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ANCEELT 2y Y RMOBEBERIETETEE > TV [1,2]. FADFET 2HEEMIABE
BELIARTH 2120056 T, Br Y 7OMR L RIZYHMHFUI LIXUIERA =0T 5 [3].
2O L7tk IEMECH 3 2 7o 912id, JAEIR B SR 2 O @ AR R I 5 2 B AR Rl R T H
5. ZOBEIIEZ DL LT, IMUERBREA X -V IPEHEN TV, [RREREA X —D >
ZFOARTTEZIG IO 5. T2 218, RXTBHIZB 2MNREOBH [4-9], ERITICET ZHE
DEREZMT [10,11] B K CEHETEICTB T 2 MMRFERE [12-14] REBETF N5, WITHLOTEFICEW
ThH, NOBIZEMEBIC D D MR NGO Z A= RS T L TE D, EfREE DD SR 1 s A R —
Dy rHMinRD NG,

KIHETIE, FHOMRD LB CEMORIFEE RIS 2720, [ERZRFHEMICSET 3 MNRIKSH D72
B2 T 2 08, H 5 [4,5]. BIRIRFIE LTI, RIVREOBER (6], @5 REOEM [7] B & 1%
FR R RKEBG [15] OMEAZETFon 2. RIS, AV <AN—=Z F [16] D & 5 RBESIIBHNCREET %
7o, Z DML 2 REIERE T % 2 BIEAM kD 505 [8]. L L, TEROBIMEAM T8
KEHDRONTED, VFZAXA ARIEEEINIRETD 3 9], ZORELMBILT 572012, @RGE
7D BB NI B E R D BAFE AR D ST WS,

ERTIICBVTIE, WK OFHIZWMREE RO 72912, EIRNICB T 2 M 5 O Eig R e Mt
HRDLNTWS. KRS, HA ORI RN Y, WEEHROAHLE B LS EEH X
NTW3. YIHIORAMIIIMNTH D, DR =R T 27280, FEROEURZE Tl T
»H% [10]. £, HABIZNE, HEZE [11] PERIAEE [17] KBV THEELFRTH D, MINElE
IEHEICIRZ 2 220y, o OZKOEER ICERT 3.

PEEDECUX, M THEM OHERIC & O BUNRIGOMIH S EEZFE L 2o TWw5. il z1E, KA
T [14] RPERETORE TR [12] KBWT, LEEREA X —Y ¥ 73 RERE D IGH AR X
nTW3. Big, PEERETFOREIZF 27— IS THIELTEB D [18], RMEHICHF /2 27 —L
OMHAFEL KD SN TWS [13]. T, HREHROERICHEOEPEAZETORZIIZH{L TED [19],
BB & ORI RMERRD HNT VWS, DL RERNS, ERIE HO s 7 N R Bk H
B DML AR RTH .

INFTIBNTERLRLY, BRE, EEDITROWCRKRINDG X51C, HARDTTF CTEMGEA X —D ¥



TEMBRD 5N TVD. WTRDTFIZBEWTDH, BENRIEIM NP OZ -0 L, ZDOWNERES
7 A XS LTS TMESTH 579, EBERBHSTAIRTSHS. X512, THbDNRIIEH)
LRTWVWIERRBEDT —XBEPREL 22 222, AERBENRD LN, 2D X5 RERD
5, BREPOEBRREREA X =YY IPRD LT VS, RHFETIE, 5 DEREN TG
FRASREE A X — 2 > 7l 0 BRI S HB & LT, B Al (Artificial Intelligence) i % 3 2 % = 1ERE
HHERRT [19] ORGE TRICB OV TRD S 2 M/NRIRHICIER T 5.

PEERFE L, TEREA ISPV 2 OREEE A MM L Tn 5 [18]. 4 Y TLAIEED—ATHZa—F
Yoo A=TF, BAHEEDZD D LT 2P RRBHEE 2 512705 L5 2RI Z 1965 IR L 7 [20].
1975 FE121E, 2HET LI 2 BTN T 2 L WOIMICHET SR, =7 DEME LTAL @& L7z [21].
LA—7 OFEANIIRETH/MGEL TB D, ZOHEDD £ THEROMMLIFBRIHEATE 2. FEIEYY
12 10 pm FREDOREETH - 7225, 2025 FEHEETIE 3 nm H2Y E CHEIL LT 2 [22]. FERI 7 ik
fiie— F<v 7 TH3 IRDS Ti&, 2030 FERICIEA V7R ba— L HYOMEBICERES 2 Z L FHEX N
TWw3 [23]. 2L, TOAHDRT — VIZHEMHEED /D D b7 0 I RAZPIE SV THREINLD DT
HY, BB 3 XL LEIC L > THEBIR TV S 720, BEOR/NHEZBBE X Z 10nm EET
H3.

B EAE T 08L& ICIZ, EUV (Extreme Ultraviolet) VY 275 7 4 BSHWSRTWS [24]. VY 2
77 4 2%, BOCHMEERA L ERIOEEZIBE L, FTEO X -V REET 2N TFETH % [25]. <
K — ¥ DELBIIFEGOC ARV SN2 53, FEHRIC X o TIRETE 2/ IiEMHIREh S, 22
T, EUV Ti&, 5 13.50m OB EHE YL LTHWS 28T, MF/ X — F AR 7 — L OMHS
R— VD AIHEL IR oTW3 [26]. LA L, ZO X5 MM SRS, MRB L UOEEICETRT
X — MLRAT =L Db FTDRRIC &L > THHEELZIT 3 [27-29]. RMEOFHEIISEE D DERE25| &
L, Ry LUCHEREEDREERER S [30,31]. 22T, PEEKY A oMl RibEBRES 2T
HEHRD I TS,

PERRKERE TR T 2 R A4 W& F 7 A— LA =K TH 3 [12,13]. HABEMEED 7R AE I BT
FREUC I DBE nm BETH 27:9, BHEMFH TRMZEEBE T2 L 3WETH 5 [32]. £/, BMIAER
fa2: & DEFIEMDTHITTH D, AFD /) 4 XDFEEZITPTV. 5612, BERINCHWLATY
2R ToNIER 300mm TH D, RFfgH A4 X DRTF —LERKREWN. ZORD, v ALE%E 1 H
DOUETHE ST 2 Z L 3REETH2. LirL, REsHhr o RBOFRERRZHES 5121, vZARET
DREPRE Y 722 [33-35]. 72771, FEEBEED 2LV —T v P RELEXE27=0120%, BIERR % &EiE
TERHEND 5 [36]. DLEOERD S, PEIRKMMRE I ERRE, SEE, BXUOEERENRDHNT
(AP

RO Al v IR o 2 Dwc KAl 3 [37]. #aURE T1E, HTREDBEMEE (Atomic
Force Microscopy: AFM) % F\\ 2 FIENRENTH % [38]. Ml ooz R REIGESO T T, K
FHAOZRE L CTEET % 2 e THBOREMIRZIIGF S 5. AFM OFSEZIESHERD Y 4 XTIRED, #
nm OREETIARHEDAIRETH 5. Lo L, STk EET 208N D 270, MEREIE VL
WO IRED D B, WEFRM RS 5 Z LI X 2 EHE AFM [39] S, EEOE % WV 2105 AFM [40,41]
LREINTVE HDDOEALICIEE - TR,

—%, FEEMAME T, EBFED 2 VIOLERENCHS L, BE» o 0IREES 2T T2 22 TX
Matth 2475 . HMAME L KT 2 L MBREBS X UM/ 4 AMEH 200, EECHERRETH S L
WIORRDH 5. BETHRERWEZFHERCE, EERETFHEMEE (Scanning Electron Microscope: SEM),
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BRI E T PEMEE (Transmission Electron Microscope: TEM), B X ERAE RS EEMSE (Scanning
Transmission Electron Microscope: STEM) 235 % [42]. Zh o XBE e rIcIRS L, 3k oMHEE
HIck > TR 2BEMETH 2. AIHEDEEDIB L Z 400~800nm TH 2 DIZxf L, EBEFHROEEIZ
0.01nm BUR & Hied TRV 28D, JEEBRMBIC LR TE D RRELRMEN TE 5. %72 L, TEM B LU STEM
TREBLEEFZHET 20EVDH 570, Mk +0#E LRTER SR WERAD 2. 207D,
PEARMAEIC BV TE SEM B—BRINCHW ST WS [43-45]. F /7 X — PRI — )L OREE £ TEHlA]
RETH D, RIGDFED AL BT ZDIBIRDHE S AIRETH 5 [46]. — /T, HZERE FTOREINLET
H5Zr, MEARHHAIENZ L, MEANOBBI R 72D 2 2 [47] R OER D, £z, L—VF
RN HEET L, XN =E T2 55 % Laser-PEEM (laser-based photoemission electron microscopy)
HIRRBIN TV [48]. Z4Ud AFM X SEM t [AFOREZH LoD, HESRMFDORHEILIC LD BUTE
OEHEIEPHFINATWS. X512, REHLS 100nm BEDHEI EFTOBENARETHS. 127-L, —F
WHIE RTREZR PN 10 pm AR P, REMBREICIIREEZE T 2815 5.

HFEAMRETIE, RMaD 5 DEGELDEZFA L TRMGZ RIS 2 FEN—RIITH 5 [49]. HEELEHREIZR
a4 XD 6 FcHMBIT 2720, BN REaH & OBEDEIIMD THEI L 7% [50]. ZDi®, /4 RIH
NPT MEARETDH 3 [51]. /A XL LT, EFEEOSay b/ 4R, BdELE, HIERERED
HS, V=P ARy IR EDND L. R o DEEEMEIEST 275K LT, RECa—74 7 %3 5F
EHMBEINTO 2 DMERRICUIESRNEY 725 [52]. 72, BREARERmICHIL, Wik Kiae
DHEBAMEH ZEEINTBE T 5 Z & TRIBMEZBIE T 2 FED M ST 2 [53]. BE—MRANCHW
LRTVWENFAMETIE, VI L —F 2R L, RITHELL 722 M3 2 A XA S h T
% [54-56]. %Kiz, WEHEEAREZHWEFEN TR LoTHD, 10nm BEDOKME THREFIEETH 2
ZEDWEEINTNWS [57,58]. LALARYS, VINRHEZEET2LEND 5720, ROEMOHEC
32 OREEET 2 2 W REDNRDH 5 [59].

— MRS & R B E I F W CE g fRRE (L R SEBL S 2 SNSRI b AT T T v A, B
FIBEMEETIE, BIRHE e SHRED» O RKH LI TS EMiTT 2 2 2T, REBIKIE SN S [60,61].
HECO R TSRO 2T 5 2 & T, FESADOTMHEREE Inm BEICET S, LrLl, KES
] D 53 FRAE VI IER DI EEMBE L AR IC e Y22 L WO RED D 2. T2, THIC & D AHIEHRZ IS
L, 10nm fREORKGZ T 2 BEMBTE DRI TVS [62,63]. X561, e WEMICAEL 3B
FHMHBAEHZ TS 2 2 2T, 10nm RGO Rz ATREL § 2 Hifi b IREB ST\ S [64]. A58
WENX, VWERRENCHEST 20BN ERH L FIETDH D [65-67], REMFOZEMEREET 5729,
100nm A FORKEZRBAIRETH 5. 7272 L, TGRSR OMD THRWEBIC L FE LR Wi
B, e 7o — 7R ERUTOERF COEX S 208N H 5. Tz, @RMSTEMEEZ v PR L mH
MEEDORPHUL D MET XN TV 2 [68]. BARMGEEMERIE, RO EMBFEORITIRAZBEZ T, 7/ X — b
NAT =V TOEDIREBIR 2 T 2HMTH % [69]. #HINLTIETIE, T2 HERNIHE
L, &7 TOMBEBEREIISGT 2 2 L THEEZFEHRT 2. SO0 FOBICHEI NS 720, &7 FOHEDL
LBz KD 2 Z L AATREL 72 D, ETRREREIRAMF 5N D, ZOHEICE D, 20nm FREDRKEZ L
THEAIPREINTWS, 2L, BFroBTEOREEZEDERITLEND D, MERBORI»HEL
BoTW5,

ZIT, INETCRERLLSERELEOFEEZ LD 2. WThOFIED, RN AU ZEZ
BOMREERELTED, ¥ 74 270X — MR —LORIREDBATEETH 2. L L, SfREERMRE
TUE, HEFPRESH, VI ARBICNT 2REIIEBEIRAIRE 85, EROMELEICBT 5 M7 E



REE MEDEE ORIRZ N 1.1 RS, MNaRIZSORREICHRIEI L &5 632138, MECRHZES
BN D 5. —)7, PEAE TR TIIAEENER LOBE? S, RETRIIBW T EWAL—T Y b2
RKOHENTWVWS. DD, WUNRIAD D HEREL R & MREDEE & QWA THELRE L 2> Tw
5. ZIT, KWFETIR, SEErOEIRRELRBINZRIIL OO, [KWHEZ L CatHlRfE L 32 &
R A RO EB 2 HiET.

