

Title	Complement component C4a binds to oxytocin and modulates plasma oxytocin concentrations and social behavior in male mice
Author(s)	張, 安培
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103152
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

論文内容の要旨

氏名(張安培)	
論文題名	Complement component C4a binds to oxytocin and modulates plasma oxytocin concentrations and social behavior in male mice (補体成分 C4a はオキシトシンに結合し、血漿中のオキシトシン濃度およびマウスの社会的行動を調節する)
論文内容の要旨	
	<p>Oxytocin (OT) is a short half-life hormone released from the posterior pituitary gland into the bloodstream and plays an important role in childbirth, breastfeeding, and social behaviors in humans and animals. However, endogenous OT system, including the pharmacokinetics of plasma OT, is not fully understood. Here, we used a click chemistry probe to discover a novel OT-binding protein in human sera and identified C4a, peptidase-cleaved fragment from complement component 4 (C4). Direct association between OT and C4a was confirmed by plate binding assays. Upon knocking out the sex-limited protein (Slp) gene, which encodes one isotype of two mouse C4 proteins, the free form of plasma OT was at higher levels in Slp knockout (<i>Slp</i>^{-/-}) mice than wild-type (<i>Slp</i>^{+/+}) mice after intraperitoneal OT injection. In addition, open-field tests revealed that the number of social interactions was more frequent in <i>Slp</i>^{-/-} mice than <i>Slp</i>^{+/+} mice. In an <i>in vitro</i> blood-brain barrier model system, C4a neither inhibited nor accelerated the receptor for advanced glycation end-products (RAGE)-dependent brain transport of OT. Our data validate a novel concept that C4a with OT binding capacity can alter the dynamics of free form of OT concentrations in the plasma, which may disturb the availability of OT to the brain, resulting in an interruption of OT-associated social behavior.</p>

論文審査の結果の要旨及び担当者

氏 名 (張 安培)		
	(職)	氏 名
論文審査担当者	主 査 教 授 片山 泰一	
	副 査 教 授 松崎 秀夫	
	副 査 准教授 藤田 慶大	

論文審査の結果の要旨

オキシトシン (OT) は、下垂体後葉から血流中に分泌される半減期の短いホルモンであり、分娩、授乳およびヒトを含む動物の社会性行動調節に重要な役割を果たすことが知られている。しかし、血漿OTの薬物動態を含む内因性OTシステムは十分に解明されていない。本研究では、クリックケミストリープローブ(click chemistry probe)技術を用いてヒト血清中の新規OT結合タンパク質を探査し、補体成分4 (C4) のペプチダーゼ切断断片であるC4aを同定した。また、プレート結合アッセイによってOTとC4aの直接結合も確認された。マウス C4のアイソフォームであるSlp (sex-limited protein) をコードする遺伝子を欠損させたノックアウトマウスを作製したところ、腹腔内OT投与後のSlpノックアウトマウス ($Slp^{-/-}$) の血漿OT遊離型濃度は、野生型マウス ($Slp^{+/+}$) よりも高いことが明らかになった。さらに、オープンフィールド試験により、 $Slp^{-/-}$ マウスは $Slp^{+/+}$ マウスよりも社会的相互作用の回数が有意に高いことが明らかになった。さらに、血液脳関門の *in vitro*モデルを用いた実験では、C4a は終末糖化産物受容体 (RAGE) に依存的な OT 輸送を阻害も促進もしなかった。本データは、OT結合能を持つC4aが血漿中の遊離型OT濃度の動態を変化させ、OTの脳への供給を阻害し、OTに関連する社会性行動を阻害するという新たな概念を裏付けており、ASD患者に対して、OTの点鼻効果の個人差を説明する重要な知見であると考えられ、博士（小児発達学）の学位に値すると判断される。