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Abstract

Robotic grasping has been extensively studied for decades as a fundamental component

of the automation industry. Early robotic grasping systems were designed for specific

objects and predefined tasks in fully known and programmable environments. Such sys-

tems relied on rigid motions that were only suitable for repetitive production scenarios.

With recent advancements in Vision Technology (VT) and Deep Learning (DL), it has

become feasible to develop more dexterous robotic grasping systems capable of handling

previously unseen objects and tasks. However, the wide variety of object types, environ-

mental uncertainty, and the inherent noise in visual sensing pose substantial challenges

to achieving generalized grasping with high accuracy and robustness.

To address these challenges, most prior work has focused on learning-based meth-

ods, aiming to enhance generalizability through optimized neural network architectures

or large-scale training datasets. However, our experiments demonstrate that even state-

of-the-art grasp regression models struggle to maintain high performance when deployed

in unfamiliar scenarios involving novel objects, environments, or detection conditions.

This limitation significantly hinders their practical applicability in real-world settings.

To overcome this bottleneck, we propose an alternative solution that explores knowledge

transfer between similar objects. Specifically, we introduce a novel strategy for gener-

alized object grasping, termed Similarity Matching, which leverages prior knowledge

from known templates to guide the grasping of previously unseen objects.

In contrast to conventional learning-based methods, our approach achieves precise

and reliable grasping for a wide range of unknown objects using only a small existing

dataset, eliminating the need for expensive training or labor-intensive data collection.

Extensive real-world evaluations confirm the effectiveness of our method in diverse sce-

narios, including grasping both isolated and cluttered objects, handling static items on a

fixed surface, and dynamic items on a moving conveyor. Furthermore, we demonstrate

the scalability of our similarity-based strategy to task-oriented grasping, where func-

tional knowledge—such as the affordance of a mug handle—can be transferred across

similar instances to support high-level manipulation tasks.
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Chapter 1

Introduction

1.1 Background and Motivation

In the logistics and retail industry, thousands of objects are handled every day—whether

moving along production lines in warehouses or arranged on shelves for merchandising in

supermarkets. Due to social issues such as population decline, there is a growing demand

for robotic automation in these environments. However, the ability to manipulate the

diverse objects—differing in category, shape, and size—remains a significant challenge.

Traditional robotic systems designed for object manipulation typically require complete

prior knowledge of target objects, such as accurate 3D models representing full geometry,

to ensure reliable operation. In practice, preparing and maintaining precise models for

a constantly updating inventory of objects is both costly and infeasible. This creates an

urgent need for highly dexterous robotic systems capable of handling a broad range of

unknown objects without relying on prior object-specific knowledge.

To address this need, vision-based approaches have been widely explored in robotic

manipulation [1]. Rather than acquiring complete object models, these methods lever-

age visual features captured by RGB-D cameras to plan feasible grasp poses based on

partial observations. In most cases, Deep Learning (DL) techniques are employed [2]

to encode visual inputs into neural networks, which then predict high-confidence grasp
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configurations through a regression process. Advances in network architecture design

[3] and large-scale training data [4] have led to notable success in improving grasp reli-

ability. However, learning-based methods inherently suffer from the black-box nature of

neural models and often struggle to generalize across varying scenarios. This limitation

becomes a key bottleneck in achieving robust, scalable robotic grasping across diverse

objects and tasks.

This dissertation seeks to overcome this bottleneck through a novel strategy that

extends beyond traditional learning-based frameworks, termed Similarity Matching.

Rather than focusing on refining neural networks or optimizing learning policies, we

explore the intrinsic similarities among objects, leveraging prior knowledge of object

templates to guide the manipulation of previously unseen targets. This approach offers

a crucial perspective on using a small amount of data to effectively handle a wide variety

of objects. However, the success of transferring knowledge from known templates to un-

known targets depends on the quality of the matching process, making the development

of an optimal matching framework a central focus of our research.

The work presented in this dissertation traces the evolution of our methodol-

ogy—from score-based to multi-level matching, from multi-view to single-view obser-

vation, and from grasping isolated, static objects to handling cluttered, dynamic ones.

As our method evolves, it demonstrates the capability to tackle increasingly complex

and challenging scenarios. Extensive evaluations have been conducted to validate the su-

perior efficiency, accuracy, and robustness of the proposed approach in grasping diverse,

previously unseen objects under varying conditions.

1.2 Objectives

The general objectives of this dissertation are as follows:

1. Using the proposed similarity matching approach to achieve generalized object

grasping capable of handling a wide variety of unknown objects with high success

rates. In particular, we emphasize the method’s robust performance in real-world
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tasks, where significant uncertainties and variations are present.

2. Extending the similarity matching framework from grasping single, static objects

to handling cluttered, dynamic environments, and further from basic grasping to

task-oriented manipulation. To fully demonstrate the method’s scalability, we

enhance the original framework to ensure its applicability across a wide range of

real-world scenarios.

1.3 Dissertation Outline

This dissertation is organized as follows.

In Chapter 2, we present a comprehensive literature review covering novel object

grasping, dynamic object manipulation, and task-oriented grasping.

In Chapter 3, we introduce our initial similarity matching approach for novel object

pick-and-place tasks. The proposed method employs a similarity evaluation function

that integrates both semantic and geometric features of the observed object to identify a

similar database model with pre-existing grasp knowledge. Based on the matched model,

a knowledge transfer process is then carried out to enable pick-and-place planning for

the novel object. However, this initial approach has several limitations: (1) it requires

multi-view observation to extract sufficient object features; (2) the similarity scoring

function exhibits instability when encountering objects that fall outside the database

knowledge; and (3) it is not capable of handling cluttered object scenes.

In Chapter 4, we propose an improved multi-level framework for high-precision sim-

ilarity matching. This method adopts a three-stage strategy—matching, planning, and

fine-tuning—that enables accurate grasping of diverse, previously unseen objects under

single-view observation. By combining a compensatory multi-level matching stage with

stability-aware grasp fine-tuning, the approach demonstrates strong robustness and gen-

eralization, even for objects entirely novel to the existing knowledge base. Moreover, it

effectively handles cluttered scenes and adapts to unfamiliar environments, consistently
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outperforming existing benchmark methods.

In Chapter 5, we extend the similarity-based grasping approach to more challenging

scenarios involving the grasping of moving objects in dense clutter. To address this, we

introduce a global-to-local detection and static-to-dynamic planning framework. This

framework resolves multiple sources of uncertainty arising from clutter and motion by

enabling knowledge transfer not only between known and unknown objects, but also

across different visual detection states and grasp planning conditions.

In Chapter 6, the similarity-based framework is further extended to task-oriented

grasping, which considers object part affordances beyond basic grasping. We introduce

an object-part-task ontology supported by Large Language Models (LLMs) to translate

human’s task instruction into robot’s grasp selection. Through an optimized matching

process, a small set of model templates with predefined part segmentation and grasp

knowledge can accurately guide task-oriented grasping of previously unseen objects at

functionally relevant regions.

Finally, in Chapter 7, we summarize the key achievements and limitations of the

proposed methods, and discuss open challenges and potential directions for future work.
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Chapter 2

Literature Review

2.1 Novel Object Grasping

Research on robotic grasping has a long and evolving history [5], progressing from

analytical approaches [6, 7] to data-driven techniques [8, 9, 10]. In this literature review,

we focus specifically on recent works addressing the grasping of unknown objects using

vision-based technologies. These approaches can be broadly categorized into three main

types: learning-based methods, analysis-based methods, and the most relevant to our

work—similarity-based methods.

2.1.1 Learning-based methods

In the 2010s, major advances in Convolutional Neural Networks (CNNs) enabled robotic

vision to achieve unprecedented performance in novel object grasping, spawning out-

standing works such as Dex-Net [11], GG-CNN [12], and GPD [13]. They leverage a

large number of depth images or point clouds with labeled grasp poses to train CNN

models capable of predicting high-quality grasp poses for unseen objects. DGGN [14] first

uses RGB-D inputs to train a two-stage network regressing grasps from reconstructed

3D scenes. PointNetGPD [15] enhances the performance of GPD by integrating the

architecture of PointNet [16] into an end-to-end grasp evaluation network. QT-Opt
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[17] represents an attempt at leveraging Reinforcement Learning (RL) for grasp gen-

eralization, achieving high grasp success rates on unseen objects through large-scale

self-supervised training. In the 2020s, a broader range of methods beyond traditional

CNNs has been explored. VGN [18] and GIGA [19] employ Truncated Signed Distance

Field (TSDF) representations to efficiently learn grasp detection in cluttered scenes.

3DSGrasp [20] and SCARP [21] perform shape completion on partial point clouds to en-

hance the performance of single-view grasping. GraspNet [22] and Grasp-Anything [23]

construct large-scale grasp datasets and use them to train high-performance models for

general object grasping. HGGD [24] provides new insights into generating dense grasps

in real-time by utilizing both global and local features of objects in clutter. While these

methods perform well in their specific tasks, they share several common limitations:

1) high training cost; 2) high sensitivity to sensing noise and environmental changes;

and 3) low error traceability due to complex learning architectures. In contrast, our

proposed method is training-free, robust to varying conditions, and fully error-traceable

through a simple framework.

2.1.2 Analysis-based methods

A few recent studies try to generate high-quality grasps directly from object point clouds

by geometric analysis. Adjigble et al. [25] leverage zero-moment shift features [26] to

evaluate the local geometric similarity between object surfaces and gripper surfaces,

enabling the selection of grasp positions with the highest probability of success. Wu et

al. [27] detect hidden superquadrics [28] from partial object point clouds to generate

and filter reliable grasp candidates through a multi-metric evaluation. Wang et al. [29]

propose visible point-cloud to efficiently exclude unsafe grasps and determine the optimal

grasp pose from a partial view. These methods show the possibility of generalized

grasping without model training. However, they require high-precision visual features

to achieve good results, whereas our proposed method remains effective even with sparse

and noisy visual inputs.

CHAPTER 2. LITERATURE REVIEW 6



2.1.3 Similarity-based methods

The Columbia Grasp Database [30] first introduced similarity matching in novel object

grasping. They leverage similar database models with precomputed grasps to achieve

imitative grasping of previously unseen objects. However, their similarity computation

requires prior 3D scanning of the target object, leading to inefficient task completion.

Herzog et al. [31] develop a template-based grasp planning algorithm that generalizes

demonstrated grasps to novel objects with similar local geometry. However, their perfor-

mance depends heavily on the number and type of grasp templates. Two recent studies

[32, 33] utilize ontological classification and scoring functions to identify similar ob-

jects with grasping knowledge for guiding the grasping of novel objects. Although these

methods perform inconsistently due to their reliance on existing knowledge, their ef-

forts highlight that the potential of using similarity matching has been underestimated,

inspiring us to further explore this direction.

2.2 Dynamic Object Manipulation

Dynamic manipulation of moving objects has recently attracted attention in the field

of robotic grasping. GG-CNN [34] is a well-known generative grasping network that

is capable of handling dynamic scenes where object positions are changed after each

grasp attempt. However, they need the objects to remain stationary during the grasp

execution. Marturi et al. [35] achieve adaptive grasping for various types of moving

objects by developing a local planner for object tracking and a global planner for grasp

switching. However, they require prior observation of the target object from multiple

viewpoints to obtain its complete surface geometry. Two recent works [36, 37] use

Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM), respectively,

to predict the future locations of moving objects for precise dynamic grasping. However,

they require the target object to be pre-trained with robust grasps, whereas our method

can handle novel objects without any prior knowledge. In addition, a few studies [38, 39]

incorporate RL algorithms to achieve moving object grasping with a single camera.
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However, their methods have only been evaluated on single objects, not in cluttered

scenes. In contrast, our proposed method is capable of handling moving objects in

dense clutter.

2.3 Task-Oriented Grasping

High-level manipulation tasks require robots not only to grasp objects successfully, but

also to grasp at appropriate positions to ensure both safety and functionality. To this

end, Task-Oriented Grasping (TOG) has been extensively studied, evolving from ana-

lytical approaches [40, 41] to vision-based approaches [42, 43, 44], and more recently to

vision-language-based approaches [45, 46, 47]. Here, we highlight a few recent notable

works. CAGE [48] is a representative affordance-aware grasping system considering both

object and task constraints. GCNGrasp [44] constructs a knowledge graph to train a

Graph Convolutional Network, enabling the generalization of task-oriented grasps from

predefined instances to novel concepts. OS-TOG [49] and Robo-ABC [50] propose

matching frameworks that utilize database objects with labeled affordances to guide the

grasping of novel objects. While conceptually similar to our approach, their methods are

limited to 2D image matching, which restricts their ability to transfer 6-DoF grasping

knowledge. Although all of these approaches effectively achieve generalized TOG, they

do not incorporate language models and are therefore limited to simplistic task labels

such as handover or cut.

To address more complex human instructions, VLMs have increasingly been adopted

for contextual understanding. LERF-TOGO [51] integrates CLIP embeddings [52] with

DINO features [53] to train a multi-scale VLM capable of generating grasps for spe-

cific object parts based on language queries. GraspSplats [54] introduces a Gaussian-

based feature representation for real-time object motion tracking and enables dynamic

language-guided manipulation. FoundationGrasp [55] leverages open-ended knowledge

from foundation models (both LLMs and VLMs) to learn generalizable TOG skills.

While these approaches successfully associate contextual language inputs with spatial

motion outputs, they struggle to achieve high task success rates due to the complexity
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inherent in integrating vision and language within cross-domain learning frameworks.

We cope with this issue by processing visual and verbal inputs separately and connecting

them through a predefined ontology.

In recent years, the emergence of high-performance LLMs such as ChatGPT and

Claude has significantly advanced TOG strategies. For instance, GraspGPT [56] lever-

ages LLMs to generate text descriptions for both objects and tasks, which are then

encoded with object point clouds and grasp poses to select high-quality task-oriented

grasps through a transformer decoder. ATLA [57] utilizes LLMs to generate rich se-

mantic knowledge, accelerating tool learning in diverse manipulation tasks. While these

approaches commonly use LLMs to generate instructive text to enhance the learning

process, we find that directly regressing grasp poses from text embeddings can lead to

unstable performance due to the diversity of LLM descriptions and the uncertainty in

real-world observations. Therefore, we propose a sequential strategy that first queries

the target object parts using the strong interpretability of LLMs, and then focuses on

object geometry for grasp planning. This separation effectively mitigates the complexity

of handling linguistic and visual features simultaneously.
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Chapter 3

Initial Similarity Matching for

Novel Object Pick-and-Place

This thesis chapter originally appeared in the literature as

H. Chen, T. Kiyokawa, W. Wan, and K. Harada, "Category-Association

Based Similarity Matching for Novel Object Pick-and-Place Task," IEEE

Robotics and Automation Letters, vol. 7, no. 2, pp. 2961–2968, 2022.

3.1 Introduction

A complete vision-based robotic manipulation system contains the modules of object

detection, grasp selection and motion planning. Although previous work has studied

extensively on each of the modules [58], the accumulated error occurring in sensing,

planning and controlling processes has made the whole system difficult to achieve high

precision. A few studies have focused on using deep learning to make a highly pre-

cise pick-and-place system come true [59, 60, 17, 61]. However, such of learning-based

methods are inevitably costly and time-consuming for training. They also have a critical

limitation of precision decrease when the conditions of manipulation tasks change, like

using different types of cameras or robots.
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To break through such limitations, we propose a training-free method using simi-

larity matching between a known database and unknown targets. Given a novel object

under uncertainty, we use only one depth sensor equipped on robot hand to obtain its

semantic information and point clouds. Meanwhile, we construct a grasp database which

also includes semantic information and point clouds of a few known models. By devel-

oping a similarity prediction method, we can identify the specific model with the highest

similarity to the novel object from the database. Assumed similar objects share similar

robust graspable points, we can first plan a series of robust grasps on a known model,

and then transfer them to the real-world target object using point cloud registration. In

this way, we can avoid the difficulty of grasp planning in partially-observed situations.

Moreover, by applying point cloud registration with known models, reorientation of ob-

jects in pick-and-place task is easy to realize as we have no need of estimating the initial

posture of the target object at the beginning.

Our work mainly makes three contributions.

Proposal of category-association based similarity prediction combined

with point cloud registration. Recent technologies like YOLOv5 [62] and DeepLabV3+

[63] have enabled us to extract semantic information from a single image, making it easy

to obtain the category name of a novel object with an RGB camera. By introducing a

database consisting of the category information of a few known models, we can evalu-

ate the semantic similarity between the categories of novel objects and known models.

In addition, we incorporate point cloud registration to evaluate their shape similarity.

By combining the two similarity matching results, we can make a reliable prediction of

which known model is most similar to the real-world target object.

Construction of a novel object pick-and-place system based on imitating

grasps. We construct a vision-based robotic manipulation system aimed at novel objects

using the similarity matching results. Each model in the database is preplanned with a

series of robust grasps. We use a robotic gripper that is two-finger parallel type in our

system and thus the grasps are all antipodal. To achieve pick-and-place tasks with the

parallel-jaw gripper, we imitate the preplanned antipodal grasps on known models to
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plan robust grasps on target objects, and incorporate the idea of rotational adjustment

to realize stable placements. Finally we apply the DD-RRT algorithm [64] to plan a

collision-free trajectory for the motions of the robot.

High success rate of novel object pick-and-place based on training-free

methods. Among the previous studies on novel object manipulation, few of them

have achieved a very high success rate even combined with deep reinforcement learning

[17]. But through our method, we have demonstrated by experiments that the idea of

similarity matching can lead to an average success rate over 90% with in-category novel

objects and around 75% with out-of-category novel objects. It has outperformed many

existing learning-based methods, not to say other training-free methods.

3.2 Similarity Prediction

3.2.1 System Overview

The overview of our system is shown in Fig. 3.1. The inputs are one RGB image and

one depth image including the novel object. Meanwhile there is an existing database

consisting of a few known models with the information of categories, point clouds and

preplanned robust grasps. We develop the following method to evaluate the similarity

between the known models and target objects.

With the RGB image, we apply object segmentation and word embedding as the

techniques of category-association matching to get an evaluated score of semantic sim-

ilarity. With the depth image, we use PCL (Point Cloud Library) [65] to extract in-

terested point clouds and then use SAC-IA (Sample Consensus Initial Alignment) [66]

with ICP (Iterative Closest Point) [67] as the approach of point cloud registration to

get another evaluated score of shape similarity. Combining the two scores, we can iden-

tify the specific model with the highest similarity to the target object from the existing

database. With this model, we apply a surface segmentation method [68] to preplan

a series of robust grasps on it. With these grasps, we use the transformation matrix
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Figure 3.1: Overview of the proposed pick-and-place system. The inputs include one
RGB image, one depth image and one existing database. The output is a complete
pick-and-place motion trajectory executable by the robot.

obtained from point cloud registration to transfer them from the model to the target

object, and develop an optimization algorithm to minimize the transfer error. Mean-

while, we develop a method of rotational adjustment to infer the in-hand posture of the

target object and optimize the placement. Finally we apply the DD-RRT algorithm [69]

to plan a collision-free trajectory for the pick-and-place motion. In the case that the

planning fails in solving IK (Inverse Kinematics), the system will automatically select

another grasp from the preplanned grasps and repeat the planning process until success.

