

Title	Behavioral and emotional difficulties in maltreated children ;Associations with epigenetic clock changes and visual attention to social cues
Author(s)	落合, 恵子
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103117
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Behavioral and emotional difficulties in maltreated children
;Associations with epigenetic clock changes and visual attention to social cues
(マルトリートメントを受けた子の行動・情緒の困難さと
エピジェネティッククロックの変化、および社会的視線注視との関連)

大阪大学大学院
大阪大学・金沢大学・浜松医科大学・千葉大学・福井大学
連合小児発達学研究科
小児発達学専攻

落合 恵子

2025年5月 博士学位論文

1 Behavioral and emotional difficulties in maltreated children: Associations
2 with epigenetic clock changes and visual attention to social cues

3 Short title: Epigenetic changes and attention issues in maltreated children

4 Keiko Ochiai¹, Shota Nishitani^{1,2,3*}, Akiko Yao², Daiki Hiraoka², Natasha YS Kawata², Shizuka
5 Suzuki^{4,5}, Takashi X Fujisawa^{1,2,3}, Akemi Tomoda^{1,2,3,4*}

6 ¹Division of Developmental Higher Brain Functions, United Graduate School of Child Development,
7 Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba
8 University, and University of Fukui, Fukui, Japan

9 ²Research Center for Child Mental Development, University of Fukui, Fukui, Japan

10 ³Life Science Innovation Center, University of Fukui, Fukui, Japan

11 ⁴Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Fukui,
12 Japan

13 ⁵Department of Science of Human Development, Faculty of Education, Humanities and Social
14 Sciences, University of Fukui, Fukui, Japan

15 *Corresponding authors

16 Email: nishi.s@yamanashi.ac.jp (SN)

17 Email: atomoda@u-fukui.ac.jp (AT)

23 Abstract

24 Research indicates that childhood maltreatment leads to adverse outcomes later in life
25 and accelerated aging. However, few studies have investigated how age acceleration manifests
26 during childhood. This study aimed to investigate the impact of child maltreatment on DNA
27 methylation age (mAge) acceleration using a case-control study design and its association with
28 visual attention and behavioral and emotional outcomes in maltreated children (CM). We
29 hypothesized that CM experience atypical aging, which adversely affects their behavioral and
30 emotional outcomes by disrupting the cognitive development necessary for forming
31 interpersonal relationships. The study included 36 CM and 60 typically developing (TD) children
32 with an average age of 4–5 years. We compared their DNA mAge acceleration, measured
33 through buccal DNA samples. Additionally, we conducted a behavioral assessment of their
34 cognitive functions related to interpersonal interactions, using an eye-tracking system to measure
35 their gaze points at various social stimuli. Behavioral and emotional outcomes were evaluated
36 using the Strength and Difficulties Questionnaire (SDQ). The results showed that CM exhibited
37 significantly higher mAge acceleration and spent significantly less time gazing at the eye region
38 during facial expression presentations. While a significant association between these attributes
39 was observed, a comprehensive path analysis revealed that each attribute independently
40 correlated with higher SDQ scores, suggesting that child maltreatment leads to these difficulties
41 through accelerated aging and decreased eye contact. This study provides significant insights
42 into how child maltreatment impacts children's development. It demonstrates that mAge
43 acceleration and reduced attention to the eye region are critical factors associated with the
44 adverse behavioral and emotional outcomes observed in maltreated children. These findings

45 highlight the importance of early intervention and support for maltreated children to mitigate the
46 long-term effects of accelerated aging and social cognitive deficits.

47 Introduction

48 Child maltreatment is associated with numerous adverse health outcomes, including
49 increased risks of death, disease, impaired immunity, cancer, myocardial infarction, and
50 psychiatric disorders later in life [1-5]. Epidemiological studies have also reported that child
51 maltreatment can accelerate certain aspects of aging, such as causing premature puberty [6, 7],
52 and biological markers such as telomere length have been used to measure this accelerated aging
53 [7-15]. However, findings using telomere length are inconsistent. Therefore, it is essential to
54 examine the effects of child maltreatment on accelerated aging using new biological metrics and
55 evidence to clarify the adverse health and developmental outcomes caused by child
56 maltreatment.

57 Epigenetic age acceleration, calculated by the deviation of DNA methylation age (mAge)
58 from chronological age [16], has recently gained attention as a novel biomarker of aging. Some
59 studies have shown mAge acceleration is associated with psychological trauma, such as adverse
60 childhood experiences (ACE) [17] and PTSD in adults [18-20]. In pediatric populations, several
61 studies have reported correlations between mAge acceleration and exposure to child
62 maltreatment or ACE. Jovanovic *et al.* [21] measured violence exposure in children aged 6–13
63 years using the Violence Exposure Scale for Children-Revised (VEX-R) alongside heart rate
64 measures. They found that mAge acceleration was associated with children's direct violence
65 experience and decreased heart rate. Children who appeared older than their chronological age
66 had twice as much violence exposure as others, and their heart rate resembled that of adults.
67 Sumner *et al.* [22] assessed exposure to maltreatment, psychological trauma, and other
68 adversities through interviews and self-reports from children aged 8–16 years and questionnaires
69 completed by caregivers, finding that violent experiences, rather than deprivation, were

70 associated with mAge acceleration. Tang *et al.* [23] investigated cumulative ACE scores from
71 ages 0–14 in a large population cohort ($n = 974$) with an average age of 17 years, reporting that
72 emotional and physical abuse were associated with mAge acceleration in girls but not in boys.
73 However, these findings should not yet be considered conclusive for several reasons. First,
74 although subjective evaluation is important, some studies did not rely on objective measures
75 such as whether the maltreatment warranted intervention by Child Protective Services (CPS),
76 which legally removed children from their parents and placed them in institutions. Instead, they
77 obtained self-reported trauma scores from the general population and examined the relationship
78 between adverse experiences and mAge acceleration. Second, these studies used Horvath's
79 multi-tissue epigenetic clock, which is known to be unreliable when applied to pediatric
80 populations [24].

81 Our pilot study, which employed the newly developed Pediatric-Buccal-Epigenetic
82 (PedBE) clock [24], revealed that mAge was accelerated in maltreated children (CM) with an
83 average age of five years who had experienced CPS intervention, compared to age-matched
84 children in the general population [25]. However, this finding was initially reported in a brief
85 letter [25], which aimed to rapidly communicate the key discoveries but lacked detailed analyses
86 and a comprehensive dataset due to space limitations. Concurrently, Dammering *et al.* also
87 utilized the PedBE clock to examine mAge acceleration in young children with internalizing
88 disorders, observing similar mAge acceleration in those who had experienced maltreatment [26].
89 These findings collectively suggest that the mAge acceleration in CM, as evaluated by PedBE, is
90 a plausible phenomenon that warrants further conclusive investigation.

91 In addition to the mAge pilot study, the participants also took part in a separate
92 behavioral study investigating social cognitive processing via eye gaze [27]. This study explored

93 the potential effects of visual trauma in CM, which may contribute to the development of Post-
94 Traumatic Stress Disorder (PTSD) [63]. PTSD has been associated with visual disturbances,
95 including Post-Traumatic Vision Syndrome (PTVS) [62]. Indeed, our group has reported reduced
96 retinal thickness in CM and its association with the visual cortex of the brain [64], as well as
97 reduced visual cortex volume in young adults with a history of sexual abuse [65].