1.2 FREZZAV-AHEEAX—DY
1.21 YA A= T

— IR A X =D Y X, BENROGE L Xk OHERE O TR A LIS BR X8 T 2 o
JRENME LTIR Y 5. ZOFEIE, 1000 FELLERTCA 7>« 7= A H LI & o TS AT
K, BEARLHEIIKE CED > TWARW [70]. ik e LT, SEMRZ e 7 4 v oy
D7 Fu ZERICMA T, HKELEZEFTH 5 CCD (Charge Coupled Device) % CMOS (Complementary
Metal Oxide Semiconductor) 72 & D7 Y ZURBHEFHHVSLNTWS. KFig, EERRCBVWTIE, 7
ZNRTIREBDBEGHRAH UREDP LTI XNBFRERER->TVWS [T1]. TV XNEBFTiLeRIN 5

>

[mm?*/sec]

Required
area

Inspectio Speed

104
T

Light-field
microscopy

Dark-field
scanning

107

10°
T

Near-field

microscopy

] | | ] -
Inm 10nm 100nm Ipm Resolution

Fig. 1.1. Relationship between resolution and inspection speed in conventional methods.
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BROMRIEX, HRIGETFOBEBEIC KL > TRESIN L. PEEREMOERIC X 2R ToEERMIICED
1 Fv 7H7% b OEHELE 107 EIGET 20 WME I TV [72]. KL, REHETOEZREHNSE
722 LThH, MRS K> TIRE 2D RAER A THHET 2 2 e 0L CRlsk 372 2 21X TE R,

WERDH X 1R 2H T2 A A=Y Y FFEe LTEHIATW 20, H—EBERESEE Wy v
TN T N4 X =Y 7 (Single Pixel Imaging: SPD) T % [73]. #ERDH X 7 BL BB MHET % H
WC 2 RTINS EZ 3 2 icnt L, SPLIFZERI 7D iRRE & Fi 7z 7 WL —E R M PR 2 LW TS 2 S 5
% [74]. SPI T, ZEMIDfRREZ Fi7- 72 0 BHIBR Db b g, BB D 2 W0idntd & 0 KEHEE 2 Kot
WHEEL L, ZOREEL & — Y 2L SR SEREOREZITS 22T, MRO 2 KBz FT
5. SPI OEAEZX 1.2 103, HaEkicid, ZEDEZFE (Spatial Light Modulator: SLM) 25H W
bis. MIEZ L ICRRIME K-V ZEAL, BohEE50 0Bl ZITS 2 & THGEZT
3. 7B, 1.2 TEBIEEHEELT 2 HNERLTVEH, HROG%E SLM (5§ L TSk 3 28
HARTHARETH . WHIE, HDOETHIAR, A RFFEIEVADH 2B DD, WIFho TR T b iREx
G SLM DG EICHBEINZ LW mTHEBELTE D, FEMICIEFEMRETRICREN R ERITR
W [75].

SPLIZ, TERDARXZ LI LT, SEELRENFIRETH S 2, EWKRFBICEHTES 2, X
FROBHENSNI L EWVoX )y bEHELTVS. H—DX Yy FTH2ZEBEME, SPI 2 H—HE
R K DA REERD S DHEEN L TRIBTE 2 SUCHR T 2 [76]. 2 ZOTHRHERTIEMRDEHD
B ONHEREZRIC TS 2720, 1 HEDHDOEESHREIMERNT 5. —7, SPI T, ZZHINICHEL
NN E 1 OOREETHIES 27-%, & SN It (Signal-to-Noise Ratio) THIHTE 3. [77]. &5
12, SPI TR OANRLE RS, KBEBTFHEMBEERL 7 NNT V> =27+ P& A4 —F (APD: Avalanche
PhotoDiode) 7% ¥, HA—JEF L~V OBHIATAIRER @R EMII AR Z V2 2 & 23T MM ETHET b @R E

Structured patterns

Tlluminate

Reconstructed image

_2 al
2= 111 W "=

n=.

. a=ll jiL=2
Calculation = M=y
y= "I = IIIES

A -— n=ss
s=1 -2
s=m =

ii=s
2

— Response
—p 1 light

Detected signal

Single-pixel
detector

Intensity

Time

Fig. 1.2. Schematic diagram of single pixel imaging.



REMAAIRE Y 72 5. 2 Kot g icB W TH, EM-CCD (Electron Multiplying CCD) % SPAD (Single
Photon Avalanche Diode) > # ¥ Wo @mBERFIIFET 5203, IR MPHEHZEY A XDMET SPI D75
Bz B D,

DAYy FTHBRVIREFBADEHADATRER I OWT S, H—EHREMHHROEIENZ W b
HEHETH % [78]. 2 Kocktigsid, AHEHBIC BV T BIRMGE S EHISEM 2 b DB T H Al BE
TH5. —J7, IFAEDEHFITIEZ DMEREDE L CHIR XN, &iffi, 2 WEATFLRETDH 2 25 &
MHD. ZATHL, SPITIE, KEFZCIIHNT 2 H—HRMPELZERT 2 TE S0, Ll
RFEREATORBIREL 725, THE TG XN TV 3 IERBDERETO SPI ofil e LT, HEEEH
ORI, A2 =R [79], X KR ([80,81], &AM [82], FRFME [83-85], T I~V VK [86], I VIK([87], ~
A 270k [88] 3B D, IEHEIILNVFHTOA A=YV VRIRETH 2 Z e ARENT WS, X512, SPILIXHE
—HEBE RIS 720, KA DEEH WA A= Y IADISHBARETH D, BiEW [89,90], ET
911, "FPETRR [92], BT [93]1C & 3 SPI X hTWw 3.

BZDX Yy ME, BEROHHEOEXTH 2. SPLICBW THMBICHER DR ORE(LIEIA %
MRICHHT 2 2L R 5 DNE 2 H—HREMLETHET 22 DATHD, WEROAIXTD XS
BEEBRPL Y ARELTLDLEL LRV, LY X2 YW IR ENZL Y AL R SPL S 2T 4
DPIREZINTED [94,95], HFWNELHBRL/za v 7 " RAX=I U IDHAREL KoTWb. £/, B
BOR—HBMUBZEE S 2 2 & T 3 XuBiR 2 BT 2 FE [96] 2, H—7 7 4 N2 W N
ADIGH [97] FEBINTED, SPI ONERMED HHEDE X Z2IE» LI ZRRERMI R I TVS.

SPI 1%, HA RERHMEBIEIRRZRIN TV S, mOEANLFERE, HROKHE 1 AT20IAL, R
Xy YTBIETHRD 2RI EBUG T 2H5IETH % [98]. ZOHEIE, FridiEE 2 @alciE 3
s, AREMIZE 2 Koot e WA HERD 2 Xtk X 7 L O REHICE I WTWS. 207
®, SPIOX Y v rD55, MHBOERHHEDOS X ZRIE, ZooFEzEZZ v, —78H, &
FATH LT 2 T e o8& — 2 A LB/ 2 Tk LT, BREZHRICHE S SPI2dH 5. 2
UL, 7V TR [99] 7 &~ —LHK [100] 2 ¥ DRZ— > 2 GUciBE L, MERES %2 EEGRR e
LCTHIST2bDTH 5. SEEIIHNIDT 225 70%, BREAHUCK > THROBZHMEKRT 5. MR
Wl L REZ BT 2 2 8T, MRNLEMROATREE 22 Z e diE ST [101].

B 1 3 OHAZITS SPI &, EEZMO LA 2N TELD, 7XV—LEEPL7—V T
BIRICHD { & — 0 Tld, BIRHEBOLHEHMIOEZ T2 2 e TRIEZIRPKE M ET 2 25 FlR
MDD, THSD X —VFFEDOF L R E NS 720, MEFESEEDE SN A Ficd F
532, LaL, HEEHIH S SPI TR, IRTOREGRUZHET 2 0ERNH D, EEK L REOH
EREDREE 25, 2Dk, SREEREGRZEIGL L5 3213, MERBPHERBIERT 2
HEx b D,

SPI 2B 1T 2 HIE M ZHIR ST 254 e LT, Efit > > 2 (Compressive Sensing: CS) 1235 { Tk
MPREEIN TS [102]. HEEEBIEREL L D HDR0WGE, REOBOEH L THEROE D RnS,
WERE D70, FEtHETHRERD 2 Z L RA[REL 25, £ IT, CS TR, MRVPAAR-ANE2HT
ZEMREL, RABOHBEZHITRS 2 Z & CTHMREZATREICT 5. 22T, MRERTEERY ML e
x, WE X = TIET 28T % A 35, B—HBEMPRTHEONIMEBORT MLy i,

y = Az, (1.1

YRINB., ZDLE, MENAR—RTH2eRETNE, X (1.1) 2ilEEZTHDOS S5, L1 J VADER
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W22 & 2RDZ LT, NROBMEMRDGIREL %5, THDD,

min |Z]; s.t. y= AT, (1.2)
T

RS T TR x ZHMTE 2. —MRZBREBRICBNTIE, BEMEZDD DR =X TROVES
TdH, BEEZEOZESRPERREEICBOVTRARR—2AEERT B2 VWD, Ths DR —AREEF
FLTCS Zi#H$ 2% Z e BAHETH % [103-105].

FIREHUTHD  SPI % CS XETINEMBIE L MEOT 6Nd. Zas0FiRE, HIEREE EZEK
IO BDRLMRALDS, MEOREVEBGZBHEATRETH 5 Z LA/RINTWS [106]. —/HT, ZHbH
DFRIFHBAZEEZRE L TVWE2D, /A XABPZVERE FTIEEEMERLL TV W RERD
% [107]. ¥7z, BEZHA SPI AMTHIEHBEIC X 2 —HEEMKNTH 2 Dicxt L, CS Cli/MuiEz K18
HNCHR S BN D 5720, BRI E T 23RS RE K R 2EANCH 5.

fERTRI RS RGN LT, METIEBEEGE L BN SN T W2 D0, HHBEA X —2 > 2 (Ghost
Imaging: GI) T& 5 [108]. JeHHEIA X —2 > 7%, fEE(LERIA » JIEE B OMHEEEICE S WTHR DB
ZEN T 2 FIETH 5. BNTHI7 SPI HBMER LA I IS 2 F S 2RI TH 2 0Tt L, JEEBA X —>
YRR HRESTOMEL LB L TELTIETH S [109]. JMHBEA X —2 2%, Y4, KRZeiiEE
HEFOBTFIONREDNF RN EH WA X =Yy P FiEE LTIREINZ [110,111]. doREFo
—H MGG L, NRE2EE L e B—EEREAR TN T 5. O TFIENRIERE S, &8
B —E R AR £ 7213 2 ZOT g R EHRO AZ ST 5. 2 DOXTFIFZEMNBHEEEZE LTV
72®, MRIHEHL TORWEFOMED? S, HRICHEF NN TFOMEEHET LN TES. 20
KT HHEEEDIETZ T, MHROGPHEONE. Tz, HRICEFINNETFIEER 4 0 U TR
MBS 2 7= v 25, HEBRTRBHIATEOAZ FRHAENTE 3 [77]. 2 Kotz G T %
HNSIEHRPFEL RN 25, SHEA X =Y Y 7 SRR [112]. 2D X511, HJHIOJEAHE
A R=D Y TRERTHECH S SFMITH o 7228, ]I, HEYEEZ VT S SEIRMENC 22 % 22 H B %
B2 TAR=Y Y IPABETH 5 Z e RSN [113]. X &I, KRB % ReoMha Lg%
BHZHERT 2Kk LT, BELEEEEBRICHN S 2y ZVEFH LEFIEREIN [114]. Zh
SHIERAUTERFIAEEA X =Y Y 7B XUOHILUHEA X =2 v 7 i d. ZHE TONHERA X —
VYT, MBI I N IMERE - 2R T 5720, MR SRRD 2B ELE L L. Z
UKL, ZERPDEEFASRIC & > THRIAZBHMDO AR R — VICERT 2 2T, BRRERE L § 23 EEOEH
A X =D FPMEREINT [115]. ZREAPIAEr D, B—HRICXIBRENFRTAA=I VIR
FH Nz, HERDPBHbI N2 25, BEOKMHEA X —2 Y ZFRCB T, FHEEAHE A
A =DV ZERAVEFEPERE Ko T3 [73]. DI, RiaicBWTd, FHIHi SRR, SEHERE A
R =D Y IFEENMEEA X =PV T RIET DL T 5.

