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Introduction

In the recent paper [13] Kumano-go and Taniguchi have studied by using
oscillatory integrals when pseudo-differential operators in R™ are Fredholm
type and examined whether or not the operators Ly(x, D,, D,)=D +ix*D, in
Mizohata [15] and L.(x, D,, D,)=D,+ixD} in Kannai [6] are hypoelliptic by
a unified method. In the present paper we shall give the detailed description
for results obtained in [13] and study the hypoellipticity for the operator of the
form L= N Ay X3 DED with semi-homogeneity in (x, ¥, D, D,)

la:m|+la :m'|<1 )
by deriving the similar inequality to that of Grushin [4] for the elliptic case.
Then we can treat the semi-elliptic case as well as the elliptic case. We
shall also give a theorem on the global analytic-hypoellipticity of a non-elliptic
operator, and applying it give a necessary and sufficient condition for the operator
L(x, D,, D,) to be hypoelliptic, when the coefficients of L are independent of
(see Theorem 3.1).

In Section 1 we shall describe pseudo-differential operators of class SY, 5
which is defined by using a basic weight function A=»\(x, £) varying in x and &
(cf. [13] and also [1]). In Section 2 we shall study the global analytic-hypoellip-
ticity of a non-elliptic pseudo-differential operator and give an example which
indicates that the condition (2.3) is necessary in general. In Section 3 we shall
consider the local hypoellipticity for the operator L and give some examples.

The author wishes to thank Prof. H. Kumano-go for suggesting this problem
and his helpful advice.

1. Algebras and L*-boundedness

DEerFINITION 1.1. For —co<m< oo, 0=<8<1 and a sequence #; 0=7,<
7,< -+ we define a Fréchet space A3’ by the set of C*-functions p(%, x) in Rf",
for which each semi-norm
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12155 = sup{l PR(E, 2) x>0
is finite, where p{g}=0; D5p, D, ,=—10[0x;, 9y, =0[0k;, j=1, ---, ,

> =VIi+lal, &= VI+[E!
We define the oscillatory integral O,[p] for p(§, x)€ APs by

0.[21 =0, {{ etp(e, w)dna

= tim [{ bz, 0p(e, Wanae,

8->0

where d&=(27)""dE, x-E=xE,+ +x,E, and X(&, x)=X(EE, &x) (0<E])
for a X(&, )€ S (the class of rapidly decreasing functions of Schwartz) in R}",
such that X(0, 0)=1 (cf. ([11], [13]).

ReEMARK. We can easily obtain the following statements (cf. [11]).
1°)  For pe 37 we have

0,081 = ([ emitcar <D (&) <D plE, =)}dr d

by taking integers /, I’ such that —2/(1—8)+m< —n and —2I'-+47,, < —n.
2°)  Let {p.}ocec: be a bounded set in AP~ and converges to a p,(£, x)E Az
as €— 0 uniformly on any compact set of R",. Then we have

lim O,[pc] = O,[pi] -
3°) For pe AP: we have
O.[x’p] = O,[Dgp] and O,[£"p] = O,[Dap] -

DrriniTION 1.2. We say that a C~-function \(x, £) in R} is a basic
weight function when A(x, £) satisfies conditions:

(1.1) ATKE* =N, E)= A1+ x|+ E]) (720, a>0),
(1.2) NG &)1 < Aasn(x, £) 71 (0=8<1),
(1.3) Mxty, E)=ALy0"™Mx, £)  (1:=0)

for positive constants 4,, 4,s, 4,.”

DeriniTioN 1.3, We say that a C”-function p(x, £) in R, belongs to
SPos, —oo<m<oo, 0<8§<p=1, §<1, when for any multi-index «, B

1) For a basic weight function A(x, &) satisfying (1.1)~(1.3) we can always find an equivalent
basic weight function A’(x, £) with 0==0in (1.2) to A(x, &), i.e., C (%, £)=A'(x, £)=CA(x, ).
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(14) | 2E3(x, E)] S Cop My E)™01081
For p(x, £)eS?, s we define pseudo-differential operator P=p(X, D,) with the
symbol o (P)(x, £)=p(x, &) by
(1.5) Pu(x) = S extp(x, E)AE)AE  for uES,
where ﬂ(§)=g e~ #ty(x)dx is the Fourier transform of ue S.
For a p=S?, ;s we define semi-norms | p| {7, 4, L=0, 1, -+ by
|pliT:, = Max {Su§>|;b§§§(x, E)IN(x, g)~mHrIIm0RY

1<ty 1BIST,
Then S7, s makes a Fréchet space.