98 Furthermore, previous research suggests that CM may exhibit a tendency to avoid eye
99 contact, which could lead to or occur alongside social anxiety [27]. Individuals with social
100 anxiety often find eye contact aversive, reinforcing avoidance behaviors [66]. In severe trauma
101 cases, such as child maltreatment, individuals may disengage from social interactions by staring
102 into the distance, reflecting dysregulation in the social engagement system [69]. This pattern
103 aligns with observations in children with autism and the polyvagal theory of trauma [67].
104 Moreover, people with PTSD may display distinct pupil responses, such as reduced constriction
105 to novel stimuli or excessive dilation to emotional stimuli, reflecting heightened sensitivity to
106 stressors [68]. Consistent with these findings, our prior behavioral study [27], conducted with the
107 same population as the mAge pilot study [25], revealed that CM, at an average age of 5, spent
108 significantly less time gazing at eyes during facial image presentations compared to their peers.
109 This reduced eye-gazing time was further associated with social-emotional behavioral problems
110 and autism spectrum disorders (ASD) [28, 29], suggesting its potential utility as an objective
111 metric to evaluate the psychosocial impact of CM.

112 Building on these findings, the present study extends additional samples and provides a
113 more comprehensive analysis to deepen our understanding of mAge acceleration and eye gaze
114 behaviors in CM. First, we obtained epigenetic data from buccal epithelial cells and conducted a
115 case-control comparison of mAge acceleration calculated using the PedBE clock. Second, we

116 performed a cognitive eye-tracking task to evaluate the time spent gazing at various social cues,
117 including facial images, using an eye-tracking device (Gazefinder®). Third, we examined
118 whether the time spent gazing at social cues, considered a behavioral indicator of maltreatment
119 in children, was associated with mAge acceleration. Finally, we investigated whether mAge
120 acceleration and atypical eye-gazing patterns mediated the behavioral and emotional difficulties
121 observed in CM. Our central hypothesis was that mAge would be accelerated by exposure to
122 maltreatment and associated with time spent gazing at social cues, behavioral and emotional
123 difficulties, and a recorded history of maltreatment.

124

125 Methods

126 Ethics approval and consent

127 The study protocol was approved by the Ethics Committee of the University of Fukui
128 (Assurance no. 20140142, 20150068, and 20190107) and conducted in accordance with the
129 Declaration of Helsinki. Written informed consent for participation was obtained from all parents
130 or childcare facility directors.

131

132 Participants

133 A total of 120 Japanese children participated in this study. The first group, comprising
134 50 children (CM: 21, TD: 29), participated between April 2014 and March 2019 as part of our
135 previous behavioral study (Experiment 1) [27]. The remaining children 70(CM: 33, TD: 37)
136 participated between April 2020 and March 2022 (Experiment 2) and were then added to the

137 dataset. The pilot study for mAge acceleration [25] included 56 individuals, consisting of all
138 participants from Experiment 1 plus six individuals from Experiment 2. The sample size for the
139 pilot study was limited because the microarray required to calculate mAge was not completed for
140 all Experiment 2 samples at that time. In this study, mAge data (56 individuals) from the pilot
141 study [25] and eye-gaze data from the behavioral study [27] (50 individuals) were used for the
142 secondary data analysis.

143 All participants were assessed for their intelligence quotient (IQ) using the Wechsler
144 Intelligence Scale for Children-Fourth Edition (WISC-IV) [30] or the Tanaka Binet Intelligence
145 Scale-Fifth Edition (Japanese version of the Stanford-Binet Test) [31]. Their developmental
146 intelligence quotient (DQ) was assessed using the Kyoto Scale of Psychological Development
147 (KSPD) [32], the Enjohji Developmental Test [33], or the Denver Developmental Screening Test
148 (Denver II) [34]. Data cleaning was conducted to exclude participants with duplicates (CM: 10),
149 no maltreatment history (CM: 1), maltreatment within the first month of life (CM: 1), not DNA
150 (CM: 1), age under one year (CM: 4, TD: 4), , and presence of ACE (TD: 2). The CM group
151 ultimately consisted of 36 children who had experienced maltreatment, had been legally removed
152 from the care of their biological parents by Child Protection Services (CPS), and were sheltered
153 in residential childcare facilities. They had a history of physical or emotional abuse or neglect
154 before coming to the facility (ICD-10-CM Code T74). The TD group consisted of 60 children, all
155 recruited from the local community.

156 Detailed demographic information is presented in Table 1. The study protocol was
157 approved by the Ethics Committee of the University of Fukui (Assurance no. 20140142,
158 20150068, and 20190107) and conducted in accordance with the Declaration of Helsinki. All

159 parents or childcare facility directors provided written informed consent for participation in the
160 study.

161

162 Psychological and behavioral characteristics assessment

163 ACE were scored for both the CM and TD groups by parents or caregivers at the
164 residential childcare facility [35]. We used a Japanese version, containing nine items modified
165 for Japanese children [36]. The ACE score ranges from 0 to 9, representing the total number of
166 childhood adversities (one count per type of abuse) experienced before 18 years of age. To assess
167 social-emotional problems, parents or caregivers at the residential childcare facility completed
168 the Strengths and Difficulties Questionnaire (SDQ), consisting of 25 items. The SDQ is widely
169 used across different cultures and has demonstrated reliability and validity in both the original
170 and Japanese versions [37].

171

172 Calculation of epigenetic age acceleration

173 Buccal swab samples were collected from each individual, with one sample taken in
174 Experiment 1 and four samples in Experiment 2, using a commercially available cotton swab.
175 DNA was extracted using the QIAamp DNA Mini Kit (QIAGEN, Venlo, The Netherlands) and
176 quantified with the Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific Inc., Pittsburgh, PA,
177 USA). Genomic DNA (500 ng) was processed using the Illumina® MethylationEPIC array. A
178 quality check was conducted based on the Psychiatric Genomics Consortium-EWAS quality
179 control pipeline [38]. Samples with probe detection call rates below 90 % and an average

180 intensity value either below 50 % of the experiment-wide sample mean or less than 2,000
181 arbitrary units (AUs) were filtered out using CpGassoc [39]. Probes with low quality (detection
182 P values > 0.01) were marked as missing. Probes missing in more than 10 % of samples within
183 the studies were filtered out, and cross-hybridizing probes were removed. Finally, 819,669
184 probes passed quality control and were included in the analyses. Using these probes, we
185 performed single-sample Noob normalization with the minfi package [40]. To eliminate any chip
186 and positional batch effects, we applied ComBat, preserving participants' age and gender via the
187 sva package [41]. PedBE mAge, which accurately estimates mAge in pediatric buccal cells, was
188 calculated using the method developed by McEwen *et al.* [24]. The PedBE mAge was regressed
189 against chronological age, and the unstandardized residuals were used to measure mAge
190 acceleration [25].

191

192 Gaze pattern measurement

193 As previously documented [27-29, 42], we measured children's gaze patterns using
194 Gazefinder[®] (JVC KENWOOD Corporation, Kanagawa, Japan), an eye-tracking system
195 designed to record responses to visual stimuli. The experiments were conducted in a quiet room
196 at the childcare facility for the CM group and at the university research laboratory for the TD
197 group, conducted between 9:00 and 17:00 [27]. Children were seated approximately 70 cm in
198 front of the eye-tracking monitor on a small chair. Calibration involved directing children to
199 fixate on an animated animal displayed in five different locations on the monitor; recalibration
200 occurred if calibration quality was insufficient at any point. Stimulus movies were presented in a
201 consistent sequence to all participants, with each sequence serving as a single trial. Between

202 stimulus movies, an attention-grabbing animation accompanied by a verbal cue (“Hey! Look!”)
203 was shown at the center of the monitor to reorient children’s attention to the stimuli.