3.2.2 Category-Association Matching (CAM)

Every object has a category which it belongs to, like apple belongs to Fruit, cat belongs

to Animal. Category is an index used to classify things with similar features, it can

give us the association of two objects. For instance, when the word bottle is given,

we will easily associate it with a word like water, but will not relate to a word like

book. In this case, we consider the two words bottle and water as high similarity, bottle

and book as low similarity. With this definition, we can give a similarity prediction of

category-association between two objects.

In our method, we first apply an object segmentation technique called Panoptic FPN

(Feature Pyramid Networks) [70] derived from Detectron2 library1 to extract semantic
1https://github.com/facebookresearch/detectron2
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Figure 3.2: Example results of CAM using Panoptic FPN and Word2Vec as the ap-
proaches of image segmentation and word embedding. In two tests, (a) bottle and (b)
book are detected. Scores shown below represent the category-association matching re-
sults between the novel object and the registered models in the database. The word
similarity value is calculated in the embedded space.

information from an RGB image. From the extraction result we can identify the category

of the target object and then match it with the registered categories in the database

using a word embedding technique called Word2Vec [71]. The algorithm of Word2Vec

will output a score between 0 and 1 representing the degree of category-association

between the target object and registered models. As shown in Fig. 3.2, we test two

novel objects to obtain the scores. One is bottle, an in-category object, showing a high

score of 0.59 with category container, low scores with other categories. Another is book,

an out-of-category object, showing low scores with all registered categories.

We can get two conclusions from the test results. First is, if the novel object belongs

to one of the registered categories, we can easily distinguish it from the other categories

by the results of CAM. Second is, if the novel object does not belong to any registered

category, the results of CAM are not remarkable to classify the object and thus we need

another matching method for further similarity evaluation.

3.2.3 Point Cloud Registration (PCR)

It is obvious that CAM can only help us identify the category of the target object, but

is not sufficient to find a precise model with the highest similarity. As objects can be

much different even if they belong to the same category, like bottle has the type of round-

bottom and square-bottom, we still need a method to evaluate the shape similarity. Thus

we incorporate PCR in our method.
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Before implementing PCR, we have to extract the point cloud of the target object

from the complex background. In our case, the target object is in a single state and

placed on a fixed desk. The initial position of camera is unchanged before every motion.

Based on these assumptions, we can simply use the algorithms of plane segmentation

and outlier filter from PCL and set the threshold of coordinates to extract our interested

point cloud. In this way, the point cloud of the target object is easy to obtain.

However, another important problem in processing the point cloud is that we can

only get a partial view of the target object with only one camera. The incomplete point

cloud may lead to unreliability of registration results. To solve this problem, we obtain

two point clouds of the target object from different viewpoints by moving the in-hand

camera. In this process, we only change the position of camera, but do not change its

orientation. As shown in the upper part of Fig. 3.3, when the camera is set with the

same orientation at two positions, wherever the object is, the relative distance of its

position shown in two images is invariant. Based on this theory, we can concatenate the

two point clouds obtained from different positions using a simple translation matrix.

An example of concatenation is shown in the lower part of Fig. 3.3. Obviously the

concatenated point cloud of a bottle is more complete than the single one, thus making

the results of PCR more reliable.

The algorithm of PCR we use is SAC-IA [66] combined with ICP [67]. SAC-IA

acts as the role of coarse registration while ICP acts as the role of fine registration. Like

CAM, PCR also output a score representing the shape similarity. However, the difference

is this score represents the mean of squared distances between two point clouds, which

means good fitness will inversely lead to a low score.

3.2.4 Similarity Quantification

Both CAM and PCR are indispensable in our method of similarity prediction. Only

CAM is not sufficient to find a precise model. Only PCR is not reliable enough due to

the partially-observed situations. With the two scores obtained from the two matchings,
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Figure 3.3: Invariant relative distance between the object’s positions shown in two im-
ages when we make the orientation of the camera unchanged. With a certain translation
matrix, we can easily concatenate two single point clouds to obtain a more complete
point cloud of the target object.

we quantify the similarity with a simple function shown as below:

Q̂(X, Y ) = µc · C(X, Y ) + µp · P (X, Y ), (3.1)

where Q̂(X, Y ) is the evaluated similarity between the novel object X and the known

model Y . C(X, Y ) represents the semantic similarity between X and Y related to the

result of CAM. P (X, Y ) represents the shape similarity between X and Y related to

the result of PCR. µc and µp are constant coefficients that determine the weights of

semantic similarity and shape similarity.

As mentioned in Section 3.2.2, the score of CAM is a value between 0 and 1. If

we directly use it as C(X, Y ), we also have to normalize the score of PCR to a value

between 0 and 1 to be used as P (X, Y ). Through trials we found the scores of PCR are

values within the range of 0.0001 to 0.1. Considering the equal distribution between 0

and 1, we introduce logarithm in the calculation of P (X, Y ). Also considering low score
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Figure 3.4: Identification of the constant coefficients µc and µp. We make use of an out-
of-category object and two registered models with similar shapes but belong to different
categories to calculate their Q̂ values, which are assumed as the same.

represents high similarity, we identify the two parameters with the following equations:

C(X, Y ) = scoreCAM , (3.2)

P (X, Y ) = log0.1− log(scoreP CR)
log0.1− log0.0001 . (3.3)

Another essential problem is the setting of µc and µp. In Section 3.2.2, we have

tested that the out-of-category object book will output similar scores of CAM when

matching with the registered categories in the database, which means book has similar

semantic similarity with all the registered categories. In this case, if we find two models

in different categories but with similar shapes from the database, they are supposed to

have both similar semantic similarity and shape similarity with the object book, thus

the final calculated Q̂(X, Y ) should be almost the same. Based on this theory, we select

the model melon from the category fruit and the model penguin from the category toy

to do similarity matching with the object book, as shown in Fig. 3.4, and identify the

constant coefficients µc and µp with the following equations:

Q̂(melon, book) = Q̂(penguin, book), (3.4)

µc + µp = 1. (3.5)

CHAPTER 3. INITIAL SIMILARITY MATCHING APPROACH 18



The result can be easily obtained as µc=0.52, µp=0.48. Then we can find the most

similar model by ranking all the Q̂(X, Y ):

Y ∗ = argmax(Q̂(X, Y )), (3.6)

where Y ∗ represents the specific model obtaining the highest value of Q̂(X, Y ).

3.3 Pick-And-Place Planning

3.3.1 Grasp Transfer

During the process of PCR, besides the score of similarity we also get a transformation

matrix between the model and the real-world object. With this matrix we can transfer

the preplanned robust grasps on known models to the similar grasps on novel objects.

Thus we first apply an approach of grasp planning based on the superimposed segmen-

tation of object meshes [68] to preplan a series of robust grasps, and then apply the

transformation matrix from PCR to transfer them from registered models to real-world

objects to realize imitation learning of robust grasps.

However, the real condition is that the transferred grasps are subject to error due to

the inaccuracy of PCR. As shown in Fig. 3.5, the incomplete point cloud of the target

object (green) is not perfectly aligned with the point cloud of its similar model (red) in

position and orientation due to the partial observation. Thus the transformation matrix

obtained from PCR is inevitably subject to error. With this imprecise matrix, the

calculated position of the novel object (yellow) deviates from its real position (white).

In this case the transferred grasp has a possibility of failing if the error is large.

To reduce the error, we first obtain point clouds of the target object from several

viewpoints and apply PCR to get a set of transformation matrices. We extract the

rotation and translation information from the matrices and calculate the mean results

of position and orientation of the grasps. Among them we remove results that obviously

deviate from other results (orientation error > 90°) and obtain the final transformation
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Figure 3.5: Preplanned grasps on a known model and error in PCR and grasp transfer.
(Left) A model is preplanned with a series of robust grasps. (Middle) In PCR, the
point cloud of the registered model (red) is not perfectly aligned with the partially-
observed point cloud of the target object (green). (Right) Due to the error of the
transformation matrix, the calculated position of the target object (yellow) deviates
from the real position (white).

matrix T .

To improve the precision further, we develop an algorithm to minimize the error.

With the matrix T , we compare its error to a threshold δ. If the error is small enough,

the algorithm ends, otherwise we move the camera to a new viewpoint to do calculation

again and update the final transformation matrix to be T
′ . Then we check the error of

the new matrix. If the error increases, we discard this result and move the camera to

another new viewpoint. If the error decreases, we compare it to the threshold δ again. If

the error is small enough, the algorithm ends, otherwise we reserve this result and move

the camera to another new viewpoint. We repeat this process until the error becomes

small enough.

In this way, the error of grasp transfer can be controlled well in any case. In our

method, the threshold δ is set to be 0.0001 (same as the lower bound of PCR scores).

3.3.2 Stable Placement

Above we have solved the problem of grasping, but a remaining problem is how to place

the object stably in desired posture. Unlike general methods, we do not need an extra

method to estimate the initial posture of object like [72]. Taking the advantage of a

known database, we can simply set the final posture of the target object according to its
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Figure 3.6: Inference of the in-hand posture. We rotate the in-hand object with a small
angle θ in two inverse directions by the grasp center. When the original posture is
upright (a), the distance between the lowest point of the object and the contact surface
does not differ much before and after rotations. When the original posture is right-
leaning (b) or left-leaning (c), the distance will differ much in one of the rotations.

similar model. However, due to the inevitable error in grasp transfer, the final placement

has the risk of being unstable as the in-hand posture of the target object may not be so

good as in ideal condition.

Considering an in-hand model for analysis of stable placements shown in Fig. 3.6,

we assume an object to be tall and thin, which is not easy to be placed stably when

tilted. To find a stable posture, we rotate the object with a small angle θ in two inverse

directions by the grasp center. The rotational plane is selected to be parallel with the

two-finger gripper because the object’s posture is mostly undetermined in this 2D plane.

As seen from the figure, when the object is in an upright posture, the lowest point of

the object after rotation in two directions almost share the same distance to the contact

surface. But when the object is in a right-leaning or left-leaning posture, the distance

becomes much different in one of the rotational directions.

The difference in distance become the key of inferring the in-hand posture of the

target object. To measure the distance, we move the object right down to contact the

surface in different rotations and obtain the timing of collision by a force sensor. If the

time cost before collision is close in different rotations, the in-hand object is supposed

to be in an upright posture. If the time cost is much larger in one of the rotations,

the in-hand object is supposed to be right-leaning or left-leaning. After knowing the

actual in-hand posture, we adjust the object with a small rotation to be placed in a

more stable posture. It should be noted that our method of stable placement is based
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on the following assumptions:

1) The in-hand posture of object does not deviate much from the upright posture;

2) The object hardly slips in horizontal direction when collided with contact surface;

3) The object has a tall and thin shape similar to the object assumed in Fig. 3.6.

In our case, the grasp transfer is controlled to an acceptable error so the first

assumption is satisfied. The second assumption depends much on the rotation angle

we set. The third assumption seems to be a limitation to our method but actually not

a matter when extended to other shapes of objects. The case we consider is a kind

of object most likely to be unstable when not in an upright posture. Other kinds of

objects with shorter and fatter shape are likely to keep stable in placement even if they

are right-leaning or left-leaning.

3.3.3 Motion Planning

After identifying the initial grasp and the final placement, we finally generate a collision-

free trajectory of pick-and-place motion using the DD-RRT algorithm [69]. However,

due to the uncertainty in the posture of preplanned grasps, the motion planning has

a possibility of failing in solving IK (i.e. the calculated position and orientation is

unreachable by the robot). In this case, we iterate the algorithm with another grasp

until the planning succeeds. The framework of our algorithm is shown in Algorithm 1.

To ensure a feasible path can be output, sufficient preplanned robust grasps are required

for each model.

3.4 Experiments

To verify our method, we perform real-world experiments of robotic pick-and-place with

12 novel objects, as shown in Fig. 3.7. Among them some are not included in the reg-

istered categories (e.g. toothbrush), considered as out-of-category novel objects. Others
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Algorithm 1: Pick-and-Place Motion Planning
Input: A set of preplanned grasps on the known model, G
Transformation matrix obtained from PCR, T
Final posture of the novel object, pf

Output: Pick-and-place motion trajectory, M
1 Initial posture of the novel object pi is known by T
2 for each grasp g ∈ G do

3 M ← DDRRT {g, pi, pf}
4 if M is None then

5 continue

6 else

7 break

8 return M

Figure 3.7: A dozen of novel objects used for validation experiments. For each object
we find an evaluated most similar model from the database and imitate its preplanned
robust grasps to achieve pick-and-place tasks.

like apple included in the category fruit are considered as in-category novel objects.

3.4.1 Experimental Setup

The configuration of our experiment is one Realsense D435 depth camera, one single-

armed UR3e robot, and one Robotiq 2F-85 gripper. The novel object is posed in

arbitrary position and orientation on a fixed desk.

Meanwhile, we construct a database composed of 100 models in five different cat-

egories: container, fruit, snack, toy, tool. The registered information includes the cate-
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Figure 3.8: Example results of similarity prediction based on CAM and PCR. The red
block represents the results of semantic identification by Panoptic FPN. The green block
shows the most similar models found with the highest Q values.

gories, point clouds and preplanned antipodal grasps of the models.

3.4.2 Similarity Prediction

We use the depth camera to obtain RGB and depth images including the novel object.

With RGB images, we apply image segmentation to extract the category information of

novel objects. An example is shown in the red block of Fig. 3.8. The in-category object

bottle and the out-of-category object toothbrush are both correctly identified. With the

category names obtained, we input them into CAM to obtain the score of semantic

similarity between the novel objects and known models in the database. With depth

images, we extract the point clouds of novel objects from the complex background by

PCL and input them into PCR to obtain the score of shape similarity. Combining the

two scores, we calculate the Q value by Equation (3.1) for each matching and find the

most similar model with the highest Q value. As shown in the green block of Fig. 3.8, a

bottle model and a screwdriver model are found with the highest similarity to the object

bottle and toothbrush respectively.

In our experiments, the in-category objects all succeed in finding a similar model

both in semantic level and geometric level from the database. The out-of-category

objects behave differently in similarity prediction. Although Fig. 3.8 shows a positive

result of similarity prediction with the out-of-category object toothbrush, it is not always

the case. Due to the limitation of image segmentation methods and partially-observed
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Table 3.1: Experimental results of in-category object pick-and-place.

Identification result Bottle Bottle Cup Bowl Apple Banana Teddy bear Sports ball

Total experiments 21 23 20 19 23 20 22 22

Successful times 19 20 18 18 19 20 22 18

Success rate (%) 90.5 87.0 90.0 94.7 82.6 100 100 81.8

situations, the results of CAM and PCR are not always reliable. For instance, the out-

of-category object black box used in our experiment is wrongly identified as cell phone,

which is not the truth. And the final matching result comes to be a candy model in the

category snack, which is non-similar (a negative result of similarity prediction). We also

experiment on such of cases to see to which extent the success rate will differ.

3.4.3 Novel Object Pick-and-Place

With the reference models identified by similarity prediction, we preplan over 100 robust

grasps on each of them and transfer these grasps from the models to real-world objects

with the transformation matrix obtained from PCR. We incorporate the DD-RRT algo-

rithm to plan an IK-solvable collision-free trajectory to reorient the target object on the

basis of the transferred grasps, and adjust small rotations to achieve stable placements.

For each object, we experiment about 20 times of pick-and-place motion with ar-

bitrary initial position and orientation. Our goal is to successfully grasp the target and

place it at a specified position stably (no movement occurs after placement). The final

posture is determined to be the same as the posture of the reference model. Either the

failure of grasping or placing will be counted as failure cases. Fig. 3.9 shows two suc-

cessful cases of pick-and-place with the in-category object bottle and the out-of-category

object toothbrush. From the total experimental results, the in-category objects show a

high average success rate of 90.6%, while the out-of-category objects also perform not

badly with an average success rate of 75.9%.

Some interesting facts are found from the experimental results. The two bottles

(one plastic bottle and one glass bottle) both show a high success rate of manipulation

CHAPTER 3. INITIAL SIMILARITY MATCHING APPROACH 25



Table 3.2: Experimental results of out-of-category object pick-and-place.

Identification result Toothbrush Spoon Flashlight Cell phone

Total experiments 21 19 23 20

Successful times 14 18 19 12

Success rate (%) 66.7 94.7 82.6 60

Figure 3.9: Realization of pick-and-place motions based on the results of similarity pre-
diction. The grasp postures of the bottle (left) and the toothbrush (right) are generated
from the preplanned grasps on the bottle model and the screwdriver model in Fig. 3.8.

in our experiment. Transparent objects are difficult to recognize in depth sensors, thus

are difficult to plan robust grasps based on their point clouds. But through our method

incorporating semantic identification, they can find similar models in the category bottle

to imitate their robust grasps, thus performing much better than traditional methods.

The apple and the sports ball both show a relatively low success rate among in-category

objects. This is due to their round shapes. Although we have minimized the error in

grasp transfer, it is inevitable that the contact points on the real-world objects are not

completely consistent with the contact points on the reference models. In this case,

slipping is more likely to occur when grasping objects with round shapes.

Moreover, we find the out-of-category objects differ much in success rate of ma-

nipulation. The spoon achieves the highest success rate due to its similarity matching

result to be a spanner, which shares similar contact points. The flashlight takes the

second place for the same reason. However, the other two objects, toothbrush and black

box perform much worse. The shape of the toothbrush determines it to be difficult to

place stably in a standing posture. Although it can be grasped successfully in most
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cases, it still fail many times when executing the placement. The black box is wrongly

identified as a cell phone and its similarity matching result is a candy, which is actually

non-similar. An interesting phenomenon is even if in this case, the success rate does not

become very low. The reason can be analyzed as follows:

When the identified category name does not belong to any registered category in the

database, the scores of CAM are often very low. In this case, the final matching result

strongly depends on the scores of PCR. As the score of PCR represents the mean of

squared distances between two point clouds, a model of smaller size is likely to get lower

score (which will lead to larger Q value, referred to Equation (3.2)) when matched with a

partially-observed novel object. Thus the reference model found by similarity prediction

is likely to be smaller than the real-world object. As PCR will align two point clouds

together, the preplanned robust grasps on a smaller model have a high possibility of

being placed within the graspable area of a larger object after transfer. In this case,

even if the selected model is non-similar to the real-world object, the transferred grasps

still have a fairly high success rate of manipulation. This is considered to be a significant

advantage of our method in dealing with completely novel objects.

