au NPs and their ablation efficiency. The experimental setup employed low pulse energy, and due to the thermal conductivity of the solvents, multiple laser pulses were necessary to produce Au NPs successfully. This phenomenon, known as the 'incubation effect,' underscores the importance of considering both experimental parameters and solvent characteristics for the precise synthesis of NPs.</p> <p>Chapter 3 presents an innovative method for preparing carbon-encapsulated Au nanostructures using PLAL with the MCL system. In this approach, polystyrene is used as a stabilizing agent, and toluene serves as the carbon source, allowing precise control over the nanostructures' size and the carbon layer's thickness. The study reveals that the concentration of polystyrene significantly influences both the Au size and the carbon layer thickness. Specifically, using lower laser power and higher polystyrene concentration results in smaller-size Au nanostructures with thinner carbon layers, demonstrating the effectiveness of this technique. The synthesized nanostructures exhibit enhanced photoluminescence properties, dependent on the excitation wavelength and carbon layer thickness. This study highlights the potential applications and benefits of using MCL-based PLAL techniques.</p> <p>Overall, this study provides a comprehensive understanding of the factors influencing PLAL in different media and establishes the potential of the MCL system in producing advanced nanostructures. The knowledge gained in this study on the pulsed laser ablation in liquids and the influence of laser parameters and solvent properties on the process will lead to the precise synthesis of new nanostructures, paving the way for further advancements in various fields, including materials science, nanotechnology, and chemistry.</p>	

論文審査の結果の要旨及び担当者

氏名 (HETTIARACHCHI BARANA SANDAKELUM)		
論文審査担当者	(職)	氏名
	主査 (教授)	櫻井 英博
	副査 (教授)	藤内 謙光
	副査 (教授)	林 高史
	副査 (教授)	南方 聖司
	副査 (教授)	宇山 浩
	副査 (教授)	佐伯 昭紀
	副査 (教授)	中山 健一
	副査 (教授)	古川 森也
	副査 (教授)	古澤 孝弘
	副査 (教授)	能木 雅也

論文審査の結果の要旨

金はバルク状態からナノ粒子 (AuNPs) へ転換すると、その高い表面積／体積比、量子効果、表面プラズモン共鳴といった特異な性質を示し、触媒、生体医療、エレクトロニクス分野における応用が広がっている。多くの合成手法の中でも、液中パルスレーザーアブレーション (PLAL) は高純度かつ多様な溶媒への適用性がある点で優れているが、従来の高出力レーザーはその利用に課題があった。これに対し、低出力かつ小型のマイクロチップレーザー (MCL) は、0.9 ナノ秒という短パルス幅、100 Hz という低繰り返し周波数、小型・低消費電力という特徴を持ち、振動除去装置や特殊な光学系を必要とせず、一般的な化学実験室にも容易に導入可能であるという利点を有し、実験系の簡便化とナノ粒子合成への新たなアプローチを可能にする。HETTIARACHCHI BARANA SANDAKELUM 氏によって執筆されたこの博士論文では、この MCL を用いた PLAL による AuNPs およびナノクラスター (AuNCs) の合成法とその機構に関する包括的な検討を行った報告であり、緒言、総括の他、本論 3 章で構成されている。

第 1 章では、水溶液中の PLAL プロセスにおける、ポリ (N-ビニル-2-ピロリドン) (PVP) の濃度や分子量による粘度の変化がナノ粒子の生成効率に与える影響について述べている。生成されたナノ粒子は直径 2~5 nm と小さく、これは低エネルギーにより形成された小型のキャビテーションバブルに起因する。また、粘度が気泡拡散やエネルギー移動に影響を与えることも明らかにしている。

第 2 章では、CH₂Cl₂、CHCl₃、2-プロパノール、MeCN、DMF、EtOH、NMP、DMSO など、有機合成で一般的に用いられる溶媒中での金ナノ粒子の合成を行い、溶媒の熱伝導率や性質が粒子サイズや生成効率に与える影響について述べている。その結果、溶媒の粘度、気化熱、熱伝導率などがアブレーション効率および粒子生成挙動に大きな影響を与えることを明らかにしている。さらに、複数パルス照射による“インキュベーション効果”的重要性も明らかにしている。

第 3 章では、MCL-PLAL 法を用いたカーボン被覆金ナノ構造体の新しい合成法を報告している。ポリスチレンを安定化剤、トルエンを炭素源として用いることで、2 nm 未満の金ナノクラスター (AuNCs) を粒子サイズおよび炭素層厚さと共に精密に制御することを実現している。得られたナノ構造体は、励起波長やカーボン層に応じて、紫外可視吸収および蛍光特性において独自の性質を示し、MCL による精密制御の可能性を示唆するものである。

以上のように、MCL を用いた PLAL は、低エネルギーかつコンパクトな装置でありながら、高効率で高機能な金属ナノ粒子・ナノクラスターを合成できる有望な手法であることを明らかにしている。特に、精密なサイズ制御、マトリクスへのダメージ抑制、環境負荷の少ないプロセスという観点から、バイオマテリアルへの応用を含む今後の広範な展開が期待される。本論文は、MCL を用いた PLAL によるナノ粒子およびナノ構造体の精密合成に関する包括的な知見を提供し、今後の材料科学、ナノテクノロジー、化学分野での応用展開に寄与するものである。これらの内容は、査読付

きの国際的な論文誌に3報発表されている。

よって本論文は博士論文として価値あるものと認める。