204 Gazefinder® stimuli included short movies categorized into four types of social cues: (a)
205 human faces, (b) people and geometric patterns, (c) biological motion of a human, and (d)
206 objects with or without pointing gestures. Each stimulus had three Areas of Interest (AOIs): the
207 first AOI, labeled high social, highlighted cues with significant social salience (“Eyes” in [a],
208 “People” in [b], “Upright figure” in [c], and “Pointed” in [d]). The second AOI, low social,
209 represented less or non-social cues with higher salience (“Mouth” in [a], “Geometry” in [b],
210 “Inverted figure” in [c], and “Non-pointed” in [d]). The third AOI, background, represented areas
211 with lower salience. Additional details and snapshots of the four stimuli types can be found in
212 our previous studies [27-29]. Gaze pattern could not be measured for three TD participants, who
213 were subsequently excluded from gaze data analyses. No significant group differences were
214 observed in mean gaze rate (mean \pm SD; CM: 0.939 ± 0.046 , TD: 0.925 ± 0.060 , *t*-test: $P =$
215 0.25).

216

217 Statistical analysis

218 *Sample Size Calculation*

219 Before collecting additional data for Experiment 2, the total sample size (Experiment 1
220 and Experiment 2) of the behavioral data was calculated using the formula for independent two-
221 sample *t*-tests. Assuming a medium effect size (Cohen's $d = 0.5$), an alpha of 0.05, and a power
222 of 0.80, the calculation indicated that a total sample size of 106 (CM: 42, TD: 64, Allocation
223 ratio TD/CM = 1.5) would be necessary to detect a significant difference.

224

225 *Group comparison of mAge acceleration*

226 To examine the impact of group on mAge acceleration, we conducted a two-tailed *t*-test
227 to compare mAge acceleration between groups. Additionally, we performed multiple linear
228 regression analysis, using group as an independent variable adjusted for age and gender, to
229 predict mAge acceleration.

230 Variables and measurement

231 Dependent variable: mAge acceleration

232 Independent variable: Group (CM/TD)

233 Confounding variables: Age and gender (multiple linear regression analysis)

234

235 *Group and experimental condition comparison of gaze fixation*

236 To assess the influence of the group on each type of social cue (face, people, motion,
237 pointing), we calculated the percentage of gaze fixation on three AOIs and performed a two-way
238 mixed analysis of variance (ANOVA). This analysis used AOIs as dependent variables, with high
239 social, low social, and background AOIs as within-subjects variables and group (CM or TD) as a
240 between-group variable. We applied the Benjamini-Hochberg False Discovery Rate correction
241 for multiple testing.

242 Variables and measurement

243 Dependent variable: The percentage of gaze fixation

244 Within-subjects variables: AOIs (high social, low social, and background)

245 Between-group variables: Group (CM/TD)

246

247 *Association analysis between mAge acceleration and gaze fixation in CM*

248 When identifying atypical patterns of visual attention to social cues in CM, Pearson

249 correlation analyses examined associations between mAge acceleration and these gaze patterns.

250 Furthermore, multiple linear regression analysis was used, with atypical gaze patterns as

251 independent variables adjusted for age and gender, to predict mAge acceleration.

252 *Variables and measurement*

253 Dependent variable: mAge acceleration

254 Independent variable: The percentage of gaze fixation

255 Confounding variables: Age and gender (multiple linear regression analysis)

256

257 *Sensitive analysis for maltreatment history on mAge acceleration, gaze fixation, and emotional*
258 *difficulties in CM*

259 In addition, we explored the relationship between mAge acceleration, atypical gaze
260 patterns, behavioral and emotional difficulties, and maltreatment history. For a detailed
261 description of the statistical methodology, see Fujisawa TX et al. (2018) [61].

262 *Variables and measurement*

263 Dependent variable: mAge acceleration, the percentage of gaze fixation, and SDQ total scores

264 Independent variable: Maltreatment history (maltreatment type, number of types experienced,
265 maltreatment duration, and time elapsed since intervention)

266

267 *Serial Mediation analysis*

268 We conducted serial mediation analysis to assess whether mAge acceleration and atypical
269 visual attention patterns mediated the association between child maltreatment and SDQ total

270 scores with adjusted for age and gender (Residues were calculated for the above dependent,
 271 independent, and mediating variables using confounding factors). Indirect effects were tested
 272 using bootstrap resampling (2,000 samples) for confidence intervals, using the lavaan package
 273 [43] in R statistical software (version 4.2.1) [44]. Bootstrapping effectively addresses the
 274 challenges of small sample sizes, making it an essential method for robust mediation analysis
 275 [56]. Statistical significance was set at $P < 0.05$ for all analyses. Five participants (CM: 1, TD: 4)
 276 without SDQ data and three (TD: 3) without eye gaze data were excluded from the analysis. The
 277 final sample with no missing data consisted of 35 CM and 53 TD.

278 Variables and measurement

279 Dependent variable: SDQ total scores

280 Independent variable: Group (CM/TD)

281 Mediators: mAge acceleration and the percentage of gaze fixation

282 Confounding variables: Age and gender

283

284 Results

285 **Table 1. Demographic Characteristics of Participants.**

	CM (n = 36)	TD (n = 60)	Statistics	P-value
Gender (Male / Female) (%)	20 / 16 (55.6 / 43.4)	31 / 29 (51.7 / 48.3)	$\chi^2(1) = 0.14$	0.71
Age (years), Mean (SD)	5.9 (2.4)	4.5 (1.8)	$t(94) = 3.24$	0.002
ACE total, Mean (SD)	2.6 (1.6)	0.0 (0.0)		

Types of maltreatment (%)

Physical abuse	6 (16.7)	NA		
Emotional abuse	19 (52.8)	NA		
Neglect	31 (86.1)	NA		
Duration (years) of maltreatment, <i>Mean (SD)</i>	2.2 (2.0)	NA		
Duration(years) elapsed from maltreatment, <i>Mean (SD)</i>	3.4 (2.4)	NA		
IQ / DQ ^a				
WISC-IV(FIQ)(CM: <i>n</i> =10,TD: <i>n</i> =16)	89.5 (13.9)	105.8 (11.4)		
KSPD (CM: <i>n</i> = 24, TD: <i>n</i> = 30)	88.7 (11.8)	102.3 (9.9)	<i>t</i> (24) = 3.27	0.003
Enjohji (CM: <i>n</i> = 1)	73		<i>t</i> (53) = 4.67	< 0.0001
Tanaka-Binet (CM: <i>n</i> = 1)	71			
Denver (TD: <i>n</i> = 6)		6 / 6 ^b		
SDQ total, <i>Mean (SD)</i> ^c	12.29 (6.2)	7.70 (4.3)	<i>t</i> (89) = 3.94	0.0002

286 ^a: No IQ / DQ assessments were conducted on eight TD. ^b: number of individuals higher than the
 287 cut off score (80). ^c: one CM and four TD have no data. ACE: Adverse Childhood Experience,
 288 WISC-IV: Wechsler Intelligence Scale for Children - Fourth Edition, KSPD: The Kyoto Scale of
 289 Psychological Development, Enjohji: Enjohji Developmental Test, Tanaka-Binet: Tanaka Binet

290 Intelligence Scale-Fifth Edition, Denver: Denver Developmental Screening Tests, SDQ: Strength
291 and Difficulties Questionnaire

292 Types of maltreatment (%): CM participants may experience multiple types of maltreatment, which
293 is why the total does not match the sample size.