HAREA X —2 > 7%, fthod SPI & Uit 7 4 MR TW 3. AR &k 512, BT EMHEREA X —
Dy 7T, RERNHEEE R RV TIEMEBERIC X > TRIBE IR W=, 4 XD 5 DT HE)
FNCkREEN S, —7, HEEZH WA X —2 > 7 Tik, BERIOETFOMHBEZER L2 WzD
MHEBICE ) 4 XSGR EENE. LirL, HECHCLNZHE R = 7 4 X5 2 ERE
WHB % R 7207z, G & — Y L HIEEESOMBEEZE U T, /A4 XS FEEMICHRES R
% [116]. ZOMEICED, HHEA X =Y 0 3 A ZOZVEEBE TICBW T ENRA A=V 7
FHETDHZ ZeHRINTVS [117]. BIZE, KR5S FORENREZ VREERBIN [118] ®, a0k
EVAERNBIZE [119] NOIEHHE S TW5. Frie, #ELIRIALEORKICBIT 5/ 4 IR LTHE



WEANZ MERHRT 2720, TERD A R T TIHMGOEUSDINEET H o 7 BEUAB L OBIEICBWTD, AR
THZIEIRINTWS [120]. F/2, YV TADOLDEEN /A XITHBNATLES X574 SN 1
MTOFETTHOHEMETE S 2o mEERICENS FETH S [106]. 2D KS51T, HHEA X —
YF, MBREBERS LYY Y B0 TENMREERIET 2 22 25, ERREDDZ R — 27N
ROV TEBVWTHHRTY Tu—F e h155.

—77, JAEBEA X =2 v 2%, HIERR L FRE B W CHREDS D 5. B OEIE, 2R ORIE
BErRB2HTH5. SPLIZBWVWTIE, TN TOEHZENEG—ICHAINZ Z 2 2R LTED, HE X —
VZHED L SPI T, BB FBDO X -2 X2 HEERITS 22T, BEMNICE £ ZORVERE NI
BOTREREGEMBRSAREL 2 5. —J7, Gl TlX, B2 —r 25 Y X AET 2720, 2
R —ICHIAT 2729121k, EREEKE BE 2 RARKIRE L 25 [121]. 207D, DI EEA
[ D HIE CIEARBIEHE AR 3, ME % — Y OR D OFEPHEERERICEEATLES. iz
X, 128 x 128 pixel F2E O EI§% S E ISR T 2 72911k, BTEORHASBREY X 3.

FAHEE A X — 2 > ZOHPERBEMED 7 7Fa—F1%, S&— U EROERL & B IR A O KR D 2
BOAD D, EEZERYEHFHEr LT DMD (Digital Micromirror Device) 25FIH X TWB A, ZDZE
PR IIRATS 32kHZ BRETH b [122], HIEICIIER 2 E S 25t Hr 2 5. fhoZLHETL LT, LED
TLA[123] 7 2 —ART7 L A4 [124] 12 K 2 @R AL MSE S N TV 20, ARG o8 I NI HIR DY B
5. A X =2 v ZOPERMEHDO D 5 1 207 Fu—Fi%, FEERICHERIERZ Db D% HIR
T2 TH3. Fiz, BPELRBHEKZES TilA e LTE, fidoEfHt > v 2 (CS) 2#HAED
BB [121] %0, REYE 2R OZERE [125] HRESh T\ 5.

H_OBEE, HEBROMRETH . G THIBR I N2 BEROREL, fELIRHOMBEGREICIRES
% [126]. T, EARERRAIEZFERT 27201201%, ZHUSHIE L7z @R OGE LIRS E
7%%. LU, BUTO SLM OREIX SK FEETH D [127], 105 LI ORENER XN 3 & 5 RIEE%E
MR T2 IE T TERW.

DEDzens, MHEA X =YY 72 ERBEZAR— R 0¥ Y NGHEAT 2 7-90120%, HIE 05t
C BRECDOMN AR RTH S, IHEFEHT 272010, HIEEEL» LYY IVERD A% EEEIC
HHL, KT 2Rk eN2. ZOBEFERZTFEL LT, 7—2HETI3REDHROM
BN ZFEEPEOWEHANEETH .

1.22 FEEZZAVWAE

2025 FEBIfE, AL HMIEZHRDTICB O TERAMDIEATED [128], a4 ¥ 7 7 RE¥EBH O
EHESEM D00 5. 2023 FD GT [LEY I v MEKE S T AL Eli o1& & #H] O Wi A%
S, EEIHA Y UTIAE Al 7R AR INZ L [129], Al Effid—Mttane 208i2E L
TW5 [130-132]. AL ICBET 2 ERIEEEMICHH— N TE ST [133], LR [H 2 BN L THI
PNz 73 ) X a2, Paicid TARNICICHS 2 INHARE) 263 2 dH 5 [134]. Loy
L, BEHERTIELAWSRTVS AL, FFEXRAZIRHE L7280 AL TH D [135], FEHHE T D E
FICZOHIZIZET 3. 3B, Open Al tEDEFER! Al TH % Chat GPT I Al HEOEFEEZRD L, o
VEa—R—Y 7 b 27 HBABOHBIB @ Z 23 2 X 5 I S NFMPI X7 20/ &
BERD S, FHEHICES S LWHAZITI 2w AlOREER2E X 22, ZOERD—BRIICHWLNR 2
AlDERE S 250 LARWV. KRESCTHID S BEE L, ZoMRRD AIFMiO 1 5THDH, KRED
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T2 LR E T BEINCEE L, SRR, HEBXUCERRNIZRIET 27 VIV XLHTH 5.
EETIE, ZOEWRE e PULIERED &, EGEEE, BHAS#B KUCBRASHLEICNZ, vy rr®
FHAIEFIC B G EBICIER LTV 5.

GREZEEE, BWEE 73 ) XL0—FTH 3 [136]. HMEEIE, 25X 227120 L THRNZ 7 n
TILCEB TNV RLDEKEZITOT, AV a—ERT—X0o¥ BRI o TET VR RELT 51
MiCcH 3 [137,138]. ZOMEICKD, A3V X LD FREBREEREMR X R ZITHLTD, F—
RSB TNTY XL E o THARRE L 72 2 AW E DR R TH 5 [139]. B 2HWE 7130
ZLDHT, EEFEZ, ZEOBERET =2 —F1 3y V=2 My LIEEFIRTHD, Hil
RETNVEZEMNHAEDLDES 2 TEWRBANZEHL TV [136]. —2—Flxy bU—=21F, A
M OMRERDMEMAICEEETT 1943 FIERSNZETLTH D [140], %/ —F (ma—mY) HE
AT EDANZZIIMYD, LA 2T > TROBIEET 22D, 2 BO=2—-F 1%y bV —
7 TIIARE D BERTRE R BIRE L R 2 0 S [141], T RBOBEROFTHERFHO3 D=2 —F 1% v b
T—2%H0W3 2T, TROMBUZLELATRETH 2 2  AHERMNRIN TV [142]. L LERDS,
FEEIIZEEROBFHIEARRLEBOIRNEE L W o 72BN D 2. ZhoRBRT2FEL LT, ZED
2= Fy N IHMEINTE[143,144]. BRIELTHZLT, Bohl "o X—2BTHHE
HEZ BB R R R S RIS R - 2 RE o D, TREYE OB R REGEN B RIE X 1L 5 [145].

GRIEE, BIHLRE, RS MERER by IS O K2 RIF T &7z, 2012 I, BEHREEHAEE
#i 5 ILSVRC IZBWVWT, HEBEAAA=2—F Lty 8T =2 Th% AlexNet DIER DM TEE 10%
LRI ZMHRERER L, FEEEOBENEDL RN Z L 7257 [146]. BASELUM ST,
RNN (Recurrent Neural Network) % LSTM (Long Short Term Memory) 7% ¥ ORI F — X &5 EF L
MRE XN, 2016 1213 Google BIFRICEE A EN— 2D FENEAIN B LY, ERLIHEAT [147].
2017 21, BCTFEMREICE D Transformer EFUDER XA, Chat GPT FHITRF XN 3 K S 5B
ETNOEEREM e UCTAKTEHINT WS [148]. AR OTEFICE VTS, 2021 i3, X878
DIAEREE TR Z1T S AlphaFold2 23835 L, #EEYFTTICKER T LA 7 AL—% 75 L7z [149].
DI BRI LT, HEFEOFRBICEB LWFEE 5100 LT 2024 12/ —~VYEEB L O
I =L EEPREGEN72 Y, EMINC D REEEOEEDLFE#HS ATV S [149-155]. 2D k5
12, REAEBANIEGRE X OB SRR T TOICHZEC THREICRRELTE D, Bk 23806
PO EST, HHLBROMRE - FTHNCDEA SN2 HMANLELL TS, ZOERBAES L#EG
MoEEE, £y Y ZRgHl e o RO S ICHFIRETH D, EFETEEFHHIZEICE T 28
HbMEtahtns.

SR EFICBVTIE, BEEGHIDHE TORANEATHS. flZ1E, TBEH[156], FY&XLEtnrS
7 4 [157], 7 ZOVEIGHHBEE [158] 72 ¥ 0D 2 KICHE{GZ W= FETIE, Fi2/ 4 XRESLHEET O
KECER STV [159]. —4 T, MEHHoTFIcEVWTE, BEXEOENIRENTHS. =
RHEEE, WEBRO ML=V T4 BRI T2 e PREETH B HCH D, PL—F LY T4 kI, IS
7 8103:2019 o JIS GHHIHEEDER T, M4 DRIEDFHE» XI2HE T2, UNEREE L, XHFHL
SNTRIEZRBEL T, MERMREZSREECREFRMNT 2 2 e TE2HEMRONE] 35 [160]. 15
AT R 2 BRCHE SNl 2 BT 272012, 22N ORIEMED FEFIEHE Tl > TEE 2 £
HTB ML —HEV T BAARAREEHTHS. [161]. #EROFHEIZ, WEEFAMICHESWTALLH
N OBEGRDPIHRINCER XN TE D, ASTORMED X H 6 1 OARHED X % RN T 2 Z & 2SATRET
H5[162]. LoL, BEFEETATE, ANDPOHNCEZBEN T Iy 7Ry 7AW THD, HED
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Bz NRICPRIRATRE R TR TR S 2 2 LW [163]. 2D 7=, HAMEICHT 2 Rifh X DEER
AHESEEETH Y, PL =YLV T 1 OHEFEDMIHET S Z & 272 5. Explainable Al %% 7LD AHEFEMEHE
TEICBE T B8 [164-167] DD ATV 2H3, B TIEREFHINCLER L AL OEHEN - EEmME2 R
FET BICEE s TWRWL. 2O XS M2 s, REEEHREGBLHEZFOLL T 25HIICEEHTH 2D
D, FEERIEDRD 5N B MEEFHIANDOISHIZRENTH 2 DHEIRTH 5.

1.2.3 FEREZZRHAVWHHEBA A= J0E&E L

JAHBEA X — 2 > 2B B RERBOEMZ B LT, BEEEEHVMENERICED Hh T
3. ZOXSRFIRE, BEEFEEAHEBEA X —2 2 (Deep Learning Ghost Imaging: DLGI) ¥ X
1, PERDMBHNTIER RO 2 ¥ 7 mEfRE e L TEHZED TW5. DLGL I T 2 By OHE
X, 2017 AT, 2MEEEE T =2 — I %y N =27 ZHOEFEMRRINRE [125]. 2O
ZE T, BEIRPUSH LT 5% ORIERETHE S KRB RFEMRGRE v bV —2ICAIL, EfERx
FpEHNTE I ENL TS, HERD CS LTI, ERMD 10% REOHIE A HRERA » X h
TW/z72%, DLGI X CS & g U CKIEREIEREOHIIRE KB LTz, 2Dk, BAAA=2—TF Lty
Fv7—2 (CNN) [168] % U-Net [169] &\ o 7= BEFDHEGEEHE 7 V2 A L, MHBEEHEIC X o THMERK
SNEGEFEBEFEETVICANL, NRBEEZEMEIETT 2 FENZERRZINLTWS. 51T,
2019 1%, MHBERHENC X 2 G HMER 2 N &3, HERESH» HEHENRBREHIE ST 2 ET A RES L
72 [170]. ZOFETIE, FHHEGHEBRETEL 2EOMEL R TE2F 81D D, HEHRD 1.56% &
WS D TARWHPEEE TEMEREREREEG LN ZeIREINTWS., LD, Bb=a—F0
Foy b7 — 7 REEREA UG [171,172] 2, BEEEH [173], 7 7~ EEEA OB [174] 72 ¥,
DLGI £ DS HEFHIZHIER LT 5.

