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Abstract
In this thesis, we analyze rough volatility models and parabolic Anderson model, which
arise in mathematical finance and physics respectively, using rough path theory and the
theory of regularity structures. Chapter 1 and Chapter 2 are devoted to rough volatility
models, where we establish a large deviation principle (LDP) under weaker assumptions
on the coefficients than in previous works.

Chapter 1 introduces partial rough paths, functionals of the noise ( 𝑋̂, 𝑋), where
𝑋 is a Brownian motion and 𝑋̂ is typically Riemann-Liouville fractional Brownian
motion. The structure of such partial rough paths is determined from approximations
of integrals of the form

∫
𝑓 ( 𝑋̂) d𝑋 , obtained via Taylor expansion of a smooth function

𝑓 . Using this framework, we prove an LDP for rough volatility models and derive the
asymptotic behavior of the implied volatility, consistent with the power-law behavior
observed in equity option markets.

Chapter 2 analyzes one-dimensional rough volatility models within the standard
rough path framework. To this end, we focus on stochastic integrals whose integrand is
given by the volatility process, constructing rough paths via Young pairing. Establishing
an LDP for these stochastic integrals yields an LDP for rough volatility models, again
characterizing the asymptotic behavior of the implied volatility.

Although both chapter share the common goal of analyzing rough volatility mod-
els through rough path techniques, their methodology differs. Chapter 1 emphasizes
advancing rough path theory itself through the concept of partial rough paths, with
largely deterministic tools. Chapter 2 takes a more probabilistic route, focusing on
LDPs for stochastic integrals. Both approaches offer advantages over previous studies
by requiring weaker assumptions on volatility coefficients though the precise conditions
differ slightly between them.

Chapter 3 turns to singular stochastic partial differential equations, studied via the
theory of regularity structures. A central object of interest is the construction of solution
maps, achieved by combining the reconstruction theorem with the multi-level Schauder
estimate. As an application, we construct local-in-time solutions to the two-dimensional
parabolic Anderson model with a non-translation-invariant differential operator, again
under weaker assumptions on the coefficients than those in previous works.

A main theme throughout the thesis is the analysis of random time evolutions
through modern analytic frameworks, rough path theory and the theory of regularity
structures. These methods are inherently pathwise, yet in finite-dimension settings they
remain consistent with Itô calculus. Rough analysis thus presents a formulation that
looks quite different from the classical Itô calculus, offering new insights. The results
presented in this thesis contribute to broadening the mathematical foundations of rough
path analysis and regularity structures in the study of stochastic models in finance and
physics. It is hoped that further development of such analytic techniques will continue
to deepen our understanding of stochastic analysis and its applications.
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Chapter 1

A partial rough path space for
rough volatility∗

1.1 Introduction
A rough volatility model is a stochastic volatility model for an asset price process with
volatility being rough, meaning that the Hölder regularity of the volatility path is less
than half. Recently, such models have been attracting attention in mathematical finance
because of their unique consistency to market data. Indeed, rough volatility models are
the only class of continuous price models that are consistent to a power law of implied
volatility term structure typically observed in equity option markets, as shown by [31].
One way to derive the power law under rough volatility models is to prove a large
deviation principle (LDP) as done by many authors [23, 9, 8, 24, 25, 48, 50, 51, 62, 42,
63, 49] using various methods. An introduction to LDP and some of its applications to
finance and insurance problems can be found in [71, 26]. In the context of the implied
volatility, a short-time LDP under local volatility models provides a validity proof for a
precise approximation known as the BBF formula [12, 1]. The SABR formula, which
is of daily use in financial practice, is also proved as a valid approximation under the
SABR model by means of LDP [69]. From these successes in classical (non-rough)
volatility models, we expect LDP for rough volatility models to provide in particular
a useful implied volatility approximation formula for financial practice such as model
calibration.

For the classical models that are described by standard stochastic differential equa-
tions (SDEs), an elegant way to prove an LDP is to apply the contraction principle
in the framework of rough path analysis [29, 30]. Under rough volatility models, the
volatility of an asset price has a lower Hölder regularity than the asset price process.
The stochastic integrands are therefore not controlled by the stochastic integrators in
the sense of [43]. Hence, a rough volatility model is beyond the scope of rough path

∗Reproduction of a joint work with Professor Masaaki Fukasawa (The University of Osaka), first pub-
lished in Electronic Journal of Probability, Vol.29, No.18, pp.1–28, (2024), https://doi.org/10.1214/24-
EJP1080.
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theory, which motivated [8] to develop a regularity structure for rough volatility. For
classical SDEs, the Freidlin–Wentzell LDP can be obtained as a consequence of the
continuity of the solution map (the Lyons–Itô map) that is the core of rough path theory.
In [8], the LDP for rough volatility models is obtained using the continuity of Hairer’s
reconstruction map. Herein, we take an approach that is similar to that of [8] in spirit
but differs somewhat. Instead of embedding a rough volatility model into the abstract
framework of regularity structure, we develop a minimal extension of rough path theory
to incorporate rough volatility models. Besides the relatively elementary construction,
an advantage of our theory is that it ensures the continuity of the integration map
between rough path spaces, which enables us to treat a more general model than [8].

We focus on a model of the following form:

d𝑆𝑡 = 𝜎(𝑆𝑡 ) 𝑓 ( 𝑋̂𝑡 , 𝑡)d𝑋𝑡 , 𝑆0 ∈ R, (1.1)

where 𝑋 is a 𝑑-dimensional Brownian motion, 𝑋̂ is an 𝑒-dimensional stochastic process
of which components include

∫ 𝑡
0 𝜅(𝑡 − 𝑠)d𝑋𝑠 with a deterministic 𝐿2 kernel 𝜅. The

stochastic integration is in the Itô sense. An example is the rough Bergomi model
(𝜅 = 𝜅𝐻 is the Riemann–Liouville kernel (1.4), 𝑓 is exponential, and 𝜎(𝑠) = 𝑠 in (1.1))
introduced by [7]. When 𝜅 = 𝜅𝐻 or more generally 𝜅 has a similar singularity to 𝜅𝐻
with 𝐻 < 1/4, beyond the case of 𝜎(𝑠) = 1 or 𝜎(𝑠) = 𝑠, no LDP is available in the
literature so far, including [8]. As mentioned above, the difference between classical
SDEs and (1.1) is that the volatility process 𝑋̂ is not controlled by 𝑋 because of its lower
regularity. From empirical evidence, we are particularly interested in the case where
𝑋̂ is correlated with 𝑋 and 𝐻 < 1/4 [40, 11, 36, 14]. Unfortunately, the application
of existing rough path theory involves iterated integrals of 𝑋̂ while, as is well-known,
the standard rough path lift of (𝑋, 𝑋̂) that is amenable to LDP does not work when
𝐻 < 1/4; see e.g., [30].

Our idea, inspired by [8], is to consider a partial rough path space in which we lack
the iterated integrals of 𝑋̂ but are still able to treat (1.1). More precisely, we define
the space of a triplet of iterated integrals driven by 𝑋 (we do not consider iterated
integrals driven by 𝑋̂) and rederive analytical results obtained in existing rough path
theory. The notion of a partial rough path was introduced in [46] to prove the existence
of global solutions for differential equations driven by a rough path with vector fields
of linear growth. Our motivation is different and requires a space of higher-level paths.
In contrast to [8], our method does not rely on the theory of regularity structure and
enables us to treat not only the rough Bergomi model but also the following rough
volatility models:

- the rough SABR model [35, 67, 34, 32];

- the mixed rough Bergomi model [15];

- rough local stochastic volatility [61];

- the two-factor fractional volatility model [38].

To the best of our knowledge, no LDP for these models is established so far in the
literature.
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To explain the idea of the partial rough path, here, we argue for how such a partial
rough path space should be. Suppose that 𝑑, 𝑒 ≧ 1, 𝑥 : [0, 𝑇] → R𝑑 , 𝑥 : [0, 𝑇] → R𝑒,
and 𝑓 : R𝑒 → R are good enough. By the Taylor expansion, for 𝑠 < 𝑡 (which are close
enough), we have∫ 𝑡

𝑠
𝑓 (𝑥𝑟 )d𝑥𝑟 ≈ 𝑓 (𝑥𝑠)(𝑥𝑡 − 𝑥𝑠) +

∑
|𝑖 |≦𝑛

1
𝑖!
𝜕𝑖 𝑓 (𝑥𝑠)

[∫ 𝑡

𝑠
(𝑥𝑟 − 𝑥𝑠)𝑖d𝑥𝑟

]
and ∫ 𝑡

𝑠

(∫ 𝑟

𝑠
d𝑦𝑢

)
⊗ d𝑦𝑟

≈
∑

| 𝑗+𝑘 |≦𝑛

1
𝑗!𝑘!

𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑠)
[∫ 𝑡

𝑠
(𝑥𝑟 − 𝑥𝑠)𝑘

(∫ 𝑟

𝑠
(𝑥𝑢 − 𝑥𝑠) 𝑗d𝑥𝑢

)
⊗ d𝑥𝑟

]
,

where 𝑦𝑡 :=
∫ 𝑡
0 𝑓 (𝑥𝑟 )d𝑥𝑟 , 𝑖, 𝑗 , 𝑘 are multi-indices, and we use the following notation:

|𝑖 | :=
𝑒∑
𝑙=1

𝑖𝑙 , 𝑖! :=
𝑒∏
𝑙=1

𝑖𝑙!, 𝑥𝑖 :=
𝑒∏
𝑙=1

(𝑥𝑙)𝑖𝑙 , 𝜕𝑖 :=
𝑒∏
𝑙=1

(
𝜕

𝜕𝑥𝑙

) 𝑖𝑙
for 𝑖 = (𝑖1, ..., 𝑖𝑒), 𝑥 = (𝑥1, ..., 𝑥𝑒). Therefore, following the idea of rough path theory,
we would be able to define a rough path integral

∫
𝑓 (𝑥𝑟 )d𝑥𝑟 if we could define

𝑋 (𝑖)
𝑠𝑡 :=

1
𝑖!

∫ 𝑡

𝑠
( 𝑋̂𝑠𝑟 )𝑖d𝑥𝑟 , X( 𝑗𝑘 )

𝑠𝑡 :=
1
𝑘!

∫ 𝑡

𝑠
( 𝑋̂𝑠𝑟 )𝑘𝑋 ( 𝑗 )

𝑠𝑟 ⊗ d𝑥𝑟

for 𝑋̂𝑠𝑟 := 𝑥𝑟 − 𝑥𝑠 . By the linearity of the integration and the binomial theorem (see
Section 8.1 in [22]), 𝑋 (𝑖) and X( 𝑗𝑘 ) should satisfy the following formulas respectively:
for any 𝑖, 𝑗 , 𝑘 ∈ Z𝑒+ and 𝑠 ≦ 𝑢 ≦ 𝑡,

𝑋 (𝑖)
𝑠𝑡 = 𝑋 (𝑖)

𝑠𝑢 +
∑
𝑝≦𝑖

1
(𝑖 − 𝑝)! ( 𝑋̂𝑠𝑢)

𝑖−𝑝𝑋 (𝑝)
𝑢𝑡 (1.2)

and

X( 𝑗𝑘 )
𝑠𝑡 = X( 𝑗𝑘 )

𝑠𝑢 +
∑
𝑞≦𝑘

1
(𝑘 − 𝑞)! ( 𝑋̂𝑠𝑢)

𝑘−𝑞𝑋 ( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑞)

𝑢𝑡

+
∑
𝑝≦ 𝑗

∑
𝑞≦𝑘

1
( 𝑗 − 𝑝)!(𝑘 − 𝑞)! ( 𝑋̂𝑠𝑢)

𝑗+𝑘−𝑝−𝑞X(𝑝𝑞)
𝑢𝑡 ,

(1.3)

where, for 𝑖, 𝑗 ∈ Z𝑒+, 𝑖 ≦ 𝑗 means for all 𝑙 ∈ {1, ..., 𝑒}, 𝑖𝑙 ≦ 𝑗𝑙 , and Z+ is the set of the
nonnegative integers. Our partial rough space is a space for 𝑋̂ , 𝑋 (𝑖) and X( 𝑗𝑘 ) , where
the formulas (1.2) and (1.3) should play the role of Chen’s identity.

In Section 1.2, we formulate such a partial rough path space and state some funda-
mental properties including the continuity of the integration map. In Section 1.3, we
construct a rough path lift of our rough volatility model and state an LDP. Proofs are
relegated to Section 1.4.
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1.2 A partial rough path space

1.2.1 Definition
Throughout this article, we fix 𝛼 ∈ ( 1

3 ,
1
2 ], 𝛽 ∈ (0, 1

2 ), 𝑇 > 0 and denote

Δ𝑇 := {(𝑠, 𝑡) |0 ≦ 𝑠 ≦ 𝑡 ≦ 𝑇}, 𝐼 := {𝑖 ∈ Z𝑒+ | |𝑖 |𝛽 + 𝛼 ≦ 1},

and
𝐽 := {( 𝑗 , 𝑘) ∈ Z𝑒+ × Z𝑒+ | | 𝑗 + 𝑘 |𝛽 + 2𝛼 ≦ 1}.

Extending the notion of an 𝛼-Hölder rough path in rough path theory, here we define
an (𝛼, 𝛽) rough path.

Definition 1.2.1. An (𝛼, 𝛽) rough path X =
(
𝑋̂, 𝑋 (𝑖) ,X( 𝑗𝑘 ) )

𝑖∈𝐼, ( 𝑗 ,𝑘 ) ∈𝐽 is a triplet of
functions on Δ𝑇 satisfying the following conditions for any 𝑖 ∈ 𝐼, ( 𝑗 , 𝑘) ∈ 𝐽, and
𝑠 ≦ 𝑢 ≦ 𝑡.

(i) 𝑋̂ is R𝑒-valued, 𝑋 (𝑖) is R𝑑-valued, and X( 𝑗𝑘 ) is R𝑑 ⊗ R𝑑-valued.

(ii) Modified Chen’s relation: 𝑋̂𝑠𝑡 = 𝑋̂𝑠𝑢 + 𝑋̂𝑢𝑡 , and 𝑋 (𝑖) and X( 𝑗𝑘 ) satisfy (1.2) and
(1.3), respectively.

(iii) Hölder regularity:

| 𝑋̂𝑠𝑡 | ≲ |𝑡 − 𝑠 |𝛽 , |𝑋 (𝑖)
𝑠𝑡 | ≲ |𝑡 − 𝑠 | |𝑖 |𝛽+𝛼, |X( 𝑗𝑘 )

𝑠𝑡 | ≲ |𝑡 − 𝑠 | | 𝑗+𝑘 |𝛽+2𝛼 .

Let Ω(𝛼,𝛽)-Hld denote the set of (𝛼, 𝛽) rough paths. We define a metric function 𝑑 (𝛼,𝛽)
on Ω(𝛼,𝛽)-Hld and a homogeneous norm | | |X| | | (𝛼,𝛽) respectively by

𝑑 (𝛼,𝛽) (X,Y)
:= | | 𝑋̂ − 𝑌 | |𝛽-Hld +

∑
𝑖∈𝐼, ( 𝑗 ,𝑘 ) ∈𝐽

| |𝑋 (𝑖) − 𝑌 (𝑖) | | |𝑖 |𝛽+𝛼-Hld + ||X( 𝑗𝑘 ) − Y( 𝑗𝑘 ) | | | 𝑗+𝑘 |𝛽+2𝛼-Hld

and

| | |X| | | (𝛼,𝛽)

:= | | 𝑋̂ | |𝛽-Hld +
∑

𝑖∈𝐼, ( 𝑗 ,𝑘 ) ∈𝐽

(
| |𝑋 (𝑖) | | |𝑖 |𝛽+𝛼-Hld

)1/( |𝑖 |+1)
+

(
| |X( 𝑗𝑘 ) | | | 𝑗+𝑘 |𝛽+2𝛼-Hld

)1/( | 𝑗+𝑘 |+2)
,

where ‖ · ‖𝛾-Hld is the 𝛾-Hölder norm for two-parameter functions for 𝛾 ∈ (0, 1]:

| |𝑋 | |𝛾-Hld := sup
0≦𝑠<𝑡≦𝑇

|𝑋𝑠𝑡 |
|𝑡 − 𝑠 |𝛾 .

Remark 1.2.2. The modified Chen’s relation and the Hölder regularity of 𝑋 (𝑖) and
X( 𝑗𝑘 ) are from the following correspondence:

𝑋 (𝑖)
𝑠𝑡 ↔ 1

𝑖!

∫ 𝑡

𝑠

(
𝑋̂𝑠𝑟

) 𝑖 d𝑋 (0)
𝑟 , X( 𝑗𝑘 )

𝑠𝑡 ↔ 1
𝑘!

∫ 𝑡

𝑠

(
𝑋̂𝑠𝑟

) 𝑘
𝑋

( 𝑗 )
𝑠𝑟 ⊗ d𝑋 (0)

𝑟
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when 𝑋 (0) and 𝑋̂ have Hölder regularity 𝛼 and 𝛽, respectively. Note also that(
𝑋 (0) ,X(00) ) is an 𝛼-Hölder rough path with the first level 𝑋 (0) and the second level

X(00) in the usual rough path terminology. An (𝛼, 𝛽) rough path has two first-level
paths: 𝑋 (0) and 𝑋̂ .

Remark 1.2.3. Our modified Chen’s relation is a particular form of the algebraic
structure of branched rough paths studied in [44]. However, because 𝑋̂ is not a controlled
path of 𝑋 , the novel framework of (𝛼, 𝛽) rough paths is essential for establishing the
rough path integral stated in the Introduction.

Remark 1.2.4 (A comparison with [8]). The iterated integral 𝑋 (𝑖)
𝑠𝑡 = 1

𝑖!

∫ 𝑡
𝑠

(
𝑋̂𝑠𝑟

) 𝑖 d𝑋 (0)
𝑟

plays a key role also in [8] (see Section 3.1 in [8], where 𝑋 (𝑖)
𝑠𝑡 = W𝑖

𝑠𝑡 in their notation).
In [8], its derivative d

d𝑡W
𝑖
𝑠𝑡 appears in the structure space of regularity structure. Our

(𝛼, 𝛽) rough path consists of not only 𝑋 (𝑖)
𝑠𝑡 but also X( 𝑗𝑘 )

𝑠𝑡 . The latter is required to
construct a rough path integral as an element of a rough path space, while in [8] the
corresponding integral is constructed as merely a distribution and such terms as X( 𝑗𝑘 )

𝑠𝑡

are not necessary for that purpose. As mentioned in Introduction, the key to treat (1.1)
with a general function 𝜎 is to construct

∫
𝑓 ( 𝑋̂𝑡 , 𝑡)d𝑋𝑡 as an element of a rough path

space.

1.2.2 (𝛼, 𝛽) rough path integration
Extending the rough path integration, here we introduce an integration with respect to
an (𝛼, 𝛽) rough path.

Definition 1.2.5. Fix X ∈ Ω(𝛼,𝛽)-Hld. We define 𝑌 (1) and 𝑌 (2) as follows if they exist:

𝑌 (1)
𝑠𝑡 := lim

| P |↘0

𝑁∑
𝑝=1

∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑡𝑝−1 )𝑋
(𝑖)
𝑡𝑝−1𝑡𝑝

,

𝑌 (2)
𝑠𝑡 := lim

| P |↘0

𝑁∑
𝑝=1

©­«𝑌 (1)
𝑡0𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

+
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑡𝑝−1 )𝜕𝑘 𝑓 (𝑥𝑡𝑝−1 )X

( 𝑗𝑘 )
𝑡𝑝−1𝑡𝑝

ª®¬ ,
where 𝑥𝑠 := 𝑋̂0𝑠 , and P = {𝑠 = 𝑡0 < 𝑡1 < ... < 𝑡𝑁 = 𝑡} is a partition of the interval
[𝑠, 𝑡]. The mesh size |P | is defined by |P | = max𝑝 |𝑡𝑝 − 𝑡𝑝−1 |. If they exist on Δ𝑇 , we
denote (𝑌 (1) , 𝑌 (2) ) by

∫
𝑓 (X̂)dX, and we call this the (𝛼, 𝛽) rough path integral of 𝑓 .

Denote by Ω𝛼-Hld the 𝛼-Hölder rough path space, and denote by 𝑑𝛼 the metric
function on Ω𝛼-Hld; see [27], for example. Here, we state our first main result, the proof
of which is given in Section 1.4.1.

Theorem 1.2.6. Let 𝑛 := max{|𝑖 | : 𝑖 ∈ 𝐼} and assume that 𝑓 : R → R is 𝐶𝑛+2.

(i) For any X ∈ Ω(𝛼,𝛽)-Hld, the (𝛼, 𝛽) rough path integral
∫
𝑓 (X̂)dX is well-defined,

and
∫
𝑓 (X̂)dX ∈ Ω𝛼-Hld.

9



(ii) The integration map
∫

: Ω(𝛼,𝛽)-Hld → Ω𝛼-Hld is locally Lipschitz continuous.
More precisely, for any 𝑀 > 0, the map

∫
|E𝑀 , restricted on the set

E𝑀 :=
{
X ∈ Ω(𝛼,𝛽)-Hld | | | |X| | | (𝛼,𝛽) ≦ 𝑀

}
,

is Lipschitz continuous; that is, there exists a positive constant 𝐶 > 0 such that

𝑑𝛼

(∫
𝑓 (V̂)dV,

∫
𝑓 (Ŵ)dW

)
≦ 𝐶𝑑 (𝛼,𝛽) (V,W) , V,W ∈ E𝑀 .

1.3 Large deviation

1.3.1 A lift to the partial rough path space
We now construct an (𝛼, 𝛽) rough path, which plays an important role in this paper.
For notational simplicity we focus on a low dimensional case (both 𝜅 and𝑊 below are
one-dimensional) but extensions to higher dimensional cases are straightforward. The
proof is deferred to Section 1.4.2. Let 𝜅 : (0, 𝑇] → [0,∞) as

𝜅(𝑡) := 𝑔(𝑡)𝑡𝜁 −𝛾 , 𝑡 ∈ (0, 𝑇],

where 𝛾, 𝜁 ∈ (0, 1) and 𝑔 is a Lipschitz function. For example, the Riemann–Liouville
kernel

𝜅𝐻 (𝑡) :=
𝑡𝐻−1/2

Γ(𝐻 + 1/2) , 𝑡 ∈ (0, 𝑇], 𝐻 ∈ (0, 1/2) (1.4)

has the above form (𝜁 = 𝐻 − 𝛿, 𝛾 = 1/2− 𝛿, 𝑔(𝑡) = 1/Γ(𝐻 + 1/2), where 𝛿 ∈ (0, 1/2)).
For 𝛼 ∈ (0, 1], let 𝐶𝛼-Hld denote the space of 𝛼-Hölder continuous functions on [0, 𝑇].
Let K : 𝐶𝛾-Hld → 𝐶𝜁 -Hld as

K 𝑓 (𝑡) := lim
𝜖→0

{
[𝜅(𝑡 − ·)( 𝑓 (·) − 𝑓 (𝑡))]𝑡−𝜖0 +

∫ 𝑡−𝜖

0
( 𝑓 (𝑠) − 𝑓 (𝑡))𝜅′ (𝑡 − 𝑠)d𝑠

}
= 𝜅(𝑡)( 𝑓 (𝑡) − 𝑓 (0)) +

∫ 𝑡

0
( 𝑓 (𝑠) − 𝑓 (𝑡))𝜅′ (𝑡 − 𝑠)d𝑠.

Proposition 1.3.1. Let (Ω, F , P, {F𝑡 }𝑡≧0) be a filtered probability space, and fix 𝛼 ∈
(1/3, 1/2], 𝛽 ∈ (0, 1/2), and 𝛾, 𝜁 ∈ (0, 1) with 𝛾 < 1/2, 𝛽 < 𝜁 . Suppose that
𝑋 = (𝑋1, ..., 𝑋𝑑) is a 𝑑-dimensional (possibly correlated) Brownian motion, and𝑊 is a
one-dimensional Brownian motion possibly correlated to 𝑋 . Using the Itô integration,
define 𝑋̂ , 𝑋 (𝑖) , and X( 𝑗𝑘 ) as follows: for (𝑠, 𝑡) ∈ Δ𝑇 , 𝑖 ∈ 𝐼 and ( 𝑗 , 𝑘) ∈ 𝐽,

𝑋̂ (1)
𝑠𝑡 := K𝑊 (𝑡) − K𝑊 (𝑠),

𝑋̂ (2)
𝑠𝑡 := 𝑡𝜁 − 𝑠𝜁 ,

𝑋 (𝑖)
𝑠𝑡 :=

1
𝑖!

∫ 𝑡

𝑠

(
𝑋̂𝑠𝑟

) 𝑖 d𝑋𝑟 , X( 𝑗𝑘 )
𝑠𝑡 :=

1
𝑘!

∫ 𝑡

𝑠

(
𝑋̂𝑠𝑟

) 𝑘
𝑋

( 𝑗 )
𝑠𝑟 ⊗ d𝑋𝑟 .
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Let 𝜅𝑠𝑡 (𝑟) :=
(
𝜅(𝑡 − 𝑟) − 𝜅(𝑠 − 𝑟)1(0,𝑠) (𝑟)

)
1(0,𝑡 ) (𝑟) and assume that

| |𝜅𝑠𝑡 | |2𝐿2 (R+ ) ≲ 𝐶 |𝑡 − 𝑠 |
2(𝜁 −𝛾)+1.

Then we have the following.

(i) For a.s.𝜔 ∈ Ω, X(𝜔) :=
(
𝑋̂ (𝜔), 𝑋 (𝑖) (𝜔),X( 𝑗𝑘 ) (𝜔)

)
𝑖∈𝐼, ( 𝑗 ,𝑘 ) ∈𝐽 is an (𝛼, 𝛽) rough

path.

(ii) It holds that (∫
𝑓 (X̂)dX

) (1)
0𝑡

=
∫ 𝑡

0
𝑓 ( 𝑋̂0𝑟 )d𝑋𝑟 𝑎.𝑠.,

where the left-hand side is the first level of the (𝛼, 𝛽) rough path integral and the
right-hand side is the Itô integral.

1.3.2 The large deviation principle on Ω(𝛼,𝛽)-Hld

We now discuss the LDP on Ω(𝛼,𝛽)-Hld. Following [62, 42], we use Garcia’s theorem
[39]. Let (𝑊,𝑊⊥) be a two-dimensional standard Brownian motion and 𝑋 := 𝜌𝑊 +√

1 − 𝜌2𝑊⊥, 𝜌 ∈ [−1, 1]. Define 𝑋̂, 𝑋 (𝑖) ,X( 𝑗𝑘 ) as in Proposition 1.3.1 with 𝑑 = 1,
𝑒 = 2 . We state our second main result, the proof of which is given in Section 1.4.3.

Theorem 1.3.2. Let X = ( 𝑋̂, 𝑋 (𝑖) ,X( 𝑗𝑘 ) ) be the random variable taking values on
(Ω(𝛼,𝛽)-Hld, 𝑑 (𝛼,𝛽) ) defined as above. Then, the sequence of triplets

X𝜖 :=
(
𝜖1/2 𝑋̂, 𝜖 ( |𝑖 |+1)/2𝑋 (𝑖) , 𝜖 ( | 𝑗+𝑘 |+2)/2X( 𝑗𝑘 )

)
satisfies the LDP on (Ω(𝛼,𝛽)-Hld, 𝑑 (𝛼,𝛽) ) with speed 𝜖−1 with good rate function

𝐼## (𝑥, 𝑥 (𝑖) , x( 𝑗𝑘 ) ) := inf
{
𝐼# (𝑣̃)

���𝑣̃ ∈ H , (𝑥, 𝑥 (𝑖) , x( 𝑗𝑘 ) ) = L ◦ K(𝑣̃)
}
,

where H is the Cameron–Martin space from [0, 𝑇] to R2,

K(𝑣̃) :=
((∫ ·

0
𝜅(· − 𝑟)d𝑣̃ (1)𝑟 , 0

)
, 𝜌𝑣̃ (1) +

√
1 − 𝜌2𝑣̃ (2)

)
and

L(𝑢, 𝑣) := (𝛿𝑢, 𝑢 · 𝑣, 𝑢 ∗ 𝑣), 𝑢, 𝑣 ∈ 𝐶[0,𝑇 ] , 𝑣 ∈ H ,

𝛿𝑢𝑠𝑡 := 𝑢𝑡 − 𝑢𝑠 , 𝑢 · 𝑣 = (𝑢 ·𝑖 𝑣), 𝑢 ∗ 𝑣 = (𝑢 ∗ 𝑗𝑘 𝑣), and

(𝑢 ·𝑖 𝑣)𝑠𝑡 :=
∫ 𝑡

𝑠
(𝑢𝑟 − 𝑢𝑠)𝑖d𝑣𝑟 , (𝑢 ∗ 𝑗𝑘 𝑣)𝑠𝑡 :=

∫ 𝑡

𝑠
(𝑢 · 𝑗 𝑣)𝑠𝑟 (𝑢𝑟 − 𝑢𝑠)𝑘d𝑣𝑟 .

Here, 𝐼# : 𝐶 → [0,∞) is the rate function of two-dimensional Brownian motion:

𝐼# (𝑣̃) :=

{
1
2 | |𝑣̃ | |2H , 𝑣̃ ∈ H ,

∞, otherwise.
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Theorem 1.3.3. The sequence of the processes
{
𝑌 𝜖 :=

∫
𝑓 (X̂𝜖 )dX𝜖

}
𝜖≧0 satisfies the

LDP on (Ω𝛼-Hld, 𝑑𝛼) with speed 𝜖−1 with good rate function

𝐼### (𝑦) := inf
{
𝐼## (X)

���� X ∈ Ω(𝛼,𝛽)-Hld, 𝑦 =
∫

𝑓 (X̂)dX
}

= inf
{
𝐼# (𝑣̃)

����𝑣̃ ∈ H , (𝑢, 𝑣) = K(𝑣̃), 𝑦 =
∫

𝑓 (L̂(𝑢, 𝑣))dL(𝑢, 𝑣)
}
,

where 𝐼## is defined in Theorem 1.3.2.

Proof. By Theorems 1.2.6 and 1.3.2 together with the contraction principle, we have
the claim. □

1.3.3 Rough differential equations and their LDP
We now discuss the following type of rough differential equation (RDE) (in Lyons’
sense; see Section 8.8 of [27], for example):

𝑆𝑡 =
∫ 𝑡

0
𝜎̄(𝑆𝑢)d𝑌𝑢, (1.5)

where 𝑆𝑡 = 𝑆𝑡 − 𝑆0, 𝜎̄(𝑠) = 𝜎(𝑆0 + 𝑠) and

𝑌 =
∫

𝑓 (X̂)dX ∈ Ω𝛼-Hld ( [0, 𝑇],R𝑑), X ∈ Ω(𝛼,𝛽)-Hld. (1.6)

Theorem 1.3.4. Let 𝜎 ∈ 𝐶3
𝑏.

(i) RDE (1.5) driven by (1.6) has a unique solution Φ(𝑌 ) = (𝑌, 𝑆), where

Φ : Ω𝛼-Hld ([0, 𝑇],R𝑑) × R → Ω𝛼-Hld ( [0, 𝑇],R𝑑+1)

is the solution map of (1.5) that is locally Lipschitz continuous with respect to
𝑑𝛼.

(ii) The first level of the last component 𝑆 of the solution to RDE (1.5) for (1.6) with
X = X(𝜔) defined in Proposition 1.3.1 gives the solution 𝑆(𝜔) = 𝑆0 + 𝑆 to the
Itô SDE (1.1).

Proof. (i) is a standard result from rough path theory; see e.g., Theorem 1 in [65] or
Chapter 8 in [27]. (ii) follows from Proposition 1.3.1; see Chapter 9 in [27]. □

Theorem 1.3.5. Let 𝜎 ∈ 𝐶3
𝑏 and 𝑆𝜖 := Φ(𝑌 𝜖 ), where Φ is the solution map of

Theorem 1.3.4. Then the sequence of the processes {𝑆𝜖 }𝜖≧0 satisfies the LDP on
Ω𝛼-Hld with speed 𝜖−1 with good rate function

𝐼 (𝑠) := inf
{
𝐼### (𝑌 )

�� 𝑌 ∈ Ω𝛼-Hld, 𝑠 = Φ(𝑌 )
}

= inf
{
𝐼# (𝑣̃)

����𝑣̃ ∈ H , (𝑢, 𝑣) = K(𝑣̃), 𝑠 =
∫

𝜎̄(𝑠) 𝑓 (L̂(𝑢, 𝑣))dL(𝑢, 𝑣)
}
.

Proof. Because the solution map Φ is continuous, Theorem 1.3.4 and the contraction
theorem imply the claim. □
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1.3.4 Short-time asymptotics
We consider the case 𝜅 = 𝜅𝐻 (see (1.4)). By the scaling property of the Riemann–
Liouville fractional Brownian motion 𝑋̂ and the standard Brownian motion 𝑋 , we
have

𝑋̂𝜖 𝑡 ∼ 𝜖𝐻 𝑋̂𝑡 , 𝑋𝜖 𝑡 ∼ 𝜖1/2𝑋𝑡 .

This implies

𝑌 𝜖𝑡 := 𝜖𝐻−1/2
∫ 𝜖 𝑡

0
𝑓 ( 𝑋̂𝑢)d𝑋𝑢 ∼

∫ 𝑡

0
𝑓 ( 𝑋̂ 𝜖𝑢 )d𝑋 𝜖𝑢 ,

where ( 𝑋̂ 𝜖 , 𝑋 𝜖 ) = 𝜖𝐻 ( 𝑋̂, 𝑋), of which the rough path lift is X𝜖 of Theorem 1.3.2.
Letting

𝑆𝜖𝑡 =
𝑆𝜖 𝑡 − 𝑆0

𝜖1/2−𝐻 , 𝜎̃ 𝜖 (𝑠) = 𝜎(𝑆0 + 𝜖1/2−𝐻 𝑠),

we have
𝑆𝜖𝑡 =

∫ 𝑡

0
𝜎̃ 𝜖 (𝑆𝜖𝑢 )d𝑌 𝜖𝑢 ,

and we can derive an LDP for 𝑆𝜖 by an extended contraction principle [72].

Theorem 1.3.6. Let 𝜎 ∈ 𝐶3
𝑏. Then {𝑆𝜖 }0<𝜖≦1 satisfies the LDP on Ω𝛼-Hld as 𝜖 → 0

with speed 𝜖−2𝐻 with good rate function

𝐽 (𝑠) := inf
{
𝐼# (𝑣̃)

����𝑣̃ ∈ H , (𝑢, 𝑣) = K(𝑣̃), 𝑠 = 𝜎(𝑆0)
∫

𝑓 (L̂(𝑢, 𝑣))dL(𝑢, 𝑣)
}
.

Proof. Denote by Φ𝜖 the solution map of the RDE (1.5) with 𝜎̄ = 𝜎̃ 𝜖 . We are going
to show that Φ𝜖 is locally equicontinuous. Because for all 𝑖 ∈ Z+,

| |∇𝑖𝜎̃ 𝜖 | |∞ ≦ (1 + 𝜖)𝑖 | |∇𝑖𝜎 | |∞ ≦ 2𝑖 | |∇𝑖𝜎 | |∞,

the local Lipschitz constants of Φ𝜖 can be taken uniformly in 𝜖 by Theorem 4 in
[65]. Therefore Φ𝜖 is equicontinuous on bounded sets, and we conclude Φ𝜖 (𝑌𝜖 ) →
Φ0 (𝑌 ) for any converging sequence 𝑌𝜖 → 𝑌 for any 𝑌 with 𝐼### (𝑌 ) < ∞. Then by
Theorem 1.3.3 and an extended contraction principle [72][Theorem 2.1], we have the
desired results. □

Remark 1.3.7. By the usual argument, adding a drift term to the above RDE is straight-
forward. The result then generalizes the existing LDP for the rough Bergomi model:

d log 𝑆𝑡 = −1
2
𝑓 2 ( 𝑋̂𝑡 )d𝑡 + 𝑓 ( 𝑋̂𝑡 )d𝑋𝑡

in [23, 8, 48, 62, 42]. To deal with the mixed rough Bergomi model [15] or the two-
factor fractional volatility model [38], we need an extension with higher dimensional 𝜅
and𝑊 that is also straightforward.

An LDP for the marginal distribution 𝑆𝜖1 follows from the contraction principle, and
the corresponding one-dimensional rate function extends the one obtained by [23] as
follows.
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Theorem 1.3.8. Assume 𝜎 ∈ 𝐶3
𝑏 and |𝜌 | < 1. Then 𝑡𝐻−1/2𝑆𝑡 satisfies the LDP as

𝑡 → 0 with speed 𝑡−2𝐻 with good rate function

𝐽# (𝑧) := inf
𝑔∈𝐿2 ( [0,1] )


1
2

∫ 1

0
|𝑔𝑟 |2d𝑟 +

{
𝑧 − 𝜌𝜎(𝑆0)

∫ 1
0 𝑓 (𝐾𝐻𝑔(𝑟), 0) 𝑔𝑟d𝑟

}2

2(1 − 𝜌2)𝜎(𝑆0)2
∫ 1
0 𝑓 (𝐾𝐻𝑔(𝑟), 0)2 d𝑟

 ,
where 𝐾𝐻𝑔(𝑡) =

∫ 𝑡
0 𝜅𝐻 (𝑡 − 𝑟)𝑔𝑟d𝑟 .

