
Title 局所排他的構造化照明法による深層学習を用いた光相
関イメージングの高解像度化

Author(s) 片岡, 将磨

Citation 大阪大学, 2025, 博士論文

Version Type VoR

URL https://doi.org/10.18910/103118

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



博士学位論文

局所排他的構造化照明法による
深層学習を用いた光相関イメージングの

高解像度化

片岡将磨
2025年 5月

大阪大学大学院工学研究科
機械工学専攻





要旨
観察領域に対して微小かつまばらに存在する対象物のセンシングは，天文分野，医療分野および産業分野
などで幅広く行われている．このようなセンシングでは，対象からの応答が微弱かつ広範囲を観察する必要
があることから，高感度かつ高速な高解像度イメージング技術が求められる．
本研究では，高感度かつ高速なイメージング法である，深層学習を用いた光相関イメージングを高解像度
化することで，高感度かつ高速な高解像度イメージング法の実現を目指した．光相関イメージングは，対象
に構造化照明を行い，対象からの応答信号と照明の構造化パターンとの相関計算により対象の像を再構成す
る手法である．相関計算においてノイズ成分が除去されることから，ノイズに埋もれてしまうような微弱信
号の検出に適している．また，多数回の構造化照明を必要とするため測定時間が長い欠点を持つが，深層学
習を組み合わせることで高速化できる．しかし，従来の構造化照明法では，異なる対象の測定で同一の測定
値となる非排他的測定が生じ，対象位置の識別性能が低下する課題を有する．同じ測定値からは同じ像が再
構成されるため，いくら高性能な深層学習モデルを構築しても識別できない．そこで，局所排他的構造化照
明を導入して非排他的測定を防ぐことで識別性能を向上させ，深層学習を用いた光相関イメージングの高解
像度化を行った．
局所排他的構造化照明とは，異なる位置の対象について異なる測定信号が得られるよう設計された構造化
照明の中でも，微小空間での排他性が短い時間で得られるものである．空間領域で考えると，従来の光相関
イメージングでは構造化パターンの画素ごとに均一な強度が照明されるため，画素内での対象位置を識別で
きない．この問題を解決するために，人為的にパターンをぼかして画素内に強度勾配を起こす非合焦照明法
を提案した．非合焦照明法により，同一画素内での微小な位置変化に応じて異なる測定信号を取得できるた
め，対象位置の推定解像度が向上する．
一方で，時間領域で考えると，局所時間内でパターン数が少ないとき，強度変調の取り得る組み合わせ数
も少なくなるため，同じ強度変調の組み合わせをもつ画素のグループが生じる．このとき，測定信号も一致
するため，画素が離れていてもグループ内のどの画素かを識別できない．この問題を解決するために，2進
数表記に基づいた構造化パターン設計法を提案した．すべての画素の強度変調を排他的に配置することで，
それぞれの画素を識別可能となり位置推定精度が向上する．
さらに，時空間的に局所排他的な構造化照明を用いても，測定のばらつきに起因して偶発的な非排他的測
定が生じる．ばらつきはランダム性をもつため制御できないが，ばらつきの大きい測定値に対しては推定の
信頼性が低下する．そのため，信頼性の低い測定値を検知することで除外できる．そこで，深層学習モデル
の内部出力である特徴マップに揺らぎを与えたときの応答から，推定の不確かさを評価する手法を提案し
た．推定不確かさに基づいたフィルタリングによって，推定不確かさが高く信頼性の低い推定を除外し，推
定の信頼性を向上できる．
本研究では，これら 3つの手法を統合することにより，深層学習を用いた光相関イメージングを高解像度

化した．シリコンウエハ上の欠陥検出実験において，従来の深層学習を用いた光相関イメージングに対し
て，64 × 64 倍の解像度での推定を行った．従来法では 128 × 128 pixel となる測定に対して，提案法では
8192 × 8192 pixelで欠陥形状を推定可能であることを示した．
以上より，深層学習を用いた光相関イメージングに局所排他的構造化照明を導入することで高解像度化で
き，高感度かつ高速な高解像度イメージングが実現できることを明らかにした．
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第 1章
緒論
1.1 研究の背景
あらゆるものがデータ化される現代の情報化社会において，現実空間の情報を正確に捉え，サイバー空間
へと橋渡しするセンシング技術の重要性はますます高まっている [1, 2]．我々が存在する現実空間は自由度
が高く広大であるにもかかわらず，センシングの対象となる物理現象はしばしばスパースに分布する [3]．
こうした対象を正確に検出するためには，広範な領域を高感度かつ高解像度に検出する技術が不可欠であ
る．この課題に応えるものとして，広域高解像度イメージングが注目されている．広域高解像度イメージン
グの応用分野は多岐にわたる．たとえば，天文分野における微小天体の観測 [4–9]，医療分野における病変
の画像診断 [10, 11]および産業分野における微細欠陥検査 [12–14]などが挙げられる．いずれの分野におい
ても，広い観察領域にわたり対象物が微小かつスパースに分布しており，高解像度かつ高感度な高速イメー
ジング技術が求められる．
天文学では，宇宙の成り立ちや生命の起源を解明するため，広大な宇宙空間に点在する微小天体や希少な
現象を観測する必要がある [4, 5]．具体的な例としては，系外惑星の探索 [6]，遠方天体の観測 [7]および突
発的な天体現象 [15]の検出が挙げられる．特に，ガンマ線バースト [16]のような現象は瞬間的に発生する
ため，その検出には広範囲を迅速に走査できる観測技術が求められる [8]．しかし，従来の観測技術では観
察領域が限られており，リアルタイムな広域観測は困難である [9]．この課題を解決するために，高解像度
かつ高速な広域観測技術の開発が求められている．
医療分野においては，病気の早期診断や精密な評価のために，生体内における微小な異常の高精度な検出
が求められている．特に，がんの早期発見や細胞観察など，病理情報の可視化を目的とした応用が重要視さ
れている．初期のがん細胞は微小であり，かつスパースに分布するため，従来の画像診断では検出が困難で
ある [10]．また，細胞観察は，病理診断 [11]や表現型創薬 [17]において重要な手段であり，微小な変化を
正確に捉えることが，それらの診断の精度向上に直結する．
産業分野では，微細加工技術の進展により微小欠陥の検出が重要な課題となっている．例えば，大型光学
素子 [14]や半導体素子の製造工程 [12]において，広域高解像度イメージングは欠陥検査への応用が期待さ
れている．特に，半導体素子の構造はナノスケールにまで微細化しており [18]，欠陥検出にもナノスケール
の検出精度が求められている [13]．また，情報化社会の進展に伴い半導体素子の需要は急増しており [19]，
迅速な検査および効率的な製造が求められている．このような背景から，高解像度かつ高速な微小欠陥検出
技術の確立が不可欠である．
これまで述べてきた天文学，医療，産業分野などに代表されるように，様々な分野で高解像度イメージン
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グ技術が求められている．いずれの分野においても，観察対象は微小かつスパースに分布し，その応答信号
はノイズ成分に対して極めて微弱であるため，高感度な検出が不可欠である．さらに，これらの対象は変動
しやすいことや大量のデータ取得が必要となることが多く，迅速な測定が求められる．このような背景か
ら，高感度かつ高速な高解像度イメージングが求められている．本研究では，これらの要求を満たす広域高
解像度イメージング技術の具体的な応用例として，現代の AI（Artificial Intelligence）技術を支える高性能
半導体素子 [19]の製造工程において求められる微小欠陥検出に注目する．
半導体素子は，性能向上に伴いその構造が年々微細化している [18]．インテル創業者の一人であるゴード
ン・ムーアは，単位面積あたりのトランジスタ数が毎年 2倍になるとする経験則を 1965年に提唱した [20]．
1975 年には，2 年ごとに 2 倍に増加するという形に改訂され，ムーアの法則として広く定着した [21]．
ムーアの法則は現在でも継続しており，その影響のもとで半導体の微細化は着実に進んできた．提唱当初
は 10 µm程度の構造であったが，2025年時点では 3 nm相当まで微細化している [22]．国際的な半導体技
術ロードマップである IRDSでは，2030年代にはオングストローム相当の領域に到達することが計画され
ている [23]．ただし，これらのスケールは単位面積あたりのトランジスタ数に基づいて換算されたもので
あり，実際には 3次元化した構造によって集積されているため，構造の最小寸法はおおよそ 10 nm程度で
ある．
高性能半導体素子の製造には，EUV（Extreme Ultraviolet）リソグラフィが用いられている [24]．リソグ
ラフィとは，感光性材料を塗布した基板に光を照射し，所望のパターンを転写する加工手法である [25]．パ
ターンの転写には結像光学系が用いられるが，回折限界によって転写できる最小寸法が制限される．そこ
で，EUVでは，波長 13.5 nmの極深紫外光を光源として用いることで，数ナノメートルスケールの微細パ
ターン形成が可能となっている [26]．しかし，このような微細構造の性能は，材料および装置に生じたナノ
メートルスケールのわずかな欠陥によっても影響を受ける [27–29]．欠陥の存在は歩留まりの低下を引き起
こし，結果として半導体製造の効率を損なう [30, 31]．そこで，半導体ウエハ上の微細な欠陥を検出する手
法が求められている．
半導体欠陥検査で検出する欠陥サイズはナノメートルオーダである [12, 13]．光学顕微鏡の分解能は回折
限界により数百 nm程度であるため，顕微鏡で欠陥を直接観察することは困難である [32]．また，微小な欠
陥からの信号は極めて微弱であり，周囲のノイズの影響を受けやすい．さらに，現在一般的に用いられてい
る半導体ウエハは直径 300 mmであり，欠陥サイズとのスケール差が大きい．そのため，ウエハ全域を 1回
の測定で検査することは困難である．しかし，欠陥分布から欠陥の発生原因を推定するには，ウエハ全域で
の検査が必要となる [33–35]．ただし，半導体製造のスループットを向上させるためには，測定時間を短縮
する必要がある [36]．以上の要因から，半導体欠陥検査には高解像度，高感度，および高速性が求められて
いる．
欠陥検査法は接触式と非接触式の 2 つに大別される [37]．接触式検査では，原子間力顕微鏡（Atomic

Force Microscopy: AFM）を用いる手法が代表的である [38]．微細な針の先端を試料表面に近づけて，原
子間力を検出して走査することで試料の表面形状を取得する．AFMの精度は針先端のサイズで決まり，数
nmの精度で形状測定が可能である．しかし，針で試料全体を走査する必要があるため，検査速度が低いと
いう課題がある．測定条件を最適化することによる高速 AFM [39]や，複数の針を用いる並列 AFM [40,41]

も提案されているものの実用化には至っていない．
一方，非接触式検査では，電子線あるいは光を試料に照射し，試料からの応答信号を解析することで欠
陥検出を行う．接触式検査と比較すると解像度および耐ノイズ性は劣るものの，高速に検査可能であると
いう利点がある．電子線を用いた計測法には，走査型電子顕微鏡（Scanning Electron Microscope: SEM），



1.1 研究の背景 3

透過型電子顕微鏡（Transmission Electron Microscope: TEM），および走査型透過電子顕微鏡（Scanning

Transmission Electron Microscope: STEM）がある [42]．これらは電子線を試料に照射し，試料との相互作
用によって像を得る顕微鏡である．可視光の波長がおよそ 400～800 nmであるのに対し，電子線の波長は
0.01 nm以下と極めて短いため，光学顕微鏡に比べて高分解能な検査ができる．ただし，TEMおよび STEM

では透過した電子を測定する必要があるため，試料を十分薄くしなければならない制約がある．そのため，
半導体検査においては SEMが一般的に用いられている [43–45]．ナノメートルスケールの構造まで計測可
能であり，欠陥の存在のみならずその形状の測定も可能である [46]．一方で，真空環境下での測定が必要で
あること，検査可能範囲が狭いこと，試料への損傷リスクがあること [47]などの課題を持つ．また，レーザ
を試料に照射し，放出された電子を撮像する Laser-PEEM（laser-based photoemission electron microscopy）
も提案されている [48]．これは AFMや SEMと同等の解像度を有しつつ，測定条件の最適化により数万倍
の高速化が期待されている．さらに，表面から 100 nm程度の深さまでの観察が可能である．ただし，一度
に測定可能な範囲は 10 µm程度と狭く，全面検査には時間を要する課題がある．
光学式検査では，欠陥からの散乱光を利用して欠陥を検出する手法が一般的である [49]．散乱光強度は欠
陥サイズの 6乗に比例するため，微小な欠陥からの散乱光は極めて微弱となる [50]．そのため，ノイズに埋
もれやすく検出が困難である [51]．ノイズ源としては，電子回路のショットノイズ，熱揺らぎ，測定環境の
迷光，レーザスペックルなどがある．欠陥からの信号を増幅する方法として，表面にコーティングをする手
法も提案されているが検査前後に処理が必要となる [52]．また，液体を試料表面に滴下し，液体と欠陥と
の相互作用を光学的に観察することで欠陥位置を検出する手法も検討されている [53]．現在一般的に用い
られている光学式検査では，ウエハにレーザを照射し，欠陥で散乱した光を検出する方式が採用されてい
る [54–56]．特に，暗視野光学系を用いた手法が主流となっており，10 nm程度の欠陥まで検出可能である
ことが報告されている [57, 58]．しかしながら，ウエハ全面を走査する必要があるため，広い面積の測定に
は多くの時間を要するという課題がある [59]．
一般的な光学顕微鏡とは異なる原理を用いて高分解能化を実現する顕微鏡技術も検討されている．白色
干渉顕微鏡では，観察面と参照面から反射した光の干渉を解析することで，表面形状が得られる [60, 61]．
白色光の可干渉距離の短さを利用することで，垂直方向の分解能は 1 nm 程度に達する．しかし，水平方
向の分解能は従来の光学顕微鏡と同程度にとどまるという欠点がある．また，干渉により位相情報を取得
し，10 nm程度の欠陥を検出する顕微鏡法も研究されている [62, 63]．さらに，光と物質間に生じる電気力
学的相互作用を解析することで，10 nm未満の欠陥を検出可能とする技術も提案されている [64]．近接場顕
微鏡は，物体表面に局在する近接場光を利用した手法であり [65–67]，波長以下の空間情報を有するため，
100 nm以下の欠陥を検出可能である．ただし，近接場光は物体表面の極めて狭い領域にしか存在しないた
め，試料とプローブを波長以下の距離まで近接させる必要がある．また，超解像顕微鏡を用いた半導体表面
構造の可視化も検討されている [68]．超解像顕微鏡は，従来の光学顕微鏡の回折限界を超えて，ナノメート
ルスケールでの高分解能観察を実現する技術である [69]．使用された手法では，蛍光分子を確率的に励起
し，各分子の位置情報を取得することで画像を再構成する．蛍光分子が疎に励起されるため，各分子の重心
位置を求めることが可能となり，高分解能な画像が得られる．この方法により，20 nm程度の欠陥を検出し
た事例が報告されている．ただし，数千から数万回の測定を繰り返す必要があり，測定時間の長さが課題と
なっている．
ここで，これまでに言及した各種検査法の特徴をまとめる．いずれの手法も，一般的な光学顕微鏡を超え
る分解能を有しており，サブマイクロメートルスケールの欠陥検出が可能である．しかし，高分解能な検査
では，視野が限定され，ウエハ全域に対する検査には走査が不可欠となる．従来の検査法における検出分解
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能と検査速度の関係を図 1.1に示す．微小な欠陥を高分解能に検出しようとするほど，測定に長時間を要す
る傾向がある．一方，半導体製造工程では生産性向上の観点から，検査工程においても高いスループットが
求められている．このため，微小欠陥の高分解能な検出と検査速度との両立は極めて重要な課題となってい
る．そこで，本研究では，高感度かつ高分解能な検出を実現しつつ，広い視野を一括して計測可能とする高
速な欠陥検査法の実現を目指す．

1.2 深層学習を用いた光相関イメージング
1.2.1 光相関イメージング
一般的なイメージングは，撮影対象の像をレンズなどの光学系を用いて記録媒体上に結像させて 2次元の
光強度分布として取得する．この原理は，1000年以上前にイブン・アル＝ハイサムによって解明されて以
来，基本的な構造は大きく変わっていない [70]．記録媒体としては，銀塩材料を用いた乾板やフィルムなど
のアナログ媒体に加えて，光電変換素子である CCD（Charge Coupled Device）や CMOS（Complementary

Metal Oxide Semiconductor）などのデジタル撮像素子が用いられている．特に，産業用途においては，デジ
タル素子による容易な読み出し特性からデジタル素子が主流となっている [71]．デジタル素子で記録される
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Fig. 1.1. Relationship between resolution and inspection speed in conventional methods.
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画像の解像度は，撮像素子の画素数によって決定される．半導体技術の進展による素子の高集積化により，
1チップあたりの画素数は 109 個に達する例も報告されている [72]．ただし，撮像素子の画素数を増加させ
たとしても，結像系によって決まる光学分解能を超えて隣接する 2点を分離して記録することはできない．
従来のカメラに代わる新たなイメージング手法として注目されているのが，単一画素検出器を用いたシン
グルピクセルイメージング（Single Pixel Imaging: SPI）である [73]．従来のカメラが多画素検出素子を用
いて 2次元的に光を検出するのに対し，SPIは空間分解能を持たない単一画素検出器を用いて画像を取得す
る [74]．SPIでは，空間分解能を持たない検出器の代わりに，照明光あるいは対象からの反射光を 2次元的
に構造化し，その構造化パターンを変化させながら複数回の測定を行うことで，対象の 2次元像を取得す
る．SPI の基本概念を図 1.2 に示す．構造化には，空間光変調器（Spatial Light Modulator: SLM）が用い
られる．測定ごとに異なる構造化パターンを適用し，得られた信号から再構成処理を行うことで画像を得
る．なお，図 1.2では照明光を構造化する方式を示しているが，対象の像を SLMに結像して構造化する光
学系でも可能である．両者は，光の進行方向やノイズ特性に違いがあるものの，いずれの方式でも撮影対
象と SLMが共役な位置に配置されるという点で共通しており，原理的には再構成計算に本質的な差異はな
い [75]．

SPIは，従来のカメラと比較して，高感度な検出が可能であること，広い波長帯域に適用できること，光
学系の自由度が高いことといったメリットを有している．第一のメリットである高感度性は，SPIが単一画
素検出器により対象全体からの光を集約して検出できる点に由来する [76]．2次元検出器では対象の各点か
らの光が複数画素に分散するため，1画素あたりの信号強度が低下する．一方，SPIでは，空間的に構造化
された光を 1 つの検出器で測定するため，高い SN 比（Signal-to-Noise Ratio）で検出できる．[77]．さら
に，SPI では点検出のみが必要なため，光電子増倍管やアバランシェフォトダイオード（APD: Avalanche

PhotoDiode）など，単一光子レベルの検出が可能な高感度検出器を用いることができ極微弱光でも高感度
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Fig. 1.2. Schematic diagram of single pixel imaging.
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な計測が可能となる．2 次元検出器においても，EM-CCD（Electron Multiplying CCD）や SPAD（Single

Photon Avalanche Diode）センサといった高感度素子は存在するが，コストや画素サイズの面で SPIの方が
優位性をもつ．
第二のメリットである広い波長帯域への適用が可能な点についても，単一画素検出器の選択肢が多いこと
が理由である [78]．2次元検出器は，可視光帯域においては高解像度かつ高速応答性をもつ素子が利用可能
である．一方，非可視光帯域ではその性能が著しく制限され，高価，あるいは入手が困難であるという問題
がある．これに対し，SPIでは，波長帯ごとに対応する単一画素検出器を選択することができるため，広範
な波長帯での撮像が可能となる．これまでに報告されている非可視光領域での SPIの例としては，短波長側
から順に，ガンマ線 [79]，X線 [80,81]，紫外線 [82]，赤外線 [83–85]，テラヘルツ波 [86]，ミリ波 [87]，マ
イクロ波 [88]があり，非常に広い帯域でのイメージング可能であることが示されている．さらに，SPIは単
一画素検出に基づくため，光以外の波を用いたイメージングへの応用も可能であり，超音波 [89, 90]，電子
線 [91]，中性子線 [92]，原子線 [93]による SPIも報告されている．
第三のメリットは，光学系の自由度の高さである．SPIにおいて再構成に必要なのは既知の構造化照明を

対象に照射することと対象からの応答光を単一画素検出器で測定することのみであり，従来のカメラのよう
な結像系やレンズ系を必ずしも必要としない．レンズを一切用いずに構成されたレンズレス SPIシステム
が提案されており [94, 95]，光学収差を排除したコンパクトなイメージングが可能となっている．また，複
数の単一画素検出器を配置することで 3次元形状を再構成する手法 [96]や，単一ファイバを用いた内視鏡
への応用 [97]も実現されており，SPIの光学系構成の自由度の高さを活かした多様な展開がなされている．

SPIは，様々な画像再構成法が提案されている．最も基本的な手法は，対象の各点を 1点ずつ照明し，ス
キャンすることで対象の 2次元分布を取得する方法である [98]．この方法は，各点の強度を個別に取得す
ることから，本質的には 2次元検出器を用いる従来の 2次元カメラと同様の原理に基づいている．そのた
め，SPIのメリットのうち，検出器の選択自由度の高さを除けば，その他の利点は享受できない．一方，対
象に対して 2次元的な構造化パターンを照明し再構成する手法として，基底変換に基づく SPIがある．こ
れは，フーリエ基底 [99]やアダマール基底 [100]などのパターンを対象に照射し，測定信号を基底係数と
して取得するものである．各基底に対応する係数を得た後，基底変換によって対象の像を再構成する．対象
に適した基底を選択することで，効率的な再構成が可能となることも報告されている [101]．
前述の 1点ずつ照明を行う SPIも，基底変換の一種と捉えることができるが，アダマール基底やフーリエ
基底に基づくパターンでは，観察領域の広範囲に光を照射することで検出効率が大きく向上するという利点
がある．これらのパターンは領域の半分以上に光が照射されるため，測定信号強度が高く SN比向上にも寄
与する．しかし，基底変換に基づく SPIでは，すべての基底係数を測定する必要があり，画素数と同数の測
定回数が必要となる．このため，高解像度な画像を取得しようとするほど，測定回数や測定時間が増大する
課題をもつ．

SPIにおける測定回数を削減する試みとして，圧縮センシング（Compressive Sensing: CS）に基づく手法
が提案されている [102]．測定回数が画素数よりも少ない場合，未知数の数に対して方程式の数が少ない劣
決定系となるため，逆計算で像を求めることが不可能となる．そこで，CSでは，対象がスパース性を有す
ると仮定し，未知数の自由度を削減することで再構成を可能にする．ここで，対象を表す画像ベクトルを
x，構造化パターンに対応する観測行列をAとすると，単一画素検出器で得られる測定値のベクトル y は，

y = Ax, (1.1)

と表される．このとき，対象がスパースであると仮定すれば，式（1.1）を満たす解のうち，L1ノルムが最
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小となる x̄を求めることで，対象の再構成が可能となる．すなわち，
min
x̄

∥x̄∥1 B.C. y = Ax̄, (1.2)

を解くことで対象 G を再構成できる．一般的な自然画像においては，輝度値そのものがスパースでない場合
でも，隣接画素間の差分や直交基底においてスパース性を示すことが多いため，これらのスパース表現を利
用して CSを適用することが可能である [103–105]．
基底変換に基づく SPI や CS は解析的再構成法と位置づけられる．これらの手法は，測定回数を画素数
よりも少なく抑えながら，品質の高い画像を再構成可能であることが示されている [106]．一方で，これら
の手法は理想的な測定を仮定しているため，ノイズが多い環境下では画質が低下しやすいという課題があ
る [107]．また，基底変換型 SPIが行列演算による一括再構成であるのに対し，CSでは最小化問題を反復
的に解く必要があるため，再構成処理に要する計算時間が大きくなる傾向にある．
解析的再構成法に対して，統計的再構成法と位置付けられているのが，光相関イメージング（Ghost

