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Introduction

In the recent paper [13] Kumano-go and Taniguchi have studied by using
oscillatory integrals when pseudo-differential operators in Rn are Fredholm
type and examined whether or not the operators Lk(x, Dx, Dy)=Dx-\-ixkDy in
Mizohata [15] and L+(x, Dx, Dy)=Dx±ixDl in Kannai [6] are hypoelliptic by
a unified method. In the present paper we shall give the detailed description
for results obtained in [13] and study the hypoellipticity for the operator of the
form L= X] a^r^x^J^Ό^Ό'ζ with semi-homogeneity in (x9 y> Dχy Dy)

| | + | ' ' | ^ l
by deriving the similar inequality to that of Grushin [4] for the elliptic case.
Then we can treat the semi-elliptic case as well as the elliptic case. We
shall also give a theorem on the global analytic-hypoellipticity of a non-elliptic
operator, and applying it give a necessary and sufficient condition for the operator
L(x> Dχy Dy) to be hypoelliptic, when the coefficients of L are independent of Ψ*
(see Theorem 3.1).

In Section 1 we shall describe pseudo-differential operators of class 5 ^ p δ

which is defined by using a basic weight function \ = χ ( x , ξ) varying in x and ξ
(cf. [13] and also [1]). In Section 2 we shall study the global analytic-hypoellip-
ticity of a non-elliptic pseudo-differential operator and give an example which
indicates that the condition (2.3) is necessary in general. In Section 3 we shall
consider the local hypoellipticity for the operator L and give some examples.

The author wishes to thank Prof. H. Kumano-go for suggesting this problem
and his helpful advice.

1. Algebras and ZΛboundedness

DEFINITION 1.1. For — oo<m<oo, 0 ^ δ < l and a sequence τ; 0<^τ0^
T ^ ... we define a Frόchet space Jl™~ by the set of C"-functions p(ξ, x) in Rf?x

for which each semi-norm
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I p 125 = sup {I p?β](ξ, x) I <*>-™

is finite, where p<&]=d«D*p, Ώx=-iψxh ^,=9/9?,, j=l> - , π,

We define the oscillatory integral OJ[p] for p(ξ, x)e<J.fc by

= lim ( ( Jίξ, x)p(ξ, x)dxdξ ,

where dξ=(2π)-"dξ, x-ξ=x1ξ1-\ \-xHξH and X2(ξ, x)=X(£ξ, €x)
for a %(f, x) G cS (the class of rapidly decreasing functions of Schwartz) in
such that X(0, 0)=l (cf. ([11], [13]).

REMARK. We can easily obtain the following statements (cf. [11]).
1 °) For p e Jΐζ f we have

Os[p] = 5J e-i*-Kxy2i'<D,y<''{<ξ>-2ί<Dxy
ιp(ξ, x)}dxdξ

by taking integers /, /' such that — 2/(1 — δ)+m<— n and — 2 / ' + τ 2 / < — n.
2°) Let {/>ε}o<ε<i be a bounded set in JH™f and converges to apo(ξ, x)^
as 6->0 uniformly on any compact set of Rψx. Then we have

Let {/>ε}o<ε<i be a bounded set i
>0 uniformly on any compact set

3°) For p <= cJ^ ? we have

and O,[Pi>] = Os[Dζp] .

DEFINITION 1.2. We say that a C°°-function X(x, ξ) in i?^ f is a basic
weight function when \(x, ξ) satisfies conditions:

(1.1) A

(1.2)

(1.3) X(x+y, ξ)^A1<yy-M.x, ξ) (τ^0)

for positive constants ̂ 40, ̂ 4Λβ, ̂ 4i.1:>

DEFINITION 1.3. We say that a C°°-function ρ(x, ξ) in R*^ belongs to
S\,ptz> — 0 0 < w < 0 0 , O ^ δ ^ p ^ l , δ < l , when for any multi-index a, β

1) For a basic weight function λ(x, ξ) satisfying (1.1)—(1.3) we can always find an equivalent
basic weight function λ\x, ξ) with 5-0 in (1.2) to λ(x, ξ), i.e., C"U(«, ξ)^λ'(x, ξ)£Cλ(x, ξ).
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(1.4)

(#, f ) G S " P | 8 we define pseudo-differential operator P=p(X> Dx) with the

symbol σ(P)(*, ξj=p(x, ξ) by

(1.5) A(*) = J e'*'tp(x, ξ)ύ(ξ)dξ for

where ύ(ξ)= I e~ixΉ{x)dx is the Fourier transform of we tS.