In what follows we shall only treat the case: §=p=0 or 0=8 <p=1 since
it simplifies the statements below and is sufficient for our aim.

Theorem 1.4. Let P;=p;i( X, D,)=S%,0, j=1,2. Then P=P P, belongs
to Syi.e? and we have for any integer N >0

(1.6) o(P)(x, )  (denoted also by p,o p(x, g))
Lpaw 94N 3 (U072, (o, )i
Iw|<N 1=~ !
where

Dal%, E) = pi®(%, E)prar(%, £) (ESK'.‘;"Z'Z_"'M) ,
ry’o(x’ E) = OS—SS e—.-y.np<17>(x’ E+077)P2(1)(x+y, E)dydn .

The set {ry (%, £)} 015, 15 bounded in Sy% 72",

Proof. By the same method of the Theorem 2.5 and 2.6 in [11] we can
prove the formula (1.6) if we have only to prove {ry,} is a bounded set in
Sxiee? "™, Since 0yDjr, 4 is represented as the linear combination of

(1.7) [§ e n55 7, E-+Ompgataty, Bidyan,
(a =a,to, B= Bx+ﬁz)

we have only to prove that each term of the form (1.7) is estimated by
Cn\(x, E)™tme=Pi¥i=pi®l - Here and in what follows we omit the notation O,-.
We have

|{§ e 157, E+0mpg2 e+, dyan

= |[§ emnydmneD, o np s (e, £ Om)pgRety, My
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= g InlScox<’7>-”o dn s =D, >" {y> <D, s (%, E+0n)
'ngﬂzz)*‘ (x4, E)}dy I
| o 71 [ e A, (D DG, £4-0)

pagin(x+y, E)}dy

=0 {glnlgcox<ﬂ>_”od7) S Yo Han(w, E+On)™—PWI=Pled \(x+y, E)72Plozldy
+ 11 ZCor ] -ﬂzd”S {y>7 (%, E4-On)™= =Pt (x -y, g)mz—mwzldy}
<

C {X(x, E)mﬁmz"?l'&'l—mdls <77>—"°d77 S <y>—211+'r1|m2-p1a2“dy

+ (%, E)m2Plel g || ~2ztmas gy S <y>—211+1‘1|m2—p[¢z[|dy}
712 Cor
< CA(x, E)ymrrma-pivi-plal
where n,=2([n/2]+1), m,,=Max(m,, 0), 1,, I, are integers such that
—2l47,|my—p|at| | <—n, —2L+m  +n+1<Min(0, m,—p|v|—playl),

and C, is a constant such that
(1.8) é—x(x, B=A(x, E+n)§%7\(x, B if |n|SC, £) .

We can prove the following two theorems by the same method.

Theorem 1.5. Let Sy denote a set of double symbols p(g, x', &), which
satisfy

| p&(E, &', E) | S Cawp M/, )1, E)™ 01,

and define operators P=p(D,, X’, D,,) by
I;;(E) = OS_SS e—u/-cg-E/)P(E’ ¥, E’)ﬁ(f’)d’g"dx’ foruc S.

Then P belongs to Sy’ and we can write o(P)(x, ) in the form (1.6) for any
N>0, where

Pal%, ) = P75, %, ) (€8T

oy ) = O,— [ 1037 €+ 00, 5+, dyan .

The set {ryo(%, £)} 0151 i bounded in Syl """,
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Theorem 1.6. For P=p(X, D,)E Sy ,,0, the operator P* defined by
(Pu, v) = (u, P®v)  foru, veS

belongs to S}..,0 and we have for any N>0

o (P®)(x, £) = ‘*’(x, E)+N D S % ryie(x, £)d0 ,

| <N =N

where
PP )= (—)PEEE) (=S
5, ) = 0,— || e (= 1) paty, EFOnyan .

The set {r{¥)(x, E)}1o15: 25 bounded in Sy2%"".
RemARK. The maps
SThoX S;.L:'.O S(pr P2) = P10 P ESTe0”
and
Sxe0Dp = PP EST 0

are continuous.

225

Let g(o) be a C~- and even-function such that g(¢)>0, Sq(a)zdo-_—_l and

suppqC {c=R"; |o| =1}, and set
F(x, &; £) = Mx, £) ' q((E— &)/ M=, £)77) .