294

295 Between-group comparisons of mAge acceleration

296 mAge acceleration was significantly advanced in CM compared to TD ($t = 2.02, df = 94,$
297 $P = 0.046$; see Fig 1). The effect size was medium, with a Cohen's d of 0.42. This significance
298 persisted when applying a multiple linear regression model (CM: $\beta = 0.51, t = 2.35, P = 0.02,$
299 Age: $\beta = -0.13, t = -1.23, P = 0.22$, Gender: $\beta = 0.22, t = 1.08, P = 0.29$).

300

301

302 **Fig 1. Comparison of mAge Acceleration Between Maltreated Children (CM) and Typically
303 Developing (TD) Children (*t-test: $P < 0.05$).**

304

305 Between-group comparisons of gaze fixation

306 A two-way mixed (2×3) ANOVA was performed to examine differences in gaze fixation
307 percentages between CM and TD groups across different AOIs. For stimuli depicting "human
308 faces," there was no main effect of group ($F(1, 91) = 2.54, P = 0.12, \eta^2 = 0.003$), but a
309 significant interaction between group and AOIs was observed ($F(2, 182) = 6.13, P = 3.00e-03,$
310 $\eta^2 = 0.06$). Post-hoc analyses revealed significant group differences in all AOIs: "eyes" (high

311 social) ($F(1, 91) = 4.20, P = 0.043, P_{adj} = 0.043, \eta^2 = 0.04$), “mouth” (low social) ($F(1, 91) =$
 312 $8.03, P = 0.006, P_{adj} = 0.018, \eta^2 = 0.08$) and “other” (background) ($F(1, 91) = 4.75, P = 0.03,$
 313 $P_{adj} = 0.043, \eta^2 = 0.05$) (see Fig 2a). Conversely, for the remaining types of social cues
 314 (“people and geometry,” “biological motion,” and “finger pointing”), there were no main effects
 315 of group on gaze fixation percentage ($F(1, 91) = 1.82, P = 0.18, \eta^2 = 0.001; F(1, 91) = 0.15, P$
 316 $= 0.70, \eta^2 = 4.81e-05; F(1, 91) = 0.84, P = 0.36, \eta^2 = 0.001$, respectively) and no significant
 317 group \times AOI interactions ($F(2, 182) = 2.66, P = 0.07, \eta^2 = 0.03; F(2, 182) = 0.17, P = 0.84,$
 318 $\eta^2 = 0.002; F(2, 182) = 0.31, P = 0.74, \eta^2 = 0.003$, respectively) (see Figs 2b, 2c, and 2d).
 319 These findings indicate that the CM group demonstrates atypical visual attention patterns
 320 specifically toward human faces.

321

322 **Fig 2. Percentage of Gaze Fixation for CM and TD Groups on the Following AOIs: (a) Human**
 323 **Face, (b) People and Geometry, (c) Biological Motion, and (d) Finger Pointing.** The vertical
 324 axis indicates the percentage of gaze fixation on each type of social cue. AOI, Area of Interest.

325

326 Associations between mAge acceleration, gaze fixation, behavioral and emotional
 327 difficulties, and maltreatment history

328 mAge acceleration showed a significant association with visual attention to the eyes ($r =$
 329 $-0.21, P = 0.047$; see Fig 3a), which remained significant in multiple regression analysis (visual
 330 attention to the eyes: $\beta = -0.21, t = -2.03, P = 0.045$, Age: $\beta = -0.05, t = -0.45, P = 0.65$, Gender:
 331 $\beta = 0.22, t = 1.08, P = 0.29$). No significant associations were found for other gaze fixation areas

332 (mouth: $r = 0.15$, $P = 0.16$, other: $r = -0.04$, $P = 0.67$). Both mAge acceleration and visual
 333 attention to the eyes were significantly associated with SDQ total score ($r = 0.24$, $P = 0.02$; $r = -$
 334 0.30, $P = 0.004$; see Fig 3b). There were no significant associations between mAge acceleration
 335 or visual attention to the eyes and maltreatment duration or time elapsed since intervention (Fig
 336 4a depicts maltreatment history for each case). However, significant associations were found
 337 between mAge acceleration and maltreatment history attributes, such as type and duration of
 338 maltreatment. One-way ANOVA revealed significant differences in SDQ total scores among CM
 339 exposed to different numbers of maltreatment types ($F(2, 32) = 3.67$, $P = 0.04$, $\eta^2 = 0.19$) (Fig
 340 4b). Post-hoc analysis using Tukey's honest significance test (HSD) revealed that CM exposed to
 341 three types of maltreatment had significantly higher SDQ total scores than those exposed to one
 342 type ($P = 0.03$) and showed a trend toward higher scores than those exposed to two types ($P =$
 343 0.08).

344

345 **Fig 3 (a) Associations Between mAge Acceleration and Visual Attention to the Eyes. (b)**
 346 **Associations Between Total SDQ Scores and mAge Acceleration (left) and Visual Attention**
 347 **to the Eyes (right).**

348

349 **Fig 4 (a) Structure of Maltreatment History for Each Individual.** A gray block indicates the child
 350 had not reached that age at the time of the study. PA, physical abuse; EA, emotional abuse; SA,
 351 sexual abuse; NG, neglect. **(b) Comparison of Total SDQ Scores Based on the Number of**
 352 **Types of Maltreatment Experienced (# of Types) in Maltreated Children (CM).** *: $P < 0.05$
 353 (3 vs. 1), #: $P < 0.10$ (3 vs. 2).

354 Path model

355 We constructed a serial mediation model (Fig 5) with mAge acceleration and/or visual
 356 attention to the eyes as mediating variables, group (CM/TD) as the explanatory variable, and
 357 SDQ total scores as the outcome variable. In this model, the path from group to mAge
 358 acceleration approached significance ($a_1 = 0.35$, SE = 0.18, $P = 0.056$), as did the path from
 359 mAge to visual attention to the eyes ($a_2 = -0.06$, SE = 0.03, $P = 0.042$). The paths to SDQ total
 360 scores from mAge acceleration and visual attention to the eyes also showed a tendency toward
 361 significance ($b_1 = 1.23$, SE = 0.71, $P = 0.082$; $b_2 = -8.08$, SE = 4.33, $P = 0.062$), along with a
 362 direct path from group to SDQ total scores [$c = 4.566$, SE = 1.13, $P = 5.12e-05$, and $c' = 3.60$,
 363 SE = 1.11, $P = 1.21e-03$]. No significant association was observed in the path from mAge
 364 acceleration to visual attention to the eyes ($d_{21} = -0.03$, SE = 0.02, $P = 0.26$). Significant indirect
 365 effects were also found [$a_1 b_1 = 0.43$, SE = 0.36, 95% CI = (0.003, 1.51); $a_2 b_2 = 0.46$, SE = 0.36,
 366 95% CI = (0.01, 1.50)], indicating that both mAge acceleration and visual attention to the eyes
 367 had indirect effects on SDQ total scores. However, no significant indirect association was
 368 observed in the path from group to SDQ total scores when mediated by mAge acceleration and
 369 visual attention to the eyes [$a_1 d_{21} b_1 = 0.077$, SE = 0.10, 95% CI = (-0.01, 0.55)].

370 Next, the initial path model was a saturated model with zero degrees of freedom, which
 371 made it impossible to calculate model fit indices, we then removed the non-significant path
 372 mAge acceleration to visual attention to the eyes (d_{21}) and refined the model. The results showed
 373 that the model fit the data well ($\chi^2[1] = 2.001$, $P = 0.157$, SRMR = 0.047, CFI = 0.964,
 374 AIC = 629.853), with the trends of significance levels of all path coefficients and indirect effects

375 remaining preserved. Thus, these findings suggest that mAge acceleration and visual attention to
 376 the eyes are each parallel mediators of the relationship between group and SDQ total scores.