DLGI ® % 5 —2DWfgEEf e LT, —M(bMEER 4 Xtk L2 BN L7 L OREHET S
N3, Hizg LEEEEALETI[175,176] R, /4 ABZVERE FTHR2WIIEBREIC & 2 R
HAE L7255 [177-180] 3G TWS. b D% TIE, FIBFOEGUHEE T VERHAL, HIE
ENEEBREEND /A4 WS OREREELIC X 2 BREERERETIRA LN TV S [181-183].
X512, AIEBREZDbDEFEEEEETNO—EYE L TR Z 205t [184,185] %, HIERFEERYITFT— &
LTk, BASELEE SV 2EM T 20157 [186,187] MG XA TWa. LA L, WIROWCE
WTh, HHBEA X =Y Y ZOFHPNRFHPMEE TN EZERB LAy b v =i Hoirbhtwn
VAQIAN

PlEo X512, DLGLX, HIEEEBOHEIRIC X 2 AERF OREMHEP, /4 ZBRE NICB W 2 S E 2 G
HERZHWNE LT, SEJERTEMEREIATVS. A5 EIR, BEFEOEGUHEEF L Z
WHT 2 Z e THIERES» SXMRGEEEREICETT 2 2HELTE L. —HT, BHEA X—D V7
B 2 REE(LIRIH O REHeHIE R R M IE A L2 E 7 A RGHIIE L A Y TTbRTuiwn, FRg, Y
R A X —2 > Z7OHllETlX, HELBAOEZREY 4 XU ROEBEREFR b S, WETF—RICEZ
NRVIERZ, FEFEETUICE->THETLTI I 3NEETH Y, SREGELEHN L LZRIRRE
TH2DMBEIRTH 3.



1.2 BEEEEZHWEHEEA XA —D 0 11

1.2.4 FEHHEBIEEILERBAIC & B AIREDET

MBI A X — 2 > 2BV TIE, HEINEBICHESVTHNROZERIEREBRERT 2. LhoT
B 2R HF 0N HERBENE—THIURX, TASEXNT 2 I IIRAREETHSE. Thbb, Bk
B0 R 2 XHITE 2005 FIREE, FHECIEAE JIEES & oI —BER ISR RDFEES 2 5 THRE
X3, WEEESPERZMNRET—3T 2 FHEE, #EtEEY, HEXSOZDHED 2 DICKFITE
5. HIEDERE LT, BADMEICHFET 2 MRHFE—F 3L - RAREOMAG DE 2% 21K
% AWTZETIE, JEHEMARESE(LIEEH (Non-exclusive Structured Illumination) & &3 5. JEHEMLAIHE
ELRIA T T, MREICKFELRVHEEESMEON2 Zeh o, MERIALAIEREE L ofic—&
ARG BERAIR D AGHAIREIMR RS 5.

b HEARR 72 IS (LI O BRI, ZEREIRATTEIR T & 2 RN O FEHBE DA —kTH % Z
ETHD. HHEA X =D Y ZOUEY R T L TlE, HELBIHZREELEREN L ORI E I N
5. ZOrE, WEloSX— Y ORIEZEMIIG—LRIRIAME L 5. L oT, 2R MEISHRIEE
LCh, FA—EHENTHIIE—OHEEEIEONS. ZOME, HENTOMNZAIEDE NI X %%
BNXREE Y 72D, RREIREEL X — Y DEZEY 4 L > THIRE N 3.

B DHEFBIIFET 2R TH - TH, RRIINCE 2 512 BIAEE DA S DY HFE—T HIUIRH
72 IEHEM RS (L IR L 72 2. B7R ZAIEICTFET 2008108, Mt 2 — > o Z(kicxt L CH— D5
ZME 2T 2558, MEGBEXA 0 R D #AKNE L 72 5. #iEl X — > OIS 212 L7k
HMoT, BRZHEZEDNRHE—DORIFREDHAGDOE 22T 2HERIETT 5. —75T, KEXELZH
WA A X =D > 70D X 5 It & — > OB DI GE ORI RATER T,  oMEIZEE
L%, BERR— N K B BIAZAT ZXIEHME O REIIRIR T X 223, ZD—T/ 4 AMEDK TS
TRIHRDOFEIE R + DR Vo 7RI DOFEHIET 5.

SIS TH o 72 LTH, HIERICAET 21350 X 12X -> THIEGESNERZ DAV, #&AlH
Wt 72 255030 5. JMHBA X =2 ¥ 7T, MHBESHREROIGEICE SN M, HERDOS
E FAFREOLERY, SEIFRERCI > THEMICESDEREL S, ZORE6D0FICLD, B
ZXHUCH L TARER ZHEEEDB LN I T TH->ThH, EEOREMTIEZDENEE HHERES
ME— R ZAREMEL D 5. T, HREFEEZHOEEEA X =2 Y 7 TREHEEL & — VD in 2
Es, 5D EDHELZITRT V.

D&, KA X =2 r 2B AR T OERX, FELRIHOIEHbEE © HIEEES DS
DEICKAIENS. ATEIIHEELIRIHC X o THIBIFTRET H 2 —77, BEZIREKETD D HlEIKET D
3. %9, I 2 ruckby 2 RATEMZIEPE IR LT, FA—ERANORIEE R NI 52k
TRRTE S, EHFRFUT DA X =Y v 7% HIE S @REEMFIRICB VT, OB D Rr 7k
6 & B REERIBE1F 2 FEDIL AV SR TWS. R, BFRGFEMETED 1| oTdh 23— TRTEL
BMEE T, 1 20FNTFICK D2 RT gr o0 FAB2 SREICREL, ZoMBEFEREZERL TaEE
BELBERET L. 20X, RrBr o SREEEROMUNTETHSZ. ZOFEZHEIEEZR,
AW CRMECIRIC R 253 2 2 & TZHEBNCRATEH S 2 EBS 5. OB X —> v 7
WHBWTIE, MO 2 BB TR FUCGET 2 £ 2 DIRIEAR ST 5. EFHREEMEETIX, [FEHTRS
DB X > TEPRT 5. JHBEA X —2 ¥ 2028 W T BT R FEER £ MM U - e iR
T, X5z, EIRAROHEEZIIRVRA T — L OBELIBIITS > T, MERMED S Hh7zIEE N
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BICNREEET 2 22T, Ry MEBIAZERTE 2. 2o k51, BAZERMICRZ7IE5 2L
T, [Fl—EZEN OB A7 B2 2 A RTRE & 3 2 R ARSI =B S h 5.

RIZ, Hig 2 EE0T 2 BAEIRE D — BT 2 IRV IEHH RIS L TIE, T v X a8k — VAR
HEAWY, B2 2 EERTRIEEZ(LS B L 20w & 5 It & — > 2GS 2 2 & TSl HE
TH5. ARFKETIE, JHEBEIA X =20 2B 2 ELIRIAD 2 ETRBI NS Z L ICEHL, 2 #EER
SERICHT 5. 2ERERE TR, BP0 FERE 1D 2METREINS. 22T, 1 DOEAZEHTS L,
n EOMEIAICE D, ZOERICHFNEINZBEI O 0 £33 1 O LTRHTES. b
D% BIAIEICHNZ ¥, ntfiD 2 EBE ARTIENTES. TOXKIXEZXS L, BRIERIT S
HABEOMAGOEN =BT 2 X, LT 2 2 EROEI—HT L2 tAFRTHS. ZORMLFMH
L, Mgt & — ARSI R ER DR 2 2 EROMEEZRT X5 IC&ETT 5 2 T, WINPTt
BRGECIRAZ EB T 2 2 T&E 3. Zhuck D, B2 EEMTR—ORHABREOMAGDOEEZZT 5
MR L, EHEEMEOR EBHEFTE 3.

—7T, WEGESDOIRXSD XL T, BHEZIRIHRGHC X > TORIARETDH 5. WERFSDIX
5oL Y, BHEY¥EET N L BHEIIFHEPZDD LR DTV, EEFE I & AHEEMHIE, —RE72 ]
ERTEP ZITMMZ T, ETMHRT 2HEERTHEDP X Z2FD. 60Xk RIERENERL, HEEMD
BEHBIEBET 28, HENEE S TP IHEINT 5. Lidio T, #HEAHD X 2 ERMFTHET 2
e T, BEEOBKWHEEMERHT 2 Z e AREE k5. £ LT, 20 &5 BRI BHEEMEERIN T 2
ZeT, WELKDOEEELZA LXE5 IR TES.

HEERHED X OFHMETFIEOF TS, (FEDETMSHHRRE TR I X FOBEWFELE LT, 72X MHE
REDD L. ZhUE, 1 DDANCH L THOTHPIEEZMRATZERD AN ZERL, ZhehofEsR
DIEHOZEBET 28T, NlEIZIZFHET 2 HETH L. HEDHE»THIUZ, HINFIRT 225,
R IGE ZHEERERIIESDENEL B, LA > T, ZORXSD X0 ST DR, X % EEIMICHE
fiC& 2. FEEPEEHOHEEA X =2 ¥ 7T, WEME? S NROFEEREME L, ok
DWTHROGEHET 2. 20, WEMEEZTSLTANT 2, FEdhth e HEEDOXT I E R 5 2
5. 22T, FIEMED SHH URIERTH 2R~y AICEH L. BEEEEFNVICANT 2 HIEM
WEBZMAZ 2D T3S, K~y Ao L TEEBZ M TER L ZEFERE~ v 7120w ToHEEHED
WEOOERFET 2 2 2T, WEFEEHWINMHEEA X =2 Y TOREERHE» DFHETE 2. ZOHEE
D E DFHIICEDNWT, IR R HEEMEZ RN 2 2 T, MEOEEERZR LT 3.

1.3 MHZEOEHMW

AWHFED HENE, ZEfH3B & RIS 5 2 R AT RIS (LIRITIR 2 FEL L, TREFE & AW e
BA X =Y Y TRmMBRE(T 22 THE. KN, BERBIVEXRTHICEVT, RKWBEEIBIFES
BN D RN— AR EERE IR T 27200, SREP OEBBEREEA X —2 ¥ IO EE
MREE o TS, EEFEEZH WA X —2 > 70, B—ERMRM & SR w25
ETHY, BREPOEBERA X I Y IHARETH L. — /T, RARDZHNRITH L THERESHE—L %
2 IEFREARELIRINC K D, JIEE S 2 5N R 2 —FITHA T 2 72 OFAIRELME T 3 2 BEDFE S
5. JAFTZEEIC BT 2 IFHMEIC & D, F—HEEADMEI R o NS REEIFIRENS. £/, Rt
RIS 31T 2 IFPEMIEIC & D, B 2 MZRICHET dNRVBRT T S S EHEEREIFIRENS. 5
2, WEDFSO XX PR kbR v dH b, HEDEEMEIMETT 2. ZhsDFEITH L
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T, AR TRRFHHEARE(LIRIE RS 2 2 & THRRZRID, RO SV E R EHEE 2 F2 8
5.
BARRNCIX, IR0 3 REARFZEEOHEE T 5.

 JEE IR ZFI U 7= 22 HE C 0 R A R I RGE (L IRITIRIC & 2 SR L
o 2 EREREUCHED T T O /PRI RLE(LIRIRIRIC X 2 AL EHET RS A b
o LEERE Y v T AT HEE ANl & RHIRIC & 2 IEPEMRAYHERE DFRIMC & 2 EREMERA L

AW TIE, 2o 3 DORFTHHMBAIRE(LIRIAEICRE 5 2 BRIl 2 2 2 hBi%E - MEES 2 22T, i
BT 22 ABLUORZDIEERERD 2 fUSH T 2iAlEEDR Ly, JERSDIXS D ZIER T 2R H#HEE DK
Bz, 2612, ZNoZ2MAGLES I T, MBMRELL LREYEZ WA X -2 v 7
X B MINRIEREDFREZAT S . FREREIR D BB LT 19 LN OMIAERCHIE L, #E(LiRHO
HRR 2 2 5 MR THEZ 1TV, SEP OEBRELRRIA X =Y Y IR TEL I ERT. JHUTX
D, KB ORMRBE IR EEA X — 2 v Z R RBT 27 aH Bt o8It 2 Bis S

1.4 KX DERK

A&, RATPHBATRE LR DIRRERO DS, ZEHEE & R 72 RIFT PR ATRE L IRIHE © #HEE R
D SFHIC OV T ZNZIRELZ 1T, 2052 ME LI@BREA X -2 v T ORIAZITS LWV 5 ih
THRENS. RO ZN 1.3 1R,

552 FTIE, RIFTHERIRE(CIRIEE 2 8 A U TRIE 8 2 VIO A X =2 > 7 D 218X 5.
9, WREFEZMOIOHBEA X =2 v P OREARFHZIARZ. U, BREFABHMEE TRV 2 L IER
T Bk AIED TR 2B < 7 D /A EE (LIRS O W T, 2RI 3B & KRR E 2 539 5.
oI, WERFSDRSDZITERT 2 IEPHBAIHEE 2 R H 5 2 72 OHEE D X FHIiEIC OV T bk
N2, REIZ, ThHDFEEZHAL, GBERELLLREEE 2 WA X —2 > 720w Tib
N5,

%3 ETR, JEGHERIZ AW 2= EBICE 1T 2 RFTFERRE IR X 2 #EEREER_EI2OWT
BB, FF, EEERAZAVZIECBWTHEECHEREBERRPZENL e 2Ry, RIS, EE
EIRHROERE i T 2 O DRBEEEET AV EMETT 5. 2 LT, MatiiRi o157 MR 2 FLIc s
LR L REFEET AV ZHWT, IFGERINOAE CoRMBRELE RS .