Theorem 1.7. For P=p(X, D,)= S\ .., we define the Friedrichs part

PF=PF(DM X,’ Dx’) by

pr(E, ¥, B) = | P, & Op(, HF(, 5 08 .

Then we have
(1) ps(E &', &) belongs to S%°

(ii) The operator Py belongs to S}\,,,o and P—Prc S}, and o(Pg) has the

form

O'(PF)(x’ £)~P(x’ E)+ 2 ‘Ifmﬂ'v(x: E)ng;(x) E)

o+ BTV 22
where '\I’mﬁye Sg!l{’lo—lﬂl-‘wl)/z,
(iii) If p(x, E) is real-valued and non-negative, we have
(p#(Dy, X’y Dyu, ©) = (1, p(Dsy X’y Dp)o)  for u,vEeS,
(PF(DJH X,’ Dx’)u, u)go for usS.
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Proof is carried out by the similar way to that in [9].

Theorem 1.8. We can extend P=p(X, D,)E S, , , to a bounded operator on
L? and we get

(1.9) 1Pull 2= C1p| 32, lluell2

where C and I, are independent of P and u.

Since Sy 5,,C St 0,00 this theorem is a corollary of Calderén-Vaillancourt’s
theorem in [2].

2. Global analytic-hypoellipticity

DEFINITION 2.1. We say that L&SY,  is globally analytic-hypoelliptic if
the following statement holds for L:

If u= L*(R") is a solution of the equation
L(X,Dyu=f  for feC=(R"
and f satisfies for some M >0
(2.1) IDzfll =M ®at,
then u is analytic and we have
(2:2) 1DZull 2= M, o]
for another constant M,>0.

Theorem 2.2. Let LES;, , (m>>0) satisfy the following conditions:

(2.3) |L(x, £)| ZC\(x, E)"  for |EI=R
for some C>0 and R=0, and for any multi-index o there exists M, such that
(2.4) | L&(x, £)| < MYPIBIA(x, E)™191 .

Then the operator L(X, D,) is globally analytic-hypoelliptic.

Exampii 2.3. Let L(x,, &,, D,,, D,,)=D32 + DS, x,*+x,>—15x,'+45x,2—16.
Then we can prove that L satisfies the conditions (2.3) and (2.4) by taking
Moy % £y E2) = (1+ | L(xy, %5, &, E,)|?)Y*2 as a basic weight function. The
equation L(X,, X,, D,,, D,,Ju=0 has a non-trivial solution e~®1***:"/2,

As a generalization of the above example we have
ExampLE 2.4 (cf. [5]). Let L(x, D,)= 3>} a,(x)D; be a hypoelliptic
11 Zm,

differential operator of order m, with analytic coefficients. Suppose that L
satisfies following conditions for constants 7,>0, 0<p=1, C,>0, C,>0, M >0,
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(0) |au(x)|=M™"PBY if |B]=m7, and |a| =m,

(i) Cr<erm<IL(0, &) =Ci|L(x, £)|  for large |&],

(ii)  |L&(x, E)/L(x, E)| =M™ PIBI(|E|+ |x|7)~"*!  for large [&]+|x[™,
(i) L &) SCA+ILO E)) i |8]zmm.

Then we can see that L satisfies the conditions of Theorem 2.2 by taking
Mx, E)=(14 | L(x, E)|?)"/*™ for a large m as a basic weight function.

Proof. From (0) we can choose a positive constant 7’ such that
|L(x, E)| =C(IE|+|x|)™  for [E]+]|x|o=1.

We put m=m'/p and \(x, £)=(14-|L(x, £)|?)"*". Then we have (2.4) from
(0) and (ii). By usual calculus we have (1.2) for =0. From (i) we have (1.1)
for a=pm,[m and (2.3). Finally we can get (1.3) by (i) and (iii).

Examrpre 2.5. Let L(x,, x,, D,,, D,,)=iD, +D32,—2ix,°D,,~+x,—x,°—3x,’.
Then L is a semi-elliptic operator and Lz=0 has a non-analytic solution
u=e" 5D i‘,-f;((;)(;c") x,""(€S) where f(x,)eC7(R") and belongs to the

=0 (2m)!
Gevrey class p(<(3/2)). This fact means the conditions are necessary in general.
In fact let L satisfy (2.3) and (2.4). Then we have the following contrary:

1=10,,L(—1t%0,0,t)| =CN—1%,0,0, 5)"< | L(—%°, 0,0, 2)|=0
for large ¢.