For a p^S™pδ we define semi-norms | jp| ^ 2 , /„ 4=0, 1, ••• by

$l(x, ζ)\\(x, g

Then 5Γ,p,δ makes a Frechet space.

In what follows we shall only treat the case: S=p=O or O = δ < p = l since

it simplifies the statements below and is sufficient for our aim.

Theorem 1.4. Let Pj=pj(X, Dx) e S*/Pf0, j= 1, 2. Then P=P1P2 belongs

to S^p,o2 and we have for any integer N>0

(1.6) σ(P)(x, ξ) (denoted also by p1op2(x, ξ))

= Σ —.PJίx,ξ)+NΈ ί1 ( 1~^"Vγ,^, ξ)dθ

j
( rytθ(x, ξ) = O 5 - J J β ^ W , ξ+θv)ρ«t>(x+y, ξ)dydv .

{rytθ(xy ξ)} , θ ,^ ύ bounded in Sϊ£?-μι*.

Proof. By the same method of the Theorem 2.5 and 2.6 in [11] we can

prove the formula (1.6) if we have only to prove {ryθ} is a bounded set in

Sκp,o2~Plyl Since d^Dξryθ is represented as the linear combination of

(1.7)

(α = a,+a2y β = β,+β2)

we have only to prove that each term of the form (1.7) is estimated by

C\(x, fy i+^-pm-Pi i. Here and in what follows we omit the notation O,-.

We have

, ξ)dydη

', ξ)dydv
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+

\v\-

^ C ίλ(x, |)-i+-i-PWI-PI-l f ζyy dv \ <y>-2/i+τ

+ X(X, ξ)m

where wo=2([n/2]+l), m1+=Max(m!, 0), lly l2 are integers such that

-2l1+τ1\m2-p\a2\\<-nί -2k+mι++n+l^Mm(0,tn1--p\<γ\-p\a1\),

and Co is a constant such that

(1.8) i-λ(*, f)^λ(Λ, f + ^ ) ^ A χ ( Λ > g) if h

We can prove the following two theorems by the same method.

Theorem 1.5. Let ££;* denote a set of double symbols p(ξ, x\ f ) , which
satisfy

and define operators P=p(Dχy X', Dx) by

^ = Os- j j e-'^t-t'Wξ, x\ ξ')ύ{ξ')dξ'dx' for u€Ξ S .

Then P belongs to SΓ.ί™ and w e can wr^ σ(P)(x> ζ) in the form (1.6) for any
N>09 where

ί PJίx, ζ) = P%f(ξ, χ,ξ) ( e 5Γ,+

PΓo'-Plαil)

( r,.β(*, £) = O,- j j e-'^Vcϊf (ξ+θv, x+y, ξ)dydV .

The set {ry$β(x, ξ)}]β]£ι is bounded in <Sr",;,I"o'~'>m.
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Theorem 1.6. For P=ρ(X, D Λ ) E S ; , P , 0 , the operator PC^ defined by

(Put v) = (uf P
c*>v) for u,

belongs to SZP,O and we have for any N>0

σ(P™)(x, ξ)=Σl
\*\<*r

where

Σl .P?\x, ξ)+N Σ [Q^ψ^rflix, ξ)dθ,
\*\<*ra\ IYI==^JO γ !

r%i{%i{x, ξ) = O- j j «-""(- l)mp$l(x+y, ξ+θη)dydv

The set {r!$(x, ξ)} |β,S l is bounded in SZΊ.T-

REMARK. The maps

and

are continuous.

Let g'(σ) be a C°°- and even-function such that #(σ)>0, \ q(σ)2dσ=l and

suppgc{σ<Ξi?*; | σ | ^1}, and set

, I; 0 = x(*,

Theorem 1.7. jFor P=p(X, Dx)<= S^lθ9 we define the Fήedrίchs part

X, X\ DX,) by

(ii) Γλέ? operator PF belongs to S£i i 0 iwwi P—PF(=SZΊΪo, and σ(PF) has the
form

σ(PF)(χ, ξ)~p(χ, ξ)+ja+^ψ^(χ, ξ)p%]{χ, ξ)

where

(iii) Ifp(x, ξ) is real-valued and non-negative, we have

(pf(Dx, X', Dx)u, v) = («, pF(Dx, X', Dx,)v) for u,veS,

(ρF(Dx, X', Dx)u, w)^0 for
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Proof is carried out by the similar way to that in [9].