Imaging: GI）である [108]．光相関イメージングは，構造化照明と測定信号の相関演算に基づいて対象の像
を再構成する手法である．解析的な SPIが情報工学分野に端を発する技術であるのに対し，光相関イメージ
ングは量子光学分野の研究から発展してきた手法である [109]．光相関イメージングは，当初，時空間相関
性を持つ量子もつれ状態の光子対を用いたイメージング手法として提案された [110, 111]．もつれ光子対の
一方を対象に照射し，対象を透過した光を単一画素検出器で検出する．他方の光子は対象に作用せず，走査
型単一画素検出器または 2次元検出器で位置情報のみを取得する．2つの光子は空間的な相関を有している
ため，対象に作用していない光子の位置から，対象に照射された光子の位置を推定することができる．この
光子検出を繰り返すことで，対象の像が得られる．また，対象に照射された光子は背景ノイズに対して時間
的相関を持たないことから，相関器では検出されず高ロバストな測定ができる [77]．2次元分布を取得する
側には対象が存在しないことから，光相関イメージングとも呼称される [112]．このように，当初の光相関
イメージングは量子光学に基づく技術であったが，後に，古典光源を用いても光源側に時空間的な相関性を
持たせることでイメージングが可能であることが示された [113]．さらに，時空間相関を持つ構造化照明を
容易に生成する方法として，散乱媒質透過後に現れるスペックルを利用した手法も提案された [114]．これ
らは区別して量子光相関イメージングおよび古典光相関イメージングと呼ばれる．これまでの光相関イメー
ジングでは，対象に照射される構造化パターンを記録するため，照明系と参照系の 2光路を必要とした．こ
れに対し，空間光変調器によって照明を既知のパターンに変調することで，参照系を不要とする計算機光相
関イメージングが提案された [115]．参照系が不要となり，単一光路による簡素な光学系でイメージングが
実現された．光学系が単純化されたことから，現在の光相関イメージング研究においては，計算機光相関イ
メージングを用いた手法が主流となっている [73]．以降，本論文においても，特に断らない限り，光相関イ
メージングは計算機光相関イメージングを指すものとする．
光相関イメージングは，他の SPIと比較して耐ノイズ性に優れている．前述のように，量子光相関イメー
ジングでは，時間的相関を持たない光子は相関器によって検出されないため，ノイズ源からの光子が自動
的に除去される．一方，古典光を用いた光相関イメージングでは，検出時に光子の相関を考慮しないため，
検出信号にはノイズ成分が含まれる．しかし，測定に用いられる構造化パターンとノイズ成分とは統計的
に相関を持たないため，構造化パターンと測定信号の相関演算を通じて，ノイズ成分が平均的に除去され
る [116]．この性質により，光相関イメージングはノイズの多い擾乱環境下においても有効なイメージング
手法であることが示されている [117]．例えば，大気揺らぎの影響が大きい長距離観測 [118]や，乱れの大
きい生体内観察 [119]への応用が報告されている．特に，構造化照明以降の経路におけるノイズに対して高
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いロバスト性を有するため，従来のカメラでは像の取得が困難であった散乱体越しの観察においても，有効
であることが示されている [120]．また，サンプルからの信号がノイズに埋もれてしまうような SN比が 1

以下の環境下でも再構成できることから高感度性に優れる手法である [106]．このように，光相関イメージ
ングは，微弱な信号を扱うセンシングにおいて優れた性能を発揮することから，高解像度かつスパースな対
象のセンシングにおいて有用なアプローチとなり得る．
一方，光相関イメージングは，測定時間と解像度において課題がある．第一の課題は，多数回の測定が必
要となる点である．SPIにおいては，すべての画素が均一に照明されることを前提としており，基底パター
ンに基づく SPIでは，画素数と同数のパターンによる測定を行うことで，理想的にはノイズのない環境下に
おいて完全な画像再構成が可能となる．一方，GIでは，構造化パターンがランダムに変化するため，全画
素を均一に照明するためには，画素数を大きく上回る照明回数が必要となる [121]．このため，少ない照明
回数の測定では相関計算が収束せず，構造化パターンの偏りの影響が再構成画像に含まれてしまう．例え
ば，128 × 128 pixel程度の画像を高品質に再構成するためには，数万回の照明が必要とされる．
光相関イメージングの測定時間短縮のアプローチは，パターン変調の高速化と必要な照明回数の低減の 2

通りがある．高速な空間光変調器として DMD（Digital Micromirror Device）が利用されているが，その変
調速度は最大でも 32 kHz程度であり [122]，測定には数秒を要する計算となる．他の変調素子として，LED

アレイ [123]やフェーズドアレイ [124]による高速変調も研究されているが，解像度や適用範囲に制約があ
る．光相関イメージングの測定時間短縮のもう 1つのアプローチは，再構成に必要な測定数そのものを削減
することである．また，必要な照明回数を減らす試みとしては，前述の圧縮センシング（CS）を組み合わ
せる方法 [121]や，深層学習を用いた再構成法 [125]が提案されている．
第二の課題は，画像の解像度である．GIで再構成される画像の解像度は，構造化照明の解像度に依存す
る [126]．このため，高解像度な測定を実現するためには，それに対応した高解像度の構造化照明が必要と
なる．しかし，現行の SLMの解像度は 8K程度であり [127]，105 以上の解像度が要求されるような広域を
対象とするセンシングには十分ではない．
以上のことから，光相関イメージングを高解像度スパースセンシングに適用するためには，測定の高速化
と高解像度化の両立が不可欠である．これを実現するためには，測定信号からサンプル情報のみを高精度に
抽出し，再構成することが求められる．この要件を満たす手法として，データ中に含まれる特定の情報の抽
出に優れる深層学習の適用が有望である．
1.2.2 深層学習を用いた測定

2025年現在，AI技術は多様な分野において実用化が進んでおり [128]，社会インフラや産業応用の中核
を担う技術となりつつある．2023 年の G7 広島サミット首脳宣言では AI 技術の活用と規制の両立が議論
され，国際的枠組みとして広島 AIプロセスが構築されるなど [129]，AI技術は一般社会へと急速に浸透し
ている [130–132]．AIに関する定義は国際的にも統一されておらず [133]，広義には「ある目的に対して知
的に問題を解くアルゴリズム全般」，狭義には「人間に匹敵する汎用知能」を指すこともある [134]．しか
し，現在社会で広く用いられている AIは，特定タスクに特化した狭い AIであり [135]，実用面での議論は
主にこの範疇に属する．なお，Open AI社の会話型 AIである Chat GPTに AI自身の定義を尋ねると，「コ
ンピューターやソフトウェアが人間の知能に似た働きをするように設計された技術やシステムの総称」と
返答がある．統計的に尤もらしい出力を行うという AIの特性を考えると，この定義が一般的に用いられる
AIの定義と言えるかもしれない．本論文で取り扱う深層学習は，この狭義の AI技術の 1つであり，大量の
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データから特徴量を自動的に学習し，高度な認識，推定および生成能力を発揮するアルゴリズム群である．
近年では，その高い表現力と汎化性能から，画像認識，音声認識および自然言語処理に加え，センシングや
計測分野にも応用が急速に拡大している．
深層学習は，機械学習アルゴリズムの一種である [136]．機械学習は，あるタスクに対して明示的なプロ
グラムによるアルゴリズムの設計を行わず，コンピュータがデータから学習によってモデルを最適化する技
術である [137, 138]．この性質により，アルゴリズムの明確な設計が困難な複雑なタスクに対しても，デー
タと学習アルゴリズムによって適用可能となる点が機械学習の特長である [139]．数ある機械学習アルゴリ
ズムの中で，深層学習は，多層の構造を有するニューラルネットワークを基盤とした学習手法であり，単純
なモデルを多層的に組み合わせることで高い表現力を実現している [136]．ニューラルネットワークは，人
間の神経系の仕組みに着想を得て 1943年に提案されたモデルであり [140]，各ノード（ニューロン）が重
み付きの入力を受け取り，非線形変換を行って次の層に伝播する構造を持つ．2層のニューラルネットワー
クでは線形分離可能な問題しか扱えないが [141]，十分な数の要素の中間層を持つ 3層のニューラルネット
ワークを用いることで，任意の関数を近似可能であることが理論的に示されている [142]．しかしながら，
実際には要素数の爆発的増大や学習の収束困難といった問題がある．これらを解決する手法として，多層の
ニューラルネットワークが研究されてきた [143, 144]．層を深くすることで，限られたパラメータ数でも複
雑な関数や特徴量を効率的に表現・学習可能となり，深層学習の強力な表現能力が発揮される [145]．
深層学習は，登場以降，飛躍的な性能向上と応用範囲の拡大を遂げてきた．2012年には，画像認識精度を
競う ILSVRCにおいて，深層畳み込みニューラルネットワークである AlexNetが従来の機械学習法を 10%

上回る性能を達成し，深層学習の有効性が広く認知される契機となった [146]．自然言語処理分野では，
RNN（Recurrent Neural Network）や LSTM（Long Short Term Memory）などの時系列データを扱うモデル
が提案され，2016年には Google翻訳に深層学習ベースの手法が導入されるなど，実用化が進んだ [147]．
2017年には，自己注意機構に基づく Transformerモデルが提案され，Chat GPT等に代表される大規模言語
モデルの基礎技術として広く活用されている [148]．学術研究の分野においても，2021年には，タンパク質
の立体構造予測を行う AlphaFold2が登場し，構造生物学分野に大きなブレイクスルーをもたらした [149]．
このような成果に対して，深層学習の発展に貢献した研究者らに対して 2024年にノーベル物理学賞および
ノーベル化学賞が授与されるなど，学術的にも深層学習の意義が広く認識されている [149–155]．このよう
に，深層学習技術は画像および言語処理など多様な分野での応用を通じて高度に発展しており，単なる認識
や分類にとどまらず，複雑な現象の理解・予測にも活用される技術へと進化している．その表現能力と適応
性の高さは，センシングや計測といった物理情報の抽出にも応用可能であり，近年では計測分野における応
用も検討されている．
計測分野においては，画像計測分野での応用が進んでいる．例えば，干渉計測 [156]，デジタルホログラ
フィ [157]，デジタル画像相関法 [158]などの 2次元画像を用いた手法では，主にノイズ除去や逆解析の高
精度化に活用されている [159]．一方で，精密計測の分野においては，深層学習の導入は限定的である．主
な理由は，測定結果のトレーサビリティを維持することが困難である点にある．トレーサビリティとは，JIS

Z 8103:2019の JIS計測用語の定義で，「個々の校正が不確かさに寄与する，切れ目なく連鎖した，文書化
された校正を通して，測定結果を参照基準に関係付けることができる測定結果の性質」とされる [160]．精
密計測では異なる環境で測定された値を比較するために，それぞれの測定値の国際標準まで遡って精度を保
証するトレーサビリティが不可欠な要件である．[161]．従来の計測法は，物理モデルに基づいて入力と出
力の関係が明示的に記述されており，入力の不確かさから出力の不確かさを理論的に評価することが可能で
ある [162]．しかし，深層学習モデルでは，入力から出力に至る過程がブラックボックス的であり，推定の
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根拠を人間に理解可能な形式で説明することが難しい [163]．このため，出力値に対する不確かさの定量的
評価が困難であり，トレーサビリティの連鎖が断絶することとなる．Explainable AIやモデルの不確実性推
定に関する研究 [164–167]も進められているが，現時点では精密計測に必要なレベルの信頼性・定量性を保
証するには至っていない．このような理由から，深層学習は画像処理を中心とする計測には有用であるもの
の，精度保証が求められる精密計測への応用は限定的であるのが現状である．
1.2.3 深層学習を用いた光相関イメージングの高速化
光相関イメージングにおける測定時間の短縮を目的として，深層学習を用いた研究が活発に進められてい
る．このような手法は，深層学習援用光相関イメージング（Deep Learning Ghost Imaging: DLGI）と呼ば
れ，従来の解析的再構成手法に代わる新たな再構成法として注目を集めている．DLGIに関する最初の報告
は，2017年に行われ，全結合層を有するニューラルネットワークを用いた手法が提案された [125]．この研
究では，画素数に対して 5%の測定回数で得られた低品質な再構成像をネットワークに入力し，高品質な対
象像を出力することに成功している．従来の CS法では，画素数の 10%程度の測定回数が性能限界とされ
ていたため，DLGIは CSと比較して大幅な測定回数の削減を実現した．その後，畳み込みニューラルネッ
トワーク（CNN）[168]や U-Net [169]といった既存の画像認識モデルを流用し，相関計算によって再構成
された画像を深層学習モデルに入力し，対象像を高品質に復元する手法が多数提案されている．さらに，
2019年には，相関計算による画像再構成を介さず，測定信号から直接対象像を推定するモデルが提案され
た [170]．この手法では，再構成計算過程で生じる誤差の影響を排除できる利点があり，画素数の 1.56%と
いう極めて少ない測定回数で高品質な再構成像を得られることが示されている．以降も，異なるニューラル
ネットワーク構造を導入した研究 [171, 172] や，深さ計測 [173]，テラヘルツ波領域への適用 [174] など，
DLGI技術の応用範囲は拡大している．

DLGIのもう一つの研究動向として，一般化性能やノイズ耐性の向上を目的としたモデルの検討が挙げら
れる．教師なし学習を導入したモデル [175, 176]や，ノイズが多い環境下で少ない測定回数による再構成を
目指した研究 [177–180]が報告されている．これらの研究では，主に既存の画像処理モデルを流用し，測定
された信号に含まれるノイズ成分の除去や信号変換による高精度な画像復元が試みられている [181–183]．
さらに，測定過程そのものを深層学習モデルの一部として捉える研究 [184, 185]や，測定信号を系列データ
として扱い，自然言語処理モデルを適用する研究 [186, 187]も報告されている．しかし，いずれの研究にお
いても，光相関イメージングの原理的な特徴や測定モデルを考慮したネットワーク設計は十分に行われてい
ない．
以上のように，DLGIは，測定回数の削減による測定時間の短縮や，ノイズ環境下における高品質な画像
再構成を目的として，さまざまな手法が提案されている．これらの研究は主に，既存の画像処理用モデルを
流用することで測定信号から対象像を高精度に復元することを目指してきた．一方で，光相関イメージング
における構造化照明の設計や測定原理を積極的に活用したモデル設計はほとんど行われていない．特に，光
相関イメージングの測定では，構造化照明の画素サイズ以下の高解像度情報が失われる．測定データに含ま
れない情報は，深層学習モデルによっても復元することは困難であり，高解像度化を目的とした研究は限定
的であるのが現状である．
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1.2.4 非排他的構造化照明による識別能の低下
光相関イメージングにおいては，測定された信号に基づいて対象の空間情報を再構成する．したがって，
異なる対象から得られる測定信号が同一であれば，それらを区別することは不可能である．すなわち，異な
る対象を区別できるかという識別能は，構造化照明と測定信号との間に一意な対応関係が存在するかで決定
される．測定信号が異なる対象間で一致する原因は，構造化照明と，測定ばらつきの影響の 2つに大別でき
る．前者の要因として，異なる位置に存在する対象が同一または類似した照明強度の組み合わせを受ける状
態を，本研究では，非排他的構造化照明（Non-exclusive Structured Illumination）と定義する．非排他的構
造化照明下では，対象位置に依存しない測定信号が得られることから，構造化照明と測定信号との間に一意
な対応関係が失われ識別能が低下する．
最も基本的な非排他的構造化照明の要因は，空間的局所領域である画素内の照明強度分布が一様であるこ
とである．光相関イメージングの測定システムでは，構造化照明は結像光学系を介して対象面に投影され
る．このとき，構造化パターンの同画素内は均一な照明強度となる．したがって，異なる位置に対象が存在
しても，同一画素内であれば同一の測定信号が得られる．この結果，画素内での微小な位置の違いによる識
別は困難となり，解像度は構造化パターンの画素サイズによって制限される．
異なる画素に存在する対象であっても，時系列的に与えられる照明強度の組み合わせが同一であれば時間
的な非排他的構造化照明となる．異なる位置に存在する対象が，構造化パターンの変化に対して同一の強度
変化を受ける場合，測定信号は区別がつかなくなり識別困難となる．構造化パターンの数が増加するにした
がって，異なる画素の対象が同一の照明強度の組み合わせを受ける確率は低下する．一方で，深層学習を用
いた光相関イメージングのように構造化パターンの数が少ない場合の時間的局所領域では，この問題は顕著
となる．多値パターンによる照明を行えば非排他性の問題は軽減できるが，その一方でノイズ耐性の低下や
照明系の実装コストの増大といった別の課題が生じる．
構造化照明が排他的であったとしても，測定時に生じるばらつきによって測定信号が重なり合い，識別が
困難となる場合がある．光相関イメージングでは，照明強度や検出器の応答に含まれる雑音，光学系のゆら
ぎ，周囲環境の変動など，さまざまな要因によって測定値にばらつきが生じる．このばらつきにより，異な
る対象に対して本来異なる測定信号が得られるはずであっても，実際の測定値ではその差が埋まり測定信号
が同一となる可能性がある．特に，深層学習を用いた光相関イメージングでは構造化パターン数が少ないこ
とから，ばらつきの影響を受けやすい．
このように，光相関イメージングにおける識別能低下の要因は，構造化照明の非排他性と測定信号のばら
つきに大別される．前者は構造化照明によって制御可能である一方，後者は環境依存であり制御が困難であ
る．まず，近接 2点に対する局所空間的な非排他性に対しては，同一画素内の照明強度を不均一にすること
で解決できる．回折限界以下のイメージングを目指す超解像顕微鏡法においては，回折の影響によりボケた
像から高分解能な像を得る手法が広く用いられている．特に，超解像顕微鏡法の 1つである単一分子局在化
顕微鏡では，1つの蛍光分子によるボケた像から分子位置を高精度に特定し，その位置情報を蓄積して高解
像度な像を構築する．このように，ボケた像から高解像度情報の抽出が可能である．この考え方を踏まえ，
本研究では構造化照明にボケを付与することで空間的に局所排他な構造を実現する．光相関イメージング
においては，構造化照明の空間周波数が回折限界に達するとその像はボケる．超解像顕微鏡では，回折限界
の影響によって像がボケる．光相関イメージングにおいても回折限界領域まで微細化した構造化照明はボ
ケる．さらに，回折限界の影響を受けないスケールの構造化照明であっても，結像位置から離れた非合焦位
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置に対象を配置することで，ボケた構造化照明を形成できる．このように，照明を意図的にボケさせること
で，同一画素内の微細な位置変化を識別可能とする局所排他的構造化照明が実現される．
次に，異なる画素に対する照明光強度が一致する時間的な非排他性に対しては，ランダムなパターン生成
法を用いず，異なる画素間で照明強度変化が一致しないように構造化パターンを設計することで抑制が可能
である．本研究では，光相関イメージングにおける構造化照明が 2値で表現されることに着目し，2進数表
記法を応用する．2進数表記では，各桁が 0または 1の 2値で表される．ここで，1つの画素に着目すると，
= 回の構造化照明により，その画素に照射される強度は = 個の 0または 1の値として表現できる．これら
の値を照明順に並べると，=桁の 2進数とみなすことができる．このように考えると，異なる画素に対する
照明強度の組み合わせが一致するとは，対応する 2進数の値が一致することと同義である．この発想を利用
し，構造化パターン生成時に各画素が異なる 2進数の値を表すように設計することで，時間的に局所排他的
な構造化照明を実現することができる．これにより，異なる画素間で同一の照明強度の組み合わせを受ける
確率を低減し，位置推定精度の向上が期待できる．
一方で，測定信号のばらつきに対しては，排他的な照明設計によっても解決が困難である．測定信号のば
らつくと，深層学習モデルによる推定は不確かなものとなりやすい．深層学習による推定値は，一般的な測
定不確かさに加えて，モデルに由来する推定不確かさを持つ．ばらつきにより測定信号が重複し，推定値の
候補が複数生じると，推定が定まらず不確かさが増加する．したがって，推定不確かさを定量的に評価する
ことで，信頼性の低い推定値を検出することが可能となる．そして，そのような不確かな推定値を除外する
ことで，測定全体の信頼性を向上させることができる．
推定不確かさの評価手法の中でも，任意のモデルに適用可能で計算コストの低い手法として，テスト時拡
張法がある．これは，1つの入力に対してわずかに変化を加えた複数の入力を生成し，それぞれの推定結果
のばらつきを観察することで，不確かさを評価する方法である．推定が確かであれば，出力は収束するが，
不確かな場合は推定結果にばらつきが生じる．したがって，そのばらつきから推定の不確かさを定量的に評
価できる．深層学習を用いた光相関イメージングでは，測定値から対象の特徴情報を抽出し，その情報に基
づいて対象の像を推定する．そのため，測定値をずらして入力すると，特徴抽出と推定の双方に影響を与え
る．そこで，測定値から抽出した特徴情報である特徴マップに着目した．深層学習モデルに入力する測定値
に変動を加えるのではなく，特徴マップに対して変動を加えて作成した近傍特徴マップについての推定値の
ばらつきを評価することで，深層学習を用いた光相関イメージングの推定不確かさが評価できる．この推定
不確かさの評価に基づいて，非排他的な推定値を除外することで，測定の信頼性を向上できる．

1.3 研究の目的
本研究の目的は，空間および時間領域に対する局所排他的構造化照明法を確立し，深層学習を用いた光相
関イメージングを高解像度化することである．天文，医療および産業分野において，広い観察領域に存在す
る微小かつスパースな対象を高精度に検出するための，高感度かつ高解像度な高速イメージング技術の重要
性が高まっている．深層学習を用いた光相関イメージングは，単一画素検出器と構造化照明を用いた計測手
法であり，高感度かつ高速なイメージングが可能である．一方で，異なる対象に対して測定信号が同一とな
る非排他的構造化照明により，測定信号から対象を一意に識別するための識別能が低下する課題が存在す
る．局所空間における非排他性により，同一画素内の位置が見分けられず解像度が制限される．また，局所
時間における非排他性により，異なる画素に存在する対象が見分けられず位置推定精度が制限される．さら
に，測定のばらつきにより排他性が失われることもあり，推定の信頼性が低下する．これらの課題に対し
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て，本研究では局所排他的構造化照明法を確立することで解決を図り，信頼性の高い高解像度推定を実現
する．
具体的には，以下の 3点を本研究の柱とする．

• 非合焦照明を利用した空間領域での局所排他的構造化照明法による高解像度化
• 2進数表記に基づく時間領域での局所排他的構造化照明法による位置推定精度向上
• 近傍特徴マップを用いた推定不確かさ評価法による非排他的推定の除外による信頼性向上

本研究では，これら 3つの局所排他的構造化照明法に関する要素技術をそれぞれ開発・検証することで，近
接する 2点および異なる画素の 2点に対する識別能の向上と，測定信号のばらつきに起因する誤推定の低
減を図る．さらに，それらを組み合わせることで，高解像度化した深層学習を用いた光相関イメージングに
よる微小欠陥検査の実証を行う．再構成画像の画素数に対して 1%以下の照明回数で測定し，構造化照明の
画素数を超える画素数で推定を行い，高速かつ高解像度な欠陥イメージングができることを示す．これによ
り，広域かつ高解像度な高速イメージングを実現する新たな計測技術の創出を目指す．

1.4 本論文の構成
本論文は，局所排他的構造化照明の提案ののち，空間的および時間的な局所排他的構造化照明法と推定不
確かさ評価についてそれぞれ検証を行い，それらを統合した高解像度イメージングの実証を行うという流れ
で構成される．本論文の構成を図 1.3に示す．
第 2章では，局所排他的構造化照明法を導入した深層学習を用いた光相関イメージングの原理を述べる．
まず，深層学習を用いた光相関イメージングの基本原理を述べる．次に，照明が排他的でないことに起因
する識別性の低下を防ぐための局所排他的構造化照明法について，空間的および時間的な面から説明する．
さらに，測定信号のばらつきに起因する非排他的推定を検出するための推定不確かさ評価法についても述
べる．最後に，これらの手法を統合し，高解像度化した深層学習を用いた光相関イメージングについて述
べる．
第 3章では，非合焦照明を用いた空間領域における局所排他的構造化照明による推定解像度向上について
述べる．まず，非合焦照明を用いた測定において測定値に高解像度情報が含まれることを示す．次に，非合
焦照明由来の情報を抽出するための深層学習モデルを検討する．そして，検討結果から得た知見を基に構築
した構築した深層学習モデルを用いて，非合焦照明下の測定での高解像度化を示す．
第 4章では，2進数表記に基づく時間領域における局所排他的構造化照明による位置推定精度の向上につ
いて述べる．2進数表記に基づく時間的に局所排他的なパターンを生成し，ランダムパターンと排他性を比
較する．また，多値パターンと比較して 2値パターンがノイズ耐性の面で優れることを示す．そして，数値
解析と実験を通して，2進数パターンの排他性により位置推定精度が向上することを述べる．
第 5章では，測定ばらつきに起因して非排他的となる推定値を除外するための，推定不確かさ評価に基づ
くフィルタリングを検証する．まず，近傍特徴マップに基づいて評価される推定不確かさと推定の正誤の関
係を述べる．また，特徴マップに付加する乱数分布の影響を検討する．そして，推定不確かさに基づいた
フィルタリングによって推定の信頼性が向上することを明らかにする．
第 6章では，第 3章から第 5章までに確立した手法を統合し，局所排他的構造化照明法を導入した深層
学習を用いた光相関イメージングによる広域かつ高解像度な微小欠陥の位置検出を実証する．まず，高解像
度推定のための Pixel-by-Pixel推定による高解像度モデルを構築し学習させた結果を述べる．次に，微小欠
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陥のトラッキング実験による位置推定精度の検証結果を示す．さらに，実環境におけるゆらぎを再現した測
定条件下でノイズ耐性を評価する．最後に，シリコンウエハ上の欠陥検出適用した結果を述べる．
第 7 章では，本研究の結論を述べる．各章ごとに得られた知見をまとめ，本研究の成果を述べる．最後
に，本研究の展望を述べて本研究の総括とする．