Proof of Theorem 2.2. Define {E;(x, £)} ... for |£| =R inductively by
Eo(x’ E) = L(x) E)_l )
Efs, )= =353 3 LEP@ Blols DE®E (21,

1=0 |YI=j—1!

(2.5)

then we have | E;3) | < CjaeM(x, E)™" 7771 if |E]| =R. Taking @pgr(¥)eC ™ such
that @r=1 if |E|=2R and @r=0 if |£|<R, and an integer N such that
aN =1, we define

N-1

(2.6) E(x, £) = ox(£) 2 Es(%, £)ES5550.
Then we have
(2.7) EL=1-K, K&Sis,0-
In fact by the same method of Theorem 1.4 we have
2.8) o(EL)(x, £)—1
- 1 W

—Pr(E)E; " (%, §)Lep(x, £)—1

=0 N<F-j eyl
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N-1
+ 2

F=0uy + 1< =gy 0 oy ey |

N-1 . 1 (1_0)N—j-1
+ ;=ony1+722=zv-,-(N 7) So ———"‘—‘%! o 7 jyiveel%, E)d0

0 @r(£) Egh)(x, &)Ly, 4vp(%, £)

=IL+1+1,,

where
o, 8) = [[ €700 @u(E-+0E,(w, E-+07) L, o+, E)dyddn .
From (2.5) we have
(2.9) I, = pr(f) —1€8%5,00 -
From the fact that 8} (&) has compact support if ,=0, we get
(2.10) LeSts00-

Next we prove that {7y} g5, is bounded in Siiso0. Since 9D57y,, is a
linear combination of

riw, £) = [[ e mon e+ 0m EGE (w, E40m) LER s, v plty, D)y

such that a,+a,+a,=a, B,+B,=B. Hence we have only to prove for a
constant C

lrg] = C<E.

We take a constant C, such that (1.8) is satisfied and integers Z, 1, /, such that
—2l+mr,<—n, —2L+1<—n, —2I,4+n+1<—m—1/a. Then we have

l75(x, &)
= ‘ S S e""-"'"'<y>‘2’1<Dn>”1 {azlwl ¢R(E+ eﬂ)EjE;f; ‘iz)(x, £+ 0,7)
LGy e v+, E)Ydydn

= Sln ISC CppHadn s [<D,>*2[{y>~*1<{D,>* {6;1“1 Pr(E+07)
CE85 (0, E40n) Ly v (x4, £)}]1dy
[, e 71 7250an (= YLD, 0 (55 (i + 0)
"B 407 L, vp(xty, H}]1dy
=/i+/..

To estimate J, we devide into two cases.
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(i) When a,+7v,=0 we have, noting that |v,|=N—j
JSC | cmidn [ d T £ 00 Mty £y
=M, &) | atadn | Gp-mmdy=ocey.

(ii) When a,+7v,%0 we have, noting that 971" g has compact support

Ji=€ S igea SD T [ <r-ncetomn g+on "M+, B dy
=< [ ammian [ Gymrmay= e

Next for J, we have

J=c| galmmdn [y, e dy

§C7x(x, g)—213+—m+n S <y>”""1+'”1dy§C7n(x, E)-1/a§ C<§>_l .

Inl2CoA

Hence we get [,&€ 52}, and combining (2.8)~(2.10) we get (2.7). From (2.4)
and (2.6) we see also that there exists M, independent of 7 such that

(2.11) |6(ELcy) |2, = M, M oy for [, in Theorem 1.8.
Moreover from (2.7) there exists constant C, such that
(2.12) | K(x, £)E;112.,=C, foranyj=1, .-, n.

Suppose that for uL? Lu=f satisfies (2.1). We have u=FELu- Ku
=Ef+Ku from (2.7) and so it is clear that # is a C”-function. Therefore we
have only to prove that u satisfies (2.2), since (2.2) implies the analyticity of u
by Sobolev’s lemma. Take M, sufficiently large such that

(2.13) 3C,C,<M,,
(2.14) 3C,M|E|® <M,, M<M,,
(2.15) 3.2"C,Mz*<M,, 2M,<M,,
(2.16) llull2< M, ,

where C, is a constant satisfying (1.9).
From (2.16), (2.2) is trivial when a=0, so we show (2.2) by induction on |«]|.
From (2.7), Dju=ELD7u+KD3u (a#0). Then we have

(2.17) IDZul| < ||ELDZul|+||KDZu|| .



