Title	On the hypoellipticity and the global analytic- hypoellipticity of pseudo-differential operators
Author(s)	Taniguchi, Kazuo
Citation	Osaka Journal of Mathematics. 1974, 11(2), p. 221-238
Version Type	VoR
URL	https://doi.org/10.18910/10315
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

ON THE HYPOELLIPTICITY AND THE GLOBAL
 ANALYTIC-HYPOELLIPTICITY OF PSEUDO. DIFFERENTIAL OPERATORS

Kazuo TANIGUCHI

(Received September 14, 1973)

Introduction

In the recent paper [13] Kumano-go and Taniguchi have studied by using oscillatory integrals when pseudo-differential operators in R^{n} are Fredholm type and examined whether or not the operators $L_{k}\left(x, D_{x}, D_{y}\right)=D_{x}+i x^{k} D_{y}$ in Mizohata [15] and $L_{ \pm}\left(x, D_{x}, D_{y}\right)=D_{x} \pm i x D_{y}^{2}$ in Kannai [6] are hypoelliptic by a unified method. In the present paper we shall give the detailed description for results obtained in [13] and study the hypoellipticity for the operator of the form $L=\sum_{|\alpha: \mathfrak{m}|+\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right| \leqq 1} a_{\alpha \omega \alpha^{\prime} \gamma \gamma^{\prime}} x^{\gamma} \tilde{y}^{\gamma} D_{x}^{\alpha} D_{y}^{\alpha^{\prime}}$ with semi-homogeneity in $\left(x, \tilde{y}, D_{x}, D_{y}\right)$ by deriving the similar inequality to that of Grushin [4] for the elliptic case. Then we can treat the semi-elliptic case as well as the elliptic case. We shall also give a theorem on the global analytic-hypoellipticity of a non-elliptic operator, and applying it give a necessary and sufficient condition for the operator $L\left(x, D_{x}, D_{y}\right)$ to be hypoelliptic, when the coefficients of L are independent of \boldsymbol{y}^{\prime} (see Theorem 3.1).

In Section 1 we shall describe pseudo-differential operators of class $S_{\lambda, \rho, \delta}^{m}$ which is defined by using a basic weight function $\lambda=\lambda(x, \xi)$ varying in x and ξ (cf. [13] and also [1]). In Section 2 we shall study the global analytic-hypoellipticity of a non-elliptic pseudo-differential operator and give an example which indicates that the condition (2.3) is necessary in general. In Section 3 we shall consider the local hypoellipticity for the operator L and give some examples.

The author wishes to thank Prof. H. Kumano-go for suggesting this problem and his helpful advice.

1. Algebras and L^{2}-boundedness

Definition 1.1. For $-\infty<m<\infty, 0 \leqq \delta<1$ and a sequence $\widetilde{\tau} ; 0 \leqq \tau_{0} \leqq$ $\tau_{1} \leqq \cdots$ we define a Frechet space $\mathcal{A}_{\delta, \tau}^{m}$ by the set of C^{∞}-functions $p(\xi, x)$ in $R_{\xi, x}^{2 n}$ for which each semi-norm

$$
|p|_{\alpha, \beta}^{(m)}=\sup _{x, \xi}\left\{\left|p_{(\beta)}^{(\alpha)}(\xi, x)\right|\langle x\rangle^{\left.-\tau_{|\beta|}\langle\zeta\rangle^{-m-\delta|\beta|}\right\}}\right.
$$

is finite, where $p_{(\beta)}^{(\alpha)}=\partial_{\xi}^{\alpha} D_{x}^{\beta} p, D_{x_{j}}=-i \partial / \partial x_{j}, \partial_{\xi_{j}}=\partial / \partial \xi_{j}, j=1, \cdots, n$, $\langle x\rangle=\sqrt{1+|x|^{2}}, \quad\langle\xi\rangle=\sqrt{1+|\xi|^{2}}$.

We define the oscillatory integral $O_{s}[p]$ for $p(\xi, x) \in \mathcal{A}_{\delta, \tilde{\tau}}^{m}$ by

$$
\begin{aligned}
O_{s}[p] & \equiv O_{s}-\iint e^{-i x \cdot \xi} p(\xi, x) d x d \xi \\
& =\lim _{\xi \rightarrow 0} \iint e^{-i x \cdot \xi} \chi_{\varepsilon}(\xi, x) p(\xi, x) d x d \xi
\end{aligned}
$$

where $d \xi=(2 \pi)^{-n} d \xi, x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$ and $\chi_{\varepsilon}(\xi, x)=\chi(\varepsilon \xi, \varepsilon x)(0<\varepsilon \leqq 1)$ for a $\chi(\xi, x) \in \mathcal{S}$ (the class of rapidly decreasing functions of Schwartz) in $R_{\xi, x}^{2 n}$ such that $\chi(0,0)=1$ (cf. ([11], [13]).

Remark. We can easily obtain the following statements (cf. [11]).
$\left.1^{\circ}\right)$ For $p \in \mathcal{A}_{\delta, \tau}^{m}$ we have

$$
O_{s}[p]=\iint e^{-i x \cdot \xi}\langle x\rangle^{-2 l^{\prime}}\left\langle D_{\xi}\right\rangle^{2 l^{\prime}}\left\{\langle\xi\rangle^{-2 l}\left\langle D_{x}\right\rangle^{2 l} p(\xi, x)\right\} d x d \xi
$$

by taking integers l, l^{\prime} such that $-2 l(1-\delta)+m<-n$ and $-2 l^{\prime}+\tau_{2 l}<-n$.
2°) Let $\left\{p_{\mathrm{z}}\right\}_{0<\varepsilon<1}$ be a bounded set in $\mathcal{A}_{\delta, \tau}^{m}$ and converges to a $p_{0}(\xi, x) \in \mathcal{A}_{\delta, \tau}^{m}$ as $\varepsilon \rightarrow 0$ uniformly on any compact set of $R_{\xi, x}^{2 n}$. Then we have

$$
\lim _{\mathrm{z} \rightarrow 0} O_{s}\left[p_{\mathrm{z}}\right]=O_{s}\left[p_{\mathrm{o}}\right]
$$

$\left.3^{\circ}\right)$ For $p \in \mathcal{A}_{\delta, \tau}^{m}$ we have

$$
O_{s}\left[x^{\alpha} p\right]=O_{s}\left[D_{\xi}^{\alpha} p\right] \quad \text { and } \quad O_{s}\left[\xi^{\alpha} p\right]=O_{s}\left[D_{x}^{\alpha} p\right]
$$

Definition 1.2. We say that a C^{∞}-function $\lambda(x, \xi)$ in $R_{x, \xi}^{2 n}$ is a basic weight function when $\lambda(x, \xi)$ satisfies conditions:

$$
\begin{array}{rc}
\left.A_{0}^{-1}<\xi\right\rangle^{a} \leqq \lambda(x, \xi) \leqq A_{0}\left(1+|x|^{\tau_{0}}+|\xi|\right) & \left(\tau_{0} \leqq 0, a>0\right), \\
\left|\lambda_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq A_{\alpha \beta} \lambda(x, \xi)^{1-|\alpha|+\delta|\beta|} & (0 \leqq \delta<1), \\
\lambda(x+y, \xi) \leqq A_{1}\langle y\rangle^{\tau_{1}} \lambda(x, \xi) & \left(\tau_{1} \leqq 0\right) \tag{1.3}
\end{array}
$$

for positive constants $A_{0}, A_{\alpha \beta}, A_{1}{ }^{1{ }^{1}}$
Definition 1.3. We say that a C^{∞}-function $p(x, \xi)$ in $R_{x, \xi}^{2 n}$ belongs to $S_{\lambda, \rho, \delta}^{m},-\infty<m<\infty, 0 \leqq \delta \leqq \rho \leqq 1, \delta<1$, when for any multi-index α, β

[^0]\[

$$
\begin{equation*}
\left|p_{\beta \beta}^{(\alpha)}(x, \xi)\right| \leqq C_{a \beta} \lambda(x, \xi)^{m-\rho|\alpha|+\delta|\beta|} . \tag{1.4}
\end{equation*}
$$

\]

For $p(x, \xi) \in S_{\lambda, \mathrm{\rho}, \delta}^{m}$ we define pseudo-differential operator $P=p\left(X, D_{x}\right)$ with the symbol $\sigma(P)(x, \xi)=p(x, \xi)$ by

$$
\begin{equation*}
P u(x)=\int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi \quad \text { for } \quad u \in \mathcal{S} \tag{1.5}
\end{equation*}
$$

where $\hat{u}(\xi)=\int e^{-i x \cdot \xi} u(x) d x$ is the Fourier transform of $u \in \mathcal{S}$.
For a $p \in S_{\lambda, \rho, \delta}^{m}$ we define semi-norms $|p|_{i_{1}, l_{2}}^{(m)}, l_{1}, l_{2}=0,1, \cdots$ by

$$
\left.|p|\right|_{i_{1}, l_{2}} ^{(m)}=\operatorname{Max}_{|\alpha| \leq I_{1},|\beta| \leq l_{2}}\left\{\sup _{x, \xi}\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \lambda(x, \xi)^{-m+\rho|\alpha|-\delta|\beta|}\right\} .
$$

Then $S_{\lambda, \rho, \delta}^{m}$ makes a Frechet space.
In what follows we shall only treat the case: $\delta=\rho=0$ or $0=\delta<\rho=1$ since it simplifies the statements below and is sufficient for our aim.