04 FTIE, 2ERERGICHED MR B 2 BFTHHATRLE IR X 2 (L BHEERE O m_Fizo
WS, 2 ERERECICHED RN RATHEAY e R & — 2B L, 7Y X anx—r e itttz Lt
B35, £, ZEARX—VEHERLT2EARKX -2 4 XMtEoETtEhs Z 2Ry, 2L T, Ul
Rt e BRI LT, 2RO R — v PP X D LEHEERELN LS5 2 e bR S,

BSETE, MEIXS 0 X ITRERE U CIFIHMBAT & 72 2 HEEMEZ PRIV 2 72 D, HEE D S FHEICED
{TANRY Y TRBEES 5. £3, EFERE~ v FITEDWTEHIi S M 2 HEE T ED S & HEE D IERR DB
B N%. £, FE~y TN 2880 M OEEEZRET 5. 2L T, #HENHENSITESVE
TANRY Y X o THEEDEEMENH T2 Z L 22T 5.

BOET, BIENOH S HETKHILLLTEEZME L, RATPMUAEELIRIIEZEA L LRE
FE 2 RN A X — 2 > 72 X B [RIE D B R e VR DAL BRI 2 FGRES 2. £F, AffHE
FEHEE D 728 D Pixel-by-Pixel #EE12 & 2 @REREE T V2R LAE S B MR E2AR S, U, IR
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oD b7 v ¥ > ZHEBIC & B MEHEEREOMALFRZ R, 512, HERICBT 206 2 HHR LM
ERMNT A4 XMz aHiis 2. &R, YV aryvzIo EOXRMEREER L AR ZBR 5.

B ETIE, AFROKMRELRNS. FEILRGoNLARZ E D, AMREORREBND. K
2, RO RBEE BN TARHIEORIEL T5.

Chapter 1: Background
* High-resolution sparse sensing
* Deep learning ghost imaging
* Decreased estimation accuracy due to non-exclusive measurements

g

Chapter 2: Locally Exclusive Structured Illumination

* Out-focused illumination for high-resolution

* Non-overlapping pattern based on the base-2 numeral system

* Evaluation of prediction uncertainty based on neighborhood feature maps

Chapter 3: Chapter 4:

Improved resolution Improved accuracy

with out-focused illumination with non-overlapping pattern
* Revealing sub-pixel information » Comparison of pattern designs

» Comparison of deep learning models * Verification of noise resistance

Chapter 5: Improved Reliability based on Prediction Uncertainty
* Consideration of a random number distribution to be added to feature maps
» Filtering with prediction uncertainty

Chapter 6: High-Resolution Defect Inspection

* Construct pixel-by-pixel model
* Defect detection experiment with 8K resolution

g

: Chapter 7: Conclusion

Fig. 1.3. Structure of this thesis.



E2HE

RFRHERIBE L EREREZ EA LT KBS
BZRAVWTHEEAA A= 2T

21 8

ARETE, REEEZHWIOUHEA X —2 > 2T UTRAMPMBRIEELIRIEZ EA S5 2 LT, i
EDMARES L OEEEZ A EXE, SRBRELEEIT 2 FRCOVWTERS.

9, 22 8T, EEYEEZHWIOMUHEHBEA X -2 Y Z7OFEI e BT OWTHRNR S, ET I, K
A X =2 7 OREAFMZRL, MELHIAE B—mEREICL > THRBZHEMRTE2 2 2RT
R, FHBEA X =2 > 7 OMERERA ISR T 2 REEE > 27 21200, REFEETANANT —&
hoYdr Lokt T 2 EHAZHAT L. 51, KEEEETVOBSMBER L, SEHEA
A= 7OMREYEHNBE PO TD L. ZLT, REFEZHVOMHEA X - v 7 2mdts %
JFEZRL, ZORS e U TIPS LIRINC X 2 AIRE DR T & Mt O ME 2B 2.

DL, 23 HITIE, MBI FEEEDOE T 25T 2 72D ITRR T 2 RFrRE LRI O W T

AftEA T S, EEINRATPHMER 2SI 2 B 2 FEEHMAT 5. K, MLz 2 ERER
FRELTRANT 2T, RAZERICHN L T-ERRALHRZED 4T, RHENLRATPHEZ#ER S 5
FEz2dR2. 2512, WEBSITEENZI 5D XX DRI KE & 72 2 IFHHEAHEE I LT, 565
R~ v 7ICEDSOCTHEE D X 28 BAHl L, SEEOEWHEE 2R 2 FEE RS, RRC, 2h
5 3 DOFEL RIS (LIRIIEZ W5 2 & T, MELIR e AIEF S OSBRI —EMz
7o, BMUINROSRBE N OEEELA X - Y TR T5 L 2RT.

2.2 FEFZHERAVWENHEBAX—-C VI DRIE
221 MHEEAAXA=— VI DEE

FAHRA X =P > 7%, BRI RHEEOWw S XD 2 KB & 5% HHR T 2 FIETH 5. LA
A=YV ZOFEHEER 21 I1RT. 5, RENRIHMOAAX— 1,(x,y) ZHRAT 2. X2, B—EHE
BHIER % O TR R 2R & OBELE £ 7213BEN e W o 78BN B, 2T 5. 2L T, RIPDL®
5 E Al (x,y) LD S E AB OMBIGHRE 21TV, B ROBEFMKT 2. i [BIHOHIE TH—HER
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FeH TR 2 0B (55 B, 1,
Bi = // 1(x )T (x, y)dxdy, @1

TREND. TIT, Li(x,y) i BIHDOIRIAARR = T(x,y) $RENROIEEEES R ERT. Fiz,
i B H QREIAYCEE 2 e DGR, ZRPhoFEEEr 5 X2 AW,

Ii(x7 )’) = <In(x’ )’)> + Aln(xv J’), (22)
B; = (By) + ABy, 2.3)

TERINZ., 22T, (A) IWHEADOT VYU L%, AARBYHEADOLERRT. Z0k &,
HEBEE D G (x, y) 13,

G(x, )’) = <Aln(xv y)ABn> 2.4
= <In(x’ y) - <In(x’ y)>><Bn - <Bn>> (2.5)
= <In(x’ y)Bn> - <In(xv y)><Bn>v (2.6)

TREINDG., Zorx, ;X (2.6) OF 1 HIEEHIROIERTH D, H2HINA 7 RAHEEZRLTVS,
FEIRIEIC & » TIRE N R OB R TE 2 Z L BRI 72012, (THlEfofs» oK (2.6) %
EZD. NHD pxqg DBEZEFHEOBIAARR—VEBHEITAT 3528,

11(1’1) 11(172) Il(p7Q)
o] BOD L) | 27
IvLD In(L2) ... In(p.q)

Structured patterns

L(x,y)
Hlumi.naﬁ
- Reconstructed image
Sample T (x, ffll G(x,y)
5 o I:h
— o AL, (x,
2= 11l W e | )
a=|ll 3 Y Correlation

Calculation
A

4=l

8
s=1 - Response

light 4By

Detected signal

detector

Intensity B,

Time

Fig. 2.1. Principle of ghost imaging.
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TREINDS. ZorE, RIHES B3,

T(1,1)
T(1,2)
= : (2.8)
T(p,q)
ik, Lo T, R (2.6) 13,
G(1,1) T(1,1) (In(1,1))
G(1,2) 1 T(1,2) (In(1,2))
= . =—I'T ) —(Bn) . , (2.9
: N : :
G(p.q) T(p,q) (In(p.q))

L7425, B 1 EMRENROERZF > THED, H2HEBBEHRIIBITE N4 TRAZRLTWS Z LD
HThhrb. X5, HF1IEZ, I'T ONARTE XA ZN TR CMHEE 725 & &, R0
DENFERITHMEREIND Z 2R LT\, BHITH I PEITIITH 2 & & Z D&M 2 L,
MEDOEZEBEHELVWRAZIT oL L ERBREMHREING. 7THXI—NRE =R T =) TEK— VU PF%
YL, ERRSR—VERFFERAZ - eEN5. —AT, 88O HGPr T Y TV VIR fFoTI VX
DITARR = AR T 2B OISR IEL T 2 2T, MARDE L CIERARS B Zh 2 OEICIUR S
%. X (29) O LITT XA s LIFMARSY n i3 CHRT L,

1 1
NITI = N(S + n), (2]0)
»I2(1,1) 0 ... 0 0
0 2 12(1,2) 0
s = : " : , (2.11)
0 0
0 0 . 0 XIXp.q)
n =
0 2L, 1D)1(1,2) .. 2 L(LD)L(p,q)
S 1(1,2)1:(1,1) 0
S 1(p.g - DI(11) S 1(prq - DIi(p.q)
2 Li(p.q)l:(1,1) 21Li(p.g)1;(1,2) ... XILi(p,g)li(p,qg-1) 0

2.12)

%%, ZORED, MAKT s 3V TV Y IIROEBI M E 2R LLAMN ST TV VI UED
S, B n ZHNL L7z 2 O DEBO OO SV Y T U I LEDOFETH B Z e b
M5B, DIz, FULMRERD S IEIH 2 — VB OFE R L TZh 2 OMEEICR L, RS
DEHHHER I NS .

METERERICIE, BMEXEEROREDR RB XU 4 XOBENEEY 25, HAEA X —2 > 7O
FIZBVWTE, vVF Ty 7 23R B L OMHBFEIC X o THROHE LK TE 5. v LF Ly 7R
SIROMEZK 2.2 1R T, HHEA X =Yy B s RIBESER 2.1 tRaxhb, —HT, 20T
BHIERZ WA X =2 ¥ I TIIKHEETHIEBE B;(x,y) ZHET 2729,

Bi(x’y) :Ii(x’y)T(x’y)’ (213)
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&b, Ll o7T, B > Bi(x,y) IFHLLTH D, JMHEA X = > 7Tl 2 Zootidsz iz A4 X —
Dy L TEWHIERFSE2E o0 5.

iz, WERED ) A K 2HERZEZ D, HHBEA X =Y 2B 5/ 4 X%, BIPDLcEEh3
J AR Ri(x,y) EMHHRICEENDE /A X R XHIOHNE. BIAKD /) 4 XERIZ, HFEOWS EE X
URKDSERERD T oI 3. £z, MHKXD /4 XBERIZIZ, TRAXOWLE, KAWL E, MK
DOHEENR, O EB LU ay M)A XDOREEHIFons. i FHOWECEENS /4 X ZhEh
Rii(x,y) BEURp, £ T2, /4 XEGALERIRR = I i(x,y) BEORHINEE Br,; 13Z2hzh,

IR,i(x’ )’) = <Ii(x’ y)) + AIi(x’ y) + <R1,i(-x$ )’)> + ARI,i(x’ y)’ (214)
Br,i = (Bi) + AB; + (Rp ;) + ARp ;, (2.15)

ERED. 25T, HEREE Gr(x,y) 3 (2.6) &b,
GR(x7 )’) = <IR,n(x? y)BR,n> - <IR,n(x’ y)><BR,n>a (2.16)
YhE. ZIT, JAREEGALREARZ—VBLU ) 4 X G ARBREYGEE Zh 2 OFEHEIT,

<IR,n(x’ y)) = <1n(x’ y)> + <R1,n(x’ y)>’ (217)
(Br.n) = (Bn) + (Rp.n), (2.18)

ThHb. LENoT, JAXEGAFRHEARRZR—VBXR A X E2EABHEEE OO I E
(Ir,n(x,y)Br.n) 13,

R.n(x,y)Br.n) = (Al (x,y)ABy) + (I (x,y)Byn) + (In(x,y)){Rp.n)
+ (Bu)(Rrn(x, ) + (Rp,u(x,9)){RB.n), (2.19)

TH3. 57, ?ARX2EARBHARNRXR—VBIUP ) AXZ2E5AFBENEEEOFEYEOM
(IR, (%, Y)){BRn) 1%,

(Ir.n(x,))(Br.n) = {In(x,y)Bp) + {In(x,y))(RB.n)
+ (Bu)(Rin(x, ) + (Rpn(x, y))(RB,n), (2.20)

£%%. LkdoT, X219 LUK (2200 2K (2.16) iITfAAT 2 &,

GRr(x,y) = (Al(x, y)ABy) (2.21)
=G(x,y), (2.22)
(a) (b)
Single-pixel
detector
Noise level
Incident light Incident light

Fig. 2.2. Multiplex effect in GI. (a) Detection with 2D sensor, the signal at each pixel is lower than noise level. (b) Detection
with single-pixel sensor, the signal is higher than noise level.
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eRD, JAXEEERVHEBEBEB Y BT 5. Thbb, BIPEOwS X HED RV 4 ZISHBEEE
WX THEMCREZINS., 2O X351, SHMHEA X =Y Y X 2HETEALF T Ly 7 AFRIT X

DEWEEBERSLNS Z AT, MHEFHEICKS /4 XREMTON S 720, EROAX—=D V7
LT A XEDE A X =D Y ZPRTES. LD T, HHEEA X —2 > 23 Mt E#n
TW3.