3.5 Discussion

Through experiments we verify our proposed method to be able to achieve a high success

rate of novel object manipulation. There are two remarkable advantages of our method

compared with other related works. One is the generalization, the techniques used in our

system: image segmentation (Panoptic FPN), word embedding (Word2Vec), and point

cloud registration (SAC-IA with ICP) are all replaceable. Moreover, our method can

deal with both in-category objects and out-of-category objects. Although the similarity

prediction are not correct at all time, its precision can be raised by enlarging the database

to increase the possibility of a novel object finding a similar registered model. Another

is the simplicity, we only use one depth camera and one robot hand to achieve the

whole pick-and-place task. Our system is easy to construct and all the hardware can be

substituted with other types.
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3.6 Conclusions

In this study, we propose a new perspective of novel object manipulation planning by

imitating existing robust grasps. We combine category-association matching with point

cloud registration to evaluate the semantic and shape similarity between novel objects

and known models. We transfer the preplanned robust grasps from registered models

to real-world objects and develop an optimization algorithm to minimize the transfer

error. We also incorporate the idea of rotational adjustment to infer the actual posture

of in-hand objects and achieve stable placements.
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Chapter 4

Multi-Level Similarity Matching

for Single-View Object Grasping

This thesis chapter originally appeared in the literature as

H. Chen, T. Kiyokawa, Z. Hu, W. Wan, and K. Harada, "A Multi-Level

Similarity Approach for Single-View Object Grasping: Matching, Planning,

and Fine-Tuning," IEEE Transactions on Robotics, 2025. (Accepted)

4.1 Introduction

Both industrial and service robots are required to deal with a wide range of objects with

diverse categories, shapes and arrangements. In traditional robotic systems, detailed

properties of each object have to be known and then specific actions can be designed

for each manipulation task. However, this process becomes increasingly labor-intensive

as the number of object types grows, while remaining ineffective for previously unseen

objects. Consequently, there is a pressing need for highly dexterous robotic systems

capable of handling a wide variety of novel objects without prior information.

In the last decade, the booming development of vision technology and deep learning

has led to many outstanding works in the field of novel object grasping [73]. Represen-
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tative studies among them use depth images [11, 34], RGB-D images [14, 74] or point

clouds [13, 75] as input representations to train neural networks for grasp detection and

evaluation on unseen objects. While achieving notable performance, they have limita-

tions in the grasping direction (e.g. only top-down grasping) or rely on high-precision

visual features for accurate grasp inference. For improvement, more recent studies em-

ploy scene representations [18, 19] and large-scale datasets [22, 23] to provide efficient

and adequate training for more generalized grasping systems. However, they still suf-

fer from the disadvantages of high training costs and high sensitivity to sensing noise

and environmental changes. Therefore, we recognize that a new perspective beyond

traditional learning frameworks is needed to achieve a higher standard of general object

grasping, leading us to explore the idea of similarity matching [30, 32].

A recent enlightening work [33] introduces a score-based similarity evaluation frame-

work that assesses object similarity from both semantic and geometric aspects. This

method effectively transfers grasping knowledge from similar known objects to enable

efficient grasping of unknown target objects. However, it requires multi-view observa-

tions and exhibits instability as the variety of target objects increases, primarily due to

the difficulty in balancing the quantification of semantic and geometric similarity. Our

study significantly advances this work by tackling the challenge of single-view object

grasping and developing a more efficient similarity matching approach that fully lever-

ages available visual features. We introduce a novel multi-level matching framework

that independently evaluates object similarity across semantics, geometry, and dimen-

sions, avoiding the balancing issues of using a composite scoring function. Notably, we

propose the C-FPFH (Clustered Fast Point Feature Histogram) descriptor for geometric

matching, which, to the best of our knowledge, is the first geometric descriptor capa-

ble of accurately evaluating the similarity between partial and complete point clouds of

non-identical objects, demonstrating exceptional effectiveness in handling occlusions. In

addition to accurate matching, we incorporate a stability-aware fine-tuning process to

optimize the quality of imitative grasps generated from similar references, providing an

auxiliary guarantee for achieving robust grasping.

Through extensive real-world experiments with a diverse range of novel objects in
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Figure 4.1: An example of grasping a novel object using our three-step method. First,
visual features of the target object obtained in the real world are used for similarity
matching with existing database models. Then, grasp planning and fine-tuning are
performed in simulation based on the matching results. Finally, the optimized grasp is
executed in the real world to achieve the task.

both isolated and cluttered scenes, we show that our method, using a small database of

fewer than 100 object models, significantly outperforms state-of-the-art (SOTA) bench-

marks across key metrics including accuracy, efficiency, and generalization. Fig. 4.1

illustrates an example of grasping a novel object (a toothbrush) using our proposed

method. Through visual detection and similarity matching, a screwdriver model with

grasping knowledge is identified from an existing database to plan imitative grasps for

the toothbrush. A subsequent fine-tuning process is then applied to optimize the grasp

quality by positional adjustment. The optimized grasp is finally executed to complete

the task. The entire system operates through a seamless interaction between the real

world and the simulation.

Our main contributions can be summarized as:

• We propose a multi-level similarity matching approach that integrates semantic,

geometric, and dimensional features to efficiently identify potential similar candi-

dates from an existing database for the unknown target object.

• In geometric matching, we introduce the C-FPFH descriptor, a novel feature de-

scriptor designed to accurately assess similarity between partial and complete point
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clouds.

• We develop several new methods to enhance the accuracy of similarity matching

and grasp planning by exploiting and improving existing techniques such as Large

Lanuage Models (LLMs), Oriented Bounding Boxes (OBBs), and plane detection

in point clouds.

• We implement a two-stage fine-tuning process after generating imitative grasps to

optimize grasp stability based on the local features of observable contact points.

4.2 Methods

4.2.1 Overview

The core idea of our approach is to leverage visual features from single-view observations

to identify similar references from an existing database of known object models to guide

the grasping of unknown target objects. The main difficulty lies in achieving accurate

similarity matching and robust grasp planning in the presence of large visual uncertainty.

Fig. 4.2 illustrates an overview of our methodology. The first step involves extract-

ing object features from single-view RGB-D inputs using segmentation models, including

category information and 3D point clouds. The second step applies a multi-level sim-

ilarity matching approach with an object model database consisting of the following

components:

1) Category names, used for semantic matching with the detected object category

through LLM assistance;

2) C-FPFH descriptors, used for geometric matching with the object 3D point cloud

via feature comparison;

3) Bounding extents, used for dimensional matching with the target object by uti-

lizing a novel type of OBB.
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Figure 4.2: Overview of our proposed approach. The system inputs (shown in blue
boxes) include a single-view RGB-D image and an existing object model database. A
background image without target objects is taken beforehand. The output (shown in
the orange box) is an optimized grasping action for execution.

Based on the three levels of matching, we filter a list of similar candidates from the

database that are most likely to exhibit high similarity to the target object. For these

candidates, we further rank their similarity by leveraging another database component:

4) Point clouds, to perform point cloud registration with the object point cloud using

a plane-detection-based approach. Based on the registration results, we begin with the

most similar candidate and transfer its existing grasping knowledge from the database:

5) Preplanned grasps, to generate imitative grasps for the target object.

In the final step, all generated grasps undergo a two-stage fine-tuning process to

optimize stability, considering the local features of observable contact points.

4.2.2 Single-View Object Recognition

Our goal is to achieve single-view object grasping under the uncertainty of sparse and

noisy visual inputs. To achieve this, we use a consumer-grade 3D camera mounted

on the robot end effector for object detection. We first capture a background image

without the target object, and then use it as a reference for background subtraction by

performing gray-scale differencing with the image containing the object to identify the

CHAPTER 4. MULTI-LEVEL SIMILARITY MATCHING APPROACH 33



region where the object is located. Based on this approximate localization, we apply

instance segmentation to the RGB input using a SOTA pre-trained model [76] and

extract only the results related to the target object, including the object category and

its 2D mask.

To remove redundant detection results such as the patterns on the object surface, we

also examine the inclusion relationships among different results and retain only the one

with the largest coverage within the object region. In cases where the target object fails

to be detected (confirmed by comparing the object region with all detection results) due

to irregular observation angles or occlusions, we integrate a more powerful segmentation

model, SAM [77], to acquire the object mask without category information. Based on

this mask, we extract the pixels containing the target object from the depth input and

project them into 3D space to obtain the object point cloud.

It should be noted that the object region identified by background subtraction

cannot replace the 2D mask acquired by instance segmentation since it lacks pixel-level

accuracy and is highly susceptible to lighting variations. The object category and 3D

point cloud obtained during the visual detection process are key features for achieving

similarity matching.

4.2.3 Multi-Level Similarity Matching

Existing learning-based grasp planning approaches struggle to maintain their optimal

performance under varying sensing conditions. To address this issue, we avoid directly

regressing grasps from visual inputs. Instead, we utilize existing similar objects with

reliable grasping knowledge to guide the grasping of novel objects, which is robust to

noise and environmental changes through an appropriate matching framework.

Based on this consideration, we propose a multi-level similarity matching approach

that leverages the visual features of the target object to identify reference object models

from an existing database, selects candidates from semantic, geometric, and dimensional

perspectives, respectively, and finally synthesizes the results to determine an optimal
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selection of similar candidates. Compared with score-based methods [33], the multi-level

matching framework exhibits greater robustness in similarity evaluation by separately

assessing potential candidates from each perspective, thus avoiding influences across

different perspectives. The implementation details of each matching are illustrated in

the following sections.

4.2.4 LLM-Assisted Semantic Matching

The object category obtained in visual detection can be used to identify similar can-

didates from the database at the semantic level. A common approach for evaluating

semantic similarity between two categories is to use word embedding models such as

Word2Vec [71] and GloVe [78] to obtain scores representing their cosine similarity (e.g.,

bottle has a high score with box, but a low score with car). However, this method has

several significant drawbacks that can mislead the results of similarity matching: 1) The

scores only reflect word similarity in linguistics, not relevance in robotic grasping; 2) The

scores vary significantly across different pairs of similar categories; 3) Different mean-

ings of a polysemous word cannot be distinguished. Fortunately, with advancements in

LLMs, we address these issues by integrating the GPT-4o model [79] for similarity eval-

uation, which provides comprehensive knowledge of object similarity specific to robotic

grasping and a better understanding of user intent, as implemented below:

Prompt: Which objects in [bottle, box, cup, mug, apple, hammer] are likely to be

similar to a {soda_can} in terms of robotic grasping? Please only answer the category

names.

Answer: Bottle, cup, mug.

In the first square bracket, we input all category names contained in the database,

simplified to single or compound words that indicate object identities without descrip-

tive terms (e.g., for objects in the YCB dataset [80], 051_large_clamp → clamp,

053_mini_soccer_ball → soccer_ball). In the second curly bracket, we input the

detected object category without any simplification, as the descriptive terms in the
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detection results, e.g., mouse_(computer_equipment), help to better clarify the target

object. From the GPT answer, we can easily select candidate models with corresponding

category names that are potentially similar to the target object from a semantic perspec-

tive. In case that the object fails to be detected and no category information is available,

we skip semantic matching and only consider similarity from other perspectives.

4.2.5 C-FPFH-Based Geometric Matching

The object point cloud obtained in visual detection can be used to represent the geomet-

ric properties of the target object, enabling the identification of similar candidate models

at the geometric level. However, incomplete point clouds from single-view observations

introduce significant uncertainty due to large unseen regions and sensing noise, mak-

ing it extremely difficult to accurately assess the similarity between an observed partial

point cloud of an unknown object and a complete point cloud of a database model. To

address this issue, rather than exploring the global geometric similarity between partial

and complete point clouds, we find it more effective to extract their local geometric fea-

tures and leverage feature correspondences to represent their similarity. To achieve this,

we adopt a point cloud feature extractor, the FPFH descriptor [81], which describes the

local geometry of each point in a point cloud using a 33-dimensional vector showcasing

the distribution of neighboring normal orientations. It has the advantage of rotational

invariance and is suitable for our task where the camera observation pose is uncertain.

Utilizing its principle, we propose a novel point cloud geometric descriptor, the C-FPFH

descriptor, which aggregates and classifies local geometric features to distill the essential

information in a point cloud, enabling accurate similarity evaluation regardless of point

cloud completeness.

As shown in Fig. 4.3, generating a C-FPFH descriptor for a point cloud involves

three steps: 1) Uniformly sample points using a voxel grid filter of appropriate size (1.5

cm in our task) and exclude edge points where the estimated normals probably deviate

from the truth due to the uncertainty of unseen regions. 2) For each sampled point,

compute its FPFH descriptor with neighboring points within an appropriate local area
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Figure 4.3: Three-step generation of C-FPFH descriptors for object point clouds. Due to
sensing noise, point features may occasionally vary across surfaces with similar geometry;
however, such variations are acceptable during geometric matching, facilitated by our
discrete sampling and consecutive clustering methods.

(a sphere with a radius of 1 cm in our task) to obtain a 33-dimensional vector describing

its local geometry. To minimize the effect of sensing noise, instead of using all the values

in the vector, we extract only the index numbers of the two most dominant of the 33

vector components as a feature pair to represent the main characteristics of a sampled

point. We employ two components rather than one to account for errors caused by

noise when the two largest values are close. We aggregate the feature calculation results

of all sampled points as: {(f11, f12) : n1, (f21, f22) : n2, ...}, where (fk1, fk2) : nk is an

unordered feature pair with its number of occurrences in the point cloud. Based on this

aggregation result, we develop the first metric for similarity evaluation between a partial

point cloud p and a complete point cloud c, called QS (quantitative similarity), which

is calculated as:

QS =
∑m

i=1 min(pni,
cni)∑m

i=1
pni

(4.1)

where m is the number of types of feature pairs in p, pni and cni are the number

of times the same feature pair (fi1, fi2) occurs in p and c, respectively (pni is always

greater than 0, while cni can be 0). A large QS indicates that c contains most of the

features in p, in which case it is highly probable that they are similarly shaped objects.

However, this metric has limitations as it only evaluates the overlap rate of identical

features without considering their spatial distribution. As a result, two dissimilar point
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clouds containing a large number of discrete identical features may be evaluated as

highly similar. Therefore, an additional metric that captures the similarity of feature

distribution is essential to complement the evaluation.

3) Considering that the surface features in p are not as complete as those in c, the

comparison of feature distribution needs to be performed locally rather than globally. To

achieve this, we incorporate the idea of the CVFH descriptor [82] to cluster all sampled

points as follows: I) Take an unclustered sampled point as a seed, search its surrounding

area (a sphere with a radius slightly larger than the sampling voxel size, 2 cm in our

task) to identify other sampled points with the same feature pair and similar normal

orientations (differing by no more than 20 degrees in our task); II) If such points are

found, connect them as consecutive points and take them as new seeds, continuing the

search until no more consecutive points are found; III) Repeat I and II. In this way, each

sampled point can be assigned to a unique cluster. All clusters are confined to a single

surface without crossing the edges, ensuring that the feature distribution is evaluated

in a localized manner. For each cluster with more than two points, we apply principal

component analysis (PCA) to obtain three normalized singular values as a representation

of its spatial distribution. We aggregate the distribution analysis results for clusters with

the same feature pair as: {(fk1, fk2) : dk1 = [σ11, σ12, σ13]k, dk2 = [σ21, σ22, σ23]k, ...}.

For p, we only focus on the distribution of the main features (the cluster containing the

highest number of consecutive points with the most frequently occurring feature pair)

and obtain its PCA result as pds = [σ1, σ2, σ3]s, where s denotes that (fs1, fs2) is the

main feature pair of p. We ignore unimportant clusters and feature pairs for the presence

of sensing noise. For c, we search among the clusters of (fs1, fs2) to identify any PCA

result that is close to pds. When such a result exists, we assume that c contains the main

point cluster of p. Based on this principle, we develop the second metric for similarity

evaluation, called DS (distributional similarity), which is calculated as:

DS = min
1≤j≤l

∥pds − cdsj∥ (4.2)

where l is the number of clusters with feature pair (fs1, fs2) in c. A small DS indicates

that c has a region very similar to the main part of p.

CHAPTER 4. MULTI-LEVEL SIMILARITY MATCHING APPROACH 38



The aggregation results of feature calculation and distribution analysis form the

C-FPFH descriptor. To save computation time in similarity matching, we pre-generate

C-FPFH descriptors for all complete point clouds in the database. This allows us to

compute only the descriptor for the partial point cloud of the target object during real-

time processing. By setting appropriate thresholds for QS and DS, we can determine

the range of similar candidate models from a geometric perspective. Empirically, we

assume that when QS > 0.9 and DS < 0.1, p has high geometric similarity to c and

the model is selected as a candidate. These two thresholds can be adjusted to increase

or decrease the number of candidates; however, setting them too high or too low can

negatively impact the matching results.

Fig. 4.4 showcases several test results of using C-FPFH-based geometric matching

to identify similar candidate models from single-view object point clouds. The results

indicate that most of the selected models demonstrate overall similarity to the target

objects. However, some candidates display only partial similarity (marked with red

circles in Fig. 4.4) due to the inclusion relationship between p and c, revealing a potential

limitation of using local features for similarity evaluation between partial and complete

point clouds.

4.2.6 SOBB-Guided Dimensional Matching

To address the limitation of partial similarity in geometric matching, we introduce a

third perspective for similarity evaluation: dimensional matching, which assesses the size

similarity between the target object and database models by leveraging their dimensional

features. For size evaluation of object models or point clouds, 3D bounding boxes such

as the axis-aligned bounding box (AABB) and the oriented bounding box (OBB) are

commonly used to represent dimensions including length, width, and height through the

three bounding extents. However, in our task, neither AABB nor OBB can accurately

represent the dimensions of the target object from single-view partial point clouds due

to the uncertainty of object poses and large unseen regions, as shown in Fig. 4.5. To

address this issue, we develop a new type of bounding box, called semi-oriented bounding
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Figure 4.4: Test results of using C-FPFH-based geometric matching to identify similar
models from single-view object point clouds. All candidate models are originally from
the YCB dataset, renamed with simplified category names and index numbers for cases
where multiple models exist within a single category.

box (SOBB), which fixes one direction of the OBB by aligning it with the normal vector

of the plane on which the target object is placed.

The generation of the SOBB for an object point cloud involves the following steps:

1) In the robot coordinate system, obtain the normal vector n⃗ of the plane where the

object is placed (for table-top objects in our task, n⃗ = ⟨0, 0, 1⟩); 2) Project all points

onto a plane perpendicular to n⃗ and passing through the origin; 3) Downsample the

projected points using a grid filter to achieve a uniform density; 4) Apply PCA to the

downsampled points to extract the two principal components, u⃗ and v⃗, which represent

the 2D distribution of the points within the plane; 5) Generate a new coordinate system

using normalized n⃗, u⃗, and v⃗ as the orthogonal basis vectors, and compute the AABB

of the point cloud in this new coordinate system. By transforming this AABB back to

the original coordinate system, we obtain the target SOBB, which accurately represents

the dimensions of the target object.