Chapter 1: Background
• High-resolution sparse sensing

• Deep learning ghost imaging

• Decreased estimation accuracy due to non-exclusive measurements

Chapter 2: Locally Exclusive Structured Illumination
• Out-focused illumination for high-resolution

• Non-overlapping pattern based on the base-2 numeral system

• Evaluation of prediction uncertainty based on neighborhood feature maps

Chapter 3: 

Improved resolution 

with out-focused illumination
• Revealing sub-pixel information

• Comparison of deep learning models

Chapter 4: 

Improved accuracy  

with non-overlapping pattern 
• Comparison of pattern designs

• Verification of noise resistance

Chapter 6: High-Resolution Defect Inspection
• Construct pixel-by-pixel model

• Defect detection experiment with 8K resolution

Chapter 7: Conclusion

Chapter 5: Improved Reliability based on Prediction Uncertainty
• Consideration of a random number distribution to be added to feature maps

• Filtering with prediction uncertainty

Fig. 1.3. Structure of this thesis.
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第 2章
局所排他的構造化照明法を導入した深層学
習を用いた光相関イメージング
2.1 緒言
本章では，深層学習を用いた光相関イメージングに対して局所排他的構造化照明法を導入することで，推
定の識別能および信頼性を向上させ，高解像度化を実現する手法について述べる．
まず，2.2節では，深層学習を用いた光相関イメージングの原理と課題について述べる．はじめに，光相
関イメージングの基本原理を示し，構造化照明と単一画素検出によって対象像を再構成できることを示す．
次に，光相関イメージングの性能向上に使用する深層学習システムについて，深層学習モデルが入力データ
からサンプルの特徴量を抽出する仕組みを説明する．さらに，深層学習モデルの各構成要素と，光相関イ
メージングの関係を物理的観点からまとめる．そして，深層学習を用いて光相関イメージングを高速化する
原理を示し，その限界として非排他的構造化照明による識別能の低下と信頼性の問題を述べる．
つぎに，2.3節では，識別能と信頼性の低下を克服するために提案する局所排他的構造化照明法について
述べる．はじめに，構造化照明の結像面から離れた位置に対象を設置する非合焦照明により，画素内に強度
勾配を生じさせ，空間的に局所排他的な構造化照明を実現する手法を説明する．次に，照明変調を 2進数表
記として設計することで，異なる画素に対して一意な照明変調を割り当て，時間的な局所排他性を確保する
手法を述べる．さらに，測定信号に含まれるばらつきにより識別が困難となる非排他的推定に対して，近傍
特徴マップに基づいて推定不確かさを定量評価し，信頼性の低い推定を除外する手法を示す．最後に，これ
ら 3つの手法した局所排他的構造化照明法を用いることで，構造化照明と測定信号の対応関係に一意性をも
たせ，微小対象の高解像度かつ高信頼なイメージングを可能とすることを示す．

2.2 深層学習を用いた光相関イメージングの原理
2.2.1 光相関イメージングの原理
光相関イメージングは，照明光と検出光のゆらぎの 2 次相関から像を再構成する手法である．光相関イ
メージングの原理を図 2.1に示す．まず，撮影対象に既知のパターン �= (G, H) を照明する．次に，単一画素
検出器を用いて撮影対象全体からの散乱光または透過光といった応答光 �= を検出する．そして，照明光ゆ
らぎ Δ�= (G, H) と検出光ゆらぎ Δ�の相関計算を行い，撮影対象の像を再構成する．8回目の測定で単一画素
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検出器で検出される信号 �8 は，
�8 =

∬
�8 (G, H)) (G, H)3G3H, (2.1)

で表される．ここで，�8 (G, H) は 8 回目の照明パターン，) (G, H) は撮影対象の応答光強度分布を示す．また，
8 回目の照明光強度分布と検出光強度は，それぞれの平均値とゆらぎを用いて，

�8 (G, H) = ⟨�= (G, H)⟩ + Δ�= (G, H), (2.2)

�8 = ⟨�=⟩ + Δ�=, (2.3)

で表される．ここで，⟨�⟩ は物理量 �のアンサンブル平均を，Δ�は物理量 �のゆらぎを表す．このとき，
相関値分布 � (G, H) は，

� (G, H) = ⟨Δ�= (G, H)Δ�=⟩ (2.4)

= ⟨�= (G, H) − ⟨�= (G, H)⟩⟩⟨�= − ⟨�=⟩⟩ (2.5)

= ⟨�= (G, H)�=⟩ − ⟨�= (G, H)⟩⟨�=⟩, (2.6)

で表される．このとき，式（2.6）の第 1項は撮影対象の情報であり，第 2項はバイアス項を示している．
相関計算によって撮影対象の像を再構成できること数学的に示すために，行列解析の視点から式（2.6）を
考える．# 枚の ? × @ の要素を持つ照明パターンを観測行列 I とすると，

I =



�1 (1, 1) �1 (1, 2) . . . �1 (?, @)

�2 (1, 1)
. . . �2 (?, ?)

...
...

�# (1, 1) �# (1, 2) . . . �# (?, @)



, (2.7)

Reconstructed image𝐺(𝑥, 𝑦)Sample 𝑇(𝑥, 𝑦)
Response
light

Correlation

Calculation

Detected signal

Time

In
te

n
si

ty
 𝐵 𝑛

Structured patterns

Single-pixel
detector

Illuminate

𝐼𝑛(𝑥, 𝑦)

Δ𝐼𝑛(𝑥, 𝑦)
𝛥𝐵𝑛

Fig. 2.1. Principle of ghost imaging.
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で表される．このとき，検出信号B は，

B = I



) (1, 1)

) (1, 2)
...

) (?, @)



, (2.8)

となる．したがって，式（2.6）は，

G =



� (1, 1)

� (1, 2)
...

� (?, @)



=
1

#
I⊤I



) (1, 1)

) (1, 2)
...

) (?, @)



− ⟨�=⟩



⟨�= (1, 1)⟩

⟨�= (1, 2)⟩
...

⟨�= (?, @)⟩



, (2.9)

となる．第 1項が撮影対象の情報を持っており，第 2項は各画素におけるバイアスを示していることが改
めてわかる．さらに，第 1項は，I⊤I の対角成分および非対角成分がそれぞれ同じ値となるとき，撮影対処
の像が完全に再構成されることを示している．観測行列 I が直交行列であるときこの条件を満たし，再構
成像の画素数と等しい照明を行ったとき完全に再構成される．アダマールパターンやフーリエパターンが該
当し，直交パターンまたは周波数パターンと呼ばれる．一方で，乱数分布からサンプリングを行ってランダ
ムにパターンを生成する際も照明回数を増やすことで，対角成分および非対角成分がそれぞれの値に収束す
る．式（2.9）の 1

#
I⊤I を対角成分 sと非対角成分 nに分けて表すと，

1

#
I⊤I =

1

#
(s + n), (2.10)

s =



∑
�2
8 (1, 1) 0 . . . 0 0

0
∑
�2
8 (1, 2) 0

...
. . .

...

0 0

0 0 . . . 0
∑
�2
8 (?, @)



, (2.11)

n =



0
∑
�8 (1, 1)�8 (1, 2) . . .

∑
�8 (1, 1)�8 (?, @)∑

�8 (1, 2)�8 (1, 1) 0
...

. . .
...∑

�8 (?, @ − 1)�8 (1, 1)
∑
�8 (?, @ − 1)�8 (?, @)∑

�8 (?, @)�8 (1, 1)
∑
�8 (?, @)�8 (1, 2) . . .

∑
�8 (?, @)�8 (?, @ − 1) 0



,

(2.12)

となる．この式より，対角成分 sはサンプリング元の乱数分布を 2乗した分布からサンプリングした値の
平均，非対角成分 nは独立した 2つの乱数分布の積の分布からサンプリングした値の平均であることがわ
かる．そのため，中心極限定理から照明パターン数の平方根に反比例してそれぞれの値は収束し，撮影対象
の像が再構成される．
微弱光測定時には，検出光自体の強度の低下およびノイズの影響が問題となる．光相関イメージングの測
定においては，マルチプレックス効果および相関計算によって前述の影響を低減できる．マルチプレックス
効果の概要を図 2.2に示す．光相関イメージングにおける検出信号は式（2.1）で表される．一方で，2次元
検出器を用いたイメージングでは各画素で光強度 �8 (G, H) を測定するため，

�8 (G, H) = �8 (G, H)) (G, H), (2.13)
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となる．したがって，�8 > �8 (G, H) は明らかであり，光相関イメージングでは 2次元検出器を用いたイメー
ジングと比較して強い測定信号を得られる．
次に，測定時のノイズによる影響を考える．光相関イメージングにおけるノイズは，照明光に含まれる
ノイズ '� (G, H) と検出光に含まれるノイズ '� に分けられる．照明光のノイズ要因は，光源のゆらぎおよ
び大気ゆらぎなどがあげられる．また，検出光のノイズ要因には，背景光のゆらぎ，大気ゆらぎ，検出器
の暗電流，熱ゆらぎおよびショットノイズのなどがあげられる．8 回目の測定に含まれるノイズをそれぞれ
'�,8 (G, H)および '�,8 とすると，ノイズを含んだ照明パターン �',8 (G, H)および検出光強度 �',8 はそれぞれ，

�',8 (G, H) = ⟨�8 (G, H)⟩ + Δ�8 (G, H) + ⟨'�,8 (G, H)⟩ + Δ'�,8 (G, H)， (2.14)

�',8 = ⟨�8⟩ + Δ�8 + ⟨'�,8⟩ + Δ'�,8， (2.15)

と表せる．さらに，相関関数 �' (G, H) は式 (2.6)より，
�' (G, H) = ⟨�',= (G, H)�',=⟩ − ⟨�',= (G, H)⟩⟨�',=⟩， (2.16)

となる．ここで，ノイズを含んだ照明パターンおよびノイズを含んだ検出光強度それぞれの平均値は，
⟨�',= (G, H)⟩ = ⟨�= (G, H)⟩ + ⟨'�,= (G, H)⟩, (2.17)

⟨�',=⟩ = ⟨�=⟩ + ⟨'�,=⟩， (2.18)

である．したがって，ノイズを含んだ照明パターンおよびノイズを含んだ検出光強度の積の平均値
⟨�',= (G, H)�',=⟩ は，

⟨�',= (G, H)�',=⟩ = ⟨Δ�= (G, H)Δ�=⟩ + ⟨�= (G, H)�=⟩ + ⟨�= (G, H)⟩⟨'�,=⟩

+ ⟨�=⟩⟨'�,= (G, H)⟩ + ⟨'�,= (G, H)⟩⟨'�,=⟩， (2.19)

である．また，ノイズを含んだ照明パターンおよびノイズを含んだ検出光強度の平均値の積
⟨�',= (G, H)⟩⟨�',=⟩ は，

⟨�',= (G, H)⟩⟨�',=⟩ = ⟨�= (G, H)�=⟩ + ⟨�= (G, H)⟩⟨'�,=⟩

+ ⟨�=⟩⟨'�,= (G, H)⟩ + ⟨'�,= (G, H)⟩⟨'�,=⟩， (2.20)

となる．したがって，式 (2.19)および式 (2.20)を式 (2.16)に代入すると，
�' (G, H) = ⟨Δ�= (G, H)Δ�=⟩ (2.21)

= � (G, H)， (2.22)
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Fig. 2.2. Multiplex effect in GI. (a) Detection with 2D sensor, the signal at each pixel is lower than noise level. (b) Detection

with single-pixel sensor, the signal is higher than noise level.
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となり，ノイズを含まない相関関数と一致する．すなわち，照明光のゆらぎと相関のないノイズは相関計算
によって自動的に除去される．このように，光相関イメージングによる測定ではマルチプレックス効果によ
り高い信号強度を得られることに加えて，相関計算によるノイズ除去が行われるため，従来のイメージング
と比較して耐ノイズ性の高いイメージングができる．したがって，光相関イメージングは微弱光検出に優れ
ている．
光相関イメージングでは，多数回の構造化照明と測定を繰り返し，得られた測定信号に対する相関演算に
よって対象の像を再構成する．このとき，測定時間 g は，照明 1回あたりの測定時間 C8 と照明回数 # に比
例して g = #C8 となる．一般的に，測定装置における 1回あたりの測定時間 C8 には物理的な下限が存在する
ため，測定時間短縮のためには照明回数 # を削減する必要がある．しかしながら，光相関イメージングに
おける相関演算は統計量に基づく処理であるため，照明回数が十分でない場合には相関値が収束せず，再構
成像の品質が大きく低下する問題がある．式（2.12）で示したように照明回数に依存して収束するため，照
明回数が少ないとばらつきが大きくなり画質が劣化する．また，照明回数が十分でない場合には，ノイズ除
去効果も不十分となり，測定環境に依存したノイズ成分が残存することで画像の劣化が生じる．式（2.16）
は，ノイズの平均が 0になるという仮定のもと成り立っている．環境ノイズは平均が 0となる正規分布に
モデル化されるため，照明回数が多いときは平均が 0に収束しノイズが除去される．一方で，照明回数が少
ないときはノイズの平均が 0にならず，ノイズ成分の除去が不十分であることから画質が低下する．このよ
うに，測定時間の短縮を図るために照明回数を削減すると，相関計算では対象情報を十分に再構成できな
い．そこで，この問題を解決するアプローチとして，入力値の特徴抽出能力に優れた深層学習モデルを用い
る．深層学習モデルは，データに含まれる特徴的な情報を高次元空間で効率的に抽出することが可能である
ため，劣化した再構成像から対象情報を抽出し高品質な画像を推定できる．
2.2.2 深層学習モデルによる特徴抽出
光相関イメージングにおいて深層学習モデルは，測定信号に含まれる対象の特徴を抽出し，劣化した観測
データから高精度な像を推定するために用いられる．ここでは，深層学習モデルの基本構造と学習手法につ
いて述べる．深層学習モデルによる推定は，入力データと出力データの間に存在する非線形関係を，多層構
造を持つニューラルネットワークで近似することで行われる．ニューラルネットワークを構成する層は，入
力層，隠れ層および出力層に分類される．入力層は，データを受け取る層であり，データをネットワーク内
部で処理可能な形式に変換する作用を持つ．隠れ層は，入力データに含まれる特徴を抽出し，推定値へ変換
する役割を持つ．出力層は，隠れ層で変換された値を出力値の条件に合わせて整形する役割がある．各層
は，線形変換と非線形関数の組み合わせて構成される．ここの非線形関数は活性化関数と呼ばれる．活性化
関数を導入することにより，ネットワークが非線形性をもち複雑な関数近似が可能となる．
深層学習を用いた推定では，図 2.3に示すように，学習によってパラメータを最適化し，最適化したモデ
ルを用いて推定が行われる．学習は，大量のデータに基づいて各層の重みおよびバイアスを調整することで
実現される．学習のためのデータには，入力値と正解値のペアがセットで含まれている．まず，モデルに
データを入力し順伝播させる．得られた出力と正解値を比較し，誤差を評価する．そして，逆伝播で各パラ
メータの勾配を計算し，誤差を減少させる方向へパラメータを更新する．この操作を大量のデータセットで
繰り返すことで，ニューラルネットワークのパラメータを最適化する．最適化したパラメータを持つネット
ワークに，測定したデータを入力することで目的の出力が得られる．
深層学習モデルを用いて適切な出力を得るためには，学習プロセスを経て各層のパラメータを最適化する
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Fig. 2.3. Overview of deep learning process.

必要がある．学習は，順伝播，損失評価，逆伝播，パラメータ更新の順に行われる．まず，重みの初期値を
設定する．設定した重みを用いて，データセットから無作為に選んだ入力値から出力値を順伝播によって算
出する．次に，出力値と正解値から損失関数 ! を用いて誤差を評価する．誤差を元に逆伝播し，パラメー
タに対する誤差の偏微分である勾配を計算する．そして，誤差を減少する方向に各重みパラメータを更新す
る．これを任意の回数繰り返し，重みパラメータを最適化する．重みパラメータの更新は損失関数を各重み
で偏微分した値から行われ，8 回目の学習の後更新された重み F11,8+1 は，学習率 [ を用いて，

F11,8+1 = F11,8 − [
m!

mF11,8

， (2.23)

となる．ここで，損失関数の微分は，誤差逆伝搬法 [188]が用いられ，微分の連鎖律によって出力値を起点
に各重みでの偏微分を算出する．式 (2.23)は確率的勾配降下法（Stochastic Gradient Descent: SGD）とよば
れる．しかし，SGDは学習率 [ が固定されているため，効率が悪い．自動的に学習率を調整し，効率的に
最適化する手法として，Adam [189], AdamW [190]などが提案されている．データセットに含まれるデー
タすべてを 1度学習させると 1エポックとなり，学習が収束するには通常数エポックから数十エポック必
要となる．また，一回あたりに入力するデータ数をバッチサイズと呼ぶ．バッチに分割してまとめて学習す
ることで学習効率が向上するが，バッチを大きくすると精度が低下するトレードオフの関係を持つ．
学習においては，パラメータが過剰に最適化される過学習が問題となる．データに含まれる本質的な特徴
のみならず，ノイズやランダムな変動まで学習してしまい，未知のデータに対する推定性能が低下する．過
学習の概要を図 2.4に示す．モデルの学習が不十分なとき，学習およびテストデータとモデルが一致せず誤
差が大きくなる．学習が進むと，学習およびテストデータの全体の傾向とモデルが一致する．一方で，過
学習になると学習データのみにとモデルが一致する．過学習の要因は，モデルのパラメータ数の過剰，学
習データの不足等があげられる．パラメータが過剰なとき，モデルが学習できる情報が多くなるため，わ
ずかなノイズまで学習してしまうことで過学習が引き起こされる．また，十分な学習データ数がないとき
も，データの偏りまでもを学習してしまうため過学習のリスクが高くなる．過学習の検証には,学習時に用
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いていないテストデータに対する性能評価を行う．学習データとテストデータそれぞれに対する性能に乖
離があるとき，過学習が起きている可能性が高い．過学習の抑制には,モデルのパラメータを適切に設定し，
十分な学習データを用意する必要がある．また，重みのとる値を制限することでモデルの学習を抑制する
手法も提案されている．本研究では，各層の重みを正規化する Batch Noemalization [191]を用いた．Batch

Noemalizationでは，過学習の抑制だけでなく，学習の進行を早め，重みの初期値に対する依存性を減らす
ことができる．
深層学習モデルを用いた推定時は，学習によって最適化されたパラメータを用いた順伝播処理のみが行わ
れる．各層で，入力データに含まれる本質的な情報を抽出し，出力層に伝えられ最終的な推定値が出力され
る．推定では，逆伝播およびパラメータ更新の計算を行わずに順伝播だけ行われるため，高速な処理が可能
である．このような深層学習モデルの特徴抽出能力を活用し，少ない照明回数で得られた低品質な再構成像
から対象情報を抽出し，高解像度な推定を実現する．
2.2.3 光相関イメージングの物理現象と深層学習モデルの構成要素の対応
深層学習モデルは，目的に応じて異なる種類の層が組み合わせられる．各構成要素の演算を物理現象と対
応づけることで，物理的意味を持った深層学習モデルを構築できる．光相関イメージングにおいては，相関
補完，非合焦照明下でのサンプル情報抽出および照明順の除去のそれぞれに対応する層として，図 2.5に示
すような全結合層，畳み込み層，プーリング層を用いる．これらの構成要素を適切に組み合わせることで，
光相関イメージングにおける構造化照明や測定信号の特徴を，学習的に補正および抽出する深層学習モデル
を構築することが可能となる．
全結合層は，図 2.5（a）に示すように，各要素が前後のすべての要素と接続されている層である．まず，

入力された値の線形和を計算する．次に，バイアスを加える．そして，各要素に対して活性化関数を作用さ
せ，次の層へ出力する．入力値を [G1, G2, . . . , G8 , . . . , G# ]，重みを [F1, F2, . . . , F8 , . . . , F# ]，バイアスを 1 9
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Fig. 2.4. Overfitting of deep learning model. (a) Under fitting, (b) Best fitting, and (c) Overfitting.
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Fig. 2.5. Components of deep learning model. (a) Fully-connected layer, (b) Convolutional layer, and (c) Max-pooling layer.