Theorem 1.8. We can extend P=p(X, Dx)^Sl0>0 to a bounded operator on
L2 and we get

(1.9) IIΛ|lL«£C|/>|ίo

β>,l0||«|L.,

where C and l0 are independent of P and u.

Since Sl^^dS^y^>0, this theorem is a corollary of Calderόn-Vaillancourt's
theorem in [2],

2. Global analytic-hypoellipticity

DEFINITION 2.1. We say that L^S™10 is globally analytic-hypoelliptic if
the following statement holds for L:

If u^L2(Rn) is a solution of the equation

L(X,Dx)u=f for

and/satisfies for some M>0

(2.1)

then u is analytic and we have

(2.2)

for another constant λ

Theorem 2.2. Let L€zS™lf0 (m>0) satisfy the following conditions:

(2.3) \L(x,ξ)\^C\(x,ξ)m for \ξ\^R

for some C > 0 and R^O, and for any multi-index a there exists Ma such that

(2.4) |L$(* . ξ) I £M?w/2lM*, £ ) - ' " ' .

Then the operator L(X, Dx) is globally analytic-hypoelliptic.

EXAMPLE2.3. LetL(xx,x2,DxvDx£=Dl1+D% l ί+x1

2+x2*—\5x2

A+4Sx?--\6.

Then we can prove that L satisfies the conditions (2.3) and (2.4) by taking
M#i, *2> ξ» ?2) = (1+ \L(xly x2, ξ19 f2)Γ)1/12 as a basic weight function. The
equation L{X» X29 Dxv DX2)u=0 has a non-trivial solution β"c*i2+V^.

As a generalization of the above example we have

EXAMPLE 2.4 (cf. [5]). Let L(xyDx)= Σ aa(x)D% be a hypoelliptic

differential operator of order nι1 with analytic coefficients. Suppose that L
satisfies following conditions for constants τo^O, 0 < p ^ l , C^O, C 2>0, M > 0 ,
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(0) \dξaa(x)\^M1+Mβ\ if liSl^fi^T, and \a\^m1,

1i) Cτ\ξymi< I HO, ξ) \^CA L(x, ξ) I for large | ξ \,
(ii) \L$](x, ξ)IL(x, ξ)\£M1+Mβl(\ξ\ + \x\*o)->w for large \ξ\ + \x\\

(iii) \Lcβ>(x,ξ)\^Cz(l+\L(O,ξ)\) if \β\^m1τΰ.

Then we can see that L satisfies the conditions of Theorem 2.2 by taking

λ(*> f ) = ( 1 + I -k(x> ?) 12)1/2m for a large masa basic weight function.

Proof. From (0) we can choose a positive constant m! such that

\L(x,ξ)\^C(\ξ\ + \xro)»" f o r \ξ\ + \x\*o^l.

We put m=m'lp and X(Λ?, f ) = ( l + | L ( « , ?)|2)1/2fW. Then we have (2.4) from

(0) and (ii). By usual calculus we have (1.2) for δ=0. From (i) we have (1.1)

for a=pm1/m and (2.3). Finally we can get (1.3) by (i) and (iii).

EXAMPLE 2.5. Let L(xly x2y DXl, DX2)=iDXl+Dl2—2ix2

3DX2+x1—x2

6—3x2\

Then L is a semi-elliptic operator and Lu—0 has a non-analytic solution

u=e-csi2/2+x2/4>ΈJ-—^x2

2m(e^S) where fίxλtΞC%(R1) and belongs to the
*ao (2m)l

Gevrey class p(<(3/2)). This fact means the conditions are necessary in general.

In fact let L satisfy (2.3) and (2.4). Then we have the following contrary:

1 = \dXlL(-t\ 0, 0, t)\^C\(-t\ 0, 0, t)m£ \L(-t\ 0, 0, ί ) | = 0

for large t .