For evaluation of size similarity, we pre-compute the bounding extents (xi, yi, zi)

for all database models by aligning their original poses with the axis orientations and
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Figure 4.5: Comparison of different types of bounding boxes applied to a single-view
partial point cloud obtained from a table-top object.

obtaining their corresponding AABBs. During real-time processing, we only need to

compute the SOBB extents (x, y, z) of the object point cloud and use its dimensional

differences with the database models to represent their size similarity (SS) as follows:

SS = ∥sort(x, y, z)− sort(xi, yi, zi)1≤i≤h∥ (4.3)

where h is the number of database models, sort() is a function that arranges values in

descending order. All calculations are performed in meters. Empirically, we assume that

when SS < 0.1, the model is similar in size to the target object and can be selected as a

candidate at the dimensional level. This threshold is also adjustable but should remain

within an appropriate range, similar to QS and DS.

4.2.7 Candidate Model Selection

The above implementations indicate that each individual level of similarity matching has

its limitations. For example, semantic and dimensional matching only provide a coarse

identification of potential similar candidates without investigating into detailed object

features, whereas geometric matching leverages object features thoroughly but is prone

to partial similarity results. Therefore, we propose that the most effective approach

for candidate model selection is to use multi-level similarity matching, following the

principle that a model identified as similar across more perspectives is more likely to

resemble the target object. Based on this principle, the final candidate models are
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selected in the following order:

(i) Models similar in all three perspectives;

(ii) Models similar in two perspectives (if no models meet the criteria of i);

(iii) Models similar in one perspective (if no models meet the criteria of i and ii);

(iv) Non-similar models (if no models meet the criteria of i, ii, and iii).

This approach ensures that all perspectives are considered equally, thereby avoiding

bias or balancing issues.

4.2.8 PDM-Based Point Cloud Registration

After selecting candidate models through similarity matching, two issues remain to be

solved: 1) Which candidate model should be prioritized as the reference for object

grasping? 2) How to transfer the grasping knowledge from a similar database model

to the unknown target object? To address them, we perform point cloud registration

between the partial point cloud p of the target object and the complete point clouds

c of all candidate models to obtain their fitness scores and transformation matrices,

which can be used to determine the model priority and transfer grasping knowledge,

respectively.

Traditional point cloud registration methods employ algorithms such as RANSAC

[83] and ICP [84] to achieve coarse-to-fine registration between point clouds of identi-

cal objects. However, our task copes with point clouds of similar objects, where the

inherent randomness of the RANSAC algorithm can lead to suboptimal initial align-

ments and unreliable registration results (see Fig. 4.6d). To solve this issue, we adopt

a plane detection method [85] to improve the coarse registration process. As shown

in Fig. 4.6a-c, we first detect the largest plane op in p and the plane oc in c with the

area closest to op. Then, we align p with c by overlapping the two coordinate systems

located at the centers of op and oc. However, this overlapping does not necessarily result

in an optimal alignment between p and c due to the uncertainty of the axis orientation.
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using ICP
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(d) Comparison of different registration methods
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Figure 4.6: (a)-(c): Three steps to perform PDM-based point cloud registration between
partial (yellow) and complete (blue) point clouds. (d): Comparison between a traditional
registration method and our proposed method.

To address this, in the next step, we apply various rotations around the plane center

to identify the optimal rotation that minimizes the distance between p and c, and use

it as the coarse registration result. Based on this result, we finally employ the ICP

algorithm for fine registration. The advantage of using plane detection and matching

(PDM) is that it ensures a large overlap area between the two registered point clouds,

regardless of their similarity and completeness. Additionally, the results are consistent

across different trials, eliminating randomness. A performance comparison of RANSAC

+ ICP versus PDM + ICP is shown in Fig. 4.6d. In most cases, PDM + ICP achieves

better results. However, in scenarios where no plane is detected in p due to the complex

object shapes or significant sensing noise, PDM becomes inapplicable and we switch the
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coarse registration method to RANSAC.

4.2.9 Imitative Grasp Planning

Each point cloud registration result includes a fitness score representing the overlap rate

between the two registered point clouds and a transformation matrix defining their rel-

ative pose. Based on the fitness score, we rank the candidate models from highest to

lowest priority and use them sequentially during grasp planning. Based on the transfor-

mation matrix, we transfer the grasping knowledge from candidate models to the target

object through the following steps:

1) We preplan hundreds of robust grasps for each database model using a mesh

segmentation approach [68]; 2) For the candidate model with the highest priority, we

apply the transformation matrix to its preplanned grasps to generate imitative grasps

on the target object; 3) These grasps are then evaluated in a simulation environment1,

where we compute IK solutions and perform collision detection to exclude infeasible

grasps; 4) For the remaining grasps, we let the robot reach each grasp pose in the

simulation and perform further filtering as follows: Assuming that a cube model filling

the gripper closure region is C, the gripper model is G, and the object point cloud is P,

a grasp is not on the object when C ∩ P = ∅, and a grasp collides with the object when

G ∩ P ̸= ∅. Such infeasible grasps occur due to the inherent differences between the

similar model and the real object, and are excluded during planning; 5) If no feasible

grasp is obtained from the first candidate model, we proceed to the next model in the

priority order and repeat Steps 2-4 until a valid grasp is identified.

It should be noted that although we have original models of the environmental

objects in our simulations (e.g., the platform on which the object is placed), our grasp

planning does not rely on them. Instead, we can utilize the visual information in the

background image to reconstruct the surrounding obstacles. This capability is validated

in the final part of our experiments.

1https://github.com/wanweiwei07/wrs
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Figure 4.7: Two-stage grasp fine-tuning, including grasp position and grasp center ad-
justments to optimize the final grasp quality.

4.2.10 Stability-Aware Grasp Fine-tuning

Considering the inherent differences between similar models and real objects, imitative

grasps have the potential to be unstable in real-world tasks. To evaluate and enhance

their stability, we focus on the local features of contact points within the observable

region of the object point cloud to implement a two-stage grasp fine-tuning process, as

shown in Fig. 4.7. In the first stage, we create a stick model connecting the two ends

of the gripper, denoted as S, and use a ray-hit algorithm to detect its intersections with

the object point cloud P. If no intersection is detected, the grasp is considered to be

located in the unseen regions of the object and is retained as a potential grasp, as its

stability cannot be assessed. If only a single intersection point is detected, it is identified

as one of the two contact points between the gripper and the object. In cases where

multiple intersection points are detected, the two outermost points are regarded as the

two contact points.

For each contact point, we identify its nearest neighboring point p0 in P and compute

the acute angle θ between the normal at p0 and S. Based on this angle, we classify all

feasible grasps other than potential grasps into three types:

1. When θ < 20◦, the grasp is considered stable enough to be executed directly

without fine-tuning;
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2. When θ > 40◦, the grasp is too unstable for fine-tuning and is therefore discarded;

3. When θ ∈ [20◦, 40◦], the grasp is not sufficiently stable but can be improved

through fine-tuning for better quality.

Below, we illustrate the fine-tuning process for the case where only one contact point

is detected. The two-contact-point case differs only in that θ needs to be calculated for

both contact points and the criteria for grasp classification become: 1) ∀ θ < 20◦; 2)

∃ θ > 40◦; 3) All other cases. Additionally, when two contact points are detected, one

of them is randomly selected as the reference point for fine-tuning. After fine-tuning,

grasp stability is re-evaluated using the updated contact points.

In the case of θ ∈ [20◦, 40◦], we search for the k1-nearest neighbors of p0 as

{p1, p2, ..., pk1} ordered from nearest to farthest, and then calculate θ for each neigh-

bor starting from p1 until a point satisfying θ < 20◦ is found. This point is marked as

p∗
0. To prevent grasping an uneven region, we further inspect the surrounding of p∗

0 by

searching for its k2-nearest neighbors as
{

p∗
1, p∗

2, ..., p∗
k2

}
. We calculate the angle between

the normal of p∗
0 and the normal of each of its neighbor as θ∗. When ∀ θ∗ < 10◦, the re-

gion around p∗
0 is considered flat and suitable for grasping. In this case, we translate the

original grasp pose along the vector −−→p0p∗
0 to adjust the grasp position without applying

any rotation. Otherwise, we continue querying the next neighboring point of p0 until an

eligible p∗
0 is found. In our task, k1 should be large to capture sufficient neighborhood

information, while k2 should be small to focus on local geometric features. Empirically,

we set k1 = 100 and k2 = 5 as appropriate values.

In addition to adjusting the grasp position, we recognize that the grasp stability

is also influenced by the location of the grasp center. When the distances between

the object and the two finger ends differ significantly, one finger end may contact the

object first, potentially causing unpredictable shifting or rotating motion during the

grasping process. Therefore, in the second stage, we reapply the ray-hit algorithm to

detect the intersections between the updated S after the first-stage adjustment and the

SOBB of P. We then obtain the midpoint of the two intersection points, denoted as p∗
c ,

and translate the grasp pose along the vector −−→pcp
∗
c to refine the grasp center, where pc
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denotes the original grasp center after the first-stage adjustment. In the case where two

contact points are detected, their midpoint can be directly used as p∗
c . This grasp center

refinement is also applied in the case of θ < 20◦.

At either fine-tuning stage, if an adjusted grasp fails to solve IK or results in a

collision, we discard it and query the next grasp candidate. The retained potential

grasps are only used when all evaluable grasps have been assessed as unstable.

4.3 Experiments

4.3.1 Experimental Setup

To validate our proposed method, we conduct several experiments in similarity match-

ing and novel object grasping using a UR5e robot arm equipped with a Robotiq 2F-140

adaptive gripper and a hand-mounted RealSense D435 depth camera. To verify the gen-

eralizability of our approach under low data volume conditions, we generate a database

containing no more than 100 object models derived from the YCB dataset [80]. For

each model, we preplan about 200 antipodal grasps within the gripper’s width range

and pre-compute the C-FPFH descriptors along with the bounding extents required for

matching.

The experimental objects are placed on a fixed platform within the robot’s reachable

workspace, and are observed by the hand camera from a diagonal downward viewpoint.

All computations are performed on a computer equipped with a Ryzen 7 5800H CPU

and a GeForce RTX 3060 GPU.

To clearly showcase performance, we compare our method with several baselines,

including SOTA benchmarks and the previous similarity approach. For all learning-

based methods, we use their pre-trained models without additional fine-tuning.
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Figure 4.8: The experimental objects used for similarity matching. The first and second
rows display the non-occluded and occluded scenes, respectively. The numbers in the
figure correspond to the scene IDs in Table 4.1 and Table 4.2. The third row presents
the original 3D model of each object.

4.3.2 Evaluation of Similarity Matching

To verify the effectiveness of our proposed similarity matching approach, we carry out

comparative experiments using the following baselines: 1) w/o MM (Without Multi-

level Matching); 2) w/o SM (Without Semantic Matching); 3) w/o GM (Without

Geometric Matching); 4) w/o DM (Without Dimensional Matching); 5) Full Match-

ing. For the first baseline, we directly apply point cloud registration to rank all database

models from most to least similar without performing multi-level matching. In the sec-

ond through fourth baselines, we perform incomplete matching by excluding one of the

three levels, followed by the point cloud registration process to rank candidates. The

last baseline uses the complete method.
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To accurately assess the performance of similarity evaluation across different base-

lines, we utilize 5 different types of experimental objects with their original 3D models,

as shown in Fig. 4.8, and incorporate them into the database. During the matching

process, if the original model of the target object is identified within the highest priority

list of candidate models, we consider it an accurate match. Based on this principle,

we develop the following two evaluation metrics for the matching results: 1) Matching

Accuracy (MA), which is defined as:

MAx = Number of accurate matches
Total number of matching attempts

Here, x indicates that a match is considered accurate if the original model appears in

the top x candidates. We need this x to be adaptable to different detection conditions

and to allow for matching errors when the database contains existing models similar

to the newly added objects. 2) Matching Time (MT), which records the total time

taken for the matching process, measured in seconds (s), from the start of similarity

matching to the completion of point cloud registration.

We first test in non-occluded scenes, where the objects are placed on a stationary

platform without surrounding obstacles. For each object, we obtain its visual features

from 5 different observation angles and use these features to perform each baseline, gen-

erating the corresponding matching results. We set x = 2 as a strict criterion in this

case to clearly distinguish the performance of different baselines. From the experimen-

tal results shown in Table 4.1, the comparison between w/o MM and Full Matching

highlights the advantage of using multi-level similarity matching for achieving signifi-

cantly higher matching accuracy while reducing computation time. The reason for this

discrepancy is that without multi-level matching, we need to perform point cloud regis-

tration with all database models, the results of which are susceptible to the uncertainty

of partial observation, resulting in low accuracy and efficiency. Besides, the absence

of either semantic or dimensional levels in matching leads to a noticeable performance

drop compared to the full matching method, emphasizing their importance in effectively

narrowing down the range of similar candidates. On the other hand, however, the base-

line w/o GM obtains very similar results to Full Matching, failing to demonstrate
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Table 4.1: Evaluation Results of Similarity Matching Baselines in Non-Occluded Scenes

Scene ID
1 2 3 4 5 Average

MA2 MT MA2 MT MA2 MT MA2 MT MA2 MT MA2 MT

w/o MM 3/5 3.62s 3/5 3.40s 4/5 3.28s 2/5 3.14s 1/5 2.86s 13/25 (52%) 3.26s

w/o SM 3/5 0.45s 3/5 0.44s 3/5 0.65s 4/5 0.69s 2/5 0.76s 15/25 (60%) 0.60s

w/o GM 5/5 0.20s 4/5 0.35s 4/5 0.42s 5/5 0.32s 3/5 0.28s 21/25 (84%) 0.31s

w/o DM 4/5 0.75s 3/5 0.33s 4/5 0.77s 3/5 0.33s 2/5 0.27s 17/25 (64%) 0.49s

Full Matching 5/5 0.30s 4/5 0.35s 4/5 0.58s 5/5 0.30s 4/5 0.21s 22/25 (88%) 0.35s

the effectiveness of our geometric matching method. This occurs because the database

contains the categories of all experimental objects, making semantic and dimensional

matching alone sufficient for achieving accurate results.

Therefore, for further validation, we test in occluded scenes where the objects are

partially occluded by two small bottles acting as obstacles. During visual detection, we

manually place a marker in the image (see Fig. 4.8) to extract only the recognition

result of the target object. Similar to the non-occluded scenes, we perform 5 matching

attempts for each object and baseline using various observation angles and occlusion

conditions (in principle, occluding no more than half of the object to ensure matchabil-

ity). The difference is that in this case we set x = 5 to allow for larger matching errors

due to the increased visual uncertainty. From the experimental results shown in Table

4.2, we observe that the accuracy of w/o MM becomes worse due to the sparser vi-

sual information, whereas the performance of Full Matching remains relatively stable.

More importantly, the advantage of using C-FPFH-based geometric matching is clearly

demonstrated by a significant performance drop in the baseline w/o GM. The rea-

son for this is that in occluded scenes, the reliability of both semantic and dimensional

matching declines due to incomplete object recognition, making the matching accuracy

heavily dependent on the results of geometric matching. We even find that in some

cases, dimensional matching negatively impacts the matching results, whereas semantic

matching still helps to achieve accurate results when the occluded object is correctly rec-

ognized. Additionally, the full matching method achieves the lowest computation time

by narrowing down similar candidates to a smaller range, while other baselines yield

CHAPTER 4. MULTI-LEVEL SIMILARITY MATCHING APPROACH 50



Table 4.2: Evaluation Results of Similarity Matching Baselines in Occluded Scenes

Scene ID
6 7 8 9 10 Average

MA5 MT MA5 MT MA5 MT MA5 MT MA5 MT MA5 MT

w/o MM 2/5 3.29s 1/5 2.92s 1/5 2.58s 2/5 2.83s 1/5 2.06s 7/25 (28%) 2.74s

w/o SM 3/5 1.21s 2/5 0.97s 3/5 0.72s 3/5 1.14s 4/5 0.72s 15/25 (60%) 0.95s

w/o GM 3/5 1.67s 2/5 0.26s 2/5 0.45s 3/5 0.83s 2/5 0.63s 12/25 (48%) 0.77s

w/o DM 4/5 0.48s 4/5 0.39s 4/5 0.49s 3/5 0.52s 4/5 0.43s 19/25 (76%) 0.46s

Full Matching 4/5 0.41s 3/5 0.21s 3/5 0.38s 4/5 0.34s 4/5 0.36s 18/25 (72%) 0.34s

more candidates when a certain matching level is absent, leading to longer computation

times.

By combining the results from both scenes, our complete similarity matching method

demonstrates optimal performance in terms of accuracy and efficiency under varying de-

tection conditions and across different object types.

4.3.3 Grasping Isolated Objects

To verify the performance of novel object grasping using our method, we conduct grasp-

ing experiments in two scenarios: isolated and cluttered scenes. We first focus on single-

object grasping by comparing our proposed method with two learning-based bench-

marks, PointNetGPD [15] and 3DSGrasp [20], as well as the previous similarity

approach [33]. All these approaches address the grasping of isolated novel objects

by leveraging object point clouds. The key differences are that, PointNetGPD directly

predicts grasps from single-view point clouds; 3DSGrasp performs shape completion to

reconstruct unseen regions of the point cloud and plans grasps based on the refined

cloud; the previous similarity approach utilizes multi-view point clouds for similarity

matching, followed by grasp knowledge transfer from similar references to the unknown

target. For PointNetGPD and 3DSGrasp, we rank the grasp candidates based on their

quality scores and proceed sequentially from the highest-scoring grasp until a feasible

one is found. For both the previous and our similarity approaches, we process the grasp

candidates in no specific order and continue the computation until a feasible grasp is
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Table 4.3: Experimental Results of Grasping Isolated Objects

Object ID 1 2 3 4 5 6 7 8 9 10 Average APT

PointNet-
GPD

GSR 7/8 6/8 4/6 2/4 - 3/6 8/9 4/7 3/4 2/6 67%
≈ 6s

PSR 8/10 8/10 6/10 4/10 0/10 6/10 9/10 7/10 4/10 6/10 58%

3DSGrasp
GSR 7/10 3/10 5/7 - 2/2 2/4 8/8 0/6 3/4 6/10 59%

≈ 8s
PSR 10/10 10/10 7/10 0/10 2/10 4/10 8/10 6/10 4/10 10/10 61%

Previous
similarity
approach

GSR 8/10 7/10 4/7 10/10 7/8 10/10 9/10 5/8 5/6 4/10 78%
≈ 5s

PSR 10/10 10/10 7/10 10/10 8/10 10/10 10/10 8/10 6/10 10/10 89%

Our
method

GSR 10/10 10/10 8/9 9/10 9/9 10/10 10/10 8/10 10/10 10/10 96%
≈ 2s

PSR 10/10 10/10 9/10 10/10 9/10 10/10 10/10 10/10 10/10 10/10 98%

identified.