とし，活性化関数を ℎ(G) で表すと，出力値の要素 H 9 は，
H 9 = ℎ(1 9 + F1G1 + F2G2 + . . . + F8G8 + . . . + F=G=), (2.24)

で表される．出力ベクトル y = [H1, H2, . . . , H8 , . . . , H" ] に対する線形変換は行列形式で表記することがで
き，入力行列 x = [G1, G2, . . . , G8 , . . . , G# ]，重み行列W (サイズ: # × ") およびバイアスベクトル b を用
いて，

y = W ⊤x + b, (2.25)

となる．この層では，すべての要素が出力値へ寄与するため大域的な計算ができる．
光相関イメージングでの相関計算では，各照明パターンで取得した信号強度が相互に作用している．すべ
ての要素が相関値に寄与しており，全結合層での計算と合致する．ただし，相関計算では平均値を算出する
ため，各画素の寄与度は一定である．一方で，全結合層で各要素の寄与度は学習によって最適化される．ま
た，複数の層を重ねることにより非線形な処理を行うことができる．この処理により相関計算を補完し，少
ない照明回数での相関計算の収束を達成することが可能となる．
畳み込み層は，図 2.5（b）のように，小さな重みフィルタを用いて入力値に畳み込み演算を行い，局所的
な情報を抽出する層である．畳み込み層内部では，パディング，畳み込み演算および活性化関数の順に処理
される．まず，出力値のサイズを調整するために，入力されたデータは画像の周囲に 0の値を追加し，画像
サイズを拡大するパディング処理を行う．次に，畳み込み演算および活性化関数の処理を行う．畳み込み層
の出力値 Y は，入力値X，各重みフィルタA,バイアスB および活性化関数 ℎ(X) を用いて，

Y = ℎ(X ∗A +B)， (2.26)

で表される．ただし，∗は畳み込み演算子である．この畳み込み演算によって，重みフィルタごとの特徴量
を抽出する．また，重みフィルタ Aのサイズをカーネルサイズと呼び，抽出する特徴の大きさを決定する
パラメータである．この層では，重みフィルタサイズの影響についての情報のみが出力へ伝達されるため，
局所的な計算といえる．
光相関イメージングにおいて局所的に作用するのは，非合焦照明に由来するパターンの歪みである．パ
ターンがサンプル上に結像すると，画素内での照明光強度は一様となる．このため，画素内でのサンプル位
置によらず応答光強度は同じとなる．一方で，非合焦位置にサンプルを設置するとサンプル上のパターンが
ぼやける．ぼやけることにより画素内でのサンプル位置によって応答光が変化する．画素がぼやけると近
隣画素に影響をおよぼす一方で，遠方の画素には影響を及ぼさない．したがって，非合焦照明による影響は
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局所的に現れる．そのため，畳み込み層によって情報抽出が可能である．光相関イメージングの相関計算で
は，式（2.4）に示されているように，画素ごとの計算であり，他の画素からの影響は考慮されていない．畳
み込み層で周囲の画素の情報に着目することで，相関計算だけでは得られない，非合焦照明に由来する影響
を補正し，サンプル情報を抽出することが可能となる．なお，カーネルサイズを 1とした畳み込み層は各画
素の情報のみを用いた処理となり，全結合層による相関補完と等価な役割を果たす．
プーリング層は，図 2.5（c）に示すような，入力値の次元を削減し代表値に集約する層である．この層
は，学習可能なパラメータを持たず，設定領域の代表値を計算する処理のみ行われる．代表値としては，最
大値および平均値が用いられる．局所的な範囲から代表値を算出することで，局所範囲のばらつきを許容す
る層となっている．さらに，最大値および平均値の計算は値の入力順に依存しないため，順不変性をモデル
に与えることができる．
測定においては，照明順を変更してもサンプルは変化しないので，照明順によらず同じ再構成結果となら
なければならない．光相関イメージングの相関計算では，平均値を計算するため照明順に依存せず同じ画像
が再構成される．一方で，深層学習モデルでは各要素の重みパラメータがそれぞれ最適化されており，入力
順を変更すると結果に影響を及ぼす．また，畳み込み層において，畳み込みフィルタは非対称であるため，
入力角度の影響を受ける．これらの照明順，角度の影響を排除するためにプーリング層を適用する．
各層の対応関係を図 2.6にまとめる．目的に応じて組み合わせて光相関イメージングのための深層学習モ
デルを構築する．各層は，学習可能な重みパラメータおよびバイアスパラメータと，学習不可のハイパーパ
ラメータをもつ．ハイパーパラメータには，入出力の要素数，カーネルサイズなどがあげられる．ハイパー
パラメータは，学習によって最適化されない値であるため，モデル設計時に適切に設定および調整する必要
がある．
2.2.4 深層学習を用いた光相関イメージングの高速化

2.2.1節で述べたように，少ない照明回数での光相関イメージングでは相関値が収束せず再構成像の品質
が低下するという課題がある．これに対して，2.2.3節で述べた各画質劣化要因に対応する深層学習モデル
を構築することで，少ない照明回数でも高品質な像の推定が可能となる．深層学習を用いた光相関イメージ
ングの概略を図 2.7に示す．はじめに，少数のパターンをサンプルに照明し，応答信号を測定する．次に，
測定したデータを構築した深層学習モデルに入力する．深層学習モデルで，各画質劣化要因を取り除き高品
質な再構成像を出力する．深層学習モデルの学習では，多量のデータを用いた反復計算を行うため長い時間
を要する．しかし，測定時には学習済みモデルを用いた推定を行うため短い計算時間となる．そのため，少
ない照明回数かつ短い計算時間でイメージング可能である．
深層学習モデルの学習には多量のデータを用いるが，光相関イメージングではサンプルにパターンを照明
したときの応答光を容易に計算できる．そのため，多量のデータを数値解析で作成し，深層学習モデルを学
習できる．データセットの生成法を図 2.8に示す．まず，多量のサンプル形状と照明パターンを生成する．
次に，サンプルとパターンの内積を計算することで応答光強度を得る．そして，サンプル形状を出力ラベ
ル，照明パターンと応答光強度を入力としたデータセットを作成できる．数値解析のみでデータセットを作
成できるため，異なる性質の撮影対象に対しても容易に再学習可能である．
しかしながら，深層学習モデルによって再構成像の品質を向上させたとしても，構造化照明に由来する識
別能の制限，すなわち非排他的構造化照明に起因する問題は残る．空間的に近接した 2点が同一画素内で同
一の照明強度を受ける場合や，時間的に異なる画素が同一の照明強度系列を受ける場合などでは，測定信号
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が同一となり識別が困難となる．また，測定環境に依存して生じるばらつきによって，本来は異なる測定信
号が一致してしまい，誤った推定を引き起こす可能性もある．このように，構造化照明と測定信号との間に
一意な対応関係が存在しない状況では，深層学習モデルの推定性能が根本的に制約され，解像度や精度の限
界となる．したがって，深層学習を用いた光相関イメージングを高解像度化するためには，深層学習モデル
の設計に加えて，識別能を保証する局所排他的構造化照明の設計が不可欠である．
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2.3 局所排他的構造化照明法
前節までに述べたように，深層学習モデルを用いた光相関イメージングは，少ない照明回数で高速かつ高
品質な画像再構成ができる．しかしながら，構造化照明と測定信号の間に一意な対応が存在しない非排他的
構造化照明の状態では，測定信号から対象を識別する識別能が制限される．図 2.9（a）に示すように，異な
る 2点からの応答信号が異なるときを排他的測定と呼び，測定信号が異なるため 2点を識別出来る．しか
し，図 2.9（b）に示すように，異なる 2点からの応答信号が同じとなる非排他的測定では，測定信号からは
対象がどちらの点に存在するかを識別できない．この問題は測定に起因するため，深層学習モデルによる特
徴抽出や推定処理の高性能化のみでは解決が困難であり，構造化照明を排他的する必要がある．
光相関イメージングで非排他的測定となる要因は，図 2.10 に示すように，(a) 空間領域における非排他
性，(b)時間領域における非排他性，(c)測定ばらつきによる非排他性の 3つに分類される．まず，空間領域
ついて考えると，画素内で近接した 2点には同一の強度で照明されるため識別できない．また，異なる画素
の 2点でも，時間的に同一の強度が照明されると識別できなくなる．さらに，本来異なる信号となる 2点で
あっても測定のばらつきによって同一の強度となる可能性がある．そこで本節では，それぞれの要因に対す
る解決手法を述べる．
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2.3.1 非合焦照明による空間領域での局所排他的構造化照明
光相関イメージングにおける空間解像度は，構造化照明の画素サイズによって制限される．これは，対象
面に結像された構造化照明の各画素の内部が空間的に一様な強度分布を有するためである．したがって，異
なる対象であっても同一画素内であれば，同一の照明強度を受けるため同一の測定信号が得られる．このよ
うな信号では，測定信号に基づいて対象の空間的な位置を識別する際に，画素内での微小な位置変化が反映
されず，対象の識別が困難となる．この現象は，光相関イメージングにおける局所空間的な非排他性にあた
る．高解像度なイメージングを実現するためには，画素内の微小な位置変化に応じて異なる測定信号が得ら
れるような空間領域で局所排他的な構造化照明が必要となる．
構造化照明の結像位置から離した位置に対象を設置することで，ぼやけた構造の非合焦照明となる．対象
面に照射されるパターンがぼやけるため，画素内に強度勾配が生じる．これにより，図 2.11に示すように，
同一画素内であっても対象の位置がわずかに異なれば，受ける照明強度が変化し，測定信号にも違いが生じ
る．この非合焦照明によって，画素内の微小な位置変化が測定信号に反映されるようになり，局所空間的に
排他的な構造化照明となる．
非合焦照明を用いた光相関イメージングでは，図 2.12に示すように，結像位置から離れた非合焦位置に
対象を設置し構造化照明を行う．既知の強度分布を �ideal,n (G, H)，照明光学系の点像分布関数（Point Spread

Function: PSF）を %(G, H) とする．このとき，撮影対象に照明されるボケた強度分布 �blur,n は，
�blur,n (G, H) = �ideal,n (G, H) ∗ %(G, H), (2.27)

となる．ここで，∗は畳み込み演算子である．さらに，検出器で測定される信号強度 �blur,n は，
�blur,n =

∬
) (G, H) (�blur,n (G, H) ∗ %(G, H))3G3H, (2.28)
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Fig. 2.11. Intensity gradient within a pixel due to out-focased illumination.
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となる．したがって，相関値分布 �blur (G, H) は，
�blur (G, H) = ⟨�blur,n (G, H)�blur,n⟩ − ⟨�blur,n (G, H)⟩⟨�blur,n⟩ (2.29)

= � ideal (G, H) ∗ %(G, H), (2.30)

となり，既知の強度分布 �ideal,n が照明されたときの相関関数 � ideal (G, H) に対して PSFが畳み込まれたもの
になる．すなわち，ボケたパターンで測定を行う光相関イメージングで再構成される像は，対象のボケた
像をボケのない GIで再構成した像と等価である．したがって，非合焦照明を用いた光相関イメージングで
は，対象の高解像度情報が照明ボケの影響として測定データに含まれる．
非合焦照明によって得られる測定信号は，画素内の微小な位置変化を反映した高解像度な空間情報を含む
一方で，相関値の未収束やノイズ成分の影響が大きく，測定信号から直接的に位置情報を解析的に復元する
ことは困難である．したがって，測定信号に含まれる高解像度な情報を深層学習モデルによって抽出し，対
象の像を高解像度に推定する．しかし，畳み込み層のみでは局所的な特徴量の抽出は可能であるものの，出
力の空間解像度を上げる機能は持たない．そこで，空間的に広げたのちに畳み込みを行うサブピクセル畳み
込み層を用いて，抽出したサブピクセル情報を顕在化させて高解像度な対象像を推定する．サブピクセル畳
み込み層は，図 2.13に示すように，畳み込み演算後に空間方向への再配置を行うことで，低解像度の入力
から高解像度に変換する役割を持つ層である．まず，入力値に対して通常の畳み込み層と同じ演算を行う．
ただし，通常よりも大きいチャネル数の出力を行う．次に，ピクセルシャッフルによりチャネル方向から空
間方向への再配置を行う．畳み込み演算による出力サイズ (�,,,� × A2) とすると，ピクセルシャッフルに
よる出力は ((� × A), (, × A), �) となる．このとき，各画素に対応した重みフィルタが学習によって最適化
されることで，測定信号に含まれるサブピクセル情報が顕在化し，画素サイズに依存しない高解像度な空間
情報を再構成することが可能となる．
このように，非合焦照明により構造化照明の画素内に強度勾配を生じさせ，画素内の微小な位置変化が測
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定信号に反映される．さらに，深層学習モデルにサブピクセル畳み込み層を導入することで，非合焦照明に
よって得られる高解像度な空間情報を顕在化し，空間的に高解像度なイメージングが可能となる．
2.3.2 2進数表記に基づく時間領域での局所排他的構造化照明
光相関イメージングにおいては，空間的に異なる画素に存在する対象であっても，照明強度の時間変化が
一致すると同一の測定信号が得られる．この現象は，光相関イメージングにおける時間的非排他性に該当す
る．直交パターンでは，各画素に照明される値も直交するため排他性が満たされる．一方，ランダムパター
ンでは，確率的に時間的非排他性をもつ．パターン数が多くなるほどその確率は低下するが，局所的な短い
時間に照明される少ないパターンでは，非排他的となる確率が増加する．特に，深層学習を用いた光相関イ
メージングのように，照明回数が極端に少ない条件ではこの問題が顕著に現れる．したがって，局所的な時
間的非排他性を抑制する構造化照明の設計が重要となる．
時間的非排他性を抑制するためには，各画素が時間的に異なる照明強度変調を受ける必要がある．パター
ンの階調数を �，照明回数を # とすると，照明強度変調の組み合わせは �# 個となる．組み合わせ数が多
くなるほど同じ組み合わせとなる確率は低下するため，同じ照明回数ではパターンの階調数が多いほど非排
他性は低下する．すなわち，多値パターンでは時間的排他性を高い確率で担保できる．しかしながら，階
調数が大きいほど，図 2.14のように強度変化のステップ幅が小さくなる．ステップ幅が小さくなると，ス
テップ幅に対するノイズレベルが大きくなるため，SN比が低下しノイズ耐性が低下する．一方で，2値パ
ターンは最大値と最小値の差が大きいため，ノイズに対するロバスト性に優れている．さらに，階調数が少
ないほど，高いリフレッシュレートでパターンを更新できる．したがって，ノイズ耐性と高速性が要求され
る深層学習を用いた光相関イメージングにおいては 2値のパターンを用いることが望ましい．
時間的に局所排他的な構造化照明を生成するために，2 進数表記を用いる．ある画素に対して # 回の 2

値照明を行ったとき，図 2.15のように，その画素に照明される強度の変調は 0または 1の値を持つ # 桁の
2進数として解釈できる．したがって，異なる画素の照明強度変調が一致する非排他的照明は，画素が表す
2進数が一致する状態である．2進数は一意に整数値を表現できるため，各画素に異なる整数値を割り当て
るように構造化照明を設計すれば，各画素に固有の照明強度変調を与えることができる．このとき，すべて
の画素に異なる 2進数を割り当てるためには，画素数 " に対して 2#−1 < " ≦ 2# を満たす最小のパター
ン数 # が必要となる．直交パターンでは画素数 " に対して " 枚のパターンが必要であるのに対して，2

進数表記に基づくパターンでは最小枚数が ⌊log2 (")⌋ + 1であり，2進数表記に基づく構造化照明は少ない
パターン数で排他性をもつ．
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Fig. 2.14. Difference in noise resistance between binary and grayscale patterns.
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2.3.3 非排他的推定の除外のための近傍特徴マップを用いた推定不確かさ評価
構造化照明が空間領域および時間領域で局所排他的に設計されていたとしても，測定信号に含まれるばら
つきによって識別能が低下する．ばらつきの要因としては，構造化照明の強度変動，検出器の雑音，光学系
の揺らぎ，周囲環境の変動などが挙げられる．これらのばらつきによって，本来は異なる測定信号が一致し
てしまうと測定値が非排他的な状態となり，対象の識別が困難となる．深層学習モデルは与えられた入力に
対して尤もらしい推定を出力するため，出力された推定値が唯一の解であるかどうかは出力結果のみからは
判断できない．複数の候補が存在する非排他的な推定では，推定値が確率的に決まることにより信頼性が低
下する．したがって，推定の信頼性を向上させるためには，非排他的な推定を検出し，除外することが求め
られる．
深層学習モデルの出力値は推定に由来する不確かさをもち，推定の信頼性を表す指標となる．推定値が持
つ不確かさは，図 2.16に示すように，Aleatoricな不確かさと Epistemicな不確かさに分類される．Aleatoric

な不確かさはデータに起因するものであり，「わからない」状態を表す．これは，データに含まれるばらつ
きやノイズの影響によって，モデル自体が判断を下せない状況であり，その結果として推定値がばらつく．
一方で，Epistemicな不確かさはモデルに起因するものであり，「知らない」状態を表す．これは，モデルが
推定に必要な知識を十分に学習できておらず，推定性能が限定されることで生じる不確かさである．
不確かさの要因は，学習データの作成，モデルの学習，および推定の各プロセスに存在する．深層学習を
用いた光相関イメージングにおける推定不確かさ要因を図 2.17にまとめる．まず，測定時には，測定環境
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の変化や測定システムの誤差といった要因がある．測定環境の変化には，周囲の温度や湿度の変動，検出器
の設置誤差といった測定システムのエラーが含まれる．これらの変化により，同一の対象であっても測定値
が変化する．この誤差は系統的なものであり，Epistemicな不確かさに分類される．一方で，光源のゆらぎ，
熱揺らぎ，ショットノイズなどによる測定データのばらつきは，データに内在する本質的なランダム性に起
因し，Aleatoricな不確かさに分類される．次に，モデルの学習過程における要因としては，モデル構造の
不適合および学習プロセス上の誤差が挙げられる．モデル構造が目的に適していない場合は十分な特徴抽出
が困難となり，また，学習の初期値や最適化手法の選択が不適切であると，パラメータが局所解に収束し，
推定にばらつきが生じる．これらはすべてモデルに起因するため，Epistemicな不確かさに該当する．最後
に，未知の特性をもつ入力データも不確かさの要因となる．学習時のデータと異なる性質を持つデータが入
力された場合，モデルは最適化されていない領域に対して推定を行うため，誤差が増大する．このような状
況もモデルの知識不足に由来するため，Epistemicな不確かさに分類される．
以上のように，推定の不確かさの多くの要因は Epistemicな不確かさに関与している．これらは系統的な
要因であるため，測定環境や推定対象に合わせたモデル設計や適切な学習によって低減が可能である．一方
で，データに含まれる本質的なばらつきに起因する Aleatoricな不確かさは，モデルや学習方法にかかわら
ず回避や補正が困難である．非排他的な信号に対する推定も，測定のばらつきによって対象を識別出来ない
状態であり，Aleatoric な不確かさに該当する．したがって，深層学習を用いた光相関イメージングにおい
ては，Aleatoricな不確かさを定量的に評価する必要がある．

Aleatricな不確かさを評価するために，深層学習モデルの内部出力である特徴マップを用いる．深層学習
モデルに入力されたデータは，図 2.18に示すように，全結合層や畳み込み層といった非線形変換層を通じ
て，高次元の特徴マップへと変換される．特徴マップには，入力データに含まれる対象の本質的な情報が抽
出され，圧縮された表現として保持されている．この特徴マップをさらに変換することで，最終的な推定値
が出力される．推定不確かさが小さい推定では，入力データから必要十分な特徴が安定的に抽出されている
ため，特徴マップにわずかな揺らぎが生じても推定値にはほとんど影響しない．一方で，推定不確かさが大
きい場合は，特徴抽出が不十分または曖昧であるため，特徴マップのわずかな変動が推定値に大きく影響す
る．したがって，抽出した特徴マップ近傍における推定値の変動を評価することで，推定の不確かさを定量
的に把握することが可能となる．
人為的にわずかな揺らぎを特徴量に与えて生成した近傍特徴マップを用いることで推定不確かさ評価す
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Fig. 2.16. Classification of uncertainty in deep learning model.
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る．評価プロセスを図 2.19に示す．まず，深層学習モデルに測定値を入力し特徴マップを抽出する．次に，
抽出した特徴マップとわずかに異なる複数の近傍特徴マップをサンプリングする．続いて，それぞれの近傍
特徴マップを深層学習モデルに入力し，複数の近傍推定値を得る．得られた推定値の平均を最終的な推定結
果とし，推定値の標準偏差を推定不確かさと定義する．この手法は，モデル自体に不確かさの出力を学習さ
せる方法とは異なり，外部から導入された揺らぎに対するモデルの出力安定性を評価するものである．その
ため，推定不確かさは深層学習モデルの構造や重みに依存せず，かつ推定不確かさ自身には推定不確かさを
もたない利点がある．
推定不確かさが大きい推定値は，測定信号に含まれるばらつきにより識別が困難な非排他的な推定である
可能性が高い．一方で，排他的な推定では，特徴マップから安定して同じ出力が得られるため，推定不確か
さは小さくなる．このように，不確かさの分布に違いが生じるため，推定不確かさの統計的な分布に基づい
てしきい値を設定し，信頼性の低い推定を除外できる．具体的には，推定不確かさがしきい値を上回る推定
値を非排他的な推定として除外する．この処理によって，信頼性の低い推定を除外し，測定全体の信頼性お
よび推定精度を向上できる．
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Fig. 2.19. Evaluation of prediction uncertainty by feature map augmentation. Random numbers are added to the encoder-

transformed feature map to generate a neighborhood feature map. The mean of the outputs for the neighbor feature map is

the predicted value, and the standard deviation is the prediction uncertainty.

2.3.4 局所排他的構造化照明法を用いた高解像度イメージング
2.3.1項から 2.3.3項までに，深層学習を用いた光相関イメージングにおける識別能の低下要因を，構造化
照明の非排他性および測定信号のばらつきに分類し，それぞれに対する解決手法として，空間領域における
非合焦照明，時間領域における 2進数表記に基づくパターン設計，および推定不確かさに基づく非排他的推
定の除外を示した．各手法はそれぞれ独立に識別能や推定信頼性を向上させるが，単独で高解像度な深層学
習を用いた光相関イメージングを達成するには限界がある．3つの手法を統合することで，深層学習を用い
た光相関イメージングの高解像度化が成立する．
各手法は，それぞれ異なる観点から識別能および信頼性の向上に寄与し，互いに補完的な関係をもつ．空
間的局所排他性を高める非合焦照明では，画素サイズ以下の微小な位置変化が測定信号に反映されるため，
画素内の高解像度な情報を抽出できる．時間的局所排他性を確保する 2進数表記に基づく構造化パターン
設計では，異なる画素からの信号が同一となることを防ぎ，位置推定精度を向上させる．非合焦照明のみで
は他画素と混同する可能性があり，2進数表記に基づく構造化パターン設計のみでは画素サイズ以下の位置
を識別出来ない．そのため，両者を組み合わせた局所排他的構造化照明法により高解像度イメージングが達
成される．しかし，測定のばらつきは制御できないため，局所排他的構造化照明を用いても非排他的な推定
が起こる可能性がある．これに対して，推定不確かさを評価して非排他的な推定を検出し除外することで信
頼性を向上させる必要がある．これら 3つの手法は，それぞれが異なる識別能の制限要因に対応しつつ，相
互に補完し合うことで，深層学習を用いた光相関イメージングの高解像度化を実現する．
局所排他的構造化照明法を統合した高解像度深層学習光相関イメージングの原理を図 2.20に示す．まず，
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2進数表記に基づいて設計された構造化パターンを用いて，照明変調に一意性をもたせることで時間的な非
排他性を排除する．次に，これらの構造化パターンを非合焦照明として対象に照射し，構造化照明の画素内
に強度勾配を生じさせる．これにより，画素内の微小な位置変化が測定信号に反映され，空間的に排他的な
測定が行われる．得られた測定信号を深層学習モデルに入力することで，高解像度な対象分布を推定する．
さらに，推定不確かさを定量的に評価し，測定信号のばらつきに起因する信頼性の低い推定を除外すること
で，測定の信頼性を向上させる．3つの手法を統合することにより，構造化照明と測定信号との間に高い識
別性と一意性を確保し，微小な対象に対しても高解像度かつ高信頼な推定が可能となる．

2.4 結言
本章では，局所排他的構造化照明法を導入することによる深層学習を用いた光相関イメージングの高解像
度化を提案した．光相関イメージングは高感度に測定できるが，長い測定時間が課題であった．深層学習を
用いた特徴抽出を組み合わせることで高速化できるが，異なる対象をに対して測定値が同一となる非排他性
の影響が顕著になる．
非排他性による課題を解決し，高解像度化するために，空間および時間的に局所排他性を持つ構造化照明
法の適用と推定不確かさの評価を導入した．空間領域に対しては，非合焦照明によって画素内に強度勾配を
生じさせ，画素サイズ以下の微小な位置変化を識別可能とした．時間領域に対しては，2進数表記に基づく
構造化照明により，各画素に一意な強度変調を割り当て，時間的な非排他性を解消した．さらに，測定ばら
つきに起因する非排他的推定による信頼性低下に対しては，近傍特徴マップを用いた推定不確かさ評価に
よって，非排他的な推定を検出と除外する手法を示した．そして，これら 3 つの手法を統合することによ
り，測定対象と測定信号との間に一意な対応関係を確保し，深層学習を用いた光相関イメージングにおける
高解像度かつ高信頼な推定を実現する局所排他的構造化照明法を示した．
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第 3章
空間領域での局所排他的構造化照明による
推定解像度向上
3.1 緒言
本章では，空間領域における局所排他的構造化照明として構造化照明の結像位置から離れた非合焦照明を
導入することで，深層学習を用いた光相関イメージングの推定解像度を向上できることを示す．光相関イ
メージングにおいては，構造化照明が画素単位で結像されるため，同一画素内の対象は同一の強度で照明さ
れる．そのため，画素内の微小な位置変化が測定信号に反映されず，空間的な識別能が制限される．この問
題は，構造化照明が局所空間的に非排他であることに起因する．構造化照明の画素内に強度勾配を生じさせ
る非合焦照明を用いることで，画素内のわずかな位置差異が測定信号として識別可能になる．
まず，3.2節では，非合焦照明を用いた光相関イメージングの数値解析を行い，同一画素の対象が排他的
に再構成されることを示す．
つぎに，3.3節では，非合焦照明によって測定信号に含まれる高解像度情報を抽出するための深層学習モ
デルについての設計検討を行う．非合焦照明による信号変化は空間的に局所的なため，畳み込み層を用いた
モデルが有効である．また，畳み込み層で抽出する情報は，畳み込みフィルタの大きさであるカーネルサイ
ズで決まる．そこで，カーネルサイズの異なる畳み込み層を持つ単純なモデルを構築し，非合焦照明を用い
た光相関イメージング下でのサンプル情報抽出性能の比較を行う．さらに，異なるスケールの局所情報を同
時に抽出するために，複数のカーネルサイズを並列に組み合わせた並列畳み込みモデルを提案し，その有効
性を評価する．
そして，3.4節では，非合焦照明を用いた光相関イメージングにおいて，高解像度な推定を実現する深層
学習モデルを構築し，その性能を検証する．まず，非合焦照明に由来する高解像度情報を抽出し高解像度に
推定を行うための，サブピクセル畳み込み層を用いたモデルを構築する．最後に，構築した高解像度推定モ
デルを用いて非合焦照明下での推定結果を示し，空間領域での局所排他的構造化照明法による推定解像度向
上の有効性を実証する．
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3.2 非合焦照明を用いた光相関イメージングの数値解析
3.2.1 数値解析のための計算環境
深層学習モデルの学習では，106 個以上のパラメータを最適化するため，非常に多くの計算を要する．そ
のため，高性能な計算機を使用する必要がある．解析に用いた計算機の仕様を表 3.1 に示す．深層学習モ
デルの計算は主に，行列計算であるため，行列計算に特化した計算素子である GPU（Graphics Processing