Theorem 1.4. Let $P_{j}=p_{j}\left(X, D_{x}\right) \in S_{\lambda, \rho, 0}^{m_{j}}, j=1,2$. Then $P=P_{1} P_{2}$ belongs to $S_{\lambda, \rho, 0}^{m_{1}+m_{2}}$ and we have for any integer $N>0$

$$
\begin{align*}
& \sigma(P)(x, \xi) \quad\left(\text { denoted also by } p_{1} \circ p_{2}(x, \xi)\right) \tag{1.6}\\
& =\sum_{|\alpha|<N} \frac{1}{\alpha!} p_{\infty}(x, \xi)+N \sum_{|\gamma|=N} \int_{0}^{1} \frac{(1-\theta)^{N-1}}{\gamma!} r_{\gamma, \theta}(x, \xi) d \theta
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
p_{\alpha}(x, \xi)=p_{1}^{(\alpha)}(x, \xi) p_{2(\omega)}(x, \xi) \quad\left(\in S_{\lambda, \rho, 0}^{m_{1}+m_{2}-\rho|\alpha|}\right), \\
r_{\gamma, \theta}(x, \xi)=O_{s}-\iint e^{-i y \cdot \eta} p_{1}^{(\gamma)}(x, \xi+\theta \eta) p_{2(\gamma)}(x+y, \xi) d y d \eta .
\end{array}\right.
$$

The set $\left\{r_{\gamma, \theta}(x, \xi)\right\}_{|\theta| \leq 1}$ is bounded in $S_{\lambda, \rho, 0}^{m_{1}+m_{2}-\rho|\gamma|}$.
Proof. By the same method of the Theorem 2.5 and 2.6 in [11] we can prove the formula (1.6) if we have only to prove $\left\{r_{\gamma, \theta}\right\}$ is a bounded set in $S_{\lambda, \rho, 0}^{m_{1}+m_{2}-\rho|\gamma|}$. Since $\partial_{\xi}^{\alpha} D_{x}^{\beta} r_{\gamma, \theta}$ is represented as the linear combination of

$$
\begin{align*}
& \iint e^{-i y \cdot \eta} p_{1\left(\beta_{1}\right)}^{\left(\alpha_{1}+\gamma\right)}(x, \xi+\theta \eta) p_{2\left(\beta_{2}+\gamma\right)}^{\left(\alpha \alpha_{2}\right)}(x+y, \xi) d y d \eta \tag{1.7}\\
& \quad\left(\alpha=\alpha_{1}+\alpha_{2}, \beta=\beta_{1}+\beta_{2}\right)
\end{align*}
$$

we have only to prove that each term of the form (1.7) is estimated by $C \lambda(x, \xi)^{m_{1}+m_{2}-\rho|y|-\rho|\infty|}$. Here and in what follows we omit the notation $O_{s^{-}}$. We have

$$
\begin{aligned}
& \left|\iint e^{-i y \cdot \eta} p_{1\left(\beta_{1}\right)}^{\left(\alpha_{1}+\gamma\right)}(x, \xi+\theta \eta) p_{2\left(\beta_{2}+\gamma\right)}^{\left(\alpha_{2}\right)}(x+y, \xi) d y d \eta\right| \\
= & \mid \iint e^{-i y \cdot \eta}\langle y\rangle^{-2 l_{1}\left\langle D_{\eta}\right\rangle^{2 l} l_{1} p_{1\left(\mathcal{1}_{1}\right)}^{\left(\alpha_{1}+\gamma\right)}(x, \xi+\theta \eta) p_{2\left(\beta_{2}+\gamma\right)}^{\left(\alpha_{2}\right)}(x+y, \xi) d y d \eta \mid}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq \mid \int_{|\eta| \leq c_{0} \lambda}\langle\eta\rangle^{-n_{0}} d \eta \int e^{-i y \cdot n}\left\langle D_{y}\right\rangle^{n_{0}}\left\{\langle y\rangle^{-2 l_{1}}\left\langle D_{\eta}\right\rangle^{2 l_{1} p_{1\left(\beta_{1}\right)}^{\left(\alpha_{1}+\gamma\right)}}(x, \xi+\theta \eta)\right. \\
& \text { - } \left.p_{2\left(\beta_{2}+\gamma\right)}^{\left(\alpha_{2}\right)}(x+y, \xi)\right\} d y \mid \\
& +\left.\left|\int_{|\eta| \geqq C_{0} \lambda}\right| \eta\right|^{-2 l_{2}} d \eta \int e^{-i y \cdot \eta}\left(-\Delta_{y}\right)^{l_{2}}\left\{\langle y\rangle^{-2 l_{1}\left\langle D_{\eta}\right\rangle^{2 l_{1}} p_{1\left(\beta_{1}\right)}^{\left(\alpha_{1}+\gamma\right)}(x, \xi+\theta \eta)}\right. \\
& \left.-p_{2\left(\beta_{2}+\gamma\right)}^{\left(\alpha_{2}\right)}(x+y, \xi)\right\} d y \mid \\
& \leqq C\left\{\int_{|\eta| \leqq C_{0} \lambda}\langle\eta\rangle^{-n_{0}} d \eta \int\langle y\rangle^{-\boldsymbol{m}_{1}} \lambda(x, \xi+\theta \eta)^{m_{1}-\rho|\gamma|-\rho\left|\omega_{1}\right|} \lambda(x+y, \xi)^{m_{2}-\rho\left|\omega_{2}\right|} d y\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leqq C\left\{\lambda(x, \xi)^{m_{1}+m_{2}-\rho|\gamma|-\rho|\propto|} \int\langle\eta\rangle^{-n_{0}} d \eta \int\langle y\rangle^{-2 l_{1}+\tau_{1}\left|m_{2}-\rho\right| \omega_{2}| |} d y\right. \\
& \left.+\lambda(x, \xi)^{m_{2}-\rho\left|\omega_{2}\right|} \int_{|\eta| \geqq C_{0} \lambda}|\eta|^{-2 l_{2}+m_{1+}} d \eta \int\langle y\rangle^{-2 l_{1}+\tau_{1}\left|m_{2}-\rho\right| \omega_{2}| |} d y\right\} \\
& \leqq C \lambda(x, \xi)^{m_{1}+m_{2}-\mathrm{P}|\gamma|-\rho|\alpha|},
\end{aligned}
$$

where $n_{0}=2([n / 2]+1), m_{1+}=\operatorname{Max}\left(m_{1}, 0\right), l_{1}, l_{2}$ are integers such that

$$
-2 l_{1}+\tau_{1}\left|m_{2}-\rho\right| \alpha_{2}| |<-n,-2 l_{2}+m_{1+}+n+1 \leqq \operatorname{Min}\left(0, m_{1}-\rho|\gamma|-\rho\left|\alpha_{1}\right|\right),
$$

and C_{0} is a constant such that

$$
\begin{equation*}
\frac{1}{2} \lambda(x, \xi) \leqq \lambda(x, \xi+\eta) \leqq \frac{3}{2} \lambda(x, \xi) \quad \text { if }|\eta| \leqq C_{0} \lambda(x, \xi) \tag{1.8}
\end{equation*}
$$

We can prove the following two theorems by the same method.
Theorem 1.5. Let $S_{\lambda, \beta, 0}^{m, m^{\prime}}$ denote a set of double symbols $p\left(\xi, x^{\prime}, \xi^{\prime}\right)$, which satisfy
and define operators $P=p\left(D_{x}, X^{\prime}, D_{x^{\prime}}\right)$ by

$$
\widehat{P u}(\xi)=O_{s}-\iint e^{-i x^{\prime} \cdot\left(\xi-\xi^{\prime}\right)} p\left(\xi, x^{\prime}, \xi^{\prime}\right) \hat{u}\left(\xi^{\prime}\right) d \xi^{\prime} d x^{\prime} \quad \text { for } u \in \mathcal{S}
$$

Then P belongs to $S_{\lambda, p, 0}^{m+m^{\prime}}$ and we can write $\sigma(P)(x, \xi)$ in the form (1.6) for any $N>0$, where

$$
\left\{\begin{array}{l}
p_{\infty}(x, \xi)=p_{(\alpha)}^{(\alpha, 0)}(\xi, x, \xi) \quad\left(\in S_{\lambda, p, 0}^{m+m^{\prime}-\rho|\alpha|}\right) \\
r_{\gamma, \theta}(x, \xi)=O_{s}-\iint e^{-i y \cdot \eta} p_{(\gamma)}^{(\gamma, 0)}(\xi+\theta \eta, x+y, \xi) d y d \eta
\end{array}\right.
$$

The set $\left\{r_{\gamma, \theta}(x, \xi)\right\}_{|\theta| \leq 1}$ is bounded in $S_{\lambda, \rho, 0}^{m+m^{\prime}-\rho|\gamma|}$.

Theorem 1.6. For $P=p\left(X, D_{x}\right) \in S_{\lambda, \rho, 0}^{m}$, the operator $P^{(*)}$ defined by

$$
(P u, v)=\left(u, P^{(*)} v\right) \quad \text { for } u, v \in \mathcal{S}
$$

belongs to $S_{\lambda, \rho, 0}^{m}$ and we have for any $N>0$

$$
\sigma\left(P^{(*)}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} p_{\alpha}^{(*)}(x, \xi)+N \sum_{|\gamma|=N} \int_{0}^{1} \frac{(1-\theta)^{N-1}}{\gamma!} r_{\gamma, \theta}^{(*)}(x, \xi) d \theta,
$$

where

$$
\left\{\begin{array}{l}
p_{\alpha}^{(*)}(x, \xi)=(-1)^{|\alpha|} \overline{p_{(\alpha)}^{\alpha \alpha}(x, \xi)} \quad\left(\in S_{\lambda, \rho_{0}|\alpha|}^{m-p|\alpha|}\right) \\
\left.r_{\gamma, \theta}^{(*)}(x, \xi)=O_{s}-\iint e^{-i y \cdot \eta}(-1)^{|r|} \overline{p_{(\gamma)}^{(\gamma)}(x+y, \xi+\theta \eta}\right) d y d \eta
\end{array}\right.
$$

The set $\left\{r_{\gamma, \theta}^{* *)}(x, \xi)\right\}_{|| | \leq 1}$ is bounded in $S_{\lambda, p, 0}^{m-\rho|\gamma|}$.
Remark. The maps

$$
S_{\lambda, \rho_{0}, 0}^{m_{1}} \times S_{\lambda, \rho, 0}^{m_{2}} \ni\left(p_{1}, p_{2}\right) \rightarrow p_{1} \circ p_{2} \in S_{\lambda, \rho, 0}^{m_{1}+m_{2}}
$$

and

$$
S_{\lambda, \rho, 0}^{m} \ni p \rightarrow p^{(*)} \in S_{\lambda, \rho, 0}^{m}
$$

are continuous.
Let $q(\sigma)$ be a C^{∞} - and even-function such that $q(\sigma) \geq 0, \int q(\sigma)^{2} d \sigma=1$ and $\operatorname{supp} q \subset\left\{\sigma \in R^{n} ;|\sigma| \leqq 1\right\}$, and set

$$
F(x, \xi ; \zeta)=\lambda(x, \xi)^{-n / 4} q\left((\zeta-\xi) / \lambda(x, \xi)^{1 / 2}\right)
$$