JAHBIA X =2 ¥ 7T, 2R ORECIBHE HIE 2/ DR L, 155 NHIEREB I3 2 HBEEEIC
Ko THRROGEEBNT 2. Zor X, JERR r 1%, I 1 REH2D OHERR ¢ & BIFEE N 2t
BILTr=Nty 725, —INC, AIEEEBEICBTZ 1 EH72D ORERRE ¢ 1[I RRBFEET %
7o, HIERREMED 72 DIIZBIARE N ZHIR T 2083 H 5. LrLEHAES, KHEHEA X —D v 71
B 2 HBHBEHGERICES UM TH 5720, HIARED T TROWIGEIIIHEBEED RS 3, i
RARDEEDPKE KR T 2MENDH 2. X (2.12) TRUZ LS IHIRABBUSHKTE L TICRT 2720, #
HEBD D RN XSO ENRE LR DBEN AT S, 7z, BARED o TRWIGEICE, /4 XK
EMRBAToe D, WERRIKRE L /) A AW DEAET 5 2 e THBEOHIEHET 5. K (2.16)
X, JARXDEENR0ICHRDZEVIREDS LD > TV, BB 4 IR 0 ¥ 725 MRS
EFMELEINZ T2, FRABKSZ WY I3 FIR 0 1PCRL 2 4 XPREEHh S, —HT, RIARED A
BV EX ) A XDFEGHR0IZR ST, /A XBITDORED TR THZ ZerHHEMETTS. 20k
512, MIERE DR Z X 2 72 DI IRHE Z B S 2 &, MHBIFHE TN SRIERZ T I HMER T i
W, 22T, ZOMEERERT 27 Ta—Fr LT, ANMEDORERE BN EEEE 7% v
3. WEFEET L, T RCEENDREINRIEH L SROTAER TR T 5 Z L 2ARETH B
72, FHELT-HHEBGE S RIERZ M e E R e ETE 5.

222 FRFZBETFIICEZ%EHE

HAHBIA X =D vy B0 THEEYEETVE, HEEBCEEN I NRORMEMEI L, Hb L8
TR OEREERGEHEET 2 -DICHVLNS. 22T, HEEEETVORAEE L EE TR
WTibR 3., EEFEET MK AHEE, AT =2 e W7 — 2 ORI FEES 2 IEEGRE, ZEE
EEFHO=a2—Ixy b= THEMTZ 2L TITONS. —2—Fb3xy V7= %2R T 2EI1E, A
TE, BhEs IOt EInS. ANBIE, T-22Z0WMAETHY, T—KEry bPU—FIH
o RE R IC AR T 2 EA 2R, BB, ANT—RICEThIRHEMmE L, HEEHEALHR
TAxEI RO, WHEIE, BhETEfInEZ ENEORMFICEDE TRIE T 2XENH 5. &E
X, SEAHR Y I OMA S DR THEIREINS. & 2 OIEMEEBIIIEELREE Y FEh 5. 1H1E(L
BBZBATLZIED, v VU= EE & bR BEIRBCAUATREL 72 5.

IR Z HOAHEETE, K23 1I0RT LI, FHICL o TT XA -k l, mEtLzET
NERWTHEE TN S, 8, KBOF—RIESOVWTERBOEABLIUOAN, 7RAE2HET BT
FHEINE. FEHOLDOT -2, AL EEDORT Bty FTEHEEATWS. £7F, 7L
T—REANUIEEHREE 2. Fohitie EER L, MEZFHEST 5. 2L T, MEHETE 7
XA—RDAMEFHAL, MEZHADIEZHANRT X —REEHTS. ZOREERKEDT—Xt£y T
ORI ZILYT, 22—y b= DRIX—XERELTS. BRELLEZ AT X—ZE2HO Xy b
=22, MELT—22ANT25 e THRNOH DRGNS,

HEEEETVERACCGETI RN 282 720120F, ¥ T 2R 2RTE-ED T X -2 e RT3
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Training process

Training dataset

Input data Label

Y

¢Feedback Loss function

DL model T

—> Output data

Y

Prediction process

4 Input Hidden Output
> Inpu put [
Test data | layer layer layer | Output data é

Fig. 2.3. Overview of deep learning process.

WEDH . FRZ, W, B, SsfE, X -FBEHOIATONS. 3, HAOIHEE
WETS. RELLHEAZHWT, F—&ty Mo ERITRALZ ANED S HEZ IBEFIC L - TR
2. e, WAEE EHMED SHEKRBE L ZHWTEREZIT 2. REZITTITHEREL, 7 X—
RITHN T 2REDRB I TH LA EHET 2. 2L T, SHEZBY T2 HMICEEA T X — X2 HHT
5. IHZERORBIEDIEL, HANRT A —ReRELT 2. EART X —XOEHIFEKELZ FEA
TR L7MEh 61Tbh, @ BHOERDREH S NTEA wi i &, FEERy ZHWT,

oL

g 2.23
nwmf (2.23)

Wili+l = WIil,i

L%, 22T, HEEBEBOMME, BEAEVEIE [188] BV S, My oEEAIC X > THIMEZ A
WEEBEATORMDZEHT 5. X (2.23) 1XHERMAECRE £ (Stochastic Gradient Descent: SGD) & KX
3. LHL, SGD IF¥EEK n HEIEINTVE 7D, FENE V. HEIEERLHFHREL, RN
R 2FiEL LT, Adam [189], AdamW [190] R ¥ BMERIN TS, T—Xty MEENE T —
RERTE 1 EEFREE2 1Ry 27D, FEPPCRT 2 IIEERT Ry 7008+ Ry 74
Bekd. T, —EHBEDCANTE2T 2By FHA XN, Ny FIZHEILTELDTHEET
52 THEENENRA LTI, NvFERELTLEBEMENTS ML — R4 70FRERD.

FEWZBOTIE, T X =2 E R LI N2 @R REE 5. T RICEEN D REN LY
DHKELT, JAZXRT YR LREHETHELTLEY, RHDOTF— 20T 2 HEEEREMIME T T 2.
YHOMEZK 24 11T, ETADFEEBATAREE, FEBIXUTA N T =X ET AP —HE TR
EWRKELRL. ¥EPEDY, PEBIXUOT AN T —202KOMEHA L ETAD—KT 3. —HT, &
PR DZFEF—RDAIZEETADR TS, BEEOBERIZ, TFADNRT X —XBOEHE, 2
BF—ROFPEENDFONDE. NTX—XPMFRL &, ETANEETEZHERIZLRL0, D
TORIAXETHFELTLES Ze TiFEEs ISR ZEINE. £, TORFET-2BP Ve =
b, T—XDREHETHEFE L TLES D@ EFO VR HEL K5, @FEOMIEI, FERICH
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WTWARWT R b7 =T 2R 21T 5. BB T —X e 7R T =g zhzhucit 3 2 I TE
Bt 2 & &, WEEPEEZTOZAREME & V. @ oMIFNCE, ET VDT X — X B2 HMYNCEFE L,
FaRER T -2 BT 2REND L. £, EADOL ZHEEHIBT 2 Z e TEFILOEEZMHIT 2
FELREINTVS. AR TIE, SEOEAZIER{LT % Batch Noemalization [191] % W /z. Batch
Noemalization Ti&, BFEH OGS THRL, FEOHETEED, HAOYMMEIIN T 2KFEHEZRS T
ZEMWTES.

FEFEETNVEROCHERIL, FE X > TRELI N T X —&EHWZIBEELED A531TH
N5, ®ET, ANT—RICEENLZARERERZHHB L, HOBITER SRS HEEER S h
5. HEETE, WEEB XU T A =X BEHOGFAZITOT KRR FITb 2720, SRR AATEE
TH5. ZOXSREEFEETNVORMMEGE N ZIERA L, DI WIBAEETE & ARG E 2 RS RUE
HONRIER ML L, SHRERHEEZERT 5.

223 FHEBAX—C VI OMERKERBFBET ILOBHRERDOM G

FEFEET ML, BRIS U TERZEHOE AGDE NS, SN EROHE ZYHHS &0t
J5DF 5 22T, VENERE R > LIFEEFEETNVEMETE S, A X —D 7B W T, HE
w5e, IEEHREIATN oYy IR B KCR\IEORED Zh2ducHfitd 28 LT, X2.51TR
T EOREHNEE, BAIAARE, TV Y IBEHVWS. I OBKRERLHETNICHASGDES Z 2T,
B A X — 2 ¥ 712 BT 2 HELRIACHERES OR#E, FEINCHIES KO T 2R EYEET L
ZHRTDIEHDAREL R S.

ERAEE, 25 (a) ITRT LI, REBPHRO IR TOERLERINATVWIETHS. £,
ANENIAEORBEMZHE T 5. R, N 7R%EMA 3. 2L T, F£EZAIN L TEELELE fEH X
B, ROBEAMNT 5. AHMEZ [x1,x2,.. ., %, ..., xn], BAZ [wi,wo, ..., wi,...,wn], XA T A& b,

(a) (b) (c)
A A A
[ ]
o
=
=
=y
=)
o
L]
> \Data point
Input ” Input
A A A
Test data
= = =
.8 9 o
34 Training data 5 b
=) = =
2 2 Test data 2 Test data
2} (72} n
72} 172] «
Q o o
— — —
Epoch ” Epoch g Epoch ~

Fig. 2.4. Overfitting of deep learning model. (a) Under fitting, (b) Best fitting, and (c) Overfitting.
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(a) (b) ©
Input Weight Output Weight

H —:kConvolution

Input Output
y

\

Fig. 2.5. Components of deep learning model. (a) Fully-connected layer, (b) Convolutional layer, and (c) Max-pooling layer.

L, EHEREEE h(x) TET , HAOEDER y; 13,

Vi =h(bj +wixi + woxa + ...+ WiX; + ...+ Waky), (2.24)

TREINDG. HHARZ MLy = [y, v, Yire o Y] KT 2 EBITHERTRETZ 2 e BT
%, AT 2 = [xl,xz,...,xi,...,xN], AT WA z: NXM)BJ:U/\/f TARZ bV b EH
W,

y=W'z+b, (2.25)

%, ZOETE, INTOEENHIMENTFEG T D RBIGENTE 5.

JAHBIA X — 2 v T OMBEIE TR, FRIAAAZ -V TG L GESBRESHEIFHLTHWS. IX
TOEEPHBEMEICHFELTED, EHEGETOMELEET 5. 2L, HERETRPIEzEE T2
70, BHROFGEIIETHS. LT, EMEETHEEROFGHEIIFE Lo ThRillbens. %
7o, BROEZERD ZCICE VIR LRI ZITS e TE 5. O X DR EZMEL, D
TN RBAEE T OAHBIR R OIR Z 2K T 2 Z L D3AREL 72 5.