We use three evaluation metrics to assess the performance of each method: 1) Grasp

Success Rate (GSR); 2) Plan Success Rate (PSR); 3) Average Planning Time

(APT). Considering three possible outcomes in a grasping task: I) Grasp planning fails

(no grasp output); II) Grasp planning succeeds, but the output grasp fails to catch or

lift the object; III) Grasp planning succeeds, and the output grasp successfully catches

and lifts the object, we define GSR and PSR as follows:

GSR = Num(III)
Num(II + III) , PSR = Num(II + III)

Num(I + II + III)

where Num() denotes the total number of outcomes contained in the bracket. APT is

the approximate average of the duration from the start of similarity matching to the

completion of grasp planning, recorded only when the grasp planning is successful. These

three metrics represent the accuracy, generalizability, and efficiency of each implemented

method, respectively.

For the experimental setup, we select 10 previously unseen objects varying in cat-

egory, shape and size (see Fig. 4.9), and place them in arbitrary poses on a stationary

platform within the camera’s field of view and the robot’s reachable workspace. During

each trial, we apply our object recognition method to obtain the single-view point cloud

of the target object and execute the corresponding grasp planning baseline based on
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Figure 4.9: Grasping various novel objects using our similarity-based method. The
top left corner of each figure displays the single-view object point cloud, the matched
candidate model, and the grasp planning with fine-tuning process. The object IDs shown
in the bottom-left correspond to those in Table 4.3.

PointNetGPD 3DSGrasp Previous similarity approach Our methodTarget object

Figure 4.10: Comparison of different grasp planning methods based on object point
clouds. The blue grasps represent all the generated grasp candidates, while the red
grasps indicate the final executed grasps that are first recognized as IK-solvable and
collision-free from the candidate list.

this point cloud. For each object and method, we perform 10 planning and grasping

attempts, considering a grasp successful if the object is steadily caught and lifted to

a specified height (approximately 20 cm). As can be seen from the results shown in

Table 4.3, our proposed method significantly outperforms all other methods in terms

of both success rate and computational efficiency, demonstrating its superior overall

performance.

For the learning-based methods, we observe that both PointNetGPD and 3DSGrasp

achieve very low PSRs for specific objects, such as Objects 4 and 5. Although their
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network outputs provide reasonable grasp poses, most of these poses are inexecutable

(IK unsolved or collisions detected) due to improper grasp positions and orientations,

which is likely to be an inherent limitation of their training models. The previous

similarity approach can successfully generate executable grasps in most cases; however,

its GSR remains unsatisfactory, primarily due to the gap between multi-view and single-

view detection conditions, the limitations of score-based matching, and the absence of

subsequent fine-tuning.

An example visualization of the grasp planning results using different methods

is shown in Fig. 4.10. The grasp candidates generated by PointNetGPD are mostly

unstable, such as grasping the object edge from an improper angle. 3DSGrasp can refine

the partial point cloud to approximate the actual object shape; however, its errors in

point refinement can still lead to suboptimal grasps that lack sufficient stability. This

limitation is specifically noticeable for objects with uneven and smooth surfaces, such

as Objects 2 and 8. The previous similarity approach can generate more reasonable

and diverse grasps by utilizing a similar reference model; however, an inappropriate

matching result derived from scoring functions may still lead to infeasible grasps, such

as colliding with the unseen regions of the target object. Additionally, its grasp stability

cannot be guaranteed due to the lack of a fine-tuning process. In contrast, our method

achieves optimal grasp planning by leveraging an accurately matched reference model

and improving the grasp quality through a two-stage fine-tuning approach.

Regarding APT, the learning-based methods require additional time for grasp sam-

pling or point cloud completion, leading to longer computation durations. The previous

similarity approach requires matching with all models in the database, making it also

time-intensive. In contrast, our method pre-sorts candidate models using a multi-level

similarity matching approach, cutting computational time by more than half compared

to other methods.
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4.3.4 Grasping Cluttered Objects

For further validation of object grasping performance, we conduct experiments in clut-

tered scenes, where multiple objects are randomly arranged to create more challenging

grasping scenarios. We compare our approach with two SOTA methods: a widely

known large-scale benchmark for general object grasping, GraspNet [22], and a recent

advanced work on grasping objects in clutter, HGGD [24]. Both methods detect grasps

directly from the scene RGB-D input, making it difficult to distinguish which grasp cor-

responds to which object. Therefore, for these two methods, we develop the following

steps to achieve the task of clearing cluttered objects: 1) Capture the RGB-D image of

the scene and apply the grasp detection method; 2) Rank all detected grasps based on

their evaluated quality scores; 3) Compute IK iteratively until the first executable grasp

in the ranked list is found; 4) Execute the identified grasp to remove the corresponding

object from the scene, return the robot to its initial pose, and repeat the above process.

In contrast, our method completes detection and computation at once by simultane-

ously performing similarity matching and grasp planning for all objects in the clutter.

We achieve object recognition similarly to the single-object scene, but with the differ-

ence that all recognition results (excluding redundant ones) within the clutter region

are extracted and processed in separate threads. During grasp planning, the following

principles are applied: I) When planning grasps for one object, all other objects are

treated as obstacles; II) Once a feasible grasp is generated for an object, it is removed

from the obstacle list to facilitate planning for the remaining objects. We also record the

grasp generation sequence and execute the planned grasps in the corresponding order.

To assess task performance, we utilize two evaluation metrics: 1) Grasp Success

Rate (GSR); 2) Declutter Rate (DR). GSR is computed similarly to the single-

object scene, but differs in that a single re-planning attempt is allowed after a grasp

failure, in which case the number of executed grasps may exceed the total number of

objects in the clutter. DR evaluates the task completion rate and is calculated as:

DR = Number of successfully removed objects
Total number of objects to be removed
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Table 4.4: Experimental Results of Grasping Cluttered Objects

Clutter ID 3 objects Average 5 objects Average
1 2 3 4 5 6

GraspNet GSR 7/13 8/13 8/12 23/38 (60.5%) 12/16 8/11 - 20/27 (74.1%)
DR 7/15 8/15 8/15 23/45 (51.1%) 12/15 8/15 0/15 20/45 (44.4%)

HGGD GSR 9/17 6/10 10/12 25/39 (64.1%) 13/17 9/13 2/2 24/32 (75.0%)
DR 9/15 6/15 10/15 25/45 (55.6%) 13/15 9/15 2/15 24/45 (53.3%)

Our
method

GSR 15/16 14/16 14/14 43/46 (93.5%) 15/17 14/16 13/14 42/47 (89.4%)

DR 15/15 14/15 14/15 43/45 (95.6%) 15/15 14/15 13/15 42/45 (93.3%)

For the experimental setup, we leverage two types of clutter configurations as shown

in Fig. 4.11: Clutters 1-3 consist of 3 objects selected from the single-object grasping

experiment, while Clutters 4-6 comprise 5 objects with a broader variety of types. We

perform 5 attempts for each clutter set under different object arrangements, each fea-

turing varying degrees of occlusion. To avoid intermediate collisions unrelated to the

grasp pose, we design a pregrasp pose by retracting 8 cm from the grasp pose and a

leaving pose by moving 20 cm vertically upwards from the grasp pose. The robot fol-

lows this sequence of movements: initial pose → pregrasp pose → grasp pose (gripper

closed) → leaving pose → placement pose (gripper open) → initial pose. A task stops

midway when there is no executable grasp output or when two consecutive grasp failures

occur. From the experimental results shown in Table 4.4, we observe that GraspNet

and HGGD exhibit similar performance in both GSR and DR due to their respective

advantages of large-scale training and well-designed learning frameworks. However, they

struggle to handle specific objects, such as the small and thin items in Clutter 6, where

we observe that very few viable grasps can be generated. Such failures can be attributed

to the inherent limitations of learning-based approaches when the sensing condition and

operating environment differ significantly from their training setup.

Additionally, as shown in Fig. 4.12, GraspNet fails to generate high-quality grasps

for occluded objects positioned at the back. Meanwhile, HGGD can generate a few

good grasps for the objects behind, but they are too sparse to ensure an executable

grasp, and the front objects are ignored in this case. In contrast, our method efficiently

generates robust grasps for both non-occluded and occluded objects. Even when the
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Figure 4.11: Objects in clutter used for grasping experiments. Each clutter set contains
3 or 5 objects, and is tested in 5 different arrangements.

matching results are suboptimal due to sparse and noisy visual inputs, the subsequent

fine-tuning process in our method ensures high final grasp quality. Therefore, failures

in grasp planning and execution are rarely observed with our approach, demonstrating

its superior performance across all types of clutter sets and object arrangements.

4.3.5 Ablation Study

To validate the effectiveness of the main components in our approach, we conduct abla-

tion studies using the same baselines from the similarity matching experiment, including

w/o MM, w/o SM, w/o GM, and w/o DM. These baselines exclude one or all three

levels in similarity matching, relying primarily on the processes of point cloud registra-

tion and grasp fine-tuning to generate final grasps. In addition, we introduce an extra

baseline, w/o GF (Without Grasp Fine-tuning), which applies the complete matching

method but excludes the two-stage fine-tuning process during grasp planning.

We reuse the objects from the single-object grasping experiment to conduct tri-
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HGGD Our methodGraspNet

Figure 4.12: Comparison of our method with grasping benchmarks for objects in clutter.
In the outputs of GraspNet and HGGD, red grasps indicate high-quality grasps, while
blue grasps indicate low-quality ones. Our method generates high-quality grasps for all
target objects by rendering similar reference models.

als. To better distinguish the performance of different baselines, in addition to Grasp

Success Rate (GSR), we introduce a new evaluation metric called Average Offset

(AO). This metric is measured using a graph paper with 5 mm grid units. At the initial

stage, we mark a specific grid point on the paper and a corresponding point on the edge

of the target object, aligning them perfectly (see Fig. 4.13). After planning a grasp,

the robot executes the grasp, lifts the object, returns to the initial pose, and places the

object back in its original position. During this process, the object may remain station-

ary or shift slightly within the gripper, depending on the stability of the grasp. Once

the object is placed back, we locate the marked point on the object, identify the nearest

grid point, and calculate its distance from the original marked grid point as the offset

value. A smaller offset value indicates higher grasp quality. The use of graph paper

offers a significant advantage, allowing efficient distance measurement based on the grid

size without requiring complex procedures, as high precision is unnecessary. The offset

is disregarded in cases of grasp failure. For each object and baseline, we perform 5 at-

tempts and compute the average of the resulting offsets (AO) in both non-occluded and

occluded scenes. In the occluded scenes, similar to the similarity matching experiment,

two small bottles are used as obstacles during visual detection but are removed before

grasp execution.

As shown in the experimental results in Table 4.5, our full method consistently

delivers optimal performance across both scenes, highlighting the effectiveness of all
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Figure 4.13: Evaluation of grasp quality using a graph paper. After a pick-and-place
motion, the stability of the executed grasp is quantified by measuring the offset between
a marker on the object and an initial point on the paper.

Table 4.5: Ablation Studies On Each Component of Our Method

Non-occluded scene Occluded scene
GSR ↑ AO ↓ GSR ↑ AO ↓

w/o MM 74% 11.4 mm 54% 25.3 mm
w/o SM 82% 10.5 mm 74% 17.0 mm
w/o GM 90% 6.1 mm 66% 21.4 mm
w/o DM 78% 9.4 mm 72% 15.5 mm
w/o GF 72% 15.2 mm 56% 24.1 mm

Full method 92% 7.1 mm 84% 11.1 mm

components in our approach. The baseline w/o GM achieves comparable results in

the non-occluded scene but suffers a noticeable performance drop in the occluded scene,

which aligns with the findings from the similarity matching experiment and confirms

that our proposed C-FPFH descriptor is specifically effective in handling occlusions.

Furthermore, the importance of multi-level matching and grasp fine-tuning is surpris-

ingly close, as evidenced by the results of w/o MM and w/o GF. This underscores

that both accurate matching and an effective fine-tuning process are critical for achieving

high-quality grasps.

4.3.6 Robustness to Environmental Changes

In the final experiment, we validate the robustness of our proposed method across vary-

ing environments by performing grasping tasks in three different scenarios: table-top,

CHAPTER 4. MULTI-LEVEL SIMILARITY MATCHING APPROACH 59



Hand 

model

Table-top On-shelf Hand-over

Figure 4.14: Application of our method to achieve grasping tasks in three different
scenarios without the original models of the environmental objects.
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Figure 4.15: Comparison of the performance robustness of different methods.

on-shelf, and hand-over, as shown in Fig. 4.14. Unlike the previous experiments, we

assume that the original models of environmental objects such as the platform are not

available, requiring all environmental features to be acquired through visual detection.

To handle this, we utilize the RGB-D information captured from the background image

to reconstruct a scene model based on the point cloud features. This reconstructed

model is then used for collision detection during grasp planning, which demonstrates

that our method is independent of pre-existing environmental object models. In the

hand-over task, we further recover a hand model based on the recognition of the human

hand to prevent grasps that may collide with the hand.

We compare the performance of our method with two learning-based benchmarks,

GraspNet and HGGD, using the 3 objects shown in Fig. 4.14, for which all the methods

can generate feasible grasps to ensure comparability. For each object and method, we
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HGGDGraspNetFigure 4.16: Failures of learning-based methods in on-shelf and hand-over tasks.

perform 5 grasping attempts and record the number of successful attempts. The results,

summarized in Fig. 4.15, clearly demonstrate that our method consistently achieves

robust and high performance across all scenarios, whereas both GraspNet and HGGD

exhibit significant variability in different environments, highlighting their sensitivity to

environmental changes. As illustrated by the failure cases in Fig. 4.16, the learning-

based methods may produce very few grasp candidates for the target object when it is

positioned close to the camera during a hand-over task, and tend to detect high-quality

grasps on environmental objects rather than the target object during an on-shelf task.

These observations underscore the effectiveness of our method in addressing the key

limitations of learning-based approaches.

4.4 Conclusions

In this study, we present a novel framework for single-view object grasping by introducing

a multi-level similarity matching approach that accurately identifies similar reference

models from an existing database to guide the grasping of unknown target objects.

The matching process simultaneously evaluates object similarity from the aspects of

semantics, geometry, and dimensions to optimize the selection of potential candidate

models. Notably, we introduce the C-FPFH descriptor, a novel geometric descriptor,

which efficiently evaluates the similarity between partial point clouds from observed

objects and complete point clouds from database models. This descriptor demonstrates

exceptional effectiveness in handling occlusions. Additionally, we integrate LLM to assist
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with semantic matching, propose the SOBB for accurate dimensional matching, develop

a PDM-based point cloud registration method to achieve imitative grasp planning, and

incorporate a two-stage grasp fine-tuning process to optimize the final grasp quality.
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Chapter 5

Application of Similarity-Based

Methods in Dynamic Object

Manipulation

This thesis chapter originally appeared in the literature as

H. Chen, T. Kiyokawa, W. Wan, and K. Harada, "Adaptive Grasping of

Moving Objects in Dense Clutter via Global-to-Local Detection and Static-

to-Dynamic Planning," in Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), Atlanta, USA, 2025.

5.1 Introduction

In logistic warehouses, a wide variety of daily items are transported on conveyor belts

every day, and human workers are required to pick out target items from an unorganized

clutter and pack them into delivery boxes. To achieve robotic automation for this task,

an interesting issue is posed: grasping unknown objects in clutter moving on a conveyor.

Existing studies on robotic grasping for unknown objects predict grasps directly

from partial point clouds [15, 86] or perform shape completion before planning [87,
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21]. However, they have limited generalization to object types outside of their training

dataset due to their data dependency. Moreover, these methods mainly focus on single

or static target objects, whereas in real-world scenarios, objects are often in cluttered

or dynamic states where multiple uncertainties coexist.

Therefore in this study, we aim at developing a grasping strategy that can cope

with novel object types and grasping scenarios where the target objects are moving in

dense clutter. The key to realize such a grasping task is the proposed global-to-local

detection and static-to-dynamic planning. In the global-to-local detection, we first cap-

ture the object features used for grasp planning from a global image, then assess their

movement states from a local viewpoint. During grasp planning, we first perform static

planning to generate robust grasp poses, followed by dynamic planning to enable real-

time grasping of the moving objects. The combination of global-to-local detection and

static-to-dynamic planning provides an effective method for grasping moving cluttered

objects that are outside of existing datasets, since it addresses multiple real-world un-

certainties step-by-step rather than all at once as in traditional learning-based methods.

The experimental results demonstrate the exceptional effectiveness of our method in

grasping novel objects under high uncertainty.

Our main contributions can be summarized as:

• We propose a global-to-local detection and static-to-dynamic planning approach

for grasping moving objects in dense clutter on a conveyor belt.

• We develop an adaptive object tracking method that accurately estimates the

movement speed and the instantaneous position of the cluttered objects.

• We develop a recurrent algorithm to achieve continuous dynamic grasping for the

moving objects.

Fig. 5.1 showcases the general flow of our system. We utilize the flexibility of an

in-hand camera to switch between global and local observation poses, and leverage the

results of static grasp planning to achieve real-time dynamic object grasping.
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Figure 5.1: Grasping moving cluttered cans by our method. Static and dynamic planning
are executed at the end of global and local detection respectively.

5.2 Methods

5.2.1 System Overview

Our goal is to grasp unknown objects from a dense clutter moving on a conveyor belt.

Fig. 5.2 shows the complete system workflow. Similar to an industrial setting, the

cluttered objects are initially positioned at the start of the conveyor belt, with the robot

located some distance away. To achieve the grasping task, we first let the robot move

to a global observation pose where the in-hand camera can observe the entire clutter

from a diagonal downward view. In this pose, we use the camera to capture an instant

RGB-D image and perform instance segmentation on the RGB input to obtain object

categories, and combine the results with the depth input to obtain object point clouds.

Based on these two types of information, we implement a similarity matching method

similar to [33] to obtain a similar reference model for each object in the clutter from

an existing database. During this process, we utilize LLMs to greatly improve the

matching efficiency. Based on the reference models, we perform static grasp planning

to simultaneously generate robust grasp poses for all objects in the clutter at a fixed

position in front of the robot. The grasp sequence for different objects is also determined

by the planning results.
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Figure 5.2: Workflow of our proposed system. All visual detections and grasp planning
are performed online using only a single in-hand camera.

During static grasp planning, an adaptive local observation pose with a top-down

view is also generated based on object locations and arrangements. When this pose

is determined, we immediately let the robot move there and start capturing real-time

images to assess the movement state of the clutter. We incorporate a moving object

tracking method to obtain the movement speed and instantaneous position of the clutter

based on two key time points. Based on these two results, we finally develop a recurrent

algorithm to achieve dynamic grasping for moving cluttered objects.

5.2.2 Global Visual Detection

We use a single in-hand camera for visual detection for two reasons: 1) For cluttered

objects, it is difficult to identify object correspondences in different viewpoints when

using multiple cameras; 2) We need a diagonal downward view to get more surface

information about the objects, and a top-down view to accurately track their movement,

in which case a flexible in-hand camera becomes a better choice.
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During global detection, the camera obtains an instant RGB-D image containing

the cluttered objects and feeds it into a SOTA instance segmentation model of Detic

[76]. To exclude the segmentation results of background objects, we define a region

based on the position of the conveyor belt in the image and extract only the results

within that region. For redundant results such as bottle_cap in bottle, we ignore them

by calculating the containment relationship between detected bounding boxes. From

the filtered segmentation results, we can obtain the category name and 3D point cloud

of each object in the clutter. Based on them, we can perform similarity matching to find

reference models from an existing database to guide the grasping of unknown objects,

as was done in [33]. However, their method requires matching with all database models,

which is computationally long and not suitable for the task of grasping moving objects.