Proof of T h e o r e m 2.2. Define {Ej(x, ξ)}j=0,i... for \ξ\ ^R inductively by

E0(x, ξ) = L(x, I ) " 1 ,

( 2 ' 5 Ej(x, ξ) = - Σ ^ -}Eγ\x, ξ)Lcv(xy ξ)E0(xy ξ) (j^ί),

then we have \Ej%] \ £CJaβ\(x9 f)-—>-ι « if \ξ\^R. Taking φR(ξ)^C°° such

that <pR=l if \ξ\^2R and ^ ^ = 0 if \ξ\<LR, and an integer N such that

l, we define

(2.6) £(*, f) = φ&)ΊlEj(χ, ξ)G5

Then we have

(2.7) EL = I-K, KeS<\>Λo.o.

In fact by the same method of Theorem 1.4 we have

(2.8) σ{EL){x, ξ)-l



228 K. TANIGUCHI

(1 V
jjΓ-i pi /i ff\N-

+ Σ Σ (JV-;) ( 1 V ,
y-oιvι+γ2l=jf-y Jo jjyjl

where

»W*, f) = J j e-^ψψ^+Oriβ^x, ξ+θV)LCyi+y2ix+y, ξ)dydV .

From (2.5) we have

(2.9) Λ = 9>*(f)-leS^> .o.o.

From the fact that 9J1^>i?(?) has compact support if TjφO, we get

(2.10)

Next we prove that {̂ ^YIY2Θ} IΘÎ I
 ί s bounded in 5<ξ>,0,0. Since d*Dξrjyiy2θ is a

linear combination of

rK*, ξ) = \\ e-^dp^φR(ξ+θv)E^y*χx, ξ+θv)Lc«?+yi+y2ix+yy ξ)dydV

such that a1+a2+a3=ay βx+β2=β' Hence we have only to prove for a
constant C

We take a constant Co such that (1.8) is satisfied and integers lu l2, l3 such that
τ^—n, — 2 4 + 1 < — n, — 2 / 3 + w + l ^ -w—1/α. Then we have

\rί(x,ξ)\

y>-X0,>"^9Γ+ γ i9»ii(f+^^VY l )(*,

, ξ)}dydv

\ <y>-2l*dv \ \<Dyy
ι

tfκ&+w(*, ξ+θv)L{tlly1+y2ix+y, ξ)Y]\dy

\V\ -2'°dv \ I (-Δ,)'»[<y>-2 '<ΰ,>2 '. {3^+γ' φR{ξ+θv)
J

& ^ { ? y ξ)U\dy

To estimate Jλ we devide into two cases.
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( i ) When a1-\-y1=0 we have, noting that |γ2\ =N—j

J^ C ( <v>'2i*dv (<y>-2ί^(χ, ξ+θv)-m~NMχ+y, ξ)mdy
J\v\£Coλ J

(ii) When αj-f-γ^O we have, noting that dp+yiφR has compact support

j a C \ <v>-2'*dv \ <yy*'<ξ+θv>~1 x(χ, ξ+θv)-m\(χ+y, ξ)mdy

Next for J2 we have

\η\ ~*hdri \ <yy*Ί\(x+y, ξ)mdy

+m+n [ ζy>-2Ί+mτidy^CX(x, ξ

Hence we get / 3 e 5 < | > 0 > 0 and combining (2.8)-(2.10) we get (2.7). From (2.4)
and (2.6) we see also that there exists M2 independent of <y such that

(2.11) I σ{EUv) I \°o]lo^M2

1+™ γ! for l0 in Theorem 1.8.

Moreover from (2.7) there exists constant Cx such that

(2.12) \K(x, ξ)ξj\l°0\^C1 for any;" = 1, •••, n.

Suppose that for κ ε t ! Lu=f satisfies (2.1). We have u = ELu-\-Ku
=Ef-\-Ku from (2.7) and so it is clear that u is a C°°-function. Therefore we
have only to prove that u satisfies (2.2), since (2.2) implies the analyticity of u
by Sobolev's lemma. Take Mx sufficiently large such that

(2.13) IC^

(2.14) ZC.