Theorem 1.7. For $P=p\left(X, D_{x}\right) \in S_{\lambda, 1,0}^{m}$, we define the Friedrichs part $P_{F}=p_{F}\left(D_{x}, X^{\prime}, D_{x^{\prime}}\right)$ by

$$
p_{F}\left(\xi, x^{\prime}, \xi^{\prime}\right)=\int F\left(x^{\prime}, \xi ; \zeta\right) p\left(x^{\prime}, \zeta\right) F\left(x^{\prime}, \xi^{\prime} ; \zeta\right) d \zeta
$$

Then we have
(i) $p_{F}\left(\xi, x^{\prime}, \xi^{\prime}\right)$ belongs to $S_{\sqrt{\lambda}, 1,0^{\prime}}^{2 m, 0}$,
(ii) The operator P_{F} belongs to $S_{\lambda, 1,0}^{m}$ and $P-P_{F} \in S_{\lambda, 1,0}^{m-1}$, and $\sigma\left(P_{F}\right)$ has the form

$$
\sigma\left(P_{F}\right)(x, \xi) \sim p(x, \xi)+\sum_{|\alpha+\beta+\gamma| \geq 2} \psi_{\alpha \beta \gamma}(x, \xi) p_{(\beta)}^{(\alpha)}(x, \xi)
$$

where $\psi_{\alpha \beta \gamma} \in S_{\lambda, 1,0}^{(|\alpha| 1|\beta|-|\gamma|) / 2}$,
(iii) If $p(x, \xi)$ is real-valued and non-negative, we have

$$
\begin{aligned}
& \left(p_{F}\left(D_{x}, X^{\prime}, D_{x^{\prime}}\right) u, v\right)=\left(u, p_{F}\left(D_{x}, X^{\prime}, D_{x^{\prime}}\right) v\right) \quad \text { for } \quad u, v \in \mathcal{S}, \\
& \left(p_{F}\left(D_{x}, X^{\prime}, D_{x^{\prime}}\right) u, u\right) \geqq 0 \quad \text { for } \quad u \in \mathcal{S} .
\end{aligned}
$$

Proof is carried out by the similar way to that in [9].
Theorem 1.8. We can extend $P=p\left(X, D_{x}\right) \in S_{\lambda, 0,0}^{0}$ to a bounded operator on L^{2} and we get

$$
\begin{equation*}
\|P u\|_{L^{2}} \leqq\left. C|p|\right|_{i_{0}, l_{0}} ^{(0)}\|u\|_{L^{2}} \tag{1.9}
\end{equation*}
$$

where C and l_{0} are independent of P and u.
Since $S_{\lambda, 0,0}^{0} \subset S_{<\xi>, 0,0}^{0}$, this theorem is a corollary of Calderón-Vaillancourt's theorem in [2].

2. Global analytic-hypoellipticity

Definition 2.1. We say that $L \in S_{\lambda, 1,0}^{m}$ is globally analytic-hypoelliptic if the following statement holds for L :
If $u \in L^{2}\left(R^{n}\right)$ is a solution of the equation

$$
L\left(X, D_{x}\right) u=f \quad \text { for } \quad f \in C^{\infty}\left(R^{n}\right)
$$

and f satisfies for some $M>0$

$$
\begin{equation*}
\left\|D_{x}^{\infty} f\right\|_{L^{2}} \leqq M^{1+|a|} \alpha!, \tag{2.1}
\end{equation*}
$$

then u is analytic and we have

$$
\begin{equation*}
\left\|D_{x}^{\alpha} u\right\|_{L^{2}} \leqq M_{1}^{1+|\alpha|} \alpha! \tag{2.2}
\end{equation*}
$$

for another constant $M_{1}>0$.
Theorem 2.2. Let $L \in S_{\lambda, 1,0}^{m}(m>0)$ satisfy the following conditions:

$$
\begin{equation*}
|L(x, \xi)| \geqq C \lambda(x, \xi)^{m} \quad \text { for } \quad|\xi| \geqq R \tag{2.3}
\end{equation*}
$$

for some $C>0$ and $R \geqq 0$, and for any multi-index α there exists M_{a} such that

$$
\begin{equation*}
\left|L_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq M_{\alpha}^{1+|\beta|} \beta!\lambda(x, \xi)^{m-|\alpha|} \tag{2.4}
\end{equation*}
$$

Then the operator $L\left(X, D_{x}\right)$ is globally analytic-hypoelliptic.
Example 2.3. Let $L\left(x_{1}, x_{2}, D_{x_{1}}, D_{x_{2}}\right)=D_{x_{1}}^{2}+D_{x_{2}}^{6}+x_{1}{ }^{2}+x_{2}{ }^{6}-15 x_{2}{ }^{4}+45 x_{2}{ }^{2}-16$. Then we can prove that L satisfies the conditions (2.3) and (2.4) by taking $\lambda\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)=\left(1+\left|L\left(x_{1}, x_{2}, \xi_{1}, \xi_{2}\right)\right|^{2}\right)^{1 / 12}$ as a basic weight function. The equation $L\left(X_{1}, X_{2}, D_{x_{1}}, D_{x_{2}}\right) u=0$ has a non-trivial solution $e^{-\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right) / 2}$.

As a generalization of the above example we have
Example 2.4 (cf. [5]). Let $L\left(x, D_{x}\right)=\sum_{|\alpha| \leq m_{1}} a_{\infty}(x) D_{x}^{\alpha}$ be a hypoelliptic differential operator of order m_{1} with analytic coefficients. Suppose that L satisfies following conditions for constants $\tau_{0} \geqq 0,0<\rho \leqq 1, C_{1}>0, C_{2}>0, M>0$,
(0) $\left|\partial_{x}^{\beta} a_{\alpha}(x)\right| \leqq M^{1+|\beta|} \beta$! if $|\beta| \geqq m_{1} \tau_{0}$ and $|\alpha| \leqq m_{1}$,
(i) $\left.C_{1}^{-1}<\xi\right\rangle^{\rho m_{1}} \leq|L(0, \xi)| \leqq C_{1}|L(x, \xi)| \quad$ for large $|\xi|$,
(ii) $\left|L_{(\beta)}^{(\alpha)}(x, \xi) / L(x, \xi)\right| \leqq M^{1+|\beta|} \beta!\left(|\xi|+|x|^{\tau_{0}}\right)^{-\rho|\alpha|} \quad$ for large $|\xi|+|x|^{\tau_{0}}$,
(iii) $\quad\left|L_{(\beta)}(x, \xi)\right| \leqq C_{2}(1+|L(0, \xi)|) \quad$ if $\quad|\beta| \geqq m_{1} \tau_{0}$.

Then we can see that L satisfies the conditions of Theorem 2.2 by taking $\lambda(x, \xi)=\left(1+|L(x, \xi)|^{2}\right)^{1 / 2 m}$ for a large m as a basic weight function.

Proof. From (0) we can choose a positive constant m^{\prime} such that

$$
|L(x, \xi)| \leqq C\left(|\xi|+|x|^{\tau_{0}}\right)^{m^{\prime}} \quad \text { for } \quad|\xi|+|x|^{\tau_{0}} \geqq 1 .
$$

We put $m=m^{\prime} \mid \rho$ and $\lambda(x, \xi)=\left(1+|L(x, \xi)|^{2}\right)^{1 / 2 m}$. Then we have (2.4) from (0) and (ii). By usual calculus we have (1.2) for $\delta=0$. From (i) we have (1.1) for $a=\rho m_{1} / m$ and (2.3). Finally we can get (1.3) by (i) and (iii).

Example 2.5. Let $L\left(x_{1}, x_{2}, D_{x_{1}}, D_{x_{2}}\right)=i D_{x_{1}}+D_{x_{2}}^{2}-2 i x_{2}^{3} D_{x_{2}}+x_{1}-x_{2}{ }^{6}-3 x_{2}{ }^{2}$. Then L is a semi-elliptic operator and $L u=0$ has a non-analytic solution $u=e^{-\left(x_{1}^{2} / 2+x_{2}^{4} / 4\right)} \sum_{m=0}^{\infty} \frac{f^{(m)}\left(x_{1}\right)}{(2 m)!} x_{2}^{2 m}(\in \mathcal{S})$ where $f\left(x_{1}\right) \in C_{0}^{\infty}\left(R^{1}\right)$ and belongs to the Gevrey class $\rho(<(3 / 2))$. This fact means the conditions are necessary in general. In fact let L satisfy (2.3) and (2.4). Then we have the following contrary:

$$
1=\left|\partial_{x_{1}} L\left(-t^{2}, 0,0, t\right)\right| \leqq C \lambda\left(-t^{2}, 0,0, t\right)^{m} \leqq\left|L\left(-t^{2}, 0,0, t\right)\right|=0
$$

$$
\text { for large } t \text {. }
$$

Proof of Theorem 2.2. Define $\left\{E_{j}(x, \xi)\right\}_{j=0,1 \ldots}$ for $|\xi| \geqq R$ inductively by

$$
\begin{align*}
& E_{0}(x, \xi)=L(x, \xi)^{-1} \\
& E_{j}(x, \xi)=-\sum_{l=0}^{j-1} \sum_{|\gamma|=j-l} \frac{1}{\gamma!} E_{l}^{(\gamma)}(x, \xi) L_{(\gamma)}(x, \xi) E_{0}(x, \xi) \quad(j \geqq 1), \tag{2.5}
\end{align*}
$$

then we have $\left|E_{j(\beta)}^{(\alpha)}\right| \leqq C_{j_{\alpha \beta}} \lambda(x, \xi)^{-m-j-\left|\alpha_{1}\right|}$ if $|\xi| \geqq R$. Taking $\varphi_{R}(\xi) \in C^{\infty}$ such that $\varphi_{R}=1$ if $|\xi| \geqq 2 R$ and $\varphi_{R}=0$ if $|\xi| \leqq R$, and an integer N such that $a N \geqq 1$, we define

$$
\begin{equation*}
E(x, \xi)=\varphi_{R}(\xi) \sum_{j=0}^{N-1} E_{j}(x, \xi) \in S_{\lambda, 0,0}^{-m} . \tag{2.6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
E L=I-K, \quad K \in S_{<\xi>0,0}^{-1} . \tag{2.7}
\end{equation*}
$$