230 K. TaNiGUCHI

Since a=0 there exists multi-index a, such that |a,| =1, a=a,+a,. By (2.12),
(2.13) and Theorem 1.8 we get

(2.18) IKDZull = |I(KDz3)D3 ul| < C, C\||Dg u|| < C,C. M, ™ol S M "l 3.

By Leibniz’ formula, we have
] @ ol .
LD2=DL—3 % [, D%
e gl (a—a,)!

Then

!
(2.19) IELD2ul| < ||ED3f||+ 3 —— % — || ELca-up D3ul| .
aie ol (a—aty!)

From (2.1), (2.6) and (2.14) we have
(220)  IEDZfIIS G| E| i IDSfIIS G| E| 00, M "l < M ™ a3 .

to,20
Finally we have from (2.11), (2.15) and the assumption of induction
!
221 — 2 ||EL¢yap D2
( ) mgw CZ1! (C(—Oll)! ” (o—awy) ”

!
= Czw'_&_.__leﬂw_‘“ll(a_al)! Mol g )
ae o l(a—a,)!

= MGl (CMEIM,) 33 (M M) < Mol
@ <a

Therefore from (2.17)—(2.21) we get (2.2).

Corollary 2.6. Let L satisfy the same conditions as Theorem 2.2. If a
bounded and continuous function u is a solution of Lu=f and f € C=(R") satisfies for
some M,

(2.22) |IDZf| =M " al,
then we have for another constant M,
(2.23) | Dyu| S MM allxd™  for an even number ny>n .

Proof. We write Lu=f in the form
<X>_”OL(X’ Dx) <X’>”oul = fl >

where u,(x)=<x>""u(x), fi(x)=<x>""f(x).

We write simplified symbol of {<X> ™ L(X, D,)XX">" by L(X, D,). Then
the pair (L,, u,, f,) satisfies the conditions of the theorem and we get |[Dju,||<
M1 ! for some M;>0. Hence from Sobolev’s lemma we can get (2.23).

ReMARK. In Theorem 2.2 we may assume (2.4) only for |a| <[, with /, in
Theorem 1.8, and in Corollary 2.6 for |a| <2/,
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3. Local hypoellipticity

In this section we shall study a differential operator L(x, ¥, D,, D,) in
R; X R} with polynomial coefficients of the form
(31) L(x; 3, ?:,:, 77) = E aww/w/xyjy’gwnm’ ’

la:m|+|a :m'| <1

where y:(j‘}, 3:’)’ 5’=(J’n '"»J’s), j}:(ysﬂ’ ) yk) for S§k: az(a,, "ty an), a'=
(af, = al)y Y=(Ys "5 Va)s V' =¥ =+, 74 0, -+, 0) and |@: m|=q,/m, -
+a,/m, o2 m'|=ai/mi+---4ai/m; for multi-indices m=(m,, -, m,), m'=
(mi, -+, m}) of positive integers m; and mj. We say that L is hypoelliptic if
us P'(RyY}) belongs to C=(Q) when Lu belongs to C=(Q) for any open set  of
Ryt Now setting m= Max {m;, mi}, we assume that there exist four real
vectors p, p’, o, o’ of the form p=(p,, -, ) P'=(p1, **5 P1), o=(0y, ***s Ta)s
o’'=(a1, +**, 4, 0, -++, 0) such that

(3 2) (l) p,-=0']-=m/m,- for ]=1, e, M

’ (i) p}>a)=0, mipt=m  for j=1,- k
and
(3.3) L%, t™°9, 1°E, t"n) = t"L(x, 3, &, 7)  for t>0,

where t~7x=(t""1%,, -+, £7%,), 1 F=(t"1y,, -, t7'y,),
PPE = (t1E, -y t7E,), tTn=(t""n, -, t'ny) .
Condition 1. If we put
(34) Ly(x, 3, & ) = 2 Baaryy X7 E" "

la:m|+|a’ :m'| =1
then we have

(3.5) Lyx, 3, &, m)#0  for |x|+|¥|=+0and (& 7)=0,
which means that L(x, 3, &, ») is semi-elliptic for |x|-+ | ¥]|=0.

Condition 2. The equation L(X, ¥, D,, 7)v(x)=0 in R} has no non-trivial
solution in S(Rj) for |7|=1.