(2.15) 3-2"

(2.16) \\U\\L

where C2 is a constant satisfying (1.9).
From (2.16), (2.2) is trivial when a—0, so we show (2.2) by induction on \a\.
From (2.7), D«u=ELD%u+KD%u (αφO). Then we have

(2.17)
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Since αΦ 0 there exists multi-index a2 such that | a21 = 1, a=a1-{-a2. By (2.12),
(2.13) and Theorem 1.8 we get

(2.18) \\KDSu\\ = | | ( ^ 2 » ) Z ) ^ u | | ^ C 2 C J ^

By Leibniz' formula, we have

a !

<*i<« aj. («—α,)!
Then

(2.19)

From (2.1), (2.6) and (2.14) we have

a ]

(2.20) \\ED*f\\^C2\E\\»lo\\D2f\\^C2\E\il

Finally we have from (2.11), (2.15) and the assumption of induction

(2.21) Σ , , a ! ..\\ELCa^DaM\Σ
«ι«*

^ Σ

Therefore from (2.17)-(2.21) we get (2.2).

Corollary 2.6. Lei L satisfy the same conditions as Theorem 2.2. If a
bounded and continuous function u is a solution of Lu=f and f €Ξ C °°(Rn) satisfies for
some M3

(2.22) |D£

then we have for another constant M4

(2.23) ID«xuI ^ M 4

1 + | Λ | a !<»*° /or αw even number no>n.

Proof. We write Lu—f in the form

where Ul{x)=(xyn»u{x\ Ux)=<x>-n<>f(x).
We write simplified symbol of <X>-Λ°L(X, ^ X ^ ' / 0 by L^X, Dx). Then
the pair (Lly uly f) satisfies the conditions of the theorem and we get HDJwJI^
M 5

1 + | Λ | α ! for some M 5 >0. Hence from Sobolev's lemma we can get (2.23).

REMARK. In Theorem 2.2 we may assume (2.4) only for | a | ̂  /0 with /0 in
Theorem 1.8, and in Corollary 2.6 for \a\ ^
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3. Local hypoellipticity

In this section we shall study a differential operator L(xy yy Dχy Dy) in
k

y with polynomial coefficients of the form

(3.1) L(xy yy ξyV) = Σ a^xiytr n",
|α:m| + |α':m'| ̂ 1

where y=(y, y), y=(y» —, Λ ) , y=(ys+1, ~'>yk) f ° r s^kf a=(aly •••, aH), a'=
(aί, — ,αί), 7=(7»—,7«) , 77 = (7ί,—,7ί, 0,—,0) and | α : m| = a1ltn1+ —
-\-aJmny \af: xnf\=a[jm[-{ \-ailmi for multi-indices m—(mly •••,#*„), m 7 ^
(mi, -",m'k) of positive integers nij and m .̂ We say that L is hypoelliptic if
u^S)f(Rχy

k) belongs to C°°(Ω) when Lu belongs to C°°(Ω) for any open set Ω of
R"*yk. Now setting m = Max {mjy m^}, we assume that there exist four real
vectors p, p\ σ, σf of the form p=(p!, —, />„), p/:=(pί, —, pi), σ =(σ 1 , •••, σrt),
σ'^ίσί, —, crί, 0, •-, 0) such that

j (i) P, = σj = φ for y = 1, - , n

I (ϋ) ρ j > σ j ^ θ , tn'jp'j^ni for y = 1, --, Λ

and

(3.3) L(rσχ,rσ'y,t'ξ,t'v) = rL(x,y,ξ,v) for

where rσΛ=(r^Λ4, - , r \ ) , r β y

( y=(r ' i> 1 , - , r ^ > 5 ) ,

Condition 1. If we put

(3.4) LJ*,y,ξ,v)= Σ W^f
lα ml + l α ' i m ' ^ l

then we have

(3.5) Lo(*, 5, f, ^)ΦO for | Λ | + | 5 | φ θ and (£,

which means that L(Λ:, 5, f, η) is semi-elliptic for |x | + | $ \ Φθ.

Condition 2. The equation L(X, 5, Dχy η)v(x)=0 in i?" has no non-trivial
solution in S(Ri) for | v \ = 1 .