Proof. See Section 1.6. □

A short-time asymptotic formula of the implied volatility (regarding 𝑆 as a price
or a log-price process) then follows from Theorem 1.3.8 as in [23]. From the rate
function of Theorem 1.3.8, we observe that the effect of the function 𝜎 to the short-
time asymptotics is only through the constant 𝜎(𝑆0). In particular, the local volatility
function 𝜎 does not add any flexibility to the asymptotic shape of the implied volatility
surface.

1.4 Proofs of main theorems

1.4.1 Proof of Theorem 1.2.6

Proof. By a localizing argument, we can assume without loss of generality that the
derivatives of 𝑓 are bounded. For brevity, let 𝐾 := | | 𝑓 | |𝐶𝑛+2

𝑏
and 𝑀 := | | |X| | | (𝛼,𝛽) . Let

𝐽 (1)𝑠𝑡 = 𝐽 (1) (X)𝑠𝑡 :=
∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑠)𝑋 (𝑖)
𝑠𝑡 , 𝐽 (2)𝑠𝑡 = 𝐽 (2) (X)𝑠𝑡 :=

∑
( 𝑗 ,𝑘 ) ∈𝐽

𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑠)X( 𝑗𝑘 )
𝑠𝑡 ,

where 𝑥𝑠 := 𝑋̂0𝑠 . Below, we follow the standard argument of rough path theory with
Chen’s identity replaced by our modified version (1.2), (1.3).

(Claim 1) The first level of the (𝛼, 𝛽) rough path integral 𝑌 (1)
𝑠𝑡 is well-defined and has

the following inequality:

|𝑌 (1)
𝑠𝑡 | ≦ 𝐾𝐶1 |𝑡 − 𝑠 |𝛼, (1.7)

where

𝐶1 := (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+2 (1 + 𝑇) (𝑛+1)𝛽 {
1 + 2(𝑛+1)𝛽+𝛼𝜁 ((𝑛 + 1)𝛽 + 𝛼)

}
,

and 𝜁 (𝑟) :=
∑∞
𝑝=1

1
𝑝𝑟 .
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Proof. By Taylor expansion, we have∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑢)𝑋 (𝑖)
𝑢𝑡 =

∑
𝑖∈𝐼


∑

| 𝑝 |≦𝑛−|𝑖 |

1
𝑝!
𝜕𝑖+𝑝 𝑓 (𝑥𝑠)

(
𝑋̂𝑠𝑢

) 𝑝
𝑋 (𝑖)
𝑢𝑡 + 𝑅𝑖𝑋 (𝑖)

𝑢𝑡


=

∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑠)
{∑
𝑝≦𝑖

1
(𝑖 − 𝑝)!

(
𝑋̂𝑠𝑢

) 𝑖−𝑝
𝑋 (𝑝)
𝑢𝑡

}
+

∑
𝑖∈𝐼

𝑅𝑖𝑋
(𝑖)
𝑢𝑡 ,

(1.8)

where

𝑅𝑖 = 𝑅(X)𝑖

=
∑

| 𝑝 |=𝑛+1−|𝑖 |

(∫ 1

0

(1 − 𝜃)𝑛+1−|𝑖 | (𝑛 + 1 − |𝑖 |)
𝑝!

𝜕 𝑝 𝑓 (𝑥𝑠 + 𝜃𝑋̂𝑠𝑢)d𝜃
)
( 𝑋̂𝑠𝑢) 𝑝 (1.9)

By the modified Chen’s relation (1.2) and (1.8), for any 𝑠 ≦ 𝑢 ≦ 𝑡,

𝐽 (1)𝑠𝑢 + 𝐽 (1)𝑢𝑡 − 𝐽 (1)𝑠𝑡

=
∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑠)
(
𝑋 (𝑖)
𝑠𝑢 − 𝑋 (𝑖)

𝑠𝑡

)
+

∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑢)𝑋 (𝑖)
𝑢𝑡

= −
∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑠)
{∑
𝑝≦𝑖

1
(𝑖 − 𝑝)!

(
𝑋̂𝑠𝑢

) 𝑖−𝑝
𝑋 (𝑝)
𝑢𝑡

}
+

∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑥𝑢)𝑋 (𝑖)
𝑢𝑡

=
∑
𝑖∈𝐼

𝑅𝑖𝑋
(𝑖)
𝑢𝑡 . (1.10)

Because for all 𝑖 ∈ 𝐼,���𝑅𝑖𝑋 (𝑖)
𝑢𝑡

��� ≦ 𝐾
∑

| 𝑝 |=𝑛+1−|𝑖 |

���( 𝑋̂𝑠𝑢) 𝑝𝑋 (𝑖)
𝑢𝑡

��� ≦ 𝐾 (𝑛 + 1)𝑒 (1 + 𝑀)𝑛+2 |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼,

we have ���𝐽 (1)𝑠𝑢 + 𝐽 (1)𝑢𝑡 − 𝐽 (1)𝑠𝑡

��� ≦ 𝐾 (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+2 |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼 .

For any partition P = {𝑠 = 𝑡0 < 𝑡1 < ... < 𝑡𝑁 = 𝑡}, let 𝐽 (1)𝑠𝑡 (P) :=
∑𝑁
𝑝=1 𝐽

(1)
𝑡𝑝−1𝑡𝑝

.
By Lemma 1.5.1, there exists 𝑝 ∈ {1, ..., 𝑁} such that

|𝑡𝑝+1 − 𝑡𝑝+1 | ≦
2

𝑁 − 1
|𝑡 − 𝑠 |. (1.11)

Then we have���𝐽 (1)𝑠𝑡 (P) − 𝐽 (1)𝑠𝑡

(
P\{𝑡𝑝}

) ���
=

���𝐽 (1)𝑡𝑝−1𝑡𝑝
+ 𝐽 (1)𝑡𝑝 𝑡𝑝+1

− 𝐽 (1)𝑡𝑝−1𝑡𝑝+1

���
≦ 𝐾 (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+2 |𝑡𝑝+1 − 𝑡𝑝−1 | (𝑛+1)𝛽+𝛼

≦ 𝐾 (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+2
(

2
𝑁 − 1

) (𝑛+1)𝛽+𝛼
|𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼,
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and this implies (note that (𝑛 + 1)𝛽 + 𝛼 > 1)���𝐽 (1)𝑠𝑡 (P) − 𝐽 (1)𝑠𝑡

���
≦ 𝐾 (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+22(𝑛+1)𝛽+𝛼𝜁 ((𝑛 + 1)𝛽 + 𝛼) |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼 . (1.12)

(Claim 1a) {𝐽 (1)𝑠𝑡 (P)}P is a Cauchy sequence with |P | ↘ 0.
Let Q be any subdivision of P: Q = {𝑠 = 𝜏0 < 𝜏1 < ... < 𝜏𝐿 = 𝑡, }, 𝐿 > 𝑁 .
Consider the subsequence {𝜏𝑙0 < 𝜏𝑙1 < ... < 𝜏𝑙𝑁 } with 𝜏𝑙𝑝 = 𝑡𝑝 , and let Q𝑝 :=
Q ∩ [𝑡𝑝−1, 𝑡𝑝]. Then Q𝑝 is a partition of [𝑡𝑝−1, 𝑡𝑝]. By using (1.12), we have
that���𝐽 (1)𝑠𝑡 (Q) − 𝐽 (1)𝑠𝑡 (P)

���
≦

𝑁∑
𝑝=1

���𝐽 (1)𝑠𝑡 (Q𝑝) − 𝐽 (1)𝑡𝑝−1𝑡𝑝

���
≦ 𝐾 (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+22(𝑛+1)𝛽+𝛼𝜁 ((𝑛 + 1)𝛽 + 𝛼)

𝑁∑
𝑝=1

|𝑡𝑝 − 𝑡𝑝−1 | (𝑛+1)𝛽+𝛼

≦ 𝐾 (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+22(𝑛+1)𝛽+𝛼𝜁 ((𝑛 + 1)𝛽 + 𝛼) 𝑇
(

sup
𝑡−𝑠≦ | P |

|𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼−1

)
.

Hence for any partition P,P′ with |P | ∨ |P′ | ≦ 𝛿, we have that���𝐽 (1)𝑠𝑡 (P) − 𝐽 (1)𝑠𝑡 (P′)
���

≦
���𝐽 (1)𝑠𝑡 (P) − 𝐽 (1)𝑠𝑡 (P ∪ P′)

��� + ���𝐽 (1)𝑠𝑡 (P ∪ P′) − 𝐽 (1)𝑠𝑡 (P′)
���

≦ 𝐾 (𝑛 + 1)2𝑒 (1 + 𝑀)𝑛+22(𝑛+1)𝛽+𝛼+1𝜁 ((𝑛 + 1)𝛽 + 𝛼) 𝑇
(

sup
𝑡−𝑠≦ 𝛿

|𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼−1
)
,

and because (𝑛+1)𝛽+𝛼 > 1, we conclude that {𝐽 (1)𝑠𝑡 (P)}P is a Cauchy sequence.

Therefore, 𝑌 (1)
𝑠𝑡 is well-defined. Furthermore, by (1.12), we have

|𝑌 (1)
𝑠𝑡 | ≦ |𝐽 (1)𝑠𝑡 | + |𝑌 (1)

𝑠𝑡 − 𝐽 (1)𝑠𝑡 | ≦ 𝐾𝐶1 |𝑡 − 𝑠 |𝛼 .

Thus we have proved the statement of Claim 1. □

(Claim 2) Let 𝑚 := max( 𝑗 ,𝑘 ) ∈𝐽 | 𝑗 + 𝑘 |. Then the second level of the (𝛼, 𝛽) rough path
integral 𝑌 (2)

𝑠𝑡 is well-defined and has the following inequality:

|𝑌 (2)
𝑠𝑡 | ≦ 𝐾2𝐶2 |𝑡 − 𝑠 |2𝛼,

where

𝐶2 := (1+𝑚)2𝑒𝑀 (1+𝑇)𝑚𝛽 +
(
𝐶̃2 + 2𝐶2

1𝑇
(𝑛−𝑚)𝛽

)
2(𝑚+1)𝛽+2𝛼𝜁 ((𝑚 + 1)𝛽 + 2𝛼) ,
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and
𝐶̃2 := 2(1 + 𝑛 + 𝑚)4𝑒 (1 + 𝑀)𝑚+3 (1 + 𝑇) (2𝑛−𝑚−1)𝛽 .

In particular, we have
∫
𝑓 (X̂)𝑑X ∈ Ω𝛼-Hld.

Proof. By the modified Chen’s relation (1.3), for all 𝑠 ≦ 𝑢 ≦ 𝑡,

𝐽 (2)𝑠𝑢 + 𝐽 (2)𝑢𝑡 + 𝐽 (1)𝑠𝑢 ⊗ 𝐽 (1)𝑢𝑡 − 𝐽 (2)𝑠𝑡

= 𝐽 (1)𝑠𝑢 ⊗ 𝐽 (1)𝑢𝑡 +
∑

( 𝑗 ,𝑘 ) ∈𝐽

[
𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑠)

(
X( 𝑗𝑘 )
𝑠𝑢 − X( 𝑗𝑘 )

𝑠𝑡

)
+ 𝜕 𝑗 𝑓 (𝑥𝑢)𝜕𝑘 𝑓 (𝑥𝑢)X( 𝑗𝑘 )

𝑢𝑡

]
=: 𝑆1 + 𝑆2,

where

𝑆1 = 𝑆1 (X)

:= 𝐽 (1)𝑠𝑢 ⊗ 𝐽 (1)𝑢𝑡 −
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑠) ©­«

∑
𝑞≦𝑘

1
(𝑘 − 𝑞)!

(
𝑋̂𝑠𝑢

) 𝑘−𝑞
𝑋

( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑞)

𝑢𝑡
ª®¬

and

𝑆2 = 𝑆2 (X)
:=

∑
( 𝑗 ,𝑘 ) ∈𝐽

𝜕 𝑗 𝑓 (𝑥𝑢)𝜕𝑘 𝑓 (𝑥𝑢)X( 𝑗𝑘 )
𝑢𝑡

−
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑠) ©­«

∑
𝑝≦ 𝑗

∑
𝑞≦𝑘

1
( 𝑗 − 𝑝)!(𝑘 − 𝑞)!

(
𝑋̂𝑠𝑢

) 𝑗+𝑘−𝑝−𝑞 X(𝑝𝑞)
𝑢𝑡

ª®¬ .
Note that

𝐽 (1)𝑠𝑢 ⊗ 𝐽 (1)𝑢𝑡 =

(∑
𝑗∈𝐼

𝜕 𝑗 𝑓 (𝑥𝑠)𝑋 ( 𝑗 )
𝑠𝑢

)
⊗

(∑
𝑘∈𝐼

𝜕𝑘 𝑓 (𝑥𝑢)𝑋 (𝑘 )
𝑢𝑡

)
=

∑
𝑗∈𝐼

∑
𝑘∈𝐼

𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑢)𝑋 ( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡

=
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑢)𝑋 ( 𝑗 )

𝑠𝑢 ⊗ 𝑋 (𝑘 )
𝑢𝑡 +

∑
( 𝑗 ,𝑘 ) ∈𝐼×𝐼\𝐽

𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑢)𝑋 ( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡 .

By Taylor expansion, we have∑
( 𝑗 ,𝑘 ) ∈𝐽

𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑢)𝑋 ( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡

=
∑

( 𝑗 ,𝑘 ) ∈𝐽


∑

|𝑞 |≦𝑚−| 𝑗+𝑘 |

1
𝑞!
𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘+𝑞 𝑓 (𝑥𝑠) ( 𝑋̂𝑠𝑢)𝑞𝑋 ( 𝑗 )

𝑠𝑢 ⊗ 𝑋 (𝑘 )
𝑢𝑡 + 𝜕 𝑗 𝑓 (𝑥𝑠)𝑅 (1)

𝑗𝑘 𝑋
( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡


=

∑
( 𝑗 ,𝑘 ) ∈𝐽

𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑠) ©­«
∑
𝑞≦𝑘

1
(𝑘 − 𝑞)!

(
𝑋̂𝑠𝑢

) 𝑘−𝑞
𝑋

( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑞)

𝑢𝑡
ª®¬ + 𝜕 𝑗 𝑓 (𝑥𝑠)𝑅 (1)

𝑗𝑘 𝑋
( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡

 ,
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where

𝑅 (1)
𝑗𝑘 = 𝑅 (1)

𝑗𝑘 (X)

:=
∑

|𝑞 |=𝑚+1−| 𝑗+𝑘 |

(∫ 1

0

(1 − 𝜃)𝑚+1−| 𝑗+𝑘 | (𝑚 + 1 − | 𝑗 + 𝑘 |)
𝑞!

𝜕𝑘+𝑞 𝑓 (𝑥𝑠 + 𝜃𝑋̂𝑠𝑢)d𝜃
)
( 𝑋̂𝑠𝑢)𝑞 ,

and so we obtain that

𝑆1 = 𝐽 (1)𝑠𝑢 ⊗ 𝐽 (1)𝑢𝑡 −
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑠) ©­«

∑
𝑞≦𝑘

1
(𝑘 − 𝑞)!

(
𝑋̂𝑠𝑢

) 𝑘−𝑞
𝑋

( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑞)

𝑢𝑡
ª®¬

=
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑠)𝑅 (1)

𝑗𝑘 𝑋
( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡 +
∑

( 𝑗 ,𝑘 ) ∈𝐼×𝐼\𝐽
𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑢)𝑋 ( 𝑗 )

𝑠𝑢 ⊗ 𝑋 (𝑘 )
𝑢𝑡

(1.13)

and

|𝑆1 |

≦
∑

( 𝑗 ,𝑘 ) ∈𝐽

���𝜕 𝑗 𝑓 (𝑥𝑠)𝑅 (1)
𝑗𝑘 𝑋

( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡

��� + ∑
( 𝑗 ,𝑘 ) ∈𝐼×𝐼\𝐽

���𝜕 𝑗 𝑓 (𝑥𝑠)𝜕𝑘 𝑓 (𝑥𝑢)𝑋 ( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡

���
≦

∑
( 𝑗 ,𝑘 ) ∈𝐽

∑
|𝑞 |=𝑚+1−| 𝑗+𝑘 |

𝐾2 | ( 𝑋̂𝑠𝑢)𝑞𝑋 ( 𝑗 )
𝑠𝑢 ⊗ 𝑋 (𝑘 )

𝑢𝑡 | +
∑

( 𝑗 ,𝑘 ) ∈𝐼×𝐼\𝐽
𝐾2 |𝑋 ( 𝑗 )

𝑠𝑢 ⊗ 𝑋 (𝑘 )
𝑢𝑡 |

≦ 𝐾2 (1 + 𝑚)3𝑒 (1 + 𝑀)𝑚+3 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼

+ 𝐾2 (1 + 𝑛)2𝑒 (1 + 𝑀)2 (1 + 𝑇) (2𝑛−𝑚−1)𝛽 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼

≦ 2𝐾2 (1 + 𝑛 + 𝑚)3𝑒 (1 + 𝑀)𝑚+3 (1 + 𝑇) (2𝑛−𝑚−1)𝛽 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 . (1.14)

Here we use 𝑚 ≦ 𝑛 (because (𝑛 + 1)𝛽 + 𝛼 > 1, we have (𝑛 + 1)𝛽 + 2𝛼 > 1, and
the definition of 𝑚 implies 𝑚 ≦ 𝑛).

On the other hand, one can show that

𝑆2 =
∑

( 𝑗 ,𝑘 ) ∈𝐽


∑

| 𝑝 |≦𝑚−| 𝑗+𝑘 |

1
𝑝!
𝜕 𝑗+𝑝 𝑓 (𝑥𝑠)𝑅 (3)

𝑗𝑘 𝑝 ( 𝑋̂𝑠𝑢)
𝑝X( 𝑗𝑘 )

𝑢𝑡 + 𝜕𝑘 𝑓 (𝑥𝑢)𝑅 (2)
𝑗𝑘 X( 𝑗𝑘 )

𝑢𝑡


(1.15)
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by using the Taylor expansion∑
( 𝑗 ,𝑘 ) ∈𝐽

𝜕 𝑗 𝑓 (𝑥𝑢)𝜕𝑘 𝑓 (𝑥𝑢)X( 𝑗𝑘 )
𝑢𝑡

=
∑

( 𝑗 ,𝑘 ) ∈𝐽


∑

| 𝑝 |≦𝑚−| 𝑗+𝑘 |

1
𝑝!
𝜕 𝑗+𝑝 𝑓 (𝑥𝑠)( 𝑋̂𝑠𝑢) 𝑝 + 𝑅 (2)

𝑗𝑘

 𝜕𝑘 𝑓 (𝑥𝑢)X( 𝑗𝑘 )
𝑢𝑡

=
∑

( 𝑗 ,𝑘 ) ∈𝐽

∑
| 𝑝 |≦𝑚−| 𝑗+𝑘 |

∑
|𝑞 |≦𝑚−| 𝑗+𝑘+𝑝 |

1
𝑝!𝑞!

𝜕 𝑗+𝑝 𝑓 (𝑥𝑠)𝜕𝑘+𝑞 𝑓 (𝑥𝑠) ( 𝑋̂𝑠𝑢) 𝑝+𝑞X( 𝑗𝑘 )
𝑢𝑡

+
∑

( 𝑗 ,𝑘 ) ∈𝐽

∑
| 𝑝 |≦𝑚−| 𝑗+𝑘 |

1
𝑝!
𝜕 𝑗+𝑝 𝑓 (𝑥𝑠)𝑅 (3)

𝑗𝑘 𝑝 ( 𝑋̂𝑠𝑢)
𝑝X( 𝑗𝑘 )

𝑢𝑡

+
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝑅 (2)
𝑗𝑘 𝜕

𝑘 𝑓 (𝑥𝑢)X( 𝑗𝑘 )
𝑢𝑡 ,

where

𝑅 (2)
𝑗𝑘 = 𝑅 (2)

𝑗𝑘 (X)

:=
∑

| 𝑝 |=𝑚+1−| 𝑗+𝑘 |

(∫ 1

0

(1 − 𝜃)𝑚+1−| 𝑗+𝑘 | (𝑚 + 1 − | 𝑗 + 𝑘 |)
𝑝!

𝜕 𝑗+𝑝 𝑓 (𝑥𝑠 + 𝜃𝑋̂𝑠𝑢)d𝜃
)
( 𝑋̂𝑠𝑢) 𝑝 ,

𝑅 (3)
𝑗𝑘 𝑝 = 𝑅 (3)

𝑗𝑘 𝑝 (X)

:=
∑

|𝑞 |=𝑚+1−| 𝑗+𝑘+𝑝 |

(∫ 1

0

(1 − 𝜃)𝑚+1−| 𝑗+𝑘+𝑝 | (𝑚 + 1 − | 𝑗 + 𝑘 + 𝑝 |)
𝑞!

𝜕𝑘+𝑞 𝑓 (𝑥𝑠 + 𝜃𝑋̂𝑠𝑢)d𝜃
)
( 𝑋̂𝑠𝑢)𝑞 .

Because for all ( 𝑗 , 𝑘) ∈ 𝐽 and 0 ≦ |𝑝 | ≦ 𝑚 − | 𝑗 + 𝑘 |,���𝜕 𝑗+𝑝 𝑓 (𝑥𝑠)𝑅 (3)
𝑗𝑘 𝑝 ( 𝑋̂𝑠𝑢)

𝑝X( 𝑗𝑘 )
𝑢𝑡

��� ≦ 𝐾2
∑

|𝑞 |=𝑚+1−| 𝑗+𝑘+𝑝 |
| ( 𝑋̂𝑠𝑢) 𝑝+𝑞X( 𝑗𝑘 )

𝑢𝑡 |

≦ 𝐾2 (1 + 𝑚)𝑒 (1 + 𝑀)𝑚+2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼,

and ���𝑅 (2)
𝑗𝑘 𝜕

𝑘 𝑓 (𝑥𝑢)X( 𝑗𝑘 )
𝑢𝑡

��� ≦ 𝐾2
∑

| 𝑝 |=𝑚+1−| 𝑗+𝑘 |
| ( 𝑋̂𝑠𝑢) 𝑝X( 𝑗𝑘 )

𝑢𝑡 |

≦ 𝐾2 (1 + 𝑚)𝑒 (1 + 𝑀)𝑚+2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼,

we have

|𝑆2 |
≦

∑
( 𝑗 ,𝑘 ) ∈𝐽

∑
| 𝑝 |≦𝑚−| 𝑗+𝑘 |

|𝜕 𝑗+𝑝 𝑓 (𝑥𝑠)𝑅 (3)
𝑗𝑘 𝑝 ( 𝑋̂𝑠𝑢)

𝑝X( 𝑗𝑘 )
𝑢𝑡 | +

∑
( 𝑗 ,𝑘 ) ∈𝐽

|𝜕𝑘 𝑓 (𝑥𝑢)𝑅 (2)
𝑗𝑘 X( 𝑗𝑘 )

𝑢𝑡 |

≦ 𝐾2 (1 + 𝑚)4𝑒 (1 + 𝑀)𝑚+2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 + 𝐾2 (1 + 𝑚)3𝑒 (1 + 𝑀)𝑚+1 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼

≦ 2𝐾2 (1 + 𝑚)4𝑒 (1 + 𝑀)𝑚+2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 . (1.16)
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By (1.14) and (1.16), we have���𝐽 (2)𝑠𝑢 + 𝐽 (2)𝑢𝑡 + 𝐽 (1)𝑠𝑢 ⊗ 𝐽 (1)𝑢𝑡 − 𝐽 (2)𝑠𝑡

��� ≦ |𝑆1 | + |𝑆2 | ≦ 𝐾2𝐶̃2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼,

where 𝐶̃2 = 2(1 + 𝑛 +𝑚)4𝑒 (1 +𝑀)𝑚+3 (1 +𝑇) (2𝑛−𝑚−1)𝛽 . Moreover, by (1.7) and
(1.12), we have���𝑌 (1)

𝑠𝑢 ⊗ 𝑌 (1)
𝑢𝑡 − 𝐽 (1)𝑠𝑢 ⊗ 𝐽 (1)𝑢𝑡

���
≦

���𝑌 (1)
𝑠𝑢

��� ���𝑌 (1)
𝑢𝑡 − 𝐽 (1)𝑢𝑡

��� + ���𝑌 (1)
𝑠𝑢 − 𝐽 (1)𝑠𝑢

��� ���𝐽 (1)𝑢𝑡

��� ≦ 2𝐾2𝐶2
1 |𝑡 − 𝑠 | (𝑛+1)𝛽+2𝛼 .

Let 𝐽 (2)𝑠𝑡 (P) :=
∑𝑛
𝑝=1𝑌

(1)
𝑡0𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

+ 𝐽 (2)𝑡𝑝−1𝑡𝑝
. By Lemma 1.5.1, there exists

𝑝 ∈ {1, ..., 𝑁} such that (1.11) holds. Note that 𝑚 ≦ 𝑛. Then, the above
inequalities imply that���𝐽 (2)𝑠𝑡 (P) − 𝐽 (2)𝑠𝑡 (P\{𝑡𝑝})

���
≦

���𝐽 (2)𝑡𝑝−1𝑡𝑝
+ 𝐽 (2)𝑡𝑝 𝑡𝑝+1

+ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

⊗ 𝑌 (1)
𝑡𝑝 𝑡𝑝+1

− 𝐽 (2)𝑡𝑝−1𝑡𝑝+1

���
≦

���𝐽 (2)𝑡𝑝−1𝑡𝑝
+ 𝐽 (2)𝑡𝑝 𝑡𝑝+1

+ 𝐽 (1)𝑡𝑝−1𝑡𝑝
⊗ 𝐽 (1)𝑡𝑝 𝑡𝑝+1

− 𝐽 (2)𝑡𝑝−1𝑡𝑝+1

��� + ���𝑌 (1)
𝑡𝑝−1𝑡𝑝

⊗ 𝑌 (1)
𝑡𝑝 𝑡𝑝+1

− 𝐽 (1)𝑡𝑝−1𝑡𝑝
⊗ 𝐽 (1)𝑡𝑝 𝑡𝑝+1

���
≦ 𝐾2𝐶̃2 |𝑡𝑝+1 − 𝑡𝑝−1 | (𝑚+1)𝛽+2𝛼 + 2𝐾2𝐶2

1 |𝑡𝑝+1 − 𝑡𝑝−1 | (𝑛+1)𝛽+2𝛼

≦ 𝐾2
(
𝐶̃2 + 2𝐶2

1𝑇
(𝑛−𝑚)𝛽

) (
2

𝑁 − 1

) (𝑚+1)𝛽+2𝛼
|𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 .

This implies that (note that (𝑚 + 1)𝛽 + 2𝛼 > 1)

|𝐽 (2)𝑠𝑡 (P) − 𝐽 (2)𝑠𝑡 | ≦ 𝐾2𝐶2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 . (1.17)

This shows that {𝐽 (2)𝑠𝑡 (P)}P is a Cauchy sequence when |P | ↘ 0 (one can adapt
the argument of Claim 1a in the proof of Claim 1 by using (1.17) instead of
(1.12)). Hence, 𝑌 (2)

𝑠𝑡 is well-defined. We also obtain that

|𝑌 (2)
𝑠𝑡 | ≦ |𝐽 (2)𝑠𝑡 | + |𝑌 (2)

𝑠𝑡 − 𝐽 (2)𝑠𝑡 | ≦ 𝐾2𝐶2 |𝑡 − 𝑠 |2𝛼 .

Next, we prove that
∫
𝑓 (X̂)dX satisfies Chen’s relation. Fix 𝜖 > 0 and 𝑠 < 𝑢 < 𝑡.

By taking a partition P = {𝑠 = 𝑡0 < 𝑡1 < ... < 𝑡𝑁 = 𝑡} of [𝑠, 𝑡] small enough
(which has the point 𝑡𝑁̃ = 𝑢), we have���𝑌 (1)

𝑠𝑡 − 𝑌 (1)
𝑠𝑢 − 𝑌 (1)

𝑢𝑡

���
≦

������𝑌 (1)
𝑠𝑡 −

𝑁∑
𝑝=1

𝐽 (1)𝑡𝑝−1𝑡𝑝

������ +
������𝑌 (1)
𝑠𝑢 −

𝑁̃∑
𝑝=1

𝐽 (1)𝑡𝑝−1𝑡𝑝

������ +
������𝑌 (1)
𝑢𝑡 −

𝑁∑
𝑝=𝑁̃+1

𝐽 (1)𝑡𝑝−1𝑡𝑝

������
≦ 3𝜖
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and so the first level of
∫
𝑓 (X̂)dX satisfies Chen’s relation. Note that this result

implies that

𝑁∑
𝑞=1

𝑌 (1)
𝑡0𝑡𝑞−1

⊗ 𝑌 (1)
𝑡𝑞−1𝑡𝑞

=
∑

0<𝑝<𝑞≦𝑁
𝑌 (1)
𝑡𝑝−1𝑡𝑝

⊗ 𝑌 (1)
𝑡𝑞−1𝑡𝑞

.

Note also that

𝑌 (1)
𝑠𝑢 ⊗ 𝑌 (1)

𝑢𝑡

= ©­«
𝑁̃∑
𝑝=1

𝑌 (1)
𝑡𝑝−1𝑡𝑝

ª®¬ ⊗ ©­«
𝑁∑

𝑞=𝑁̃+1

𝑌 (1)
𝑡𝑞−1𝑡𝑞

ª®¬
=

∑
0<𝑝<𝑞≦𝑁

𝑌 (1)
𝑡𝑝−1𝑡𝑝

⊗ 𝑌 (1)
𝑡𝑞−1𝑡𝑞

−
∑

0<𝑝<𝑞≦ 𝑁̃

𝑌 (1)
𝑡𝑝−1𝑡𝑝

⊗ 𝑌 (1)
𝑡𝑞−1𝑡𝑞

−
∑

𝑁̃<𝑝<𝑞≦𝑁

𝑌 (1)
𝑡𝑝−1𝑡𝑝

⊗ 𝑌 (1)
𝑡𝑞−1𝑡𝑞

=
𝑁∑
𝑝=1

𝑌 (1)
𝑡0𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

−
𝑁̃∑
𝑝=1

𝑌 (1)
𝑡0𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

−
𝑁∑

𝑝=𝑁̃+1

𝑌 (1)
𝑡𝑁̃ 𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

,

and so we have ���𝑌 (2)
𝑠𝑡 − 𝑌 (2)

𝑠𝑢 − 𝑌 (2)
𝑢𝑡 − 𝑌 (1)

𝑠𝑢 ⊗ 𝑌 (1)
𝑢𝑡

���
≦

���𝑌 (2)
𝑠𝑡 − S𝑠𝑡

��� + ���𝑌 (2)
𝑠𝑢 − S𝑠𝑢

��� + ���𝑌 (2)
𝑢𝑡 − S𝑢𝑡

��� ≦ 3𝜖,

where

S𝑠𝑡 :=
𝑁∑
𝑝=1

©­«𝑌 (1)
𝑡0𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

+
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑡𝑝−1 )𝜕𝑘 𝑓 (𝑥𝑡𝑝−1 )X

( 𝑗𝑘 )
𝑡𝑝−1𝑡𝑝

ª®¬ ,
S𝑠𝑢 :=

𝑁̃∑
𝑝=1

©­«𝑌 (1)
𝑡0𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

+
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑡𝑝−1 )𝜕𝑘 𝑓 (𝑥𝑡𝑝−1 )X

( 𝑗𝑘 )
𝑡𝑝−1𝑡𝑝

ª®¬ ,
S𝑢𝑡 :=

𝑁∑
𝑝=𝑁̃+1

©­«𝑌 (1)
𝑡𝑀 𝑡𝑝−1

⊗ 𝑌 (1)
𝑡𝑝−1𝑡𝑝

+
∑

( 𝑗 ,𝑘 ) ∈𝐽
𝜕 𝑗 𝑓 (𝑥𝑡𝑝−1 )𝜕𝑘 𝑓 (𝑥𝑡𝑝−1 )X

( 𝑗𝑘 )
𝑡𝑝−1𝑡𝑝

ª®¬ .
Therefore, the second level of

∫
𝑓 (X̂)dX also satisfies Chen’s relation. The above

argument proves statement (i) of Theorem 1.2.6. □

(Claim 3) Suppose that there exist 𝑀 > 0 and 𝜖 > 0 such that

|𝑉̂𝑠𝑡 | ∨ |𝑊̂𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 |𝛽 , |𝑉 (𝑖)
𝑠𝑡 | ∨ |𝑊 (𝑖)

𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 | |𝑖 |𝛽+𝛼,

|V( 𝑗𝑘 )
𝑠𝑡 | ∨ |W( 𝑗𝑘 )

𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝛽+2𝛼, |𝑉̂𝑠𝑡 − 𝑊̂𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 |𝛽 ,
and

|𝑉 (𝑖)
𝑠𝑡 −𝑊 (𝑖)

𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 | |𝑖 |𝛽+𝛼, |V( 𝑗𝑘 )
𝑠𝑡 − W( 𝑗𝑘 )

𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝛽+2𝛼 .
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Then, there exists 𝐶3 > 0 such that�����(∫ 𝑓 (V̂)dV
) (1)
𝑠𝑡

−
(∫

𝑓 (Ŵ)dW
) (1)
𝑠𝑡

����� ≦ 𝐾𝜖𝐶3 |𝑡 − 𝑠 |𝛼, (1.18)

where

𝐶3 := (1 + 𝑛)2𝑒+1 (1 + 𝑇) (𝑛+1)𝛽{1 + (3𝑒 + 2) (1 + 𝑀)𝑛+22(𝑛+1)𝛽+𝛼𝜁 ((𝑛 + 1)𝛽 + 𝛼)}.

Proof. By the assumption and the mean value theorem, we have���𝐽 (1) (V)𝑠𝑡 − 𝐽 (1) (W)𝑠𝑡
���

=

�����∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑣̂𝑠)𝑉 (𝑖)
𝑠𝑡 −

∑
𝑖∈𝐼

𝜕𝑖 𝑓 (𝑤̂𝑠)𝑊 (𝑖)
𝑠𝑡

�����
≦

∑
𝑖∈𝐼

{
|𝜕𝑖 𝑓 (𝑣̂𝑠) − 𝜕𝑖 𝑓 (𝑤̂𝑠) | |𝑉 (𝑖)

𝑠𝑡 | + |𝜕𝑖 𝑓 (𝑤̂𝑠) | |𝑉 (𝑖)
𝑠𝑡 −𝑊 (𝑖)

𝑠𝑡 |
}

≦ 𝐾𝜖 (1 + 𝑒𝑀)(1 + 𝑛)𝑒 (1 + 𝑇) (𝑛+1)𝛽 |𝑡 − 𝑠 |𝛼 . (1.19)

By (1.9), (1.10), and the mean value theorem, for all 𝑠 ≦ 𝑢 ≦ 𝑡,���𝐽 (1) (V)𝑠𝑢 + 𝐽 (1) (V)𝑢𝑡 − 𝐽 (1) (V)𝑠𝑡 − {
𝐽 (1) (W)𝑠𝑢 + 𝐽 (1) (W)𝑢𝑡 − 𝐽 (1) (W)𝑠𝑡

}���
≦

∑
𝑖∈𝐼

���𝑅𝑖 (V)𝑉 (𝑖)
𝑢𝑡 − 𝑅𝑖 (W)𝑊 (𝑖)

𝑢𝑡

���
≦

∑
𝑖∈𝐼

���𝑅𝑖 (V) − 𝑅𝑖 (W) | |𝑉 (𝑖)
𝑢𝑡 | + |𝑅𝑖 (W) | |𝑉 (𝑖)

𝑢𝑡 −𝑊 (𝑖)
𝑢𝑡

���
≦ (2𝑒 + 1)𝐾𝜖 (1 + 𝑛)2𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑛+2 |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼

+ 𝐾𝜖 (1 + 𝑛)2𝑒 (1 + 𝑀)𝑛+1 |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼

≦ (2𝑒 + 2)𝐾𝜖 (1 + 𝑛)2𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑛+2 |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼 .

By Lemma 1.5.1, there exists 𝑝 ∈ {1, ..., 𝑁} such that (1.11) holds. By the above
inequality, we have that���𝐽 (1) (V)𝑠𝑡 (P) − 𝐽 (1) (V)𝑠𝑡 (P\{𝑡𝑝}) −

{
𝐽 (1) (W)𝑠𝑡 (P) − 𝐽 (1) (W)𝑠𝑡

(
P\{𝑡𝑝}

)}���
=

����𝐽 (1) (V)𝑡𝑝−1𝑡𝑝 + 𝐽 (1) (V)𝑡𝑝 𝑡𝑝+1 − 𝐽 (1) (V)𝑡𝑝−1𝑡𝑝+1

−
{
𝐽 (1) (W)𝑡𝑝−1𝑡𝑝 + 𝐽 (1) (W)𝑡𝑝 𝑡𝑝+1 − 𝐽 (1) (W)𝑡𝑝−1𝑡𝑝+1

} ����
≦ (2𝑒 + 2)𝐾𝜖 (1 + 𝑛)2𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑛+2 |𝑡𝑝+1 − 𝑡𝑝−1 | (𝑛+1)𝛽+𝛼

≦ (2𝑒 + 2)𝐾𝜖 (1 + 𝑛)2𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑛+2
(

2
𝑁 − 1

) (𝑛+1)𝛽+𝛼
|𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼 .
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This implies that (note that (𝑛 + 1)𝛽 + 𝛼 > 1)���𝐽 (1) (V)𝑠𝑡 (P) − 𝐽 (1) (V)𝑠𝑡 − {𝐽 (1) (W)𝑠𝑡 (P) − 𝐽 (1) (W)𝑠𝑡 }
���

≦ (2𝑒 + 2)𝐾𝜖 (1 + 𝑛)2𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑛+22(𝑛+1)𝛽+𝛼𝜁 ((𝑛 + 1)𝛽 + 𝛼) |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼 .
(1.20)

Therefore, by (1.19) and (1.20), we conclude that���𝐽 (1) (V)𝑠𝑡 (P) − 𝐽 (1) (W)𝑠𝑡 (P)
���

≦
���𝐽 (1) (V)𝑠𝑡 − 𝐽 (1) (W)𝑠𝑡

��� + ���𝐽 (1) (V)𝑠𝑡 (P) − 𝐽 (1) (V)𝑠𝑡 −
{
𝐽 (1) (W)𝑠𝑡 (P) − 𝐽 (1) (W)𝑠𝑡

}���
≦ 𝐾𝜖 (1 + 𝑒𝑀) (1 + 𝑛)𝑒 (1 + 𝑇) (𝑛+1)𝛽 |𝑡 − 𝑠 |𝛼

+ (2𝑒 + 2)𝐾𝜖 (1 + 𝑛)2𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑛+22(𝑛+1)𝛽+𝛼𝜁 ((𝑛 + 1)𝛽 + 𝛼) |𝑡 − 𝑠 | (𝑛+1)𝛽+𝛼

≦ 𝐾𝜖𝐶3 |𝑡 − 𝑠 |𝛼 .

Taking |P | ↘ 0, we prove (1.18). □

(Claim 4) Suppose that there exist 𝑀 > 0 and 𝜖 > 0 such that

|𝑉̂𝑠𝑡 | ∨ |𝑊̂𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 |𝛽 , |𝑉 (𝑖)
𝑠𝑡 | ∨ |𝑊 (𝑖)

𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 | |𝑖 |𝛽+𝛼,

|V( 𝑗𝑘 )
𝑠𝑡 | ∨ |W( 𝑗𝑘 )

𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝛽+2𝛼, |𝑉̂𝑠𝑡 − 𝑊̂𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 |𝛽 ,
and

|𝑉 (𝑖)
𝑠𝑡 −𝑊 (𝑖)

𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 | |𝑖 |𝛽+𝛼, |V( 𝑗𝑘 )
𝑠𝑡 − W( 𝑗𝑘 )

𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝛽+2𝛼 .

Then �����(∫ 𝑓 (V̂)dV
) (2)
𝑠𝑡

−
(∫

𝑓 (Ŵ)dW
) (2)
𝑠𝑡

����� ≦ 𝐾2𝜖𝐶4 |𝑡 − 𝑠 |2𝛼, (1.21)

where

𝐶4 := (1+𝑚)2𝑒 (1+2𝑒𝑀)(1+𝑇) (𝑚+1)𝛽+(1+𝑇 (𝑛−𝑚)𝛽)(𝐶̃4+4𝐶1𝐶3)2(𝑚+1)𝛽+2𝛼𝜁 ((𝑚+1)𝛽+2𝛼),

𝐶̃4 := (15𝑒 + 7)(1 + 𝑛 + 𝑚)3𝑒 (1 + 𝑀)𝑚+3 (1 + 𝑇) (2𝑛−𝑚)𝛽 .

In particular, the integration map is Lipschitz continuous.

Proof. The assumption and the mean value theorem imply that���𝐽 (2) (V)𝑠𝑡 − 𝐽 (2) (W)𝑠𝑡
���

≦
∑

( 𝑗 ,𝑘 ) ∈𝐽

���𝜕 𝑗 𝑓 (𝑣̂𝑠)𝜕𝑘 𝑓 (𝑣̂𝑠)V( 𝑗𝑘 )
𝑠𝑡 − 𝜕 𝑗 𝑓 (𝑤̂𝑠)𝜕𝑘 𝑓 (𝑤̂𝑠)W( 𝑗𝑘 )

𝑠𝑡

���
≦ 𝐾2𝜖 (1 + 𝑚)2𝑒 (2𝑒𝑀 + 1) (1 + 𝑇) (𝑚+1)𝛽 |𝑡 − 𝑠 |2𝛼 . (1.22)
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On the other hand, by (1.13) and (1.15), we can calculate

|𝑆1 (V) − 𝑆1 (W) |
≦

∑
( 𝑗 ,𝑘 ) ∈𝐽

|𝜕 𝑗 𝑓 (𝑣̂𝑠)𝑅 (1)
𝑗𝑘 (V)𝑉

( 𝑗 )
𝑠𝑢 ⊗ 𝑉 (𝑘 )

𝑢𝑡 − 𝜕 𝑗 𝑓 (𝑤̂𝑠)𝑅 (1)
𝑗𝑘 (W)𝑊 ( 𝑗 )

𝑠𝑢 ⊗𝑊 (𝑘 )
𝑢𝑡 |

+
∑

( 𝑗 ,𝑘 ) ∈𝐼×𝐼\𝐽
|𝜕 𝑗 𝑓 (𝑣̂𝑠)𝜕𝑘 𝑓 (𝑣̂𝑢)𝑉 ( 𝑗 )

𝑠𝑢 ⊗ 𝑉 (𝑘 )
𝑢𝑡 − 𝜕 𝑗 𝑓 (𝑤̂𝑠)𝜕𝑘 𝑓 (𝑤̂𝑢)𝑊 ( 𝑗 )

𝑠𝑢 ⊗𝑊 (𝑘 )
𝑢𝑡 |

≦ 𝐾2𝜖 (1 + 𝑚)3𝑒 (1 + 𝑀)𝑚+3 (1 + 𝑇)𝛽 (5𝑒 + 2) |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼

+ 𝐾2𝜖 (1 + 𝑛)2𝑒 (1 + 𝑀)2 (1 + 𝑇) (2𝑛−𝑚)𝛽 (2𝑒 + 2) |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼

≦ 𝐾2𝜖 (1 + 𝑛 + 𝑚)3𝑒 (1 + 𝑀)𝑚+3 (1 + 𝑇) (2𝑛−𝑚)𝛽 (7𝑒 + 4) |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼,

and

|𝑆2 (V) − 𝑆2 (W) |

≦
∑

( 𝑗 ,𝑘 ) ∈𝐽

∑
| 𝑝 |≦𝑚−| 𝑗+𝑘 |

���𝜕 𝑗+𝑝 𝑓 (𝑣̂𝑠)𝑅 (3)
𝑗𝑘 𝑝 (V)(𝑉̂𝑠𝑢)

𝑝V( 𝑗𝑘 )
𝑢𝑡 − 𝜕 𝑗+𝑝 𝑓 (𝑤̂𝑠)𝑅 (3)

𝑗𝑘 𝑝 (W) (𝑊̂𝑠𝑢) 𝑝W( 𝑗𝑘 )
𝑢𝑡

���
+

∑
( 𝑗 ,𝑘 ) ∈𝐽

∑
| 𝑝 |≦𝑚−| 𝑗+𝑘 |

���𝜕𝑘 𝑓 (𝑣̂𝑢)𝑅 (2)
𝑗𝑘 (V)V

( 𝑗𝑘 )
𝑢𝑡 − 𝜕𝑘 𝑓 (𝑤̂𝑢)𝑅 (2)

𝑗𝑘 (W)W( 𝑗𝑘 )
𝑢𝑡

���
≦ 𝐾2𝜖 (5𝑒 + 2)(1 + 𝑚)3𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑚+2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼

+ 𝐾2𝜖 (3𝑒 + 1) (1 + 𝑚)3𝑒+1 (1 + 𝑀)𝑚+2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼

≦ 𝐾2𝜖 (8𝑒 + 3)(1 + 𝑚)3𝑒+1 (1 + 𝑇)𝛽 (1 + 𝑀)𝑚+2 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 .

Therefore, we have

|Σ(V)𝑠𝑢𝑡 − Σ(W)𝑠𝑢𝑡 |
≦ |𝑆1 (V) − 𝑆1 (W) | + |𝑆2 (V) − 𝑆2 (W) | ≦ 𝐾2𝜖𝐶̃4 |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼,

where

Σ𝑠𝑢𝑡 (V) := 𝐽 (2) (V)𝑠𝑢+𝐽 (2) (V)𝑢𝑡+𝐽 (1) (V)𝑠𝑢⊗𝐽 (1) (V)𝑢𝑡−𝐽 (2) (V)𝑠𝑡 , 𝑠 ≦ 𝑢 ≦ 𝑡

and

𝐶̃4 = (15𝑒 + 7)(1 + 𝑛 + 𝑚)3𝑒 (1 + 𝑀)𝑚+3 (1 + 𝑇) (2𝑛−𝑚)𝛽 .

Let

Γ(V)𝑠𝑢𝑡 := 𝑌 (1) (V)𝑠𝑢 ⊗ 𝑌 (1) (V)𝑢𝑡 − 𝐽 (1) (V)𝑠𝑢 ⊗ 𝐽 (1) (V)𝑢𝑡 , 𝑠 ≦ 𝑢 ≦ 𝑡.
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Then by (1.7), (1.12), (1.18), and (1.20), we have

|Γ(V)𝑠𝑢𝑡 − Γ(W)𝑠𝑢𝑡 |
≦

��𝑌 (1) (V)𝑠𝑢 ⊗ (𝑌 (1) (V)𝑢𝑡 − 𝐽 (1) (V)𝑢𝑡 ) − 𝑌 (1) (W)𝑠𝑢 ⊗ (𝑌 (1) (W)𝑢𝑡 − 𝐽 (1) (W)𝑢𝑡 )
��

+
��(𝑌 (1) (V)𝑠𝑢 − 𝐽 (1) (V)𝑠𝑢) ⊗ 𝐽 (1) (V)𝑢𝑡 − (𝑌 (1) (W)𝑠𝑢 − 𝐽 (1) (W)𝑠𝑢) ⊗ 𝐽 (1) (W)𝑢𝑡

��
≦

���𝑌 (1) (V)𝑠𝑢
��� ���𝑌 (1) (V)𝑢𝑡 − 𝐽 (1) (V)𝑢𝑡 − 𝑌 (1) (W)𝑢𝑡 + 𝐽 (1) (W)𝑢𝑡

���
+

���𝑌 (1) (V)𝑠𝑢 − 𝑌 (1) (W)𝑠𝑢
��� ���𝑌 (1) (W)𝑢𝑡 − 𝐽 (1) (W)𝑢𝑡

���
+

���𝑌 (1) (V)𝑢𝑡 − 𝐽 (1) (V)𝑢𝑡 − 𝑌 (1) (W)𝑢𝑡 + 𝐽 (1) (W)𝑢𝑡
��� ���𝐽 (1) (V)𝑢𝑡 ���

+
���𝑌 (1) (W)𝑢𝑡 − 𝐽 (1) (W)𝑢𝑡

��� ���𝐽 (1) (V)𝑢𝑡 − 𝐽 (1) (W)𝑢𝑡
���

≦ 𝐾2𝜖4𝐶1𝐶3 |𝑡 − 𝑠 | (𝑛+1)𝛽+2𝛼 .

By Lemma 1.5.1, there exists 𝑝 ∈ {1, ..., 𝑁} such that (1.11) holds. Then we
have���𝐽 (2) (V)𝑠𝑡 (P) − 𝐽 (2) (V)𝑠𝑡 (P\{𝑡𝑝}) −

{
𝐽 (2) (W)𝑠𝑡 (P) − 𝐽 (2) (W)𝑠𝑡 (P\{𝑡𝑝})

}���
≦

��Σ(V)𝑡𝑝−1𝑡𝑝 𝑡𝑝+1 − Σ(W)𝑡𝑝−1𝑡𝑝 𝑡𝑝+1

�� + ��Γ(V)𝑡𝑝−1𝑡𝑝 𝑡𝑝+1 − Γ(V)𝑡𝑝−1𝑡𝑝 𝑡𝑝+1

��
≦ 𝐾2𝜖𝐶̃4 |𝑡𝑖+1 − 𝑡𝑖−1 | (𝑚+1)𝛽+2𝛼 + 𝐾2𝜖4𝐶1𝐶3 |𝑡𝑖+1 − 𝑡𝑖−1 | (𝑛+1)𝛽+2𝛼

≦ 𝐾2𝜖 (1 + 𝑇 (𝑛−𝑚)𝛽) (𝐶̃4 + 4𝐶1𝐶3)
(

2
𝑁 − 1

) (𝑚+1)𝛽+2𝛼
|𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 .

This implies that (note that (𝑚 + 1)𝛽 + 2𝛼 > 1)���𝐽 (2) (V)𝑠𝑡 (P) − 𝐽 (2) (V)𝑠𝑡 −
{
𝐽 (2) (W)𝑠𝑡 (P) − 𝐽 (2) (W)𝑠𝑡

}���
≦ 𝐾2𝜖 (1 + 𝑇 (𝑛−𝑚)𝛽) (𝐶̃4 + 4𝐶1𝐶3)2(𝑚+1)𝛽+2𝛼𝜁 ((𝑚 + 1)𝛽 + 2𝛼) |𝑡 − 𝑠 | (𝑚+1)𝛽+2𝛼 .

(1.23)

Therefore, by (1.22) and (1.23) we conclude that���𝐽 (2) (V)𝑠𝑡 (P) − 𝐽 (2) (W)𝑠𝑡 (P)
���

≦
���𝐽 (2) (V)𝑠𝑡 − 𝐽 (2) (W)𝑠𝑡

���
+

���𝐽 (2) (V)𝑠𝑡 (P) − 𝐽 (2) (V)𝑠𝑡 − {𝐽 (2) (W)𝑠𝑡 (P) − 𝐽 (2) (W)𝑠𝑡 }
���

≦ 𝐾2𝜖𝐶4 |𝑡 − 𝑠 |2𝛼 .

Taking |P | ↘ 0, we have (1.21).

For any V,W ∈ E𝑀 , take 𝜖 := 𝑑 (𝛼,𝛽) (V,W). Then we have

|𝑉̂𝑠𝑡 | ∨ |𝑊̂𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 |𝛽 , |𝑉 (𝑖)
𝑠𝑡 | ∨ |𝑊 (𝑖)

𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 | |𝑖 |𝛽+𝛼,
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|V( 𝑗𝑘 )
𝑠𝑡 | ∨ |W( 𝑗𝑘 )

𝑠𝑡 | ≦ 𝑀 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝛽+2𝛼, |𝑉̂𝑠𝑡 − 𝑊̂𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 |𝛽 ,
and

|𝑉 (𝑖)
𝑠𝑡 −𝑊 (𝑖)

𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 | |𝑖 |𝛽+𝛼, |V( 𝑗𝑘 )
𝑠𝑡 − W( 𝑗𝑘 )

𝑠𝑡 | ≦ 𝜖 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝛽+2𝛼 .

Therefore, by (1.18) and (1.21) we conclude that for all V,W ∈ E𝑀 ,

𝑑𝛼

(∫
𝑓 (V̂)dV,

∫
𝑓 (Ŵ)dW

)
≦ 𝐾𝐶3𝜖 + 𝐾2𝐶4𝜖

≦ 𝐾 (𝐶3 + 𝐾𝐶4)𝑑 (𝛼,𝛽) (V,W),

and this is the claim. □

Claims 1–4 complete the proof of Theorem 1.2.6. □

1.4.2 Proof of Proposition 1.3.1
We use the following lemmas.

Lemma 1.4.1 ([68] Proposition 1.1.2).

𝐼1 (𝑔)𝐼𝑝 (𝑔⊗𝑝) = 𝐼𝑝+1 (𝑔⊗(𝑝+1) ) + 𝑝 | |𝑔 | |2
𝐿2 𝐼𝑝−1 (𝑔⊗(𝑝−1) ), 𝑔 ∈ 𝐿2 (R+), 𝑝 ≧ 1.

Lemma 1.4.2 ([60] Corollary 9.7). Let 𝑌 belong to the 𝑚-th Wiener chaos and 𝑝 ≧ 2.
Then we have

| |𝑌 | |𝑝 ≦
√
𝑚 + 1(𝑝 − 1)𝑚/2 | |𝑌 | |2.

Proof of Proposition 1.3.1. (i) Because 𝛾 < 1/2, 𝑋̂ is well-defined and one can prove
that K𝑊 (𝑡) =

∫ 𝑡
0 𝜅(𝑡 − 𝑟)d𝑊𝑟 . The modified Chen’s relation follows from the binomial

theorem as illustrated in the Introduction. For the Hölder property, by Kolmogorov’s
continuity theorem (see Theorem 3.1 in [27]), it is sufficient to prove the following
inequalities: for 𝑝 ≧ 2, 𝑖 ∈ 𝐼, ( 𝑗 , 𝑘) ∈ 𝐽, and (𝑠, 𝑡) ∈ Δ𝑇

| |𝑋 (𝑖)
𝑠𝑡 | |𝑝 ≦ 𝐶 |𝑡 − 𝑠 | |𝑖 |𝜁+1/2, | |X( 𝑗𝑘 )

𝑠𝑡 | |𝑝 ≦ 𝐶 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝜁+1.

Fix 𝑠 < 𝑟 < 𝑡. Note that 𝑋̂ (1)
𝑠𝑟 =

∫ 𝑟
0 𝜅𝑠𝑟 (𝑢)d𝑊𝑢. Then by using Lemma 1.4.1 repeatedly,

we have that for all 𝑚 ∈ Z+,(
𝑋̂ (1)
𝑠𝑟

)2𝑚
=

𝑚∑
𝑙=0

𝑐𝑙,𝑚𝐼2𝑙 (𝜅⊗2𝑙
𝑠𝑟 ) | |𝜅𝑠𝑟 | |2𝑚−2𝑙

𝐿2 ,

(
𝑋̂ (1)
𝑠𝑟

)2𝑚+1
=

𝑚∑
𝑙=0

𝑐𝑙,𝑚𝐼2𝑙+1 (𝜅⊗(2𝑙+1)
𝑠𝑟 ) | |𝜅𝑠𝑟 | |2𝑚−2𝑙

𝐿2 ,

where 𝑐0,0 = 1,

𝑐𝑙,𝑚 =


𝑐0,𝑚−1 𝑙 = 0,
𝑐𝑙−1,𝑚−1 + (2𝑙 + 1)𝑐𝑙,𝑚−1 𝑙 = 1, ..., 𝑚 − 1,
1 otherwise,
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and

𝑐𝑙,𝑚 =

{
𝑐𝑙,𝑚 + 2(𝑙 + 1)𝑐𝑙+1,𝑚 𝑙 = 0, ..., 𝑚 − 1,
1 otherwise.

Then the assumption 𝛾 < 1/2 and Lemma 1.4.2 imply that for all 𝑚 ∈ Z+,��������∫ 𝑡

𝑠

(
𝑋̂ (1)
𝑠𝑟

)2𝑚 (
𝑋̂ (2)
𝑠𝑟

) 𝑖2
d𝑋𝑟

��������
𝑝

≦
𝑚∑
𝑙=0

𝑐𝑙,𝑚

��������∫ 𝑡

𝑠
𝐼2𝑙 (𝜅⊗2𝑙

𝑠𝑟 ) | |𝜅𝑠𝑟 | |2𝑚−2𝑙
𝐿2 |𝑟 − 𝑠 |𝜁 𝑖2d𝑋𝑟

��������
𝑝

≦
𝑚∑
𝑙=0

𝑐𝑙,𝑚𝑝
(2𝑙+1)/2

��������∫ 𝑡

𝑠
𝐼2𝑙 (𝜅⊗2𝑙

𝑠𝑟 ) | |𝜅𝑠𝑟 | |2𝑚−2𝑙
𝐿2 |𝑟 − 𝑠 |𝜁 𝑖2d𝑋𝑟

��������
2

≦ 𝑝 (𝑖1+1)/2
(
𝑚∑
𝑙=0

𝑐𝑙,𝑚𝑝
𝑙−𝑚

)
|𝑡 − 𝑠 | |𝑖 |𝜁+1/2−𝑖1/2(2𝛾−1)

≦ 𝐶𝑝 (𝑖1+1)/2
(
𝑚∑
𝑙=0

𝑐𝑙,𝑚𝑝
𝑙−𝑚

)
|𝑡 − 𝑠 | |𝑖 |𝜁+1/2,

and ��������∫ 𝑡

𝑠

(
𝑋̂ (1)
𝑠𝑟

)2𝑚+1 (
𝑋̂ (2)
𝑠𝑟

) 𝑖2
d𝑋𝑟

��������
𝑝

≦
𝑚∑
𝑙=0

𝑐𝑙,𝑚

��������∫ 𝑡

𝑠
𝐼2𝑙+1 (𝜅⊗(2𝑙+1)

𝑠𝑟 ) | |𝜅𝑠𝑟 | |2𝑚−2𝑙
𝐿2 |𝑟 − 𝑠 |𝜁 𝑖2d𝑋𝑟

��������
𝑝

≦
𝑚∑
𝑙=0

𝑐𝑙,𝑚𝑝
(2𝑙+2)/2

��������∫ 𝑡

𝑠
𝐼2𝑙+1 (𝜅⊗(2𝑙+1)

𝑠𝑟 ) | |𝜅𝑠𝑟 | |2𝑚−2𝑙
𝐿2 |𝑟 − 𝑠 |𝜁 𝑖2d𝑋𝑟

��������
2

≦ 𝑝 (𝑖1+1)/2
(
𝑚∑
𝑙=0

𝑐𝑙,𝑚𝑝
𝑙−𝑚

)
|𝑡 − 𝑠 | |𝑖 |𝜁+1/2−𝑖1/2(2𝛾−1)

≦ 𝐶𝑝 (𝑖1+1)/2
(
𝑚∑
𝑙=0

𝑐𝑙,𝑚𝑝
𝑙−𝑚

)
|𝑡 − 𝑠 | |𝑖 |𝜁+1/2.

Therefore, we conclude that for all 𝑖 = (𝑖1, 𝑖2) ∈ Z2
+,

| |𝑋 (𝑖)
𝑠𝑡 | |𝑝 =

��������∫ 𝑡

𝑠

(
𝑋̂ (1)
𝑠𝑟

) 𝑖1 (
𝑋̂ (2)
𝑠𝑟

) 𝑖2
d𝑋𝑟

��������
𝑝

≦ 𝐶𝑝 (𝑖1+1)/2 |𝑡 − 𝑠 | |𝑖 |𝜁+1/2, (1.24)

and this implies the claim. By the same argument, we have

| |X( 𝑗𝑘 )
𝑠𝑡 | |𝑝 ≦ 𝐶𝑝 ( 𝑗1+𝑘1+2)/2 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝜁+1, ( 𝑗 , 𝑘) = (( 𝑗1, 𝑗2), (𝑘1, 𝑘2)) ∈ Z2

+ × Z2
+.

(1.25)
(ii) By (i) and Theorem 1.2.6, for a.s. 𝜔, the limit(∫

𝑓 (X̂)dX
) (1)
𝑠𝑡

= lim
𝑁→∞

𝑁∑
𝑞=1

∑
𝑖∈𝐼

𝜕𝑖 𝑓 ( 𝑋̂𝑡𝑞−1 )𝑋
(𝑖)
𝑡𝑞−1𝑡𝑞
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exists. Because ∫ 𝑡

𝑠
𝑓 ( 𝑋̂𝑟 )d𝑋𝑟 = lim

𝑁→∞

𝑁∑
𝑞=1

𝑓 ( 𝑋̂𝑡𝑞−1 )𝑋
(0)
𝑡𝑞−1𝑡𝑞

in the sense of the convergence in probability, it is sufficient to prove that for all
𝑖 ∈ 𝐼\{0},

lim
𝑁→∞

𝑁∑
𝑞=1

𝜕𝑖 𝑓 ( 𝑋̂𝑡𝑞−1 )𝑋
(𝑖)
𝑡𝑞−1𝑡𝑞

= 0

in probability. Fix 𝑖 ∈ 𝐼\{0}. We can assume 𝑓 ∈ 𝐶𝑛+2
𝑏 without loss of generality. By

the result (i), we have

E
[(
𝑋 (𝑖)
𝑠𝑡

)2
]
= 𝐶 |𝑡 − 𝑠 |2 |𝑖 |𝜁+1 < ∞,

and so taking 𝐾 := | | 𝑓 | |𝐶𝑛+2
𝑏

, we conclude that

E
©­«

𝑁∑
𝑞=1

𝜕𝑖 𝑓 (𝑥𝑡𝑞−1 )𝑋
(𝑖)
𝑡𝑞−1 ,𝑡𝑞

ª®¬
2 =

𝑁∑
𝑞=1

E
[(
𝜕𝑖 𝑓 (𝑥𝑡𝑞−1 )𝑋

(𝑖)
𝑡𝑞−1𝑡𝑞

)2
]

≦ 𝐾2
𝑁∑
𝑞=1

|𝑡𝑞 − 𝑡𝑞−1 |2 |𝑖 |𝜁+1

= 𝐾2

(
sup

|𝑡−𝑠 |≦ | P |
|𝑡 − 𝑠 |

)2 |𝑖 |𝜁

𝑇

→ 0 (𝑎𝑠 |P | ↘ 0),

and this indicates the 𝐿2 convergence. □

1.4.3 Proof of Theorem 1.3.2
Denote by 𝐶[0,𝑇 ] the set of the R-valued continuous functions on [0, 𝑇] equipped with
the uniform topology. Let 𝐶Δ𝑇 be the set of continuous functions on Δ𝑇 , taking values
in R𝐷 , equipped with the uniform topology for the metric

𝑑 (𝑋,𝑌 ) := sup
(𝑠,𝑡 ) ∈Δ𝑇

|𝑋𝑠𝑡 − 𝑌𝑠𝑡 | , 𝑋,𝑌 ∈ 𝐶Δ𝑇 .

We use the same notation 𝐶Δ𝑇 for different dimensions 𝐷, more specifically any one of
𝐷 = 1, 𝐷 = max{|𝑖 | | 𝑖 ∈ 𝐼}, or 𝐷 = max{| 𝑗 + 𝑘 | | ( 𝑗 , 𝑘) ∈ 𝐽}. Let S0 be the set of the
R-valued {F𝑡 }-adapted simple processes on [0, 𝑇] ×Ω and

S :=

{
𝑍 ∈ S0

����� sup
𝑡∈[0,𝑇 ]

|𝑍𝑡 | ≦ 1

}
.
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Definition 1.4.3 ([39]). Let {𝑉𝑛} be a sequence ofR-valued semimartingales on [0, 𝑇]×
Ω . We say that the sequence is uniformly exponentially tight (UET) if for every 𝑇 > 0
and every 𝑎 > 0 there is 𝐾𝑇,𝑎 such that

lim sup
𝑛→∞

1
𝑛

log sup
𝑍∈S

P
[

sup
𝑡∈[0,𝑇 ]

| (𝑍− · 𝑉𝑛)𝑡 | ≧ 𝐾𝑇,𝑎

]
≦ −𝑎, (1.26)

where 𝑍− · 𝑉 is the Itô integral of 𝑍 with respect to 𝑉 :

(𝑍− · 𝑉)𝑡 :=
∫ 𝑡

0
𝑍𝑟−d𝑉𝑟 ,

For a one-dimensional Brownian motion𝑊 , 𝑉𝑛 = 𝑛−1/2𝑊 is an example of a UET
sequence; see Lemma 2.4 of [39].

Theorem 1.4.4. Let {𝑈𝑛} be a UET sequence of R-valued semimartingales and {𝑉𝑛}
a sequence of R-valued continuous adapted processes. Assume that the sequence
{(𝑈𝑛, 𝑉𝑛)} satisfies the LDP on𝐶[0,𝑇 ]×𝐶[0,𝑇 ] with speed 𝑛−1 and good rate function 𝐽∗.
Then the sequence {(𝑈𝑛, 𝑉𝑛, (𝑈𝑛 ·𝑖𝑉𝑛)𝑖∈𝐼 )} satisfies the LDP on𝐶[0,𝑇 ] ×𝐶[0,𝑇 ] ×𝐶Δ𝑇

with speed 𝑛−1 and good rate function

𝐽∗∗ (𝑢, 𝑣, 𝑥) :=

{
𝐽∗ (𝑢, 𝑣), 𝑣 ∈ BV, ∀𝑖 ∈ 𝐼, 𝑥 (𝑖) = 𝑢 ·𝑖 𝑣,
∞, otherwise,

= inf
{
𝐽∗ (𝑢, 𝑣)

��� 𝑢, 𝑣 ∈ 𝐶[0,𝑇 ] , 𝑣 ∈ BV, ∀𝑖 ∈ 𝐼, 𝑥 (𝑖) = 𝑢 ·𝑖 𝑣
}
,

(1.27)

where BV is the set of the functions of bounded variation on [0, 𝑇], 𝑥 = (𝑥 (𝑖) )𝑖∈𝐼 ∈ 𝐶Δ𝑇

and
(𝑢 ·𝑖 𝑣)𝑠𝑡 :=

∫ 𝑡

𝑠
(𝑢𝑟 − 𝑢𝑠)𝑖d𝑣𝑟 .

Proof. By the assumption and the contraction principle, {(𝑈𝑛, 𝑉𝑛, ((𝑈𝑛)𝑖)𝑖∈𝐼 )} satis-
fies the LDP with good rate function

Λ1 (𝑢, 𝑣, 𝜑) = inf
{
𝐽∗ (𝑢, 𝑣)

��� ∀𝑖 ∈ 𝐼, 𝜑 (𝑖) = 𝑢𝑖
}
.

Therefore, by [39][Theorem 1.2], we have that {(𝑈𝑛, 𝑉𝑛, ((𝑈𝑛)𝑖 ,𝑈𝑛�𝑖𝑉𝑛)𝑖∈𝐼 )} satisfies
the LDP with good rate function

Λ2 (𝑢, 𝑣, 𝜑, 𝑥) = inf
{
𝐽∗ (𝑢, 𝑣)

���𝑢, 𝑣 ∈ 𝐶[0,𝑇 ] , 𝑣 ∈ BV, (𝜑 (𝑖) , 𝑥 (𝑖) ) = (𝑢𝑖 , 𝑢 �𝑖 𝑣)
}
,

where (𝑢 �𝑖 𝑣)𝑡 := (𝑢 ·𝑖 𝑣)0𝑡 . Note that by the modified Chen’s relation (1.2), we have

(𝑢 ·𝑖 𝑣)𝑠𝑡 = (𝑢 �𝑖 𝑣)𝑡 − (𝑢 �𝑖 𝑣)𝑠 −
∑
𝑝<𝑖

1
(𝑖 − 𝑝)! (𝑢𝑠 − 𝑢0)𝑖−𝑝 (𝑢 ·𝑝 𝑣)𝑠𝑡 .

Hence, by the contraction principle again with the aid of induction, we see that
{(𝑈𝑛, 𝑉𝑛, (𝑈𝑛 ·𝑖 𝑉𝑛)𝑖∈𝐼 )} satisfies the LDP with good rate function (1.27). □
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Theorem 1.4.5. Under the same conditions as in Theorem 1.4.4, the sequence

{(𝛿𝑈𝑛, (𝑈𝑛 ·𝑖 𝑉𝑛)𝑖∈𝐼 , (𝑈𝑛 ∗ 𝑗𝑘 𝑉𝑛) ( 𝑗 ,𝑘 ) ∈𝐽 )}

satisfies the LDP on 𝐶Δ𝑇 × 𝐶Δ𝑇 × 𝐶Δ𝑇 with speed 𝑛−1 with good rate function

𝐽∗∗∗ (𝑥, 𝑥, x) = inf

{
𝐽∗ (𝑢, 𝑣)

����� 𝑢, 𝑣 ∈ 𝐶[0,𝑇 ] , 𝑣 ∈ BV,

∀𝑖 ∈ 𝐼,∀( 𝑗 , 𝑘) ∈ 𝐽, (𝑥, 𝑥 (𝑖) , x( 𝑗𝑘 ) ) = (𝛿𝑢, 𝑢 ·𝑖 𝑣, 𝑢 ∗ 𝑗𝑘 𝑣)

}
,

(1.28)

where (𝛿𝑢)𝑠𝑡 := 𝑢𝑡 − 𝑢𝑠 and

(𝑢 ∗ 𝑗𝑘 𝑣)𝑠𝑡 :=
∫ 𝑡

𝑠
(𝑢 · 𝑗 𝑣)𝑠𝑟 (𝑢𝑟 − 𝑢𝑠)𝑘d𝑣𝑟 .

Proof. By Theorem 1.4.4 and the contraction principle, the sequence{(
𝑈𝑛, 𝑉𝑛, (𝑈𝑛 ·𝑖 𝑉𝑛)𝑖∈𝐼 , ((𝑈𝑛 � 𝑗 𝑉𝑛)(𝑈𝑛)𝑘) ( 𝑗 ,𝑘 ) ∈𝐽

)}
satisfies the LDP with good rate function

Λ3 (𝑢, 𝑣, 𝑥, 𝜑) = inf
{
𝐽∗ (𝑢, 𝑣)

���𝑢, 𝑣 ∈ 𝐶[0,𝑇 ] , 𝑣 ∈ BV, (𝑥 (𝑖) , 𝜑 ( 𝑗𝑘 ) ) = (𝑢 ·𝑖 𝑣, (𝑢 � 𝑗 𝑣)𝑢𝑘)
}
.

Therefore, by [39][Theorem 1.2], we have that{(
𝑈𝑛, (𝑈𝑛 ·𝑖 𝑉𝑛)𝑖∈𝐼 , (𝑈𝑛 ⊛ 𝑗𝑘 𝑉𝑛) ( 𝑗 ,𝑘 ) ∈𝐽

)}
satisfies the LDP with good rate function

Λ4 (𝑢, 𝑥, 𝜑) = inf
{
𝐽∗ (𝑢, 𝑣)

���𝑢, 𝑣 ∈ 𝐶[0,𝑇 ] , 𝑣 ∈ BV, (𝑥 (𝑖) , 𝜑 ( 𝑗𝑘 ) ) = (𝑢 ·𝑖 𝑣, 𝑢 ⊛ 𝑗𝑘 𝑣)
}
,

where (𝑈 ⊛ 𝑗𝑘 𝑉)𝑡 = (𝑈 ∗ 𝑗𝑘 𝑉)0𝑡 . Note that by the modified Chen’s relation (1.3), we
have

(𝑈𝑛 ∗ 𝑗𝑘 𝑉𝑛)𝑠𝑡 = (𝑈𝑛 ⊛ 𝑗𝑘 𝑉𝑛)𝑡 − (𝑈𝑛 ⊛ 𝑗𝑘 𝑉𝑛)0𝑠

−
∑
𝑞≦𝑘

1
(𝑘 − 𝑞)! (𝑈

𝑛
0𝑠)

𝑘−𝑞 (𝑈𝑛 · 𝑗 𝑉𝑛)0𝑠 ⊗ (𝑈𝑛 ·𝑞 𝑉𝑛)𝑠𝑡

−
∑

𝑝+𝑞< 𝑗+𝑘

1
( 𝑗 − 𝑝)!(𝑘 − 𝑞)! (𝑈

𝑛
0𝑠)

𝑗+𝑘−𝑝−𝑞 (𝑈𝑛 ∗𝑝𝑞 𝑉𝑛)𝑠𝑡 .

Hence, by the contraction principle again with the aid of induction, we see that
{(𝛿𝑈𝑛, (𝑈𝑛 ·𝑖 𝑉𝑛)𝑖∈𝐼 , (𝑈𝑛 ∗ 𝑗𝑘 𝑉𝑛) ( 𝑗 ,𝑘 ) ∈𝐽 )} satisfies the LDP on 𝐶Δ𝑇 × 𝐶Δ𝑇 × 𝐶Δ𝑇

with good rate function (1.28). □

Lemma 1.4.6. (i) The (𝛼, 𝛽) rough path X of Theorem 1.3.2 has exponential inte-
grability, i.e., there exists 𝜂 > 0 such that

E
[
exp

{
𝜂 | | |X| | |2(𝛼,𝛽)

}]
< ∞.
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(ii) Assume that the family of random variables

X𝜖 = (𝜖1/2 𝑋̂, 𝜖 ( |𝑖 |+1)/2𝑋 (𝑖) , 𝜖 ( | 𝑗+𝑘 |+2)/2X( 𝑗𝑘 ) )

taking values inΩ(𝛼,𝛽)-Hld satisfies the LDP on𝐶Δ𝑇 ×𝐶Δ𝑇 ×𝐶Δ𝑇 (with the uniform
topology). Then, X𝜖 satisfies the LDP on Ω(𝛼,𝛽)-Hld (in the 𝑑 (𝛼,𝛽) topology)
with the same good rate function.