Theorem 3.1. We consider the operator L(x, 3, D,, D,) under Condition 1
and the assumption

Max {o7} <Min {m}p}/ms} .
1<tk 1<7,I<k

Then we have

(S) If Condition 2 holds, then L(x, 3, D,, D,) is hypoelliptic.

(N) If the coefficients of L are independent of ¥, i.e., s=0, then Condition 2 is
necessary for the hypoellipticity of the operator L.
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ExampLES 3.2.

i) Le(—AJ)+|51™(—A)" in RExRE (cf. [3], [7), [14])
We set py= =p,=0,= =0,=1], p{:---:pi:(y/l—-}—l)lo/l', ol="
=04=0, where /,=Max(/, ). Then we can see that L is always hypoelliptic.
ii) L.(x,D,, D,)=D,4ix'Dy in R;XR; (cf.[6], [8], [15]).
We set p,=0,=m, pi=I+1, c{=0. Then we see the following three cases:
a) If lis even, L (X, D,, +1)v=0 and L_(X, D,, +1)v=0 have no non-
trivial solution in .
b) If /is odd and m is even, L (X, D,, 1)v=0 has no non-trivial solution
in S and L_(X, D,, --1)v=0 has non-trivial solution e~*'""/#+>< S,
¢) If land m are odd, L,(X, D,, —1)v=0 has non-trivial solution e¢=*"""/¢+
€S and L_(X, D,, 1)v=0 has non-trivial solution ¢* "/4+>c S,
Consequently we see from (N) and (S) that L, is hypoelliptic if and only if
“lis even”, or “/is odd and m is even”, and L_ is hypoelliptic if and only if
“lis even”.
i) L= D2+ DS+(x,°+x,")D§—15x,'D;+45x,’D;—16D3 in RZXR,.
We set p,=0,=3, p,=0,=1, pi=2, 0i=0. We can see that L does not
satisfy Condition 2. In fact for =1 L(X,, X,, D,,, D,,, 1)v(x,, x,)=0is an
equation given in Example 2.3 and has non-trivial solution p=e¢*1*+%"/2,
Therefore applying (N) we can see that L is not hypoelliptic.

For the proof of the theorem we need several lemmas. We introduce

n s -,
notations: | X, ¥, en=21%;|Y"i+ 23| y; V7,
j=1 j=1
: e/ 2 (mjpy—m) m ./
|7]|P’:J§lnfl 7y IL(x’ys 7])=§|x:5’l(a,"a:)’ |7]j| i
First we estimate the monomials of the form x* 5”7

Lemma 3.3. Let a, o', v and &’ be multi-indices of dimension n, k, n, k,
respectively, such that |a: m|+ |a’: m'| =1 and vi=0 for j=s+1. We put

(3.6) 0 = (5, N+ (o', ¥')+m—(p, a)—(p's ) .
If we denote p6=1\s/lisn (m)y p/m), then we have

1Sji<k
(1) If there exists 0’ =0 such that m(|a: m|+ |a’: m’|)+(0+46)/ ps=m, we have

(3.7) lx, yig‘;’“')lxy?y’ﬂm’] lﬂlg’+e,§c(|7]|:;':+[lz(x, y, n))l—[a:ml.
(i) If m(lo: m|{+|a': m'|)+-60/p>m, we have

(3.8) | Y37 7 | 'ﬂlg}-—la:ml—la’:mll)mpé < C(|7|2+u(x, 3, 77))l—lozzml
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Jor |x| =3, |¥| =8 and |n| =1, where § is some positive constant.

We can prove this by the same method as Lemma 3.1 and 3.2 in [4].
Lemma 3.4. Under condition 1 we have for a constant C >0

(39  CIL(x 3, & 1) = (&1 +u@ 3, M} CIL(x 3, £ 7).

Proof. In case |x|-|¥]| =0, it is sufficient for the sake of semi-homoge-
neity to prove when |x|-+|¥|=1, and this is true because of Condition 1. In
case |x|+4|¥|=0, (3.9) is clear by letting |x|4 |¥|—0.

