



|              |                                                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title        | Elucidating Molecular Mechanisms of Male Meiosis Using CRISPR/Cas9 Knockout Mouse Models                                                                                                       |
| Author(s)    | 潘, 晨                                                                                                                                                                                           |
| Citation     | 大阪大学, 2025, 博士論文                                                                                                                                                                               |
| Version Type |                                                                                                                                                                                                |
| URL          | <a href="https://hdl.handle.net/11094/103142">https://hdl.handle.net/11094/103142</a>                                                                                                          |
| rights       |                                                                                                                                                                                                |
| Note         | やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、 <a href="https://www.library.osaka-u.ac.jp/thesis/#closed">https://www.library.osaka-u.ac.jp/thesis/#closed</a> 大阪大学の博士論文について |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

## 論文内容の要旨

|            |                                                                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 氏名 ( 潘 晨 ) |                                                                                                                                         |
| 論文題名       | Elucidating Molecular Mechanisms of Male Meiosis Using CRISPR/Cas9 Knockout Mouse Models (CRISPR/Cas9ノックアウトマウスモデルを用いた雄性減数分裂の分子メカニズムの解明) |
| 論文内容の要旨    |                                                                                                                                         |

Genetically modified animals have become indispensable tools in the study of gene function, disease mechanisms, and therapeutic development. In the field of reproductive biology, testis-enriched genes are of particular interest due to their potential roles in spermatogenesis and male infertility. Despite advances in omics technologies, many of these genes remain functionally uncharacterized, which hinders both clinical diagnostics and our basic understanding of male germ cell biology. This dissertation aims to identify key regulators of male fertility and to explore how gene function is maintained during spermatogenesis, especially meiosis, using genome-edited mouse models.

Using the CRISPR/Cas9 system, I generated knockout (KO) mice for seven testis-enriched genes individually. Fertility analysis showed that five genes—*Cfap68*, *Nt5c1b*, *Ppp1r42*, *Tekt5*, and *Trim52*—were dispensable for male fertility. In contrast, *Lrrc63* and *Pdha2* KO males were infertile with severe spermatogenic defects. *Lrrc63* KO mice showed oligospermia, immotile sperm, and meiotic abnormalities with lagging chromosomes and apoptotic metaphase II spermatocytes. *Pdha2* KO males displayed meiotic arrest at the pachytene stage, highlighting its essential role in meiosis.

To investigate *Pdha2* function, I examined its molecular role during meiosis. PDHA2 is a testis-specific putative component of the pyruvate dehydrogenase complex (PDC). In *Pdha2* KO spermatocytes, ATP levels were significantly reduced, and its interaction mitochondrial PDHB was destabilized, indicating mitochondrial dysfunction. As a result, DNA double-strand break (DSB) repair was impaired, with reduced ATPase proteins' (RAD51 and DMC1) foci, although upstream factor non-ATPase RPA2 localization was unaffected. Interestingly, PDHA2 also showed nuclear granule-like localization, suggesting a possible noncanonical function.

Finally, I examined the evolutionary relationship between *Pdha2* and its X-linked parental gene, *Pdha1*. *Pdha2* is an autosomal retrogene thought to compensate for *Pdha1* silencing during meiotic sex chromosome inactivation (MSCI). To test this, I generated transgenic mice expressing *Pdha1* after MSCI. *Pdha1* expression rescued mitochondrial and meiotic defects in *Pdha2* KO mice and restored fertility. These results support the idea that autosomal retrogenes such as *Pdha2* evolved to bypass X-linked gene silencing during male meiosis.

In summary, this study identifies essential testis-specific genes, uncovers a link between mitochondrial metabolism and genome stability, and reveals how autosomal retrogenes can preserve key functions during spermatogenesis under epigenetic constraints.

## 論文審査の結果の要旨及び担当者

| 氏　名　　( 潘　晨 ) |     |           |
|--------------|-----|-----------|
|              | (職) | 氏　名       |
| 最終試験担当者      | 主　查 | 教授　伊川　正人  |
|              | 副　查 | 教授　橋本　均   |
|              | 副　查 | 教授　深田　宗一朗 |

## 論文審査の結果の要旨

本論文は、CRISPR/Cas9ゲノム編集マウスを作製して解析することにより、雄性不妊モデルマウスを開発し、精子形成の理解を深めた論文である。

1. 精巣で多く発現する7遺伝子 (Cfap68, Lrrc63, Nt5c1b, Pdha2, Ppp1r42, Tekt5, and Trim52) について、マウス受精卵でCRISPR/Cas9ゲノム編集を行い、各遺伝子の欠損 (KO) マウスの作製に成功した。
2. 各KOマウスについて交配試験を実施、Pdha2とLrrc63のKOマウスが雄性不妊を示すこと。残りの5遺伝子は単独では雄妊孕性に必須でないことを示した。
3. 乳酸デヒドロゲナーゼ活性を有し、体細胞のミトコンドリアにおけるATP産生に重要なPDHA1の精巣ホモログとしてPDHA2が存在することに注目し、Pdha2 KOマウスについて表現型解析を進め、減数分裂不全によりパキテン期で分化を停止することを示した。
4. 体細胞で発現するPdha2パラログであるPdha1を精細胞で発現させることで、Pdha2 KOマウスの妊孕性が回復することを示した。また精細胞ではPdha1の発現が低下することから、精細胞の減数分裂にはPDHA1ではなくPDHA2を介したATP産生が重要であることを示した。

以上、本論文は、CRISPR/Cas9ゲノム編集による雄性不妊マウスの効率的な作製と表現型スクリーニングにより、精子形成必須遺伝子としてLrrc63とPdha2を同定したこと、さらに精細胞で分化に応じて発現低下するPdha1を精細胞特異的に発現するPdha2が補うことで、パキテン期からディプロテン期への正常な進行を担保することを示したものであり、博士（薬科学）の学位論文に値するものと認める。