BAHAAEEZ, K25 (b) DXHIT, NEREAT 4 VEXEZHWTANMEICEAAAEEZITV, AT
BEREHH T 2ETH 5. BAAABNETI, T4 v, BAAAERES X CTEHCRR DRI L
ENd. 59, HWIHEOY A XZ2MET 57012, ANSNT— X ZEROREPIC 0 DfEzEML, B
FA RZHERT 287 4 Y ZIHEZITS. R, BHAAAHES X CEMHLEBOLIEZ1TS. BAHIALE
DAY &, AME X, BEAT7 4 VX A, N4 TR BB XOEHEIE h(X) ZHWVT,

Y = h(X * A+ B), (2.26)

TRIND. 721201, * FBAAABETTHS. ZOBAAAHBEICL->T, EAZ7 4 LX T ORHE
PHHT 5. £z, EAT7A4NVR ADVA XD —3 T A XS, M T2RHEOREIZTRET S
NRIR—RTH?. ZOETIX, BEAT74NEXT AL XDEELIZOWTDERDANPEINGEZINZ 2D
SRR WA 5.

KM A X =2 ¥ 7B TRAINCIER T 2 0%, IEEHERIHICHR T 2 X -V DEATHS. <
R—V Py TN LICHHR S 5 b, HRNTORIDEGREIZ L 725. 20k, BRERNTOY Y 7L
BIZEOTIOBENBERIRATC 725, —AT, EGEMBEIZY Y IV ERET LV I EDOARE =N
FERT 5. FRTBZICEDBERERNTOY Y IAEIZ K o TSEXDIET 5. BHRMERLIT S 2k
BEEZZICHE L B XIET AT, BHOBEZRIIIHELKII IR, Ledio T, IFGHERIIC X 228X
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RIFTHNCEN S . 2070, BAAARIC L > TIHEEIMAAIRETH 5. JOHBIA X —2 ¥ V7 OMBIEHET
i, X Q4) ITREINTVR LI, BREILDFHETHD, MOEELISOFEIEFBIATVRY. B
HIABJETHEBEOEHRDOEHRICEHT 2 Z & T, HBEIELZT TG ALY, IFGERIICHRT 28
ERIEL, Y INVEREME T2 e AREE RS, BB, A=Y A X% 1 & LBAAAEIZEHE
ROEROAZHWIUIE e 220, G X 2 HBIM5E & 7R %5 2R3,

TV VIR, K25 () T X%, ASMEOXRTZHIR L ARECENTIETHE. 2D
&, FEATRER ST X — R B F - F, REERORKXELHET 2UHOATONS. LML LT, K
KB X CFEEPHCs NS, RFNREE? SAEREZERH T2 28T, RFFEHORXL DX ZFFES
ZEER-oTWVWD. X5, RKEB X FEEOHEIMMED ANNBIHFE LR WED, IEREEEET L
WKE 2322 TES.

HEWBVTE, BAEZZE L TH Y > 7L 20T, RIFEC LS THECHEBIERE RS
RFIUER SR, MR A X — P Y S OMBEIE T, FIEEEE T 2 20 BIAIEIC M 3R CEG
HHEMERENS. — /T, BEFYEET LV TREERDOEL AT A =Bz hzhidEtanTED, AL
IEZ TS 2 e FERICHELRIET. £, BAAARBIZBWT, BARAALT 4 VRIIIENHTH 2729,
ANAEOHEZZ TS, ZhoORAE, AEOREZHRT 2707 -V Y EEZEHRT 5.

BREOMGEFZRER 2.6 1ICE 2. BNZIEL THAGDE THHEA X =2 > 7 D720 DEEFE £
FLERRETE. BB, ZEHARELREARIX—ZBIUNA TANRT A =Ry, 2EERAI DA =%
TR=REbD. NA =T RX=R2F, AMHOEFE, H—3NVP A XBREBRDHFONE. NA—
RIR=RZ, X o TRELINIRNMETH 272, EFILKGHRFICHYNCHES X TS 2 0%
BH5.

224 FBFBZRAVIAHEEAX-JYI0mE

221 HiTHRz & 512, ARWVEBRARIET OB A4 X — 2 > 7 CIIMHBED IR E 3 FAE SR O S E
MERT 2LV HENDHZ. AL T, 223 BITHRNSEELCER LS 2HEEEEET L
EREERT 52T, DRV T D S E IR OHEE D FTREL 72 5. TRIEE 2 FI VR A X —
YOG RN 2.7 1IRT. IO, YHDOARKR - EY Y FVIAL, IEESERHEET . KT,
HE LT — X BWR LR EEET VAN T 5. BFEFEET LT, SEESLCERZ D R E &5
BREERGEEHNT 2. FEEFEETNVDOEETE, ZROTFT—XEAWEKETEEZTTS 2o RV
ET 3. LaL, HERCIZFEBEAETVEROEHEERITS DEVEITHEIEME 25, 207k, b
72O FREAEIEG D D W ET BT A X —Y Y JARETH 5.

HEFEETVOFEIEERO T — X2 V253, HMHEA X =2 ¥ 7Ty v I ek — v 2 HiH
L7t ZDONENERGIHIRATES. 20k, ZROT — X ZRUEMN TIERL, REYEET VRS
HT&3. 7—Xty FOEREER 28 ITRT. ¥3, ROV Y IR BIARZ -V 24K T 5.
K2, B INex -V ONEZFHET 2 2 e TIBEHEZE5. 2L T, 3 IUVBREZHTI I
b, JREAARZ — 2 Y IRENEREE AN LTzT— Xty b EERTE 3. BUEEOATT—Xty b EME
JRTE S0, BRLZMHOBEHNRITH L TOAESICHEERTDH 5.

L LRSS, REYEET ML > THERGBOMEZR EXE LT, MEiRIchRs 23
HIREDHIRR, § 7205 IFHHBAREELIBCEER 3 2 M3 5. Z2MINEE LTz 2 /A E—EZREANTH
—QORHATRE 2 21) 256, REMICRR 2 BZEDF—ORIARE R 2T 2568 8T, WERES
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Deep learning model component Role in Ghost Imaging

Fully-connected layer Correlation complementation

Input  Weight Output

Tlumination Tllumination

Convolutional layer Noise reduction
with kernel size 1
Weight 2 é‘
7 12}
s Convolution 5 — 5
Input Output é E
= — Time Time
Max-pooling layer Ignoring input order
g 1st 2nd 1st 2nd
15| = -
e
=} 1 "
S 3 th | = rd h
<
g
=
=
Convolutional layer Extracting blur information
with large kernel size
Weight
=k Convolution
Input l Output

D Blurred pattern ~ Sub-pixel information

Fig. 2.6. Relationship between GI and the components of deep learning models.

A= DN 722, K7z, WEBRRIKFLTEC I Lo T, ARIZELZHERE
SHE—HLTLEY, BRoHEE25 SR TARENLDH 5. 2D X512, BRI HERES & o
—RIEAHEBERDEE LR WKL TR, TREE 7 L OHEEMERESIRANNCHIFI X h, EREPREEOR
Freind. LEhoT, REEEEZHWIHEEA X -2 72 @ BELT 270123, REFEET L
DERFNIMA T, FAIREZ RAL S 2 RIFT ARG LI ORGEDIARIRTH 5.
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Fig. 2.7. Schematic diagram of ghost imaging with deep learning.
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Fig. 2.8. Dataset creation for ghost imaging with deep learning.
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2.3 [RFRHHEREE(LEREEE

AT E TICdNT &5 e, WEFEET AV EHOWIOEHEA X =2 v 7, D REAEECEE» D&
B R ERERRSTE S, L LR s, FE(LIEH L WIEES OB —ERHEDEE LR WIEHHBRY
MHELIAOIRBE T, HEEE D SR EHI T 2RI HIR I N 2. K29 (a) WRT XIIC, Bk
%2 W LONBEEENRLR S L R PHUNHIE L Y, MERENRL 2720 2 fikiiltiks. L
L, K29 (b) WRT XD, B2 25800DIEEEMNFEU &4 2IEHMIHIETIX, WERFE» 5
WRBES SO MCTFEET 22 2@\l TERY. ZOMBERIECERT 3729, HEFEET N K2R
B P HEE WO SR L O A TREAERDEETH D, MHELRIAZ PN S 2 DD 5.

FAHBEA X — 2 ¥ ZCIEHRBAEIE & 72 2 EIE, K 2.10 1RT K51, (a) ZEHMEBIC BT 2 IEHEM
M, (b) RERITEIBIC B0 2 JEHEMLEE, (o) MIEIX S D= ic & 2 IEHMED 3 DwcnEan 5. £3, ZERifE
DWVWTEZR DL, HMBENTERELL 2 FICIZF—OMETRIHI N2 72 0iAITE v, £/, Big 53R
D2 MTH, FECFA—OBEIBIAINS LFlAITERRE. I5I1C, RRERZEBLRZ 2HT
HoTHHEDIXLDEIC K> TRI—DMEL R ZATRENEDH 5. 2 T TAHITIX, ZAZhDERIIHT
B RERTFIEE RN D,

Structured patterns Structured patterns
(a) (b)
Sample )
!t [ - Detected signal Detected signal
Single—pixel\ Z Single—pixel\ z
detector é detector %
Time Time
Different signal Same signal

Fig. 2.9. Signals from two different points. (a) exclusive measurement, where signals from two points are different and can be
distinguished and (b) non-exclusive measurement, where signals from two points are the same and cannot be distinguished.
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Fig. 2.10. Factors of non-Exclusive measurement.(a) Non-exclusivity in the spatial domain, (b) Non-exclusivity in the

temporal domain, (c) Non-exclusivity due to measurement variability.
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2.3.1 FFEEERAIC K 3 ZEEETORAAHHEREISLIREA

HAHBEA X — 2 ¥ BT 2 MR, MELRIHOBERY 4 X2 X o THIRE 5. 24U, X5
HNZAE G X NS LIRAA O B EIE D NER S ZZMINC — R R REN T2 BT 270 TH 5. LihoT, &
RBEMRTH o THE—HBNTHIUR, F—DOMHRELZZT 27DR—0HEREFEEIEONE. 2Dk
5 2EE TR, HEFBITHED W THROZEMA A AIE 2 #A 3 2 B, BsRNTOM/Na B ZE A Rk
ST, NROBHDKEL 25, ZOBRIX, HHEA X —2 > 7B 2 R 2B 2 IEPtirEIc 5 72
5. ERREIRA X =2 v 7R FEBT 2701203, HBENOB/NAAIEZICIG U TRZ S HERFSHES
N3 K 5 R ZEREE T RATHH R S LSRR L 12 5.

WS DAEROIE D HBRE L 72 BICHRERE T 2 Z T, ZRTMED0IEGERBAL 25, R
HICHH XN E X =2 ER0T 578, BHBEPNSEEARIET S, ZUuckb, 211 IEmR5 &5,
[F—EZEHNTH > THURDOMEDI DT HICERIUR, ZT2HAREIZL, WEEBSICHLEVDLEL
5. ZOFEGHEBICE - T, BRNOBMNEZEOHIEES ICRKME NS X512, 22
PR 2SI e 72 5.

JEEHEIEIHE WA X —2 v 7T, K212 1R T X518, BBRAED SEEN-IESHEMEIC
MR &R E UMECIRIZITS . BEEIOMRE DA E Lican(x,y), HINFZRD MG 1HBEE (Point Spread
Function: PSF) % P(x,y) £ 3%. ZD& %, ENRIIRASI NS R T2BEDT Torn 13,

Iblur,n(xa y) = Iideal,n(x» Y) * P(x» y), (2.27)

¥7%. ZIT, x I3BEAAAHAFTH L. 612, MEEHTHE SN BESHE Bour,n 1,

Boarn = // T(x, y) Totaran(x. y) * P(x. y))dxdy, (228)

Same signal

lDifferent signal

1 2 3 4 5
Position

Fig. 2.11. Intensity gradient within a pixel due to out-focased illumination.
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¥%%. LkhoT, HBMEDM Gow(x, y) 13,

Gblur(x, y) = <Iblur,n(x’ y)Bblur,n> - <Iblur,n(x’ y))(Bblur,n> (2.29)
= Gideal (¥, y) * P(x,y), (2.30)

&b, BIHIDMBE D Ldea,, DIRAZ N Z OB Gideal (x, y) I LT PSF BEHAEND D
W%, $HhbH, RIini—THEZITINMHEA X =Y Y FTHER I8, NRORT T
BEART DRV Gl THBR LB EMThs. Lid->T, EGERBEZHOVEEHEA X—Y 7T
X, SROGRGEHTRAEAR 7 OFEYr LTHIET —RICEEN 5.

IEEHERIC X o TR M ZHNEEEX, BEZRNOB/NIEZE(GZ KL 7 &SRR E R 22 MG e &
—75 T, MHBEDORICES /) 4 X0 OFENPKE L, WEES D & EHEIN A EERZ BTN TT %
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Fig. 2.12. Schematic diagram of GI with blur illumination.
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Fig. 2.13. Schematic diagram of sub-pixel convolutional layer.