377 **Fig 5. Path Model from Group to mAge Acceleration and from Visual Attention to the Eyes to**
 378 **Total SDQ Scores.**

380 Discussion

381 The present study, utilizing a larger sample size, confirmed that mAge acceleration was
 382 evident in CM (Fig. 1), and these children also exhibited reduced visual attention to the eyes
 383 during facial image stimuli in CM compared to TD (Fig. 2). These findings align with our
 384 previous research efforts [25, 27]. While prior studies did not explore the association between
 385 these metrics, our study identified a potential link (Fig. 3a), suggesting that greater atypicality in
 386 each metric correlated with higher SDQ scores (Fig. 3b), indicating behavioral and emotional
 387 difficulties. However, the comprehensive path analysis did not establish a direct sequential
 388 association between mAge acceleration, visual attention to the eyes, and SDQ scores (Fig. 5).
 389 Instead, each metric independently correlated with higher SDQ scores. Thus, it appears that
 390 while mAge acceleration occurs in CM, it may not operate in a sequential cascade; rather, the
 391 atypical visual attention patterns and mAge acceleration might co-occur independently, both
 392 contributing to heightened behavioral and emotional difficulties in CM. These findings
 393 underscore the potential clinical implications of both mAge acceleration and diminished visual
 394 attention to social cues in understanding the social maladaptation observed in children with a
 395 history of maltreatment.

396 Several studies examining individuals who have experienced childhood maltreatment,
 397 adults, and patients with PTSD have reported that mAge acceleration can result from traumatic

398 experiences [45, 46]. However, most of these studies have categorized the general population
399 based on high versus low scores on measures such as the ACE questionnaire, childhood trauma
400 questionnaire (CTQ) [47], and similar self-reporting tools without objectively confirming severe
401 child maltreatment experiences. Few studies have specifically focused on formally recognized
402 cases of CM, as analyzed in our dataset.

403 Our pilot study, involving 25 CM and 31 TD children, initially demonstrated accelerated
404 mAge in CM compared to TD [25]. The present study reinforces this finding with a larger cohort
405 (36 CM and 60 TD), adding robustness to this significant finding, despite the modest effect size.
406 However, considering the cumulative developmental impact over time, even subtle differences in
407 mAge acceleration observed in CM may contribute to early onset of puberty [6, 7] and other
408 psychosocial challenges. In addition, our analysis utilized 94 CpG sites to predict mAge,
409 potentially encompassing markers sensitive to severe childhood stresses and traumatic
410 experiences such as child maltreatment. These 94 CpG sites are located on 65 genes, which were
411 initially chosen for their strong correlation with age in the development of PeDBE clock [60].
412 However, it remains unclear whether these CpG sites are associated with other factors, such as
413 healthy aging and longevity [59] (PMID: 30241605). Recent studies have reevaluated the
414 epigenetic clock, including PeDBE and its associated CpG sites, to determine whether they are
415 linked to life span and overall health. Notably, for two CpG sites in PeDBE—cg04221461
416 (*AKT3* gene) and cg19381811 (*UBA7* gene)—associations with frailty index and Aging-GIP1
417 and overall health rating, respectively, have been reported [58] (PMID: 38243142). While there
418 are currently no reports explicitly linking these to child maltreatment, it is conceivable that these
419 sites, which were not merely correlated with age, might reflect the health status, thereby
420 suggesting an epigenetic connection to child maltreatment.

421 The visual attention patterns observed in CM were primarily atypical when focusing on a
422 person's face, as previously reported in our earlier study [27], which compared 21 CM and 29
423 TD children and found that CM showed reduced visual attention to the eyes compared to TD. In
424 the present study, this pattern was reaffirmed with a larger sample size (36 CM and 57 TD).
425 Differences between CM and TD were observed not only in the time visual spent looking at the
426 eyes but also in the mouth and other areas of facial images. However, these differences were
427 likely indirectly influenced by the decreased attention CM paid specifically to the eyes. While
428 our findings suggest a tendency for attention to shift toward the mouth rather than the eyes, there
429 was no specific association found with psychological abuse (e.g., verbal abuse) in our results.
430 Therefore, our focus remained on the atypical visual attention directed toward the eyes, a trait
431 commonly observed in children with ASD [29]. This reduced gaze at the eyes is often interpreted
432 as reflecting lower empathy and suggests a greater need for support in developing sociability and
433 interpersonal relationships compared to TD children. Our previous study indicated that lower
434 levels of salivary oxytocin mediated this reduced eye gaze and correlated with higher social-
435 emotional difficulties as assessed by the SDQ subscale [27]. This underscores how lower
436 oxytocin levels may signify challenges in attachment relationships and vulnerability in forming
437 interpersonal bonds. Given that these relationships form the basis of social interactions, it is
438 plausible that CM face difficulties in forming such bonds, contributing to their reduced visual
439 attention to the eyes.

440 Investigating the psychosocial phenotypes associated with mAge acceleration observed in
441 CM is crucial to better elucidate its negative impact on them. Therefore, we examined whether
442 there were correlations between reduced gaze time on the eyes, behavioral and emotional
443 difficulties, and maltreatment history. Our findings indicated that less gaze time on the eyes was

444 associated with increased mAge acceleration (Fig. 3a), whereas no such associations were found
445 for attention to the mouth or other facial areas. In addition, higher mAge acceleration and
446 reduced gaze time on the eyes were associated with higher SDQ total scores (Fig. 3b), suggesting
447 interconnectedness among mAge acceleration, gaze patterns, and behavioral and emotional
448 challenges. However, in our path analysis, we did not find evidence of an indirect pathway where
449 mAge acceleration influenced gaze time on the eyes, thereby resulting in higher SDQ scores
450 (Fig. 5). Therefore, it is reasonable to interpret our results as indicating that both mAge
451 acceleration and reduced gaze time on the eyes are influenced independently by childhood
452 maltreatment and are individually associated with higher SDQ scores.

453 To interpret the separate effects of each metric on higher SDQ scores, it is important to
454 consider why increased mAge acceleration is associated with higher SDQ scores. mAge is
455 derived from epigenetic changes in a subset of the genome, and previous studies have reported
456 epigenetic alterations in various genes among CM [48-53]. These changes could affect social
457 behaviors and accelerate aging processes, potentially contributing to higher SDQ scores.
458 Similarly, understanding why reduced gaze time on the eyes correlates with higher SDQ scores is
459 essential. CM may have limited experience with eye contact during interactions, hindering the
460 development of social skills over time. Indeed, adults with major depressive disorder and a
461 history of childhood maltreatment often avoid looking at negative facial expressions conveying
462 anger or sadness [54]. They may also exhibit other atypical visual attention patterns, similar to
463 those observed in our research with children [27]. However, the current study suggests that the
464 ability to understand facial expressions depends significantly on the environment in which
465 individuals are raised. We found that CM raised in unstable environments tend to be
466 hypersensitive to facial expressions, whereas this hypersensitivity diminishes in more stable

467 environments [55]. Therefore, improving the environment for CM could potentially enhance
468 outcomes related to their social and emotional development.

469 This study investigated whether the type, duration, and post-intervention period of
470 maltreatment were associated with the metrics of mAge acceleration and time spent gazing at the
471 eyes, but no significant associations were found (Fig. 4). This may be because factors common
472 across all types of maltreatment may influence mAge acceleration and reduced eye gaze time,
473 rather than specific types of maltreatment. All forms of maltreatment might similarly disrupt
474 attachment formation between parents and children. Moreover, no significant association was
475 found between mAge acceleration or reduced eye gaze time spent and the number of
476 maltreatment types or the severity of maltreatment (Fig. 4). Nonetheless, more severe
477 maltreatment did appear to have a greater adverse impact on psychosocial outcomes, as indicated
478 by higher SDQ total scores associated with a greater number of maltreatment types.