In fact by the same method of Theorem 1.4 we have

$$
\begin{align*}
& \sigma(E L)(x, \xi)-1 \tag{2.8}\\
= & \sum_{j=0}^{N-1} \sum_{|\gamma|<N-j} \frac{1}{\gamma!} \varphi_{R}(\xi) E_{j}^{(\gamma)}(x, \xi) L_{(\gamma)}(x, \xi)-1
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{j=0}^{N-1} \sum_{1 \gamma_{1}+\gamma_{2} \mid<N-j, \gamma_{1} \neq 0} \frac{1}{\gamma_{1}!\gamma_{2}!} \partial \partial_{\xi}^{\gamma_{1}} \varphi_{R}(\xi) E_{j}^{\left(\gamma_{2}\right)}(x, \xi) L_{\left(\gamma_{1}+\gamma_{2}\right)}(x, \xi) \\
& +\sum_{j=0}^{N-1} \sum_{1 \gamma_{1}+\gamma_{2} \mid=N-j}(N-j) \int_{0}^{1} \frac{(1-\theta)^{N-j-1}}{\gamma_{1}!\gamma_{2}!} r_{j \gamma_{1} \gamma_{2} \theta}(x, \xi) d \theta \\
& \equiv I_{1}+I_{2}+I_{3},
\end{aligned}
$$

where

$$
r_{j \gamma_{1} \gamma_{2} \theta}(x, \xi)=\iint e^{-i y \cdot \eta} \partial_{\xi}^{\gamma_{1}} \varphi_{R}(\xi+\theta \eta) E_{j}^{\left(\gamma_{2}\right)}(x, \xi+\theta \eta) L_{\left(\gamma_{1}+\gamma_{2}\right)}(x+y, \xi) d y d \eta
$$

From (2.5) we have

$$
\begin{equation*}
I_{1}=\varphi_{R}(\xi)-1 \in S_{\langle\xi>, 0,0}^{-1} . \tag{2.9}
\end{equation*}
$$

From the fact that $\partial_{\xi}^{\gamma_{1}} \varphi_{R}(\xi)$ has compact support if $\gamma_{1} \neq 0$, we get

$$
\begin{equation*}
I_{2} \in S_{\langle\xi\rangle, 0,0}^{-1} . \tag{2.10}
\end{equation*}
$$

Next we prove that $\left\{r_{j \gamma_{1} \gamma_{2 \theta}}\right\}_{|\theta| \leqq_{1}}$ is bounded in $S_{\langle\xi\rangle, 0,0}^{-1}$. Since $\partial_{\xi}^{\alpha} D_{x}^{\beta} r_{j \gamma_{1} \gamma_{2 \theta}}$ is a linear combination of

$$
r_{\theta}^{\prime}(x, \xi)=\iint e^{-i y \cdot \eta} \partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta \eta) E_{j\left(\beta_{1}\right)}^{\left(\alpha_{2}+\gamma_{2}\right)}(x, \xi+\theta \eta) L_{\left(\beta_{2}+\gamma_{1}+\gamma_{2}\right)}^{\left(\alpha_{3}\right)}(x+y, \xi) d y d \eta
$$

such that $\alpha_{1}+\alpha_{2}+\alpha_{3}=\alpha, \beta_{1}+\beta_{2}=\beta$. Hence we have only to prove for a constant C

$$
\left|r_{\theta}^{\prime}\right| \leqq C\langle\xi\rangle^{-1} .
$$

We take a constant C_{0} such that (1.8) is satisfied and integers l_{1}, l_{2}, l_{3} such that $-2 l_{1}+m \tau_{1}<-n,-2 l_{2}+1<-n,-2 l_{3}+n+1 \leqq-m-1 / a$. Then we have

$$
\begin{aligned}
& \left|r_{\theta}^{\prime}(x, \xi)\right| \\
& =\mid \iint e^{-i y \cdot \eta}\langle y\rangle^{-2 l_{1}}\left\langle D_{\eta}\right\rangle^{2 l_{1}}\left\{\partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta \eta) E_{j\left(\mathcal{B}_{1}\right)}^{\left(\alpha_{2}+\gamma_{2}\right)}(x, \xi+\theta \eta)\right. \\
& \text { - } \left.L_{\left(\beta_{2}+\gamma_{1}+\gamma_{2}\right)}^{\left(\alpha_{3}\right)}(x+y, \xi)\right\} d y d \eta \\
& \leqq \int_{|\eta| \leqq C_{0}{ }^{\lambda}}\langle\eta\rangle^{-2 l_{2}} d \eta \int \mid\left\langle D_{y}\right\rangle^{2 l_{2}}\left[\langle y \rangle ^ { - 2 l _ { 1 } } \langle D _ { \eta } \rangle ^ { 2 l _ { 1 } } \left\{\partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta \eta)\right.\right. \\
& \text { - } \left.\left.E_{j\left(\beta_{1}\right)}^{\left(\alpha_{2}+\gamma_{2}\right)}(x, \xi+\theta \eta) L_{\left(\beta_{2}+\gamma_{1}+\gamma_{2}\right)}^{\left(\alpha_{3}\right)}(x+y, \xi)\right\}\right] \mid d y \\
& +\int_{|\eta| \geq c_{0} \lambda}|\eta|^{-2 l_{3}} d \eta \int \mid\left(-\Delta_{y}\right)^{l_{3}}\left[\langle y \rangle ^ { - 2 l _ { 1 } } \langle D _ { \eta } \rangle ^ { 2 l _ { 1 } } \left\{\partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}(\xi+\theta \eta)\right.\right. \\
& \text { - } \left.\left.E_{j\left(\beta_{1}\right)}^{\left(\alpha_{2}+\gamma_{2}\right)}(x, \xi+\theta \eta) L_{\left(\beta_{2}+\gamma_{1}+\gamma_{2}\right)}^{\left(\alpha_{3}\right)}(x+y, \xi)\right\}\right] \mid d y \\
& \equiv J_{1}+J_{2} .
\end{aligned}
$$

To estimate J_{1} we devide into two cases.
(i) When $\alpha_{1}+\gamma_{1}=0$ we have, noting that $\left|\gamma_{2}\right|=N-j$

$$
\begin{aligned}
J_{1} & \leqq C \int_{|\eta| \leqq C_{0} \lambda}\langle\eta\rangle^{-2 l_{2}} d \eta \int\langle y\rangle^{-2 l_{1}} \lambda(x, \xi+\theta \eta)^{-m-N} \lambda(x+y, \xi)^{m} d y \\
& \leqq C \lambda(x, \xi)^{-N} \int\langle\eta\rangle^{-2 l_{2}} d \eta \int\langle y\rangle^{-2 l_{1}+m \tau_{1}} d y \leqq C\langle\xi\rangle^{-1} .
\end{aligned}
$$

(ii) When $\alpha_{1}+\gamma_{1} \neq 0$ we have, noting that $\partial_{\xi}^{\alpha_{1}+\gamma_{1}} \varphi_{R}$ has compact support

$$
\begin{aligned}
J_{1} & \leqq C \int_{|\eta| \leqq C_{0} \lambda}\langle\eta\rangle^{-2 l_{2}} d \eta \int\langle y\rangle^{-2 l_{1}}\langle\xi+\theta \eta\rangle^{-1} \lambda(x, \xi+\theta \eta)^{-m} \lambda(x+y, \xi)^{m} d y \\
& \leqq C\langle\xi\rangle^{-1} \int\langle\eta\rangle^{-2 l_{2}+1} d \eta \int\langle y\rangle^{-2 l_{1}+m \tau_{1}} d y \leqq C\langle\xi\rangle^{-1}
\end{aligned}
$$

Next for J_{2} we have

$$
\begin{aligned}
J_{2} & \leqq C \int_{|\eta| \geqq C_{0^{\lambda}}}|\eta|^{-2 l_{3}} d \eta \int\langle y\rangle^{-2 l_{1}} \lambda(x+y, \xi)^{m} d y \\
& \leqq C \lambda(x, \xi)^{-2 l_{3}+m+n} \int\langle y\rangle^{-2 l_{1}+m \tau_{1}} d y \leqq C \lambda(x, \xi)^{-1 / a} \leqq C\langle\xi\rangle^{-1} .
\end{aligned}
$$

Hence we get $I_{3} \in S_{<\xi>, 0,0}^{-1}$ and combining (2.8)-(2.10) we get (2.7). From (2.4) and (2.6) we see also that there exists M_{2} independent of γ such that

$$
\begin{equation*}
\left.\left|\sigma\left(E L_{(\gamma)}\right)\right|\right|_{i_{0}, l_{0}} ^{(0)} \leqq M_{2}^{1+|\gamma|} \gamma!\quad \text { for } l_{0} \text { in Theorem 1.8. } \tag{2.11}
\end{equation*}
$$

Moreover from (2.7) there exists constant C_{1} such that

$$
\begin{equation*}
\left|K(x, \xi) \xi_{j}\right|_{i_{0}, \iota_{0}}^{00} \leqq C_{1} \quad \text { for any } j=1, \cdots, n . \tag{2.12}
\end{equation*}
$$

Suppose that for $u \in L^{2} L u=f$ satisfies (2.1). We have $u=E L u+K u$ $=E f+K u$ from (2.7) and so it is clear that u is a C^{∞}-function. Therefore we have only to prove that u satisfies (2.2), since (2.2) implies the analyticity of u by Sobolev's lemma. Take M_{1} sufficiently large such that

$$
\begin{array}{ll}
3 C_{2} C_{1} \leqq M_{1}, & \\
3 C_{2} M|E|_{i_{0}, l_{0}}^{(0)} \leqq M_{1}, & M \leqq M_{1}, \\
3 \cdot 2^{n} C_{2} M_{2}^{2} \leqq M_{1}, & 2 M_{2} \leqq M_{1}, \\
\|u\|_{L^{2}} \leqq M_{1}, & \tag{2.16}
\end{array}
$$

where C_{2} is a constant satisfying (1.9).
From (2.16), (2.2) is trivial when $\alpha=0$, so we show (2.2) by induction on $|\alpha|$.
From (2.7), $D_{x}^{a} u=E L D_{x}^{\alpha} u+K D_{x}^{\alpha} u(\alpha \neq 0)$. Then we have

$$
\begin{equation*}
\left\|D_{x}^{\infty} u\right\| \leqq\left\|E L D_{x}^{a} u\right\|+\left\|K D_{x}^{\infty} u\right\| \tag{2.17}
\end{equation*}
$$

Since $\alpha \neq 0$ there exists multi-index α_{2} such that $\left|\alpha_{2}\right|=1, \alpha=\alpha_{1}+\alpha_{2}$. By (2.12), (2.13) and Theorem 1.8 we get

$$
\begin{equation*}
\left\|K D_{x}^{\alpha} u\right\|=\left\|\left(K D_{x}^{\alpha_{2}}\right) D_{x}^{\alpha_{1}} u\right\| \leqq C_{2} C_{1}\left\|D_{x}^{\alpha_{1}} u\right\| \leqq C_{2} C_{1} M_{1}^{1+\left|\alpha_{1}\right|} \alpha_{1}!\leqq M_{1}^{1+|\infty|} \alpha!/ 3 . \tag{2.18}
\end{equation*}
$$