5.2.3 LLM-Assisted Similarity Matching

Considering that most database models are irrelevant to the target object, we improve

matching efficiency by using LLMs (GPT-4o [79] in our task) to pre-screen potential can-

didates based on object categories, passing only these candidates for further matching.

The implementation is as follows:

Prompt: Which objects in the {YCB dataset} are likely to be similar to {can} in

terms of robotic grasping? Please list the 5 most likely object names with their indices.

Answer: ... 005_tomato_soup_can, 006_mustard_bottle, 010_potted_meat_can,

021_bleach_cleanser, 025_mug ...

In the prompt, the first bracket can be filled in with an existing model database that

is known to LLMs and can be used for similarity matching, and the second bracket can be

filled in with the obtained category name of each object in the clutter. From the answer,

we can extract only the key information about the selected candidates by recognizing

their indices. For these candidates, we further perform point cloud registration between

their point clouds and the obtained point cloud of each object in the clutter using the

RANSAC [83] and ICP [84] algorithms. Due to the pre-screening of model candidates,
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registration can be finished in a short time.

5.2.4 Static Grasp Planning

Each model in the database is pre-planned with over one hundred antipodal grasps

using a mesh surface segmentation approach [68]. These grasps are robust through an

accurate analysis of the complete mesh model. For grasp planning of an unknown object,

we transfer the pre-planned grasps from a similar database model to the unknown object

based on the transformation matrix obtained from point cloud registration, similar to

what was done in [33]. The grasp planning process is performed in a robot simulation

environment1.

In our task, the objects are moving and we need to quickly generate grasps for

real-time dynamic grasping. For this purpose, we first assume that the cluttered objects

are right in front of the robot and perform static grasp planning at this fixed position

p0. Then during dynamic grasping, we directly query the planned static grasp poses

to quickly generate real-time grasps. To ensure the efficiency and accuracy of grasp

planning, we define two types of areas called collision area and overlap area based on

the axis-aligned bounding box (AABB) of each object in the clutter, as shown in Fig.

5.3. In each grasp planning, there is one target object and several surrounding objects.

For the target object, we extend its AABB in the opposite direction of the moving

direction to generate a blue area, and for the surrounding objects, we extend their

AABBs in both the positive and negative directions of the moving direction to generate

a red area. The concatenation and intersection of the blue area and the red area indicate

collision area and overlap area, respectively.

To avoid collisions between the gripper and all moving objects before and after

grasping, the pregrasp pose defined by backing off the grasp pose for a small distance

cannot be located within collision area. In addition, at the grasp pose, the target

object cannot collide with the gripper fingers and should be located within the gripper’s

closure area. Based on these rules, we exclude all infeasible grasps included in the grasps
1https://github.com/wanweiwei07/wrs
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Figure 5.3: Fast and accurate grasp planning for cluttered objects based on collision

area (blue ∪ red) and overlap area (blue ∩ red).

transferred from similar models. To further accelerate the planning process, we prioritize

the grasps whose centers are outside overlap area. As shown in Fig. 5.3 right, the grasp

poses with blue centers are more likely to be collision-free than those with red centers

in cluttered scenes.

Another important issue is the determination of the grasp sequence. While the

grasp planning for all objects in the clutter is performed simultaneously, they need to

be grasped in a certain order. As shown in Fig. 5.4, we consider several factors for

this including: 1) the confidence score during instance segmentation Sc, as it reflects

the object occlusion rate and the reliability of the similarity matching results; 2) the

fitness score during point cloud registration Sf , as it determines the quality of the grasps

transferred from similar models; and 3) the speed of the grasp generation, as faster grasp

planning represents lower grasping difficulty. Both Sc and Sf can be directly obtained

from the corresponding algorithms, while the speed of the grasp generation needs to

be calculated over a time period T (T = 5s in our task). We take the total number

of IK-solvable and collision-free potential grasps generated within this time period |Gp|

minus the number of unstable grasps |Gu| as the evaluation metric. The grasp stability

is evaluated based on the relative angle θ between the gripper opening direction and the

estimated normal direction of the contact point. θ is taken as an acute angle, as shown

in Fig. 5.4 right. When θ > 30° at any contact point, we consider the grasp unstable

and categorize it into Gu. When contact points are within the invisible area causing θ
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Figure 5.4: Multi-metric evaluation of grasp sequences in cluttered scenes.

to be unavailable, we categorize such grasps as potential grasps and use them only when

none of the grasps in Gp are evaluated as stable. Finally, we develop a multi-metric

function for determining the grasp sequence as follows:

P = Sc ∗ Sf ∗
|Gp| − |Gu|

T
(1)

where P denotes the grasp priority of each object in the clutter. Each time after planning

grasps for the object with the highest priority, we remove that object from the grasp

planning of the other objects and recalculate the grasp priority for the remaining objects.

5.2.5 Adaptive Local Detection

In a dynamic grasping task, we need to obtain the movement state of moving objects in

addition to appropriate grasp poses. For this purpose, we move the in-hand camera to

an overhead position that can observe the objects from a top-down view perpendicular

to the moving direction. We use a frame-difference based object tracking algorithm2

to obtain the 2D bounding box for cluttered objects in real-time images. By utilizing

the fact that the camera’s field of view (FOV) is known, we can accurately estimate the

clutter’s movement speed by capturing two key time points: 1) t1, when the clutter just

enters the camera view; 2) t2, when the clutter reaches the horizontal centerline (HC)

2https://learnopencv.com/object-tracking-using-opencv-cpp-python
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of the camera view. The movement speed can be obtained by dividing the distance the

clutter traveled between t1 and t2 by the time difference. However, since the FOV of a

typical camera is only known in vertical and horizontal directions, the travel distance is

only available when the clutter enters from the vertical centerline (VC) of the camera

view, as shown in Fig. 5.5 left. Therefore, we adaptively set the camera position so

that the frontmost point of the clutter is aligned with VC, and the camera height is

maintained at a certain distance (30 cm in our task) above the highest point of the

clutter. This can be easily achieved since the point clouds of all objects in the clutter

have been obtained during global visual detection.

Two other factors that significantly affect the accuracy of speed estimation are: 1)

the first emerging point, which represents the part of an object that first appears at a

certain position in the camera view, as shown in Fig. 5.5 left. When this point changes

between t1 and t2, the real travel distance is an unknown value between the lengths

of the green and red lines. However, we can approximate it by obtaining the depth of

the first emerging point at t1 and t2 (denoted as d1 and d2, respectively) and averaging

their values; 2) the detection latency, which is an unavoidable error occurring when the

moving clutter has traveled a short distance beyond the target line before being detected.

This error becomes significant at higher movement speeds and can be compensated by

accounting for the number of pixels traversed, denoted as ∆h1 and ∆h2 for t1 and t2,

respectively. We can then derive the following equation for accurate speed estimation:

ṽ = (d1 + d2)/2 ∗ tan(0.5 + (∆h2 −∆h1)/h)α
t2 − t1

(2)

where α is the camera’s FOV in the moving direction and h is the vertical resolution

of the camera view. We validate the efficiency of this calculation method by testing in

two conveyor speed modes, each with 10 trials using different types or arrangements of

cluttered objects, as shown in Fig. 5.5 right. The average test results for the two speed

modes are 5.45 ± 0.10 (cm/s) and 11.05 ± 0.23 (cm/s), both of which are very close to

the ground truth with minimal fluctuation.

In addition, we can also obtain the instantaneous position p2 of the clutter at t2

CHAPTER 5. SIMILARITY MATCHING IN DYNAMIC MANIPULATION 71



ENGINEERING SCIENCE

OSAKA UNIVERSITY

Unavailable

?

𝛼 : Field of view

𝑑1 : Initial depth

𝑡1 𝑡2

𝑡1: Objects just enter 

the camera view
𝑡2: The frontmost object reaches the 

centerline of the camera view

…

𝑑2 : Final depth

Moving 

direction

First emerging point

?

Overhead camera

Object

VC

HC

ℎ : Vertical 

resolution

∆ℎ1 

∆ℎ2 

Figure 5.5: (Left) Speed estimation of moving cluttered objects based on adaptive local
visual detection and real-time object tracking. (Right) Evaluation of the calculation
results in two conveyor speed modes (5.5 cm/s and 11 cm/s). In each trial, we change
either the object arrangement or object type.

since the camera position is known, and perform dynamic grasp planning based on ṽ

and p2.

5.2.6 Dynamic Grasp Planning

Using the results of static grasp planning and local visual detection, we develop a re-

current algorithm to achieve dynamic grasping for moving objects in dense clutter (see

Algorithm 2). In the first step of grasping the first-priority object, we set a time in-

terval of ∆t = 1s and predict the future position of the clutter at each subsequent ∆t

after t2 based on ṽ and p2. Taking the future state t3 as an example, we translate the

static grasps to the predicted position p3 and check their feasibility. When there is more

than one feasible grasps at p3, we select the closest grasp and let the robot move to its

pregrasp pose. During this process, we record both the time used for grasp planning

and the time used for the robot to move from the local observation pose to the pregrasp

pose as tp and tm, respectively. Meanwhile, we assume the time taken by the robot to

approach the grasp pose from the pregrasp pose to be ta = 0.5s. If tp + tm + ta < ∆t,

it means that the robot has enough time to complete the grasping motion before the

clutter reaches p3. In this case, we let the robot wait for a small period of time (the time

difference) and then execute the grasp. Otherwise, we proceed to the next future state

and repeat the process from planning to moving until the time condition is satisfied.
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In the subsequent steps of grasping lower-priority objects, we delay t2 by the amount

of time taken to grasp the previous objects and repeat the same process as in the first

step. Each step is done in a separate thread to prevent conflicts.

5.3 Experiments

5.3.1 Experimental Setup

We carry out grasping experiments using a UR5e robot arm equipped with a Robotiq

2F-140 adaptive gripper, an in-hand RealSense D435 depth camera and a standard-type

conveyor belt. The existing database we use for similarity matching is the YCB dataset

[80], excluding objects without mesh models or with distorted models. All computations

are performed on a PC equipped with a Ryzen 7 5800H CPU and a GeForce RTX 3060

GPU. The Detic model and GPT-4o model are pre-loaded to reduce task processing

time.

5.3.2 Dynamic Grasping Experiments

We select various types of novel objects and make them into dense clutter for grasping

experiments. In order to verify the effectiveness and generalizability of our method, we

categorize the clutters into three patterns (see Fig. 5.6): (P1) three identical objects;

(P2) three different objects; (P3) five different objects. For each pattern, we create

five different clutter sets (C1-C5). For each clutter set, we generate ten different object

arrangements (A1-A10). Thus, we conduct experiments on a total of 3 × 5 × 10 = 150

clutter scenarios.

We test in two conveyor speed modes (5.5 cm/s and 11.0 cm/s) and evaluate the

results by two metrics: Success Rate (SR) and Execution Rate (ER), calculated

as SR = Number of Successful Grasps / Number of Grasps Performed, ER = Number

of Grasps Performed / Number of Objects Targeted. Due to time constraints in the

dynamic grasping task, we set the number of objects targeted to two in the 5.5 cm/s
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Figure 5.6: Experimental objects in 3 patterns, 5 clutters, and 10 arrangements.

speed mode and one in the 11.0 cm/s speed mode. The objects to be grasped are

determined autonomously by the planning process. In general, SR and ER can be used

to represent the accuracy and efficiency of our method, respectively.

A complete task cycle is: Place the cluttered objects at the start of the conveyor

belt → Run the conveyor, start visual detection and grasp planning → Grasp the first

object and place it in a nearby box → Grasp and place the second object (only in the

5.5 cm/s scenario) → Stop the conveyor. An object is considered successfully grasped

if it is placed in the box without being dropped during the process.

Table 5.1 shows the experimental results. Overall, our method can handle moving

clutter with different object numbers, types and arrangements with both high success

rate and execution rate. In both speed modes, P1 and P2 achieve close results, indicating

that our method performs stably with multiple object types coexisting. In the 5.5

cm/s speed mode, most execution failures occur in grasping the second object (the

clutter has reached the end of the conveyor belt before a grasp is output), leading to

lower ER compared to the 11.0 cm/s speed mode where only one object is targeted.
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Table 5.1: Experimental Results for Grasping Various Types of Moving Clutter

Speed mode Conveyor speed = 5.5 cm/s Conveyor speed = 11.0 cm/s

Clutter set C1 C2 C3 C4 C5 Average C1 C2 C3 C4 C5 Average

P1
SR 76% 88% 94% 82% 80% 84% 67% 80% 80% 78% 70% 75%

ER 85% 80% 95% 85% 75% 84% 90% 100% 100% 90% 100% 96%

P2
SR 88% 89% 82% 78% 93% 86% 67% 70% 78% 75% 63% 71%

ER 85% 90% 85% 90% 75% 85% 90% 100% 100% 80% 90% 92%

P3
SR 77% 73% 79% 75% 88% 78% 60% 63% 57% 75% 67% 64%

ER 65% 75% 70% 60% 85% 71% 100% 80% 70% 80% 90% 84%

However, in contrast, we observe more grasping failures under higher conveyor speed

due to its smaller allowance for positional error during grasping. When the number of

objects increases such as in P3, the processing time also increases and more surrounding

obstacles lead to more collisions, resulting in lower SR and ER compared to scenes with

fewer objects. In addition, we find that objects with regular shapes are more likely

to be selected for priority grasping, e.g., the green can and the blue box in Fig. 5.6.

The reason is that they achieve better results in point cloud registration and find stable

grasps more quickly due to their regularly shaped point clouds.

5.3.3 Failure Analysis

For both grasp failures and execution failures, we summarize the reasons and possible

solutions as follows:

1) Large occlusion rate. When the cluttered objects are arranged in such a way

that a large part is invisible to the camera, the extracted object point clouds are too

sparse for stable similarity matching and grasp planning results. A possible solution is

to add more viewpoints or observe more times to obtain more complete appearance of

the objects.

2) Too dense arrangement. When the objects are closely packed and there are

too few graspable areas, the planning process takes a long time and the clutter may
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have reached the end of the conveyor belt before a feasible grasping motion is output.

A possible solution is to combine other skills, such as pushing objects, to create more

space for grasping.

3) Intermediate collision. When the first object is grasped and moved to the

placement position, other objects in the clutter are still moving, and collisions between

the robot and the moving objects may occur during this process. A possible solution

is to develop a real-time motion planning method to avoid collisions in such dynamic

scenes.

5.4 Conclusions

In this study, we present a novel framework using global-to-local detection and static-

to-dynamic planning to achieve grasping of moving objects in dense clutter. Especially,

we use an improved similarity matching method to efficiently plan grasp poses and

sequences for cluttered objects, and propose an adaptive object tracking method to

accurately estimate the movement speed and the instantaneous position of the moving

clutter. Based on these results, we develop a recurrent algorithm to achieve continuous

dynamic grasping.

The effectiveness and generalizability of our method is verified through real-world

experiments. However, additional methods can be combined to address the limitations

of the current approach in future work.
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Algorithm 2: Dynamic grasp planning for cluttered objects
Input: Grasp poses and sequences from static planning, estimated movement speed

and instantaneous position
Step 1: Grasp the first-priority object o1
Initialize n = 3, tc = 0s, ta = 0.5s and ∆t = 1s
while True do

tn = tn−1 + ∆t (Initially, t3 = t2 + 1s)
Predict the clutter’s future position pn = pn−1 + ṽ∆t
for each static grasp pose g ∈ o1 do

Translate the grasp from p0 to pn

Compute IK solutions and check collisions
if g is IK-solvable and collision-free then

Save g into Gf

if Gf ̸= ∅ then

Find the optimal grasp pose g∗ ∈ Gf with the minimum distance to the local
observation pose
Let the robot move to the pregrasp pose of g∗

Record the planning time tp and motion time tm

Calculate the cumulative time tc = tc + tp + tm

if tc + ta < (n− 2)∆t then

Wait for (n− 2)∆t− (tc + ta) seconds
Let the robot move to g∗ and execute the grasp
break

n = n + 1
Step 2: Grasp the second-priority object o2
Record the entire duration of grasping the first object td

In another thread, delay t2 by td with all other parameters unchanged and repeat
the same process as in Step 1
Step 3 (o3), Step 4 (o4), ... : Same as Step 2 =0
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Chapter 6

Application of Similarity-Based

Methods in Task-Oriented Object

Grasping

This thesis chapter originally appeared in the literature as

H. Chen, T. Kiyokawa, W. Wan, and K. Harada, "Generalizable task-oriented

object grasping through LLM-guided ontology and similarity-based plan-

ning," Robotics and Autonomous Systems. (Under Review)

6.1 Introduction

Robotic grasping is advancing beyond conventional pick-and-place operations toward

more human-like behaviors, where understanding part affordance [88, 89] is crucial for

achieving task-oriented grasping (TOG). For instance, a robot is expected to identify

and grasp the handle of a cup in a pouring task. In real-world scenarios, however, human

instructions are often intuitive and semantically rich, extending far beyond simple action

labels like pouring. As a result, the accurate interpretation of user intensions becomes

essential for both human-guided manipulation and human-robot collaboration tasks.
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Moreover, the reliable recognition of object functional parts from partial observation

while ensuring the generation of high-quality grasps remains a significant challenge,

leaving this research problem largely unsolved.

More than a decade ago, the concept of semantic grasping was introduced [40, 41] to

enable high-level manipulation considering task constraints, rather than focusing solely

on basic grasping. However, at the time, even with the aid of vision and tactile sensors,

analytical approaches struggled to generate high-quality grasps without human super-

vision and showed limited generalization. With the rapid progress in deep learning and

image segmentation, more advanced strategies based on visual recognition have emerged

[42, 43, 44], demonstrating notable performance in planning task-oriented grasps across

a wide variety of objects. Nevertheless, these vision-based methods typically represent

target tasks using predefined cues such as grasp from the handle or simplistic labels

like handover or cut, lacking the ability to translate contextual human instructions into

specific robotic actions. This interaction challenge has been widely addressed in recent

years with the advent of vision-language models (VLMs) [45, 46, 47]. By leveraging high-

dimensional language embeddings and attention-based learning frameworks, robots are

now increasingly capable of responding to natural human commands. However, several

limitations persist in current research: 1) low grasping DoF [45]; 2) reliance on com-

plete mesh models or point clouds [46]; and 3) significant performance degradation when

generalizing to unseen objects [47].