479 Although the present study reveals important findings, it has several limitations. As
480 noted, few studies have focused on officially recognized cases of child maltreatment, and some
481 might argue that these cases may not represent all instances of child maltreatment. However, we
482 believe that a case-control study design was essential, as many clinical studies, including those
483 on psychiatric and physical conditions, traditionally use this approach. Nevertheless,
484 incorporating research designs beyond case-control studies, such as those aligned with the
485 Research Domain Criteria (RDoC), may provide additional insights and facilitate more robust
486 interpretations of the findings. One important limitation of this study is its cross-sectional design,
487 which precludes any inference of causation between child maltreatment and the dependent
488 variables, including mAge acceleration and gaze patterns. While the findings suggest significant
489 associations, they should be interpreted as correlations rather than causal relationships, and

490 longitudinal studies are needed to establish temporal relationships and causality. Despite
491 adjustments in the statistical analyses, an age difference was observed between the CM and TD
492 groups in this dataset. However, the analysis focused on mAge acceleration rather than mAge
493 itself, which correlates with chronological age. While this approach reduces the influence of age
494 differences, ideally, there should have been no age disparity between the groups to strengthen the
495 validity of the findings. Finally, although we performed serial mediation analysis to test the
496 mediation effects between variables, the sample size in this study was relatively small, even
497 though it met the minimum goal of rule of thumb [57], and therefore we used bootstrap
498 modeling, although larger sampling may be required for more accurate model testing.

499

500 Conclusion

501 The present study, with its larger sample size, successfully replicated our previous
502 findings on the associations between age acceleration, visual attention, and child maltreatment. It
503 supports a model where child maltreatment contributes to behavioral and emotional difficulties
504 through endophenotypic changes, specifically mAge acceleration and decreased attention to the
505 eyes.

506

507 List of Abbreviations

508 ACE: adverse childhood experiences

509 ANOVA: analysis of variance

510 ASD: autism spectrum disorders

511 AU: arbitrary unit

512 CM: maltreated children

513 CPS: Child Protective Services

514 DQ: developmental intelligence quotient

515 FDR: False Discovery Rate

516 KSPD: Kyoto Scale of Psychological Development

517 mAge: methylation age

518 SDQ: Strength and Difficulties Questionnaire

519 VEX-R: Violence Exposure Scale for Children-Revised

520 WISC-IV: Wechsler Intelligence Scale for Children-Fourth Edition

521

522

523

524

525

526 Supporting information

527 **S1 Table. Final dataset of 96 individuals**

528 .

529 Acknowledgments

530 We would like to thank all the participants and the staff at the Research Center for Child
531 Mental Development and Adolescent Psychological Medicine, University of Fukui Hospital, and
532 Ms. Madoka Umemoto for their clerical support.

533 References

- 534 1. Liang YY, Ai S, Weng F, Feng H, Yang L, He Z, et al. Associations of childhood maltreatment
535 and genetic risks with incident heart failure in later life. *J Am Heart Assoc.* 2022;11(20):
536 e026536. Epub 20221005. doi: 10.1161/jaha.122.026536.
- 537 2. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on
538 brain structure, function and connectivity. *Nat Rev Neurosci.* 2016;17(10): 652-666. doi:
539 10.1038/nrn.2016.111.
- 540 3. Boeck C, Krause S, Karabatsiakis A, Schury K, Gündel H, Waller C, et al. History of child
541 maltreatment and telomere length in immune cell subsets: Associations with stress- and
542 attachment-related hormones. *Dev Psychopathol.* 2018;30(2):539-551. doi:
543 10.1017/s0954579417001055.
- 544 4. Johnson SB, Riley AW, Granger DA, Riis J. The science of early life toxic stress for pediatric
545 practice and advocacy. *Pediatrics.* 2013;131(2): 319-327. doi: 10.1542/peds.2012-0469.
- 546 5. Tomoda A, Nishitani S, Takiguchi S, Fujisawa TX, Sugiyama T, Teicher MH. The
547 neurobiological effects of childhood maltreatment on brain structure, function, and attachment.
548 *Eur Arch Psychiatry Clin Neurosci.* 2024. Advance online publication. doi: 10.1007/s00406-024-
549 01779-y.
- 550 6. Colich NL, Rosen ML, Williams ES, McLaughlin KA. Biological aging in childhood and
551 adolescence following experiences of threat and deprivation: A systematic review and meta-
552 analysis. *Psychol Bull.* 2020;146(9): 721-764. doi: 10.1037/bul0000270.

- 553 7. Sun Y, Fang J, Wan Y, Su P, Tao F. Association of early-life adversity with measures of
554 accelerated biological aging among children in China. *JAMA Netw Open*. 2020;3(9): e2013588.
555 doi: 10.1001/jamanetworkopen.2020.13588.
- 556 8. Ämmälä AJ, Suvisaari J, Kananen L, Lönnqvist J, Ripatti S, Pirkola S, et al. Childhood
557 adversities are associated with shorter leukocyte telomere length at adult age in a population-
558 based study. *Psychoneuroendocrinology*. 2021;130: 105276. doi:
559 10.1016/j.psyneuen.2021.105276.
- 560 9. Warner ET, Zhang Y, Gu Y, Taporoski TP, Pereira A, DeVivo I, et al. Physical and sexual abuse
561 in childhood and adolescence and leukocyte telomere length: A pooled analysis of the study on
562 psychosocial stress, spirituality, and health. *PLoS One*. 2020;15(10): e0241363. doi:
563 10.1371/journal.pone.0241363.
- 564 10. Ridout KK, Parade SH, Kao HT, Magnan S, Seifer R, Porton B, et al. Childhood maltreatment,
565 behavioral adjustment, and molecular markers of cellular aging in preschool-aged children: A
566 cohort study. *Psychoneuroendocrinology*. 2019;107: 261-269. doi:
567 10.1016/j.psyneuen.2019.05.015.
- 568 11. Aas M, Elvsåshagen T, Westlye LT, Kaufmann T, Athanasiu L, Djurovic S, et al. Telomere length
569 is associated with childhood trauma in patients with severe mental disorders. *Transl Psychiatry*.
570 2019;9(1): 97. doi: 10.1038/s41398-019-0432-7.
- 571 12. Wade M, Fox NA, Zeanah CH, Nelson CA, Drury SS. Telomere length and psychopathology:
572 Specificity and direction of effects within the Bucharest Early Intervention Project. *J Am Acad
573 Child Adolesc Psychiatry*. 2020;59(1): 140-148.e3. doi: 10.1016/j.jaac.2019.02.013.