Proof. (i) Let 𝑍 := | | |X| | | (𝛼,𝛽) . By the inequality (1.24), (1.25), we have that for all
𝑝 ∈ [2,∞),

| |𝑋 (𝑖)
𝑠𝑡 | |𝑝 ≦ 𝐶𝑝 (𝑖1+1)/2 |𝑡 − 𝑠 | |𝑖 |𝜁+1/2 | |X( 𝑗𝑘 )

𝑠𝑡 | |𝑝 ≦ 𝐶𝑝 ( 𝑗1+𝑘1+2)/2 |𝑡 − 𝑠 | | 𝑗+𝑘 |𝜁+1,

and this inequality and Kolmogorov’s continuity theorem (see Theorem 3.1 in [27])
imply that for 𝑝 ≧ 𝜉,����| | 𝑋̂ | |𝛽-Hld

����
𝑝
≦ 𝑐

√
𝑝,

������| |𝑋 (𝑖) | | |𝑖 |𝛽+𝛼-Hld

������
𝑝
≦ 𝑐𝑝 (𝑖1+1)/2,

and ������| |X( 𝑗𝑘 ) | | | 𝑗+𝑘 |𝛽+2𝛼-Hld

������
𝑝
≦ 𝑐𝑝 ( 𝑗1+𝑘1+2)/2,

where 𝜉 := d𝜉−1e+max𝑖∈𝐼 d𝜉−1
𝑖 e+max( 𝑗 ,𝑘 ) ∈𝐽 d𝜉−1

𝑗𝑘 e, 𝜉 := 𝜁−𝛽, 𝜉𝑖 := |𝑖 | (𝜁−𝛽)+(1/2−𝛼),
𝜉 𝑗𝑘 := | 𝑗 + 𝑘 | (𝜁 − 𝛽) + (1 − 2𝛼), 𝑐 := 𝑐 + max𝑖∈𝐼 𝑐𝑖 + max( 𝑗 ,𝑘 ) ∈𝐽 𝑐 𝑗𝑘 , and

𝑐 :=
2𝐶

1 − (1/2) ( 𝜉−𝜉 −1 )
, 𝑐𝑖 :=

2𝐶
1 − (1/2) ( 𝜉𝑖−𝜉 −1 ) , 𝑐 𝑗𝑘 :=

2𝐶
1 − (1/2) ( 𝜉 𝑗𝑘−𝜉 −1 ) .

Then Jensen’s inequality implies that��������(| |𝑋 (𝑖) | | |𝑖 |𝛽+𝛼-Hld

)1/( |𝑖 |+1)
��������
𝑝

≦
������| |𝑋 (𝑖) | | |𝑖 |𝛽+𝛼-Hld

������1/( |𝑖 |+1)

𝑝
≦ 𝑐1/( |𝑖 |+1)√𝑝,

and similarly ��������(| |X( 𝑗𝑘 ) | | | 𝑗+𝑘 |𝛽+2𝛼-Hld

)1/( | 𝑗+𝑘 |+2)
��������
𝑝

≦ 𝑐1/( | 𝑗+𝑘 |+2)√𝑝.

Therefore, we have that

| |𝑍 | |𝑝 ≦ 𝑐
√
𝑝, 𝑝 ≧ 𝜉,

where 𝑐 := 𝑐 + ∑
𝑖∈𝐼 𝑐

1/( |𝑖 |+1) + ∑
( 𝑗 ,𝑘 ) ∈𝐽 𝑐

1/( | 𝑗+𝑘 |+2) . Then we have that

E
[
exp{𝜂𝑍2}

]
=

∞∑
𝑛=0

𝜂𝑛

𝑛!
| |𝑍 | |2𝑛2𝑛 ≦

∑
2𝑛≦ 𝜉

𝜂𝑛

𝑛!
| |𝑍 | |2𝑛2𝑛 +

∑
2𝑛>𝜉

(2𝑐2𝜂)𝑛
𝑛!

𝑛𝑛,

and so taking 𝜂 > 0 small enough (2𝑐2𝜂𝑒 < 1), Stirling’s formula implies the claim.
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(ii) We adapt the argument of [30][Proposition 13.43]. By the inverse contraction
principle (see Theorem 4.2.4 of [21]), it is sufficient to prove that {X𝜖 } is exponentially
tight on Ω(𝛼,𝛽)-Hld. By (i), there exists 𝑐 > 0 such that

P
[
| | |X| | | (𝛼′ ,𝛽′ ) > 𝑙

]
≦ exp (−𝑐𝑙2)

for any 𝛼′ ∈ (𝛼, 1/2) and 𝛽′ ∈ (𝛽, 1/2), and this implies that for all 𝑀 > 0, there exists
a precompact set

𝐾𝑀 =
{
X ∈ Ω(𝛼,𝛽)-Hld

��� | | |X| | | (𝛼′ ,𝛽′ ) ≦
√
𝑀/𝑐

}
on Ω(𝛼,𝛽)-Hld such that

𝜖 log P
[
X𝜖 ∈ 𝐾𝑐𝑀

]
= 𝜖 log P

[
| | |X𝜖 | | | (𝛼′ ,𝛽′ ) >

√
𝑀

𝑐

]
= 𝜖 log P

[
| | |X| | | (𝛼′ ,𝛽′ ) >

√
𝑀

𝑐𝜖

]
≦ −𝑀,

from which we conclude the claim. □

The inverse contraction principle (see Theorem 4.2.4 of [21]) implies that {𝜖1/2 (𝑊,𝑊⊥)}
satisfies the LDP on 𝐶𝛾-Hld with speed 𝜖−1 with good rate function 𝐼# (note that
𝛾 ∈ (0, 1/2)). By Theorem 1 in [33], the map 𝑓 ↦→ K 𝑓 is continuous from 𝐶𝛾-Hld to
𝐶𝜁 -Hld. Then the contraction principle implies that {𝜖1/2 ( 𝑋̂ (1) , 𝑋) = 𝜖1/2 (K𝑊, 𝜌𝑊 +√

1 − 𝜌2𝑊⊥)} satisfies the LDP on 𝐶[0,𝑇 ] × 𝐶[0,𝑇 ] with speed 𝜖−1 with good rate
function

𝐼 (1) (𝑤, 𝑣) = inf
{
𝐼# (𝑣̃)

����𝑣̃ ∈ H , (𝑤, 𝑣) =
(∫ ·

0
𝜅(· − 𝑟)d𝑣̃ (1)𝑟 , 𝜌𝑣̃ (1) +

√
1 − 𝜌2𝑣̃ (2)

)}
.

Let 𝐹𝜖 : 𝐶[0,𝑇 ] × 𝐶[0,𝑇 ] → 𝐶[0,𝑇 ] × 𝐶[0,𝑇 ] × 𝐶[0,𝑇 ] and 𝐹 : 𝐶[0,𝑇 ] × 𝐶[0,𝑇 ] →
𝐶[0,𝑇 ] ×𝐶[0,𝑇 ] ×𝐶[0,𝑇 ] as 𝐹𝜖 (𝑤, 𝑣)𝑡 := ((𝑤𝑡 , 𝜖1/2𝑡), 𝑣𝑡 ) and 𝐹 (𝑤, 𝑣)𝑡 := ((𝑤𝑡 , 0), 𝑣𝑡 ).
Then 𝐹 is continuous and 𝐹𝜖 (𝑤 𝜖 , 𝑣 𝜖 ) → 𝐹 (𝑤, 𝑣) for all converging sequences
(𝑤 𝜖 , 𝑣 𝜖 ) → (𝑤, 𝑣) with 𝐼 (1) (𝑤, 𝑣) < ∞. Hence the extended contraction principle
[72][Theorem 2.1] implies that {𝜖1/2 ( 𝑋̂, 𝑋)} satisfies the LDP on𝐶[0,𝑇 ]×𝐶[0,𝑇 ]×𝐶[0,𝑇 ]
with speed 𝜖−1 with good rate function

𝐽∗ (𝑢, 𝑣) := inf
{
𝐼# (𝑣̃)

��𝑣̃ ∈ H , (𝑢, 𝑣) = K(𝑣̃)
}
.

As mentioned earlier, {𝑋 𝜖 = 𝜖1/2𝑋} is UET by Lemma 2.4 of [39] with 𝑛 = 𝜖−1.
Therefore, by Lemma 1.4.6 (ii) and Theorem 1.4.5 (regarding 𝑛 = 𝜖−1, 𝑈 = 𝑋̂ and
𝑉 = 𝑋), we have proved Theorem 1.3.2.

1.5 A lemma from rough path theory
Lemma 1.5.1 ([60] Proposition 1.6). Let 𝜔 be a control function, i.e.,

𝜔(𝑠, 𝑢) + 𝜔(𝑢, 𝑡) ≦ 𝜔(𝑠, 𝑡), 0 ≦ 𝑠 ≦ 𝑢 ≦ 𝑡 ≦ 𝑇,
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and P = {𝑠 = 𝑡0 < 𝑡1 < ... < 𝑡𝑁 = 𝑡} be a partition on [𝑠, 𝑡] (𝑁 ≧ 2). Then there exists
an integer 𝑖 (1 ≦ 𝑖 ≦ 𝑁) such that

𝜔(𝑡𝑖−1, 𝑡𝑖+1) ≦
2

𝑁 − 1
𝜔(𝑠, 𝑡).

Proof. By the definition of 𝜔, we have

𝑁−1∑
𝑝=1

𝜔(𝑡𝑖−1, 𝑡𝑖+1) =
∑
𝑖:odd

𝜔(𝑡𝑖−1, 𝑡𝑖+1) +
∑
𝑖:even

𝜔(𝑡𝑖−1, 𝑡𝑖+1) ≦ 2𝜔(𝑠, 𝑡).

Therefore, there exists such 𝑖 that satisfies the desired inequality. □

1.6 Proof of Theorem 1.3.8
Proof. For brevity, let 𝜎 := 𝜎(𝑆0). By Theorem 1.3.6 and the contraction principle,
𝑡𝐻−1/2𝑆𝑡 satisfies the LDP with speed 𝑡−2𝐻 with good rate function

𝐽 (𝑠) := inf

{
𝐼# (𝑣̃)

�����𝑣̃ ∈ H , 𝑠 =

(
𝜎

∫
𝑓 ( �L ◦ K(𝑣̃)dL ◦ K(𝑣̃)

) (1)
01

}
.

Let 𝑣̃ = (ℎ1, ℎ2) ∈ H (R) × H (R). Then

𝑠 =

(
𝜎

∫
𝑓 ( �L ◦ K(𝑣̃))L ◦ K(𝑣̃)

) (1)
01

= 𝜎
∫ 1

0
𝑓

(∫ 𝑡

0
𝜅𝐻 (𝑡 − 𝑟) ¤ℎ1

𝑟d𝑟, 0
)

d
(
𝜌ℎ1

𝑡 +
√

1 − 𝜌2ℎ2
𝑡

)
= 𝜌𝜎

∫ 1

0
𝑓

(∫ 𝑡

0
𝜅𝐻 (𝑡 − 𝑟) ¤ℎ1

𝑟d𝑟, 0
)

dℎ1
𝑡 +

√
1 − 𝜌2𝜎

∫ 1

0
𝑓

(∫ 𝑡

0
𝜅𝐻 (𝑡 − 𝑟) ¤ℎ1

𝑟d𝑟, 0
)

dℎ2
𝑡 ,

and so

𝑠 − 𝜌𝜎
∫ 1
0 𝑓

(∫ 𝑡
0 𝜅𝐻 (𝑡 − 𝑟) ¤ℎ

1
𝑟d𝑟, 0

)
dℎ1
𝑡√

1 − 𝜌2
= 𝜎

∫ 1

0
𝑓

(∫ 𝑡

0
𝜅𝐻 (𝑡 − 𝑟) ¤ℎ1

𝑟d𝑟, 0
)

dℎ2
𝑡 .

(1.29)
Fix ℎ1, and minimize 1

2 | |𝑣̃ | |2H(R2 ) with respect to ℎ2 ∈ H (R) under the condition (1.29).
Let ℎ̃ be the minimizer. Take 𝜖 > 0 and ℎ̂ ∈ H (R), and consider ℎ̃ + 𝜖 ℎ̂. Because ℎ̃
satisfies the condition (1.29),∫ 1

0
𝑓

(∫ 𝑡

0
𝜅𝐻 (𝑡 − 𝑟) ¤ℎ1

𝑟d𝑟, 0
)

dℎ̂𝑡 = 0. (1.30)

Because ℎ̃ is the minimizer, we have

d
d𝜖

����
𝜖=0

1
2

∫ 1

0
( ¤̃ℎ𝑟 + 𝜖 ¤̂ℎ𝑟 )2d𝑟 = 0, i.e.,

∫ 1

0

¤̃ℎ𝑟 ¤̂ℎ𝑟d𝑟 = 0,
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for any ℎ̂ with (1.30). Therefore, there exists 𝑐 ∈ R such that

¤̃ℎ = 𝑐 𝑓

(∫ ·

0
𝜅𝐻 (· − 𝑟) ¤ℎ1

𝑟d𝑟, 0
)
.

Hence

𝑠 − 𝜌𝜎
∫ 1
0 𝑓

(∫ 𝑡
0 𝜅𝐻 (𝑡 − 𝑟) ¤ℎ

1
𝑟d𝑟, 0

)
dℎ1
𝑡√

1 − 𝜌2
= 𝑐𝜎

∫ 1

0
𝑓 2

(∫ 𝑡

0
𝜅𝐻 (𝑡 − 𝑟) ¤ℎ1

𝑟d𝑟, 0
)

d𝑡,

and we conclude that

𝐽 (𝑠) = 𝐼# (𝑣̃) = 1
2

∫ 1

0
| ¤ℎ1
𝑟 |2d𝑠 +

{
𝑠 − 𝜌𝜎

∫ 1
0 𝑓

(∫ 𝑡
0 𝜅𝐻 (𝑡 − 𝑟) ¤ℎ

1
𝑟d𝑟, 0

)
dℎ1
𝑡

}2

2(1 − 𝜌2)𝜎2
∫ 1
0 𝑓 2

(∫ 𝑡
0 𝜅𝐻 (𝑡 − 𝑟) ¤ℎ

1
𝑟d𝑟, 0

)
d𝑡
,

which is the claim. □
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Chapter 2

LDP for stochastic differential
equations driven by stochastic
integrals†

2.1 Introduction
A rough volatility model is a stochastic volatility model for an asset price process in
which the Hölder regularity of volatility processes is less than half. In recent years, such
a model has attracted attention, because as shown by [31], rough volatility models are
the only class of continuous price models that are consistent to a power law of implied
volatility term structure typically observed in equity option markets. Proving a large
deviation principle (LDP) is one way to derive the power law under rough volatility
models as done by many authors using various methods [23, 9, 8, 24, 25, 48, 50, 51,
62, 42, 63, 49, 37]. An introduction to LDP and some of its applications to finance and
insurance problems are discussed in [71, 26]. One precise approximation formula for
implied volatility is the BBF formula [12, 1], which follows from short-time LDP under
local volatility models. On the other hand, the SABR formula, which is of daily use
in financial practice, is also proved for a valid approximation under the SABR model
by means of LDP [69]. From these relations between LDP and precise approximation
under classical (non-rough) volatility models, we expect LDP for rough volatility models
to provide in particular a useful implied volatility approximation formula for financial
practice such as model calibration.

For the proof for pathwise LDP of standard stochastic differential equations (SDEs),
an elegant method using rough path theory was proposed [29, 30]. The continuity of
the solution map on rough path spaces is key to derive the pathwise LDP for such SDEs.
However, when considering rough volatility models, the usual rough path theory does
not work because the regularity of the volatility process is lower than that of asset prices,

†Reproduction of a work, first published in SIAM Journal on Financial Mathematics, Vol.16, No.2,
pp480-515, (2025), https://doi.org/10.1137/24M1653306.
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and so stochastic integrands are not controlled by the stochastic integrators in the sense
of [43]. Nevertheless, methods which are analogue of rough path theory have been
proposed to prove the pathwise LDP for rough volatility model, one uses the theory of
regularity structure [8], and another uses a variant of rough path theory [37]. In [62, 8],
the following Itô SDE is discussed (here 𝑌 represents the dynamics of the logarithm of
a stock price process):

d𝑌𝑡 = 𝑓 ( 𝑋̂𝑡 , 𝑡)d𝑋𝑡 −
1
2
𝑓 2 ( 𝑋̂𝑡 , 𝑡)d𝑡,

where 𝑋 is a Brownian motion, 𝑋̂ is the Riemann-Liouville type fractional Brownian
motion with Hurst index 𝐻 ∈ (0, 1/2), and 𝑓 is a smooth function. This SDE is called
rough Bergomi model [7]. In [8], the authors proved the short-time LDP for rough
Bergomi models and by using the continuity of Hairer’s reconstruction map. The point
is that its proof comes down to the small-noise LDP for “models” which construct the
solution of the rough Bergomi model. On the other hand, this result was extended to
situations where rough volatility models have local volatility in [37];

d𝑌 = 𝜎(𝑌 ) 𝑓 ( 𝑋̂, 𝑡)d𝑋 − 1
2
𝜎2 (𝑌 ) 𝑓 2 ( 𝑋̂, 𝑡)d𝑡, (2.1)

where 𝑋 is a Brownian motion, 𝑋̂ :=
∫ ·
0 𝜅(·− 𝑠)d𝑊𝑠 (where 𝜅 is a deterministic singular

kernel and 𝑊 is a Brownian motion), 𝜎 and 𝑓 are smooth functions respectively. If
𝜎 = 1 and 𝜅 = 𝜅𝐻 (𝜅𝐻 is the Riemann-Liouville kernel, see (2.10)), (2.2) is the rough
Bergomi model. In [37], partial rough path spaces lacking the iterated integral of 𝑋̂
were considered, and a partial rough path integration map was constructed. By using
the continuity property of this integration map, the small-noise and short-time LDP for
(2.1) were proved based on the pathwise LDP for the canonical noises constructed by
(𝑋, 𝑋̂) on partial rough path spaces. Compared with [8], the framework of [37] is more
elementary and one can prove that not only the LDP for rough Bergomi model but also
that for many rough volatility models, see the lists of Introduction in [37]. However,
the continuity property of the integration map in [37] relies on the smoothness of the
coefficient 𝑓 , because the higher order Taylor expansion of 𝑓 is needed to cover the low
regularity of 𝑋̂ . For these reason, although the previous work [37] is widely applicable,
it goes beyond the framework of it when 𝑓 is not smooth. For example generalized
rough volatility models discussed in [58] or when 𝑓 (𝑦, 𝑡) := √

𝑦 [23].
Inspired by above previous research, we will discuss the following SDE in one

dimension in this paper:

d𝑌 𝜖 = 𝜎(𝑌 𝜖 )𝐴𝜖𝑡 d𝑋 𝜖 − 1
2
𝜎2 (𝑌 𝜖 ) (𝐴𝜖 )2

𝑡 d𝑡 (2.2)

Here 𝑋 𝜖 := 𝜖1/2𝑋 , 𝑋 is a one dimensional Brownian motion, 𝐴𝜖 is an adapted contin-
uous process and 𝜎 is a smooth function. If 𝐴𝜖 = 𝑓 ( 𝑋̂ 𝜖 , ·), (2.2) coincides with (2.1).
In this paper, we will discuss the pathwise LDP for (2.2).

Now we consider how to prove the pathwise LDP for (2.2). Let 𝐴 · 𝑋 be the
Itô stochastic integral for 𝐴 with respect to 𝑋 and Λ(𝑡) := 𝑡. Let also 𝑍 𝜖 := (𝐴𝜖 ·
𝑋 𝜖 , (𝐴𝜖 )2 ·Λ) and we will regard 𝑍 𝜖 as the driver for (2.2). Then we define the Young
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pairing (see Section 9.4 in [30]) Z𝜖 for 𝑍 𝜖 and we regard Z𝜖 as the canonical lift for
rough path spaces. Since 𝑋 𝜖 are one dimensional paths, the mapping 𝑍 𝜖 ↦→ Z𝜖 is
continuous. Combining to the usual rough path theory, we finally can construct the
solution 𝑌 𝜖 of (2.2) from 𝑍 𝜖 :

𝐺Ω𝛼-Hld Z𝜖 Y𝜖

𝐶𝛼-Hld 𝑍 𝜖 𝑌 𝜖

-sol. map

?
projection

6
Young pair

Here for 𝛼 ∈ (1/3, 1/2], 𝐶𝛼-Hld is Hölder spaces, and 𝐺Ω𝛼-Hld is rough path spaces,
and “sol. map” in the above diagram means the solution map in the sense of rough
differential equations. Therefore, the pathwise LDP for (2.2) can be proved from the
small noise LDP for {𝑍 𝜖 }𝜖 >0 on Hölder spaces. This idea enables us to avoid adherence
to use the smoothness of coefficient 𝑓 which is the essential condition to cover the low
regularity of 𝑋̂ in [8, 37]. We also note that our approach does not use a variant of
rough path theory or regularity structure theory, which means we are able to obtain
simpler proof. Although the small noise LDP for stochastic integrals with respect to the
uniform topology was proved in [39], this results cannot be applied for our methods,
because our idea requires the small noise LDP for stochastic integrals with respect to
“Hölder topology”.

Our method also allows for a unified treatment of pathwise LDP for rough volatility
models, compared with [8, 37]. For example, the pathwise LDP for rough volatility
models were discussed under the different assumptions which are not mutually inclusive
[23, 58, 47, 37, 8], but these results indeed are included in our setting. To the best of the
author’s knowledge, no such pathwise LDP for these models is known in the literature.

In the perspective of applications for mathematical finance, it is important to derive
the asymptotic formula of the implied volatility because of the pricing of put/call
options. Moreover, the formula is applicable to check whether models are consistent
to the power law of implied volatility or not. For example, generalized rough volatility
models discussed in [58] are widely applicable, in the sense that the authors of [58]
provide us how to make a numerical approximation of such models. Although one
reason for using and studying such models is that it is expected to be consistent with
the power laws of the implied volatility observed in the market, there is no justifications
of this expectation in the literature. As an application of our analysis, we will prove
the short-time LDP of them (actually one can treat more general models) and derive an
asymptotic formula of the implied volatility which tells us the models are consistent to
the power law of the implied volatility (Corollary 2.3.12). This formula is described as
a generalization of Forde and Zhang’s work [23].

In section 2.2, we first discuss the pathwise LDP for stochastic integrals on Hölder
spaces, this is Theorem 2.2.6. We next discuss the pathwise LDP for (2.2) (actually we
will discuss the Stratonovich SDEs (2.5) corresponding to (2.2)), see Theorem 2.2.11.
In section 2.3, we will first show how to apply main results to the pathwise LDP for
rough volatility models, see Theorem 2.3.2 for small-noise LDP and see Theorem 2.3.7
for short-time LDP. Then we will derive an asymptotic formula for implied volatility,
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see Corollary 2.3.12. In section 2.4, we will prove the main theorem in order.

2.2 Main results

2.2.1 Large deviation principle for stochastic integrals
We first review the LDP for stochastic integrals with respect to the uniform topology
discussed in [39]. In [39], the index set of a sequence of stochastic processes is the
natural number set 𝑛 ∈ N, but regarding as 𝑛 = 𝜖−1, we consider the family of stochastic
processes {𝑋 𝜖 }𝜖 >0 which means that the index set of it is (0, 1]. We say that a real
function 𝑥 : [0,∞) → R is cadlag if 𝑥 is continuous on the right and has limits on
the left. Throughout this paper, we fix a filtered probability space satisfying the usual
conditions (Ω, F , (F𝑡 )𝑡≥0,P) .

Definition 2.2.1 (Definition 1.1 [39]). Let {𝑋 𝜖 }𝜖 >0 be a family of real valued cadlag
semi-martingales. We say that the family {𝑋 𝜖 }𝜖 >0 is uniformly exponentially tight
with speed 𝜖−1 if for every 𝑡 > 0 and every 𝑀 > 0, there is 𝐾𝑀,𝑡 > 0 such that

lim sup
𝜖↘0

𝜖 log sup
𝑈∈S

P
[
sup
𝑠≤𝑡

| (𝑈− · 𝑋 𝜖 )𝑠 | ≥ 𝐾𝑀,𝑡

]
≤ −𝑀, (2.3)

where S be the set of all simple adapted processes𝑈 with sup𝑡≥0 |𝑈𝑡 | ≤ 1 and (𝑈−)𝑡 :=
lim𝑠→𝑡−𝑈𝑠 . In this paper, denote 𝑈 · 𝑋 by the stochastic integral for 𝑈 with respect to
a semi-martingale 𝑋 in Itô sense:

(𝑈 · 𝑋)𝑡 :=
∫ 𝑡

0
𝑈𝑟d𝑋𝑟 .

Definition 2.2.2 (Section 1.2 [21]). Let (𝐸,B(𝐸)) be a metric space with a Borel
𝜎-algebra B(𝐸).

(𝑖) We say that a function 𝐼 : 𝐸 → [0,∞] be a good rate function if, for all
𝜆 ∈ [0,∞), the set

{𝑥 ∈ 𝐸 : 𝐼 (𝑥) ≤ 𝜆},

is compact on 𝐸 .

(𝑖𝑖) We say that the family of measures {𝜇𝜖 }𝜖 >0 on 𝐸 satisfies the LDP with speed
𝜖−1 with good rate function 𝐼 if, for all Γ ∈ B(𝐸),

− inf
𝑥∈Γ𝑜

𝐼 (𝑥) ≤ lim inf
𝜖↘0

𝜖 log 𝜇𝜖 (Γ) ≤ lim sup
𝜖↘0

𝜖 log 𝜇𝜖 (Γ) ≤ − inf
𝑥∈Γ

𝐼 (𝑥),

where Γ is the closure of Γ, and Γ𝑜 is the interior of Γ.

In this paper, “ with speed 𝜖−1” is omitted. Denote by 𝐷 ([0,∞),R) the space of all
cadlag functions and denote by 𝑑𝐷 the Skorohod topology (see Chapter 3 in [13]).
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Lemma 2.2.3 (Theorem 1.2 [39]). Let {𝑋 𝜖 }𝜖 >0 be a uniformly exponentially tight
family of cadlag adapted semi-martingales on R and {𝐴𝜖 }𝜖 >0 be a family of real
valued cadlag adapted processes. Assume that {(𝐴𝜖 , 𝑋 𝜖 )}𝜖 >0 satisfies the LDP
on (𝐷 ( [0,∞),R), 𝑑𝐷) × (𝐷 ( [0,∞),R), 𝑑𝐷) with good rate function 𝐼#. Then the
family of triples {(𝐴𝜖 , 𝑋 𝜖 , 𝐴𝜖 · 𝑋 𝜖 )}𝜖 >0 satisfies the LDP on (𝐷 ( [0,∞),R), 𝑑𝐷) ×
(𝐷 ( [0,∞),R), 𝑑𝐷) × (𝐷 ([0,∞),R), 𝑑𝐷) with good rate function

𝐼 (𝑎, 𝑥, 𝑧) =
{
𝐼# (𝑎, 𝑥), 𝑧 = 𝑎 · 𝑥, 𝑥 ∈ BV,
+∞, otherwise,

where BV is the set of bounded variation and 𝑎 · 𝑥 means the Riemann-Stieltjes integral
for 𝑎 with respect to 𝑥.

We wii improve on this result in terms of Hölder topology. For 𝛼 ∈ (0, 1], denote
by 𝐶𝛼-Hld ( [0, 1],R) the Hölder space with the Hölder norm

‖𝑥‖𝛼-Hld := |𝑥0 | + sup
0≤𝑠<𝑡≤1

|𝑥𝑡 − 𝑥𝑠 |
|𝑡 − 𝑠 |𝛼 ,

and let

𝐶𝛼-Hld
0 ( [0, 1],R) := {𝑥 ∈ 𝐶𝛼-Hld ( [0, 1],R) : lim

𝛿↘0
𝑤𝛼 (𝛿, 𝑥) = 0},

where

𝑤𝛼 (𝛿, 𝑥) := sup
|𝑡−𝑠 | ≤ 𝛿

|𝑥𝑡 − 𝑥𝑠 |
|𝑡 − 𝑠 |𝛼 .

Note that 𝐶𝛼-Hld
0 ( [0, 1],R) is a separable Banach space, see [56]. We next introduce a

concept of 𝛼-Uniformly Exponentially Tight.

Definition 2.2.4. We fix 𝛼 ∈ (0, 1]. Let {𝑋 𝜖 }𝜖 >0 be a family of real valued con-
tinuous semi-martingales on [0, 1]. We say that the family {𝑋 𝜖 }𝜖 >0 is 𝛼-Uniformly
Exponentially Tight if, for all 𝑀 > 0, there exists 𝐾𝑀 > 0 such that

lim sup
𝜖↘0

𝜖 log sup
𝑈∈B([0,1],R)

P [‖𝑈 · 𝑋 𝜖 ‖𝛼-Hld ≥ 𝐾𝑀 ] ≤ −𝑀, (2.4)

where B([0, 1],R) is the set of all adapted, left continuous with right limits processes
𝑈 on [0, 1] such that sup𝑡∈[0,1] |𝑈𝑡 | ≤ 1.

Remark 2.2.5. 𝛼-Uniformly Exponentially Tight is stronger than uniformly exponen-
tially tight in the following sense. Assume that {𝑋 𝜖 }𝜖 >0 is 𝛼-Uniformly Exponentially
Tight. Note that for all 𝑈 ∈ S, 𝑈− ∈ B([0, 1],R). For all 𝑀 > 0, take 𝐾𝑀 > 0 such
that (2.4) holds. Then we have that for all 𝑡 ∈ (0, 1),

lim sup
𝜖↘0

𝜖 log sup
𝑈∈S

P
[
sup
𝑠≤𝑡

| (𝑈− · 𝑋 𝜖 )𝑠 | ≥ 𝐾𝑀

]
≤ lim sup

𝜖↘0
𝜖 log sup

𝑈̃∈B([0,1],R)
P

[
‖𝑈̃ · 𝑋 𝜖 ‖𝛼-Hld ≥ 𝐾𝑀

]
≤ −𝑀.

Hence we conclude that {𝑋 𝜖 }𝜖 >0 satisfies (2.3) when 𝑡 ∈ (0, 1).
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Let𝐶 ( [0, 1],R) be the set of all real valued continuous functions on [0, 1] equipped
with the uniform topology. Here, we state our first main result, the proof is given in
Section 2.4.1.

Theorem 2.2.6. We fix 𝛼 ∈ (0, 1] and 𝛽 < 𝛼. Let {𝑋 𝜖 }𝜖 >0 be a family of real valued
𝛼-Hölder continuous semi-martingales on [0, 1] and {𝐴𝜖 }𝜖 >0 be a family of real valued
adapted continuous processes on [0, 1] such that 𝐴𝜖 · 𝑋 𝜖 ∈ 𝐶𝛼-Hld ( [0, 1],R). Assume
that {(𝐴𝜖 , 𝑋 𝜖 )}𝜖 >0 satisfies the LDP on𝐶 ([0, 1],R) ×𝐶𝛼-Hld

0 ([0, 1],R) with good rate
function 𝐼#.

Then if {𝑋 𝜖 }𝜖 >0 is 𝛼-Uniformly Exponentially Tight, {(𝐴𝜖 , 𝑋 𝜖 , 𝐴𝜖 · 𝑋 𝜖 )}𝜖 >0
satisfies the LDP on 𝐶 ([0, 1],R) ×𝐶𝛼-Hld

0 ( [0, 1],R) ×𝐶𝛽-Hld
0 ([0, 1],R) with good rate

function 𝐼;

𝐼 (𝑎, 𝑥, 𝑧) =
{
𝐼# (𝑎, 𝑥), 𝑧 = 𝑎 · 𝑥, 𝑥 ∈ BV,
+∞, otherwise.

Remark 2.2.7. Let𝑉 is an adapted continuous process. Note that if𝑉 ∈ 𝐶𝛼-Hld ([0, 1],R)
and 𝛽 < 𝛼, then 𝑉 ∈ 𝐶𝛽-Hld

0 ([0, 1],R). Note also that since 𝑉 is an adapted continuous
process, we have that

‖𝑉 ‖𝛽-Hld = sup
0≤𝑠<𝑡≤1,𝑠,𝑡∈Q

|𝑉𝑡 −𝑉𝑠 |
|𝑡 − 𝑠 |𝛽

is F/B(R)-measurable. Since 𝐶𝛽-Hld
0 ([0, 1],R) is a separable Banach space, we con-

clude that 𝑉 is F/B(𝐶𝛽-Hld
0 ([0, 1],R))-measurable.

One of the most important family of 𝛼-Uniformly Exponentially Tight semi-
martingales is constructed from scaled Brownian motions. The proof is deferred to
Section 2.4.1.

Proposition 2.2.8. We fix 𝛼 ∈ [1/3, 1/2). Let 𝐵 be an R-valued standard Brownian
motion on [0,∞) and assume that 𝐵 is (F𝑡 )-adapted. Let 𝐵𝜖 := 𝜖1/2𝐵 and 𝐵̄𝜖 := 𝐵𝜖 · .
Then we have that:

(i) for all (F𝑡 )-adapted continuous processes 𝐴 on [0, 1], we have 𝐴·𝐵𝜖 ∈ 𝐶𝛼-Hld ([0, 1],R),
and {𝐵𝜖 }𝜖 >0 is 𝛼-Uniformly Exponentially Tight: for all 𝑀 > 0, there exists
𝐾𝑀 > 0 such that

lim sup
𝜖↘0

𝜖 log sup
𝑈∈B([0,1],R)

P [‖𝑈 · 𝐵𝜖 ‖𝛼-Hld ≥ 𝐾𝑀 ] ≤ −𝑀.

(ii) Let F 𝜖
𝑡 := F𝜖 𝑡 . Then for all (F 𝜖

𝑡 )-adapted continuous processes 𝐴̄ on [0, 1],
we have 𝐴̄ · 𝐵̄𝜖 ∈ 𝐶𝛼-Hld ( [0, 1],R) and {𝐵̄𝜖 }𝜖 >0 is 𝛼-Uniformly Exponentially
Tight.
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2.2.2 LDP for SDE driven by stochastic integrals
In this section, we will discuss how to derive the LDP for SDEs driven by stochastic
integrals in one dimension from Theorem 2.2.6. Consider the Stratonovich SDEs in
one dimension:

d𝑌𝑡 = 𝜎1 (𝑌𝑡 ) ◦ 𝐴𝑡d𝑋𝑡 + 𝜎2 (𝑌𝑡 ) 𝐴̃𝑡d𝑡, 𝑌0 ∈ R, (2.5)

where 𝜎1, 𝜎2 ∈ 𝐶3
𝑏, 𝑋 is a one-dimensional standard Brownian motion, and 𝐴 and 𝐴̃

are real valued adapted continuous processes respectively. Note that we regard (2.5) as
the equation driven by a stochastic integral 𝐴 · 𝑋 and 𝐴̃ · Λ where Λ(𝑡) := 𝑡.

Let

𝑍 = (𝑍 (1) , 𝑍 (2) ) := (𝐴 · 𝑋, 𝐴̃ · Λ),

where · means the Itô integral. Let also that

Z𝑠𝑡 := (1, 𝑍𝑠𝑡 ,Z𝑠𝑡 ), 0 ≤ 𝑠 < 𝑡 ≤ 1, (2.6)

where for 𝑖, 𝑗 ∈ {1, 2},

𝑍𝑠𝑡 := 𝑍𝑡 − 𝑍𝑠 , Z(𝑖 𝑗 )
𝑠𝑡 :=

{
2−1 (𝑍 (1)

𝑠𝑡 )2, 𝑖 = 𝑗 = 1,∫ 𝑡
𝑠
(𝑍 (𝑖)
𝑟 − 𝑍 (𝑖)

𝑠 )d𝑍 ( 𝑗 )
𝑟 , otherwise,

and Z is defined by the Young integral (see also Section 9.4 in [30], this is the Young pair-
ing). Note that by Proposition 2.2.8 (i), for 𝛼 ∈ (1/3, 1/2), 𝑍 ∈ 𝐶𝛼-Hld ×𝐶1-Hld and so
the Young integral is well-defined. For 𝛼 ∈ (1/3, 1/2], denote by 𝐺Ω𝛼-Hld ([0, 1],R2)
the geometric rough path space and 𝑑𝛼 the metric function on 𝐺Ω𝛼-Hld ( [0, 1],R2) (see
Section 2.2 in [27]). One can prove that for 𝛼 ∈ (1/3, 1/2), Z ∈ 𝐺Ω𝛼-Hld ( [0, 1],R2),
see the proof of Theorem 2.2.11.

We now discuss the following type of rough differential equation (RDE) (in Lyons’
sense; see Section 8.8 of [27], for example):

𝑌𝑡 =
∫ 𝑡

0
𝜎̄(𝑌𝑢)dZ𝑢, (2.7)

where 𝑌𝑡 = 𝑌𝑡 − 𝑌0, 𝜎̄(𝑦) = (𝜎1 (𝑌0 + 𝑦), 𝜎2 (𝑌0 + 𝑦)).

Theorem 2.2.9. Let 𝜎1, 𝜎2 ∈ 𝐶3
𝑏.

(i) RDE (2.7) driven by (2.6) has a unique solution 𝑌 = Φ(Z, 𝑦0), where

Φ : Ω𝛼-Hld ([0, 𝑇],R2) × R → 𝐶𝛼-Hld ([0, 𝑇],R)

is the solution map of (2.7) that is locally Lipschitz continuous with respect to
𝑑𝛼.

(ii) The first level of the last component𝑌 of the solution to RDE (2.7) for (2.6) gives
the solution 𝑌 (𝜔) = 𝑦0 + 𝑌 to the stratonovich SDE (2.5).
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Proof. These are standard results from rough path theory; see e.g., Theorem 1 in [65]
or Chapter 8 in [27] for (𝑖) and Chapter 9 in [27] or Theorem 17.3 in [30] for (𝑖𝑖). □

Remark 2.2.10. Although the solution 𝑌 is one-dimension, the noise 𝑍 is a two
dimensional path and so it is not trivial whether 𝑌 can be constructed from 𝑍 or not,
and this is why we need to consider rough paths Z of 𝑍 .