EBEBICEMENS. X512, EEEEETNIH TV 7 LERAABREATSE 22T, EEERAI
X o THE LN Z EfRERE R Z2BIER 2 BEEL L, ZRNCERBRERA X -V IHAJREL 2 5.

232 2EHRETICED HEBHTORABHbEESLERA

HAHBAA X =2 ZITBVTIE, ZEENCRL ZERICFET E2MNRTH - TH, IR DRFRZLH
—HT 2 A—DHEGEMELNS. ZOBRIL, JMHEBEA X —2 > 2B 2 RENIFFHMME R 5
5. HRNRX =T, FHRICKIAZINZHES ERT 2 0PI Sh b, —F, VX k-
Y TIE, HERNCRMMIEMSEE DD, "X =V BHZL R 21EEZOHRIIERT 35, RARED

REICHRRA X N 2 D 0ok & — 0T, FEHEMIA & 22 2 RERAEIN T 2. RFric, WEYE % AV A
X =P D X5, BIABBHIIC D2 NEETIEZORENEZE ICHNS. Lzh-T, Bk
R FEHR M 2 B0 3 2 M L RRBH DO RRGT AT EL L 72 5.

IR R EFEM: 2 0 5 2 72 12X, BEIZEDSINFEIANIC R 72 2 IR E AR 2 2 2 B H 5. X —
Y ORISR D, BHEERE N £ 322, BIBREZHOMAGDEE DN M 723, HAGDOEENZ
{RZIFYFEUCHAGDOE R IHERIIETT 2720, FUREBETIE X — > ORRBDZ VIZ IEHE
IR RS 2. Thbb, ZHEAX— Y TRREENPHIEZ SOHERTHRTE S, LrLAR2 s,
TP REVZY, K214 DEDICHEZ{LDORT v TRIVNE LS RDE., AT v TEINEILRDB L, A
Ty TR T ) A XL KREL KRB0, SNEMERL /A4 XfEME RS 5. —4T, 2 fE
R—VIRAKMEE R MEDEDPKE WD, /4 T2 R MEBELTWS., X512, BEFEK»D
BWNNEY, BWY 7Ly al— TR —VEEHTES. LkdoT, /A XM @mEtEsZkan
BB ZHWEHHEEA XA =D ZITBWTIE 2O RZ -V WS 2 BEE LW,

RER A R TR 22 RS L IRIA 2 AE R S 2 7212, 2 R EZ WS, H2EBIICH LT N B 2
EMEAZ T o722 &, M215 D X512, ZOHEZFRIBIHINZMEDOLETNL0 £7213 1 DEZFD N HiD
QMR LTHIRTE 2. L > T, BiR2EEQBIFREZFENS—T 2 IEPMNIEAL, HREIRT
2RI HRETH S, 2RI —BICERELZ LB TE 270, REHRICER2EBHEZED YT
% X5 IS Z G TS, FERCEFORIHMELRNEL5Z 2N TES. ZOLE, TRT
DOHEFRICHEZ 2 2 EREE D B T2 2010F, BEM M ISHLT2V < M <2V 2T RhD & —
VEUN BREE IS, ERARX =Y TREREHR M I LT M BOAR = PRETHZDITHLT, 2
HERGRFICHE D R Z — VTR [logy(M)] +1 TH b, 2 HEEERGICE D < Mg LIEHE A v
PR — ETHEE b O,



2.3 JRAPEbAIREE IR 31

Signal w/o noise  Signal w/ noise
4 \

N

Intensity
v |
Intensity

Grayscale pattern

Y

Time Time

3
N
>

Intensity
v :
Intensity

Binary pattern

\4

Time Time

Fig. 2.14. Difference in noise resistance between binary and grayscale patterns.
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Fig. 2.15. Binary notation of illumination intensity for each pixel.
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Fig. 2.16. Classification of uncertainty in deep learning model.
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Fig. 2.17. Factors degrading image quality in GI.
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Fig. 2.19. Evaluation of prediction uncertainty by feature map augmentation. Random numbers are added to the encoder-
transformed feature map to generate a neighborhood feature map. The mean of the outputs for the neighbor feature map is
the predicted value, and the standard deviation is the prediction uncertainty.
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Fig. 2.20. Principles of high-resolution deep learning ghost imaging integrated with locally exclusive structured illumination
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Tab. 3.1. PC specifications for numerical analysis.
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GPU NVIDIA RTX4090 2535 MHz GDDR6X24 GB
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Tab. 3.2. Development environment for numerical analysis.

Package Version Role

Python 3.12.7 Programming language

Numpy 1.26.4 Numerical computing

Scipy 1.24.1 Scientific computing

Matplotlib 39.2 Data visualization

Pytorch 24.1 Deep learning framework

Pandas 223 Data manipulation

Pillow 10.4.0 Image processing
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Fig. 3.1. Reconstruction results with blurry ghost imaging for defect smaller than pixel size.
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Fig. 3.2. Feature extraction in the convolutional layer. (a) The convolutional layer with a kernel size of 1 corrects the

correlation between the reconstructed image and the illumination pattern. (b) The convolutional layer with a kernel size of

3 also focuses on the effect of surrounding pixels, i.e., blur.
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Fig. 3.3. The relationship between the PSF and the kernel size.
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Fig. 3.4. Structure of the CNN models used for validation. Kernel size of the first and second layer is different. (a)
Overview, and detail of (b) S111, (c) S311, (d) S511,and (e) S$331 model.
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Fig. 3.5. Dataset creation to compare the effect of different kernel sizes on blurry ghost imaging.
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Fig. 3.6. Learning curve when training a dataset with o = 0. (a) S111, (b) S311, (¢) S511,and (d) S331 model.
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Fig. 3.7. Simulation results of DLGI affected by blurring.
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Fig. 3.8. Comparison of accuracy for models trained on data with different amounts of blurring. (a) S111 model, (b)
S311 model, (c) S511 model, (d) S331 model.
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Fig. 3.9. Relationship between the amount of blurring learned and the amount of blurring associated with the highest

accuracy.

Tab. 3.3. Specifications of equipment used in the experimental setup.

DMD projector
DMD DLP3000
Resolution 608 x 684 pixel
Size of micromirror 7.8%x7.8 nm
Framerate 60 Hz
Photodiode
Active Area Diameter 3.0mm

Typical Max Responsivity 0.54 A/W
Output Bandwidth (3 dB) DC - 45 MHz

Data acquisition device

Resolution

16 bit

Sampling rate

100 kHz
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Fig. 3.10. Structure of parallel CNN model. (a) Model structure, which estimates defect distribution from features extracted
from three convolutional models with different kernel sizes. (b) The features extracted from the three convolution layers are
combined in the channel direction.
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Fig. 3.11. Learning curve of parallel CNN models. The loss function has converged, and stable learning is achieved even
with parallel models.
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Fig. 3.12. Experimental system for evaluate prediction performance with blurring ghost imaging.
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Fig. 3.13. Experimental results of DLGI affected by blurring.
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Fig. 3.14. Comparison of the experimental results of the accuracy due to different defocus length, for the different models.
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Fig. 3.16. Structure of parallel CNN models for high-resolution prediction.
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Fig. 3.19. Experimental system for high-resolution prediction with blurring ghost imaging. (a) Experimental setup, (b)
Image of a silicon wafer used as a sample. There is a rectangular defect in the center.
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Tab. 3.4. Specifications of avalanche photodiode.

Active Area Diameter 1 mm
Typical Max Responsivity 25A/W
Output Bandwidth (3 dB) DC - 100kHz
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Fig. 3.20. Experimental high-resolution prediction of samples at different locations.
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Fig. 4.1. Non-overlap pattern generation based on binary notation. (a) Numbering, (b) shuffled, (c) binarized, (d) pattern
generated for each Nth power of two, and (e) pattern generated with black and white.
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Fig. 4.2. Example of illumination pattern. (a) 8 bit random pattern, (b) 1 bit random pattern, (c) Non-overlapping

pattern.
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Fig. 4.3. Comparison of illumination patterns on overlap rates.
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Fig. 4.4. Optical response rate distribution of the sample.
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Fig. 4.5. Reconstructed image by GI with eight measurements using the different illumination patterns for each SNR.
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Fig. 4.6. Relationship between SNR and CNR using the different illumination patterns.
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Fig. 4.7. Relationship between SNR and CNR using the different illumination patterns.
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Fig. 4.8. Relationship between SNR and CNR using the different illumination patterns with eight time illuminations.
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Fig. 4.9. CNN structure for defect position estimation. Parallel convolution can extract multiple range futures from the input
data.
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Fig. 4.10. Dataset creation with non-overlapping illumination patterns.
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Fig. 4.11. Learning curve with an SNR of 10 on an 8-bit pattern.
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Fig. 4.12. Comparison of numerical analysis of the accuracy for illumination patterns.
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Fig. 4.15. Comparison of the experimental results of the accuracy for illumination patterns.
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Fig. 6.1. Pixel-by-pixel model for high-resolution ghost imaging with deep learning. (a) Full-pixel prediction model and (b)
Pixel-by-Pixel prediction model.
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Fig. 6.2. Structure of Pixel-by-pixel model for high-resolution ghost imaging with deep learning. (a) Overview. (b)
Correlation completion model: This model predicts the correlation between the illumination and measured intensity at
a single pixel. It consists of fully connected layers, as each measurement mutually contributes to the correlation value.
The illumination order dependence is removed by the max-pooling layer in the middle. (c) Sub-pixelization model: This
model predicts the defect distribution within a single pixel using information from surrounding pixels. It consists only of
a convolutional layer to extract surrounding spatial information. Rotational dependence is eliminated in the max-pooling
layer in the middle. Higher-resolution defect distribution is predicted by spatially extending the convolution and performing
sub-pixel convolution. (d) Parameters of parallel convolution part. Convolutional layers with different kernel sizes connected
in parallel efficiently extract features. (e) Parameters of sub-pixel prediction part. The resolution is magnified by a factor of
2 for each pixel shuffle layer acted upon.
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Fig. 6.3. Dataset creation for high-resolution ghost imaging with deep learning.
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6.3 Pixel-by-Pixel #EETILDFEE
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Fig. 6.4. Setup for analysis of point spread function of inspection system. (a) Optical setup. (b) Designed pattern and
captured pattern with CMOS camera.
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Tab. 6.1. Specifications of DMD projector.

DMD DLP4710
Resolution 1920 x 1080 pixel
Size of micromirror 5.4x5.4 pm
Framerate 1440 Hz
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5, MABEORES T2 E L. M 6.4 ONERTHRIRIIZITY, RIDGRE A2 G L. 3G
U7 ERE D DR A D S, 6% ORHBER S E03H 5 e Bbhrok. SROETFVFEE T,
6.5 (¢) IR RILD DB L 6% OHERFES EEHNTT— Xty POERZITS.

(a) (b)
1.00 1.00
=Y g
o [¢]
B B
Il mm = Imm h
[ | [ |
0.00 0.00
(d)
p 1.00 . 1.00
> — —
5 =
o [¢]
2 B
1 mm = Imm <
[ | [ |
0.00 0.00

Fig. 6.5. PSF of inspection system. (a) Projected pattern, (b) captured image with CMOS camera, (c) calculated
PSF, and (d) simulated out-focus image.
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6.3.2 MHEHTEDETILIC K 2 EBEHEHTE
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Fig. 6.6. Dataset creation for correlation complementation model.
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Fig. 6.7. Learning curve of correlation complementation model.
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Fig. 6.8. Reconstructed images with correlation complementation model. From top to bottom, the results are estimated for
16 x 16 pixel, 128 x 128 pixel and 1024 x 1024 pixel.
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Fig. 6.9. Dataset creation for subpixelization model.
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Fig. 6.11. Reconstructed images with subpixelization model.
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Tab. 6.2. Specifications of data acquisition devices.

Resolution 16 bit

Sampling rate 1.25 MHz
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Fig. 6.12. Reconstructed images with SP-DLGI model.
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Fig. 6.13. Setup for 8K tracking of a micro defect.
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Tab. 6.3. Specifications of stepping motor stage.

Travel range 20 mm
Resolution 1 pm/pulse
Positioning Accuracy 10 pm
Positional Repeatability S5pm
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Fig. 6.14. Reconstructed images with SP-DLGI model in 8K tracking.
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Fig. 6.15. Tracking result with 8K resolution.
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Fig. 6.16. Setup for 8K tracking of a micro defect. (a) Optical setup, (b) Image of scattering media, and (c) distorted
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Fig. 6.17. Reconstructed images with SP-DLGI model in 8K tracking with scattering media.
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Fig. 6.18. Tracking result with 8K resolution with scattering media.
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