Theorem 3.1. PFίe consider the operator L(x, y, Dx, Dy) under Condition 1
αwJ the assumption

Max {σ# <Min

TΛ̂ w we have
(S) 7/" Condition 2 Ao/ώ, ίA«ι L(ΛT, 5, Dχy Dy) is hypoelliptic.
(N) If the coefficients of L are independent ofyy i.e., s=0y then Condition 2 is

necessary for the hypoellipticity of the operator L.
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EXAMPLES 3.2.

i) L=(-Axγ+\xΓ(-Ayy' in Rn

xxRk

y (cf. [3], [7], [14]).
We set A = = PM = <rl=...= <rH=klh pί = - = p ί =
= crί=O, where /0=Max(/, /'). Then we can see that L is always hypoelliptic.

ii) L±(x,Dx,Dy)=Dx±ix>Dΐ in RlxRl (cf. [6], [8], [15]).
We set ρ1=σ1=my p ί = / + l , σί=0. Then we see the following three cases:
a) If / is even, L+(X, Dχy ± 1 ) ^ = 0 and L_(X, Dx, ±ί)v=0 have no non-

trivial solution in <S.
b) If / is odd and m is even, L+(X, Dx, ± 1 ) ^ = 0 has no non-trivial solution

in S and L_(JSΓ, Z),, ± 1 > = 0 has non-trivial solution e~χl+1/a+1^S.
c) If / and in are odd, L+(-Y, Zλ,, — l)ϋ=0 has non-trivial solution e-

χl+1/a+1:>
CΞS and L_(X, Z),, l)ι;=0 has non-trivial solution ^-^+1/C/+1)G<5.

Consequently we see from (N) and (S) that L+ is hypoelliptic if and only if
'7is even", or "/is odd and m is even", and L_ is hypoelliptic if and only if
"/is even".

iii) 1-5^0^(^+^-15^+45^-1655 in RlxR\.
We set p 1=cr 1=3, p2

:=σ*2=l> pί=2, σί=0. We can see that L does not
satisfy Condition 2. In fact for 17=1 L(X19 X2, DXl, DX2, l)v(xu x2)=0 is an
equation given in Example 2.3 and has non-trivial solution v=ec~Xl2+X22:>/2.
Therefore applying (N) we can see that L is not hypoelliptic.

For the proof of the theorem we need several lemmas. We introduce

notations: \x,f\ c < r , . o = Σ I *y 1 1 / σ ' + Σ by I v %

\v\y = ±\vA'»/, μ(χ, y, v) = Σ I * , y\%$~m)Iv,I"/

First we estimate the monomials of the form xΊψ\Λ\

Lemma 3.3. Let α, a\ 7 and γ 7 be multi-indices of dimension n, k, ny k,
respectively, such that \ a: m \ + | a!\ m' \ ̂  1 and y'^Oforj^s+1. We put

(3.6) θ = (σ, γ)+(σ', γ)+m-{p, ά)-(p\ a').

If we denote po=Min (m'jpjlm), then we have

( i ) // there exists θ'^0 such that m(\ a: m \ + \ a': m' \ )+(θ+θ')lp'0^m, we have

(3.7) I X, y I &,„> I X>yr? \\rι\ Θ

P,
+Θ'^ C(\η\ ϊ+μ(χ, Jf, η))1"^'' m |

(ii) Ifm(\a:m\ + \a!\ m71)+θlp'0>my we have

(3.8) l a ' J Γ V Ί l * ! ? - 1 ^
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for I x I 5j δ, I $ I ̂  δ βwtί 1771 ;> 1, sϋλe7 £ δ is some positive constant.

We can prove this by the same method as Lemma 3.1 and 3.2 in [4].

Lemma 3.4. Under condition 1 we have for a constant C > 0

(3.9) c-11 LO(X, y9ς9v)\^φ\ξj 1 m>+μ(χ, y, v)}^c\LO(X, yy ς,v)\.

Proof. In case \x\ + \y\ =f=0, it is sufficient for the sake of semi-homoge-
neity to prove when \x\ + 13H = 1 , and this is true because of Condition 1. In
case I * I + | jf| = 0 , (3.9) is clear by letting | x \ + | y \ -> 0.