By Leibniz' formula, we have

$$
L D_{x}^{\alpha}=D_{x}^{\alpha} L-\sum_{\alpha_{1}<\alpha} \frac{\alpha!}{\alpha_{1}!\left(\alpha-\alpha_{1}\right)!} L_{\left(\alpha-\alpha_{1}\right)} D_{x}^{\alpha_{1}} .
$$

Then

$$
\begin{equation*}
\left\|E L D_{x}^{\infty} u\right\| \leqq\left\|E D_{x}^{\infty} f\right\|+\sum_{\alpha_{1}<\alpha} \frac{\alpha!}{\alpha_{1}!\left(\alpha-\alpha_{1}!\right)}\left\|E L_{\left(\alpha-\alpha_{1}\right)} D_{x}^{\alpha_{1}} u\right\| \tag{2.19}
\end{equation*}
$$

From (2.1), (2.6) and (2.14) we have

$$
\begin{equation*}
\left\|E D_{x}^{a} f\right\| \leqq C_{2}|E|_{i_{0}, r_{0}}^{(0)}\left\|D_{x}^{a} f\right\| \leqq C_{2}|E|_{i_{0}, l_{0}}^{(0)} M^{1+|\infty|} \alpha!\leqq M_{1}^{1+|a|} \alpha!/ 3 . \tag{2.20}
\end{equation*}
$$

Finally we have from (2.11), (2.15) and the assumption of induction

$$
\begin{align*}
& \sum_{\alpha_{1}<\alpha} \frac{\alpha!}{\alpha_{1}!\left(\alpha-\alpha_{1}\right)!}\left\|E L_{\left(\alpha-\alpha_{1}\right)} D_{x}^{\alpha_{1}} u\right\| \tag{2.21}\\
\leqq & \sum_{\alpha_{1}<\alpha} C_{2} \frac{\alpha!}{\alpha_{1}!\left(\alpha-\alpha_{1}\right)!} M_{2}^{1+\left|\alpha-\alpha_{1}\right|}\left(\alpha-\alpha_{1}\right)!M_{1}^{1+\left|\alpha_{1}\right|} \alpha_{1}! \\
= & M_{1}^{1+|\alpha|} \alpha!\left(C_{2} M_{2}{ }^{2} \mid M_{1}\right) \sum_{\alpha_{1}<\infty}\left(M_{2} \mid M_{1}\right)^{\left|\alpha-\alpha_{1}\right|-1} \leqq M_{1}^{1+|\alpha|} \alpha!/ 3 .
\end{align*}
$$

Therefore from (2.17)-(2.21) we get (2.2).
Corollary 2.6. Let L satisfy the same conditions as Theorem 2.2. If a bounded and continuous function u is a solution of $L u=f$ and $f \in C^{\infty}\left(R^{n}\right)$ satisfies for some M_{3}

$$
\begin{equation*}
\left|D_{x}^{\infty} f\right| \leqq M_{3}^{1+|\infty|} \alpha!, \tag{2.22}
\end{equation*}
$$

then we have for another constant M_{4}

$$
\begin{equation*}
\left|D_{x}^{\infty} u\right| \leqq M_{4}^{1+|\infty|} \alpha!\langle x\rangle^{n_{0}} \quad \text { for an even number } n_{0}>n . \tag{2.23}
\end{equation*}
$$

Proof. We write $L u=f$ in the form

$$
\langle X\rangle^{-n_{0}} L\left(X, D_{x}\right)\left\langle X^{\prime}\right\rangle^{n_{0}} u_{1}=f_{1},
$$

where $u_{1}(x)=\langle x\rangle^{-n_{0}} u(x), f_{1}(x)=\langle x\rangle^{-n_{0}} f(x)$.
We write simplified symbol of $\langle X\rangle^{-n_{0}} L\left(X, D_{x}\right)\left\langle X^{\prime}\right\rangle^{n_{0}}$ by $L_{1}\left(X, D_{x}\right)$. Then the pair $\left(L_{1}, u_{1}, f_{1}\right)$ satisfies the conditions of the theorem and we get $\left\|D_{x}^{\infty} u_{1}\right\| \leqq$ $M_{5}^{1+|\alpha|} \alpha$! for some $M_{5}>0$. Hence from Sobolev's lemma we can get (2.23).

Remark. In Theorem 2.2 we may assume (2.4) only for $|\alpha| \leqq l_{0}$ with l_{0} in Theorem 1.8, and in Corollary 2.6 for $|\alpha| \leqq 2 l_{0}$.

3. Local hypoellipticity

In this section we shall study a differential operator $L\left(x, \tilde{y}, D_{x}, D_{y}\right)$ in $R_{x}^{n} \times R_{y}^{k}$ with polynomial coefficients of the form

$$
\begin{equation*}
L(x, \tilde{y}, \xi, \eta)=\sum_{|\alpha: \mathfrak{m}|+\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right| \leqq 1} a_{a \alpha^{\prime} \gamma \gamma^{\prime}} x^{\gamma} \tilde{y}^{\gamma} \xi^{\alpha} \eta^{\alpha^{\prime}} \tag{3.1}
\end{equation*}
$$

where $y=(\tilde{y}, \tilde{\tilde{y}}), \tilde{y}=\left(y_{1}, \cdots, y_{s}\right), \tilde{\tilde{y}}=\left(y_{s+1}, \cdots, y_{k}\right)$ for $s \leqq k, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \alpha^{\prime}=$ $\left(\alpha_{1}^{\prime}, \cdots, \alpha_{k}^{\prime}\right), \gamma=\left(\gamma_{1}, \cdots, \gamma_{n}\right), \gamma^{\prime}=\left(\gamma_{1}^{\prime}, \cdots, \gamma_{s}^{\prime}, 0, \cdots, 0\right)$ and $|\alpha: m|=\alpha_{1} / m_{1}+\cdots$ $+\alpha_{n} / m_{n},\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right|=\alpha_{1}^{\prime} / m_{1}^{\prime}+\cdots+\alpha_{k}^{\prime} \mid m_{k}^{\prime}$ for multi-indices $\mathfrak{m}=\left(m_{1}, \cdots, m_{n}\right), \mathfrak{m}^{\prime}=$ ($m_{1}^{\prime}, \cdots, m_{k}^{\prime}$) of positive integers m_{j} and m_{l}^{\prime}. We say that L is hypoelliptic if $u \in \mathscr{D}^{\prime}\left(R_{x, v}^{n+k}\right)$ belongs to $C^{\infty}(\Omega)$ when $L u$ belongs to $C^{\infty}(\Omega)$ for any open set Ω of $R_{x, y}^{n+k}$. Now setting $m=\operatorname{Max}\left\{m_{j}, m_{l}^{\prime}\right\}$, we assume that there exist four real vectors $\rho, \rho^{\prime}, \sigma, \sigma^{\prime}$ of the form $\rho=\left(\rho_{1}, \cdots, \rho_{n}\right), \rho^{\prime}=\left(\rho_{1}^{\prime}, \cdots, \rho_{k}^{\prime}\right), \sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right)$, $\sigma^{\prime}=\left(\sigma_{1}^{\prime}, \cdots, \sigma_{s}^{\prime}, 0, \cdots, 0\right)$ such that

$$
\begin{cases}\text { (i) } \rho_{j}=\sigma_{j}=m / m_{j} & \text { for } j=1, \cdots, n \\ \text { (ii) } \rho_{j}^{\prime}>\sigma_{j}^{\prime} \geqq 0, \quad m_{j}^{\prime} \rho_{j}^{\prime} \geqq m & \text { for } j=1, \cdots, k\end{cases}
$$

and

$$
\begin{equation*}
L\left(t^{-\sigma} x, t^{-\sigma^{\prime}} \tilde{y}, t^{\rho} \xi, t^{\rho^{\prime}} \eta\right)=t^{m} L(x, \tilde{y}, \xi, \eta) \quad \text { for } \quad t>0, \tag{3.3}
\end{equation*}
$$

where $t^{-\sigma} x=\left(t^{-\sigma_{1}} x_{1}, \cdots, t^{-\sigma_{n}} x_{n}\right), t^{-\sigma} \tilde{y}=\left(t^{-\sigma_{1}^{\prime}} y_{1}, \cdots, t^{-\sigma s^{\prime}} y_{s}\right)$,

$$
t^{\rho} \xi=\left(t^{\rho} \xi_{1}, \cdots, t^{\rho_{n}} \xi_{n}\right), \quad t^{\rho^{\prime}} \eta=\left(t^{\rho_{1}^{\prime}} \eta_{1}, \cdots, t^{\rho_{k}^{\prime}} \eta_{k}\right) .
$$

Condition 1. If we put

$$
\begin{equation*}
L_{0}(x, \tilde{y}, \xi, \eta)=\sum_{|\alpha: \mathfrak{m}|+\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right|=1} a_{a \omega^{\prime} \prime \gamma^{\prime}} x^{\gamma} \mathfrak{y}^{\gamma^{\prime}} \xi^{\infty} \eta^{\infty}, \tag{3.4}
\end{equation*}
$$

then we have

$$
\begin{equation*}
L_{0}(x, \tilde{y}, \xi, \eta) \neq 0 \quad \text { for } \quad|x|+|\tilde{y}| \neq 0 \text { and }(\xi, \eta) \neq 0 \tag{3.5}
\end{equation*}
$$

which means that $L(x, \tilde{y}, \xi, \eta)$ is semi-elliptic for $|x|+|\mathfrak{y}| \neq 0$.
Condition 2. The equation $L\left(X, \mathfrak{y}, D_{x}, \eta\right) v(x)=0$ in R_{x}^{n} has no non-trivial solution in $\mathcal{S}\left(R_{x}^{n}\right)$ for $|\eta|=1$.

Theorem 3.1. We consider the operator $L\left(x, \mathfrak{y}, D_{x}, D_{y}\right)$ under Condition 1 and the assumption

$$
\operatorname{Max}_{1 \leqq j \leq k}\left\{\sigma_{j}^{\prime}\right\}<\operatorname{Min}_{1 \leqq j, l \leq k}\left\{m_{j}^{\prime} \rho_{j}^{\prime} / m_{l}^{\prime}\right\} .
$$

Then we have
(S) If Condition 2 holds, then $L\left(x, \mathfrak{y}, D_{x}, D_{y}\right)$ is hypoelliptic.
(N) If the coefficients of L are independent of \mathfrak{y}, i.e., $s=0$, then Condition 2 is necessary for the hypoellipticity of the operator L.