Unit）を用いた．また，多数のデータセットをメモリ上に格納し，学習を効率化するために 128 GBのメモ
リを用いた．

Tab. 3.1. PC specifications for numerical analysis．
CPU intel Core i9 9820X 10core/20thread 3.3GHz

GPU NVIDIA RTX4090 2535 MHz GDDR6X24 GB

RAM 128 GB

解析には，多数の深層学習用フレームワークをもつプログラム言語である Pythonを用いた．主に使用し
たライブラリと使用用途を表 3.2に示す．深層学習フレームワークは，モデル設計の柔軟性と容易さから，
Pytorchを選択した．また，数値計算を効率化するための Numpyおよび科学計算を行うための Scipyを用
いた．以降の解析では，すべて同じ計算環境で計算を行った．

Tab. 3.2. Development environment for numerical analysis．
Package Version Role

Python 3.12.7 Programming language

Numpy 1.26.4 Numerical computing

Scipy 1.24.1 Scientific computing

Matplotlib 3.9.2 Data visualization

Pytorch 2.4.1 Deep learning framework

Pandas 2.2.3 Data manipulation

Pillow 10.4.0 Image processing

3.2.2 非合焦照明の局所排他性検証
非合焦照明を用いた光相関イメージングの数値解析を行い，空間的に局所排他な再構成が行われることを
検証した．照明パターンの画素より小さく，同一画素内でわずかに位置が異なる対象に対して非合焦照明を
用いた光相関イメージングを行った．構造化パターンには 16 × 16 pixelの 1 bitランダムパターンを用い，
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照明回数は 10000回とした．また，照明光学系の点広がり関数は，
PSF(G, H, f) =

1

2cf2
exp

(
−
G2 + H2

2f2

)
， (3.1)

で表されされる 2次元ガウス関数とし，f = 1.0 pixelとして計算を行った．パターンのボケを詳細に解析
するために，照明パターンを最近傍補間により 512 × 512 pixelに拡大してから点広がり関数を畳み込みぼ
やけたパターンを算出した．サンプルの解像度は 512 × 512 pixelとし，欠陥の存在位置としてサンプル内
の 1 × 1 pixelのみを 1，他の領域を 0と設定した．測定信号を式（2.28）にしたがって計算し，式（2.4）の
相関計算式で像を再構成した．
同画素内でわずかに欠陥位置が異なるサンプルに対して再構成した結果を図 3.1に示す．合焦照明の光相
関イメージングで再構成した結果は，欠陥位置によらず一致した．一方で，非合焦照明の光相関イメージン
グで再構成した像では，欠陥が存在する画素のみならず欠陥位置に近い隣接画素も相関値が高くなった．合
焦照明では構造化照明の各画素内は一様な強度分布であり，局所空間的に非排他であるため，欠陥位置にか
かわらず測定信号が同一となり，結果として再構成像に差が現れない．そのため，再構成像から元のサンプ
ル位置を識別できない．一方，非合焦照明では空間的に局所排他的な照明であるため，欠陥の微小な位置の
差が測定信号に反映される．欠陥位置に応じた測定信号の違いが再構成像に表れ，サンプル近傍の複数画素
にわたって相関値が高くなった．この結果より，非合焦照明により，照明パターンの画素サイズ以下の高解
像度欠陥位置情報が測定データに含まれることが示された．
図 3.1の解析は照明回数を 10000回としたものであるが，より少ない照明回数でも欠陥位置の高解像度情
報は測定信号中に含まれる．しかしながら，少ない照明回数では相関値の収束が不十分であり，またノイズ
成分の影響が大きくなるため，得られた高解像度情報はばらつきに埋もれてしまう．その結果，従来の解析
的手法では情報の抽出が困難である．そのため，深層学習を用いた特徴抽出が必要である．

Sample GI w/o blur GI w/ blur

Pixel size of
Illumination patterns

Fig. 3.1. Reconstruction results with blurry ghost imaging for defect smaller than pixel size.
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3.3 非合焦照明に由来する光相関情報を抽出するための深層学習モデル
検討

3.3.1 畳み込み層のカーネルサイズと点広がり関数の関係
非合焦照明によって得られる高解像度情報は，構造化照明の画素内に生じる強度勾配に起因する局所的な
情報である．したがって，2.2.3節で述べたように，このような局所的特徴量の抽出には畳み込み層が有効
である．畳み込み層において着目する領域の大きさを決定するのが，重みフィルタのサイズを示すカーネル
サイズである．図 3.2 に示すように，カーネルサイズが 1 のとき，畳み込み処理は同一画素内の情報にの
み作用し，同画素内の情報にのみ着目する．一方で，カーネルサイズが 3 のとき，隣接する画素を含めた
3 × 3画素に含まれる情報に着目する．このように，カーネルサイズを大きく設定することで，広い領域に
含まれる情報を特徴量として取り出すことが可能となる．また，単に大きなカーネルサイズを 1層で用いる
のではなく，3 × 3程度のカーネルサイズを持つ畳み込み層を複数層重ねることでも，広い領域に対する情
報抽出が可能である．例えば，3 × 3のカーネルサイズをもつ畳み込み層を 2層重ねると，5 × 5のカーネル
サイズをもつ畳み込み層と同じ領域を着目できる．さらに，複数層の重ね合わせにより非線形関数を複数回
作用させることができるため，情報抽出の効率と表現力が向上する．このカーネルサイズを適切に設定する
ことで，目的とする局所的な情報を効果的に抽出することが可能となる．
非合焦照明により得られる高解像度情報は，構造化照明のぼけを表す点広がり関数の影響を受ける．した
がって，点広がり関数に合わせたカーネルサイズを設定する必要がある．カーネルサイズと点広がり関数の
関係を図 3.3に示す．点広がり関数の影響範囲が照明パターンの画素サイズよりも小さいとき，隣接画素と
の関係が小さいため小さいカーネルサイズで十分である．一方で，点広がり関数の影響範囲が広くなるほ
ど，カーネルサイズを大きく設定する必要がある．このように，点広がり関数に合わせてカーネルサイズを
適切に設定することで，非合焦照明に由来する高解像度情報を効率的に抽出することが可能となる．ただ
し，カーネルサイズの大きい畳み込み層は広い領域にわたる情報抽出に優れる一方で，狭い領域に局在する
相関情報の抽出には適していない．そのため，異なるサイズのカーネルを持つ複数の畳み込み層を併用する
ことで，広い領域と狭い領域の両方に対応した特徴量抽出が可能となる．

Focus area
(Kernel size: 1)

Focus area
(Kernel size: 3)

Input distributions Input distributions

(a) (b)

Fig. 3.2. Feature extraction in the convolutional layer. (a) The convolutional layer with a kernel size of 1 corrects the

correlation between the reconstructed image and the illumination pattern. (b) The convolutional layer with a kernel size of

3 also focuses on the effect of surrounding pixels, i.e., blur.
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Increasing spread of PSF

One pixel of the GI image PSF effect area

Fig. 3.3. The relationship between the PSF and the kernel size.

3.3.2 解析条件および比較モデルの構成
異なるカーネルサイズを持つ畳み込み層で構成された深層学習モデルを比較し，非合焦照明に由来する高
解像度情報の抽出に適した深層学習モデルを検討した．非合焦照明下での欠陥位置情報抽出に着目するた
め，この検討においては高解像度化は行わず，非合焦照明下での高速化のみにおいて比較した．
カーネルサイズによる違いのみを比較するため，単純な畳み込みモデルを構築した．構築したモデルの構
造を図 3.4に示す．各モデルは，2層の特徴抽出用畳み込み層と，1層の出力変換用畳み込み層から構成さ
れる．入力は，照明に使用した構造化照明パターンと，相関計算によって再構成された画像である．出力
は，対象領域内の欠陥存在確率分布とした．入力データから情報を抽出する層のカーネルサイズを（1，1），
（3，1），（5，1）および（3，3）として比較した．簡略のため，各モデルのカーネルサイズを用いてそれぞ
れのモデルを S111，S311，S511および S331モデルと表記する．カーネルサイズによる違いを評価するた
め，その他のパラメータは統一した．各畳み込み層では，畳み込み演算，バッチ正規化，活性化関数の順に
処理される．中間層の活性化関数には mish関数を用い，出力層の活性化関数は Softmax関数を用いた．照
明パターンは 16 × 16 pixelの 8bitランダムパターンとし，照明回数は 4回とした．また，推定対象の制約
条件として，測定範囲内にただ一つ 1 × 1 pixelの欠陥が存在するとした．
カーネルサイズによる情報抽出の違いを比較するために，異なる広がりの点広がり関数で学習データセッ
トを作成した．学習データセットの作成法を図 3.5に示す．まず，欠陥位置が異なる欠陥分布を複数作成し
た．次に，照明パターンを生成し，点広がり関数を畳み込むことにより非合焦照明でサンプルに照明される
パターンを算出した．点広がり関数は標準偏差 f をパラメータとした 2次元ガウス関数を用いた．得られ
た非合焦照明下の照明パターンと欠陥分布の内積から検出信号を算出し，相関計算により再構成画像を求め
た．そして，照明パターンおよび再構成画像を入力，サンプルの欠陥分布を出力ラベルとするセットを作成
した．訓練データとして 256000セット，テストデータとして 25600セットを作成した．点広がり関数の f

を 0.1ずつ 0.0から 2.0まで変化させ，それぞれの点広がり関数に対して同様にデータセットの作成を行っ
た．作成したデータセットを用いて図 3.4に示すモデルの学習を行った．
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Fig. 3.4. Structure of the CNN models used for validation. Kernel size of the first and second layer is different. （a）
Overview, and detail of（b） S111,（c） S311,（d） S511, and（e） S331 model.

3.3.3 非合焦照明下での光相関情報抽出性能の比較
点広がり関数の広がりを変化させた複数のデータセットを用いて，各モデルの性能を比較した．点広がり
関数の標準偏差 f を 0.0 から 2.0 まで 0.1 刻みで変化させた 21 種類のデータセットを，各モデルに対し
て個別に学習を行った．損失関数は交差エントロピー誤差，最適化は Adamを用いて 50エポック学習させ
た．また，学習率は 0.01，バッチサイズは 256とした．f = 0.0のデータセットを学習した際の学習曲線を
図 3.6 に示す．いずれのモデルにおいても，訓練データとテストデータに対する損失はともに収束してお
り，過学習の発生は見られなかった．
非合焦照明が推定に及ぼす影響を確認するために推定分布を比較した．学習した f と同じ f のテスト
データを用いた推定結果を図 3.7に示す．合焦照明での推定となる f = 0.0では，モデルによらず欠陥位置
が推定された．しかし，f が大きくなるにつれて，カーネルサイズの小さいモデルでは欠陥位置の推定精度
が低下した．
推定精度の定量的評価として，推定された欠陥位置の正解率を算出した．正解率は，推定値が真の値と一
致する割合であり，" 回の推定を行ったときに ) 回の推定が真の値と一致すると正解率は )/" で定義さ
れる．この解析では，サンプルの欠陥位置を真の値，推定値分布内で最大値をとる位置を推定欠陥位置とし
て正解率を算出した．評価用のデータとして，標準偏差 f を 0.00から 2.00まで 0.01刻みで変化させた点
広がり関数に対して 25600枚の測定データを，学習データ作成と同様の手順で作成した．
推定対象の fに対する正解率の変化を図 3.8に示す．横軸は推定対象の f，縦軸は正解率，色は各モデル
が学習した f に対応する．カーネルサイズが 1の畳み込み層しかもたない S111モデルをみると，f = 0.0

や 0.1付近で正解率が高いが，f ≥ 0.3では全体的に正解率が大きく低下した．これは，カーネルサイズが
小さいため，非合焦照明によって周囲の画素に広がった欠陥情報を捉えきれないためである．次に，カーネ
ルサイズが 3の畳み込み層を 1つもつ S311モデルをみると，f ≤ 0.6まで高い精度を維持するが，f ≥ 1.0
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Fig. 3.5. Dataset creation to compare the effect of different kernel sizes on blurry ghost imaging.

では精度が低下した．これは，非合焦照明の影響が隣接画素におよぶ場合は情報抽出できるが，2 画素以
上に及ぶ場合に情報抽出が不十分となることを示している．カーネルサイズが 5の畳み込み層を 1つもつ
S511モデルをみると，f = 2.0までの全域において，学習した f近傍で高い正解率が維持されており，広範
囲な影響を捉えられることが示された．さらに，カーネルサイズが 3の畳み込み層を 2つもつ S331モデル
は，S511モデルと同程度の空間情報に着目できるが，より高い正解率を示した．これは，2層構成により複
数の活性化関数を介して非線形な特徴抽出が可能となり，効率的な情報抽出がなされたためと考えられる．
ただし，f = 0付近での正解率は S111モデルよりも低下した．これは，非合焦照明の影響が小さいデータ
に対して，大きいカーネルサイズで処理すると不要な情報まで抽出してしまうためであると考えられる．
カーネルサイズによって生じる学習能力の違いをみるために，学習した f と推定できる f の関係を比較
した．学習した f と，そのモデルが最も高い精度を示した推定対象の f の関係を図 3.9に示す．S111およ
び S311モデルでは，推定できる f がある範囲で飽和しており，モデルの抽出能力がカーネルサイズの注目
範囲に制限されることが明らかである．これは，非合焦照明の与える影響範囲よりもカーネルサイズが小さ
くなると，サンプル情報抽出が不完全となるためであると考えられる．広い範囲に着目できる S511モデル
および S331モデルは，学習した f に対して推定できる f が線形関係にあることからも，非合焦照明下に
おいてサンプル情報抽出を行うためには非合焦照明が与える影響範囲よりも大きいカーネルサイズが必要で
あるといえる．
以上の結果より，非合焦照明による局所排他的な欠陥情報を抽出するためには，点広がり関数の影響範囲
よりも大きなカーネルサイズを設定する必要があることが示された．ただし，点広がり関数の影響範囲が小
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Fig. 3.6. Learning curve when training a dataset with f = 0. （a） S111,（b） S311,（c） S511, and（d） S331 model.

さい場合や合焦照明では，大きすぎるカーネルサイズは不要な周辺情報まで含めてしまい，精度が低下する
可能性も示唆された．したがって，測定対象に応じたモデル設計や，複数のカーネルサイズを組み合わせた
構造が有効であると考えられる．
3.3.4 畳み込み層の並列化による推定精度向上の検証実験
非合焦照明により得られる局所排他的な空間情報を効率的に抽出するために，異なるカーネルサイズの畳
み込み層を並列に組み合わせた深層学習モデルを構築した．このモデルを用いて，ガウス分布ではない点広
がり関数をもつ実際の測定系において，欠陥情報抽出性能の検証実験を行った．
並列畳み込みモデルの構成を図 3.10（a）に示す．S111，S311および S331の前 2層を並列に接続した．
そして，カーネルサイズが異なる 3つの畳み込みモデルでそれぞれ抽出された特徴量から推定を行う畳み込
み層を 1層加えて，合計 3層のモデルとした．各並列畳み込み層で抽出された特徴量を図 3.10（b）のよう
に結合した後，最後の畳み込み層によって推定を行った．学習データセットはこれまでのモデルと同一のも
のを使用し学習条件も統一した．f = 0.0のデータセットを学習した際の学習曲線を図 3.11に示す．訓練
データおよびテストデータのいずれにおいても，50エポックで損失関数は収束しており，並列モデルでも
安定した学習が行えていることを確認した．
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Fig. 3.7. Simulation results of DLGI affected by blurring.

並列畳み込みモデルの評価に用いた実験装置を図 3.12に示す．また，各装置の仕様を表 3.3に示す．高い
SN比が得られるように透過型光学系を採用し，DMDプロジェクタ（DLP LightCrafter, TEXAS Instruments）
を用いて構造化照明をサンプルに照射した．サンプルを透過した光をレンズでフォトダイオード（S3072,

Hamamatsu Photonics）上に集光して検出した．フォトダイオードの電圧はデータ収集デバイス（USB6003,

National Instruments）を通してデジタルデータとして記録した．サンプルには直径 400 µm のピンホール
（S71-400, SURUGA SEIKI）を用いた．照明パターンは 16 × 16 pixelの 8 bitランダムパターンとし，照明
領域は 6×6 mmとした．また，照明回数は 4回とした．サンプル位置をパターンの結像位置からずらすこ
とで非合焦照明を行った．結像位置を原点としてフォトダイオードを設置した方向に 2 mmずつ 40 mmま
で移動させ，各位置で 100回ずつ測定を行った．
各位置における再構成画像を図 3.13に示す．また，サンプル面に CMOSカメラ（DMK33UR0234, The

Imaging Source）を設置して取得した，サンプルに照明される強度分布を示す．結像面から離れるほどパ
ターンがぼやける様子が確認され，非合焦照明の影響が大きくなることがわかる．推定結果としては，数値
解析の場合と同様に，カーネルサイズの小さいモデルほど非合焦照明の影響が大きくなると推定が困難とな
る傾向が見られた．各測定位置における各モデルの正解率の最大値を図 3.14に示す．S111モデルでは，結
像位置から離れるにつれて正解率が著しく低下した．一方で，非合焦照明の影響範囲を考慮して設計された
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Fig. 3.8. Comparison of accuracy for models trained on data with different amounts of blurring. （a） S111 model, （b）
S311 model,（c） S511 model,（d） S331 model.

S311，S511，S331モデル，および並列モデルでは，遠い非合焦位置でも安定した推定精度が得られた．最
後に，サンプル位置と正解率の関係を図 3.15に示す．図 3.9と同様に，S111および S311モデルでは，推
定できる fがある範囲で飽和する様子が確認された．直列構造のモデル群では，合焦位置では S111モデル
の正解率が最も高く，非合焦位置では他のモデルが S111モデルを上回った．対照的に，並列畳み込みモデ
ルは，すべてのサンプル位置において直列モデルを上回る正解率を示し，より広範囲な局所排他的構造化照
明からの情報抽出に適していることが示された．さらに，学習には理想化されたガウス関数を用いたにもか
かわらず，実験系における非ガウスな点広がり関数に対しても推定できる汎化性能を有することが確認され
た．以上より，並列畳み込み構造を導入することで，局所排他的構造化照明により得られる多様なスケール
の情報を統合的に抽出でき，実測環境においても高い推定精度と汎用性が得られることが示された．
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Fig. 3.9. Relationship between the amount of blurring learned and the amount of blurring associated with the highest

accuracy.

Tab. 3.3. Specifications of equipment used in the experimental setup.

DMD projector

DMD DLP3000

Resolution 608 × 684 pixel

Size of micromirror 7.8×7.8 µm

Framerate 60 Hz

Photodiode

Active Area Diameter 3.0 mm

Typical Max Responsivity 0.54 A/W

Output Bandwidth (3 dB) DC - 45 MHz

Data acquisition device

Resolution 16 bit

Sampling rate 100 kHz
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Fig. 3.13. Experimental results of DLGI affected by blurring.
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Fig. 3.14. Comparison of the experimental results of the accuracy due to different defocus length, for the different models.

Fig. 3.15. Relationship between the amount of blurring learned and the defocus length with the highest accuracy.
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3.4 非合焦照明による推定解像度向上の検証
3.4.1 サブピクセル畳み込み層を用いた高解像度推定モデル
局所排他的構造化照明によって取得される欠陥情報を活用し，高解像度な対象分布の推定を実現するため
に，サブピクセル畳み込み層を用いた深層学習モデルを構築した．モデル構成を図 3.16に示す．まず，前
段において異なるスケールのカーネルサイズをもつ並列畳み込み層により，非合焦照明によって生じる高解
像度情報を抽出する．次に，抽出された特徴量をサブピクセル畳み込み層により空間的に拡大し，元の解像
度の 4倍となる高解像度の特徴マップへと変換する．最後に，拡大された特徴マップをさらに畳み込み層に
より処理し，高解像度な欠陥存在確率分布を出力する．照明パターンの解像度は 8 × 8 pixelとし，照明回数
は 8回とした．高解像度推定では，1画素を 4 × 4 pixelに分割し，推定値分布の解像度は 32 × 32 pixelとし
た．また，推定対象の制約条件として，測定範囲内にただ一つ欠陥が存在するとした．
学習データの作成方法を図 3.17に示す．まず，異なるサブピクセル位置に欠陥を有する複数の欠陥分布
を生成した．次に，ランダムに生成した照明パターンに，点広がり関数として f = 0.2の 2次元ガウス関
数を畳み込むことで，非合焦照明下の構造化照明パターンを算出した．得られた照明パターンと欠陥分布と
の内積計算により検出信号を算出し，それに基づいて相関計算による再構成画像を作成した．これにより，
照明パターンと再構成画像を入力，欠陥分布を出力とする学習データセットを構築した．訓練データとして
256000セット，テストデータとして 25600セットを作成した．
作成したデータセットを用いて図 3.16に示すモデルの学習を行った．損失関数は交差エントロピー誤差，
最適化は Adamを用いて 50エポック学習させた．学習率は 0.01，バッチサイズは 256とした．学習曲線を
図 3.18に示す．訓練データおよびテストデータに対する損失関数は 50エポックでともに収束しており，過
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Fig. 3.16. Structure of parallel CNN models for high-resolution prediction.
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Fig. 3.17. Dataset creation to high-resolution prediction with blurry ghost imaging.

学習を起こさずに学習できていることを確認できた．

Validation data

Training data

Fig. 3.18. Learning curve of parallel CNN models for high-resolution prediction.



3.4 非合焦照明による推定解像度向上の検証 53

3.4.2 非合焦照明による高解像度推定実験
非合焦照明による空間領域で局所排他的な構造化照明に基づいた高解像度推定モデルの有効性を実証す
るため，照明パターンの画素サイズよりも小さい欠陥に対して，その位置を推定する実験を行った．実験に
用いた装置を図 3.19（a）に示す．構造化照明の投影には DMDプロジェクタ（DLP LightCrafter, TEXAS

Instruments）を用いた．照明されたサンプルからの散乱光は，アバランシェフォトダイオード（APD440A2,

THORLABS）で検出され，データ収集デバイス（USB6003, National Instruments）を通じてデジタルデー
タとして記録された．アバランシェフォトダイオードの仕様を表 3.4に示す．欠陥を模擬したサンプルとし
て，シリコンウエハ上に集光レーザで加工した 1辺 200 µmの矩形穴を用いた．シリコンウエハ表面は鏡面
であり反射率が高いため，欠陥以外に照明された光はほぼすべて正反射され，アバランシェフォトダイオー
ドには入射しない．一方で，欠陥では光が散乱するため，アバランシェフォトダイオードに欠陥からの散乱
光が入射する．そのため，この欠陥サンプルはこれまでの数値解析で用いたサンプルと同様の性質を持つ．
照明パターンは 8 × 8 pixelの 8 bitランダムパターンとし，照明回数は 8回とした．照明領域は 17×17 mm

とした．このとき，照明パターンの 1 画素サイズは 2.1×2.1 mm となり，サンプルの欠陥サイズより大き
い．また，非合焦照明はサンプルを結像位置から 70 mmずらすことで f = 0.18のぼけを実現した．
欠陥を照明パターンの同一画素内でわずかに異なる位置に設置し，それぞれに対して測定を行った．
欠陥位置検出を行った結果を図 3.20 に示す．サンプル位置は，サンプル直上に設置した CMOS カメラ
（DMK33UR0234, The Imaging Source）で取得した．光相関イメージングの再構成像では，照明回数が 8回
と少ないため相関計算の収束が得られず，欠陥位置を明確に判別することはできなかった．一方で，高解像
度推定モデルで推定した分布は，いずれの測定においても欠陥が存在する 1点のみに高い値を推定した．ま
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Fig. 3.19. Experimental system for high-resolution prediction with blurring ghost imaging. （a） Experimental setup,（b）
Image of a silicon wafer used as a sample. There is a rectangular defect in the center.
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Tab. 3.4. Specifications of avalanche photodiode.