Define \h(x, ξ) with parameter h = (y, η) (\η\ = \) by λΛ(#, ξ) =
{1 + I L(x, y, ξ, η) 12} »/*- and set ph(x, ξ)=L(x, y, ξ, v). Then we have

Proposition 3.5.
( i ) Λh(x,ξ) satisfies (1Λ)-(1.3).
(ii) {ph(x> ζ)} is bounded in {S™h Λ >0} in the sense that for any a, β there exists a

bounded function CΛβ(xy y) which is independent of η (| η \ = 1) and tends to zero
as \x\-\- \y\ -^00 when /3φO, suchthat

\ph%](χ, ξ)\^caβ(x, y)\h(x, %r-w .

(iii) ΓA r̂̂  ^ ί ί ί a constant C independent ofh such that

(3.10) \ρh(x,ξ)\>C\h(x,ξ)m for large | * | + |jf| + | £ | .

Proof. Set XUx. ? ) = { l + Σ l f y Γ y + A * ( ^ & ^)}1 / w T h e n f r o m Lemma

3.3 (i) and Lemma 3.4 we can prove

(3.11) \L(x,yyξ,y)\^C\ί(x,ξr for large | * | + |Jf| + | g | ,

which induces

(3.12) C-»λ£(*, ?)^λ*(*, f)^Cλ/(», f ) .

For each term aaa,rι,x
lyl'ξt*-ηa' in L, we have from Lemma 3.3

Here we use the fact that | η \ = 1. Therefore we have

(3.13) \ph%(x, ξ)\ ̂ CMin(l, \x, y\£$?)\ί{x, ξ)m-^ .

First we check (i). From (3.12) λΛ satisfies (1.1) for α=Min{j«/ /7w}. By usual
IS/2
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calculus (1.2) follows by (3.13). Since ph is a polynomial in x> we have using
Taylor series

\C0\<,IΓ

for some τ1# So (1.3) holds for \h. Consequently we get (i). (ii) and (iii)
follow at once by (3.11)-(3.13).

Lemma 3.6. Let a basic weight function X(x, ξ) satisfy

(3.14) Af\l+\x\ + \ξ\)"£\(x,ξ)£AJil+\x\ ro+\ς\)

(α/>0,Λ>0,τ0>0)

instead of(l.l). Suppose thatp(xy f)<Ξ£™1>0 (m>0) satisfies

\Kx,ξ)\^C\(x9ξ)m for large \x\ + \ξ\.

Then for any UΪΞL\R% Pu=p(X, Dx)u(x)=0 implies UEΞS(R%).

Proof. Let g E ^ 0 be a parametrix such that QP=I—K,
Then we have u=Ku. For any positive numbe

\ Dx,) belongs to SϊZ0 and we get <ZX<ΰ,>fMGL2. Therefore

( = Π *Sλ|i,o) Then we have u=Ku. For any positive number r and t,

we get

Proposition 3.7. J/ Condition 1 β/ẑ  2 AoW, then for any v^Co(Rχ) we have

(3.15) | M | 2

L 2 < : C j I ph{X, Dx)v(x) \ 2dx ,

where C is independent of v and h with | η \ = 1.

Proof. From (3.10) there exists a parametrix {£)Λ} which is bounded in
£o} such that

(3.16)

where {K,} is bounded in {5λ~^0}, lim sup \Kh(x, ξ)\=0 and for any
1*1 +1?!->«» M

multi-index α, /3

(3.17) sup\Khrβ](xyξ)~Kho{t](xyξ)\-^0 as A - ho

Therefore we have

Since {Kh} is bounded in {S^i.o} a n d n m S U P \Kh(xy ^ I ^ O , we have

for a constant /0 in Theorem 1.8

|JSΓΛ|«?>,,0-* 0 as I5Ί-OO.
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Then for a sufficiently large constant M> 0

II^H^i-IMI for |5

and we get (3.15) for |jf | ^

Now assume that for |jf | rgM (3.15) does not hold. Then we can choose

sequences {Av}, {̂ v} such that

(3.18) |K! | = 1,

(3.19) l | P f t v ^ l l - 0 as ^ o o ,

(3.20) h = {T,-n"), where \f\^M, \v>\ = 1 .

From (3.20) we may assume that

(3.21) hv -» h0

for some ho=(S>0, η"). Applying v , to (3.16) we get

(3-22) SΛ«\ = »*-**/>*.