Let 𝑋 𝜖 := 𝜖1/2𝑋 , and 𝐴𝜖 , 𝐴̃𝜖 are (F𝑡 ) adapted continuous processes respectively
(these correspond scaled processes of 𝐴, 𝐴̃ respectively). Let

𝑍 𝜖 = ((𝑍 (1) ) 𝜖 , (𝑍 (2) ) 𝜖 ) := (𝐴𝜖 · 𝑋 𝜖 , 𝐴̃𝜖 · Λ),

and we define Z𝜖 like (2.6). We now consider the following scaled SDEs:

d𝑌 𝜖𝑡 = 𝜎1 (𝑌 𝜖𝑡 ) ◦ 𝐴𝜖𝑡 d𝑋 𝜖𝑡 + 𝜎2 (𝑌 𝜖𝑡 ) 𝐴̃𝜖𝑡 d𝑡, (2.8)

We state the second main result, the proof is given in Section 2.4.2.

Theorem 2.2.11. We fix 𝛼 ∈ [1/3, 1/2). Assume that there exists 𝛼′ ∈ [1/3, 1/2) with
𝛼′ > 𝛼 such that {(𝐴𝜖 , 𝐴̃𝜖 , 𝑋 𝜖 )}𝜖 >0 satisfies the LDP on 𝐶 ([0, 1],R) ×𝐶 ([0, 1],R) ×
𝐶𝛼

′-Hld
0 ( [0, 1],R) with good rate function 𝐽#.

Then {𝑌 𝜖 }𝜖 >0 satisfies the LDP on 𝐶𝛼-Hld ( [0, 1],R) with good rate function

𝐽 (𝑦) := inf
{
𝐽# (𝑎, 𝑎̃, 𝑥) : 𝑦 = Φ ◦ 𝐹 (𝑎 · 𝑥, 𝑎̃ · Λ), 𝑥 ∈ BV

}
,

where

𝐹 (𝑧)𝑠𝑡 := (1, 𝑧𝑠𝑡 , z𝑠𝑡 ), (2.9)

and for 𝑖, 𝑗 ∈ {1, 2},

𝑧 (𝑖)𝑠𝑡 := 𝑧 (𝑖)𝑡 − 𝑧 (𝑖)𝑠 , z(𝑖 𝑗 )𝑠𝑡 :=

{
2−1 (𝑧 (𝑖)𝑠𝑡 )2, 𝑖 = 𝑗 = 1,∫ 𝑡
𝑠
(𝑧 (𝑖)𝑟 − 𝑧 (𝑖)𝑠 )d𝑧 ( 𝑗 )𝑟 , otherwise,

and z is defined by the Young integral.

2.3 An application for mathematical finance

2.3.1 Small noise asymptotics for rough volatility models (2.12)
We now discuss an application of Theorem 2.2.11. Let 𝜅 : (0, 1] → [0,∞) as

𝜅(𝑡) := 𝑔(𝑡)𝑡𝛾−𝛼, 𝑡 ∈ (0, 1],

where 𝛼, 𝛾 ∈ (0, 1) and 𝑔 is a Lipschitz function. Let K : 𝐶𝛼-Hld ( [0, 1],R) →
𝐶𝛾-Hld ([0, 1],R) as

K 𝑓 (𝑡) := lim
𝜖↘0

{
[𝜅(𝑡 − ·)( 𝑓 (·) − 𝑓 (𝑡))]𝑡−𝜖0 +

∫ 𝑡−𝜖

0
( 𝑓 (𝑠) − 𝑓 (𝑡))𝜅′ (𝑡 − 𝑠)d𝑠

}
= 𝜅(𝑡)( 𝑓 (𝑡) − 𝑓 (0)) +

∫ 𝑡

0
( 𝑓 (𝑠) − 𝑓 (𝑡))𝜅′ (𝑡 − 𝑠)d𝑠.
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This map is called the fractional integral for 𝛾 > 𝛼 and the fractional derivative for
𝛾 < 𝛼, see [33] for details. For simplicity, let 𝜇 := 𝛾 − 𝛼.

Remark 2.3.1. Because of the existence of Lipschitz part 𝑔, 𝜅 has sufficient generality
for applications. For example, we can take the following singular kernels.

1. the Riemann–Liouville kernel

𝜅𝐻 (𝑡) := 𝑡𝐻−1/2, 𝑡 ∈ (0, 1], 𝐻 ∈ (0, 1/2) (2.10)

has the above form (𝜇 = 𝐻 − 1/2).

2. the Gamma fractional

𝜅(𝑡) := 𝑡𝜇 exp (𝑐𝑡), 𝑡 ∈ (0, 1], 𝜇 ∈ (−1, 1), 𝑐 < 0,

3. Power-law

𝜅(𝑡) := 𝑡𝜇 (1 + 𝑡)𝛽−𝜇, 𝑡 ∈ (0, 1], 𝜇 ∈ (−1, 1), 𝛽 < −1.

For convenience, we denote K0 by K associated with the Riemann–Liouville kernel
𝜅𝐻 , which means K0 is the usual fractional operator.

We fix 𝛼 ∈ (0, 1/2) and 𝛾 ∈ (0, 1) (𝛼 and 𝛾 are the parameters of K respectively).
Denote by (𝑊,𝑊⊥) a two-dimensional standard Brownian motion. Set

𝑋 := 𝜌𝑊 +
√

1 − 𝜌2𝑊⊥, 𝑉 := Ψ(K𝐴), 𝜌 ∈ [−1, 1], (2.11)

where 𝐴 is the solution to the SDE

d𝐴𝑡 = 𝑏(𝐴𝑡 )d𝑡 + 𝑎(𝐴𝑡 )d𝑊𝑡 , 𝐴0 ∈ R,

𝑎, 𝑏 ∈ 𝐶4
𝑏, and Ψ : R → R is a nice function (see in Remark 2.3.3). Consider the

following Itô SDEs (here 𝑌 represents the dynamics of the logarithm of a stock price
process):

d𝑌𝑡 = 𝜎(𝑌𝑡 ) 𝑓 (𝑉𝑡 , 𝑡)d𝑋𝑡 −
1
2
𝜎2 (𝑌𝑡 ) 𝑓 2 (𝑉𝑡 , 𝑡)d𝑡, 𝑌0 ∈ R (2.12)

where 𝑓 : R× [0, 1] → [0,∞) be a nice function (see in Remark 2.3.3), and 𝜎 : R → R
is in 𝐶4

𝑏. In this paper, we call (2.12) rough volatility models. The equation can be
rewrite in the Stratonovich sense:

d𝑌𝑡 = 𝜎(𝑌𝑡 ) ◦ 𝑓 (𝑉𝑡 , 𝑡)d𝑋𝑡 −
1
2

{
𝜎2 (𝑌𝑡 ) + 𝜎(𝑌𝑡 )𝜎′ (𝑌𝑡 )

}
𝑓 2 (𝑉𝑡 , 𝑡)d𝑡

Note that we regard this SDE as the equation driven by a stochastic integral 𝑓 (𝑉, ·) · 𝑋
and 𝑓 2 (𝑉, ·) · Λ. For 𝜖 > 0, let (𝑋 𝜖 , 𝑉 𝜖 ) := (𝜖1/2𝑋, 𝜖1/2𝑉) and consider the following
SDEs:

d𝑌 𝜖𝑡 = 𝜎(𝑌 𝜖𝑡 ) ◦ 𝑓 (𝑉 𝜖𝑡 , 𝑡)d𝑋 𝜖𝑡 − 1
2

{
𝜎2 (𝑌 𝜖𝑡 ) + 𝜎(𝑌 𝜖𝑡 )𝜎′ (𝑌 𝜖𝑡 )

}
𝑓 2 (𝑉 𝜖𝑡 , 𝑡)d𝑡, 𝜖 > 0,

(2.13)
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Let
𝑍 𝜖 := ( 𝑓 (𝑉 𝜖 , ·) · 𝑋 𝜖 , 𝑓 2 (𝑉 𝜖 , ·) · Λ), 𝜖 > 0.

We state an application of Theorem 2.2.11 for rough volatility models, the proof is
given in Section 2.4.2.

Theorem 2.3.2. We fix 𝛼 ∈ [1/3, 1/2) and 𝛾 ∈ (0, 1). Assume that 𝑥 ↦→ 𝑓 (𝑥, ·) is
continuous map on𝐶 ( [0, 1],R), 𝑥 ↦→ Ψ(𝑥) continuous map from𝐶

𝛾-Hld
0 ( [0, 1],R) into

𝐶 ([0, 1],R) and let 𝑌 𝜖 is the solution of (2.13). Then {𝑌 𝜖 }𝜖 >0 satisfies the LDP on
𝐶𝛼-Hld ( [0, 1],R) with good rate function

𝐽 (𝑦) := inf
{

1
2
‖(𝑤, 𝑤⊥)‖2

H : 𝑦 = Φ ◦ 𝐹 ◦ 𝐹 𝑓 ◦ K(𝑤, 𝑤⊥), (𝑤, 𝑤⊥) ∈ H
}
,

where H is the Cameron-Martin space on R2,

K𝑤 := (ΨK(𝑎(𝐴0)𝑤 (1) ), 𝜌𝑤 (1) +
√

1 − 𝜌2𝑤 (2) ), 𝐹 𝑓 (𝑣, 𝑥) :=
(
𝑓 (𝑣, ·) · 𝑥, 𝑓 (𝑣, ·)2 · Λ

)
,

(2.14)

𝐹 is defined as (2.11).

Remark 2.3.3 (assumptions for 𝑓 andΨ). If 𝑓 : R×[0,∞) → R is in𝐶1-class or 𝑓 (𝑥, 𝑡)
does not depend on 𝑡 ∈ [0,∞) and locally 𝛽-Hölder continuous with respect to 𝑥 ∈ R
(𝛽 ∈ (0, 1]), then 𝑓 satisfies the assumption of Theorem. Similarly, if Ψ : R → R is
𝛽-Hölder continuous, then Ψ satisfies the assumption of Theorem. As will be discussed
later (Remark 2.3.8 and Table 2.1), these sufficient assumptions are weaker than these
in previous works [8, 37, 23, 62].

Remark 2.3.4 (comparison with previous studies : small-noise LDP). Although there
are few previous works about small-noise LDP for rough volatility models when com-
pered with short-time LDP, this Theorem is a natural extension of the previous work
[37]. In [37], the authors discussed in the case of generalized rough SABR models
(the case when 𝑓 ∈ 𝐶∞, 𝜎 ∈ 𝐶4

𝑏, Ψ := id, and 𝐴 is a Brownian motion). The main
difference is that the proof of Theorem 2.3.2 is much simpler than that of [37], because
our method only uses the standard rough path theory while the method of [37] need to
use a partial rough path theory which is further developments of it. Also, our theorem
is more flexible than the previous result in terms of 𝑓 , K, 𝐴, and Ψ. For example, one
can derives the small-noise LDP for generalized rough Heston models discussed in [58]
(see also Remark 2.3.8).

2.3.2 Short time asymptotics for rough volatility models (2.12)
In this subsection, we prove the LDP for {𝑡𝜇 (𝑌𝑡 − 𝑌0)}𝑡>0 on R when 𝑡 ↘ 0, where 𝑌
is the solution for (2.12), 𝜇 := 𝛾 − 𝛼, and 𝛾, 𝛼 are the parameter for a kernel 𝜅. To do
so, let

𝑌 𝜖𝑡 := 𝜖 𝜇 (𝑌𝜖 𝑡 − 𝑌0).
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Note that

𝑉𝜖 𝑡 = Ψ(K𝐴𝜖 𝑡 ) = Ψ(K 𝜖 (𝜖 𝜇 (𝐴𝜖 · − 𝐴0)𝑡 ) =: 𝑉 𝜖𝑡 ,

where

K 𝜖 𝑓 (𝑡) := 𝜖−𝜇
[
𝜅𝜖 (𝑡)( 𝑓 (𝑡) − 𝑓 (0)) +

∫ 𝑡

0
( 𝑓 (𝑠) − 𝑓 (𝑡)) d

d𝑡
𝜅𝜖 (𝑡 − 𝑠)d𝑠

]
, 𝜖 > 0,

and 𝜅𝜖 (𝑡) := 𝜅(𝜖𝑡). Here we use the relation K𝐴(𝜖𝑡) = K 𝜖 (𝜖 𝜇𝐴𝜖 ·) in the second
equality. By using the change of variables for stochastic integrals and Riemann integrals,
one has that

𝑌 𝜖𝑡 = 𝜖 𝜇
{∫ 𝜖 𝑡

0
𝜎(𝑌𝑢) 𝑓 (𝑉𝑢, 𝑢)d𝑋𝑢 −

1
2

∫ 𝜖 𝑡

0
𝜎2 (𝑌𝑢) 𝑓 2 (𝑉𝑢, 𝑢)d𝑢

}
=

∫ 𝑡

0
𝜎̃ 𝜖 (𝑌 𝜖𝑢 )d(𝑍 (1) ) 𝜖𝑢 − 1

2

∫ 𝑡

0
(𝜎̃ 𝜖 )2 (𝑌 𝜖𝑢 )d(𝑍 (2) ) 𝜖𝑢 ,

where

(𝑍 (1) ) 𝜖𝑡 :=
∫ 𝑡

0
𝑓 (𝑉 𝜖𝑢 , 𝜖𝑢)d(𝜖 𝜇𝑋𝜖 𝑢),

(𝑍 (2) ) 𝜖𝑡 := 𝜖 𝜇+1
∫ 𝑡

0
𝑓 2 (𝑉 𝜖𝑢 , 𝜖𝑢)d𝑢,

and
𝜎̃ 𝜖 (𝑠) := 𝜎(𝑌0 + 𝜖−𝜇𝑠).

Note that 𝑍 (1) is well-defined since𝑉 𝜖 and 𝑋𝜖 · are (F 𝜖
𝑡 ) := (F𝜖 𝑡 )-adapted respectively.

Indeed, we can derive an LDP for {𝑌 𝜖 } under the following Hypothesis 2.3.5.

Hypothesis 2.3.5. We assume that 𝜅 satisfies the following conditions:

1. 𝛼 ∈ (0, 1/2), and 𝜇 < 0, and 𝜎 ∈ 𝐶4
𝑏,

2. the Lipschitz part 𝑔 of 𝜅 is in 𝐶2
𝑏, and sup𝑡∈[0,1] |𝑔(𝜖𝑡) − 1| → 0 as 𝜖 ↘ 0.

3. 𝑓 : R×[0,∞) → R is a continuous function and satisfies the following conditions:
for all 𝑣𝑛, 𝑣 ∈ 𝐶 ([0, 1],R) with 𝑣𝑛 → 𝑣 in 𝐶 ([0, 1],R),

sup
𝜖 ∈ (0,1)

sup
𝑡∈[0,1]

| 𝑓 (𝑣𝑡 , 𝜖𝑡) − 𝑓 (𝑣𝑛𝑡 , 𝜖𝑡) | → 0, as 𝑛→ ∞.

sup
𝑡∈[0,1]

| 𝑓 (𝑣𝑡 , 𝜖𝑡) − 𝑓 (𝑣𝑡 , 0) | → 0, as 𝜖 ↘ 0.

Note that the assumption 2 is harmless in the sense that all examples which appear
in Remark 2.3.1 satisfy them. Note also that the assumption 3 is harmless in the sense
that the all functions discussed in Remark 2.3.3 satisfy this condition.
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Theorem 2.3.6. Assume that Hypothesis 2.3.5.
Then {𝑌 𝜖 }0<𝜖≦1 satisfies the LDP on 𝐶𝛼-Hld ( [0, 1],R) as 𝜖 ↘ 0 with speed

𝜖−(2𝜇+1) with good rate function

𝐽 ( 𝑦̃) := inf


1
2
‖(𝑤, 𝑤⊥)‖2

H :
𝑥 = 𝜌𝑤 +

√
1 − 𝜌2𝑤⊥,

𝑦̃ = 𝜎(𝑦0)
∫ ·

0
𝑓 (ΨK0 (𝑎(𝐴0)𝑤)𝑟 , 0)d𝑥𝑟 , (𝑤, 𝑤⊥) ∈ H

 ,
The proof of Theorem 2.3.6 is given in Section 2.4.3.
An LDP for the marginal distribution 𝑌 𝜖1 follows from the contraction principle,

and the corresponding one-dimensional rate function as follows.

Theorem 2.3.7. Assume Hypothesis 2.3.5. Then {𝑡𝜇 (𝑌𝑡 −𝑌0)}1≥𝑡>0 satisfies the LDP
on R with 𝑡 ↘ 0 with speed 𝑡−(2𝜇+1) with good rate function

𝐽# (𝑧) := inf
𝑔∈𝐿2 ( [0,1] )


1
2

∫ 1

0
|𝑔𝑟 |2d𝑟 +

{
𝑧 − 𝜌𝜎(𝑌0)

∫ 1
0 𝑓 (𝑣(𝑔)𝑟 , 0) 𝑔𝑟d𝑟

}2

2(1 − 𝜌2)𝜎(𝑌0)2
∫ 1
0 𝑓 (𝑣(𝑔)𝑟 , 0)2 d𝑟

 , (2.15)

where 𝑣(𝑔) = 𝑎(𝐴0)Ψ(K0𝑔), and K0𝑔 :=
∫ ·
0 𝜅𝐻 (𝑡 − 𝑟)𝑔𝑟d𝑟 .

Proof. By the contraction principle and the previous theorem, {𝑡𝜇 (𝑌𝑡 − 𝑌0)}1≥𝑡>0
satisfies the LDP on R with 𝑡 ↘ 0 with speed 𝑡−(2𝜇+1) with good rate function

𝐽# (𝑧) := inf


1
2
‖(𝑤, 𝑤⊥)‖2

H :
𝑥 = 𝜌𝑤 +

√
1 − 𝜌2𝑤⊥,

𝑧 = 𝜎(𝑦0)
∫ 1

0
𝑓 (ΨK0 (𝑎(𝐴0)𝑤)𝑡 , 0)d𝑥𝑟 , (𝑤, 𝑤⊥) ∈ H

 .
By using the argument in Theorem 3.8 in [37], one can prove that 𝐽# has the above
representation (2.15). □

Remark 2.3.8 (comparison with previous studies : short-time LDP). The theorem is
a natural extension for the results in [23, 62, 8, 37] because if Ψ = id, 𝑎 = 1, and
𝑏 = 0, then the statement (in particular, the rate function (2.15)) corresponds to that
appeared in the previous works. First we will compare the assumption for the parameter
of models (see Table 2.1). In view of the local volatility function 𝜎, our method
outperforms [23, 62, 8], although we have to assume a slightly stronger smoothness
than [37] because we transform (2.12) into stratonovich SDEs. On the other hand, our
assumption of the stochastic volatility function 𝑓 is the most general in the sense of
Remark 2.3.3. Also, our method is more flexible than the others in the sense of the
fractional operator K, 𝐴, and Ψ. Our method allows us to add a Lipschitz part of 𝜅, a
diffusion process 𝐴, and some transformation Ψ of volatility processes.

As mentioned Remark 2.3.4, our first contribution is that the proof is much simpler
than that of previous works, because our method only uses the standard rough path
theory, while the method of [8, 37] need to use regularity structures or a partial rough
path theory which are further developments of it ([23, 62] is somewhat less applicable).
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Table 2.1: Short time asymptotics for rough volatility models (2.12)

method 𝜎 𝑓 K 𝐴 Ψ
Forde & Zhang [23] 1 Hölder continuous K0 𝑎 = 1, 𝑏 = 0 id
Jacquier et al. [62] 1

√
exp (𝑥 − 𝑡2𝐻/2) K0 𝑎 = 1, 𝑏 = 0 Id

Bayer et al. [8] 1 𝐶∞ K0 𝑎 = 1, 𝑏 = 0 id
Fukasawa & T [37] 𝐶3

𝑏 𝐶∞ K0 𝑎 = 1, 𝑏 = 0 id
Our method 𝐶4

𝑏 general (see Remark 2.3.3) general general general

Moreover, our method allows for a unified treatment of short-time LDP for rough
volatility models. For example, the result obtained by [37] does not contain the Forde
& Zhang’ result [23] since Hölder continuous function is not smooth in general.

Furthermore, one can derives the short-time LDP for generalized rough Heston
models discussed in [58]:

d𝑌𝑡 = −1
2
𝑉𝑡d𝑡 +

√
𝑉𝑡d𝑋𝑡 , 𝑌0 = 0, (2.16)

𝑉𝑡 = Ψ̃(K𝐴)𝑡 ,

where 𝑥 ↦→ Ψ̃(𝑥) is a continuous map from 𝐶𝛾-Hld ( [0, 1]) into 𝐶𝛾-Hld
+ ([0, 1]). The

equation (2.16) coincides with the equation (2.12) with 𝜎 = 1 and 𝑓 (𝑣, 𝑡) :=
√
𝑣.

(2.16) are widely applicable, in the sense that the authors of [58] provide us how to
make a numerical approximation of the solution of (2.16). Although a reason for using
and studying such models is that it is expected to be consistent with the power laws of
implied volatility observed in the market, there is no justifications of this expectation
in the literature because 𝑓 is not smooth and K, 𝐴, or Ψ are general. One can remedy
this problem in the sense that the approximation formula (2.18) which is given later and
consistent to the power law of the implied volatility in the market is obtained.

Remark 2.3.9 (flexibility of the parameters of (2.12)). Although we adopt the gener-
alized fractional operator K, it is K0 that appears in the rate function (2.15) for the
short time asymptotics of (2.12) and so the effect of K is partial in this sense. In other
words, the generality of Lipschitz part 𝑔 of 𝜅 does not affect it. On the other hand, Ψ
and 𝑎(𝐴0) truly affects the rate function for the short time asymptotics of (2.12). Also
the scaling order for 𝑌 does depends on the parameter 𝜇, and these suggests that 𝜇 does
affect the implied volatility skew.

2.3.3 Short time asymptotics for put/call options and implied volatil-
ity

Let

Λ∗ (𝑥) :=

{
inf𝑦>𝑥 𝐽# (𝑦), 𝑥 ≥ 0,
inf𝑦<𝑥 𝐽# (𝑦), 𝑥 ≤ 0.
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where 𝐽# is defined in Theorem 2.3.7. Let (𝑥)+ := 𝑥 ∨ 0.

Theorem 2.3.10. Under the Hypothesis 2.3.5, we have the following:

(i) we have the following small-time behavior for out of the money put option on
𝑆𝑡 = exp (𝑌𝑡 ) with 𝑆0 = 1:

− lim
𝑡↘0

𝑡2(𝜇+1/2) log E [(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )+] = Λ∗ (𝑥), 𝑥 ≤ 0,

where 𝑥 := log𝐾 is the log moneyness.

(ii) Moreover, if we assume that

lim sup
𝑡↘0

𝑡2𝜇+1 log E
[
𝑆𝑞𝑡

]
= 0, 𝑞 > 1, (2.17)

then we also have the following small-time behavior for out of the money call
option on 𝑆𝑡 = exp (𝑌𝑡 ) with 𝑆0 = 1:

− lim
𝑡↘0

𝑡2(𝜇+1/2) log E [(𝑆𝑡 − exp (𝑥𝑡−𝜇))+] = Λ∗ (𝑥), 𝑥 ≥ 0.

Proof. See Section 2.6 □

Remark 2.3.11. Because it is difficult to check the exponentially integrability of 𝑆 in
general, the assumption (2.17) is natural, see Assumption 2.4 in [9], for example.

Corollary 2.3.12. Denote Σ(𝑥, 𝑡) by the implied volatility at the log moneyness 𝑥 and
the maturity 𝑡. Then for the rough volatility models (2.12), we have

lim
𝑡↘0

Σ(𝑥𝑡−𝜇, 𝑡) = |𝑥 |√
2Λ∗ (𝑥)

, 𝑥 < 0. (2.18)

Moreover, if we assume that (2.17), then

lim
𝑡↘0

Σ(𝑥𝑡−𝜇, 𝑡) = |𝑥 |√
2Λ∗ (𝑥)

, 𝑥 > 0.

Proof. One can adapt the same argument as Corollary 4.13 in [23]. □

Remark 2.3.13 (observation and future works for (2.18)). The corollary is an extension
for Corollary 4.15 in [23], and our result outperforms the previous results in the sense
that 𝜎, 𝑓 , K and 𝐴 is more general. The dependence of these parameters is determined
by how the rate function 𝐽# depends on them (see Remark 2.3.9). Note that if −𝜇 is
negative, then the steepness of the implied volatility smile is infinite V-shape as 𝑡 ↘ 0,
while it is flat when −𝜇 is positive.

Although justifications are left in the future, I think there are several chances to
apply the asymptotic formula (2.18) for practical applications. For one thing, the
approximate formula (2.18) has a slightly different structure compared to previous
studies [23] because of the generality of (2.12). As a result, the right-hand side of
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(2.18) may be explicitly solved. Even if it cannot be explicitly solved, further precise
approximation formula may be found here. Furthermore, (2.18) is more flexible than
that of [23] in terms of the parameters of (2.12). This flexibility may have an impact on
approximation accuracy when compared with the previous work [23]. Moreover, the
formula may suggest a reasonable and concrete model which is consistent to the power
law of the implied volatility. Finally, by using a numerical implementation method
suggested by [23], one can apply (2.18) to the pricing of put/call options with being
consistent to the power law of the implied volatility.

2.4 Proof of main theorems

2.4.1 Proof of Theorem 2.2.6 and 2.2.8
We fix 𝛼 ∈ (0, 1] and 𝛽 < 𝛼. For simplicity, we will write 𝐶𝛼-Hld

0 ( [0, 1],R) as
𝐶𝛼-Hld

0 ([0, 1]), and {𝑋 𝜖 }𝜖 >0 as {𝑋 𝜖 }𝜖 .

Definition 2.4.1. For 𝛿 > 0, we define the map 𝐺 𝛿 : 𝐶 ( [0, 1]) × 𝐶𝛼-Hld
0 ( [0, 1]) →

𝐶
𝛽-Hld
0 ( [0, 1]) as follows:

𝐺 𝛿 (𝑎, 𝑥)𝑡 :=
∞∑
𝑘=1

𝑎𝜏 𝛿
𝑘−1

(
𝑥𝑡∧𝜏 𝛿

𝑘
− 𝑥𝑡∧𝜏 𝛿

𝑘−1

)
, 𝑡 ∈ [0, 1],

where 𝜏𝛿0 = 0 and

𝜏𝛿𝑘 = 𝜏𝛿𝑘 (𝑎) := inf{𝑡 > 𝜏𝛿𝑘−1 : |𝑎𝑡 − 𝑎𝜏 𝛿
𝑘−1

| > 𝛿} ∧ 1, 𝑘 ∈ N.

Remark 2.4.2. We fix 𝑎 ∈ 𝐶 ( [0, 1]). By the definition of {𝜏𝛿𝑘 (𝑎)}𝑘 , for all 𝑘 ∈ N,
𝜏𝛿𝑘 (𝑎) < 𝜏

𝛿
𝑘+1 (𝑎) or 𝜏𝛿𝑘 (𝑎) = 1. Moreover, there exists 𝑘 ∈ N such that 𝜏𝛿𝑘 (𝑎) = 1.

Remark 2.4.3. We fix 𝑎 ∈ 𝐶 ([0, 1]) and 𝛿 > 0. Let 𝑘 ′0 is the smallest integer such
that 𝜏𝛿

𝑘′0
(𝑎) = 1. For all 0 ≤ 𝑠 < 𝑡 ≤ 1, take the smallest number 𝑙, 𝑙′ ∈ N such that

𝑠 ∈ [𝜏𝛿𝑙 , 𝜏
𝛿
𝑙+1] and 𝑡 ∈ [𝜏𝛿𝑙′ , 𝜏

𝛿
𝑙′+1] (𝑙 ≤ 𝑙′ ≤ 𝑘 ′0 − 1). Because

|𝐺 𝛿 (𝑎, 𝑥)𝑡 − 𝐺 𝛿 (𝑎, 𝑥)𝑠 | ≤ ‖𝑎‖∞

{
𝑙′∑

𝑘=𝑙+2
|𝑥𝜏 𝛿

𝑘
− 𝑥𝜏 𝛿

𝑘−1
| + |𝑥𝑡 − 𝑥𝜏 𝛿

𝑙′
| + |𝑥𝜏 𝛿

𝑙+1
− 𝑥𝑠 |

}
≤ ‖𝑎‖∞‖𝑥‖𝛼-Hld𝑘

′
0 |𝑡 − 𝑠 |𝛼,

we conclude that 𝐺 𝛿 (𝑎, 𝑥) belongs to 𝐶𝛼-Hld ( [0, 1]). Since 𝛽 < 𝛼, we have that
𝐺 𝛿 (𝑎, 𝑥) ∈ 𝐶𝛽-Hld

0 ([0, 1]).

Lemma 2.4.4. We fix 𝛿 > 0. For 𝑎(𝑛), 𝑎 ∈ 𝐶 ([0, 1]), assume that 𝑎(𝑛) → 𝑎 in
𝐶 ([0, 1]). Then there exists a subsequence {𝑎(𝑛′)}𝑛′ of {𝑎(𝑛)}𝑛 and a sequence {𝑟 𝛿𝑘 }𝑘
on [0, 1] such that the following properties hold;

(i) for all 𝑘 ≥ 1, 𝜏𝛿𝑘 (𝑎(𝑛
′)) → 𝑟 𝛿𝑘 as 𝑛′ → ∞, and {𝑟 𝛿𝑘 }𝑘 is non-decreasing,
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(ii) for all 𝑘 ≥ 1, either 𝑟 𝛿𝑘 < 𝜏𝛿𝑘 (𝑎(𝑛
′)) for all 𝑛′ ≥ 𝑘 , or 𝑟 𝛿𝑘 ≥ 𝜏𝛿𝑘 (𝑎(𝑛

′)) for all
𝑛′ ≥ 𝑘 ,

(iii) for all 𝑘 ≥ 1, 𝑎(𝑛′)𝜏 𝛿
𝑘
(𝑎 (𝑛′ ) ) → 𝑎𝑟 𝛿

𝑘
as 𝑛′ → ∞,

(iv) for all 𝑘 ≥ 1, 𝑟 𝛿𝑘 = 1 or 𝑟 𝛿𝑘−1 < 𝑟
𝛿
𝑘 ,

(v) there exists 𝑘 ′ ∈ N such that 𝑟 𝛿𝑘′ = 1.

Proof. We adapt the argument of Theorem 6.5 in [39]. We fix 𝛿 > 0. For brevity, we
write 𝜏𝛿𝑘 as 𝜏𝑘 (we apply the same notation to 𝑟 𝛿𝑘 ). Since {𝜏1 (𝑎(𝑛))}𝑛 is a sequence
on [0, 1], there exists a subsequence {𝑎(𝑛(1) )}𝑛(1) of {𝑎(𝑛)}𝑛 and 𝑟1 ∈ [0, 1] such
that 𝜏1 (𝑎(𝑛(1) )) → 𝑟1 as 𝑛(1) → ∞. Since {𝜏2 (𝑎(𝑛(1) ))}𝑛(1) is a sequence on [0, 1],
there exists a subsequence {𝑎(𝑛(2) )}𝑛(2) of {𝑎(𝑛(1) )}𝑛(1) and 𝑟2 ∈ [0, 1] such that
𝜏2 (𝑎(𝑛(2) )) → 𝑟2 as 𝑛(2) → ∞. By using the same argument, for all 𝑘 ∈ N, there exists
a subsequence

{𝑎(𝑛(𝑘 ) )}𝑛(𝑘) ⊂ {𝑎(𝑛(𝑘−1) )}𝑛(𝑘−1) ⊂ ... ⊂ {𝑎(𝑛(1) )}𝑛(1) ⊂ {𝑎(𝑛)}𝑛

and 𝑟𝑘 ∈ [0, 1] such that 𝜏𝑘 (𝑎(𝑛(𝑘 ) )) → 𝑟𝑘 as 𝑛(𝑘 ) → ∞. Let 𝑎(𝑛′𝑘) := 𝑎(𝑛(𝑘 )𝑘 ) (here
𝑛′𝑘 means the 𝑘-th number of 𝑛′). Then we have that {𝑎(𝑛′)}𝑛′ is a subsequence of
{𝑎(𝑛)}𝑛, and for all 𝑘 ≥ 1, {𝑎(𝑛′𝑗 )} 𝑗≥𝑘 ⊂ {𝑎(𝑛(𝑘 ) )}𝑛(𝑘) . So we have that for 𝑘 ≥ 1,
𝜏𝑘 (𝑎(𝑛′)) → 𝑟𝑘 as 𝑛′ → ∞. Since 𝜏𝑘−1 (𝑎(𝑛′)) ≤ 𝜏𝑘 (𝑎(𝑛′)), we have 𝑟𝑘−1 ≤ 𝑟𝑘 . So
this is a subsequence {𝑎(𝑛′)}𝑛′ of {𝑎(𝑛)}𝑛 such that {𝑎(𝑛′)}𝑛′ satisfies (𝑖). We can also
select a subsequence {𝑎(𝑛′′)}𝑛′′ of {𝑎(𝑛′)}𝑛′ satisfies (𝑖𝑖). We fix this subsequence
{𝑎(𝑛′′)}𝑛′′ and rewrite {𝑎(𝑛′′)}𝑛′′ as {𝑎(𝑛′)}𝑛′ for brevity.

It is straightforward to show (𝑖𝑖𝑖) because of the fact that 𝜏𝑘 (𝑎(𝑛′)) → 𝑟𝑘 and the
uniform convergence of {𝑎(𝑛′)}𝑛′ .

Let us verify the property (𝑖𝑣). If this were not true, there exists 𝑘 ∈ N such that
𝑟 = 𝑟𝑘−1 = 𝑟𝑘 < 1. From (𝑖𝑖𝑖), we have

𝑎(𝑛′)𝜏𝑘 (𝑎 (𝑛′ ) ) → 𝑎𝑟 , 𝑎(𝑛′)𝜏𝑘−1 (𝑎 (𝑛′ ) ) → 𝑎𝑟 , as 𝑛′ → ∞.

In particular, there exists 𝑁 ′ (𝛿) ∈ N such that if 𝑛′ ≥ 𝑁 ′ (𝛿),

|𝑎(𝑛′)𝜏𝑘 (𝑎 (𝑛′ ) ) − 𝑎(𝑛′)𝜏𝑘−1 (𝑎 (𝑛′ ) ) | < 𝛿.

On the other hand, by using (𝑖𝑖), we can prove that there exists 𝑁 ′′ (𝑘) ≥ 1 such that if
𝑛′ ≥ 𝑁 ′′ (𝑘), 𝜏𝑘−1 (𝑎(𝑛′)) < 𝜏𝑘 (𝑎(𝑛′)). This is because in the case of 𝜏𝑘−1 (𝑎(𝑛′)) <
𝑟𝑘−1, 𝑟𝑘−1 < 1 implies that 𝜏𝑘−1 (𝑎(𝑛′)) < 1 and so by Remark 2.4.2, we have that
𝜏𝑘−1 (𝑎(𝑛′)) < 𝜏𝑘 (𝑎(𝑛′)). In the case of 𝜏𝑘−1 (𝑎(𝑛′)) ≥ 𝑟𝑘−1, since 𝑟𝑘−1 < 1, there exists
𝑁 ′′ (𝑘−1) such that if 𝑛′ ≥ 𝑁 ′′ (𝑘−1), 𝜏𝑘−1 (𝑎(𝑛′)) < 1 and so 𝜏𝑘−1 (𝑎(𝑛′)) < 𝜏𝑘 (𝑎(𝑛′)).
Then the definition of 𝜏𝑘 implies that if 𝑛′ ≥ 𝑁 ′′ (𝑘),

𝛿 ≤ |𝑎(𝑛′)𝜏𝑘 (𝑎 (𝑛′ ) ) − 𝑎(𝑛′)𝜏𝑘−1 (𝑎 (𝑛′ ) ) |,

and this is a contradiction.
It remains to verify (𝑣). If this were not true, for all 𝑘 ≥ 1, 𝑟𝑘 < 1. By using

the same argument in the proof of (𝑖𝑣), we can prove that for all 𝑘 ≥ 1, there exists
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𝑁 ′ (𝑘) ≥ 1 such that if 𝑛′ ≥ 𝑁 ′′ (𝑘), 𝜏𝑘−1 (𝑎(𝑛′)) < 𝜏𝑘 (𝑎(𝑛′)). Then by the definition
of 𝜏𝑘 , if 𝑛 ≥ 𝑁 ′′ (𝑘),

𝛿 ≤ |𝑎(𝑛′)𝜏𝑘 (𝑎 (𝑛′ ) ) − 𝑎(𝑛′)𝜏𝑘−1 (𝑎 (𝑛′ ) ) |.

Since 𝑟𝑘 < 1, (𝑖𝑣) implies that 𝑟𝑟−1 < 𝑟𝑘 . Then (𝑖𝑖𝑖) implies that

𝛿 ≤ |𝑎𝑟𝑘 − 𝑎𝑟𝑘−1 |.