Examples 3.2.

i) $L=\left(-\Delta_{x}\right)^{l}+|x|^{2 \nu}\left(-\Delta_{y}\right)^{l^{\prime}} \quad$ in $R_{x}^{n} \times R_{v}^{k} \quad$ (cf. [3], [7], [14]).

We set $\rho_{1}=\cdots=\rho_{n}=\sigma_{1}=\cdots=\sigma_{n}=l_{0} / l, \quad \rho_{1}^{\prime}=\cdots=\rho_{k}^{\prime}=(\nu / l+1) l_{0} / l^{\prime}, \sigma_{1}^{\prime}=\cdots$ $=\sigma_{k}^{\prime}=0$, where $l_{0}=\operatorname{Max}\left(l, l^{\prime}\right)$. Then we can see that L is always hypoelliptic.
ii) $\quad L_{ \pm}\left(x, D_{x}, D_{y}\right)=D_{x} \pm i x^{l} D_{y}^{m} \quad$ in $R_{x}^{1} \times R_{y}^{1} \quad$ (cf. [6], [8], [15]).

We set $\rho_{1}=\sigma_{1}=m, \rho_{1}^{\prime}=l+1, \sigma_{1}^{\prime}=0$. Then we see the following three cases:
a) If l is even, $L_{+}\left(X, D_{x}, \pm 1\right) v=0$ and $L_{-}\left(X, D_{x}, \pm 1\right) v=0$ have no nontrivial solution in \mathcal{S}.
b) If l is odd and m is even, $L_{+}\left(X, D_{x}, \pm 1\right) v=0$ has no non-trivial solution in \mathcal{S} and $L_{-}\left(X, D_{x}, \pm 1\right) v=0$ has non-trivial solution $e^{-x l+1 /(l+1)} \in \mathcal{S}$.
c) If l and m are odd, $L_{+}\left(X, D_{x},-1\right) v=0$ has non-trivial solution $e^{-x^{l+1} /(l+1)}$ $\in \mathcal{S}$ and $L_{-}\left(X, D_{x}, 1\right) v=0$ has non-trivial solution $e^{-x^{l+1} /(l+1)} \in \mathcal{S}$.
Consequently we see from (N) and (S) that L_{+}is hypoelliptic if and only if " l is even", or " l is odd and m is even", and L_{-}is hypoelliptic if and only if " l is even".
iii) $L=D_{x_{1}}^{2}+D_{x_{2}}^{6}+\left(x_{1}{ }^{2}+x_{2}{ }^{6}\right) D_{v}^{6}-15 x_{2}{ }^{4} D_{y}^{5}+45 x_{2}{ }^{2} D_{v}^{4}-16 D_{v}^{3} \quad$ in $\quad R_{x}^{2} \times R_{v}^{1}$.

We set $\rho_{1}=\sigma_{1}=3, \rho_{2}=\sigma_{2}=1, \rho_{1}^{\prime}=2, \sigma_{1}^{\prime}=0$. We can see that L does not satisfy Condition 2. In fact for $\eta=1 L\left(X_{1}, X_{2}, D_{x_{1}}, D_{x_{2}}, 1\right) v\left(x_{1}, x_{2}\right)=0$ is an equation given in Example 2.3 and has non-trivial solution $v=e^{\left.\left(-x_{1}^{2}+x_{2}\right)^{2}\right) / 2}$. Therefore applying (N) we can see that L is not hypoelliptic.

For the proof of the theorem we need several lemmas. We introduce notations: $\quad|x, \tilde{y}|_{\left(\sigma, \sigma^{\prime}\right)}=\sum_{j=1}^{n}\left|x_{j}\right|^{1 / \sigma_{j}}+\sum_{j=1}^{s}\left|y_{j}\right|^{1 / \sigma_{j}^{\prime}}$,

$$
|\eta|_{\rho^{\prime}}=\sum_{j=1}^{k}\left|\eta_{j}\right|^{1 / \rho_{j}^{\prime}}, \quad \mu(x, \tilde{y}, \eta)=\sum_{j=1}^{k}|x, \mathfrak{y}|_{\left(\sigma, \sigma^{\prime}\right)}^{\left(m_{j}^{\prime} \rho_{j}^{\prime}-m\right)}\left|\eta_{j}\right|^{m_{j}^{\prime}} .
$$

First we estimate the monomials of the form $x^{\gamma} \mathcal{y}^{\gamma^{\prime}} \eta^{\alpha^{\prime}}$.
Lemma 3.3. Let $\alpha, \alpha^{\prime}, \gamma$ and γ^{\prime} be multi-indices of dimension n, k, n, k, respectively, such that $|\alpha: \mathfrak{m}|+\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right| \leqq 1$ and $\gamma_{j}^{\prime}=0$ for $j \geqq s+1$. We put

$$
\begin{equation*}
\theta=(\sigma, \gamma)+\left(\sigma^{\prime}, \gamma^{\prime}\right)+m-(\rho, \alpha)-\left(\rho^{\prime}, \alpha^{\prime}\right) \tag{3.6}
\end{equation*}
$$

If we denote $\rho_{0}^{\prime}=\operatorname{Min}_{1 \leq j \leq k}\left(m_{j}^{\prime} \rho_{j}^{\prime} / m\right)$, then we have
(i) If there exists $\theta^{\prime} \geqq 0$ such that $m\left(|\alpha: \mathfrak{m}|+\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right|\right)+\left(\theta+\theta^{\prime}\right) / \rho_{0}^{\prime} \leqq m$, we have

$$
\begin{equation*}
|x, \mathfrak{y}|_{\left(\sigma, \sigma^{\prime}\right)}^{\theta^{\prime}}\left|x^{\gamma} \widetilde{y}^{\gamma^{\prime}} \eta^{\alpha^{\prime}}\right||\eta|_{\rho^{\prime}}^{\theta^{+}+\theta^{\prime}} \leqq C\left(|\eta|_{\rho^{\prime}}^{m}+\mu(x, \tilde{y}, \eta)\right)^{1-|\alpha: \mathfrak{m}|} . \tag{3.7}
\end{equation*}
$$

(ii) If $m\left(|\alpha: \mathfrak{m}|+\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right|\right)+\theta / \rho_{0}^{\prime}>m$, we have

$$
\begin{equation*}
\left|x^{\gamma} \tilde{y}^{\gamma^{\prime}} \eta^{\alpha^{\prime}}\right||\eta|_{\rho^{\prime}}^{\left(1-|\alpha: \mathfrak{m}|-\left|\alpha^{\prime}: \mathfrak{m}^{\prime}\right|\right) m \rho_{0}^{\prime}} \leqq C\left(|\eta|_{\rho^{\prime}}^{m}+\mu(x, \tilde{y}, \eta)\right)^{1-|\alpha: \mathfrak{m}|} \tag{3.8}
\end{equation*}
$$

for $|x| \leqq \delta,|\tilde{y}| \leqq \delta$ and $|\eta| \geqq 1$, where δ is some positive constant.
We can prove this by the same method as Lemma 3.1 and 3.2 in [4].
Lemma 3.4. Under condition 1 we have for a constant $C>0$

$$
\begin{equation*}
C^{-1}\left|L_{0}(x, \tilde{y}, \xi, \eta)\right| \leqq\left\{\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}+\mu(x, \tilde{y}, \eta)\right\} \leqq C\left|L_{0}(x, \tilde{y}, \xi, \eta)\right| \tag{3.9}
\end{equation*}
$$

Proof. In case $|x|+|\mathfrak{y}| \neq 0$, it is sufficient for the sake of semi-homogeneity to prove when $|\boldsymbol{x}|+|\tilde{y}|=1$, and this is true because of Condition 1. In case $|x|+|\tilde{y}|=0,(3.9)$ is clear by letting $|x|+|\tilde{y}| \rightarrow 0$.

Define $\quad \lambda_{h}(x, \xi) \quad$ with parameter $\quad h=(\tilde{y}, \eta)(|\eta|=1)$ by $\lambda_{h}(x, \xi)=$ $\left\{1+|L(x, \tilde{y}, \xi, \eta)|^{2}\right\}^{1 / 2 m}$ and set $p_{h}(x, \xi)=L(x, \mathfrak{y}, \xi, \eta)$. Then we have

Proposition 3.5.

(i) $\lambda_{h}(x, \xi)$ satisfies (1.1)-(1.3).
(ii) $\left\{p_{h}(x, \xi)\right\}$ is bounded in $\left\{S_{\lambda_{h}, 1,0}^{m}\right\}$ in the sense that for any α, β there exists a bounded function $C_{a \beta}(x, \widetilde{y})$ which is independent of $\eta(|\eta|=1)$ and tends to zero as $|x|+|\mathfrak{y}| \rightarrow \infty$ when $\beta \neq 0$, such that

$$
\left|p_{h(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{\alpha \beta}(x, \tilde{y}) \lambda_{h}(x, \xi)^{m-|\alpha|} .
$$

(iii) There exists a constant C independent of h such that

$$
\begin{equation*}
\left|p_{h}(x, \xi)\right| \geqq C \lambda_{h}(x, \xi)^{m} \quad \text { for large } \quad|x|+|\tilde{y}|+|\xi| . \tag{3.10}
\end{equation*}
$$

Proof. Set $\lambda_{n}^{\prime}(x, \xi)=\left\{1+\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}+\mu(x, \tilde{y}, \eta)\right\}^{1 / m}$. Then from Lemma 3.3 (i) and Lemma 3.4 we can prove

$$
\begin{equation*}
|L(x, \mathfrak{y}, \xi, \eta)| \geqq C \lambda_{n}^{\prime}(x, \xi)^{m} \quad \text { for large }|x|+|\tilde{y}|+|\xi|, \tag{3.11}
\end{equation*}
$$

which induces

$$
\begin{equation*}
C^{-1} \lambda_{h}^{\prime}(x, \xi) \leqq \lambda_{h}(x, \xi) \leqq C \lambda_{h}^{\prime}(x, \xi) . \tag{3.12}
\end{equation*}
$$