From (3.19) and (3.21) we have QhJPhj)^-+Q in U as z -̂̂ oo, and from the fact

that {Kh} is bounded in {5λ"^>0}, lim sup | Kh(x, ξ)\=0 and (3.17) we get Kh is
|*|->oo ξ

uniformly continuous and Kho is a compact operator in L2 (cf. [10], [12]). So

writing Kh^Vy,=(Kh^—Kho)v^-\-KhQvv we can choose a convergent subsequence

{Kh^vv,} in account of (3.18). Therefore from (3.22) we can choose an element

such that

(3.23) ΌV,-+Ό0 in L 2 .

Then from (3.19) and (3.21) PΛo*v=O. When ^ = 0 for all j such that

we have «;0=0 since pho(x, f ) = Σ 'Wooί7?0)"'?*- Otherwise (3.12) implies (3.14)

and we get vo=O from Lemma 3.6 and Condition 2. This is the contrary to

(3.18) and (3.23). Then Proposition 3.7 is proved.

Theorem 3.8. If Condition 1 and 2 hold, we can get the following formulas

for |JH<δ, \v\ ̂ 1 and v^Co({x; \x\<8\), where δ is a number which was taken

in Lemma 3.3.

(3.24) Σ
| α : m | ^ l

For any k-dimensional multi-index α u /?t we have
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(3.25) \\d?d£L(X9 y, Dx) v)v\\L^C\v\/^+σQ]βί] \\L(X, y, Dχy

where p o = Min (tnjPjItn'X σ0 = Maxίσί).

Proof. Let r(x, y) be a positive root of the equation

Then r(*, y) is a C°°-function in i ^ χ # * \ { 0 , 0} and

(3.26) K*>39~l

Let X(x,y) be a C°°-function such that X=l if |A?| + | J M ^ 1 and X=0 if
|Λ?| + | 5 I ^ ( 1 / 2 ) . For any multi-index a (\a: m | ^ l ) and Λ=(j>, 17) ( | ^ | = 1 )

we define RΛh by

ΣΛΛA(^, f) = ( Σ *(*, 5M^ yymw-m> 1 ̂  1 m / + i y - l Λ : mι r .

Then {i?ΛA} is bounded in {5λ^>1>0}. From (3.16) we can write for any υG CZ(R£)

, Dx)Qh{X\ Dx,)ph{X'\ Dx,,)v = Rah{Xy Dx)v-Rah{X, Dx)Kh(X\ Dx)v

Noting that {RΛh{Xy Dx)Qh{X\ Dx,)}, {Rah(X, Dx)Kh(X', Dx,)} are bounded in
{S°h 1 0}, we get from Proposition 3.7

\\(±X(x, JFK*. 5)-/V— 17 yI"/+1)1"'- !«'Z>:©|| = \\RJiX, Dx)v

Considering (3.26) we have for | v\ =1

Σ f I(μ(x, 9, v)+\v\p"?)1-'":mDζvIHx<C \IL(X, y, Dx, v)v\*dx.

From the semi-homogeneity we get (3.24). Using Lemma 3.3 and (3.24) we
can get (3.25) by the same method as Lemma 3.6 in [4].

Proof of (S) in Theorem 3.1. By the same method as [4] we can prove (S)
by using Theorem 3.8.

Proof of (N) of Theorem 3.1 (cf. [3]). Let there exist non-trivial solution
v(x)<=S of ph(X, Dx)v(x) = L(X, Dx, v)v(x) = 0 for some h=η with 1171 = 1 -
From Proposition 3.5 we can apply Theorem 2.2 and we get that v(x) is analytic,
and therefore there exists multi-index a0 such that

(3.27) 9

We may assume ^ΦO. We set τrao=Max (m, | ct01) a n d take even number lx and
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positive number b such that {(p, a0)—(pί— l)+δ}/pί is an even number (we
denote it by l2) and 2/1pί^m0 Max(py, p^)+2+&. We define

Then u<=Cm° and L(X, 2),,, Dy)u=0. But wφC°°. In fact operating 9*° and
substituting #=0, j ; 2 = .=yΛ=O, we get

By changing the variable £ by θ=tPl\ we get

9^(0, ^ 0, -., 0) =
Pi

Noting /2 is an even number we can write

R e

for some polynomial P of order / ^ 1. Therefore we get from (3.27)
0, yly 0, .••, 0)φC°°. Consequently (N) holds.
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