Active Area Diameter 1 mm

Typical Max Responsivity 25 A/W

Output Bandwidth (3 dB) DC - 100 kHz

た，欠陥の設置位置が変化すると，推定された高解像度分布もそれに応じて変化しており，画素内のサブピ
クセル位置変化が反映されていることが確認できた．この結果より，局所排他的構造化照明により導入され
た画素内の強度勾配を活用することで，高解像度な対象位置の推定が可能であることが示された．

3.5 結言
本章では，非合焦照明により空間的に局所排他的な構造化照明を実現することで，深層学習を用いた光相
関イメージングにおける推定解像度を向上できることを示した．非合焦照明により導入される画素内の強度
勾配が，照明パターンより高解像度な欠陥位置情報を測定信号に反映させることを活用し，深層学習による
特徴抽出によって高解像度推定を実現した．
まず，3.2節では，非合焦照明を用いた光相関イメージングの数値解析を行い，構造化照明の画素サイズ
以下のサンプル位置情報が測定信号に反映されることを示した．合焦照明では構造化パターンの強度が画素
内で一様であるため，同一画素内の微小位置変化は測定信号に反映されない．一方で，非合焦照明では構造
化パターンが対象面でぼやけるため，画素内に強度勾配が生じ，微小な位置変化が測定信号に反映される．
この結果は，非合焦照明が光相関イメージングにおける空間的局所排他性を高める手法として有効であるこ
とを示すものである．
次に，3.3節では，非合焦照明に由来するサンプル情報を抽出するための深層学習モデルについて検討を
行った．非合焦照明による影響は局所的なものであるため，情報抽出には畳み込み層が有効である．カーネ
ルサイズを変化させた複数のモデルを数値解析により比較した結果，非合焦照明が与える影響範囲に応じて
適切なカーネルサイズを選定することがサンプル情報の抽出に不可欠であることが明らかとなった．また，
大きなカーネルサイズでは広範囲の情報抽出に優れる一方で，局所的な相関情報の抽出能力が低下する可能

2.1 mm

2
 .1

m
m

SP-DLGISample GI
Pixel size 
of pattern

Fig. 3.20. Experimental high-resolution prediction of samples at different locations.
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性が示された．そこで，異なるカーネルサイズの畳み込み層を並列に接続したモデルを構築し評価実験を
行った．その結果，並列畳み込みモデルがより効率的に非合焦照明に由来するサンプル情報を捉えることが
できることを示した．さらに，測定に用いた点広がり関数がガウス関数と異なる場合においても，学習済み
モデルが有効に動作することを実証した．
最後に，3.4節では，非合焦照明によって導入された画素内強度勾配から高解像度な欠陥位置検出ができ
ることを実験的に示した．高解像度情報を抽出する並列畳み込み層と，その情報を高解像度分布へと変換す
るサブピクセル畳み込み層からなる深層学習モデルを構築し，照明パターンの画素サイズより小さい欠陥位
置の推定を行う実験を実施した．その結果，パターンの同一画素内における欠陥位置の違いを識別できるこ
とが示され，空間的な局所排他性を活用することで深層学習を用いた光相関イメージングの空間分解能を向
上できることが明らかとなった．
以上の結果から，非合焦照明は構造化照明における空間的局所排他性を実現する手法として有効であり，
並列畳み込みモデルによる空間情報の抽出により高解像度推定できることが示された．
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第 4章
時間領域での局所排他的構造化照明による
位置推定精度向上
4.1 緒言
本章では，時間領域において局所排他的な構造化照明を導入することで，深層学習を用いた光相関イメー
ジングにおける位置推定精度が向上することを示す．光相関イメージングでは，空間的に異なる画素に存在
する対象であっても，照明強度の時間的変化が一致すると同一の測定信号が得られる．このような時間的非
排他性は，少ない照明回数で測定を行う深層学習を用いた光相関イメージングにおいて顕著に識別性能の低
下を引き起こす．
まず，4.2節では，2進数表記に基づく局所排他的構造化照明の生成について述べる．本手法では，各画
素に対して一意な 2進数で表される整数値を割り当てることで，時間的に局所排他的な構造化照明を生成す
る．0から順に各画素に整数値を割り当てることで，最小のパターン数で時間的に局所排他的な構造化照明
を生成できる．画素ごとの照明強度変調の重複率を比較し，時間的に局所排他性をもつ照明パターンである
ことを示す．
次に，4.3節では，多値構造化照明と 2値構造化照明を比較し，2値構造化照明のもつノイズ耐性につい

て述べる．照明パターンの階調数が増えるほど非排他的な照明となる確率が低下するが，階調の幅が狭くな
るためノイズ耐性が低下する．異なる SN比での光相関イメージングで再構成される像を比較し，多値構造
化照明および 2値構造化照明のノイズ耐性を検証した．
続いて，4.4節では，2進数表記に基づく構造化照明によって位置推定精度が向上することを，数値解析
および実環境下での実験により検証する．まず，解析条件および推定に用いる深層学習モデルについて説明
し，次に，数値解析により時間的排他性が推定精度に与える影響を明らかにする．さらに，実際の測定環境
下においても位置推定精度の向上を確認する．

4.2 2進数表記に基づく局所排他的構造化照明の生成
時間領域において局所排他的な構造化照明として，2進数表記に基づいて照明パターンを生成する．" 個
の画素に対して 0から " − 1までの整数値を割り当てることで，最小限の枚数で局所排他的な構造化照明
を生成できる．具体的な生成手順を図 4.1に示す．まず，各画素に対して 0から " − 1までの整数値を付
与する．次に，各パターンがもつ空間周波数の偏りを避けるために画素の配置をシャッフルする．続いて，
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2#−1 < " ≤ 2# を満たす整数 # を用いて，各画素の整数値を # 桁の 2進数に変換する．そして，各画素
の =ビット目の値をそれぞれ取り出し，=枚目のパターンの値として構成する．最後に，0を黒，1を白に
変換することで 2値のパターンを生成する．この手順によって生成される構造化照明は，全ての画素が一意
な強度変調を持ち，時間的に排他的な構造を実現できる．

2進数表記に基づいて生成した構造化照明と，ランダムに生成した 2値の 1bitパターンおよび多値の 8bit

パターンを比較した．解像度を 16 × 16 pixelとして生成したパターンを図 4.2に示す．8bitパターンは，画
素ごとに 0から 255までの整数値が割り当てられるため，グレースケールで表されるパターンとなった．ま
た，1bitパターンは，すべての画素が 0または 1のいずれかの値を取るため，白黒のパターンとなった．一
方，2進数パターンは，すべての画素が 0または 1のいずれかの値で表される点では 1bitパターンと同じで
あるため，個々のパターンは 1bitパターンと同様に白黒で表される．そのため，見た目の上ではランダム
な 1bitパターンと区別がつかない．

2進数パターンの排他性を定量的に評価するために，各画素における照明強度変調の重複率を算出した．
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Fig. 4.1. Non-overlap pattern generation based on binary notation. (a) Numbering, (b) shuffled, (c) binarized, (d) pattern

generated for each Nth power of two, and (e) pattern generated with black and white.
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(a)

(b)

(c)

Fig. 4.2. Example of illumination pattern. （a） 8 bit random pattern,（b） 1 bit random pattern,（c） Non-overlapping

pattern.

ここでの重複率とは，# 回の照明において得られる各画素の強度変調が，他の画素と完全に一致する画素の
割合と定義した．画素数を "，一意な強度変調をもつ画素数を  とすると，重複率は (" −  )/" で表さ
れる．重複率が低いほど時間的排他性をもつ構造化照明といえる．解像度を 16 × 16 pixelとして，1bitパ
ターン，8bitパターンおよび 2進数パターンについてそれぞれ 10000セットのパターンを生成し，照明回
数に対する重複率を比較した．照明回数と重複率の関係を図 4.3に示す．8bitパターンは 1回の照明で 28

通りの強度を取るため，照明回数 # のとき，全体で 28# 通りの強度変調を表現できる．このため，パター
ンが十分にランダムであれば，# ≥ 2で強度変調の重複はほとんど発生せず，時間領域での局所排他性を満
たす．一方，1bitパターンでは各画素の値は 0か 1のみであるため，照明回数 # のとき 2# 通りの強度変
調しか存在しない．したがって，" = 256画素に対して # < 8では，画素数より強度変調の組み合わせが
少なくなるため必ず重複する．また，照明回数が 8回以上であっても，パターンがランダム生成されるため
重複が生じる可能性がある．そのため，照明回数 8回では，60%の画素で重複が生じた．すなわち，60%

の画素で識別不可能となる．2進数パターンは 2値パターンであり組み合わせ数は 1 bitパターンと同じで
あるが，あらかじめ重複が生じないように設計される．そのため，# = 8で重複率は 0となり，すべての画
素が一意な強度変調を持つことが保証される．この結果から，2進数パターンが時間領域での局所排他性を
満たしていることが示された．

4.3 多値構造化照明と 2値構造化照明のノイズ耐性比較
4.2節の重複率検証において，8bitパターンおよび 2進数パターンが時間領域での局所排他性を満たして
いることが示された．したがって，8bit パターンも深層学習を用いた光相関イメージングへ適用が考えら
れる．しかし，8bit パターンのような多値パターンではノイズ耐性が低下するため，微弱光測定には適し
てしない．そこで，各照明パターンを用いた光相関イメージングのノイズ耐性を比較検証する数値解析を
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Fig. 4.3. Comparison of illumination patterns on overlap rates.

行った．
サンプルは図 4.4に示すように，中央に 1 × 1 pixelの点欠陥をもつ 16 × 16 pixelの単純なサンプルとし
た．再構成画像の画質を定量的に評価するために，コントラストノイズ比（Contrast noise ratio: CNR）を，

�#' ≡
⟨(⟩ − ⟨�⟩
√
f2
(
+ f2

�

， (4.1)

と定義し，各再構成画像に対して評価した．ここで，⟨(⟩ および ⟨�⟩ はサンプルの信号領域および背景領域
の平均値であり，f2

(
および f2

�
はそれぞれの分散である．信号部と背景部の差が大きく，それぞれのばら

つきが小さいほど CNRは増加する．そのため，CNRが高いほど画質が高いことを示す．本解析では，サ
ンプルに設定した白い領域を信号部，その他の黒い領域を背景部とした．
照明パターンの階調数がノイズ耐性に与える影響を明らかにするために，異なる SN比条件下における再
構成像の CNRを比較した．SN比 (#' は，測定値の平均 (86=0;<40= と標準偏差 (86=0;BC3. を用いて，

(#' ≡ (86=0;<40=/(86=0;BC3.， (4.2)

と定義した．数値解析では，理想的な測定信号に対して標準偏差が (86=0;<40=/(#' となるガウス乱数を
加えることで，任意の SN 比の測定信号を算出した．照明回数が十分大きいとき，1bit パターンも時間的
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Fig. 4.4. Optical response rate distribution of the sample.
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排他性を満たすため，1bitパターンと 2進数パターンは同一のパターンと見なすことができる．そのため，
8bitパターンと 1bitパターンで比較した．照明回数を 256回とした条件で，各照明パターンによる再構成
像の CNRを算出し，SN比に対する CNRの変化を評価した結果を図 4.5に示す．SN比が 100および 10

では再構成画像に違いは現れなかった．一方で，SN比が 1のとき，それぞれの再構成像の背景部にノイズ
成分が重畳された．この結果より，低 SN比の測定では，8bitパターンは 1bitパターンと比較してコントラ
ストが低下することがわかった．

SN比と再構成像の画質の関係を明らかにするため，CNRを用いた定量評価を行った．各 SN比で 100回
解析を繰り返し CNRの平均を算出した．SN比と CNRの関係を図 4.6に示す．SN比が 10より高い領域
では CNRに大きな差は見られなかったが，SN比が低下するにつれて 1bitパターンの CNRが 8bitパター
ンを上回った．この結果より，2値パターンの方が優れたノイズ耐性を持つことが示された．
深層学習を用いた光相関イメージングにおいては極端に少ない照明回数で推定を行うため，少ない照明回
数でのノイズ耐性を比較した．照明回数を 8 回とした条件で，1bit パターン，8bit パターンおよび 2 進数
パターンについて異なる SN比に対する CNRを算出した．各 SN比で 100回解析を繰り返し CNRの平均
を算出した．再構成画像の一例を図 4.7に，CNRの定量評価結果を図 4.8に示す．照明回数が少ないため，
SN比が高くてもサンプルの再構成は不完全となり，欠陥位置を判別できない．CNRで比較を行うと，図
4.6と同様に，SN比が低下するにつれて 1bitパターンの CNRが 8bitパターンを上回った．さらに，2進
数パターンは 1bitパターンと同じ 2値パターンであることから同じ CNRの変化を示した．これらの結果よ
り，2進数パターンが 8bitパターンより高いノイズ耐性を持つことが示された．
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Fig. 4.5. Reconstructed image by GI with eight measurements using the different illumination patterns for each SNR.



62 第 4章 時間領域での局所排他的構造化照明による位置推定精度向上

8bit random

1bit random

Fig. 4.6. Relationship between SNR and CNR using the different illumination patterns.
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Fig. 4.7. Relationship between SNR and CNR using the different illumination patterns.

4.4 2進数表記に基づく局所排他的構造化照明による位置推定精度向上の
検証

4.4.1 解析条件と推定モデル
時間領域での局所排他的構造化照明が位置推定精度に与える効果を検証するため，深層学習を用いた光相
関イメージングの推定モデルを構築した．推定モデルの構成を図 4.9に示す．このモデルでは，照明パター
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Fig. 4.8. Relationship between SNR and CNR using the different illumination patterns with eight time illuminations.

ンと相関計算で得られる再構成画像を入力とし，欠陥存在確率分布を出力とする．モデル構成としては，ま
ず並列畳み込み層によって入力データから局所的な特徴量を抽出し，続いて直列畳み込み層により抽出され
た特徴量をもとに推定分布を生成する．各畳み込み層では，畳み込み演算，バッチ正規化，活性化関数の順
に処理される．中間層の活性化関数には mish関数を用い，出力層には Softmax関数を用いて確率分布とし
て正規化した．照明パターンの解像度は 16 × 16 pixel，照明回数は 8回とした．また，推定対象の制約条件
として，測定範囲内にただ一つの欠陥が存在すると仮定した．
照明パターンの種類ごとに個別の学習データセットを作成し学習を行った．データセットの構築手順を
図 4.10に示す．比較対象としたパターンは，1bitパターン，8bitパターン，および 2進数表記に基づく局
所排他的構造化照明である．まず，欠陥位置が異なる複数の欠陥分布を生成した．次に，各照明パターンと
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欠陥分布との内積から検出信号を算出した．さらに，算出した検出信号と照明パターンに基づいて相関計算
を行い再構成画像を得た．これにより，照明パターンと再構成画像を入力，欠陥分布を出力ラベルとする学
習データセットを作成した．訓練データとして 256000セット，テストデータとして 25600セットを用意し
た．損失関数は交差エントロピー誤差，最適化は Adamを用いて 10エポック学習させた．学習率は 0.01，
バッチサイズは 256 とした．図 4.11 に 8bit パターンを学習した際の学習曲線を示す．訓練データおよび
テストデータに対する損失関数はいずれも収束しており，過学習を起こさずに学習していることが確認さ
れた．
4.4.2 数値解析による検証
各構造化照明に対するノイズ耐性を比較するため，異なる SN比における正解率の数値解析を行った．こ
こでの正解率は，推定分布において最大値をとる位置を推定欠陥位置とし，実際の欠陥位置と一致する割合
として算出した．照明パターンとして，1bitパターン，8bitパターン，および 2進数表記に基づいて生成し
た局所排他的構造化照明を比較した．各 SN比で 1000回の異なる推定を繰り返し，正解率を算出した．
図 4.12に，各パターンに対する SN比と正解率の関係を示す．どの照明パターンにおいても，SN比の低
下に伴って正解率は低下した．1bitパターンと 8bitパターンを比較すると，SN比が 6以上の領域では 8bit

パターンが高い正解率を示した．しかし，SN比が 6未満になると，1 bitパターンの方が高い正解率を示し
た．これは，4.3節でも述べたように，階調数が少ない 2値パターンの方がノイズ耐性に優れるためと考え
られる．一方で，1 bitパターンでは照明強度の組み合わせ数が少ないため，異なる画素での強度変調の重
複が発生し非排他的な測定が生じる．これが欠陥位置推定を制限し，高い SN比で正解率が低くなる要因と
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Fig. 4.11. Learning curve with an SNR of 10 on an 8-bit pattern.

なっていると考えられる．これかのランダムパターンに対して，SN比が 1から 10の範囲で 2進数パター
ンの方が正解率が高くなった．これは，2進数パターンが時間的排他性とノイズ耐性を両立しているためで
あると考えられる．以上の結果より，2進数表記に基づいて，時間領域において局所排他的な構造化照明を
導入することで，深層学習を用いた光相関イメージングにおける位置推定精度が向上することが示された．
4.4.3 実環境下での検証実験
理想的なガウスノイズだけでなく，実環境下で測定値に含まれるノイズに対しても，2進数表記に基づく

局所排他的構造化照明が有効であるかを検証するため，欠陥位置推定の実験を行った．実験に用いた光学系
を図 4.13に示す．本実験では，高い SN比から低い SN比まで再現した実験を行うため，透過型の光学系を
用いた．DMDプロジェクタ（DLP LightCrafter, TEXAS Instruments）でサンプルにパターンを照明し，サ
ンプルを透過した光をレンズでアバランシェフォトダイオード（APD440A2, THORLABS）上に集光して

8bit random

1bit random

Non-overlapping

Fig. 4.12. Comparison of numerical analysis of the accuracy for illumination patterns.
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検出した．フォトダイオードの出力電圧はデータ収集デバイス（USB6003, National Instruments）によりデ
ジタルデータとして記録した．サンプルには，直径 600 µmのピンホール（S71-600, SURUGA SEIKI）を
使用したサンプルは測定領域の中央に設置した．照明パターンの解像度は 16 × 16 pixel，照明領域は 6 × 6

mmとし，照明回数は 8回とした．SN比は，プロジェクタ直後に設置した NDフィルタの光学濃度を調整
することで照明光強度を変調して制御した．SN比は，サンプル位置を 50秒間照明し，取得した信号強度
の平均と標準偏差から算出した．各 SN比で 100回ずつ測定を行い正解率を算出した．

SN比 3の条件において推定した結果を図 4.14に示す．8bitパターンではノイズの影響が強く，欠陥位置
を特定できなかった．一方，2値パターンである 1bitパターンおよび 2進数パターンでは，欠陥位置に対応
する推定値が得られた．また，各照明パターンについて得られた推定画像を 100回平均した結果において
も，2値パターンがより正確な位置推定を行えている様子が確認された．
図 4.15に，各 SN比条件下での照明パターンごとの正解率を示す．8bitパターンでは SN比の低下に伴っ
て正解率が急激に低下した．一方で，1 bitパターンは SN比が低下しても緩やかな正解率の低下にとどまっ
たが，SN比が高い領域では 8bitパターンに劣った．2進数パターンは全体的に他のパターンを上回り，8bit

パターンと比較して最大で 51%高い正解率を示した．これらの結果は，数値解析で得られた結果（図 4.12）
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Fig. 4.13. Experimental system to verify differences in robustness due to illumination patterns.
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と良く一致している．以上より，2進数表記に基づく局所排他的構造化照明は，実環境下においてもノイズ
耐性の高い位置推定を実現できることが示された．

4.5 結言
本章では，2進数表記に基づく時間領域での局所排他的構造化照明法により，深層学習を用いた光相関イ
メージングの位置推定精度を向上できることを示した．
まず，4.2 節では，2 進数表記に基づいて時間的に一意な強度変調を与える構造化照明の生成を示した．
この手法では，各画素に対して 2進数による一意な整数値を割り当てることで，最小限の照明枚数で全画素
に対して排他的な強度変調を設計できる．さらに，生成されたパターンと 1bitおよび 8bitパターンとの比
較を通して，2進数表記に基づく構造化照明が時間領域での局所排他性をもつことを明らかにした．
続いて，4.3節では，照明パターンの階調数が光相関イメージングのノイズ耐性に与える影響を，数値解
析によって比較検証した．階調数の多い 8bitパターンより階調数の少ない 1bitパターンのほうが低い SN

比において高いコントラストの像を再構成できることを確認した．また，2進数パターンが 1bitパターンと
同等のノイズ耐性を有することを示した．
最後に，4.4節では，2進数パターンを深層学習を用いた光相関イメージングに適用し，位置推定精度を
検証した．1bitパターン，8bitパターン，および 2進数パターンを用いて異なる SN比での推定結果を比較
した．数値解析および実験での比較において，1bitパターンはノイズ耐性に優れるが非排他性により推定精
度が低下し，8bitパターンは排他性をもつため推定精度は高いがノイズ耐性が弱いことがわかった．これら
のランダムパターンと比較して，2進数パターンは排他性を持ちつつ高いノイズ耐性を有しており，実ノイ
ズ環境下においても位置推定の精度が高いことが示された．
以上より，時間領域における局所排他的構造化照明は，照明パターンと測定信号との対応関係における一
意性を保証し，深層学習を用いた光相関イメージングにおいて高い精度で位置推定を行うために有効な手法
であることを示した．
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Fig. 4.15. Comparison of the experimental results of the accuracy for illumination patterns.
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第 5章
推定不確かさ評価に基づく非排他的推定の
除外による信頼性向上
5.1 緒言
本章では，近傍特徴マップに基づいて推定不確かさを定量評価し，不確かさの高い推定を除外することで
推定結果に対する信頼性向上できることを示す．深層学習を用いた光相関イメージングでは，極端に少ない
照明回数やノイズの影響により，測定対象と測定信号との対応関係が一意でない測定となる可能性がある．
その結果として，解の候補が複数存在する非排他的な推定となり，推定値が確率的に決まることで推定の信
頼性が低下する．非排他な推定は高い推定不確かさを持つため，高い推定不確かさをもつ推定を除外するこ
とで推定全体の信頼性を向上できる．
まず，推定不確かさ評価のための近傍特徴マップ生成法について述べる．深層学習モデルで抽出した特徴
マップに対して乱数を付加することで，元の特徴マップとわずかに値が異なる特徴マップを複数生成する．
これにより生成したそれぞれの近傍特徴マップに対して推定を行い，推定値のばらつきから推定不確かさを
評価する．
次に，近傍特徴マップに付加する乱数の確率分布について検討をした結果を述べる．はじめに，検証に用
いる数値解析条件および深層学習モデルを説明する．続いて，近傍特徴マップに基づいて評価した推定不確
かさと推定の正誤の関係を示す．さらに，乱数の分布形状および分布の広がりが不確かさ評価に与える影響
を比較検討する．
最後に，推定不確かさに基づいたフィルタリングにより推定の信頼性が向上することを示す．はじめに，
フィルタリングのしきい値に関する検討結果を述べる．そして，数値解析結果に対してフィルタリングを適
用した結果を示す．

5.2 乱数付加により生成した近傍特徴マップに基づく推定不確かさ評
価法

深層学習を用いた光相関イメージングにおける推定値の信頼性を定量的に評価するために，特徴マップに
人為的な揺らぎを加えることで生成した近傍特徴マップを用いて推定不確かさを評価する．特徴マップに
は，入力データから抽出された対象の本質的な情報が，圧縮された表現として保持されている．推定不確か
さが小さい推定では，入力データから必要十分な特徴が安定的に抽出されており，特徴マップにわずかな揺
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らぎが生じても推定値にはほとんど影響を及ぼさない．一方で，推定不確かさが大きい推定では，特徴抽出
が不十分または曖昧であるため，特徴マップの微小な変動が推定結果に大きく反映される．したがって，抽
出された特徴マップとわずかに値が異なる近傍特徴マップに対する推定結果の変動を評価することで，推定
の不確かさを定量的に評価できる．
具体的な手順としては，抽出された特徴マップに乱数を付加することで複数の近傍特徴マップを生成し評
価を行う．評価手順を図 5.1に示す．まず，深層学習モデルを，特徴抽出を行うエンコーダと推定を行うデ
コーダの 2つに分割する．つぎに，測定値をエンコーダへ入力し特徴マップを抽出する．抽出した特徴マッ
プに対して人為的に微小な乱数を加え，元の特徴マップとわずかに異なる近傍特徴マップを生成する．乱数
の付加による生成を繰り返し，複数の近傍特徴マップを得る．続いて，各近傍特徴マップをデコーダに入力
し，それぞれに対する推定結果を得る．このようにして得られた複数の推定値の平均を最終的な推定結果と
し，それらの標準偏差を推定不確かさとして定義する．
この評価法では，特徴マップに加える乱数の確率分布が評価結果に対して影響を及ぼす．乱数のばらつき
が特徴マップの値に対して極端に小さいと，デコーダでの処理過程において推定値まで乱数分布のばらつき
による影響が伝搬しない．一方で，乱数のばらつきが特徴マップの値に対して大きいと，本来の特徴マップ
がもつ情報を打ち消してしまい，信頼性の高い推定に対しても高い不確かさを算出してしまう．そのため，
付加する乱数のばらつきは適切に設定する必要がある．ここで，推定は測定値を入力として行うため，推定
の不確かさは測定値の不確かさに依存する．そこで，測定値のばらつきを考慮するために，乱数分布の標準
偏差と特徴マップの値の絶対値の比が，測定における SN比と一致するように設定する．このようにするこ
とで，測定値に含まれるばらつきの程度を特徴マップ上に適切に反映させることができ，測定環境に応じた
推定不確かさを評価できる．
乱数のばらつきが推定不確かさ評価に影響を与える一方で，乱数の確率分布の形状は結果に大きく影響し
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ない．これは，深層学習モデルは積和演算の繰り返しにより構成されており，その出力は，中心極限定理で
示されるように，乱数の分布形状にかかわらずガウス分布へと近づくためである．このため，乱数の分布形
状による本質的な違いは生じにくく，乱数のばらつきのみに着目して適切に設定すればよい．