- 574 13. Sosnowski DW, Kliewer W, York TP, Amstadter AB, Jackson-Cook CK, Winter MA. Familial
575 support following childhood sexual abuse is associated with longer telomere length in adult
576 females. *J Behav Med.* 2019;42(5): 911-923. doi: 10.1007/s10865-019-00014-7.
- 577 14. Xavier G, Spindola LM, Ota VK, Carvalho CM, Maurya PK, Tempaku PF, et al. Effect of male-
578 specific childhood trauma on telomere length. *J Psychiatr Res.* 2018;107: 104-109. doi:
579 10.1016/j.jpsychires.2018.10.012.
- 580 15. Li Z, He Y, Wang D, Tang J, Chen X. Association between childhood trauma and accelerated
581 telomere erosion in adulthood: A meta-analytic study. *J Psychiatr Res.* 2017;93: 64-71. doi:
582 10.1016/j.jpsychires.2017.06.002.
- 583 16. Horvath S. DNA methylation age of human tissues and cell types. *Genome Biol.* 2013;14(10):
584 R115. doi: 10.1186/gb-2013-14-10-r115.
- 585 17. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, et al. Relationship of
586 childhood abuse and household dysfunction to many of the leading causes of death in adults. The
587 Adverse Childhood Experiences (ACE) Study. *Am J Prev Med.* 1998;14(4): 245-258. doi:
588 10.1016/s0749-3797(98)00017-8.
- 589 18. Katrinli S, Stevens J, Wani AH, Lori A, Kilaru V, van Rooij SJH, et al. Evaluating the impact of
590 trauma and PTSD on epigenetic prediction of lifespan and neural integrity.
591 *Neuropsychopharmacology.* 2020;45(10): 1609-1616. doi: 10.1038/s41386-020-0700-5.
- 592 19. Wolf EJ, Maniates H, Nugent N, Maihofer AX, Armstrong D, Ratanatharathorn A, et al.
593 Traumatic stress and accelerated DNA methylation age: A meta-analysis.
594 *Psychoneuroendocrinology.* 2018;92: 123-134. doi: 10.1016/j.psyneuen.2017.12.007.

- 595 20. Rampersaud R, Protsenko E, Yang R, Reus V, Hammamieh R, Wu GWY, et al. Dimensions of
596 childhood adversity differentially affect biological aging in major depression. *Transl Psychiatry*.
597 2022;12(1): 431. doi: 10.1038/s41398-022-02198-0.
- 598 21. Jovanovic T, Vance LA, Cross D, Knight AK, Kilaru V, Michopoulos V, et al. Exposure to
599 violence accelerates epigenetic aging in children. *Sci Rep.* 2017;7(1):8962. doi: 10.1038/s41598-
600 017-09235-9.
- 601 22. Sumner JA, Colich NL, Uddin M, Armstrong D, McLaughlin KA. Early experiences of threat,
602 but not deprivation, are associated with accelerated biological aging in children and adolescents.
603 *Biol Psychiatry*. 2019;85(3): 268-278. doi: 10.1016/j.biopsych.2018.09.008.
- 604 23. Tang R, Howe LD, Suderman M, Relton CL, Crawford AA, Houtepen LC. Adverse childhood
605 experiences, DNA methylation age acceleration, and cortisol in UK children: A prospective
606 population-based cohort study. *Clin Epigenetics*. 2020;12(1): 55. doi: 10.1186/s13148-020-
607 00844-2.
- 608 24. McEwen LM, O'Donnell KJ, McGill MG, Edgar RD, Jones MJ, MacIsaac JL, et al. The PedBE
609 clock accurately estimates DNA methylation age in pediatric buccal cells. *Proc Natl Acad Sci U*
610 *S A.* 2020;117(38): 23329-23335. doi: 10.1073/pnas.1820843116.
- 611 25. Nishitani S, Suzuki S, Ochiai K, Yao A, Fujioka T, Fujisawa TX, et al. Altered epigenetic clock
612 in children exposed to maltreatment. *Psychiatry Clin Neurosci*. 2021;75(3): 110-112. doi:
613 10.1111/pcn.13183.
- 614 26. Dammering F, Martins J, Dittrich K, Czamara D, Rex-Haffner M, Overfeld J, et al. The pediatric
615 buccal epigenetic clock identifies significant ageing acceleration in children with internalizing

- 616 disorder and maltreatment exposure. *Neurobiol Stress.* 2021;15: 100394. doi:
617 10.1016/j.ynstr.2021.100394.
- 618 27. Suzuki S, Fujisawa TX, Sakakibara N, Fujioka T, Takiguchi S, Tomoda A. Development of
619 social attention and oxytocin levels in maltreated children. *Sci Rep.* 2020;10(1): 7407. doi:
620 10.1038/s41598-020-64297-6.
- 621 28. Fujioka T, Inohara K, Okamoto Y, Masuya Y, Ishitobi M, Saito DN, et al. Gazefinder as a clinical
622 supplementary tool for discriminating between autism spectrum disorder and typical
623 development in male adolescents and adults. *Mol Autism.* 2016;7: 19. doi: 10.1186/s13229-016-
624 0083-y.
- 625 29. Fujioka T, Fujisawa TX, Inohara K, Okamoto Y, Matsumura Y, Tsuchiya KJ, et al. Attenuated
626 relationship between salivary oxytocin levels and attention to social information in adolescents
627 and adults with autism spectrum disorder: A comparative study. *Ann Gen Psychiatry.* 2020;19:
628 38. doi: 10.1186/s12991-020-00287-2.
- 629 30. Wechsler D. *Wechsler Intelligence Scale for children.* 4th ed. San Antonio, TX: PsychCorp; 2003.
- 630 31. Tanaka K, Okamoto K, Tanaka H. *The new Tanaka B Intelligence Scale.* Tokyo: Kaneko shobo;
631 2003.
- 632 32. *The Kyoto Scale of Psychological Development Test 2001 (in Japanese).* Kyoto: Nakanishiya
633 Shuppan; 2008.
- 634 33. Enjoji M, Yanai N. Analytic test for development in infancy and childhood. *Pediatr Int.*
635 1961;4(1): 2-6. doi: 10.1111/j.1442-200X.1961.tb01032.x

- 636 34. Frankenburg WK, Dodds JB. The Denver developmental screening test. *J Pediatr.* 1967;71(2):
637 181-191. doi: 10.1016/s0022-3476(67)80070-2.
- 638 35. Cheong EV, Sinnott C, Dahly D, Kearney PM. Adverse childhood experiences (ACEs) and later-
639 life depression: Perceived social support as a potential protective factor. *BMJ Open.* 2017;7(9):
640 e013228. doi: 10.1136/bmjopen-2016-013228.
- 641 36. Matsuura N, Hashimoto T, Toichi M. Examination of juvenile delinquency, adverse childhood
642 experiences and maltreatment: Evidence based survey of using ACE questionnaire in juvenile
643 training schools. *Hyogo Univ Teach Educ J.* 2007;30: 215-223.
- 644 37. Goodman A, Lampung DL, Ploubidis GB. When to use broader internalising and externalising
645 subscales instead of the hypothesised five subscales on the Strengths and Difficulties
646 Questionnaire (SDQ): Data from British parents, teachers and children. *J Abnorm child Psychol.*
647 2010;38(8): 1179-1191. doi: 10.1007/s10802-010-9434-x.
- 648 38. Ratanatharathorn A, Boks MP, Maihofer AX, Aiello AE, Amstadter AB, Ashley-Koch AE, et al.
649 Epigenome-wide association of PTSD from heterogeneous cohorts with a common multi-site
650 analysis pipeline. *Am J Med Genet B Neuropsychiatr Genet.* 2017;174(6): 619-630. doi:
651 10.1002/ajmg.b.32568.
- 652 39. Barfield RT, Kilaru V, Smith AK, Conneely KN. CpGassoc: An R function for analysis of DNA
653 methylation microarray data. *Bioinformatics.* 2012;28(9): 1280-1281. doi:
654 10.1093/bioinformatics/bts124.