On the other hand, since {𝑟𝑘}𝑘 is a non-decreasing and bounded sequence, there exists
𝑅 ∈ [0, 1] such that 𝑟𝑘 → 𝑅 as 𝑘 → ∞ and so the continuity of 𝑎 implies that
𝑎𝑟𝑘 → 𝑎𝑅 as 𝑘 → ∞. In particular, {𝑎𝑟𝑘 } is a Cauchy sequence. However, this is the
contradiction. □

Definition 2.4.5 (Definition 6.1 [39]). Let 𝐸1, 𝐸2 be a metric space respectively. We
say that a function 𝐺 : 𝐸1 → 𝐸2 is almost compact if for all 𝑥 ∈ 𝐸1 and {𝑥(𝑛)}𝑛 ⊂ 𝐸1
with 𝑥(𝑛) → 𝑥 in 𝐸1, there exists a subsequence {𝑥(𝑛𝑘)}𝑘 and 𝑦 ∈ 𝐸2 such that
𝐺 (𝑥(𝑛𝑘)) → 𝑦 in 𝐸2.

Lemma 2.4.6. For all 𝛿 > 0, 𝐺 𝛿 is almost compact.

Proof. We fix 𝛿 > 0. Assume that (𝑎(𝑛), 𝑥(𝑛)) → (𝑎, 𝑥) in 𝐶 ([0, 1]) ×𝐶𝛼-Hld
0 ( [0, 1]).

Take a subsequence {𝑎(𝑛′)} of {𝑎(𝑛)}, and {𝑟𝑘}𝑘 such that the properties of Lemma
2.4.4 hold. Let 𝑘0 be the smallest number such that (𝑣) holds in Lemma 2.4.4 and let

𝑧𝑡 :=
∞∑
𝑘=1

𝑎𝑟𝑘−1

(
𝑥𝑡∧𝑟𝑘 − 𝑥𝑡∧𝑟𝑘−1

)
, 𝑡 ∈ [0, 1] .

By using the same argument as 𝐺 𝛿 (𝑎, 𝑥) in Remark 2.4.3, one can show that

|𝑧𝑡 − 𝑧𝑠 | ≤ 𝑘0‖𝑎‖∞‖𝑥‖𝛼-Hld |𝑡 − 𝑠 |𝛼,

and this implies that 𝑧 ∈ 𝐶𝛽-Hld
0 ( [0, 1]).

We will show that 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′)) → 𝑧 in 𝐶𝛽-Hld
0 ([0, 1]). We fix 𝜂 > 0 and we

will prove that there exists 𝑁 (𝜂) ∈ N such that if 𝑛 ≥ 𝑁 (𝜂),

‖𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′)) − 𝑧‖𝛽-Hld ≲ 𝜂.

To show the assertion, we fix 0 ≤ 𝑠 < 𝑡 ≤ 1 and take the smallest number 𝑙′, 𝑙 ∈ N such
that 𝑠 ∈ [𝑟𝑙′ , 𝑟𝑙′+1] and 𝑡 ∈ [𝑟𝑙 , 𝑟𝑙+1] (𝑙′ ≤ 𝑙 ≤ 𝑘0 − 1).

Let 𝛿 = 𝛿(𝑘0, 𝜂) := (min0≤𝑘≤𝑘0 |𝑟𝑘 − 𝑟𝑘−1 |) ∧ 1 and 𝑁 (𝜂) := max0≤𝑘≤𝑘0 𝑁 (𝑘, 𝜂),
where 𝑁 (𝑘, 𝜂) is a number such that if 𝑛′ ≥ 𝑁 (𝜂, 𝑘) : for 0 ≤ 𝑘 ≤ 𝑘0,

(𝐼) |𝜏𝑘 (𝑎(𝑛′)) − 𝑟𝑘 | < 𝛿/2,

(𝐼 𝐼) |𝑎(𝑛′)𝜏𝑘 (𝑎 (𝑛′ ) ) − 𝑎𝑟𝑘 | < 𝜂,

(𝐼 𝐼 𝐼) ‖𝑎(𝑛′) − 𝑎‖∞ < 𝜂 and ‖𝑥(𝑛′) − 𝑥‖∞ < 𝜂.
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Now we fix 𝑛′ ≥ 𝑁 (𝜂). For brevity, we write 𝜏𝑘 (𝑎(𝑛′)) as 𝜏𝑘 . By (𝐼), we can prove
that 𝑟𝑘+1 < 𝜏𝑘+2 and 𝜏𝑘−1 < 𝑟𝑘 for all 0 ≤ 𝑘 ≤ 𝑘0. Hence we consider the following
nine cases.

(Case1) 𝑠 ∈ [𝜏𝑙′ , 𝜏𝑙′+1] and 𝑡 ∈ [𝜏𝑙 , 𝜏𝑙+1].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎(𝑛′)𝜏𝑙 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙 ) − 𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) |

+
𝑙∑

𝑘=𝑙′+2
|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′ (𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝑠) − 𝑎𝑟𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) | =: 𝑇11 + 𝑇12 + 𝑇13.

Since |𝜏𝑙 − 𝑟𝑙 | < |𝑡 − 𝑠 |, |𝜏𝑙 − 𝑡 | < |𝑡 − 𝑠 |, and |𝑡 − 𝑟𝑙 | < |𝑡 − 𝑠 |, (𝐼) to (𝐼 𝐼 𝐼) imply
that

𝑇11 ≤ |𝑎(𝑛′)𝜏𝑙 − 𝑎𝑟𝑙 | |𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙 | + |𝑎𝑟𝑙 | |𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙 − (𝑥𝑡 − 𝑥𝑟𝑙 ) |
≤ |𝑎(𝑛′)𝜏𝑙 − 𝑎𝑟𝑙 | ‖𝑥(𝑛′)‖𝛼-Hld |𝑡 − 𝜏𝑙 |𝛼

+ ‖𝑎‖∞
{
|𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝑟𝑙 − (𝑥𝑡 − 𝑥𝑟𝑙 ) | + |𝑥(𝑛′)𝑟𝑙 − 𝑥(𝑛′)𝜏𝑙 |

}
≤

[
|𝑎(𝑛′)𝜏𝑙 − 𝑎𝑟𝑙 |‖𝑥(𝑛′)‖𝛼-Hld + ‖𝑎‖∞‖𝑥(𝑛′) − 𝑥‖𝛼-Hld

+ ‖𝑎‖∞‖𝑥(𝑛′)‖𝛼-Hld |𝜏𝑙 − 𝑟𝑙 |𝛼−𝛽
]
|𝑡 − 𝑠 |𝛽

≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 .

Since |𝑟𝑘 − 𝑟𝑘−1 | < |𝑡 − 𝑠 |, |𝜏𝑘 − 𝜏𝑘−1 | < |𝑡 − 𝑠 |, and |𝜏𝑘 − 𝑟𝑘 | < |𝑡 − 𝑠 | for all
𝑙′ + 2 ≤ 𝑘 ≤ 𝑙, (𝐼) to (𝐼 𝐼 𝐼) imply that

𝑇12 ≤ |𝑎(𝑛′)𝜏𝑘−1 − 𝑎𝑟𝑘−1 | |𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 |
+ |𝑎𝑟𝑘−1 ‖𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 − (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

≤ |𝑎(𝑛′)𝜏𝑘−1 − 𝑎𝑟𝑘−1 |‖𝑥(𝑛′)‖𝛼-Hld |𝜏𝑘 − 𝜏𝑘−1 |𝛼

+ ‖𝑎‖∞
{
|𝑥(𝑛′)𝑟𝑘 − 𝑥(𝑛′)𝑟𝑘−1 − (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 − (𝑥(𝑛′)𝑟𝑘 − 𝑥(𝑛′)𝑟𝑘−1 ) |
}

≤
{
|𝑎(𝑛′)𝜏𝑘−1 − 𝑎𝑟𝑘−1 |‖𝑥(𝑛′)‖𝛼-Hld + ‖𝑎‖∞‖𝑥(𝑛′) − 𝑥‖𝛼-Hld

+ ‖𝑎‖∞‖𝑥(𝑛′)‖𝛼-Hld{|𝜏𝑘 − 𝑟𝑘 |𝛼−𝛽 + |𝜏𝑘−1 − 𝑟𝑘−1 |𝛼−𝛽}
}
|𝑡 − 𝑠 |𝛽

≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 ,

and we can estimate 𝑇12. Since |𝜏𝑙′+1 − 𝑠 | < |𝑡 − 𝑠 |, |𝑟𝑙′+1 − 𝑠 | < |𝑡 − 𝑠 |, and
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|𝜏𝑙′+1 − 𝑟𝑙′+1 | < |𝑡 − 𝑠 |,

𝑇13 ≤ |𝑎(𝑛′)𝜏𝑙′ − 𝑎𝑟𝑙′ | |𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝑠 |
+ |𝑎𝑟𝑙′ ‖𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝑠 − (𝑥𝑟𝑙′+1 − 𝑥𝑠) |

≤ |𝑎(𝑛′)𝜏𝑙′ − 𝑎𝑟𝑙′ |‖𝑥(𝑛′)‖𝛼-Hld |𝜏𝑙′+1 − 𝑠 |𝛼

+ ‖𝑎‖∞
{
|𝑥(𝑛′)𝑟𝑙′+1 − 𝑥(𝑛′)𝑠 − (𝑥𝑟𝑙′+1 − 𝑥𝑠) | + |𝑥(𝑛′)𝑟𝑙′+1 − 𝑥(𝑛′)𝜏𝑙′+1 |

}
≤

{
|𝑎(𝑛′)𝜏𝑙′ − 𝑎𝑟𝑙′ |‖𝑥(𝑛′)‖𝛼-Hld

+ ‖𝑎‖∞{‖𝑥(𝑛′) − 𝑥‖𝛼-Hld + ‖𝑥(𝑛′)‖𝛼-Hld |𝑟𝑙′+1 − 𝜏𝑙′+1 |𝛼−𝛽}
}
|𝑡 − 𝑠 |𝛽

≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 ,

and so by using these inequalities, we have that

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) | ≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 .

(Case2) 𝑠 ∈ [𝜏𝑙′ , 𝜏𝑙′+1] and 𝑡 ∈ [𝜏𝑙+1, 𝜏𝑙+2].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎(𝑛′)𝜏𝑙+1 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙+1 ) | + |𝑎(𝑛′)𝜏𝑙 (𝑥(𝑛′)𝜏𝑙+1 − 𝑥(𝑛′)𝜏𝑙 ) − 𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) |

+
𝑙∑

𝑘=𝑙′+2
|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′ (𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝑠) − 𝑎𝑟𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) | =: 𝑇21 + 𝑇22 + 𝑇23 + 𝑇24.

We can estimate 𝑇23 and 𝑇24 as the same argument of 𝑇12 and 𝑇13 in (Case1). To
estimate 𝑇21, let us note that (𝐼) implies

𝜏𝑙+1 ≤ 𝑡 < 𝑟𝑙+1 < 𝜏𝑙+1 + 𝛿/2,

and so |𝑡 − 𝜏𝑙+1 | < 𝛿/2. Then |𝜏𝑙+1 − 𝑡 | < |𝑡 − 𝑠 | implies that

𝑇21 ≤ ‖𝑎(𝑛′)‖∞‖𝑥(𝑛′)‖𝛼-Hld |𝑡 − 𝜏𝑙+1 |𝛼−𝛽 |𝑡 − 𝑠 |𝛽 ≲ 𝜂𝛼−𝛽 |𝑡 − 𝑠 |𝛽 .

Since |𝜏𝑙+1 − 𝜏𝑙 | < |𝑡 − 𝑠 |, |𝑟𝑙 − 𝜏𝑙 | < |𝑡 − 𝑠 |, and |𝜏𝑙+1 − 𝑡 | < |𝑡 − 𝑠 |, (𝐼) to (𝐼 𝐼 𝐼)
imply that

𝑇22 ≤ |𝑎(𝑛′)𝜏𝑙 − 𝑎𝑟𝑙 | |𝑥(𝑛′)𝜏𝑙+1 − 𝑥(𝑛′)𝜏𝑙 | + |𝑎𝑟𝑙 ‖𝑥(𝑛′)𝜏𝑙+1 − 𝑥(𝑛′)𝜏𝑙 − (𝑥𝑡 − 𝑥𝑟𝑙 ) |
≤ |𝑎(𝑛′)𝜏𝑙 − 𝑎𝑟𝑙 |‖𝑥(𝑛′)‖𝛼-Hld |𝜏𝑙+1 − 𝜏𝑙 |𝛼

+ ‖𝑎‖∞
{
|𝑥(𝑛′)𝜏𝑙+1 − 𝑥(𝑛′)𝜏𝑙 − (𝑥𝜏𝑙+1 − 𝑥𝜏𝑙 ) | + |𝑥𝑡 − 𝑥𝑟𝑙 − (𝑥𝜏𝑙+1 − 𝑥𝜏𝑙 ) |

}
≤

{
|𝑎(𝑛′)𝜏𝑙 − 𝑎𝑟𝑙 |‖𝑥(𝑛′)‖𝛼-Hld

+ ‖𝑎‖∞{‖𝑥(𝑛′) − 𝑥‖𝛼-Hld + ‖𝑥‖𝛼-Hld{|𝑡 − 𝜏𝑙+1 |𝛼−𝛽 + |𝜏𝑙 − 𝑟𝑙 |𝛼−𝛽}}
}
|𝑡 − 𝑠 |𝛽

≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 .
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(Case3) 𝑠 ∈ [𝜏𝑙′ , 𝜏𝑙′+1] and 𝑡 ∈ [𝜏𝑙−1, 𝜏𝑙].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) | + |𝑎(𝑛′)𝜏𝑙−1 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙−1 ) − 𝑎𝑟𝑙−1 (𝑥𝑟𝑙 − 𝑥𝑟𝑙−1 ) |

+
𝑙−1∑
𝑘=𝑙′+2

|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1) |

+ |𝑎(𝑛′)𝜏𝑙′ (𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝑠) − 𝑎𝑟𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) | =: 𝑇31 + 𝑇32 + 𝑇33 + 𝑇34.

We can estimate 𝑇33 and 𝑇34 as the same argument 𝑇12 and 𝑇13 in (Case1). To
estimate 𝑇31, let us note that (𝐼) implies

𝑟𝑙 − 𝛿/2 < 𝑡 ≤ 𝜏𝑙 < 𝑟𝑙 + 𝛿/2

and so |𝑡 − 𝑟𝑙 | < 𝛿/2. Since |𝑡 − 𝑟𝑙 | < |𝑡 − 𝑠 |, (𝐼 𝐼) implies that

𝑇31 ≤ ‖𝑎‖∞ |𝑥𝑡 − 𝑥𝑟𝑙 | ≤ ‖𝑎‖∞‖𝑥‖𝛼-Hld |𝑡 − 𝑟𝑙 |𝛼 ≲ 𝜂𝛼−𝛽 |𝑡 − 𝑠 |𝛽 .

On the other hand, since |𝑡−𝑟𝑙 | < |𝑡−𝑠 |, |𝑡−𝜏𝑙−1 | < |𝑡−𝑠 |, and |𝜏𝑙−1−𝑟𝑙−1 | < |𝑡−𝑠 |,
(𝐼) to (𝐼 𝐼 𝐼) imply that

𝑇32 ≤ |𝑎𝑟𝑙−1 − 𝑎(𝑛′)𝜏𝑙−1 | |𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙−1 | + |𝑎𝑟𝑙−1 | |𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙−1 − (𝑥𝑟𝑙 − 𝑥𝑟𝑙−1 ) |
≤ |𝑎𝑟𝑙−1 − 𝑎(𝑛′)𝜏𝑙−1 |‖𝑥(𝑛′)‖𝛼-Hld |𝑡 − 𝜏𝑙−1 |𝛼

+ ‖𝑎‖∞
{
|𝑥𝑡 − 𝑥𝑟𝑙−1 − (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝑟𝑙−1 ) | + |(𝑥(𝑛′)𝑟𝑙−1 − 𝑥(𝑛′)𝜏𝑙−1 ) | + |𝑥𝑟𝑙 − 𝑥𝑡 |

}
≤

{
|𝑎𝑟𝑙−1 − 𝑎(𝑛′)𝜏𝑙−1 |‖𝑥(𝑛′)‖𝛼-Hld + ‖𝑎‖∞

{
‖𝑥(𝑛′) − 𝑥‖𝛼-Hld

+ ‖𝑥(𝑛′)‖𝛼-Hld |𝑟𝑙−1 − 𝜏𝑙−1 |𝛼−𝛽 + ‖𝑥‖𝛼-Hld |𝑡 − 𝑟𝑙 |𝛼−𝛽
}
|𝑡 − 𝑠 |𝛽

≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 .

(Case4) 𝑠 ∈ [𝜏𝑙′+1, 𝜏𝑙′+2] and 𝑡 ∈ [𝜏𝑙 , 𝜏𝑙+1].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎(𝑛′)𝜏𝑙 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙 ) − 𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) |

+
𝑙∑

𝑘=𝑙′+3
|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′+1 (𝑥(𝑛′)𝜏𝑙′+2 − 𝑥(𝑛′)𝑠) − 𝑎𝑟𝑙′+1 (𝑥𝑟𝑙′+2 − 𝑥𝑟𝑙′+1 ) | + |𝑎𝜏𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) |
=: 𝑇41 + 𝑇42 + 𝑇43 + 𝑇44.

We can estimate 𝑇41 and 𝑇42 as the same argument 𝑇11 and 𝑇12 in (Case1). To
estimate 𝑇43 and 𝑇44, let us note that by using the same argument in (Case2),
|𝑠−𝑟𝑙′+1 | < 𝛿/2. Since |𝑟𝑙′+2− 𝑠 | < |𝑡− 𝑠 |, |𝑟𝑙′+1− 𝑠 | < |𝑡− 𝑠 |, and |𝑟𝑙′+2−𝜏𝑙′+2 | <
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|𝑡 − 𝑠 |, (𝐼) to (𝐼 𝐼 𝐼) imply that

𝑇43 ≤ |𝑎(𝑛′)𝜏𝑙′+1 − 𝑎𝑟𝑙′+1 | |𝑥(𝑛′)𝜏𝑙′+2 − 𝑥(𝑛′)𝑠 | + |𝑎𝑟𝑙′+1 | |𝑥(𝑛′)𝜏𝑙′+2 − 𝑥(𝑛′)𝑠 − (𝑥𝑟𝑙′+2 − 𝑥𝑟𝑙′+1 ) |
≤ |𝑎(𝑛′)𝜏𝑙′+1 − 𝑎𝑟𝑙′+1 |‖𝑥(𝑛′)‖𝛼-Hld |𝜏𝑙′+2 − 𝑠 |𝛼

+ ‖𝑎‖∞
{
|𝑥(𝑛′)𝑟𝑙′+2 − 𝑥(𝑛′)𝑠 − (𝑥𝑟𝑙′+2 − 𝑥𝑠) | + |𝑥𝑟𝑙′+1 − 𝑥𝑠 | + |𝑥(𝑛′)𝑟𝑙′+2 − 𝑥(𝑛′)𝜏𝑙′+2 |

}
≤

{
|𝑎(𝑛′)𝜏𝑙′+1 − 𝑎𝑟𝑙′+1 |‖𝑥(𝑛′)‖𝛼-Hld + ‖𝑎‖∞

{
‖𝑥(𝑛′) − 𝑥‖𝛼-Hld

+ ‖𝑥‖𝛼-Hld |𝑟𝑙′+1 − 𝑠 |𝛼−𝛽 + ‖𝑥(𝑛′)‖𝛼-Hld |𝑟𝑙′+2 − 𝜏𝑙′+2 |𝛼−𝛽
}}
|𝑡 − 𝑠 |𝛽

≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 .

Since |𝑟𝑙′+1 − 𝑠 | < |𝑡 − 𝑠 |,

𝑇44 ≤ ‖𝑎‖∞‖𝑥‖𝛼-Hld |𝑟𝑙′+1 − 𝑠 |𝛼 ≲ 𝜂𝛼−𝛽 |𝑡 − 𝑠 |𝛽 .

(Case5) 𝑠 ∈ [𝜏𝑙′+1, 𝜏𝑙′+2] and 𝑡 ∈ [𝜏𝑙+1, 𝜏𝑙+2].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎(𝑛′)𝜏𝑙+1 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙+1 ) |
+ |𝑎(𝑛′)𝜏𝑙 (𝑥(𝑛′)𝜏𝑙+1 − 𝑥(𝑛′)𝜏𝑙 ) − 𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) |

+
𝑙∑

𝑘=𝑙′+3
|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′+1 (𝑥(𝑛′)𝜏𝑙′+2 − 𝑥(𝑛′)𝑠) − 𝑎𝑟𝑙′+1 (𝑥𝑟𝑙′+2 − 𝑥𝑟𝑙′+1 ) |
+ |𝑎𝜏𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) | =: 𝑇51 + 𝑇52 + 𝑇53 + 𝑇54 + 𝑇55.

We can estimate 𝑇51 and 𝑇52 as the same argument 𝑇21 and 𝑇22 in (Case2) and
𝑇53 as the same argument 𝑇12 in (Case1). We can also estimate 𝑇54 and 𝑇55 as the
same argument 𝑇43 and 𝑇44 in (Case4).

(Case6) 𝑠 ∈ [𝜏𝑙′+1, 𝜏𝑙′+2] and 𝑡 ∈ [𝜏𝑙−1, 𝜏𝑙].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) | + |𝑎(𝑛′)𝜏𝑙−1 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙−1 ) − 𝑎𝑟𝑙−1 (𝑥𝑟𝑙 − 𝑥𝑟𝑙−1 ) |

+
𝑙−1∑
𝑘=𝑙′+3

|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′+1 (𝑥(𝑛′)𝜏𝑙′+2 − 𝑥(𝑛′)𝑠) − 𝑎𝑟𝑙′+1 (𝑥𝑟𝑙′+2 − 𝑥𝑟𝑙′+1 ) | + |𝑎𝜏𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) |
= 𝑇61 + 𝑇62 + 𝑇63 + 𝑇64 + 𝑇65.

We can estimate 𝑇61 and 𝑇62 as the same argument 𝑇31 and 𝑇32 in (Case3) and
𝑇63 as the same argument 𝑇12 in (Case1). We can also estimate 𝑇64 and 𝑇65 as the
same argument 𝑇43 and 𝑇44 in (Case4).
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(Case7) 𝑠 ∈ [𝜏𝑙′−1, 𝜏𝑙′ ] and 𝑡 ∈ [𝜏𝑙 , 𝜏𝑙+1].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎(𝑛′)𝜏𝑙 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙 ) − 𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) |

+
𝑙∑

𝑘=𝑙′+2
|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′ (𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝜏𝑙′ ) − 𝑎𝑟𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) |
+ |𝑎(𝑛′)𝜏𝑙′−1 (𝑥(𝑛′)𝜏𝑙′ − 𝑥(𝑛′)𝑠) | =: 𝑇71 + 𝑇72 + 𝑇73 + 𝑇74.

We can estimate 𝑇71 and 𝑇72 as the same argument 𝑇11 and 𝑇12 in (Case1). To
estimate 𝑇73 and 𝑇74, let us note that by using the same argument in (Case2),
|𝑠 − 𝜏𝑙′ | < 𝛿/2. Since |𝜏𝑙′+1 − 𝜏𝑙′ | < |𝑡 − 𝑠 |, |𝜏𝑙′+1 − 𝑟𝑙′+1 | < |𝑡 − 𝑠 | , and
|𝜏𝑙′ − 𝑠 | < |𝑡 − 𝑠 |, (𝐼) to (𝐼 𝐼 𝐼) imply that

𝑇73 ≤ |𝑎(𝑛′)𝜏𝑙′ − 𝑎𝑟𝑙′ | |𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝜏𝑙′ |
+ |𝑎𝑟𝑙′ | |𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝜏𝑙′ − (𝑥𝑟𝑙′+1 − 𝑥𝑠) |

≤ |𝑎(𝑛′)𝜏𝑙′ − 𝑎𝑟𝑙′ |‖𝑥(𝑛′)‖𝛼-Hld |𝜏𝑙′+1 − 𝜏𝑙′ |𝛼

+ ‖𝑎‖∞
{
|𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝜏𝑙′ − (𝑥𝜏𝑙′+1 − 𝑥𝜏𝑙′ ) + |𝑥𝜏𝑙′+1 − 𝑥𝜏𝑙′ − (𝑥𝑟𝑙′+1 − 𝑥𝑠) |

}
≤

{
|𝑎(𝑛′)𝜏𝑙′ − 𝑎𝑟𝑙′ |‖𝑥(𝑛′)‖𝛼-Hld + ‖𝑎‖∞

{
‖𝑥(𝑛′) − 𝑥‖𝛼-Hld

+ ‖𝑥‖𝛼-Hld ( |𝜏𝑙′+1 − 𝑟𝑙′+1 |𝛼−𝛽 + |𝑠 − 𝜏𝑙′ |𝛼−𝛽)
}}
|𝑡 − 𝑠 |𝛽 ≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 .

Since |𝜏𝑙′ − 𝑠 | < |𝑡 − 𝑠 |,

𝑇74 ≤ ‖𝑎(𝑛′)‖∞‖𝑥(𝑛′)‖𝛼-Hld |𝜏𝑙′ − 𝑠 |𝛼 ≲ 𝜂𝛼−𝛽 |𝑡 − 𝑠 |𝛽 .

(Case8) 𝑠 ∈ [𝜏𝑙′−1, 𝜏𝑙′ ] and 𝑡 ∈ [𝜏𝑙+1, 𝜏𝑙+2].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎(𝑛′)𝜏𝑙+1 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙+1 ) | + |𝑎(𝑛′)𝜏𝑙 (𝑥(𝑛′)𝜏𝑙+1 − 𝑥(𝑛′)𝜏𝑙 ) − 𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) |

+
𝑙∑

𝑘=𝑙′+2
|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′ (𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝜏𝑙′ ) − 𝑎𝑟𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) | + |𝑎(𝑛′)𝜏𝑙′−1 (𝑥(𝑛′)𝜏𝑙′ − 𝑥(𝑛′)𝑠) |
= 𝑇81 + 𝑇82 + 𝑇83 + 𝑇84 + 𝑇85.

We can estimate 𝑇81 and 𝑇82 as the same argument 𝑇21 and 𝑇22 in (Case2) and
𝑇83 as the same argument 𝑇12 in (Case1). We can also estimate 𝑇84 and 𝑇85 as the
same argument 𝑇73 and 𝑇74 in (Case7).
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(Case9) 𝑠 ∈ [𝜏𝑙′−1, 𝜏𝑙′ ] and 𝑡 ∈ [𝜏𝑙−1, 𝜏𝑙].

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) |
≤ |𝑎𝑟𝑙 (𝑥𝑡 − 𝑥𝑟𝑙 ) | + |𝑎(𝑛′)𝜏𝑙−1 (𝑥(𝑛′)𝑡 − 𝑥(𝑛′)𝜏𝑙−1 ) − 𝑎𝑟𝑙−1 (𝑥𝑟𝑙 − 𝑥𝑟𝑙−1 ) |

+
𝑙−1∑
𝑘=𝑙′+2

|𝑎(𝑛′)𝜏𝑘−1 (𝑥(𝑛′)𝜏𝑘 − 𝑥(𝑛′)𝜏𝑘−1 ) − 𝑎𝑟𝑘−1 (𝑥𝑟𝑘 − 𝑥𝑟𝑘−1 ) |

+ |𝑎(𝑛′)𝜏𝑙′ (𝑥(𝑛′)𝜏𝑙′+1 − 𝑥(𝑛′)𝜏𝑙′ ) − 𝑎𝑟𝑙′ (𝑥𝑟𝑙′+1 − 𝑥𝑠) | + |𝑎(𝑛′)𝜏𝑙′−1 (𝑥(𝑛′)𝜏𝑙′ − 𝑥(𝑛′)𝑠) |
=: 𝑇91 + 𝑇92 + 𝑇93 + 𝑇94 + 𝑇95.

We can estimate 𝑇91 and 𝑇92 as the same argument 𝑇31 and 𝑇32 in (Case3) and
𝑇93 as the same argument 𝑇12 in (Case1). We can also estimate 𝑇94 and 𝑇95 as the
same argument 𝑇73 and 𝑇74 in (Case7).

By using the all estimation of (Case1)-(Case9), we conclude that

|𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑡 − 𝐺 𝛿 (𝑎(𝑛′), 𝑥(𝑛′))𝑠 − (𝑧𝑡 − 𝑧𝑠) | ≲ (𝜂 + 𝜂𝛼−𝛽) |𝑡 − 𝑠 |𝛽 ,

and this is the claim. □

Definition 2.4.7 (Definition 4.2.14 in [21]). Let (Ω, F ,P) be a probability space and
𝛿, 𝜖 > 0. Let 𝑍 𝛿,𝜖 and 𝑍 𝜖 be random functions on a metric space (𝐸, 𝑑𝐸) respectively.
We say that {𝑍 𝛿,𝜖 }𝛿,𝜖 >0 are exponentially good approximation of {𝑍 𝜖 }𝜖 >0 if for every
𝜂 > 0,

{𝜔 ∈ Ω : 𝑑𝐸 (𝑍 𝛿,𝜖 (𝜔), 𝑍 𝜖 (𝜔)) > 𝜂} ∈ F ,
and

lim
𝛿↘0

lim sup
𝜖↘0

𝜖 log P
[
𝑑𝐸 (𝑍 𝛿,𝜖 , 𝑍 𝜖 ) > 𝜂

]
= −∞.

Now let us note that one can represent 𝐺 𝛿 as a stochastic integral. For {𝜏𝛿𝑘 } =
{𝜏𝛿𝑘 (𝐴

𝜖 )}, let

Ψ𝛿 (𝐴𝜖 )𝑡 :=
∞∑
𝑘=1

𝐴𝜖
𝜏 𝛿
𝑘−1

1(𝜏 𝛿
𝑘−1 ,𝜏

𝛿
𝑘
] (𝑡), 𝑡 ∈ [0, 1] .

Then the definition of {𝜏𝛿𝑘 }, the process {Ψ𝛿 (𝐴𝜖 )}𝛿,𝜖 is a family of adapted, left
continuous with right limits processes on [0, 1]. Therefore, we have that

𝐺 𝛿 (𝐴𝜖 , 𝑋 𝜖 )𝑡 =
∫ 𝑡

0
Ψ𝛿 (𝐴𝜖 )𝑟d𝑋 𝜖𝑟 , 𝑡 ∈ [0, 1], (2.19)

where the integration in the right hand side is Itô integral. By Remark 2.4.3, we have
Ψ𝛿 (𝐴𝜖 ) · 𝑋 𝜖 ∈ 𝐶𝛽-Hld

0 ( [0, 1]).

Lemma 2.4.8. If {𝑋 𝜖 }𝜖 is 𝛼-Uniformly Exponentially Tight, {Ψ𝛿 (𝐴𝜖 ) · 𝑋 𝜖 }𝜖 , 𝛿 is
exponentially good approximation of {𝐴𝜖 · 𝑋 𝜖 }𝜖 on 𝐶𝛽-Hld

0 ([0, 1]): for all 𝜂 > 0 and
𝑀 > 0, there exists 𝛿(𝜂, 𝑀) > 0 such that if 0 < 𝛿 < 𝛿(𝜂, 𝑀),

lim sup
𝜖↘0

𝜖 log P
[
‖ (Ψ𝛿 (𝐴𝜖 ) − 𝐴𝜖 ) · 𝑋 𝜖 ‖𝛽-Hld > 𝜂

]
≤ −𝑀.
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Proof. The measurability requirement in Definition 2.4.7 is satisfied by the fact that
𝐴𝜖 · 𝑋 𝜖 is an adapted process and

sup
0≤𝑠<𝑡≤1

|𝑥𝑡 − 𝑥𝑠 |
|𝑡 − 𝑠 |𝛼 = sup

0≤𝑠<𝑡≤1,𝑠,𝑡∈Q

|𝑥𝑡 − 𝑥𝑠 |
|𝑡 − 𝑠 |𝛼 , 𝑥 ∈ 𝐶𝛼 ( [0, 1]).

To verify the remaining assertion, fix 𝑀 > 0 and 𝜂 > 0. Take 𝐾𝑀 > 0 such that
(2.4) holds. For this 𝜂 and 𝐾𝑀 , taking 𝛿 small enough (𝜂𝛿−1 > 𝐾𝑀 ). Note that the
definition of {𝜏𝛿𝑘 (𝐴

𝜖 )} implies that |𝐴𝜖𝑡 −Ψ𝛿 (𝐴𝜖 )𝑡 | ≤ 𝛿, and so 𝛿−1 (𝐴𝜖 −Ψ𝛿 (𝐴𝜖 )) ∈
B([0, 1],R). Then one has that

P
[
‖(𝐴𝜖 − Ψ𝛿 (𝐴𝜖 )) · 𝑋 𝜖 ‖𝛽-Hld > 𝜂

]
= P

[����𝛿−1 (𝐴𝜖 − Ψ𝛿 (𝐴𝜖 )) · 𝑋 𝜖
����
𝛽-Hld > 𝜂𝛿

−1
]

≤ P
[����𝛿−1 (𝐴𝜖 − Ψ𝛿 (𝐴𝜖 )) · 𝑋 𝜖

����
𝛽-Hld > 𝐾𝑀

]
≤ sup
𝑈∈B([0,1],R)

P
[
‖𝑈 · 𝑋 𝜖 ‖𝛽-Hld > 𝐾𝑀

]
,

and so (2.4) implies the claim. □

Definition 2.4.9. Let 𝑋 𝜖 is a random function taking value a Banach space 𝐸 . We say
that {𝑋 𝜖 }𝜖 >0 is exponentially tight if for all 𝑀 > 0, there exists a compact set 𝐾𝑀 on
𝐸 such that

lim sup
𝜖↘0

𝜖 log P
[
𝑋 𝜖 ∈ 𝐾𝑐𝑀

]
≤ −𝑀.

Proof of Theorem 2.2.6. We will first prove that {(𝐴𝜖 , 𝑋 𝜖 , 𝐴𝜖 · 𝑋 𝜖 )}𝜖 is exponentially
tight on 𝐶 ( [0, 1]) × 𝐶𝛼-Hld

0 ( [0, 1]) × 𝐶𝛽-Hld
0 ([0, 1]). Since 𝐶 ([0, 1]) × 𝐶𝛼-Hld

0 ( [0, 1])
is Polish space, the assumption implies that {(𝐴𝜖 , 𝑋 𝜖 )}𝜖 is exponentially tight on
𝐶 ( [0, 1]) × 𝐶𝛼-Hld

0 ([0, 1]) (see Exercise 4.1.10 in [21]). Lemma 2.4.6 implies that
(𝑎, 𝑥) ↦→, 𝐺 𝛿 (𝑎, 𝑥) is almost compact from𝐶 ( [0, 1])×𝐶𝛼-Hld

0 ( [0, 1]) into𝐶𝛽-Hld
0 ( [0, 1]).

Since {𝑋 𝜖 }𝜖 is 𝛼-uniformly exponentially tight, (2.19) and Lemma 2.4.8 imply that
{𝐺 𝛿 (𝐴𝜖 , 𝑋 𝜖 )}𝛿,𝜖 is exponentially good approximation of {𝐴𝜖 ·𝑋 𝜖 }𝜖 on𝐶𝛽-Hld

0 ([0, 1]).
Therefore Theorem 7.1 in [39] implies that {(𝐴𝜖 , 𝑋 𝜖 , 𝐴𝜖 · 𝑋 𝜖 )}𝜖 is exponentially tight
on 𝐶 ( [0, 1]) × 𝐶𝛼-Hld

0 ( [0, 1]) × 𝐶𝛽-Hld
0 ([0, 1]).

Let 𝐶 ([0,∞)) is the set of all continuous function with the metric

𝑑∞ (𝑥, 𝑦) :=
∞∑
𝑛=1

1
2𝑛

(1 ∧ sup
𝑡∈[0,𝑛]

|𝑥𝑡 − 𝑦𝑡 |), 𝑥, 𝑦 ∈ 𝐶 ([0,∞)),

and let (𝐷 ( [0,∞)), 𝑑∞) is the set of all cadlag function equipped with 𝑑∞. Let 𝐹1 :
𝐶 ( [0, 1]) → 𝐶 ([0,∞)) as 𝐹1 (𝑥)𝑡 := 𝑥𝑡∧1 and let 𝐹2 : 𝐶 ([0, 1]) → (𝐷 ([0,∞)), 𝑑∞)
as 𝐹2 (𝑥)𝑡 := 𝑥𝑡1[0,1) (𝑡). Since 𝐹1 and 𝐹2 are continuous and injective respec-
tively, the contraction principle implies that {(𝐹2 (𝐴𝜖 ), 𝐹1 (𝑋 𝜖 ))} satisfies the LDP
on (𝐷 ([0,∞)), 𝑑∞) × 𝐶 ( [0,∞)) with good rate function

𝐼 (1) (𝑎̃, 𝑥) :=

{
𝐼# (𝑎, 𝑥), ∃(𝑎, 𝑥) ∈ 𝐶 ( [0, 1]) × 𝐶 ( [0, 1]) s.t. (𝑎̃, 𝑥) = (𝐹2 (𝑎), 𝐹1 (𝑥)),
∞, otherwise.
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Note that for a real valued adapted left continuous with right limits process 𝐻 and a
real valued semi-martingale 𝑉 , we have that

𝐻 · 𝐹1 (𝑉) = 𝐹2 (𝐻) · 𝐹1 (𝑉) = 𝐹1 (𝐻 · 𝑉), (2.20)

see Theorem 5.6 in [64], for example. Then we have that for all 𝑡 ∈ [0,∞),𝑈 ∈ S, and
𝐾 > 0,

P
[
sup
𝑠≤𝑡

| (𝑈− · 𝐹1 (𝑋 𝜖 ))𝑠 | > 𝐾
]
= P

[
sup
𝑠≤𝑡

|𝐹1 (𝑈− · 𝑋 𝜖 )𝑠 | > 𝐾
]

≤ P
[
sup
𝑠≤1

|𝐹1 (𝑈− · 𝑋 𝜖 )𝑠 | > 𝐾
]

≤ P
[
‖(𝑈− | [0,1]) · 𝑋 𝜖 ‖𝛼-Hld > 𝐾

]
≤ sup
𝑈̃∈B([0,1],R)

P
[
‖𝑈̃ · 𝑋 𝜖 ‖𝛼-Hld > 𝐾

]
,

where 𝑈− | [0,1] is the restriction of 𝑈− to [0, 1]. Because {𝑋 𝜖 } is the 𝛼-Uniformly
Exponentially tight, {𝐹1 (𝑋 𝜖 )} is a martingale satisfying (2.3). Then Lemma 2.2.3
implies that

{(𝐹2 (𝐴𝜖 ), 𝐹1 (𝑋 𝜖 ), 𝐹2 (𝐴𝜖 ) · 𝐹1 (𝑋 𝜖 ))}𝜖 = {(𝐹2 (𝐴𝜖 ), 𝐹1 (𝑋 𝜖 ), 𝐹1 (𝐴𝜖 · 𝑋 𝜖 ))}𝜖
satisfies the LDP on (𝐷 ( [0,∞)), 𝑑∞) ×𝐶 ([0,∞)) ×𝐶 ( [0,∞)) with good rate function

𝐼 (2) (𝑎, 𝑥, 𝑧) =
{
𝐼# (𝑎, 𝑥), 𝑧 = 𝐹2 (𝑎) · 𝐹1 (𝑥), 𝑥 ∈ BV
∞, otherwise

=

{
𝐼# (𝑎, 𝑥), 𝑧 = 𝐹1 (𝑎 · 𝑥), 𝑥 ∈ BV
∞, otherwise.