To overcome these limitations, we propose a novel strategy for TOG that integrates

an object-part-task ontology guided by large language models (LLMs) with a grasp de-

tection method based on similarity matching with known templates. This approach

enables accurate interpretation of intuitive human instructions and robust 6-DoF grasp

generation by leveraging references from similar pre-existing instances. An example ap-

plication of our proposed method is shown in Fig. 6.1. Given a previously unseen object

and a natural human instruction, we first process the semantic information by associ-

ating the human instruction with an existing ontology and identifying the functional

part of the target object in the given task. Then, we utilize the geometric information

obtained from single-view observation and employ an analytical method to recognize the
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Figure 6.1: Demonstration of our method applied to a pouring task with an unseen mug.

corresponding functional part, represented as a point cluster. Based on this recognition

result, we query a similar model template containing prior segmentation and grasping

knowledge as a reference. Finally, through an optimized matching and planning process,

a high-quality 6-DoF grasp pose is generated and executed to successfully accomplish

the task. The effectiveness of our method is validated by extensive real-world exper-

iments, notably demonstrating strong generalization to novel-category objects via the

scalable integration of LLM-guided ontology and similarity-based planning.

Our main contributions can be summarized as:

• We propose an object-part-task ontology guided by LLMs that efficiently and

accurately maps intuitive human instructions to the corresponding functional parts

of target objects.

• We introduce a geometry-based part recognition method that is robust to view-

point variations by leveraging similar model templates as references for functional

part matching and imitative grasp planning.

• We optimize the quality of generated grasps from similar references through a com-

bination of local-to-global point cloud registration and stability-aware positional

adjustment.
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Figure 6.2: Proposed TOG system overview. Blue/Orange indicate Inputs/Outputs.

6.2 Methods

6.2.1 Overview

Our goal is to enable a robot to execute task-oriented grasps based on intuitive human

instructions. Given an instruction, the robot uses an RGB-D camera to detect the

target object, identify the relevant functional part, and plan feasible grasps that fulfill the

intended task. The overall process consists of three core components: Human Instruction

Interpretation, Functional Part Recognition, and Task-Oriented Grasp Planning. A high-

level overview of our TOG system is illustrated in Fig. 6.2.

On the left side, we process RGB-D images captured by a wrist-mounted cam-

era through mask extraction and pixel-to-point projection, resulting in a partial point

cloud of the target object. On the right side, we process human instructions using an

LLM-guided ontology to identify the relevant functional part, which is used to guide the

subsequent matching and planning stages. Meanwhile, we prepare a database of model
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templates, each segmented into multiple functional parts according to the defined on-

tology. These templates contain both complete point clouds and preplanned grasping

knowledge.

Based on the identified functional part and the segmented template point clouds,

we apply a sampling-clustering-matching method to recognize the corresponding part (a

point cluster) within the observed object point cloud. We then perform local-to-global

point cloud registration using both the full template point cloud and the selected point

cluster to align the observed object with the best-matching model template, yielding a

transformation matrix. This matrix is used to transfer preplanned grasping knowledge

from the model template to the observed object. Finally, a dedicated optimization pro-

cess generates robust task-oriented grasps tailored to the given instructions and object

geometry.

6.2.2 Human Instruction Interpretation

In human-guided manipulation and human-robot collaboration tasks, accurately inter-

preting human instructions is essential for generating appropriate robot actions. How-

ever, the rich semantic knowledge embedded in contextual instructions is difficult to

extract without a powerful inference model. Recent advances in LLMs have made this

level of understanding feasible. In the context of TOG, a key challenge is determin-

ing which part of the object the robot should grasp—the central problem addressed in

this work. To associate human instructions with relevant object parts, we propose an

LLM-guided object-part-task ontology.

As shown in Fig. 6.3, the proposed ontology consists of two components: offline

and online. The offline ontology predefines object classes with multi-layer part hierar-

chies. For instance, a mug is divided into handle and body, while the body can be further

subdivided into inside and outside. Different object parts correspond to different grasp-

ing strategies, which are flexibly selected according to task requirements. The online

ontology handles user-provided instructions, which are not previously known. To es-

tablish connections between task instructions and relevant functional parts, we leverage
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Figure 6.3: LLM-guided object-part-task ontology with online and offline components.

the latest LLM, GPT-4o [79], to bridge the online and offline components. The prompt

used for this association is originally structured as follows:

Given the following ontology ... A robot is given the following commands ... Ques-

tion: Which part(s) of the object should the robot grasp?

Despite the strong interpretability of LLMs, we observe that their answers can

vary across trials, lacking accuracy and consistency. To address this, we first adopt

the prompt optimization method from [90], which uses LLMs themselves as prompt

optimizers. Implementation details are provided in Appendix A. While the optimized

prompts incorporating task constraints improve answer correctness, they still fall short of

human-level reliability. Through a large number of trials, we identify two prompt design

principles that significantly enhance LLM performance: 1) Step-by-step reasoning; 2)

Using an answer template. In practice, we append a step-by-step reasoning template to

the end of each prompt, following this structure:

The command is ... Step 1: Identify the type of task ... Step 2: Apply task

constraints ... Analyzing the object parts ... Best choice for the robot ... Conclusion:
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The robot should grasp ...

Using this structured prompt, we observe that the LLM’s response accuracy ap-

proaches 100% across varying tasks. The functional part information is easily extracted

from the Conclusion line of the answer.

6.2.3 Functional Part Recognition

To map the semantic identification of functional object parts into geometric space for

subsequent planning, we need to extract part-level features from visual inputs. A com-

mon approach is to train a vision model for object part segmentation. However, we

observe that even state-of-the-art segmentation models [91] suffer from viewpoint sen-

sitivity, where segmentation results become inconsistent under varying viewpoints. As

shown in Fig. 6.4, components such as the mug handle and the bottle cap are not reliably

identified when the objects are placed in different poses. To address this limitation, we

propose a new strategy based on template-assisted geometric analysis.

Given the RGB input containing the target object, we first apply a powerful class-

agnostic segmentation method that is robust to viewpoint variations, SAM [77], to

obtain an object mask indicating the object’s planar location. Using the corresponding

depth input, we perform pixel-to-point projection to map the 2D mask into a 3D point

cloud, capturing the object’s spatial geometry. However, due to partial observation,

the resulting object point cloud often contains large unseen areas, making it difficult to

perform reliable part segmentation with incomplete geometric features. To address this,

we incorporate pre-segmented model templates associated with the predefined ontology

and use them as references to guide part segmentation. This template-guided process

consists of three main steps: sampling, clustering and matching, as illustrated in Fig.

6.5. We begin by converting all model templates from mesh representations to point

clouds using a voxel grid filter with an appropriate leaf size (5 mm in our task). Then,

in the sampling step, we apply the same voxel filter to downsample the observed object

point cloud, ensuring uniform point density. Next, we take each sampled point as a

seed and search for its k-nearest neighbors to form a local point cluster. The number of
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Figure 6.4: Sensitivity of model-based part segmentation to viewpoint changes.

neighbors k is determined using the following equation:

k = N(oall)N(mpart)
N(mall)

(6.1)

where N(·) denotes the number of points in a point cloud. oall and mall represent the

entire point clouds of the observed object and the model template, respectively. mpart

corresponds to the point cloud of the functional part within the template. Finally,

the sampled point clusters are matched against the pre-segmented model templates

to identify the best-matching cluster, the one that most closely resembles the target

functional part.

However, the matching process is non-trivial. As illustrated in Fig. 6.5, point clouds

captured by consumer-grade cameras often suffer from low precision due to sensing

noise. To ensure the accuracy, efficiency, and stability of the matching process under

such conditions, we introduce a multi-metric similarity evaluation method that considers

both local and global geometric similarity. Letting a sampled point cluster be denoted

as opart, we first apply Principal Component Analysis (PCA) to evaluate the similarity

in point distribution between opart and mpart, using the following metric:

dpca =
∥∥∥∥ σo

|σo|
− σm

|σm|

∥∥∥∥
2

(6.2)

where dpca represents the PCA-based distributional difference between opart and mpart.

σo and σm denote the 3-dimensional PCA singular value vectors of opart and mpart,

respectively, normalized by their Euclidean norms. This evaluation allows for a quan-

titative comparison between point distributions. However, PCA alone is insufficient to

fully capture shape similarity. An intuitive example is that a cube and a sphere may
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Figure 6.5: Template-assisted object part recognition using a three-step strategy.

yield similar PCA results due to geometric symmetry, despite having fundamentally

different shapes.

To address this issue, we introduce a second evaluation metric: Point-to-Point

Distance (PPD). As illustrated on the left side of Fig. 6.6, we use the center point (for

mpart) and the seed point (for opart) to calculate the PPD. The center point is identified

by first computing the center of the bounding box of mpart, and then finding its nearest

neighbor within mpart. Based on this point, we calculate the standard deviation of its

distances to all other points in mpart, denoted as D(sm). For the seed point sampled in

opart, we similarly compute the standard deviation of its distances to all other points in

the local cluster, denoted as D(so). The PPD is then evaluated as:

dppd =
∣∣∣∣ D(so)
max(|so − so|)

− D(sm)
max(|sm − sm|)

∣∣∣∣ (6.3)

where max(·) denotes the maximum deviation from the mean occurring during the point

distance calculation. The resulting value, dppd, reflects the difference in point dispersion

between mpart and opart, offering an additional cue for distinguishing functional parts

with different spatial shapes. However, this metric is non-directional and does not

capture the full 3D geometric structure, making it unsuitable for use in isolation.
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Figure 6.6: Two distance metrics for evaluating similarity between point clusters.

While the combination of dpca and dppd performs well for evaluating similarity be-

tween point clusters, they focus primarily on local geometry and can become less reliable

when visual features are sparse or noisy. To address this limitation, we incorporate a

third metric: Center-to-Center Distance (CCD). As illustrated on the right side of Fig.

6.6, we obtain the bounding box centers of both the entire point clouds mall, oall and

the part point clouds mpart, opart, denoted as global center and local center, respectively.

The CCD is then evaluated as:

dccd =
∣∣∣∣co

bo
− cm

bm

∣∣∣∣ (6.4)

where co and cm represent the distances between the local and global centers within the

observed object and the model template, respectively. bo and bm denote the maximum

possible distances, defined as half the diagonal length of the bounding boxes of oall and

mall, respectively. The resulting value, dccd, reflects the difference in the relative global

positions of mpart and opart within their respective entire objects, thereby enhancing

functional part recognition especially when local visual features are sparse or noisy.

Combining the three metrics, we define the final evaluation function as:

d = dpca + dppd + dccd (6.5)

where d represents the overall difference between a template functional part and a sam-

pled point cluster within the observed object. Smaller values of d indicate higher similar-
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ity. Note that in Equations 6.2-6.4, all metrics have been normalized using appropriate

boundary values, allowing them to be combined directly through addition. The final

output of the matching process is the point cluster o∗
part that achieves the lowest average

d across matches with mpart from all available templates.

6.2.4 Task-Oriented Grasp Planning

After recognizing the functional part represented by o∗
part, the next step is to plan robust

grasps within its region to achieve the goal of TOG. However, due to the sparse and

noisy point features in o∗
part, directly generating reliable grasps from the point cloud

is extremely challenging. To overcome this, we leverage the matched model template

again to transfer grasping knowledge from known objects to unknown targets. For each

model template, we use a mesh-segmentation-based approach [68] to preplan over 50

grasps on each subdivided part based on the offline ontology. For a given task, only the

preplanned grasps associated with the relevant functional part are utilized. To transfer

this grasping knowledge from the template to the object, we first need to obtain the

transformation matrix between the point clouds oall and mall to determine their relative

pose. However, the incomplete point cloud from partial observation poses a challenge for

accurate alignment with the complete template point cloud using traditional registration

methods like ICP [84]. To address this, we propose a novel strategy called local-to-global

registration, which aligns the point clouds step by step, from the functional part to the

entire object, thereby enhancing alignment accuracy.

As illustrated in Fig. 6.7, we begin by matching o∗
part with mpart using a com-

bined registration algorithm, RANSAC + ICP, implemented in Open3D1. This process

is repeated iteratively until a sufficient number of point correspondences (over half of

the points in o∗
part) are identified, indicating that the two point clouds are well-aligned.

Next, we apply the resulting transformation matrix, denoted as Tloc, to initially align

oall with mall. At this stage, although the functional parts are aligned, the entire ob-

jects may still show some misalignment due to rotational errors in the local registration.

1http://open3d.org/docs/release/tutorial/pipelines
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Figure 6.7: Local-to-global point cloud registration through rotation optimization.

Directly applying ICP at this point often fails to improve the result. To overcome this,

we introduce an optimization method that rotates oall around the seed point of o∗
part to

find an optimal rotation, denoted as Topt, which minimizes the distance between oall and

mall. The rotation space is discretized by sampling angles from −180◦ to 180◦ in 45◦

increments along each of the three axes, resulting in 83 = 512 total rotation attempts.

This optimization process does not take long with parallel computing. Once the opti-

mal rotation is identified, we apply the ICP algorithm to further refine the alignment

between oall and mall, ensuring precise registration. Assuming the resulting transforma-

tion matrix from ICP is Ticp, the final transformation from oall to mall is then calculated

as T = TlocToptTicp.

While this local-to-global registration is performed between the target object and

all relevant model templates, we use only the best-matching template, which achieves

the highest fitness score in the final ICP process, as the reference for grasp planning.

Assuming the set of preplanned grasps on the best-matching template is Gm, and the

camera pose relative to the robot base (the origin of the world coordinate system) is T0,

we can generate a corresponding set of imitative grasps on the target object as Go =

T0T −1Gm. To ensure executable grasps for real-world tasks, we perform IK computation
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Figure 6.8: Adjustment of suboptimal grasps via localized bounding box estimation.

and collision detection within a simulation environment2, filtering out infeasible grasps

that are either unreachable or result in collisions. For selecting reliable grasps positioned

on the functional part, we prioritize those located within the region of o∗
part by generating

a cube collision model Mcube within the gripper closure area and a point cloud collision

model Mpcd corresponding to o∗
part. When Mcube ∩Mpcd ̸= ∅, the grasp is considered

correctly positioned and selected for execution.

However, we observe that the transferred imitative grasps are not always highly

stable due to inherent differences between the model template and the target object. As

shown in Fig. 6.8, when the two point clouds align perfectly, the generated grasps are

typically executable without failure. However, when small deviations occur, misalign-

ment between the grasp center and the target object part may introduce potential risks,

such as: 1) Collision between the grasp pose and other parts of the object; 2) Suboptimal

contact between the gripper and the object, which may reduce grasp stability. To detect

such conditions, we generate a stick collision model Mstick connecting the two ends of

2https://github.com/wanweiwei07/wrs
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the gripper. When Mstick ∩Mpcd = ∅, the grasp center is considered misaligned with

the target object part and requires adjustment. Assuming the original grasp center is

pori, we search for its nearest neighbor point in o∗
part, denoted as pneg. We then search

for the k-nearest neighbors of pneg and estimate a localized bounding box (LBB) based

on these points. Here, the value of k is approximately set to half the number of points

in o∗
part. The center of the LBB is adopted as the new grasp center, denoted as pnew.

Finally, the original grasp pose is translated along the vector −−−−−→poripnew to let the grasp

center align with the target object part, thereby improving stability.

6.3 Experiments

6.3.1 Experimental Setup

To validate the effectiveness of our proposed method, we conduct the following TOG

experiments: 1) a benchmark study on grasping various types of unseen objects un-

der different human instructions; 2) an ablation study to evaluate the local-to-global

registration and the stability-aware grasp adjustment; and 3) an investigation into the

generalization to novel-category objects that are not part of the existing ontology. All

experiments are performed in the real world, using a UR5e robot arm equipped with a

Robotiq 2F-140 adaptive gripper and a wrist-mounted RealSense D435 RGB-D camera.

The experimental objects are placed on a fixed platform within the robot’s reachable

workspace, and are observed by the wrist camera from a diagonal downward view. All

computations are carried out on a computer equipped with a Ryzen 7 5800H CPU and

a GeForce RTX 3060 GPU.

6.3.2 Task-Oriented Grasping of Unseen Objects

For the first TOG experiment, we select three types of divisible objects with functional

parts: mug, bottle, and scissor. Each category includes three previously unseen items

with varying shapes and sizes, and their predefined ontological knowledge is stored in

CHAPTER 6. SIMILARITY MATCHING IN TASK-ORIENTED GRASPING 92



Mug

HandleBody

Inside Outside

Bottle

CapBody

Scissor

BladeHandle

Figure 6.9: Objects used in TOG experiments with predefined ontological knowledge.

a database, as shown in Fig. 6.9. Meanwhile, we incorporate a set of model templates

extracted from open-source libraries such as GrabCAD into the database. Each tem-

plate is pre-segmented according to the predefined ontology, and is accompanied by

downsampled point clouds and preplanned grasping knowledge for each functional part.

Evaluation of Part Recognition Accuracy

We begin by evaluating our geometry-based part recognition method through a compar-

ison with a state-of-the-art VLM-based approach, VLPart [91]. We select three salient

functional parts: mug handle, bottle cap, and scissor handle, as target regions to facilitate

a clear assessment of recognition performance. Each object is placed in 5 randomized

poses with their functional parts visible to the camera. For the VLPart trials, we capture

RGB images and apply a segmentation model based on Cascaded Swin Transformers,

pre-trained on a combination of datasets including LVIS, PACO, and others. A trial is

considered successful if the functional part is accurately recognized, with both correct

labels and mask regions. For our method, we capture object point clouds and apply the

proposed three-step strategy based on template-assisted geometric analysis. A recogni-

tion is considered accurate if the best-matching point cluster is predominantly located

on the functional part, defined as more than two-thirds of the points falling within the

correct region. The final part recognition accuracy (PRA) is calculated as:

PRA = Number of correctly recognized parts
Number of total recognition attempts
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Object Class Mug Bottle Scissor
Average PRA

Functional part Handle Cap Handle

VLPart 10/15 11/15 5/15 26/45 (57.8%)

Our method 12/15 14/15 15/15 41/45 (91.1%)

Table 6.1: Evaluation of PRA via a Baseline Study Against a VLM-Based Approach

Mug

Handle

Bottle

Cap

Scissor

Handle

Figure 6.10: Recognition of functional object parts using our geometric analysis method.

The experimental results are presented in Table 6.1. Our method significantly

outperforms VLPart in recognizing various functional parts across different object cate-

gories. Notably, in the case of the scissor handle, VLPart exhibits frequent failures with

the red scissor featuring an irregular handle, whereas our method maintains consistent

performance. This performance gap is primarily attributed to the viewpoint sensitiv-

ity of model-based approaches, as discussed in Section 6.2.3. In contrast, our method

mitigates this issue by leveraging 3D geometric features, which remain relatively invari-

ant under changes in viewpoint. Fig. 6.10 illustrates the robustness of our method in

recognizing various functional object parts from different perspectives.
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Figure 6.11: Recognition of functional object parts using our geometric analysis method.