For each term $a_{a \alpha^{\prime} \gamma \gamma^{\prime}} x^{\gamma} \tilde{y}^{\gamma^{\prime}} \xi^{\infty} \eta^{a^{\prime}}$ in L, we have from Lemma 3.3

$$
\begin{aligned}
&\left|\partial_{x}^{\beta_{1}} \partial_{\xi}^{\alpha_{1}}\left(a_{\alpha \alpha^{\prime} \gamma \gamma^{\prime}} x^{\gamma} \tilde{\mathfrak{y}}^{\gamma} \xi^{\alpha} \eta^{\alpha^{\prime}}\right)\right| \\
& \leqq C \operatorname{Min}\left(1,|x, \mathfrak{y}|_{\left(\sigma, \sigma, \sigma^{\prime}\right)}^{-\left(\sigma, \beta_{1}\right)}\right)(1+\mu(x, \tilde{y}, \eta))^{1-|\alpha: \mathfrak{m}|}\left(1+\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}\right)^{|\alpha: \mathfrak{m}|-\left|\alpha_{1}: \mathfrak{m}\right|} \\
& \leqq C \operatorname{Min}\left(1,|x, \tilde{y}|_{\left(\sigma, \sigma^{\prime} \sigma^{\prime}\right)}^{-\left(\sigma, \beta_{1}\right)}\right) \lambda_{h}^{\prime}(x, \xi)^{m-\left|\alpha_{1}\right|} \\
&\left(\alpha_{1} \leqq \alpha\right) .
\end{aligned}
$$

Here we use the fact that $|\eta|=1$. Therefore we have

$$
\begin{equation*}
\left|p_{h(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C \operatorname{Min}\left(1,|x, \widetilde{y}|_{\left(\sigma, \sigma^{\prime}\right)}^{-(\sigma, \beta)}\right) \lambda_{h}^{\prime}(x, \xi)^{m-|\infty|} . \tag{3.13}
\end{equation*}
$$

First we check (i). From (3.12) λ_{h} satisfies (1.1) for $a=\operatorname{Min}_{1 \leqq j \leqq n}\left\{m_{j} / m\right\}$. By usual
calculus (1.2) follows by (3.13). Since p_{h} is a polynomial in x, we have using Taylor series

$$
\left|p_{h}(x+z, \xi)\right| \leqq \sum_{|\alpha| \leqq N}\left|z^{\infty} p_{h(\alpha)}(x, \xi)\right| / \alpha!\leqq C\langle z\rangle^{m \tau_{1}} \lambda_{h}^{\prime}(x, \xi)^{m} \leqq C\langle z\rangle^{m \tau_{1}} \lambda_{h}(x, \xi)^{m}
$$

for some τ_{1}. So (1.3) holds for λ_{h}. Consequently we get (i). (ii) and (iii) follow at once by (3.11)-(3.13).

Lemma 3.6. Let a basic weight function $\lambda(x, \xi)$ satisfy

$$
\begin{array}{r}
A_{0}^{-1}(1+|x|+|\xi|)^{a^{\prime}} \leqq \lambda(x, \xi) \leqq A_{0}\left(1+|x|^{\tau_{0}}+|\xi|\right) \tag{3.14}\\
\left(a^{\prime}>0, A_{0}>0, \tau_{0}>0\right)
\end{array}
$$

instead of (1.1). Suppose that $p(x, \xi) \in S_{\lambda, 1,0}^{m}(m>0)$ satisfies

$$
|p(x, \xi)| \geqq C \lambda(x, \xi)^{m} \quad \text { for large }|x|+|\xi| .
$$

Then for any $u \in L^{2}\left(R_{x}^{n}\right), P u=p\left(X, D_{x}\right) u(x)=0$ implies $u \in \mathcal{S}\left(R_{x}^{n}\right)$.
Proof. Let $Q \in S_{\lambda, 1,0}^{-m}$ be a parametrix such that $Q P=I-K, K \in S_{\lambda, 1,0}^{-\infty}$ $\left(=\bigcap_{-\infty<m<\infty} S_{\lambda, 1,0}^{m}\right)$. Then we have $u=K u$. For any positive number r and t, $\langle X\rangle^{r}\left\langle D_{x}\right\rangle^{t} K\left(X^{\prime}, D_{x^{\prime}}\right)$ belongs to $S_{\lambda, 1,0}^{-\infty}$ and we get $\langle X\rangle^{r}\left\langle D_{x}\right\rangle^{t} u \in L^{2}$. Therefore we get $u \in \mathcal{S}$.

Proposition 3.7. If Condition 1 and 2 hold, then for any $v \in C_{0}^{\infty}\left(R_{x}^{n}\right)$ we have

$$
\begin{equation*}
\|v\|_{L^{2}}^{2} \leqq C \int\left|p_{h}\left(X, D_{x}\right) v(x)\right|^{2} d x \tag{3.15}
\end{equation*}
$$

where C is independent of v and h with $|\eta|=1$.
Proof. From (3.10) there exists a parametrix $\left\{Q_{h}\right\}$ which is bounded in $\left\{S_{\lambda_{h}, 1,0}^{-m}\right\}$ such that

$$
\begin{equation*}
Q_{h} P_{h}=I-K_{h} \tag{3.16}
\end{equation*}
$$

where $\left\{K_{h}\right\}$ is bounded in $\left\{S_{\lambda_{h}, 1,0}^{-m}\right\}, \lim _{|x|+|\tilde{y}| \rightarrow \infty} \sup _{\xi \in R^{n},|\eta|=1}\left|K_{h}(x, \xi)\right|=0$ and for any multi-index α, β

$$
\begin{equation*}
\sup _{x, \xi}\left|K_{h(\beta)}^{(\alpha)}(x, \xi)-K_{h_{0}(\beta)}^{(\alpha)}(x, \xi)\right| \rightarrow 0 \quad \text { as } \quad h \rightarrow h_{0} \tag{3.17}
\end{equation*}
$$

Therefore we have

$$
\|v\| \leqq\left\|Q_{h} P_{h} v\right\|+\left\|K_{h} v\right\| \leqq C\left\|P_{h} v\right\|+\left\|K_{h} v\right\| .
$$

Since $\left\{K_{h}\right\}$ is bounded in $\left\{S_{\lambda_{h}, 1,0}^{-m}\right\}$ and $\lim _{|\tilde{y}| \rightarrow \infty} \sup _{(x, \xi) \in R^{2 n},|\eta|=1}\left|K_{h}(x, \xi)\right|=0$, we have for a constant l_{0} in Theorem 1.8

$$
\left|K_{h}\right|{\stackrel{(1)}{i_{0}, l_{0}}}_{0} \rightarrow 0 \quad \text { as } \quad|\tilde{y}| \rightarrow \infty
$$

Then for a sufficiently large constant $M>0$

$$
\left\|K_{h} v\right\| \leqq \frac{1}{2}\|v\| \quad \text { for } \quad|\tilde{y}| \geqq M
$$

and we get (3.15) for $|\tilde{y}| \geqq M$.
Now assume that for $|\tilde{y}| \leqq M$ (3.15) does not hold. Then we can choose sequences $\left\{h_{v}\right\},\left\{v_{v}\right\}$ such that

$$
\begin{align*}
& \left\|v_{\nu}\right\|=1 \tag{3.18}\\
& \left\|P_{h_{\nu}} v_{\nu}\right\| \rightarrow 0 \text { as } \nu \rightarrow \infty \tag{3.19}\\
& h_{\nu}=\left(\tilde{y}^{\nu}, \eta^{\nu}\right), \text { where }\left|\tilde{y}^{\nu}\right| \leqq M,\left|\eta^{\nu}\right|=1 \tag{3.20}
\end{align*}
$$

From (3.20) we may assume that

$$
\begin{equation*}
h_{\nu} \rightarrow h_{0} \tag{3.21}
\end{equation*}
$$

for some $h_{0}=\left(\tilde{y}^{0}, \eta^{0}\right)$. Applying v_{ν} to (3.16) we get

$$
\begin{equation*}
Q_{h_{\nu}} P_{h_{\nu}} v_{\nu}=v_{\nu}-K_{h_{\nu}} v_{\nu} \tag{3.22}
\end{equation*}
$$

From (3.19) and (3.21) we have $Q_{h_{\nu}} P_{h_{\nu}} v_{\nu} \rightarrow 0$ in L^{2} as $\nu \rightarrow \infty$, and from the fact that $\left\{K_{h}\right\}$ is bounded in $\left\{S_{\lambda_{h}, 1,0}^{-m}\right\}, \lim _{|x| \rightarrow \infty} \sup _{\xi}\left|K_{h_{0}}(x, \xi)\right|=0$ and (3.17) we get K_{h} is uniformly continuous and $K_{h_{0}}$ is a compact operator in L^{2} (cf. [10], [12]). So writing $K_{h_{\nu}} v_{\nu}=\left(K_{h_{\nu}}-K_{h_{0}}\right) v_{\nu}+K_{h_{0}} v_{\nu}$ we can choose a convergent subsequence $\left\{K_{h_{\nu}}, v_{\nu}\right\}$ in account of (3.18). Therefore from (3.22) we can choose an element $v_{0} \in L^{2}$ such that

$$
\begin{equation*}
v_{v^{\prime}} \rightarrow v_{0} \quad \text { in } \quad L^{2} \tag{3.23}
\end{equation*}
$$

Then from (3.19) and (3.21) $P_{h_{0}} v_{0}=0$. When $\eta_{j}^{0}=0$ for all j such that $m_{j}^{\prime} \rho_{j}^{\prime} \neq m$, we have $v_{0}=0$ since $p_{h_{0}}(x, \xi)=\sum a_{\text {ais }}\left(\eta^{\prime}\left(\eta^{0}\right)^{\alpha} \xi^{a}\right.$. Otherwise (3.12) implies (3.14) and we get $v_{0}=0$ from Lemma 3.6 and Condition 2. This is the contrary to (3.18) and (3.23). Then Proposition 3.7 is proved.