By using Lemma 4.1.5 (𝑏) in [21], it is straightforward to prove that {(𝐹2 (𝐴𝜖 ), 𝐹1 (𝑋 𝜖 ), 𝐹1 (𝐴𝜖 ·
𝑋 𝜖 ))}𝜖 satisfies the LDP on (𝐹2 (𝐶 ( [0, 1])), 𝑑∞)×(𝐹1 (𝐶 ( [0, 1])), 𝑑∞)×(𝐹1 (𝐶 ( [0, 1])), 𝑑∞)
with good rate function 𝐼 (2) .

Let E := (𝐹2 (𝐶 ( [0, 1])), 𝑑∞) × (𝐹1 (𝐶 ([0, 1])), 𝑑∞) × (𝐹1 (𝐶 ([0, 1])), 𝑑∞) and let
𝐹3 : E → 𝐶 ([0, 1]) × 𝐶 ([0, 1]) × 𝐶 ([0, 1]) as

𝐹3 (𝑎̃, 𝑥, 𝑧)𝑡 :=

{
(𝑎̃𝑡 , 𝑥𝑡 , 𝑧𝑡 ) 𝑡 ∈ [0, 1)
(lim𝑡↗1 𝑎̃𝑡 , 𝑥1, 𝑧1) 𝑡 = 1.

Because𝐹3 is continuous and injective, the contraction principle implies that {(𝐴𝜖 , 𝑋 𝜖 , 𝐴𝜖 ·
𝑋 𝜖 )}𝜖 satisfies the LDP on 𝐶 ( [0, 1]) × 𝐶 ( [0, 1]) × 𝐶 ( [0, 1]) with good rate function

𝐼 (𝑎, 𝑥, 𝑧) =
{
𝐼# (𝑎, 𝑥) 𝑧 = 𝑎 · 𝑥, 𝑥 ∈ BV,
∞, otherwise.

Therefore the inverse contraction principle (Theorem 4.2.4 in [21]) implies that

{(𝐴𝜖 , 𝑋 𝜖 , 𝐴𝜖 · 𝑋 𝜖 )}𝜖
satisfies the LDP on𝐶 ( [0, 1]) ×𝐶𝛼-Hld

0 ( [0, 1]) ×𝐶𝛽-Hld
0 ([0, 1]) with good rate function

𝐼, and this is the claim. □
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Proof of Proposition 2.2.8. To verify 𝐴 · 𝐵𝜖 ∈ 𝐶𝛼-Hld ([0, 1],R), we fix any (F𝑡 )-
adapted continuous processes 𝐴 on [0, 1] and 𝛼 ∈ [1/3, 1/2). For brevity, we assume
that 𝜖 = 1. Let 𝐹2 : 𝐶 ([0,∞)) → 𝐷 ([0,∞)) as 𝐹2 (𝑥)𝑡 := 𝑥𝑡1[0,1) (𝑡) + 1[1,∞) (𝑡)
and 𝜏𝑛 := inf{𝑡 ≥ 0 : |𝐹2 (𝐴𝑡 ) | > 𝑛}. Then we have that 𝜏𝑛 is a (F𝑡 )-stopping time,
𝜏𝑛 ≤ 𝜏𝑛+1 a.s. for all 𝑛 ∈ N, and 𝜏𝑛 → ∞ as 𝑛 → ∞ a.s. One can also prove that
sup𝑡∈[0,1∧𝜏𝑛 ] |𝐴𝑡 | ≤ 𝑛. Let ‖𝑥‖𝛼-Hld, [0,𝑐] := |𝑥0 | + sup0≤𝑠<𝑡≤𝑐

|𝑥𝑡−𝑥𝑠 |
|𝑡−𝑠 |𝛼 . Then we have

that

P
[
‖𝐴 · 𝐵‖𝛼-Hld, [0,1] < ∞

]
≥ P

[
∩∞
𝑛=1{‖𝐴 · 𝐵‖𝛼-Hld, [0,1∧𝜏𝑛 ] < ∞}

]
= lim
𝑛→∞

P
[
‖𝐴 · 𝐵‖𝛼-Hld, [0,1∧𝜏𝑛 ] < ∞

]
,

and so it is sufficient to prove that for all 𝑛 ∈ N,

P
[
‖𝐴 · 𝐵‖𝛼-Hld,[0,1∧𝜏𝑛 ] < ∞

]
= 1. (2.21)

Let 𝐴̃(𝑛)
𝑡 := 𝐴𝑡1[0,1∧𝜏𝑛 ] (𝑡) +1(1∧𝜏𝑛 ,∞) (𝑡), then ‖𝐴 ·𝐵‖𝛼, [0,1∧𝜏𝑛 ] = ‖ 𝐴̃(𝑛) ·𝐵‖𝛼, [0,1∧𝜏𝑛 ] .

Since
〈𝐴̃(𝑛) · 𝐵〉𝑡 =

∫ 𝑡

0
( 𝐴̃(𝑛) )2

𝑟d𝑟 → ∞, 𝑡 → ∞,

and 𝐴̃(𝑛) · 𝐵 is a local continuous martingale, the Dambis-Dubins-Schwarz’s Theorem
implies that there exists a Brownian motion 𝐵̃ such that

( 𝐴̃(𝑛) · 𝐵)𝑡 = 𝐵̃〈 𝐴̃(𝑛) ·𝐵〉𝑡 , 𝑡 ∈ [0,∞). (2.22)

We now restrict 𝐴̃(𝑛) · 𝐵 on [0, 1]. Since sup𝑡∈[0,1∧𝜏𝑛 ] | 𝐴̃
(𝑛)
𝑡 | = sup𝑡∈[0,1∧𝜏𝑛 ] |𝐴𝑡 | ≤ 𝑛,

one has that 〈𝐴̃(𝑛) · 𝐵〉𝑡 ≤ 𝑛2 for 𝑡 ∈ [0, 1], and this implies that for 0 ≤ 𝑠 < 𝑡 ≤ 1,���𝐵̃〈 𝐴̃(𝑛) ·𝐵〉𝑡 − 𝐵̃〈 𝐴̃(𝑛) ·𝐵〉𝑠

��� ≤ ‖𝐵̃‖𝛼-Hld, [0,𝑛2 ]

���〈𝐴̃(𝑛) · 𝐵〉𝑡 − 〈𝐴̃(𝑛) · 𝐵〉𝑠
���𝛼

≤ 𝑛2𝛼‖𝐵̃‖𝛼-Hld, [0,𝑛2 ] |𝑡 − 𝑠 |𝛼 .

Combined with (2.22), we have

‖𝐴 · 𝐵‖𝛼-Hld,[0,1∧𝜏𝑛 ] = ‖ 𝐴̃(𝑛) · 𝐵‖𝛼-Hld, [0,1] ≤ 𝑛2𝛼‖𝐵̃‖𝛼-Hld, [0,𝑛2 ] , a.s.

and this implies that for all 𝑛, we have (2.21). Hence we conclude that 𝐴 · 𝐵𝜖 ∈
𝐶𝛼-Hld ( [0, 1],R),

To verify the 𝛼-Uniformly Exponentially Tightness of {𝐵𝜖 }, we fix 𝑀 > 0 and
𝑈 ∈ B([0, 1],R). To regard 𝑈 as a process on [0,∞), define 𝑈𝑡 = 1, 𝑡 ∈ (1,∞). Then
we have

〈𝑈 · 𝐵〉𝑡 =
∫ 𝑡

0
𝑈2
𝑟 d𝑟 → ∞, 𝑡 → ∞.

Since𝑈 ·𝐵 is a continuous martingale, the Dambis-Dubins-Schwarz’s Theorem implies
that there exists a Brownian motion 𝐵̄′ such that

(𝑈 · 𝐵)𝑡 = 𝐵̄′
〈𝑈 ·𝐵〉𝑡 , 𝑡 ∈ [0,∞). (2.23)
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We now restrict 𝑈 · 𝐵 on [0, 1]. Since sup𝑡∈[0,1] |𝑈𝑡 | ≤ 1, one has that 〈𝑈 · 𝐵〉𝑡 ≤ 𝑡,
and this implies that for 0 ≤ 𝑠 < 𝑡 ≤ 1,���𝐵̄′

〈𝑈 ·𝐵〉𝑡 − 𝐵̄
′
〈𝑈 ·𝐵〉𝑠

��� ≤ ‖𝐵̄′‖𝛼-Hld
��〈𝑈 · 𝐵〉𝑡 − 〈𝑈 · 𝐵〉𝑠

��𝛼
≤ ‖𝐵̄′‖𝛼-Hld |𝑡 − 𝑠 |𝛼 .

Combined with (2.23), we have

‖𝑈 · 𝐵‖𝛼-Hld ≤ ‖𝐵̄′‖𝛼-Hld.

Since 𝐵̃ is an one dimensional Brownian motion, ‖𝐵̃‖𝛼-Hld has a Gaussian tail (Corollary
13.14 in [30]). Therefore, there exists 𝑐 > 0 such that for all 𝐾 > 0,

P [| |𝑈 · 𝐵𝜖 | |𝛼-Hld > 𝐾] = P
[
| |𝑈 · 𝐵 | |𝛼-Hld > 𝜖

−1/2𝐾
]

≤ P
[
‖𝐵̄′‖𝛼-Hld > 𝜖

−1/2𝐾
]
≤ 𝑐−1 exp (−𝑐𝜖−1𝐾2).

This implies that

lim sup
𝜖↘0

𝜖 log sup
𝑈∈B([0,1],R)

P [| |𝑈 · 𝐵𝜖 | |𝛼-Hld > 𝐾] ≤ −𝑐𝐾2,

and so take 𝐾𝑀 large enough (𝑐𝐾2
𝑀 > 𝑀), then we conclude that

lim sup
𝜖↘0

𝜖 log sup
𝑈∈B([0,1],R)

P [| |𝑈 · 𝐵𝜖 | |𝛼-Hld > 𝐾𝑀 ] ≤ −𝑀,

and this is the claim.
It remains to verify (𝑖𝑖). The proof of 𝐴̄ · 𝐵̄𝜖 ∈ 𝐶𝛼-Hld follows from a simple

modification of (𝑖) and so we will focus on 𝛼-Uniformly Exponentially Tightness
of {𝐵̄𝜖 }. We fix 𝑈 ∈ B([0, 1],R) (note that 𝑈 is an (F 𝜖 )-adapted process). Let
𝑈̃𝑡 := 𝑈𝑡1[0,1] (𝑡) + 1(1,∞) (𝑡). Then we have that for all 𝜖 > 0,

〈𝑈̃ · 𝐵̄𝜖 〉𝑡 =
∫ 𝑡

0
(𝑈̃)2

𝑟d 〈𝐵̄𝜖 〉𝑟 =
∫ 𝑡

0
(𝑈̃)2

𝑟d𝜖𝑟 → ∞, 𝑡 → ∞,

and so for each 𝜖 > 0, there exists a Brownian motion 𝐵̃ (𝜖 ) such that

(𝑈̃ · 𝐵̄𝜖 )𝑡 = 𝐵̃ (𝜖 )
〈𝑈̃ ·𝐵̄𝜖 〉𝑡

= 𝐵̃ (𝜖 )
𝜖
(∫ 𝑡

0 (𝑈̃)2
𝑟d𝑟

) , 𝑡 ∈ [0,∞).

Since sup𝑡∈[0,1] |
∫ 𝑡
0 (𝑈̃)2

𝑟d𝑟 | ≤ 1, we have that�����𝐵̃ (𝜖 )
𝜖
(∫ 𝑡

0 (𝑈̃)2
𝑟d𝑟

) − 𝐵̃ (𝜖 )
𝜖 (∫ 𝑠

0 (𝑈̃)2
𝑟d𝑟)

����� ≤ ‖𝐵̃ (𝜖 )
𝜖 · ‖𝛼-Hld, [0,1]

����∫ 𝑡

0
(𝑈̃)2

𝑟d𝑟 −
∫ 𝑠

0
(𝑈̃)2

𝑟d𝑟
����𝛼

≤ ‖𝐵̃ (𝜖 )
𝜖 · ‖𝛼-Hld, [0,1] |𝑡 − 𝑠 |𝛼 ,

and so one has
‖𝑈 · 𝐵̄𝜖 ‖𝛼, [0,1] ≤ ‖𝐵̃ (𝜖 )

𝜖 · ‖𝛼-Hld, [0,1] , a.s.
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Since 𝐵̃ (𝜖 ) is a Brownian motion, one can prove that

E
[
|𝐵̃ (𝜖 )
𝜖 𝑡 − 𝐵̃ (𝜖 )

𝜖 𝑠 |𝑝
]1/𝑝

≤
√
𝜖
√
𝑝 |𝑡 − 𝑠 |1/2.

Then the argument of Gaussian tails in Lemma A.17 in [30], one can prove that there
exists 𝑐 > 0 (𝜖-uniform) such that

P
[
‖𝐵̃ (𝜖 )

𝜖 · ‖𝛼-Hld, [0,1] ≥ 𝐾
]
≤ 𝑐 exp

(
− 𝐾2

8𝑒𝑐𝛼𝜖

)
,

and so

P
[����𝑈 · 𝐵̄𝜖

����
𝛼-Hld, [0,1] > 𝐾

]
≤ P

[
‖𝐵̃ (𝜖 )

𝜖 · ‖𝛼-Hld, [0,1] > 𝐾
]
≤ 𝑐 exp

(
− 𝐾2

8𝑒𝑐𝛼𝜖

)
,

and we have the claim. □

2.4.2 Proof of Theorem 2.2.11 and 2.3.2
Proof of Theorem 2.2.11. We fix𝛼 ∈ [1/3, 1/2) and 1/2 > 𝛼′ > 𝛼 such that {(𝐴𝜖 , 𝐴̃𝜖 , 𝑋 𝜖 )}𝜖
satisfies the LDP on 𝐶 ([0, 1]) × 𝐶 ( [0, 1]) × 𝐶𝛼′-Hld

0 ( [0, 1]) with good rate function
𝐽#. Take 𝛼′′ with 𝛼′ > 𝛼′′ > 𝛼. Note that 𝐴𝜖 · 𝑋 𝜖 ∈ 𝐶𝛼

′-Hld ( [0, 1]) and {𝑋 𝜖 }𝜖
is 𝛼′-Uniformly Exponentially Tight by Proposition 2.2.8 (𝑖). Then Theorem 2.2.6
implies that {(𝐴𝜖 , 𝐴̃𝜖 , 𝑋 𝜖 , 𝐴𝜖 · 𝑋 𝜖 )}𝜖 satisfies the LDP on 𝐶 ( [0, 1]) × 𝐶 ([0, 1]) ×
𝐶𝛼

′-Hld
0 ( [0, 1]) × 𝐶𝛼′′-Hld

0 ([0, 1]) with good rate function

𝐽 (1) (𝑎, 𝑎̃, 𝑥, 𝑧) :=

{
𝐽# (𝑎, 𝑎̃, 𝑥) 𝑧 = 𝑎 · 𝑥, 𝑥 ∈ BV
∞, otherwise.

Since 𝑥 ↦→
∫ ·
0 𝑥𝑟d𝑟 is continuous from 𝐶 ( [0, 1]) to 𝐶1-Hld ( [0, 1]), the contraction

principle implies that {𝑍 𝜖 := (𝐴𝜖 ·𝑋 𝜖 , 𝐴̃𝜖 ·Λ)}𝜖 satisfies the LDP on𝐶𝛼′′-Hld
0 ( [0, 1])×

𝐶1-Hld ( [0, 1]) with good rate function

𝐽 (2) (𝑧 (1) , 𝑧 (2) ) := inf
{
𝐽# (𝑎, 𝑎̃, 𝑥) : (𝑧 (1) , 𝑧 (2) ) = (𝑎 · 𝑥, 𝑎̃ · Λ), 𝑥 ∈ BV

}
.

We define 𝐹 : 𝐶𝛼′′-Hld
0 ( [0, 1],R) × 𝐶1-Hld ( [0, 1],R) → 𝐺Ω𝛼-Hld ([0, 1],R2) as (2.9):

𝐹 (𝑧)𝑠𝑡 := (1, 𝑧𝑠𝑡 , z𝑠𝑡 ), 𝑧 ∈ 𝐶𝛼′′-Hld
0 (R) × 𝐶1-Hld (R).

We first prove 𝐹 (𝑧) ∈ 𝐺Ω𝛼-Hld ( [0, 1],R2). It is straightforward to show that 𝐹 (𝑧) =
(1, 𝑧, z) has the Chen’s relation: for 𝑠 ≤ 𝑢 ≤ 𝑡,

𝑧𝑠𝑡 = 𝑧𝑠𝑢 + 𝑧𝑢𝑡 , z𝑠𝑡 = z𝑠𝑢 + z𝑢𝑡 + 𝑧𝑠𝑢 ⊗ 𝑧𝑢𝑡 .

We also have that

sup
0≤𝑠<𝑡≤1

|𝑧𝑠𝑡 |
|𝑡 − 𝑠 |𝛼 < ∞, sup

0≤𝑠<𝑡≤1

|z𝑠𝑡 |
|𝑡 − 𝑠 |2𝛼

< ∞,
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by the estimate of Young integral (Theorem 6.8 in [30])����∫ 𝑡

𝑠
(𝑧 (𝑖)𝑟 − 𝑧 (𝑖)𝑠 )d𝑧 ( 𝑗 )𝑟

���� ≲ ‖𝑧 (𝑖) ‖𝛼(𝑖) -Hld‖𝑧 ( 𝑗 ) ‖𝛼( 𝑗) -Hld |𝑡 − 𝑠 |2𝛼, (2.24)

where 𝛼 (𝑖) = 𝛼′′ if 𝑖 = 1, otherwise 𝛼 (𝑖) = 1. By using Theorem 5.25 in [30] and
the estimate of Young integral, one can prove that 𝐹 (𝑧) ∈ 𝐺Ω𝛼-Hld ([0, 1],R2). Now
we will show that 𝐹 is continuous. Assume that 𝑧(𝑛) → 𝑧 in 𝐶𝛼′′-Hld

0 ([0, 1],R) ×
𝐶1-Hld ( [0, 1],R). It is sufficient to consider the continuity of z(𝑖 𝑗 ) . It is obvious when
𝑖 = 𝑗 = 1. In the other case, by using (2.24), we have that

|z(𝑛) (𝑖 𝑗 )𝑠𝑡 − z(𝑖 𝑗 )𝑠𝑡 | ≤
����∫ 𝑡

𝑠
{𝑧(𝑛) (𝑖)𝑟 − 𝑧(𝑛) (𝑖)𝑠 − 𝑧 (𝑖)𝑟 + 𝑧 (𝑖)𝑠 }d𝑧(𝑛) ( 𝑗 )𝑟

����
+

����∫ 𝑡

𝑠
{𝑧 (𝑖)𝑟 − 𝑧 (𝑖)𝑠 }d{𝑧(𝑛) ( 𝑗 )𝑟 − 𝑧 ( 𝑗 )𝑟 }

����
≲ ‖𝑧(𝑛) (𝑖) − 𝑧 (𝑖) ‖𝛼(𝑖) -Hld‖𝑧(𝑛) ( 𝑗 ) ‖𝛼( 𝑗) -Hld |𝑡 − 𝑠 |2𝛼

+ ‖𝑧 (𝑖) ‖𝛼(𝑖) -Hld‖𝑧(𝑛) ( 𝑗 ) − 𝑧 ( 𝑗 ) ‖𝛼( 𝑗) -Hld |𝑡 − 𝑠 |2𝛼,

and so we have that 𝐹 is continuous. Hence the contraction principle implies that
{Z𝜖 = 𝐹 (𝑍 𝜖 )}𝜖 satisfies the LDP on 𝐺Ω𝛼-Hld ( [0, 1],R2) with good rate function

𝐽 (3) (z̃) := inf
{
𝐽# (𝑎, 𝑎̃, 𝑥) : z̃ = 𝐹 (𝑎 · 𝑥, 𝑎̃ · Λ), 𝑥 ∈ BV

}
,

Because the solution map Φ : 𝐺Ω𝛼-Hld ([0, 1],R2) → 𝐶𝛼-Hld ( [0, 1]) is continuous,
the contraction principle implies that {𝑌 𝜖 = Φ ◦ 𝐹 (𝑍 𝜖 )}𝜖 satisfies the LDP on
𝐶𝛼-Hld ([0, 1]) with good rate function

𝐽 (𝑦) := inf
{
𝐽# (𝑎, 𝑎̃, 𝑥) : 𝑦 = Φ ◦ 𝐹 (𝑎 · 𝑥, 𝑎̃ · Λ), 𝑥 ∈ BV

}
,

and so Theorem 2.2.9 implies the claim. □

Lemma 2.4.10. We fix 𝛼 ∈ (1/3, 1/2), 𝛾 ∈ (0, 1), and let 𝑋 and 𝑋̂ be a stochastic
process defined as (2.11) respectively. Then

{(
𝑓 ( 𝑋̂ 𝜖 , ·), 𝑓 2 ( 𝑋̂ 𝜖 , ·), 𝑋 𝜖

)}
𝜖

satisfies the
LDP on 𝐶 ( [0, 1]) × 𝐶 ( [0, 1]) × 𝐶𝛼-Hld

0 ( [0, 1]) with good rate function

𝐽# (𝑎, 𝑎̃, 𝑥) = inf
{

1
2
‖(𝑤, 𝑤⊥)‖2

H : (𝑎, 𝑎̃) = 𝐹 𝑓 ◦ K(𝑤, 𝑤⊥), (𝑤, 𝑤⊥) ∈ H
}
.

Proof. It is well-known that {𝜖1/2 (𝑊,𝑊⊥)}𝜖 satisfies the LDP on𝐶 ( [0, 1])×𝐶 ([0, 1])
with good rate function

𝐼 (0) (𝑤, 𝑤⊥) :=

{
1
2 ‖(𝑤, 𝑤⊥)‖2

H , (𝑤, 𝑤⊥) ∈ H ,

∞, otherwise.

Since 𝛼 ∈ (0, 1/2) and ‖(𝑊,𝑊⊥)‖𝛼-Hld has a Gaussian tails, the inverse contraction
principle (see Theorem 4.2.4 in [21]) implies that {𝜖1/2 (𝑊,𝑊⊥)}𝜖 satisfies the LDP
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on 𝐶𝛼-Hld
0 ( [0, 1]) × 𝐶𝛼-Hld

0 ([0, 1]) with good rate function 𝐼 (0) (here we use the ar-
gument of Proposition 13.43 in [30]). By Theorem 1 in [33], the map 𝑓 ↦→ K 𝑓
is continuous from 𝐶𝛼-Hld ([0, 1]) to 𝐶𝛾-Hld ( [0, 1]). Then the contraction princi-
ple implies that

{
𝜖1/2 ( 𝑋̂, 𝑋) = 𝜖1/2 (K𝑊, 𝜌𝑊 +

√
1 − 𝜌2𝑊⊥)

}
𝜖

satisfies the LDP on
𝐶 ( [0, 1]) × 𝐶𝛼-Hld

0 ( [0, 1]) with good rate function

𝐽 (1) (𝑥, 𝑥) = inf
{

1
2
‖(𝑤, 𝑤⊥)‖2

H

����𝑤 ∈ H , (𝑥, 𝑥) = K(𝑤, 𝑤⊥), (𝑤, 𝑤⊥) ∈ H
}
.

Hence the contraction principle again,{(
𝑓 ( 𝑋̂ 𝜖 , ·), 𝑓 2 ( 𝑋̂ 𝜖 , ·), 𝑋 𝜖

)}
𝜖

satisfies the LDP on 𝐶 ([0, 1]) × 𝐶 ([0, 1]) × 𝐶𝛼-Hld
0 ([0, 1]) with good rate function

𝐽# (𝑎, 𝑎̃, 𝑥) = inf
{

1
2
‖(𝑤, 𝑤⊥)‖2

H : (𝑎, 𝑎̃) = 𝐹 𝑓 ◦ K(𝑤, 𝑤⊥), (𝑤, 𝑤⊥) ∈ H
}
.

and this is the claim. □

Proof of Theorem 2.3.2. Since 𝜎 ∈ 𝐶4
𝑏, the coefficient of drift term 1

2 (𝜎2 + 𝜎𝜎′) in
(2.13) is in 𝐶3

𝑏. Then by Lemma 2.4.10 and Proposition 2.2.8 (𝑖), one can apply
Theorem 2.2.11 by taking

(𝐴𝜖 , 𝐴̃𝜖 , 𝑋 𝜖 ) = ( 𝑓 ( 𝑋̂ 𝜖 , ·), 𝑓 2 ( 𝑋̂ 𝜖 , ·), 𝑋 𝜖 )

and the rate function is given by

𝐽 (𝑦) := inf
{
𝐽# (𝑎, 𝑎̃, 𝑥) : 𝑦 = Φ ◦ 𝐹 (𝑎 · 𝑥, 𝑎̃ · Λ) , 𝑥 ∈ BV,

}
= inf

{
1
2
‖(𝑤, 𝑤⊥)‖2

H : 𝑦 = Φ ◦ 𝐹 ◦ 𝐹 𝑓 ◦ K(𝑤, 𝑤⊥), (𝑤, 𝑤⊥) ∈ H
}
,

and this is the claim. □

2.4.3 Proof of Theorem 2.3.6
Proof. Since {𝜖 𝜇 (𝑊𝜖 · ,𝑊⊥

𝜖 ·)} and {𝜖 𝜇+1/2 (𝑊,𝑊⊥)} are the same law, one can show
that {𝜖 𝜇 (𝑊𝜖 · ,𝑊⊥

𝜖 ·)} satisfies the LDP on 𝐶 ([0, 1]) × 𝐶 ([0, 1]) with speed 𝜖2𝜇+1 with
good rate function

𝐼 (0) (𝑤, 𝑤⊥) :=

{
1
2 ‖(𝑤, 𝑤⊥)‖2

H , (𝑤, 𝑤⊥) ∈ H ,

∞, otherwise.

Since ‖(𝑊𝜖 · ,𝑊⊥
𝜖 ·)‖𝛼-Hld has a Gaussian tails (see the proof of Proposition 2.2.8

(𝑖𝑖)), one can also prove that {𝜖 𝜇 (𝑊𝜖 · ,𝑊⊥
𝜖 ·)} satisfies the LDP on 𝐶𝛼-Hld

0 ( [0, 1]) ×
𝐶𝛼-Hld

0 ( [0, 1]) with speed 𝜖2𝜇+1 with good rate function 𝐼 (0) . Let (𝑊 𝜖 , (𝑊⊥) 𝜖 ) :=
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(𝜖 𝜇𝑊𝜖 · , 𝜖 𝜇𝑊⊥
𝜖 ·) and 𝑋 𝜖 := 𝜌𝑊 𝜖 +

√
1 − 𝜌2 (𝑊⊥) 𝜖 . Then the contraction principle

implies that {(𝑋 𝜖 , 𝐹 (𝑊 𝜖 ,Λ))} satisfies the LDP on 𝐶𝛼-Hld
0 (R) × 𝐺Ω𝛼-Hld (R2) with

speed 𝜖2𝜇+1 with good rate function

𝐼 (1) (𝑥, 𝑋) := inf{1
2
‖(𝑤, 𝑤⊥)‖2

H : 𝑥 = 𝜌𝑤 +
√

1 − 𝜌2𝑤⊥, 𝑋 = 𝐹 (𝑤,Λ), (𝑤, 𝑤⊥) ∈ H},

where 𝐹 is the Young pair, see (2.9). Let 𝐴̃𝜖𝑡 := 𝜖 𝜇 (𝐴𝜖 𝑡 − 𝐴0). By using the change
of variable for stochastic integrals and Riemann-integrals, one can prove that 𝐴̃𝜖 is the
solution of the following Itô SDE:

𝐴̃𝜖𝑡 =
∫ 𝑡

0
𝑎̃ 𝜖 ( 𝐴̃𝜖𝑢 )d(𝜖 𝜇𝑊𝜖 𝑢) +

∫ 𝑡

0
𝑏̃ 𝜖 ( 𝐴̃𝜖𝑢 )d𝑢,

where

𝑎̃ 𝜖 (𝑦) := 𝑎(𝐴0 + 𝜖−𝜇𝑦), 𝑏̃ 𝜖 (𝑦) := 𝜖1+𝜇𝑏(𝐴0 + 𝜖−𝜇𝑦).

Then one can show that 𝐴̃𝜖 is the solution of the following Stratonovich SDE,

𝐴̃𝜖𝑡 =
∫ 𝑡

0
𝑎̃ 𝜖 ( 𝐴̃𝜖𝑢 ) ◦ d(𝜖 𝜇𝑊𝜖 𝑢) −

1
2

∫ 𝑡

0
𝑎̃ 𝜖 (𝑎̃ 𝜖 )′ ( 𝐴̃𝜖𝑢 )d(𝜖2𝜇+1𝑢) +

∫ 𝑡

0
𝑏̃ 𝜖 ( 𝐴̃𝜖𝑢 )d𝑢,

and by Theorem 2.2.9, 𝐴̃𝜖 is the solution of RDE with a coefficient (𝑎̃ 𝜖 ,− 𝜖 2𝜇+1

2 𝑎̃ 𝜖 (𝑎̃ 𝜖 )′+
𝑏̃ 𝜖 ).

Let Φ̃𝜖 be the solution map of RDE with the coefficient (𝑎̃ 𝜖 ,− 𝜖 2𝜇+1

2 𝑎̃ 𝜖 (𝑎̃ 𝜖 )′ + 𝑏̃ 𝜖 )
i.e. 𝐴̃𝜖 = Φ̃𝜖 ◦ 𝐹 (𝑊,Λ). Note that

‖𝑎̃ 𝜖 ‖𝐶3
𝑏
≲ ‖𝑎‖𝐶3

𝑏
, ‖ − (𝜖2𝜇+1/2)𝑎̃ 𝜖 (𝑎̃ 𝜖 )′ + 𝑏̃ 𝜖 /2‖𝐶3

𝑏
≲ (‖𝑎‖𝐶4

𝑏
+ ‖𝑏‖𝐶3

𝑏
,

where the proportional constant does not depend on 𝜖 . Let Φ̃0 be the solution map
of RDE with the coefficient (𝑎(𝐴0), 0). Since the upper bound of ‖ · ‖𝐶3

𝑏
norm for

the coefficient (𝑎̃ 𝜖 ,− 𝜖 2𝜇+1

2 𝑎̃ 𝜖 (𝑎̃ 𝜖 )′ + 𝑏̃ 𝜖 ) is 𝜖-uniform, we can show that {Φ̃𝜖 }𝜖 is
equicontinuous, and for any (𝑥, 𝑋) ∈ 𝐶𝛼-Hld

0 ([0, 1]) × 𝐺Ω𝛼-Hld (R2) with 𝐼 (1) (𝑥, 𝑋) <
∞, Φ̃𝜖 (𝑋) → Φ̃(𝑋). Then we have that for any converging sequence (𝑥𝜖 , 𝑋𝜖 ) → (𝑥, 𝑋)
with 𝐼 (1) (𝑥, 𝑋) < ∞, (𝑥𝜖 , Φ̃𝜖 (𝑋𝜖 )) converges to (𝑥, Φ̃0 (𝑋)), and so the extended
contraction principle (Theorem 2.1 in [72]) implies that {(𝑋 𝜖 , 𝐴̃𝜖 )} satisfies the LDP
on 𝐶𝛼-Hld (R2) with speed 𝜖2𝜇+1 with good rate function

𝐼 (2) (𝑥, 𝑎̃) := inf
{

1
2
‖(𝑤, 𝑤⊥)‖2

H : 𝑥 = 𝜌𝑤 +
√

1 − 𝜌2𝑤⊥, 𝑎̃ = 𝑎(𝐴0)𝑤
}
.

Since {K𝜖 }𝜖 >0 is equicontinuous and converge to the usual fractional kernel K0 (see
Section 2.5), the extended contraction principle implies that {(𝑋 𝜖 , 𝑉 𝜖 )} satisfies the
LDP on 𝐶𝛼-Hld (R) × 𝐶 (R) with speed 𝜖2𝜇+1 with good rate function

𝐼 (3) (𝑥, 𝑣) := inf
{

1
2
‖(𝑤, 𝑤⊥)‖2

H : 𝑥 = 𝜌𝑤 +
√

1 − 𝜌2𝑤⊥, 𝑣 = ΨK0 (𝑎(𝐴0)𝑤)
}
,
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By using the assumption of 𝑓 , and Proposition 2.2.8 (𝑖𝑖), we can apply the contrac-
tion principle and Theorem 2.2.6, and so {𝐹 (𝑍 𝜖 ) := 𝐹 ((𝑍 (1) ) 𝜖 , (𝑍 (2) ) 𝜖 )} satisfies the
LDP on 𝐺Ω𝛼-Hld (R2) with speed 𝜖2𝜇+1 with good rate function

𝐼 (4) (𝑋) := inf

{
1
2
‖(𝑤, 𝑤⊥)‖2

H : 𝑥 = 𝜌𝑤 +
√

1 − 𝜌2𝑤⊥,

𝑋 = 𝐹 ( 𝑓 (ΨK0 (𝑎(𝐴0)𝑤), 0) · 𝑥, 0)

}
,

LetΦ𝜖 be the solution map of RDE with the coefficient (𝜎̃ 𝜖 ,− 1
2 {𝜎̃ 𝜖 (𝜎̃ 𝜖 )′+(𝜎̃ 𝜖 )2})

i.e. 𝑌 𝜖 = Φ𝜖 ◦ 𝐹 (𝑍 𝜖 ). Since the same reason as Φ̃𝜖 , {Φ𝜖 }𝜖 ∈ (0,1] is equcontinuous,
and one can prove that for any sequence with 𝑋𝜖 → 𝑋 with 𝐼 (4) (𝑋) < ∞, Φ̃𝜖 (𝑋𝜖 ) →
Φ̃0 (𝑋). Therefore, the extended contraction principle [72] implies that {𝑌 𝜖 } satisfies
the LDP on 𝐶𝛼-Hld with speed 𝜖2𝜇+1 with good rate function

𝐽 ( 𝑦̃) := inf


1
2
{(𝑤, 𝑤⊥)‖2

H :
𝑥 = 𝜌𝑤 +

√
1 − 𝜌2𝑤⊥,

𝑦̃ = 𝜎(𝑦0)
∫ ·

0
𝑓 (ΨK0 (𝑎(𝐴0)𝑤)𝑟 , 0)d𝑥𝑟

 ,
and this is the claim. □

2.5 Some properties for K𝜖

Proposition 2.5.1. We fix 𝛼, 𝛾 ∈ (0, 1). Under the Hypothesis 2.3.5, we have the
following:

1. {K 𝜖 }𝜖 ∈ (0,1] is equicontinuous,

2. for all 𝑓 ∈ 𝐶𝛼, K 𝜖 𝑓 converges to K0 𝑓 .

Proof. (𝑖) Since K 𝜖 is linear, it is enough to show that for any 𝑓 ∈ 𝐶𝛼-Hld, there exists
a constant 𝐶 > 0 (uniformly 𝜖 and 𝑓 ) such that ‖K 𝜖 𝑓 ‖𝛾 ≤ 𝐶‖ 𝑓 ‖𝛼. First note that

|𝜅𝜖 (𝑡) | ≲ 𝜖 𝜇𝑡𝜇,

���� d
d𝑡
𝜅𝜖 (𝑡)

���� ≲ 𝜖 𝜇𝑡𝜇−1,

���� d2

d𝑡2
𝜅𝜖 (𝑡)

���� ≲ 𝜖 𝜇𝑡𝜇−2.