- 655 40. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: A
656 flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation
657 microarrays. *Bioinformatics*. 2014;30(10): 1363-1369. doi: 10.1093/bioinformatics/btu049.
- 658 41. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch
659 effects and other unwanted variation in high-throughput experiments. *Bioinformatics*.
660 2012;28(6): 882-883. doi: 10.1093/bioinformatics/bts034.
- 661 42. Nishizato M, Fujisawa TX, Kosaka H, Tomoda A. Developmental changes in social attention and
662 oxytocin levels in infants and children. *Sci Rep.* 2017;7(1): 2540. doi: 10.1038/s41598-017-
663 02368-x.
- 664 43. Rosseel Y. lavaan: An R package for structural equation modeling. *J Stat Softw.* 2012;48(2): 1-
665 36. doi: 10.18637/jss.v048.i02
- 666 44. R Core Team. R: A language and environment for statistical computing. Vienna, Austria. R
667 Foundation for Statistical Computing; 2021, <https://www.R-project.org/>.
- 668 45. Boström ADE, Andersson P, Jamshidi E, Wilczek A, Nilsonne Å, Rask-Andersen M, et al.
669 Accelerated epigenetic aging in women with emotionally unstable personality disorder and a
670 history of suicide attempts. *Transl Psychiatry*. 2023;13(1): 66. doi: 10.1038/s41398-023-02369-7.
- 671 46. Rubens M, Bruenig D, Adams JAM, Suresh SM, Sathyaranayanan A, Haslam D, et al.
672 Childhood maltreatment and DNA methylation: A systematic review. *Neurosci Biobehav Rev.*
673 2023;147: 105079. doi: 10.1016/j.neubiorev.2023.105079.

- 674 47. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and
675 validation of a brief screening version of the Childhood Trauma Questionnaire. *Child Abuse
676 Negl.* 2003;27(2): 169-190. doi: 10.1016/s0145-2134(02)00541-0.
- 677 48. Nishitani S, Fujisawa TX, Hiraoka D, Makita K, Takiguchi S, Hamamura S, et al. A multi-modal
678 MRI analysis of brain structure and function in relation to OXT methylation in maltreated
679 children and adolescents. *Transl Psychiatry.* 2021;11(1): 589. doi: 10.1038/s41398-021-01714-y.
- 680 49. Fujisawa TX, Nishitani S, Takiguchi S, Shimada K, Smith AK, Tomoda A. Oxytocin receptor
681 DNA methylation and alterations of brain volumes in maltreated children.
682 *Neuropsychopharmacology.* 2019;44(12): 2045-2053. doi: 10.1038/s41386-019-0414-8.
- 683 50. Kumsta R, Marzi SJ, Viana J, Dempster EL, Crawford B, Rutter M, et al. Severe psychosocial
684 deprivation in early childhood is associated with increased DNA methylation across a region
685 spanning the transcription start site of CYP2E1. *Transl Psychiatry.* 2016;6(6): e830. doi:
686 10.1038/tp.2016.95.
- 687 51. Papale LA, Seltzer LJ, Madrid A, Pollak SD, Alisch RS. Differentially methylated genes in
688 saliva are linked to childhood stress. *Sci Rep.* 2018;8(1):10785. doi: 10.1038/s41598-018-29107-
689 0.
- 690 52. Cicchetti D, Hetzel S, Rogosch FA, Handley ED, Toth SL. An investigation of child
691 maltreatment and epigenetic mechanisms of mental and physical health risk. *Dev Psychopathol.*
692 2016;28(4pt2): 1305-1317. doi: 10.1017/S0954579416000869.

- 693 53. Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F, et al. Child abuse
694 and epigenetic mechanisms of disease risk. *Am J Prev Med.* 2013;44(2): 101-107. doi:
695 10.1016/j.amepre.2012.10.012.
- 696 54. Bodenschatz CM, Skopinceva M, Ruß T, Suslow T. Attentional bias and childhood maltreatment
697 in clinical depression - An eye-tracking study. *J Psychiatr Res.* 2019;112: 83-88. doi:
698 10.1016/j.jpsychires.2019.02.025.
- 699 55. Koizumi M, Tomoda A, Takiguchi S, Kosaka H. Impact of stable environments on maltreated
700 children. *Pediatr Int.* 2023;65(1): e15443. doi: 10.1111/ped.15443.
- 701 56. Preacher KJ, Hayes AF. Asymptotic and resampling strategies for assessing and comparing
702 indirect effects in multiple mediator models. *Behav Res Methods.* 2008;40(3):879-891. doi:
703 10.3758/bfrm.40.3.879.
- 704 57. Bentler PM, Chou CP. Practical issues in structural modeling. *Sociol Methods Res.* 1987;16:78-
705 117 doi: 10.1177/0049124187016001004.
- 706 58. Kejun Ying, Hannna Liu., et al. Causality-enriched epigenetic age uncouples damage and
707 adaption. *Nat Aging.* 2024 Feb;4(2):231-246. doi: 10.1038/s43587-023-00557-0.
- 708 59. Adam E Field, Neil A Robertson, et al. DNA Methylation Clocks in
709 Aging: Categories, Causes, and Consequences. *Mol Cell.* 2018 Sep 20;71(6):882-895. doi:
710 10.1016/j.molcel.2018.08.008.
- 711 60. Lisa M McEwen, Kieran J O'donnell, et al. The PedBE clock accurately estimates DNA
712 methylation age in pediatric buccal cells. *Proc Natl Acad Sci U S A.* 2020 Sep 22;117(38):23329-
713 23335. doi: 10.1073/pnas.1820843116.

- 714 61. Takashi X Fujisawa, Koji Shimada. Type and timing of childhood maltreatment and reduced
715 visual cortex volume in children and adolescents with reactive attachment disorder. Neuroimage
716 Clin. 2018 Jul 23;20:216-221. doi: 10.1016/j.nicl.2018.07.018.
- 717 62. Padula WV, Argyris S et al. Post trauma vision syndrome and visual midline shift **syndrome**.
718 NeuroRehabilitation. 1996;6(3):165-71. doi: 10.3233/NRE-1996-6302.
- 719 63. Velthorst E, Nelson B, O'Connor K. et al. History of trauma and the association with baseline
720 symptoms in an Ultra-High Risk for psychosis cohort. Psychiatry Res. 2013 Nov 30;210(1):75-
721 81. doi: 10.1016/j.psychres.2013.06.007.
- 722 64. Fujisawa TX, Shimada K et al. Type and timing of childhood maltreatment and
723 reduced visual cortex volume in children and adolescents with reactive attachment disorder.
724 Neuroimage Clin. 2018 Jul 23;20:216-221. doi: 10.1016/j.nicl.2018.07.018.
- 725 65. Tomoda A, Navalta CP Childhood sexual abuse is associated with reduced gray
726 matter volume in visual cortex of young women Biol Psychiatry. 2009 Oct 1;66(7):642-8. doi:
727 10.1016/j.biopsych.2009.04.021. .
- 728 66. Lars Schulze, Babette Renneberg, et al. Gaze perception in social anxiety and social anxiety
729 disorder Front Hum Neurosci. 2013 Dec 16;7:872. doi: 10.3389/fnhum.2013.00872
- 730 67. Williamson JB, Porges EC, Lamb DG, Porges SW. Maladaptive autonomic regulation
731 in PTSD accelerates physiological aging. Front Psychol. 2015 Jan 21;5:1571. doi:
732 10.3389/fpsyg.2014.01571.
- 733 68. Cascardi M, Armstrong D, Chung L, Paré D. Pupil Response to Threat in Trauma-Exposed
734 Individuals With or Without PTSD. J Trauma Stress. 2015 Aug;28(4):3704. doi: 10.1002/jts.22022.

735 69. Rabinak CA, MacNamara A et al.Focal and aberrant prefrontal engagement during emotion
736 regulation in veterans with posttraumatic stress disorder. *Depress Anxiety*. 2014 Oct;31(10):851-
737 61. doi: 10.1002/da.22243.

738

739