Theorem 3.8. If Condition 1 and 2 hold, we can get the following formulas for $|\mathfrak{y}|<\delta,|\eta| \geqq 1$ and $v \in C_{0}^{\infty}(\{x ;|x|<\delta\})$, where δ is a number which was taken in Lemma 3.3.

$$
\begin{align*}
& \sum_{|\alpha: \mathfrak{m}|} \int 1\left|\left(\mu(x, \tilde{y}, \eta)+|\eta|_{\rho_{\prime}^{\prime}}^{m}\right)^{1-|\alpha: \mathfrak{m}|} D_{x}^{\alpha} v(x)\right|^{2} d x \tag{3.24}\\
& \leqq C \int\left|L\left(X, \tilde{y}, D_{x}, \eta\right) v(x)\right|^{2} d x .
\end{align*}
$$

For any k-dimensional multi-index α_{1}, β_{1} we have

$$
\begin{equation*}
\left\|\partial_{\eta}^{\alpha_{1}} \partial_{y}^{\beta_{1}} L\left(X, \tilde{y}, D_{x}, \eta\right) v\right\|_{L^{2}} \leqq C|\eta|_{\rho^{-\rho_{0}}\left|\alpha_{1}\right|+\sigma_{0}\left|\beta_{1}\right|}\left\|L\left(X, \tilde{y}, D_{x}, \eta\right) v\right\|_{L^{2}} \tag{3.25}
\end{equation*}
$$

where $\rho_{0}=\operatorname{Min}_{1 \leq j, l \leq k}\left(m_{j}^{\prime} \rho_{j}^{\prime} / m_{l}^{\prime}\right), \sigma_{0}=\operatorname{Max}_{1 \leq j \leq k}\left(\sigma_{j}^{\prime}\right)$.
Proof. Let $r(x, \tilde{y})$ be a positive root of the equation

$$
\sum_{j=1}^{n} \frac{x_{j}^{2}}{r^{2 \sigma_{j}}}+\sum_{j=1}^{s} \frac{y_{j}^{2}}{r^{2 \sigma_{j}^{\prime}}}=1
$$

Then $r(x, \mathfrak{y})$ is a C^{∞}-function in $R_{x}^{n} \times R_{\tilde{y}}^{s} \backslash\{0,0\}$ and

$$
\begin{equation*}
r(x, \mathfrak{y}) \sim|x, \tilde{y}|_{\left(\sigma, \sigma^{\prime}\right.} \tag{3.26}
\end{equation*}
$$

Let $\chi(x, \mathfrak{y})$ be a C^{∞}-function such that $\chi=1$ if $|x|+|\tilde{y}| \geqq 1$ and $\chi=0$ if $|x|+|\mathfrak{y}| \leqq(1 / 2)$. For any multi-index $\alpha(|\alpha: \mathfrak{m}| \leqq 1)$ and $h=(\mathfrak{y}, \eta)(|\eta|=1)$ we define $R_{a h}$ by

$$
R_{\alpha h}(x, \xi)=\left(\sum_{j=1}^{k} \chi(x, \tilde{y}) r(x, \tilde{y})^{\left(m_{j}^{\prime} \rho_{j}^{\prime}-m\right)}\left|\eta_{j}\right|^{m_{j}^{\prime}}+1\right)^{1-|\infty: m|} \xi^{\infty}
$$

Then $\left\{R_{a h k}\right\}$ is bounded in $\left\{S_{\lambda_{k}, 1,0}^{m}\right\}$. From (3.16) we can write for any $v \in C_{0}^{\infty}\left(R_{x}^{n}\right)$

$$
R_{\alpha h}\left(X, D_{x}\right) Q_{h}\left(X^{\prime}, D_{x^{\prime}}\right) p_{h}\left(X^{\prime \prime}, D_{x^{\prime \prime}}\right) v=R_{\alpha h}\left(X, D_{x}\right) v-R_{\alpha h}\left(X, D_{x}\right) K_{h}\left(X^{\prime}, D_{x^{\prime}}\right) v
$$

Noting that $\left\{R_{\text {ah }}\left(X, D_{x}\right) Q_{h}\left(X^{\prime}, D_{x^{\prime}}\right)\right\},\left\{R_{\text {ah }}\left(X, D_{x}\right) K_{h}\left(X^{\prime}, D_{x^{\prime}}\right)\right\}$ are bounded in $\left\{S_{\lambda_{k}, 1,0}^{0}\right\}$, we get from Proposition 3.7

$$
\begin{aligned}
& \left\|\left(\sum_{j=1}^{k} \chi(x, \tilde{y}) r(x, \tilde{y})^{m_{j}^{\prime} \rho_{j}^{\prime}-m}\left|\eta_{j}\right|^{m_{j}^{\prime}}+1\right)^{1-|\omega: \mathfrak{m}|} D_{x}^{\alpha} v\right\|=\left\|R_{a h}\left(X, D_{x}\right) v\right\| \\
\leqq & \left\|R_{a h} Q_{h} P_{h} v\right\|+\left\|R_{\alpha h} K_{h} v\right\| \leqq C\left(\left\|P_{h} v\right\|+\|v\|\right) \leqq C\left\|P_{h} v\right\| .
\end{aligned}
$$

Considering (3.26) we have for $|\eta|=1$

$$
\sum_{|\alpha: m| \leq 1} \int\left|\left(\mu(x, \tilde{y}, \eta)+|\eta|_{\rho^{\prime}}^{m}\right)^{1-|\omega: \mathfrak{n}|} D_{x}^{\alpha} v\right|^{2} d x \leqq C \int\left|L\left(X, \tilde{y}, D_{x}, \eta\right) v\right|^{2} d x
$$

From the semi-homogeneity we get (3.24). Using Lemma 3.3 and (3.24) we can get (3.25) by the same method as Lemma 3.6 in [4].

Proof of (S) in Theorem 3.1. By the same method as [4] we can prove (S) by using Theorem 3.8.

Proof of (N) of Theorem 3.1 (cf. [3]). Let there exist non-trivial solution $v(x) \in \mathcal{S}$ of $p_{h}\left(X, D_{x}\right) v(x)=L\left(X, D_{x}, \eta\right) v(x)=0$ for some $h=\eta$ with $|\eta|=1$. From Proposition 3.5 we can apply Theorem 2.2 and we get that $v(x)$ is analytic, and therefore there exists multi-index α_{0} such that

$$
\begin{equation*}
\partial_{x}^{\alpha}{ }_{0} v(0) \neq 0 \tag{3.27}
\end{equation*}
$$

We may assume $\eta_{1} \neq 0$. We set $m_{0}=\operatorname{Max}\left(m,\left|\alpha_{0}\right|\right)$ and take even number l_{1} and
positive number b such that $\left\{\left(\rho, \alpha_{0}\right)-\left(\rho_{1}^{\prime}-1\right)+b\right\} / \rho_{1}^{\prime}$ is an even number (we denote it by l_{2}) and $2 l_{1} \rho_{1}^{\prime} \geqq m_{0} \cdot \operatorname{Max}\left(\rho_{j}, \rho_{j}^{\prime}\right)+2+b$. We define

$$
u(x, y)=\int_{0}^{\infty} e^{i y \cdot t^{\rho^{\prime}} \eta} \frac{v\left(t^{\rho_{1}} x_{1}, \cdots, t^{\rho_{n}} x_{n}\right) t^{b}}{\left(1+t^{\rho_{1}^{\prime}}\right)^{l_{1}}} d t
$$

Then $u \in C^{m_{0}}$ and $L\left(X, D_{x}, D_{y}\right) u=0$. But $u \notin C^{\infty}$. In fact operating $\partial_{x}^{\alpha_{0}}$ and substituting $x=0, y_{2}=\cdots=y_{k}=0$, we get

By changing the variable t by $\theta=t^{\rho_{1}^{\prime}}$, we get

$$
\partial_{x}^{\alpha_{0}} u\left(0, y_{1}, 0, \cdots, 0\right)=\frac{\partial_{x}^{\alpha_{0}} v(0)}{\rho_{1}^{\prime}} \int_{0}^{\infty} e^{i y_{1} \theta n_{1}} \frac{\theta^{l_{2}}}{\left(1+\theta^{2}\right)^{l_{1}}} d \theta .
$$

Noting l_{2} is an even number we can write

$$
R e \int_{0}^{\infty} e^{i y_{1} \theta \eta_{1}} \frac{\theta^{l_{2}}}{\left(1+\theta^{2}\right)^{l_{1}}} d \theta=P\left(\left|y_{1}\right|\right) e^{-\left|y_{1}\right|\left|\eta_{1}\right|}
$$

for some polynomial P of order $l_{1}-1$. Therefore we get from (3.27) $\partial_{x}^{\alpha_{0}} u\left(0, y_{1}, 0, \cdots, 0\right) \notin C^{\infty}$. Consequently (N) holds.

Osaka University

References

[1] R. Beals and C. Fefferman: Spatially inhomogeneous pseudodifferential operators, I, Comm. Pure Appl. Math. 27 (1974), 1-24.
[2] A.P. Calderón and R. Vaillancourt: A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. USA 69 (1972), 1185-1187.
[3] V.V. Grushin: On a class of hypoelliptic operators, Math. USSR Sb. 12 (1970), 458-476.
[4] —: Hypoelliptic differential equations and pseudodifferential operators with operator-valued symbols, Math. USSR Sb. 17 (1972), 497-514.
[5] L. Hörmander: Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138-183.
[6] Y. Kannai: An unsolvable hypoelliptic differentialoperator, Israel J. Math. 9 (1971), 306-315.
[7] Y. Kato: On a class of hypoelliptic differential operators, Proc. Japan Acad. 46 (1970), 33-37.
[8] - : Remarks on hypoellipticity of degenerate parabolic differential operators, Proc. Japan Acad. 47 (1971), 380-384.
[9] H. Kumano-go: Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo 17 (1970), 31-50.
[10] H. Kumano-go: On the index of hypoelliptic pseudo-differential operators on R^{n}, Proc. Japan Acad. 48 (1972), 402-407.
[11] -: Oscillatory integrals of symbols of pseudo-differential operators and the local solvability theorem of Nirenberg and Treves, Katata Symposium on Partial Differential Equation, pp. 166-191 (1972).
[12] H. Kumano-go and C. Tsutsumi: Complex powers of hypoelliptic pseudo-differential operators with applications, Osaka J. Math. 10 (1973), 147-174.
[13] H. Kumano-go and K. Taniguchi: Oscillatory integrals of symbols of pseudodifferential operators on R^{n} and operators of Fredholm type, Proc. Japan Acad. 49 (1973), 397-402.
[14] T. Matsuzawa: Sur les équations $u_{t t}+t^{\alpha} u_{x x}=f(\alpha \geqq 0)$, Nagoya Math. J. 42 (1971), 43-55.
[15] S. Mizohata: Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ. 1 (1962), 271-302.

[^0]: 1) For a basic weight function $\lambda(x, \xi)$ satisfying (1.1)-(1.3) we can always find an equivalent basic weight function $\lambda^{\prime}(x, \xi)$ with $\delta=0$ in (1.2) to $\lambda(x, \xi)$, i.e., $C^{-1} \lambda(x, \xi) \leqq \lambda^{\prime}(x, \xi) \leqq C \lambda(x, \xi)$.