Define A,(x, £) with parameter k=(3, n) (|7|=1) by tx(x, &)=
{1+ | L(x, ¥, &, 7)|?}*/*" and set p,(x, E)=L(x, ¥, &, 7). 'Then we have

Proposition 3.5.
(i) nu(x, &) satisfies (1.1)—(1.3).
(ii)  {pa(x, E)} is bounded in {SY. .} in the sense that for any a, B there exists a
bounded function Cg(x, §) which is independent of n (| n| =1) and tends to zero
as |x|+|¥|—oco when B0, such that

| Pai&3(%, E)| < Cap(, F)Ns(x, E)™170.
(iii) There exists a constant C independent of h such that
(3.10) |pa(x, E) ZCNil, §)"  for large  |x|+|F|+|E].
Proof. Set Aj(x §)={1+§}|§,-|mf+,,,(x, 7, 7)}™. Then from Lemma

3.3 (i) and Lemma 3.4 we can prove

(3.11) | L(x, 3, &, n)| ZCni(x, £)"  for large x|+ |F|+ |E],
which induces
(3.12) C (%, E) S Mu(x, E)SCNY (%, E) .

For each term a,umy "3 E*7* in L, we have from Lemma 3.3
105105 @y 7 T E%7%)|
<CMin(l, |x, F1w8)(1+n(x, 3, m)t 71 ™ (1433 g, m)l e m — e
<CMin(l, |, ¥|S55)ni(x, E)™'"! Ec_xlé(x).
Here we use the fact that |n|=1. Therefore we have
(3.13) |2 (x, E)| SC Min(l, |2, Fwo5) M, £)1.

First we check (i). From (3.12) A, satisfies (1.1) for a=Mi§n {m;/m}. By usual
15jSn
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calculus (1.2) follows by (3.13). Since p, is a polynomial in x, we have using
Taylor series

| pa(x+2, E)| = l}‘.éﬂlz”pm)(x, )| [l = C™ N (%, E)" = CLD™ Ma(x, )™

for some 7,. So (1.3) holds for n,. Consequently we get (i). (ii) and (iii)
follow at once by (3.11)—(3.13).

Lemma 3.6. Let a basic weight function \M(x, £) satisfy

(3.14) A, (1 x|+ EDT =M §)= A1+ 2]+ | E])
(@’>0, 4,>0, 7,>0)
instead of (1.1).  Suppose that p(x, €)= Sy, , (m>>0) satisfies
[ p(x, )| =CN\(x, )"  for large | x|+ |E|.
Then for any us L(R}), Pu=p(X, D, )u(x)=0 implies uc S(R3).

Proof. Let Q&S be a parametrix such that QP=I—K, K€ 57,

(= N S%,). Then we have u=Ku. For any positive number r and ¢,
—oom< oo

{X>(D,»*K(X’, D,) belongs to Sy, and we get <X>'(D,>usL?. Therefore
we get u S.

Proposition 3.7. If Condition 1 and 2 hold, then for any ve C5(R;) we have
(3.15) lolf2:= € {1 24X, D.Jo(a) %dx,

where C is independent of v and h with | 7| =1.

Proof. From (3.10) there exists a parametrix {Q,} which is bounded in
{Sx;m o} such that

(3.16) OwP, = I—K,,
where {K,} is bounded in {S§;% .}, lim sup |K,(x, £)|=0 and for any

1%1+| ¥l >0 EERM,|M=1

multi-index «, B
(3.17) sup| K@ &)~ K@ )10 as h— .
Therefore we have
IR 1Qx Puoll+ 1Kol = ClIPyol| 41K, 2] -
Since {K,} is bounded in {S5" } and lim sup | Ky(x, )| =0, we have

1Fl>e0 (2, ISR, IM=1
for a constant /, in Theorem 1.8

Kyl % —>0 as |F|—>oo.

9,2
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Then for a sufficiently large constant M >0

uK,,vugéuvu for |3|=M,

and we get (3.15) for |¥| =M.
Now assume that for |¥| <M (3.15) does not hold. Then we can choose
sequences {4,}, {,} such that

(3.18) llwll =1,
(3.19) [|1Pp,oll =0 as »-—>oo,
(3.20) hy= (3", 7"), where |¥|=M, |7'|=1.

From (3.20) we may assume that

(3.21) hy — h,

for some k,=(3°, 7°). Applying v, to (3.16) we get

(3.22) O Prvy = v,— K, vy .

From (3.19) and (3.21) we have Q, P, v,—0 in L* as v—>oo, and from the fact
that {K,} is bounded in {S,\:’;,o},lxlliig sgp]Kho(x, £)|=0 and (3.17) we get K, is

uniformly continuous and K, is a compact operator in L* (cf. [10], [12]). So
writing K, vy =(K,,—K,)v,+K, v, we can choose a convergent subsequence
{K},vv} in account of (3.18). Therefore from (3.22) we can choose an element
v, L? such that

(3.23) oy —>v, in L2.