5.3 特徴マップに付加する乱数分布についての検討
5.3.1 解析条件と推定モデル
近傍特徴マップに基づく推定不確かさ評価法を検証するために，図 5.2に示すシンプルな深層学習モデル
を構築した．推定の不確かさのみに着目するため，高解像度化は行わない推定とした．このモデルは，照明
パターンおよび，相関計算により再構成された画像を入力とし，サンプルの欠陥存在確率分布を出力する．
モデルは，入力データから特徴量を抽出するエンコーダと，抽出した特徴量から推定を行うデコーダに分割
して構成されている．エンコーダは，並列畳み込み層で構成され，局所的な特徴量を効率的に抽出する．デ
コーダは，直列に並んだ畳み込み層により構成され，抽出された特徴量をもとに最終的な推定分布を出力す
る．各畳み込み層では，畳み込み演算，バッチ正規化，活性化関数の順で処理を行った．活性化関数とし
て，中間層には mish関数を，出力層には Softmax関数を用いた．照明パターンの解像度は 16 × 16 pixelと
し，照明回数は 8回とした．照明パターンには，2進数表記に基づくパターンを用いた．また，推定対象の
制約条件として，測定範囲内にただ一つ欠陥が存在するものとした．
学習データセットの作成手順を図 5.3 に示す．まず，欠陥位置が異なる複数の欠陥分布を用意した．次
に，2進数パターンを生成し，それぞれの欠陥分布との内積から検出信号を算出した．その後，算出した検
出信号と照明パターンを用いて相関計算を行い画像を再構成した．このようにして，照明パターンと再構
成画像を入力，対応する欠陥分布を出力ラベルとするデータセットを構成した．訓練データは 230400セッ
ト，テストデータは 25600セット作成した．
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Fig. 5.2. Structure of deep learning model for validation of evaluation method of prediction uncertainty based on neighbor

feature map.
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構築したモデルに対して，交差エントロピー誤差を損失関数とし，Adam による最適化で 10 エポック
の学習を行った．学習率は 0.01，バッチサイズは 256とした．学習過程における訓練データおよびテスト
データに対する損失関数の変化を図 5.4に示す．両者ともに 10エポック以内で収束しており，過学習を伴
わずに適切な学習が行われたことが確認できた．
5.3.2 近傍特徴マップに基づく推定不確かさ評価法の原理検証
推定値の正誤と，近傍特徴マップに基づいて算出された推定不確かさの関係を数値解析で明らかにした．
まず，SN比を 5に設定して測定データを作成し推定を行った．1つの特徴マップに対して近傍特徴マップ
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を 30個生成して推定不確かさの評価を行った．図 5.5に推定結果の一例を示す．最上段には，中央に 1画
素の欠陥を有するサンプル分布を示しており，左側は正しい位置に推定された例，右側は誤った位置に推定
された例を示す．相関計算による再構成画像では欠陥位置を明確に識別できないが，深層学習による推定分
布ではある 1点が明るく推定されていることが確認された．ただし，正しい位置に推定された場合も，誤っ
た位置に推定された場合も，同様に特定の画素が明るく出力されており，推定分布のみでは正誤の判別は困
難である．一方で，不確かさ分布を比較すると，正しい推定においては推定不確かさが低く，誤った推定に
おいては推定不確かさが高くなる傾向が確認された．
次に，SN比に対する推定不確かさの変化を解析した．各 SN比に対して 1000回のシミュレーションを
行い，推定分布内で最大値をとる位置を推定欠陥位置として，真の欠陥位置と一致した割合を正解率とし
た．また，推定分布で最大値をとる位置での推定不確かさの平均値を算出した．各 SN比における正解率と
推定不確かさの関係を図 5.6に示す．SN比が低下するにつれて正解率は低下し，それに伴い推定不確かさ
が増加することを確認した．これは，測定信号の SN比が低下することで，測定値のばらつきに起因する非
排他的な測定が増加し，推定の信頼性が損なわれることを示している．
さらに，推定欠陥位置における推定値および推定不確かさのヒストグラムを図 5.7に示す．推定値のヒス
トグラムである図 5.7（a）では，推定欠陥位置の正誤にかかわらず同様の分布となった．これは，学習時に
測定範囲内にただ一つの欠陥が存在するという制約が与えられていたため，出力は常に 1点のみに集中する
傾向があることを反映していると考えられる．そのため，推定分布のみで推定の正誤を判別することは困難
であることがわかる．
一方で，図 5.7（b）に示す推定不確かさのヒストグラムは，推定値の正誤で異なる分布が得られた．誤っ
た位置への推定は推定不確かさが高い値に集中するのに対し，正しい位置への推定には低い不確かさを示す

Sample

Error predictions

Prediction UncertaintyGI

Correct predictions

Prediction UncertaintyGI

Fig. 5.5. Predicted result and uncertainty distributions with SNR 3. The left-hand side images show correct predictions

of defect positions with low uncertainty. The right-hand side images show wrong predictions of defect positions with high

uncertainty.
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分布と，高い不確かさを示す分布の二峰性が現れた．この二峰性の理由は，確かに特徴が抽出された信頼性
の高い推定に加えて，偶然正しい位置に推定された場合が含まれているためであると考えられる．推定値が
偶然正しい位置に一致した場合は，解の候補が複数存在する非排他な推定となっており，推定値のばらつき
が大きくなる．以上より，推定不確かさの値は，推定の根拠の有無や信頼性を反映しており，誤った推定結
果に対して高い不確かさが現れることが示された．
5.3.3 特徴マップに付加する乱数分布形状についての比較
特徴マップに付加する乱数分布について，分布形状が推定不確かさに与える影響を検証した．比較した分
布形状を図 5.8に示す．対称な分布をもつガウス分布および一様分布，非対称な分布であるポアソン分布を
それぞれ比較した．分布の平均は 0とし，分布の標準偏差と特徴マップの比率が SN比と等しくなるように
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Fig. 5.6. Relationship between SNR and prediction uncertainty.

(a) (b)

Fig. 5.7. Histogram of probability and uncertainty. Each distribution of predicted correct defect locations is shown in blue,

and the incorrect distribution is in red.（a）Defect existence probability and（b）prediction uncertainty. The distribution of

the defect existence probability is equal regardless of whether the prediction is correct or incorrect. However, the prediction

uncertainty has a different distribution depending on whether the prediction is correct or incorrect.
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設定した．この設定により，異なる分布であっても同一の揺らぎが付加されるようにした．図 5.6の解析と
同様に，各 SN比で 1000回ずつ測定を行い，正解率および推定不確かさの平均を算出した．
異なる乱数分布の形状を付加したときの正解率と推定不確かさの関係を図 5.9に示す．すべての分布にお
いて，推定不確かさに顕著な差は見られず，分布形状によらずほぼ同様の傾向を示した．5.2節で述べたよ
うに，付加する乱数の分布形状に関係なく出力分布はガウス分布に近づく．そのため，初期の揺らぎにどの
ような分布形状を用いても，最終的な推定値のばらつきに与える影響は限定的となる．この結果により，近
傍特徴マップに基づく推定不確かさは付加する乱数分布形状に依存しないことが数値解析的に示された．
5.3.4 特徴マップに付加する乱数分布の広がりについての比較

5.3.3項において，近傍特徴マップに基づく推定不確かさ評価が，乱数分布の形状に依存しないことを明
らかにした．5.2節で述べたように，出力の分布形状は，付加した乱数分布の標準偏差のみに依存すること
から，異なる広がりをもつ乱数分布を付加して比較を行った．比較に用いた乱数分布はいずれもガウス分布
とし，平均は 0に固定した．乱数分布の広がりとして，特徴マップの値に対する比率を 10%，25%，50%

とした固定型の分布と，測定値の SN比に応じて変化させる変動型の分布を比較した．いずれの条件におい
ても，各 SN比で 1000回のシミュレーションを行い，正解率および推定不確かさの平均値を算出した．
広がりが異なる乱数分布での，正解率と推定不確かさの関係を図 5.10に示す．乱数分布の広がりが 10%

(a) (b) (c)

Fig. 5.8. Shape of random number distributions added to feature maps. （a） Gaussian,（b） Uniform, and（c） Poisson

distribution.
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Fig. 5.9. Comparison of random number distributions added to feature maps.
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のとき，誤推定が増えるにつれて推定不確かさが増加する傾向が見られた．25%に広げた場合にも増加傾
向は観察されたが，傾きは小さくなり，50%では逆に推定不確かさが減少する傾向が見られた．これは，広
がりが大きすぎる乱数を加えると，元の特徴マップの近傍から逸脱した値が生成され，近傍特徴マップとは
言えない状態になるためであると考えられる．このため，広がりが大きい乱数分布を付加したときの推定不
確かさ評価結果が不適切なものになったと考えられる．一方，測定データの SN比に応じて広がりを調整し
た乱数分布を用いると，正解率に対する推定不確かさの変動がより大きくなった．これは，測定値のばらつ
きに対応した広がりで評価を行うことで，測定環境のばらつきが推定不確かさ評価に反映されたためと考え
られる．
以上の結果から，近傍特徴マップに基づく推定不確かさは，乱数の分布の形状には依存せず，乱数の分布
の広がりに依存することが示された．特に，特徴マップの値に対して 10%程度の広がりが推定不確かさの
変動を適切に反映できることがわかった．さらに，測定環境の SN比が事前に判明している場合は，それに
応じた広がりをもつ乱数分布を選ぶことで，測定環境のばらつきを考慮した不確かさ評価が可能となること
が示された．

5.4 推定不確かさに基づくフィルタリングによる信頼性向上の検証
5.3 節までの結果により，推定不確かさが高い場合，誤推定の可能性が高いことが示された．本節では，
この推定不確かさに基づき，信頼性の低い推定値をフィルタリングで除外することで，推定の信頼性を向上
させることを検討した．推定不確かさに対してしきい値を設定し，それを超える推定値を除外する．フィル
タリングの性能を評価する指標として，適合率（Precision）と再現率（Recall），およびその調和平均である
F1スコアがある．適合率は，フィルタリング後に正しいと判定された推定のうち，実際に正しかった推定
の割合を示す．再現率は，実際に正しい推定のうち，フィルタリングでも正しいと判定された割合を示す．
推定の信頼性を向上させるためには適合率を向上させる必要があるが，厳しいしきい値を設定すると再現率
が低下し測定のスループットが低下する．両者はトレードオフの関係にあるため，それぞれのバランスを
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Fig. 5.10. Comparison of the size of random number distributions.
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とったしきい値を設定することが望ましい．F1スコアは適合率と再現率の調和平均であり，
�1B2>A4 =

2 × %A428B8>= × '420;;

%A428B8>= + '420;;
， (5.1)

で表される．F1 スコアは 0～1 の範囲の値となり，1 に近づくほど適合率と再現率のバランスが良いこと
を表す．そのため，F1スコアをしきい値の評価指標として採用し，F1スコアが最大となるしきい値を設定
する．
フィルタリングのしきい値を 0.0から 0.5まで変化させたときの F1スコアを図 5.11に示す．F1スコア
は，しきい値が 0.3を超えるまでは増加し，それ以降は減少した．これは，しきい値が低すぎると誤推定を
十分に除外できず，高すぎると正しい推定まで除外してしまうためである．また，図 5.7（b）のヒストグラ
ムにおける誤推定の不確かさ分布が 0.3付近を下限に持つことからも，このしきい値評価結果は妥当である
と考えられる．
しきい値を 0.3に設定し，図 5.6のデータにフィルタリングを適用した結果を図 5.12に示す．フィルタ
リング後の正解率は全体的に向上しており，特に推定の正誤が混在する SN比 3付近では，最大で 48%の
正解率向上が見られた．一方で，SN比 2付近では正解率が低下した．これは，測定のばらつきの影響が大
きく，正しい位置への推定の大半が偶然の一致であったことが原因と考えられる．この結果より，F1スコ
アに基づいて適切なしきい値を設定し，フィルタリングできることが示された．

5.5 結言
本章では，深層学習を用いた光相関イメージングにおける推定値の信頼性向上を目的として，近傍特徴
マップに基づく推定不確かさ評価手法の有効性を数値解析によって示した．
まず，5.2節では，乱数を付加することによる近傍特徴マップの生成法について具体的な手順を述べた．
エンコーダで抽出した特徴マップに対して，乱数を付加することでわずかに値の異なる近傍特徴マップを複
数生成した．評価される推定不確かさの値は，ここで付加する乱数分布の広がりに依存しており，適切に設
定する必要があることを述べた．
次に，5.3節では，特徴マップに付加する乱数分布に関する検証を行った．はじめに原理検証を行い，誤っ

Fig. 5.11. Evaluation results for thresholds. The higher f1-score threshold, the more efficiently it can be filtered.
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w/ filtering

w/o filtering

Fig. 5.12. Filtering results based on the prediction uncertainty.

た推定ほど推定不確かさが高くなる傾向が確認し，推定値の信頼性を判別可能であることを示した．さら
に，推定不確かさは分布の形状には依存せず，その広がりのみに依存することを数値解析で示した．特に，
乱数の標準偏差と特徴マップの値の比率を測定系の SN比と一致させることで，測定環境のばらつきを反映
した適切な不確かさ評価が可能であることがわかった．
そして，5.4節では，推定不確かさを用いたフィルタリングにより推定の信頼性が向上することを示した．
適合率と再現率の調和平均である F1スコアを用いてしきい値を検討し，F1スコアが最大となる 0.3をしき
い値とした．設定したしきい値を用いてフィルタリングを行った結果，最大で 48%の推定精度向上を確認
した．
これらの結果から，非排他的な推定が混在する状況において，推定不確かさの評価により信頼性の低い非
排他的な推定を検出できることを示した．さらに，フィルタリングにより非排他的な推定を除外し，推定の
信頼性を向上できることが明らかとなった．
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第 6章
高解像度微小物体位置検出
6.1 緒言
本章では，3章から 5章までに得た知見を統合し，局所排他的構造化照明法を導入した深層学習を用いた
光相関イメージングで高解像度な微小物体の位置検出を行う．
これまでの深層学習モデルでは，観察領域を一括で推定していた．しかし，一括に推定すると解像度の増
加に伴ってパラメータ数も増大し，学習および推定が困難となる．そこで，まず，高解像度推定を行うため
に画素ごとに推定を行う Pixel-by-Pixel推定モデルを構築する．つづいて，構築した推定モデルの学習を行
い，推定性能を検証する．
そして，学習したモデルを用いて 8K解像度での微小欠陥位置検出を行った結果を示す．はじめに，欠陥
のトラッキング実験を通して行った位置推定精度検証について述べる．さらに，測定環境の擾乱を想定した
測定を行い，本手法の擾乱耐性を示す．最後に，シリコンウエハ上の欠陥に対して本手法を適用し，微小な
欠陥を高解像度で測定可能であることを示すことで，広域微小欠陥検査への展開可能性を明らかにする．

6.2 高解像度推定のための Pixel-by-Pixel推定モデル
高解像度分布を推定するために，画素ごとに当該画素内部の分布を推定する Pixel-by-Pixel推定モデルを
構築した．図 6.1（a）に示すような，観察領域全体を一括で推定するモデルでは，照明パターンや再構成画
像などの全領域データを入力し，広域かつ高解像度な推定する．このような構造はモデルの自由度が高い反
面，計算資源を多く必要とし，局所的な構造に着目しづらいという問題がある．さらに，画素数に応じてパ
ラメータ数が増大し学習が困難となる．一方で，光相関イメージングにおいて深層学習モデルが利用する情
報は，個々の画素における相関値と，非合焦照明により得られる近傍画素との関係に基づく局所的な情報で
ある．すなわち，局所的な構造のみから高解像度推定を行うことが可能であり，入力を局所領域に限定して
推定を行うモデルを構築できる．
そこで，各画素ごとに独立して推定を行う Pixel-by-Pixel推定モデルを，図 6.1（b）に示すように構築し
た．このモデルでは，推定対象画素とその近傍領域の情報のみを入力とし，当該画素内の分布を出力する．
すべての画素に対して並列または逐次的に推定を行うことで，全体として高解像度な分布を推定する．この
Pixel-by-Pixel推定モデルは，画素ごとの推定であるため，画素数に依存せずパラメータ数を一定に保った
まま高解像度推定が可能となる．

Pixel-by-Pixel推定を行うための具体的なモデル構造は，図 6.2（a）に示すように，相関補完モデルとサ
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Fig. 6.1. Pixel-by-pixel model for high-resolution ghost imaging with deep learning. (a) Full-pixel prediction model and (b)

Pixel-by-Pixel prediction model.

ブピクセル化モデルの 2つのモデルを並列接続したものとなる．相関補完モデルでは，推定対象画素の相関
値を推定する．一方で，サブピクセル化モデルでは推定対象画素の内部分布を推定する．ただし，ここで推
定される分布は画素内部で規格化された分布である．そのため，他の画素と比較することはできない．そこ
で，相関補完モデルで推定した相関値を乗算する．これにより，他の画素の推定結果と並べることが可能と
なり，画素ごとの推定結果をつなぎ合わせて高解像度な分布を推定できる．
相関補完モデルでは，推定対象画素に照明された光強度と測定信号を入力とし，推定対象画素の相関値を
推定する．相関計算の補完するため，図 6.2（b）のように，全結合層のみで構成される．はじめに，=回目
の照明強度 �= (G8 , H 9 ) と測定強度 �= のみを入力し =回目の特徴量を得る．なお，(G8 , H 9 ) は推定対象画素の
座標を示している．各照明回について同じ重みを共有したモデルで特徴量を抽出し，照明回ごとの特徴量を
得る．次に，各特徴量についてMax pooling層を作用させ照明順の影響を排除する．最後に，得た特徴量か
ら全結合層を用いて推定対象画素の相関値を出力する．
サブピクセル畳み込み層では，推定対象画素および隣接する 3 × 3 pixelの情報を入力し，推定対象画素
の内部分布を推定する．非合焦照明に由来して生じる隣接画素との関係に着目する必要があるため，図 6.2

（c）から（e）に示すように，畳み込み層のみで構成される．はじめに，推定対象画素周辺の照明パターン
�=;>20; (G, H) を測定信号 �= で重み付けした �=�=;>20; (G, H) を深層学習モデルに入力する．次に，異なるカー
ネルサイズをもつ畳み込み層を並列に接続した並列畳み込みモデルを用いて対象の高解像度光相関情報を抽
出する．ただし，畳み込み層の重みフィルタは角度依存性をもつ．そこで，複数角度で入力を行う．入力を
90度ずつ回転させ，同じモデルで特徴抽出を行う．そして，Max pooling層を作用させることで角度依存性
を排除する．最後に，サブピクセル畳み込み層を用いた高解像度化モデルを用いて推定対象画素の画素内分
布を推定する．サブピクセル畳み込み層を作用させる回数によって出力分布の解像度が決まり，=回作用さ
せると 2= × 2= pixelの出力となる．
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Pixel-by-Pixel推定モデルに学習させるデータセットは数値解析によって作成できる．データセットの作
成手順を図 6.3に示す．非合焦照明での検出信号を算出では，2次元ガウス分布を点広がり関数として用い
ることもできるが，測定システムの点広がり関数を用いることで位置推定精度を向上できる．さらに，測定
システムで生じるノイズも考慮して作成したデータを学習しておくことで擾乱耐性を向上できる．そのた
め，データセットの作成においては，測定システムの特性値を測定した後に数値解析でデータを作成する．
はじめに，異なるサンプルと照明パターン群をそれぞれ作成する．そして，測定システムの特性値を用いて
非合焦照明でサンプルに照明される光強度分布を算出する．算出した光強度分布を用いて検出光強度を計算
する．最後に，計算した光強度分布と照明したパターンおよびサンプル位置のセットをデータセットとして
保存する．
以上のように構築，学習した Pixel-by-Pixel推定モデルを用いることで，画素数に依らず，高解像度な推
定が可能となる．この推定を用いることで，高感度かつ高解像度な高速なイメージングを実現できる．
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Fig. 6.2. Structure of Pixel-by-pixel model for high-resolution ghost imaging with deep learning. (a) Overview. (b)

Correlation completion model: This model predicts the correlation between the illumination and measured intensity at

a single pixel. It consists of fully connected layers, as each measurement mutually contributes to the correlation value.

The illumination order dependence is removed by the max-pooling layer in the middle. (c) Sub-pixelization model: This

model predicts the defect distribution within a single pixel using information from surrounding pixels. It consists only of

a convolutional layer to extract surrounding spatial information. Rotational dependence is eliminated in the max-pooling

layer in the middle. Higher-resolution defect distribution is predicted by spatially extending the convolution and performing

sub-pixel convolution. (d) Parameters of parallel convolution part. Convolutional layers with different kernel sizes connected

in parallel efficiently extract features. (e) Parameters of sub-pixel prediction part. The resolution is magnified by a factor of

2 for each pixel shuffle layer acted upon.



6.2 高解像度推定のための Pixel-by-Pixel推定モデル 83

Numerical analysis processExperimental process

Inspection system

System Properties

Noise PSF

Measure

GI simulation

Illumination
Pattern

Defect position Dataset

Time
In

te
n
si

ty

Input

Output

Illumination pattern

Detection signal

Defect position

Time

In
te

n
si

ty

Input

Output

Illumination pattern

Detection signal

Defect position

Time

In
te

n
si

ty

Input

Output

Illumination pattern

Detection signal

Defect position

Time

In
te

n
si

ty

Input

Output

Illumination pattern

Detection signal

Defect position

Fig. 6.3. Dataset creation for high-resolution ghost imaging with deep learning.
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6.3 Pixel-by-Pixel推定モデルの学習
6.3.1 検査システムの点広がり関数解析

Pixel-by-Pixel 推定モデルの学習データを作成するために，検査システムで使用する照明系の点広が
り関数を解析した．点広がり関数を解析するための実験装置を図 6.4 （a）に示す．DMD プロジェクタ
（DLP4710EVM-LC, TEXAS Instruments）を用いてパターンを照明し，サンプル設置面に置いた CMOSカ
メラ（DMK34UR0234, The Imaging Source）でサンプルに照明されるパターンを取得した．DMDプロジェ
クタの仕様を表 6.1に示す．取得したパターン例を図 6.4に示す．DMDにチェックボード状のパターンを
表示したとき，サンプル上にはぼやけたパターンが照明されていることがわかる．照明系の点広がり関数を
算出するために，図 6.5（a）に示す矩形パターンを照明した．この矩形パターンは DMDの 6 × 6画素のみ
を ONにして照明した．

CMOSカメラで取得したパターンを図 6.5（b）に示す．サンプル面が非合焦位置にあるため，矩形領域
がぼやけている様子が確認された．格子状に存在する黒い領域は，DMDのミラー間の隙間が影響している

DMD
Projector

Illumination pattern
With blur

Sample plane

CMOS camera

(b)
Designed pattern Illuminated pattern on the sample plane

1mm1mm

(a)

Fig. 6.4. Setup for analysis of point spread function of inspection system. （a） Optical setup. （b） Designed pattern and

captured pattern with CMOS camera.
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Tab. 6.1. Specifications of DMD projector.