Additionally, we investigate the impact of model template quantity on part recog-

nition performance. For each object class, we prepare 5 model templates that vary in

shape and size. During evaluation, we progressively increase the number of templates

used for similarity matching from a single template up to all five. As in the previous

experiment, we conduct 5 trials per object under each condition and record the number

of correct recognitions. As shown in Fig. 6.11, both the mug cap and bottle cap reach

optimal performance when the number of templates increases to 3, with no further im-

provement observed beyond that point. This suggests that using multiple templates

helps average out matching errors and enhance recognition accuracy; however, excessive

template inclusion yields no additional benefit. On the other hand, object parts with

distinctive geometric features, such as the scissor handle, demonstrate high recogni-

tion accuracy even with a minimal number of templates. Based on these findings, we

standardize the use of 3 model templates per object class in our TOG framework.

Evaluation of Grasp Selection Accuracy

Next, we evaluate our grasp selection method, which leverages LLM-guided ontologi-

cal reasoning, against GraspGPT [56], a state-of-the-art learning-based approach that

employs neural network inference. This experiment focuses specifically on selecting ap-

propriate grasping positions based on human instructions without considering grasp
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stability. Due to GraspGPT’s inability to generate grasps in real time, we use object

point clouds obtained from the recognition experiments and apply our similarity-based

planning method to pre-generate a set of feasible grasp candidates. For both GraspGPT

and our method, the inputs consist of object point clouds, pre-generated grasp candi-

dates, and a natural language instruction. The output is a single optimal grasp selected

either through neural inference (GraspGPT) or ontological reasoning (our method). In

our method, the selected grasp is the first candidate located within the region of the

identified functional part. To evaluate performance, we design the following task in-

structions for the experiments, each targeting a specific functional part of the selected

objects:

1) Pour the water out of the mug. (Mug → Handle)

2) Hold the coffee-filled mug steady. (Mug → Body → Outside)

3) Shake the bottle before I drink it. (Bottle → Body)

4) Open the bottle for me. (Bottle → Cap)

5) Cut the paper with the scissors. (Scissor → Handle)

6) Hand the scissors to me. (Scissor → Blade)

Instructions 1, 3, and 5 correspond to robot manipulation tasks, while Instructions

2, 4, and 6 involve human-robot interaction. Each instruction is tested on 5 object

point clouds captured from different viewpoints during the recognition experiments. A

selection is considered accurate if the chosen grasp lies within the region of the target

functional part. The final grasp selection accuracy (GSA) is calculated as:

GSA = Number of correctly selected grasps
Number of total selection attempts

The experimental results are presented in Table 6.2. Our method significantly

outperforms GraspGPT in selecting appropriate grasps based on intuitive human in-

structions. Notably, we observe substantial performance differences for Instructions 4
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Object Class Mug Bottle Scissor
Average GSA

Instruction No. 1 2 3 4 5 6

GraspGPT 10/15 9/15 14/15 3/15 12/15 5/15 53/90 (58.9%)

Our method 11/15 14/15 15/15 11/15 15/15 13/15 79/90 (87.8%)

Table 6.2: Evaluation of GPA via a Baseline Study Against a Learning-Based Approach

Handle HandleCap

Pour the water 

out of the mug.

Open the

bottle for me.

Cut the paper 

with the scissors.

Figure 6.12: Failures of GraspGPT in language-guided grasp selection. Selected grasps
are highlighted in green, while the ground truth labels are shown in top-right corner.

and 6. We hypothesize that GraspGPT struggles in these cases because the bottle cat-

egory is absent from its training dataset, and the cap, being a small and distinctive

part of the bottle, is likely overlooked during grasp selection. Additionally, the scissor

in Instruction 6 requires careful handling in a handover task, whereas GraspGPT does

not incorporate constraints such as the robot should handle dangerous parts instead of

the human. Example failure cases are shown in Fig. 6.12. In contrast, our method

fully leverages the interpretability of LLMs through prompt optimization and ontolog-

ical reasoning, enabling highly reliable grasp position determination. The sequential

strategy from language interpretation to part recognition, then to grasp selection, also

demonstrates better stability compared to methods that encode all features into the

same embedding space.
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Evaluation of Grasp Success Rate

Finally, we evaluate the reliability of part-aware grasp generation by comparing our

method with GraspNet [22], a grasp detection benchmark trained on large-scale datasets.

For GraspNet, we capture RGB-D images of the scene and use its pre-trained baseline

model to generate grasp candidates along with associated quality scores. Since GraspNet

is not capable of interpreting human instructions or recognizing functional object parts,

this experiment focuses solely on grasp generation performance, assuming the target

object parts are known. Given a specific object part, we apply our template-assisted

method to identify the best-matching point cluster o∗
part within the observed point cloud.

For both GraspNet and our method, we select only grasp poses located within the region

of o∗
part for execution. In terms of grasp selection strategy, GraspNet ranks candidates

by their predicted quality scores, while our method selects the first candidate that

satisfies the stability-aware adjustment process. A grasp is considered successful if the

object is grasped at the designated functional part and lifted without being dropped.

Failure cases include the absence of an executable grasp, an incorrect grasp location,

or the object dropping during lifting. Each functional part of each object is subjected

to 5 grasp attempts, with the object placed in different orientations. In cases of part

recognition failure, the trial is discarded and repeated with a new object pose. The final

grasp success rate (GSR) is calculated as:

GSR = Number of successful grasps
Number of total grasping attempts

The experimental results are presented in Table 6.3. Our method significantly

outperforms GraspNet in grasping specific parts across various objects. We observe

that GraspNet struggles to generate grasp candidates on small object parts, such as

the bottle cap, due to its tendency to favor larger surface areas that are more likely

to ensure grasp robustness, as shown in Fig. 6.13. For thin-shaped objects like the

scissor, GraspNet fails to generate feasible grasps on either part in nearly all trials,

highlighting a key limitation of conventional grasp detection approaches when applied

to TOG. In contrast, our method consistently achieves high GSR across diverse object
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Object Class Mug Bottle Scissor
Average PSR

Target part Handle Body
(Outside) Cap Body Handle Blade

GraspNet 3/15 10/15 3/15 12/15 0/15 2/15 30/90 (33.3%)

Our method 12/15 15/15 12/15 14/15 13/15 10/15 76/90 (84.4%)

Table 6.3: Evaluation of GSR via a Baseline Study Against a Grasp Detection Approach

parts by leveraging similarity-based grasp planning combined with a localized positional

adjustment process to optimize grasp performance.

6.3.3 Ablation Study

In the second TOG experiment, we further verify our local-to-global point cloud regis-

tration and stability-aware grasp adjustment through two baseline comparisons: direct

registration and no grasp adjustment. In the direct registration baseline, we employ a

conventional point cloud registration pipeline using RANSAC followed by ICP to align

the partial object point cloud with the complete template. In the no grasp adjustment

baseline, we execute the first generated grasp that is both IK-solvable and collision-free

without considering the position of its grasp center. To clearly illustrate differences in

grasp quality, we reuse the mugs from previous experiments, fill them with water, and

designate their handles as the grasping targets. Each mug undergoes five grasp planning

attempts under each baseline condition. Two types of failure are considered: 1) unsuc-

cessful planning, defined as either the absence of a generated grasp or a grasp targeting

an incorrect object part, and 2) unstable grasping, identified by water spilling from the

mug during execution. For performance evaluation, we define the following two metrics:

PR (Planning Rate) = Number of successfully planned grasps
Number of total grasp planning attempts

SR (Stabilization Rate) = Number of stable grasps
Number of executed grasps

In the case of unsuccessful planning, the trial is terminated without executing any

grasp and excluded from the calculation of SR. The experimental results are presented
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Figure 6.13: Comparison of task-oriented grasp planning between GraspNet and our
proposed method.

in Table 6.4. Our full method significantly outperforms both baseline approaches across

both evaluation metrics. The notable performance gap between the direct registration

baseline and our full method highlights the effectiveness of the proposed local-to-global

point cloud registration in achieving precise matching between observed objects and

model templates, which is an essential prerequisite for the reliable transfer of grasping

knowledge and robust grasp generation. Additionally, the substantial improvement in

SR observed between the no grasp adjustment baseline and our full method underscores

the importance of the stability-aware grasp adjustment in enhancing the quality of the

executed grasps. A visual comparison showing the superiority of our full method is

provided in Fig. 6.14.
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Indicator PR ↑ SR ↑

Direct registration 33% (5/15) 60% (3/5)

No grasp adjustment 80% (12/15) 50% (6/12)

Full method 87% (13/15) 77% (10/13)

Table 6.4: Ablation Study on Proposed Methods Using Water-Filled Mugs

Direct registration Local-to-global registration No grasp adjustment With positional adjustment

Water 

spilling out

No grasp generated Robust grasp generated

No water 

spilled

Figure 6.14: Performance discrepancy between the two baselines and our full method.

6.3.4 Generalization to Novel-Category Objects

Finally, in addition to delivering high performance on objects included in the ontology,

our method demonstrates strong generalizability to novel-category objects, extending

beyond the existing knowledge base. This is accomplished by leveraging the scalable

inferential capabilities of LLMs, which can be activated by appending the following

instruction to the prompt:

If the target object is not listed in the ontology, find its closest object in the ontology

and use its part information.

The answer template is also modified accordingly, as described in Appendix B.

Through this prompt refinement, a novel target object can be mapped to a similar

known instance within the ontology, allowing the reuse of both ontological knowledge

and corresponding model templates for subsequent recognition, matching, and plan-
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Figure 6.15: Generalizing TOG to Novel Instances via Ontological Knowledge Extension.

ning. Fig. 6.15 illustrates two representative examples involving a juice box and a pair

of pliers. Despite lacking prior knowledge of these objects, the system successfully maps

them to the bottle and scissor categories in the ontology, respectively. Their subclasses

and associated templates are then employed to guide functional part recognition and

similarity-based grasp planning. From this perspective, our approach exhibits a tree-like

growth pattern: each newly introduced instance contributes to the exponential expan-

sion of existing knowledge. Compared to conventional model-based methods that encode

diverse object features into a single network, our framework offers superior reliability

and robustness in handling novel objects through structural and scalable ontological

reasoning.

6.4 Conclusions

In this paper, we present a novel strategy for task-oriented grasping of unseen objects.

Our approach introduces an object-part-task ontology consisting of online and offline

components, associated through guidance from LLMs. By leveraging optimized user

prompts, the LLM accurately interprets intuitive human instructions and infers cor-

responding functional object parts based on ontological knowledge. Additionally, we
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propose a novel part recognition method that utilizes pre-existing model templates to

identify target object parts as point clusters. Based on this representation, we em-

ploy a local-to-global point cloud registration framework, followed by a stability-aware

grasp adjustment process, to transfer grasping knowledge from the best-matching model

template to the unseen target object, enabling robust task-oriented grasp generation.

We validate our method through extensive real-world experiments on a variety of un-

seen objects, demonstrating significant improvements over state-of-the-art approaches.

Furthermore, we show the method’s strong generalization to novel object categories by

leveraging the scalability of LLM-guided ontological reasoning.

Despite its strengths, the proposed method has several limitations: 1) it cannot

handle completely novel objects with no semantically or geometrically similar references

in the ontology; 2) its matching accuracy degrades when the viewpoint provides insuf-

ficient features of the target part; and 3) it does not currently account for constraints

imposed by subsequent manipulation tasks beyond grasp execution. Addressing these

limitations will be the focus of our future work.

Appendix A: LLM Prompt Optimization

To optimize LLM prompts for accurate instruction interpretation, we adopt the frame-

work proposed in [90], which consists of three components: 1) Executor, the LLM that

processes the given prompt and generates a corresponding response; 2) Evaluator, a

human supervisor who assesses the LLM’s output and determines the next step—either

terminating the optimization if the result is satisfactory, or providing feedback for im-

provement if not; and 3) Improver, where the LLM is reused to refine the prompt based

on human feedback. The improved prompt is then fed back into the Evaluator, initiating

a new iteration of the process (see Fig. 6.16). The key advantage of this framework

is that humans only need to act as advisors, offering suggestions rather than revising

the prompts themselves. The LLM (essentially a more efficient “engineer”), through

repeated iterations and human supervision, ultimately generates an optimal prompt.

Below, we illustrate an example of prompt optimization for instructing a TOG task:
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Figure 6.16: Framework for reusing LLMs in iterative prompt optimization.

Create Agent 1

User: Given the following ontology:

Mug → Handle, Mug → Body → Inside, Mug → Body → Outside

Scissor → Handle, Scissor → Blade

Considering these two commands given to a robot:

1. "Hand me the mug with hot water in it."

2. "Pick up the scissor and pass it to me.

Question: Which part(s) of each object should the robot grasp? Please only

answer the part names.

Agent: 1. Mug → Handle 2. Scissor → Handle

(Ground truth) 1. Mug → Body → Outside 2. Scissor → Blade

User: Both the answers are wrong because in a human-robot interaction

task, we want the robot to handle dangerous parts instead of the human.

Meanwhile, the robot and human should take different parts to ensure suf-

ficient operating space. How can we improve the prompt to obtain correct

answers?

Agent: You can improve the question by explicitly stating the criteria for

grasping ... (Unimportant statements)

Revised Prompt: “Given the following ontology:

Mug → Handle, Mug → Body → Inside, Mug → Body → Outside
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Scissor → Handle, Scissor → Blade

Consider these two commands given to a robot:

1. Hand me the mug with hot water in it

2. Pick up the scissor and pass it to me

Which part(s) of the objects should the robot grasp, ensuring that (a) the

robot handles dangerous parts instead of the human, and (b) the robot and

human grasp different parts for sufficient operating space?"

This revision ensures that the intended grasping strategy is clear, leading to

correct answers ... (Unimportant statements)

Create Agent 2

User: (The revised prompt from Agent 1)

Agent: 1. Mug → Handle 2. Scissor → Blade

(Ground truth) 1. Mug → Body → Outside 2. Scissor → Blade

User: The first answer is still wrong because in a human-robot interaction

task, we want the robot to handle dangerous parts instead of the human.

Meanwhile, the robot and human should take different parts to ensure suf-

ficient operating space. How can we improve the prompt to obtain correct

answers?

Agent: To ensure correct answers, we should explicitly state the constraints

more clearly ... (Unimportant statements)

Revised Prompt: “Given the following ontology:

Mug → Handle, Mug → Body → Inside, Mug → Body → Outside

Scissor → Handle, Scissor → Blade

A robot is given the following commands:

1. Hand me the mug with hot water in it

2. Pick up the scissor and pass it to me
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Constraints:

1. The robot should grasp parts that are either difficult to manipulate or po-

tentially dangerous, while the human should grasp the safer, easier-to-handle

parts.

2. The robot and human should each grasp a different part of the object to

ensure enough operating space.

Question: Which part(s) of each object should the robot grasp? Answer with

only the part names."

This version explicitly defines the constraints, making it clear that ... (Unim-

portant statements)

Create Agent 3

User: (The revised prompt from Agent 2)

Agent: 1. Mug → Body → Outside 2. Scissor → Blade

(Ground truth) 1. Mug → Body → Outside 2. Scissor → Blade

Prompt optimization completed

Appendix B: Modified Answer Template

To fully leverage the scalability of LLMs for novel-category objects, we design the fol-

lowing step-by-step reasoning process as the answer template:

The given command is “Empty the bowl into the sink."

Step 1: Identify the Type of Task

The robot is instructed to pick up the bowl and pour its contents into the

sink.

There is no human involved in handling the bowl.
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Therefore, this is a manipulation task.

Step 2: Find the Closest Object in the Ontology

The bowl is not in the ontology. Let’s look for the most structurally similar

object:

The bowl, like the mug, is a container with a concave inside and round outer

body.

The key difference: a mug typically has a handle, whereas a bowl usually

does not.

Despite this, the bowl’s structure (body with inside and outside) closely aligns

with the mug’s body parts.

So, we map: Bowl ≈ Mug (without handle)

Relevant parts:

Body → inside, Body → outside

Step 3: Apply Task Constraints

The robot must grasp the bowl in a way that allows it to tilt and pour the

contents into the sink.

This requires a secure and controlled grip—likely from the outside of the body

to allow for rotation.

Analyzing the Object Parts

Body (inside): Contains the contents—not suitable for gripping.

Body (outside): Provides surface area for a stable grip and control when tilt-

ing.

Best Choice for the Robot

The robot should grasp the body (outside) of the bowl to securely hold, tilt,

and empty its contents into the sink.

Conclusion: The Robot Should Grasp the Body (Outside)

This enables the robot to effectively manipulate the bowl for pouring while

maintaining control and avoiding contact with the contents.
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Chapter 7

Discussion

7.1 Contributions

In this dissertation, we present Similarity Matching, a novel strategy for grasping

unknown objects by leveraging existing knowledge of similar known objects. In Chap-

ter 3, we propose a two-factor scoring function that integrates semantic and geometric

similarity between the target object and existing database models. By computing simi-

larity scores from Category-Association Matching (CAM) and Point Cloud Registration

(PCR), the database model most likely to resemble the target object is identified as the

reference for grasp planning. This initial matching approach, although having limita-

tions such as requiring multi-view observations, highlights the potential of similarity-

based strategies in in novel object grasping.

As an improvement, in Chapter 4, we propose a multi-level similarity matching

approach that separately evaluates object similarity from semantic, geometric, and di-

mensional perspectives. The compensatory nature of multi-level matching significantly

enhances the accuracy and robustness of similar model identification. Notably, we intro-

duce a novel geometric descriptor, the C-FPFH descriptor, which is capable of reliably

assessing similarity between a partially observed object and a complete database model.

Additionally, the final grasp planning result is optimized through an improved point
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cloud registration method based on plane detection and a stability-aware grasp fine-

tuning process based on local contact geometry. Extensive real-world experiments show

that our similarity-based approach achieves superior performance in grasping a wide

range of novel objects, both in isolated and cluttered scenes.

As a further extension, we apply our similarity-based method to dynamic object ma-

nipulation and task-oriented object grasping, as presented in Chapter 5 and Chapter 6,

respectively. For dynamic manipulation of moving objects in dense clutter, we introduce

a global-to-local detection and static-to-dynamic planning framework that addresses a

challenging grasping task by transferring knowledge across multiple object states. For

task-oriented grasping of previously unseen objects, we incorporate an object-part-task

ontology guided by LLMs that associates human instructions with functional part se-

lection, and develop a template-based part recognition method for affordance-aware

grasp generation. These application cases demonstrate the strong generalizability of our

similarity-based approach across diverse object configurations and task conditions.

7.2 Open Challenges and Future Work

While our current approach focuses on robotic grasping, real-world tasks often demand

a broader range of actions. To this end, future work can explore the following directions:

1. Extending similarity-based methods to high-level manipulation tasks beyond grasp-

ing. More complex scenarios, such as assembly tasks, are promising applications

where similarity matching can be effectively applied.

2. Integrating force feedback for soft object manipulation. Beyond rigid objects,

future work should consider the grasping of soft and deformable items by incor-

porating tactile and force feedback.

3. Incorporating more versatile actions such as pushing. In non-prehensile contexts,

introducing additional skills like pushing can help overcome more complex manip-

ulation challenges.
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