Then from (3.19) and (3.21) P, ,v,=0. When 73=0 for all j such that m/p’==m,
we have v,=0 since p, (%, £)=2" duue(7°)*E®. Otherwise (3.12) implies (3.14)
and we get 9,=0 from Lemma 3.6 and Condition 2. This is the contrary to
(3.18) and (3.23). 'Then Proposition 3.7 is proved.

Theorem 3.8. If Condition 1 and 2 hold, we can get the following formulas
for 17|<8, || =1 and v=Cy({x; |x| <8}), where § is a number which was taken
in Lemma 3.3.

(3.24) > (1w 3, )+ 11y 1= Dot 2

la:m| =1

< C[ILX, 3, D., nyo(a) %ds .

For any k-dimensional multi-index o, 3, we have
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(3.25) 85205 L(X, ¥, D,, n)ol| 2= C || 7" 7" || L(X, 3, D,, n)ol|.2
where py= Min (m}p}jmj), o, = Max ().

Proof. Let r(x, ¥) be a positive root of the equation

2 2
X sV Y5
: ’ M
=1 9% 331

Then 7(x, 7) is a C~-function in R X R}\ {0, 0} and
(3'26) r(x» y)~ l X, y I(o‘,cr’) .

Let X(x, ¥) be a C>-function such that X=1 if |x|+4|¥|=1 and X=0 if
|x| 417 =(1/2). For any multi-index a (|a: m|=<1) and h=(3, 1) (I7|=1)
we define R,;, by

Ryu(x, &) = (";: X(x, F)r(x, F) 0™ ;| 1) e mge
Then {R,;} is bounded in {S7, }. From (3.16) we can write for any v& C5(R5)
Ru(X, D)QUX', Do)py( X", D)o = Ran(X, Dyo—Ran(X, D)Ky(X', Dyr)o
Noting that {R,(X, D,)O(X’, D.)}, {Run(X, D,)K,(X’, D,/)} are bounded in
{83, 1.0} » we get from Proposition 3.7
ICE X, ), )75~ s ™+ 1)1 MDZol| = [ RuX, Do)l

= [|Ran Qn Proll+|1Ran Ky ol| < C(I|1 Pyl |+ 10|} = C || Pyl -
Considering (3.26) we have for |7|=1

3 (16t 3, 4 191 py-e mDzo = C (I L(X, 3, Dy myold.

From the semi-homogeneity we get (3.24). Using Lemma 3.3 and (3.24) we
can get (3.25) by the same method as Lemma 3.6 in [4].

Proof of (S) in Theorem 3.1. By the same method as [4] we can prove (S)
by using Theorem 3.8.

Proof of (N) of Theorem 3.1 (cf. [3]). Let there exist non-trivial solution
v(x)eS of py (X, D,)v(x)=L(X, D,, n)v(x)=0 for some h=n with |n|=1.
From Proposition 3.5 we can apply Theorem 2.2 and we get that o(x) is analytic,
and therefore there exists multi-index «, such that
(3.27) 07°9(0)=0.

We may assume 7,40. We set my=Max (m, |a,|) and take even number /, and
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positive number & such that {(p, a,)—(pi—1)+b}/pl is an even number (we
denote it by L) and 2/, pi =m,-Max (p;, pj)+2+b. We define

u(x, y) = Sme‘.y't",ﬂ 'U(tplxlv ) tann)tb

(1 +tzp1’)11
Then v C™ and L(X, D,, D,Ju=0. But u¢&C=. In fact operating 9;° and
substituting x=0, y,—=:--=y,=0, we get
” gizyt1'n, 0% p(0)1 0
0 (14-#2)n
By changing the variable ¢ by =2, we get

a:ou(oy Y 0) ttty O): S

6;‘,‘0u(0, Yo 0, °tty 0) = w Smeiyleﬂliude .
P1 0 (1+65)n

Noting /, is an even number we can write

Re gwei’ﬁ"lL
0 (1+6%%

for some polynomial P of order [ —1. Therefore we get from (3.27)

05°u(0, y,, 0, +--,0)&C=. Consequently (N) holds.

df = P(|y,|)e"1!ml

OsakA UNIVERSITY
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