DMD DLP4710

Resolution 1920 × 1080 pixel

Size of micromirror 5.4×5.4 µm

Framerate 1440 Hz

と考えられる．図 6.5（b）に示す光強度分布に対して（a）の分布を逆畳み込みすることで，（c）のような
照明系の点広がり関数を算出した．なお，逆畳み込み計算においてローパスフィルタを適用し，ノイズ成分
を除去した．さらに，図 6.5（c）の点広がり関数を用いて（a）の光強度分布に対して畳み込みを行い，照
明系をシミュレートした結果を（d）に示す．図 6.5（c）より，照明系が非対称な点広がり関数を持ってお
り，回転入力をモデルに導入する必要があることがわかった．また，図 6.5（b）と（d）を比較すると，パ
ターンがぼやける様子が再現されており，算出した照明系をシミュレートできていることが確認できた．さ
らに，照明強度の揺らぎを測定した．図 6.4の光学系で一様照明を行い，照明光強度分布を取得した．取得
した光強度分布の標準偏差から，6%の照明強度揺らぎがあることがわかった．今後のモデル学習では，図
6.5（c）に示す点広がり関数と 6%の強度揺らぎを用いてデータセットの作成を行う．

(a) (b)

(c) (d)

1mm

1mm

1mm

1mm

Fig. 6.5. PSF of inspection system. （a） Projected pattern, （b） captured image with CMOS camera, （c） calculated

PSF, and（d） simulated out-focus image.
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6.3.2 相関補完部分モデルによる相関値推定
Pixel-by-Pixel推定モデルにおいて，当該画素の相関値を推定する相関補完部分モデルの学習および性能
検証を行った．推定する分布の解像度は 128 × 128 pixelとし，照明回数は 128回とした．また，対象の制
約条件として，測定範囲内にただ一つ欠陥が存在するものとした．6.3.1節で算出した，検査システムの特
性値を用いて図 6.6にしたがって学習データセットを作成した．まず，欠陥位置の異なる欠陥分布を複数作
成した．次に，乱数生成器を用いて 1bitランダムパターンを生成した．画素数（16384 = 214）に対して，
照明回数が 128回であり強度の組み合わせは 2128 通りとなり画素数より十分多いため，ランダムパターン
でも時間的排他性条件を満たす．生成したパターンに対して，点広がり関数および強度揺らぎを作用させ，
サンプル上に照明されるパターンを再現した．そして，欠陥分布とパターンの内積から，検出される信号を
算出した．算出した検出信号と各画素の照明光強度を入力とし，各画素の欠陥分布の値を出力とするセッ
トを作成した．欠陥分布を変えてこの操作を繰り返し，訓練用データを 100000セット，テスト用データを
10000セット作成した．作成したデータセットを用いて損失関数を平均 2乗誤差，最適化法を AdamWと
して 50エポックの学習を行った．学習率は 0.01，バッチサイズは 256とした．
学習した結果を図 6.7に示す．訓練データおよびテストデータに対する損失関数は 50エポックでともに
収束しており，過学習が生じていないことが確認できた．さらに，学習したモデルを用いて相関値推定の数
値解析を行った結果を図 6.8に示す．左の列から順に，サンプル分布，相関計算での再構成像および推定値
分布である．また，上から順に，16 × 16 pixel，128 × 128 pixelおよび 1024 × 1024 pixelで推定した結果で
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Sample intensity
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Fig. 6.6. Dataset creation for correlation complementation model.
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ある．相関値推定モデルは画素ごとに推定するモデルであるため，任意の解像度での推定ができる．いずれ
の解像度においても，相関計算での再構成像にはノイズ成分が多く含まれているが，相関補完モデルはサン
プルが存在する点周辺のみに高い値を推定した．100回推定を繰り返したときに，サンプル位置に 0.5以上
の値を推定する割合は 96%であり，相関補完モデルが対象画素の情報のみから相関値を推定し，大域的な
サンプル位置を検出できることが示された．
6.3.3 サブピクセル化部分モデルによる画素内分布推定

Pixel-by-Pixel推定モデルにおいて，当該画素の画素内分布を推定するサブピクセル化部分モデルの学習
および性能検証を行った．照明パターンの解像度を 128 × 128 pixelとし，図 6.2（e）の繰り返し数 = を 6

として，パターンの 1画素が照明される領域を 64 × 64 pixelに分割した．照明回数は 128回とした．測定
対象の制約は 6.3.2項と同様に，測定範囲内にただ一つ欠陥が存在するものとした．学習データセットは図
6.9のように作成した．検出信号の算出までは 6.3.2項と同様に計算を行った．そして，算出した検出信号
と照明パターンの積を重み付けパターンとしてモデルの入力とした．また，出力ラベルは画素内の欠陥分布
とした．欠陥分布を変えてこの操作を繰り返し，訓練用データを 100000セット，テスト用データを 10000

セット作成した．作成したデータセットを用いて損失関数を交差エントロピー誤差とユークリッド距離の
和とし，最適化法を AdamWとして 50エポックの学習を行った．学習率は 0.001，バッチサイズは 256と
した．
学習した結果を図 6.10に示す．図 6.7と同様に，訓練データおよびテストデータに対する損失関数は 50

エポックでともに収束しており，過学習が生じていないことが確認できた．さらに，学習したモデルを用い
て画素内分布推定の数値解析を行った結果を図 6.11に示す．左の列から，サンプルの欠陥分布および推定
した画素の内部分布，相関計算での再構成像，相関補完モデルでの推定分布およびサブピクセルモデルでの
推定分布である．相関計算での再構成像および相関補完モデルでの推定分布では解像度が不足しているた
め，画素内の欠陥分布の違いを検出できていなかった．また，最下段のように，欠陥が画素の境界付近にあ
るとき，隣接する画素に強く反応する様子が確認できた．一方で，サブピクセルモデルではそれぞれの画素
内欠陥分布を適切に推定できることが示された．この検証により，サブピクセルモデルを用いることで，対
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Fig. 6.7. Learning curve of correlation complementation model.
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Sample GI DLGI

Fig. 6.8. Reconstructed images with correlation complementation model. From top to bottom, the results are estimated for

16 × 16 pixel, 128 × 128 pixel and 1024 × 1024 pixel.

象の画素の内部分布を推定できることが確認された．
6.3.4 Pixel-by-Pixel推定モデルによる超高解像度推定

6.3.2項および 6.3.3項のそれぞれで学習した相関補完部分モデルおよびサブピクセル化部分モデルを組
み合わせた Pixel-by-pixelモデルを用いて 8K以上の超高解像度推定が可能であることを検証した．解析条
件は，6.3.2項および 6.3.3項と同じ条件とした．また，制約として測定範囲内にただ一つ欠陥が存在するも
のとした．相関補完モデルを用いて対象画素の相関値を推定し，サブピクセルモデルを用いて対象画素内部
の欠陥存在確率分布を推定した．そして，2つの推定値をかけたものを対象の画素に対する推定値とし，す
べての画素に対して同様の操作を行うことで高解像度推定を行った．
解像度の異なる測定範囲について数値解析を行った結果を図 6.12 に示す．左の列からサンプル，相関
計算での再構成像および Pixel-by-Pixel 推定モデルの推定値および対象画素についての拡大図である．同
じ行の拡大図の領域はすべて同じである．Pixel-by-Pixel推定モデルは画素ごとに推定が行われるため，任
意の解像度をもつ照明パターンでの推定が可能である．そのため，同じ学習済みモデルを用いることで，
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Fig. 6.10. Learning curve of subpixelization model.

192 × 192 pixelから 65536 × 65536 pixelの解像度での推定が可能であった．また，いずれの解像度におい
ても従来の光相関イメージングでは分解できない領域の欠陥分布を推定できることが確認された．以上の結
果から，Pixel-by-Pixel推定モデルを用いることにより，超高解像度での欠陥位置推定が可能であることが
示された．
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Fig. 6.11. Reconstructed images with subpixelization model.

6.4 8K解像度での微小欠陥検出
6.4.1 微小欠陥の 8Kトラッキング

Pixel-by-Pixel推定モデルの位置推定精度を検証するために，8K解像度での微小欠陥トラッキング実験を
行った．実験装置を図 6.13に示す．DMDプロジェクタでサンプルにパターンを照明し，サンプルを透過
した光をレンズでアバランシェフォトダイオード（APD440A2, THORLABS）上に集光して検出した．ア
バランシェフォトダイオードの電圧はデータ収集デバイス（USB6353, National Instruments）を通してデジ
タルデータとして記録した．また，データ収集デバイスの仕様を表 6.2に示す．ノイズの影響を低減するた
めに，透過型のサンプルを用いた．サンプルは直径 10 µmのピンホールを使用し，測定範囲は 82×82 mm

とした．したがって，照明パターンの画素サイズは 640×640 µmであった．位置検出の精度を検証するため
に，自動ステッピングモータステージ（SGSP20-20, SIGMAKOKI）を用いて，サンプルを 5 µmずつ一定
方向に移動させ，各位置で 24回測定を行った．自動ステージの仕様を表 6.3に示す．推定値が最大となる
画素を推定欠陥位置として記録した．また，近傍特徴マップに基づく推定不確かさ評価を行い，0.3以上の
不確かさを持つ推定値を除外した．

Tab. 6.2. Specifications of data acquisition devices.

Resolution 16 bit

Sampling rate 1.25 MHz

異なる位置での測定結果を図 6.14に示す．同画素内でのわずかな変位であるため，従来の光相関イメー
ジングでの再構成像では欠陥の大まかな位置は測定できるものの，欠陥位置の違いを判別することはできな
い．一方で，深層学習を用いた高解像度光相関イメージングでは，異なる欠陥位置を判別することができ
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Fig. 6.12. Reconstructed images with SP-DLGI model.
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Fig. 6.13. Setup for 8K tracking of a micro defect.

た．各位置での推定欠陥位置の平均を図 6.15に示す．また，標準偏差をエラーバーとして示した．横軸が
自動ステッピングモータステージでサンプルを移動した距離であり，縦軸が推定欠陥位置である．サンプル
を移動した軸では，サンプルの移動に応じて推定欠陥位置も移動することが確認された．一方，移動した軸
に対して垂直な軸は変位しておらず，推定欠陥位置も変化しないことが確認された．さらに，拡大図をみる
と，従来の光相関イメージングでは解像度が不足しているためステップ状の推定になっているのに対して，
深層学習を用いた高解像度光相関イメージングではなめらかに位置推定された．推定位置について線形近
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Tab. 6.3. Specifications of stepping motor stage.

Travel range 20 mm

Resolution 1 µm/pulse

Positioning Accuracy 10 µm

Positional Repeatability 5 µm

似を行うと，サンプルの変位 G に対する推定値 H は H = 0.98G + 95となり，決定係数 '2 は 0.99であった．
この結果より，サンプルの変位に対して線形に位置推定できていることが確認された．なお，傾きがわずか
に 1より小さくなったのは，デフォーカスによる非合焦照明を行ったことがパターンの拡大倍率に影響を与
えたためだと考えられる．そこで，線形近似の値に基づいてキャリブレーションを行った．その結果，設定
値との誤差の平均は 41 µmであり，最大で 166 µmであった．従来の光相関イメージングでは，誤差の平均
は 169 µmであり，最大で 400 µmであったことから，深層学習を用いた高解像度光相関イメージングを用
いて高解像度な欠陥位置検出が可能であることが示された．
6.4.2 擾乱環境下での微小欠陥 8Kトラッキング
実際の検査環境を想定した擾乱環境下でトラッキング実験を行った．実験装置を図 6.16（a）に示す．大
気揺らぎおよび環境ノイズを再現するために，サンプルの直前に薄い散乱体を設置し照明光にノイズを付加
した．薄い散乱体として，図 6.16（b）に示すようなレンズペーパーを用いた．レンズペーパーで光が散乱
することで，背後の模様の詳細が判別不可となっている様子がわかる．サンプルに照明されるパターンを
図 6.4（a）の光学系で取得した結果を図 6.16（c）に示す．図 6.4（b）と比較すると，パターンがぼやける
だけでなく，画素ごとの強度差が生じ，ノイズも増加していることが確認された．6.4.1項と同様に，直径
10 µmのピンホールをサンプルとして，自動ステッピングモータステージで移動させながら測定を行った．
異なる位置での再構成結果を図 6.17に示す．散乱体がない図 6.14と比較して，推定値が小さくなってい
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Fig. 6.14. Reconstructed images with SP-DLGI model in 8K tracking.
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Fig. 6.15. Tracking result with 8K resolution.

ることがわかった．しかし，画素内で規格化して表示すると，画素内の 1 点のみに高い値を推定している
ことが確認された．トラッキング結果を図 6.18に示す．図 6.15と比較してばらつきが増えているものの，
連続的な位置検出がされた．推定位置について線形近似を行うと，サンプルの変位 G に対する推定値 H は
H = 1.02G − 132となり，決定係数 '2 は 0.99であった．この結果より，散乱体背後のサンプルの変位に対
しても線形に位置推定できていることが確認された．線形近似の値に基づいてキャリブレーションを行い誤
差を評価すると，設定値との誤差の平均は 104 µmであり，最大で 356 µmであった．なお，3f 法に基づき
外れ値を除外して評価した．従来の光相関イメージングでは，誤差の平均は 173 µmであり，最大で 548 µm

であったことから，散乱環境下においても深層学習を用いた高解像度光相関イメージングで微小欠陥の位置
検出が可能であることが示された．
6.4.3 シリコンウエハ上の欠陥検出
深層学習を用いた高解像度光相関イメージングを用いてシリコンウエハ上の欠陥検出を 8K解像度で行っ
た．推定分布の 1 画素より大きい欠陥を検出するために，サブピクセルモデルの再学習を行った．データ
セットの作成法を図 6.19に示す．図 6.9とは異なり，異なるサイズの欠陥をサンプルとした．サンプル以
外の計算は同一の計算法で作成した．サンプルの欠陥を 1 × 1 pixelから 64 × 64 pixelの正方形としてラン
ダムに生成し，訓練用データを 100000 セット，テスト用データを 10000 セットのデータを作成した．作
成したデータセットを用いて損失関数をバイナリ交差エントロピー誤差，最適化法を Adamとして 100エ
ポックの学習を行った．
実験装置を図 6.20(a)に示す．DMDプロジェクタでサンプルにパターンを照明し，サンプルからの散乱
光をアバランシェフォトダイオードで検出した．サンプルの欠陥として，6.20(b)に示すような，シリコン
ウエハ上に集光レーザで加工した矩形穴を用いた．光学顕微鏡を用いた画像計測では，矩形穴の一辺の長さ
は 116 µmであった．シリコンウエハ表面は鏡面であり照明光を正反射するが，矩形穴では照明光を散乱さ
せる．アバランシェフォトダイオードはサンプルからの正反射光を検出しない位置に設置されており，矩
形穴からの散乱光のみを検出する．したがって，サンプル上の欠陥のみが明るく検出される．照明範囲は
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Fig. 6.16. Setup for 8K tracking of a micro defect.（a）Optical setup,（b） Image of scattering media, and（c）distorted

pattern with scattering media.

25.6×25.6 mmとし，照明パターンの解像度は 128 × 128 pixelとした．したがって，照明パターンの画素サ
イズは 200×200 µmであった．
測定した結果を図 6.21に示す．従来の光相関イメージングでの再構成画像では，サンプルの位置は判別
できるが，サンプルの欠陥サイズが 116 µm四方であるのに対してパターンの画素サイズが 200 µm四方で
あり，欠陥形状は再構成できていない．一方で，深層学習を用いた高解像度光相関イメージングで推定し
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Fig. 6.17. Reconstructed images with SP-DLGI model in 8K tracking with scattering media.
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Fig. 6.18. Tracking result with 8K resolution with scattering media.

た結果では欠陥の形状まで再構成された．一辺の長さを測定すると 109 µmであり，光学顕微鏡で計測した
116 µmと近い結果が得られた．この結果より，深層学習を用いた高解像度光相関イメージングを用いるこ
とで，サンプル上で散乱する微小物体の高解像度検出が可能であることが示された．
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Fig. 6.19. Dataset creation for 8K defect detection, computing defects of different sizes and different locations as samples.

6.5 結言
本章では，局所排他的構造化照明法を導入した深層学習を用いた光相関イメージングで高解像度な微小
物体の位置検出を行った．はじめに，画素ごとに推定する Pixel-by-Pixel推定モデルを構築し，推定する画
素数に依存せず高解像度な推定を可能とした．続いて，測定システムの点広がり関数を用いて，構築した
Pixel-by-Pixel推定モデルの学習を行った．任意の解像度での推定が可能であることを示し，65536 × 65536

pixelの解像度での推定が可能であることを示した．
そして，学習済みモデルを用いて 8K 解像度での微小欠陥検出を行った．直径 10 µm のピンホールを

5 µmずつ移動させながら測定を行ったトラッキング実験で，平均 41 µm，最大 166 µmの誤差で位置推定で
きることを示した．従来の光相関イメージングでは，平均 169 µm，最大 400 µmの誤差であったことから，
高解像度化していることが示された．また，擾乱環境下での測定でも高解像度化が確認され，本手法が擾乱
耐性にも優れることが示された．最後に，シリコンウエハ上の欠陥検出に深層学習を用いた高解像度光相関
イメージングを適用し，欠陥位置および形状を検出できることを確認した．
以上の実験結果より，局所排他的構造化照明法を導入した深層学習を用いた光相関イメージングによっ
て，高感度かつ高解像度，高速な微小欠陥の位置検出が可能であることが実証された．



6.5 結言 97

Mirror

DMD
Projector Avalanche

Photodiode

Sample

Blurred
illumination pattern

(a)

(b)

116µm

1
1

6
µ

m

Fig. 6.20. Setup for 8K inspection of a micro defect on a silicon wafer. (a) Optical setup, (b) rectangular defects on silicon

wafers for sample.
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Fig. 6.21. Measurement results of rectangular defects on silicon wafers. (a) GI, (b) SP-DLGI.
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第 7章
結論
本研究では，高感度かつ高解像度な高速イメージングを実現するため，局所排他的構造化照明法により深
層学習を用いた光相関イメージングを高解像度化した．高感度かつ高速なイメージング法である深層学習を
用いた光相関イメージングは，異なる対象の測定値が同一となる非排他的測定が生じる影響で位置推定精度
が制限される．そこで，空間的および時間的に局所排他性をもつ構造化照明法を提案し，さらに，測定のば
らつきによる非排他的測定を除外するための推定不確かさ評価法を提案した．各手法をそれぞれ確立し，統
合することで高感度かつ高解像度な高速イメージングを実現した．以下に，本研究を通して得られた知見を
各章ごとに述べる．
第 1章では，本研究の位置づけについて述べたのち，本研究で着目した深層学習を用いた光相関イメージ
ングの概要と課題について述べた．産業，医療および天文などの様々な領域で，広い領域にまばらに存在す
る対象を高速に検出する技術が求められている．しかし，従来の 2次元センサによるセンシング法では，撮
影領域と分解能はトレードオフの関係にあり，さらに対象からの信号が微弱となるため検出が困難であっ
た．そこで，高感度かつ高速な深層学習を用いた光相関イメージングに着目した．しかし，異なる対象の測
定値が同一となる非排他的測定が生じて識別出来ない対象が存在することが課題であった．この課題を解決
し高解像度化するため，空間的および時間的に局所排他性をもつ構造化照明法を提案した．さらに，測定の
ばらつきによる非排他的測定を除外するための推定不確かさ評価法を提案した．本研究では，これらの手法
を統合し，深層学習を用いた光相関イメージングを高解像度化することを目的とした．
第 2章では，本研究で提案する局所排他的構造化照明法の原理を述べた．局所排他的構造化照明とは，照
明の強度変調が空間的あるいは時間的に，異なる位置で異なる強度変調になるよう設計された構造化照明で
ある．まず，近接する 2点を識別できない空間的な局所非排他性に対して，非合焦照明によって画素内に強
度勾配を生じさせる空間的な局所排他的構造化照明を行うことで解決できることを示した．また，異なる画
素でも局所時間領域で非排他的な構造化照明になる課題を，2進数表記に基づくパターン設計で回避できる
ことを述べた．さらに，構造化照明の設計では制御できない測定のばらつきに由来する非排他的測定を，近
傍特徴マップを用いた推定不確かさ評価法で検知できることを述べた．そして，これらを統合することで，
深層学習を用いた光相関イメージングの高解像度化が実現できることを述べた．
第 3章では，非合焦照明による空間領域での局所排他的構造化照明により推定解像度が向上することを示
した．まず，非合焦照明を用いた測定において測定値に高解像度情報が含まれることを数値解析で確認し
た．次に，非合焦照明由来の情報を抽出するための深層学習モデルを検討し，異なるカーネルサイズをもつ
畳み込み層を並列に接続した並列畳み込みモデルが特徴抽出性能に優れることを示した．さらに，構築し
た並列畳み込みモデルを用いることにより，非合焦照明下の測定で高解像度な推定が実現できることを示
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した．
第 4章では，2進数表記に基づく時間領域での局所排他的構造化照明により位置推定精度が向上すること
を示した．まず，ランダムパターンと 2進数パターンの排他性を比較し，2進数パターンは少ないパターン
数で排他性を有することを示した．また，2値パターンと多値パターンの比較では，2値パターンの方が高
いノイズ耐性を持つことがわかった．そして，数値解析および実環境における実験により，深層学習を用い
た光相関イメージングにおいて 2進数パターンを用いることで，非排他的照明に起因する識別不能性の影響
を低減し，位置推定精度を向上できることを示した．
第 5章では，近傍特徴マップに基づいた推定不確かさ評価により，測定のばらつきに由来する非排他的測
定を検出し，フィルタリングによる推定の信頼性向上ができることを示した．まず，近傍特徴マップ生成時
に付加する付加する乱数分布に関する検討を行い，乱数分布の形状には依存せず，その広がりのみに評価値
が依存することを数値解析で示した．特に，乱数の標準偏差と特徴マップの値の比率を測定系の SN比と一
致させることで，測定環境のばらつきを反映した適切な不確かさ評価が可能であることがわかった．そし
て，F1スコアに基づいて設定したしきい値によるフィルタリングで非排他的な推定を除外し，推定の信頼
性を向上できることが明らかとなった．
第 6章では，第 3章から第 5章までの知見を統合して，高解像度推定が可能な Pixel-by-Pixel推定モデル
を構築し 8K解像度での高解像度微小欠陥位置検出を行った．測定システムの特性に合わせて作成したデー
タを用いて学習を行い，数値解析での性能検証において 128回の照明で 65536 × 65536 pixelの解像度での
推定が可能であることを示した．続いて，構築した Pixel-by-Pixel推定モデルを用いて微小欠陥のトラッキ
ング実験を行った．128 × 128 pixelの構造化照明 128枚を用いて測定し，8192 × 8192 pixelで推定を行っ
た．82×82 mmの領域に設置した直径 10 µmのピンホールを 5 µmずつ移動させながら測定を行い，41 µm

の精度で位置検出が可能であることを示した．また，擾乱環境下でも測定可能であり擾乱耐性にも優れるこ
とが示された．最後に，シリコンウエハ上の欠陥検出を同様の解像度で行い，マイクロメートルオーダの欠
陥形状を測定できることを示した．これにより，構造化照明の画素数の 0.0002%の照明回数で，64 × 64倍
の画素数で再構成できることを示し，高感度な光相関イメージングを高速かつ高解像度化できることを実証
した．
以上の知見から，構造化照明法に局所排他性を導入することで深層学習を用いた光相関イメージングを高
解像度化できることを示した．空間的および時間的に局所な領域で照明の排他性を保証することにより，測
定値が一意に推定対象と対応する識別可能な照明が可能となる．これにより従来の深層学習を用いた光相
関イメージングでは識別できない対象を識別できるようになり，高解像度化が実現した．さらに，測定環境
のばらつきに起因する非排他的推定を推定不確かさにより識別と除外することで，信頼性の高い推定を実現
した．
今後の課題としては，複数の欠陥が同時に存在する場合への拡張，および複雑な対象への適用が挙げられ
る．本研究で提案した局所排他的構造化照明法は対象に依らず適用できるが，構築した深層学習モデルは点
検出に特化した学習がなされているため，複雑な対象は推定が困難となる．したがって，データセットの作
成および学習モデルの最適化を複雑な対象に対して行うことで，任意の対象に対するイメージングが可能に
なると考えられる．
本研究では，局所排他性を光強度の相関測定に導入することでイメージングの高解像度化を実現した．こ
の局所排他性による高解像度化は，光強度特有の概念では無いため，他の物理量での相関測定にも展開可能
であると考えられる．また，1010画素以上の超高解像度推定により，スケールの異なる局所的な現象と大
域的な現象を同時に測定できる．これにより，あらゆるの物理量を横断的スケールで測定する，現実空間の
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一括可視化技術への展開が期待される．
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