We will estimate the first term. Let 𝜙𝜖 (𝑡) := 𝜖−𝜇𝜅𝜖 (𝑡)( 𝑓 (𝑡) − 𝑓 (0)). For ∀𝑡 ∈ [0, 1]
and ∀ℎ ∈ (0, 1 − 𝑡], we have that

|𝜙𝜖 (𝑡 + ℎ) − 𝜙𝜖 (𝑡) | ≤ 𝜖−𝜇 {|𝜅𝜖 (𝑡 + ℎ) | 𝑓 (𝑡 + ℎ) − 𝑓 (𝑡) | + | 𝑓 (𝑡) − 𝑓 (0) | |𝜅𝜖 (𝑡 + ℎ) − 𝜅𝜖 (𝑡) |}

≤ ‖ 𝑓 ‖𝛼ℎ𝛼 (𝑡 + ℎ)𝜇 + 𝜖−𝜇 ‖ 𝑓 ‖𝛼𝑡𝛼
(∫ 𝑡+ℎ

𝑡

���� d
d𝑟
𝜅𝜖 (𝑟)

���� d𝑟)
≲ ‖ 𝑓 ‖𝛼 {|ℎ|𝛾 + 𝑡𝛼 (𝑡𝜇 − (𝑡 + ℎ)𝜇)} ≲ ‖ 𝑓 ‖𝛼 |ℎ|𝛾 .

Here we use that

𝑡𝛾 (𝑡 + ℎ)𝜇 ((𝑡 + ℎ)−𝜇 − 𝑡−𝜇) ≲ ℎ𝛾 , (2.25)

in the final inequality (see [67][Chapter1, Page 15]). The case ℎ < 0 is analogous.
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We now consider the second term. Let

𝜑𝜖 (𝑡) := 𝜖−𝜇
∫ 𝑡

0
( 𝑓 (𝑡) − 𝑓 (𝑠)) d

d𝑡
𝜅𝜖 (𝑡 − 𝑠)d𝑠 = 𝜖−𝜇

∫ 𝑡

0
( 𝑓 (𝑡) − 𝑓 (𝑡 − 𝑟)) d

d𝑟
𝜅𝜖 (𝑟)d𝑟.

Then the change of variables implies that

𝜑𝜖 (𝑡 + ℎ) − 𝜑𝜖 (𝑡) = 𝜖−𝜇
∫ 𝑡

0
( 𝑓 (𝑡) − 𝑓 (𝑡 − 𝑟))

(
d
d𝑟
𝜅𝜖 (𝑟 + ℎ) −

d
d𝑟
𝜅𝜖 (𝑟)

)
d𝑟

+ 𝜖−𝜇
∫ 𝑡

0
( 𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)) d

d𝑟
𝜅𝜖 (𝑟 + ℎ)d𝑟

+ 𝜖−𝜇
∫ 0

−ℎ
( 𝑓 (𝑡 + ℎ) − 𝑓 (𝑡 − 𝑟)) d

d𝑟
𝜅𝜖 (𝑟 + ℎ)d𝑟 =: 𝐼1 + 𝐼2 + 𝐼3.

Then we have that

|𝐼1 | ≤ 𝜖−𝜇
∫ 𝑡

0

∫ 𝑟+ℎ

𝑟
| 𝑓 (𝑡) − 𝑓 (𝑡 − 𝑟) |

���� d2

d𝑢2 𝜅𝜖 (𝑢)
���� d𝑢d𝑟

≤ ‖ 𝑓 ‖𝛼
∫ 𝑡

0

∫ 𝑟+ℎ

𝑟
𝑟𝛼𝑢𝜇−2d𝑢d𝑟

≲ ‖ 𝑓 ‖𝛼 |ℎ|𝛾
(∫ 𝑡/ℎ

0
𝑟𝛼 [𝑟𝜇−1 − (1 + 𝑟)𝜇−1]d𝑟

)
≲ ‖ 𝑓 ‖𝛼 |ℎ|𝛾 .

Here we use that the function 𝑦 ↦→ 1− (1+ 𝑦)𝜇−1+ (𝜇−1)𝑦 is concave with a maximum
value of 0 at 𝑦 = 0 in the last inequality. One can also obtain that

|𝐼2 | ≤ 𝜖−𝜇 ‖ 𝑓 ‖𝛼
∫ 𝑡

0
ℎ𝛼

���� d
d𝑟
𝜅𝜖 (𝑟 + ℎ)

���� d𝑟 ≤ ‖ 𝑓 ‖𝛼ℎ𝛼
∫ 𝑡

0
(𝑟 + ℎ)𝜇−1d𝑟 ≲ ‖ 𝑓 ‖𝛼ℎ𝛾

|𝐼3 | ≤ 𝜖−𝜇 ‖ 𝑓 ‖𝛼
∫ 0

−ℎ
(𝑟 + ℎ)𝛼

���� d
d𝑟
𝜅𝜖 (𝑟 + ℎ)

���� d𝑟 ≤ ‖ 𝑓 ‖𝛼
∫ 0

−ℎ
(𝑢 + ℎ)𝛼+𝜇−1d𝑟 ≲ ‖ 𝑓 ‖𝛼ℎ𝛾

and these inequalities imply the first assertion.
(𝑖𝑖) The simple calculation implies that

|K 𝜖 𝑓 (𝑡) − K0 𝑓 (𝑡) − K 𝜖 𝑓 (𝑠) + K0 𝑓 (𝑠) |
≤ |𝜙𝜖 (𝑡) − ( 𝑓 (𝑡) − 𝑓 (0))𝑡𝜇 − 𝜙𝜖 (𝑠) + ( 𝑓 (𝑠) − 𝑓 (0))𝑠𝜇 |

+
���𝜑𝜖 (𝑡) − 𝛼 ∫ 𝑡

0
( 𝑓 (𝑡) − 𝑓 (𝑢)) (𝑡 − 𝑢)𝜇−1d𝑢 − 𝜑𝜖 (𝑠) + 𝛼

∫ 𝑠

0
( 𝑓 (𝑠) − 𝑓 (𝑢)) (𝑠 − 𝑢)𝜇−1d𝑢

���
≤ |𝜖−𝜇 ( 𝑓 (𝑡) − 𝑓 (𝑠))𝜅𝜖 (𝑡) − ( 𝑓 (𝑡) − 𝑓 (𝑠))𝑡𝜇 |
+ |𝜖−𝜇 ( 𝑓 (𝑠) − 𝑓 (0)) (𝜅𝜖 (𝑡) − 𝜅𝜖 (𝑠)) − ( 𝑓 (𝑠) − 𝑓 (0)) (𝑡𝜇 − 𝑠𝜇) |

+
����∫ 𝑠

0
( 𝑓 (𝑠) − 𝑓 (𝑡))

(
𝜖−𝜇

d
d𝑡
𝜅𝜖 (𝑡 − 𝑟) − 𝜇(𝑡 − 𝑟)𝜇−1

)
d𝑟

����
+

����∫ 𝑠

0
( 𝑓 (𝑟) − 𝑓 (𝑠))

(
𝜖−𝜇

d
d𝑡
𝜅𝜖 (𝑡 − 𝑟) − 𝜇(𝑡 − 𝑟)𝜇−1 − 𝜖−𝜇 d

d𝑠
𝜅𝜖 (𝑠 − 𝑟) + 𝜇(𝑠 − 𝑟)𝜇−1

)
d𝑟

����
+

����∫ 𝑡

𝑠
( 𝑓 (𝑟) − 𝑓 (𝑡))

(
𝜖−𝜇

d
d𝑡
𝜅𝜖 (𝑡 − 𝑟) − 𝜇(𝑡 − 𝑟)𝜇−1

)
d𝑟

���� =: 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 + 𝑇5,
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and so we will estimate them. 𝑇1 is simply estimated by

|𝑇1 | ≤ ‖ 𝑓 ‖𝛼 |𝑡 − 𝑠 |𝛼 |𝜖−𝜇𝜅𝜖 (𝑡) − 𝑡𝜇 |

≤ ‖ 𝑓 ‖𝛼 |𝑡 − 𝑠 |𝛾
(
|𝑡 − 𝑠 |
𝑡

)−𝜇 (
sup
𝑡∈[0,1]

|𝑔(𝜖𝑡) − 1|
)
≲ ‖ 𝑓 ‖𝛼 |𝑡 − 𝑠 |𝛾

(
sup
𝑡∈[0,1]

|𝑔(𝜖𝑡) − 1|
)
.

We also have that

|𝑇2 | = | ( 𝑓 (𝑠) − 𝑓 (0)){(𝑔(𝜖𝑡) − 𝑔(𝜖𝑠))𝑡𝜇 + (𝑔(𝜖 𝑠) − 1)(𝑡𝜇 − 𝑠𝜇)}|

≤ | 𝑓 (𝑠) − 𝑓 (0) |
����∫ 𝜖 𝑡

𝜖 𝑠

d
d𝑟
𝑔(𝑟)d𝑟

���� 𝑡𝜇 + | 𝑓 (𝑠) − 𝑓 (0) | |𝑔(𝜖𝑠) − 1| |𝑡𝜇 − 𝑠𝜇 |

≤ ‖ 𝑓 ‖𝛼

{
𝜖 |𝑡 − 𝑠 |𝑠𝛼𝑡𝜇 + 𝑠𝛼

(
sup
𝑡∈[0,1]

|𝑔(𝜖𝑡) − 1|
)
|𝑡𝜇 − 𝑠𝜇 |

}
≤ ‖ 𝑓 ‖𝛼

{
𝜖 |𝑡 − 𝑠 |𝛾 +

(
sup
𝑡∈[0,1]

|𝑔(𝜖𝑡) − 1|
)
𝑠𝛼 (𝑠𝜇 − 𝑡𝜇)

}
≲ ‖ 𝑓 ‖𝛼

(
𝜖 + sup

𝑡∈[0,1]
|𝑔(𝜖𝑡) − 1|

)
|𝑡 − 𝑠 |𝛾 .

Here we use (2.25) in the last inequality. 𝑇3 is estimated by

|𝑇3 | ≤ ‖ 𝑓 ‖𝛼 |𝑡 − 𝑠 |𝛼
∫ 𝑠

0

����𝜖−𝜇 d
d𝑡
𝜅𝜖 (𝑡 − 𝑟) − 𝜇(𝑡 − 𝑟)𝜇−1

���� d𝑟
≤ ‖ 𝑓 ‖𝛼 |𝑡 − 𝑠 |𝛼

∫ 𝑠

0

��𝜖𝑔′ (𝜖 (𝑡 − 𝑟)) (𝑡 − 𝑟)𝜇 + 𝜇𝑔(𝜖 (𝑡 − 𝑟)) (𝑡 − 𝑟)𝜇−1 − 𝜇(𝑡 − 𝑟)𝜇−1�� d𝑟
≤ ‖ 𝑓 ‖𝛼 |𝑡 − 𝑠 |𝛼

{
𝜖

∫ 𝑠

0
(𝑡 − 𝑟)𝜇d𝑟 + |𝜇 |

∫ 𝑠

0
|𝑔(𝜖 (𝑡 − 𝑟)) − 1| (𝑡 − 𝑟)𝜇−1d𝑟

}
≲ ‖ 𝑓 ‖𝛼 |𝑡 − 𝑠 |𝛾

(
𝜖 + sup

𝑡∈[0,1]
|𝑔(𝜖𝑡) − 1|

)
.
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To estimate 𝑇4, we decompose it as follows:

|𝑇4 | ≤ ‖ 𝑓 ‖𝛼
∫ 𝑠

0
(𝑠 − 𝑟)𝛼

{
|𝜖𝑔′ (𝜖 (𝑡 − 𝑟)) (𝑡 − 𝑟)𝜇 − 𝜖𝑔′ (𝜖 (𝑠 − 𝑟)) (𝑠 − 𝑟)𝜇 |

+ |𝜇 |
��𝑔(𝜖 (𝑡 − 𝑟)) (𝑡 − 𝑟)𝜇−1 − (𝑡 − 𝑟)𝜇−1 − 𝑔(𝜖 (𝑠 − 𝑟)) (𝑠 − 𝑟)𝜇−1 + (𝑠 − 𝑟)𝜇−1�� }d𝑟

≲
∫ 𝑠

0
(𝑠 − 𝑟)𝛼 |𝜖𝑔′ (𝜖 (𝑡 − 𝑟)) (𝑡 − 𝑟)𝜇 − 𝜖𝑔′ (𝜖 (𝑠 − 𝑟)) (𝑠 − 𝑟)𝜇 | d𝑟

+
∫ 𝑠

0
(𝑠 − 𝑟)𝛼 |𝑔(𝜖 (𝑡 − 𝑟)) − 𝑔(𝜖 (𝑠 − 𝑟)) | | (𝑡 − 𝑟)𝜇−1 − (𝑠 − 𝑟)𝜇−1 |d𝑟

+
∫ 𝑠

0
(𝑠 − 𝑟)𝛾−1 |𝑔(𝜖 (𝑡 − 𝑟)) − 𝑔(𝜖 (𝑠 − 𝑟)) |d𝑟

+
∫ 𝑠

0
(𝑠 − 𝑟)𝛼 |𝑔(𝜖 (𝑠 − 𝑟)) − 1| | (𝑡 − 𝑟)𝜇−1 − (𝑠 − 𝑟)𝜇−1 |d𝑟 =: 𝑇41 + 𝑇42 + 𝑇43 + 𝑇44,

The estimations of them are obtained as follows:

|𝑇41 | = 𝜖
∫ 𝑠

0
𝑟𝛼 |{𝑔′ (𝜖 (𝑡 − 𝑠 + 𝑟)) − 𝑔′ (𝜖𝑟)}(𝑡 − 𝑠 + 𝑟)𝜇 + 𝑔′ (𝜖𝑟)((𝑡 − 𝑠 + 𝑟)𝜇 − 𝑟𝜇) | d𝑟

≤ 𝜖
∫ 𝑠

0
𝑟𝛼

�����(∫ 𝜖 (𝑡−𝑠+𝑟 )

𝜖 𝑟
𝑔′′ (𝑢)d𝑢

)
(𝑡 − 𝑠 + 𝑟)𝜇

����� d𝑟 + 𝜖 ∫ 𝑠

0
𝑟𝛼 |𝑔′ (𝜖𝑟) | | (𝑡 − 𝑠 + 𝑟)𝜇 − 𝑟𝜇 |d𝑟

≤ 𝜖2 |𝑡 − 𝑠 |
∫ 𝑠

0
𝑟𝛼 (𝑡 − 𝑠 + 𝑟)𝜇d𝑟 + 𝜖

∫ 𝑠

0
𝑟𝛼 (𝑟𝜇 − (𝑡 − 𝑠 + 𝑟)𝜇)d𝑟

≤ 𝜖2 |𝑡 − 𝑠 |1+𝜇
(∫ 𝑠

0
𝑟𝛼d𝑟

)
+ 𝜖 |𝑡 − 𝑠 |𝛾

∫ 𝑠

0
d𝑟

≲ (𝜖 + 𝜖2) |𝑡 − 𝑠 |𝛾

|𝑇42 | ≤
∫ 𝑠

0
(𝑠 − 𝑟)𝛼

�����∫ 𝜖 (𝑡−𝑟 )

𝜖 (𝑠−𝑟 )
𝑔′ (𝑢)d𝑢

����� | (𝑡 − 𝑟)𝜇−1 − (𝑠 − 𝑟)𝜇−1 |d𝑟

≤ 𝜖 |𝑡 − 𝑠 |
∫ 𝑠

0
𝑟𝛼 |𝑟𝜇−1 − (𝑡 − 𝑠 + 𝑟)𝜇−1 |d𝑟 ≲ 𝜖 |𝑡 − 𝑠 |𝛾 ,

Here we use the same argument as the estimation of 𝐼1 in (𝑖) in the final equality.

|𝑇43 | ≤
∫ 𝑠

0
(𝑠 − 𝑟)𝛾−1

�����∫ 𝜖 (𝑡−𝑟 )

𝜖 (𝑠−𝑟 )
𝑔′ (𝑢)d𝑢

����� d𝑟 ≤ 𝜖 |𝑡 − 𝑠 | ∫ 𝑠

0
(𝑠 − 𝑟)𝛾−1d𝑟 ≲ 𝜖 |𝑡 − 𝑠 |𝛾 ,

|𝑇44 | ≤
(

sup
𝑡∈[0,1]

|𝑔(𝜖𝑡) − 1|
) ∫ 𝑠

0
(𝑠 − 𝑟)𝛼 | (𝑡 − 𝑟)𝜇−1 − (𝑠 − 𝑟)𝜇−1 |d𝑟

≤
(

sup
𝑡∈[0,1]

|𝑔(𝜖𝑡) − 1|
) ∫ 𝑠

0
𝑟𝛼 |𝑟𝜇−1 − (𝑡 − 𝑠 + 𝑟)𝜇−1 |d𝑟 ≲ 𝜖 |𝑡 − 𝑠 |𝛾 ,
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Here we use again the same argument as the estimation of 𝐼1 in (𝑖) in the final equality.
These inequalities imply the desired estimate of 𝑇4. Finally, one has that

|𝑇5 | ≤
∫ 𝑡

𝑠
| 𝑓 (𝑡) − 𝑓 (𝑟) |

��𝜖𝑔′ (𝜖 (𝑡 − 𝑟)) (𝑡 − 𝑟)𝜇 + 𝜇𝑔(𝜖 (𝑡 − 𝑟)) (𝑡 − 𝑟)𝜇−1 − 𝜇(𝑡 − 𝑟)𝜇−1�� d𝑟
≤ ‖ 𝑓 ‖𝛼

{
𝜖

∫ 𝑡

𝑠
(𝑡 − 𝑟)𝛾d𝑟 + |𝜇 |

∫ 𝑡

𝑠
(𝑡 − 𝑟)𝛾−1 |𝑔(𝜖 (𝑡 − 𝑟)) − 1|d𝑟

}
≲ 𝜖 |𝑡 − 𝑠 |𝛾+1 +

(
sup
𝑡∈[0,1]

|𝑔(𝜖𝑡) − 1|
) ∫ 𝑡

𝑠
(𝑡 − 𝑟)𝛾−1d𝑟

≤
(
𝜖 + sup

𝑡∈[0,1]
|𝑔(𝜖𝑡) − 1|

)
|𝑡 − 𝑠 |𝛾

and so we have the claim. □

2.6 Proof of Theorem 2.3.10
Proof. (i) Lower bound

For 𝑥 ≤ 0 and 𝛿 > 0, one has that

E [(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )+] ≥ E
[
1{exp (𝑥 (1+𝛿 )𝑡−𝜇 )>𝑆𝑡 } (exp (𝑥𝑡−𝜇) − 𝑆𝑡 )

]
≥ (exp (𝑥𝑡−𝜇) − exp (𝑥(1 + 𝛿)𝑡−𝜇)) P [exp (𝑥(1 + 𝛿)𝑡−𝜇) > 𝑆𝑡 ]
≥ exp (𝑥(1 + 𝛿)𝑡−𝜇) (−𝑥𝛿𝑡−𝜇)P [exp (𝑥(1 + 𝛿)𝑡−𝜇) > 𝑆𝑡 ] .

Since lim𝑡↘0 𝑡
2𝜇+1 log 𝑡 = 0, one has that

lim inf
𝑡↘0

𝑡2𝜇+1 log E [(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )+]

≥ lim inf
𝑡↘0

𝑡2𝜇+1 (𝑥(1 + 𝛿)𝑡−𝜇 + log(−𝑥) + log 𝛿 + −𝜇 log 𝑡 + log P [exp (𝑥(1 + 𝛿)𝑡−𝜇) > 𝑆𝑡 ])

= lim inf
𝑡↘0

𝑡2𝜇+1 log P [exp (𝑥(1 + 𝛿)𝑡−𝜇) > 𝑆𝑡 ]

and so Theorem 2.3.7 implies that

lim inf
𝑡↘0

𝑡2𝜇+1 log E [(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )+] ≥ −Λ∗ (𝑥(1 + 𝛿)),

and so the continuity of Λ∗ implies the lower bound.
(ii) Upper bound.

For all 𝑞 > 1, the Hölder inequality implies that

E [(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )+] = E
[
(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )+1{exp (𝑥𝑡−𝜇 )>𝑆𝑡 }

]
≤ E

[
(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )𝑞+

]1/𝑞 E
[
1{exp (𝑥𝑡−𝜇 )>𝑆𝑡 }

]1−1/𝑞
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and so

𝑡2𝜇+1 log E [(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )+]

≤ 𝑡2𝜇+1

𝑞
log E

[
(exp (𝑥𝑡−𝜇) − 𝑆𝑡 )𝑞+

]
+ 𝑡2𝜇+1 (1 − 1/𝑞)P

[
1{exp (𝑥𝑡−𝜇 )>𝑆𝑡 }

]
=: 𝑇 (1)

𝑡 + 𝑇 (2)
𝑡 .

Since 𝑆 is positive,

lim sup
𝑡↘0

𝑇 (1)
𝑡 ≤ lim sup

𝑡↘0

𝑡2𝜇+1

𝑞
log E [exp (𝑞𝑥𝑡−𝜇)] = lim sup

𝑡↘0
𝑥𝑡𝜇+1 = 0. (2.26)

By Theorem 2.3.7, it is also true that

lim sup
𝑡↘0

𝑇 (2)
𝑡 ≤ −Λ∗ (𝑥).

Combined with above two inequalities one can obtain the upper bound. By (𝑖), (𝑖𝑖),
one can obtain the first assertion.

In the second assertion, one has to improve the estimate of (2.26) because (· −
exp (𝑥𝑡−𝜇))+ is not bounded. By using the assumption (2.17), one can estimate E

[
𝑆𝑞𝑡

]
instead of E [exp (𝑞𝑥𝑡−𝜇)] and the same argument as above implies the required bound.

□
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Chapter 3

A semigroup approach to the
reconstruction theorem and its
applications‡

3.1 Introduction

The theory of regularity structures established by Hairer [52] provides a robust frame-
work adapted to a wide class of (subcritical) singular stochastic PDEs. One of the
most important concepts in this theory is the notion of modelled distributions, which
are considered as “generalized Taylor expansions” of the solutions to the underlying
equations. The analytic core of the theory is to prove two key theorems for modelled dis-
tributions: the reconstruction theorem [52, Theorem 3.10] and the multilevel Schauder
estimate [52, Theorem 5.12]. The former theorem constructs a global distribution by
gluing local distributions derived from a given modelled distribution together. The
latter translates an integral operator such as the convolution operator with Green func-
tion into the operator on the space of modelled distributions. Since Hairer first proved
the reconstruction theorem, some alternative proofs have been proposed using various
approaches, such as Littlewood–Paley theory [45], the heat semigroup approach [70, 4],
the mollification approach [75], and the convolution approach [27]. Inspired by [70],
the first author of this paper proved both theorems by using the operator semigroup in
[59]. On the other hand, Caravenna and Zambotti [19] introduced the notion of germs
to describe the analytic core of the proof of the reconstruction theorem, and later, they
and Broux [16] proved the multilevel Schauder estimate at the level of germs. See also
[53, 20, 57, 66, 73, 17, 76, 55] for extensions of the theorems into different settings,
such as Besov or Triebel–Lizorkin norms, or Riemannian manifolds. See also [28] for
a Besov extension of the sewing lemma, which plays a role similar to the reconstruction

‡Reproduction of a joint work with Professor Masato Hoshino (Institute of Science Tokyo), first pub-
lished in Stochastics and Partial Differential Equations: Analysis and Computations, online first, (2025),
https://doi.org/10.1007/s40072-025-00352-5. Reproduced with permission from Springer Nature.
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theorem in rough path theory.
In the aforementioned literatures, modelled distributions are often defined on the

entire spaceR𝑑 to avoid technical difficulties related to boundary conditions. However, it
is not sufficient for applications. To apply the theory of regularity structures to parabolic
equations, it is necessary to define modelled distributions on the time-space region
(0,∞)×R𝑑 allowing a singularity at the hyperplane {0}×R𝑑 . This modified version of
modelled distributions is called singular modelled distributions. In [52, Section 6], the
reconstruction theorem and the multilevel Schauder estimate were extended to the class
of singular modelled distributions. An extension to Besov norms is demonstrated in
[54], and boundary conditions on both time and space variables are considered in [41].
However, compared to the case of modelled distributions without boundary conditions,
there seems to be a less number of studies on alternative proofs and extensions. It
should be mentioned that, in the context of rough path theory, the sewing lemma is
extended into the singular path spaces allowing a singularity at time 𝑡 = 0 by [10].

The aim of this paper is to extend the semigroup approach used in [59] and provide
alternative proofs of the reconstruction theorem (see Corollary 3.3.9) and the multilevel
Schauder estimate (see Corollary 3.4.6) for singular modelled distributions. The proofs
use arguments similar to [59], but require the following technical modifications.

(i) Following [59], we define Besov norms using the operator semigroup {𝑄𝑡 }𝑡>0.
The associated integral kernel 𝑄𝑡 (𝑥, 𝑦) is inhomogeneous and has restricted
regularities with respect to 𝑥 and 𝑦 in general. Hence the equivalence between the
norm associated with {𝑄𝑡 }𝑡>0 and the standard norm defined from Littlewood–
Paley theory is uncertain. For this reason, we need some nontrivial arguments to
prove the uniqueness of the reconstruction.

(ii) Since 𝑄𝑡 is an integral operator defined over the entire spacetime, we always
require global bounds on models and modelled distributions, unlike the original
definitions in [52] that assume only local bounds. Consequently, in addition
to the definition of singular modelled distributions (see Definition 3.3.4) which
is closer to the original one, we use a different definition that assumes global
bounds (see Proposition 3.3.5-(iii)). For this reason, as for the existence of the
reconstruction, we assume a stronger condition “𝜂 − 𝛾 > −𝔰1” for the parameters
appearing in the definition of singular modelled distributions than the condition
“𝜂 > −𝔰1” as in [52]. It is not actually a serious problem in applications because
we can switch to a small 𝛾 to apply the reconstruction theorem.

Moreover, as an application, we discuss the parabolic Anderson model (PAM)(
𝜕1 − 𝑎(𝑥)Δ

)
𝑢(𝑡, 𝑥) = 𝑏

(
𝑢(𝑡, 𝑥)

)
𝜉 (𝑥) ((𝑡, 𝑥) ∈ (0,∞) × T2)

with a spatial white noise 𝜉. Here 𝑏 : R → R is in the class 𝐶3
𝑏 and 𝑎 : T2 → R is an

𝛼-Hölder continuous function for some 𝛼 ∈ (0, 1) and satisfies

𝐶1 ≤ 𝑎(𝑥) ≤ 𝐶2 (𝑥 ∈ T2)

for some constants 0 < 𝐶1 < 𝐶2. When 𝑎 is a constant, the above equation is one of
the simplest examples of subcritical singular stochastic PDEs, as studied in [52, 20].
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We show that the equation with general coefficients as above can be renormalized,
with the spacetime dependent renormalization function (see Theorem 3.5.14). Such
“non-translation invariant” equations are more generally studied by [3, 74]. The aim of
this paper is to deepen the analytic core of [3], which uses the semigroup approach. On
the other hand, [74] is a direct extension of [52]. One of the differences between this
paper and [74] is in the requirements of the smoothness of coefficients. In [74], a bit
of smoothness is required, but in this paper the coefficients only need to have positive
Hölder continuities.

This paper is organized as follows. In Section 3.2, we recall from [59] Besov
norms associated with the operator semigroup, and prove important inequalities used
throughout this paper. In Section 3.3, we recall the basics of regularity structures
and prove the reconstruction theorem for singular modelled distributions. Section
3.4 is devoted to the proof of the multilevel Schauder estimate for singular modelled
distributions. In Section 3.5, we discuss an application to the two-dimensional PAM.

Notations

The symbol N denotes the set of all nonnegative integers. Until Section 3.4, we fix
an integer 𝑑 ≥ 1, the scaling 𝔰 = (𝔰1, . . . , 𝔰𝑑) ∈ [1,∞)𝑑 , and a number ℓ > 0. We
define |𝔰 | = ∑𝑑

𝑖=1 𝔰𝑖 . For any multiindex k = (𝑘𝑖)𝑑𝑖=1 ∈ N𝑑 , any 𝑥 = (𝑥𝑖)𝑑𝑖=1 ∈ R𝑑 , and
any 𝑡 > 0, we use the following notations.

k! :=
𝑑∏
𝑖=1

𝑘𝑖!, |k|𝔰 :=
𝑑∑
𝑖=1

𝔰𝑖𝑘𝑖 , ‖𝑥‖𝔰 :=
𝑑∑
𝑖=1

|𝑥𝑖 |1/𝔰𝑖 ,

𝑥k :=
𝑑∏
𝑖=1

𝑥𝑘𝑖𝑖 , 𝑡𝔰/ℓ𝑥 := (𝑡𝔰𝑖/ℓ𝑥𝑖)𝑑𝑖=1, 𝑡−𝔰/ℓ𝑥 := (𝑡−𝔰𝑖/ℓ𝑥𝑖)𝑑𝑖=1.

We define the set N[𝔰] := {|k|𝔰 ; k ∈ N𝑑}, which will be used in Section 3.4. The
parameter 𝑡 is not a physical time variable, but an auxiliary variable used to define
regularities of distributions. For multiindices k = (𝑘𝑖)𝑑𝑖=1 and l = (𝑙𝑖)𝑑𝑖=1, we write l ≤ k
if 𝑙𝑖 ≤ 𝑘𝑖 for any 1 ≤ 𝑖 ≤ 𝑑, and then define

(k
l
)

:=
∏𝑑
𝑖=1

(𝑘𝑖
𝑙𝑖

)
.

We use the notation 𝐴 ≲ 𝐵 for two functions 𝐴(𝑥) and 𝐵(𝑥) of a variable 𝑥, if there
exists a constant 𝑐 > 0 independent of 𝑥 such that 𝐴(𝑥) ≤ 𝑐𝐵(𝑥) for any 𝑥.

3.2 Preliminaries

In this section, we introduce some function spaces and prove important inequalities
used throughout this paper. Until Section 3.4, we fix a nonnegative measurable function
𝐺 : R𝑑 → R and define for any 𝑡 > 0,

𝐺𝑡 (𝑥) = 𝑡−|𝔰 |/ℓ𝐺
(
𝑡−𝔰/ℓ𝑥

)
.
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3.2.1 Weighted Besov space
In this subsection, we recall from [59] some basics of Besov norms associated with the
operator semigroup. For simplicity, we consider only 𝐿∞ type norms.

Definition 3.2.1. A continuous function 𝑤 : R𝑑 → [0, 1] which is strictly positive
outside a set of Lebesgue measure 0 is called a weight. For any weight 𝑤, we define the
weighted 𝐿∞ norm of a measurable function 𝑓 : R𝑑 → R by

‖ 𝑓 ‖𝐿∞ (𝑤) := ‖ 𝑓 𝑤‖𝐿∞ (R𝑑 ) .

We denote by 𝐿∞ (𝑤) the space of all measurable functions with finite 𝐿∞ (𝑤) norms,
and define 𝐶 (𝑤) = 𝐶 (R𝑑) ∩ 𝐿∞ (𝑤).

While we assumed that 𝑤(𝑥) > 0 for every 𝑥 ∈ R𝑑 in [59], we impose a weaker
condition to consider a weight vanishing on the hyperplane {0}×R𝑑−1 in next subsection.
Note that ‖ · ‖𝐿∞ (𝑤) is nondegenerate because 𝑤(𝑥) > 0 for almost every 𝑥 ∈ R𝑑 . If
𝑤(𝑥) > 0 for any 𝑥 ∈ R𝑑 , then 𝐶 (𝑤) is a closed subspace of 𝐿∞ (𝑤).

Definition 3.2.2. A weight 𝑤 is said to be 𝐺-controlled if 𝑤(𝑥) > 0 for any 𝑥 ∈ R𝑑

and there exists a continuous function 𝑤∗ : R𝑑 → [1,∞) such that

𝑤(𝑥 + 𝑦) ≤ 𝑤∗ (𝑥)𝑤(𝑦) (3.1)

for any 𝑥, 𝑦 ∈ R𝑑 and

sup
0<𝑡≤𝑇

sup
𝑥∈R𝑑

{
‖𝑥‖𝑛𝔰 𝑤∗ (𝑡𝔰/ℓ𝑥)𝐺 (𝑥)

}
< ∞ (3.2)

for any 𝑛 ≥ 0 and 𝑇 > 0.

From the properties (3.1) and (3.2), we have that

‖𝐺𝑡 ∗ 𝑓 ‖𝐿∞ (𝑤) ≲ ‖ 𝑓 ‖𝐿∞ (𝑤) (3.3)

uniformly over 𝑓 ∈ 𝐿∞ (𝑤) and 𝑡 ∈ (0, 𝑇] for any 𝑇 > 0. This is a particular case of
[59, Lemma 2.4]. Next we introduce a semigroup of integral operators.

Definition 3.2.3. We call a family of continuous functions {𝑄𝑡 : R𝑑 × R𝑑 → R}𝑡>0 a
𝐺-type semigroup if it satisfies the following properties.

(i) (Semigroup property) For any 0 < 𝑠 < 𝑡 and 𝑥, 𝑦 ∈ R𝑑 ,∫
R𝑑
𝑄𝑡−𝑠 (𝑥, 𝑧)𝑄𝑠 (𝑧, 𝑦)𝑑𝑧 = 𝑄𝑡 (𝑥, 𝑦).

(ii) (Conservativity) For any 𝑥 ∈ R𝑑 ,

lim
𝑡↓0

∫
R𝑑
𝑄𝑡 (𝑥, 𝑦)𝑑𝑦 = 1.
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(iii) (Upper 𝐺-type estimate) There exists a constant 𝐶1 > 0 such that, for any 𝑡 > 0
and 𝑥, 𝑦 ∈ R𝑑 ,

|𝑄𝑡 (𝑥, 𝑦) | ≤ 𝐶1𝐺𝑡 (𝑥 − 𝑦).

(iv) (Time derivative) For any 𝑥, 𝑦 ∈ R𝑑 , 𝑄𝑡 (𝑥, 𝑦) is differentiable with respect to 𝑡.
Moreover, there exists a constant 𝐶2 > 0 such that, for any 𝑡 > 0 and 𝑥, 𝑦 ∈ R𝑑 ,

|𝜕𝑡𝑄𝑡 (𝑥, 𝑦) | ≤ 𝐶2 𝑡
−1𝐺𝑡 (𝑥 − 𝑦).

We fix a𝐺-type semigroup {𝑄𝑡 }𝑡>0 until Section 3.4. If 𝑤 is a𝐺-controlled weight,
the linear operator on 𝐿∞ (𝑤) defined by

(𝑄𝑡 𝑓 ) (𝑥) :=: 𝑄𝑡 (𝑥, 𝑓 ) :=
∫
R𝑑
𝑄𝑡 (𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦 ( 𝑓 ∈ 𝐿∞ (𝑤), 𝑥 ∈ R𝑑)

is bounded in 𝐿∞ (𝑤) uniformly over 𝑡 ∈ (0, 1], by Definition 3.2.3-(iii) and the in-
equality (3.3). As an important fact, 𝑄𝑡 𝑓 is a continuous function for any 𝑓 ∈ 𝐿∞ (𝑤)
and 𝑡 > 0. Moreover, if 𝑓 ∈ 𝐶 (𝑤), we have

lim
𝑡↓0

(𝑄𝑡 𝑓 ) (𝑥) = 𝑓 (𝑥) (3.4)

for any 𝑥 ∈ R𝑑 . See [59, Proposition 2.8] for the proofs.

Definition 3.2.4. Let 𝑤 be a 𝐺-controlled weight and let {𝑄𝑡 }𝑡>0 be a 𝐺-type semi-
group. For every 𝛼 ≤ 0, we define the Besov space 𝐶𝛼,𝑄 (𝑤) as the completion of
𝐶 (𝑤) under the norm

‖ 𝑓 ‖𝐶𝛼,𝑄 (𝑤) := sup
0<𝑡≤1

𝑡−𝛼/ℓ ‖𝑄𝑡 𝑓 ‖𝐿∞ (𝑤) .

By the property (3.4), the norm ‖ · ‖𝐶𝛼,𝑄 (𝑤) is nondegenerate on 𝐶 (𝑤). When
𝔰 = (1, 1, . . . , 1), ℓ = 2, and 𝑄𝑡 is the heat semigroup 𝑒𝑡Δ, the above norm (with 𝛼 < 0
and 𝑤 = 1) is equivalent to the classical Besov norm in Euclidean setting, see e.g., [2,
Theorem 2.34]. For more general semigroups, a similar equivalence is obtained by [18,
Theorem 5.1] when the adjoint operator of 𝑄𝑡 also satisfies some conditions similar
to those in Definition 3.2.3. As far as the authors know, without such an additional
assumption for the semigroup, it is unclear whether the equivalence holds even for the
case of isotropic scaling and no weight.

Remark 3.2.5. As stated in [59, Proposition 2.14], for any 𝛼1 < 𝛼2 ≤ 0, the identity
𝜄𝛼1 : 𝐶 (𝑤) ↩→ 𝐶𝛼1 ,𝑄 (𝑤) is uniquely extended to the continuous injection

𝜄𝛼2
𝛼1 : 𝐶𝛼2 ,𝑄 (𝑤) ↩→ 𝐶𝛼1 ,𝑄 (𝑤).

Moreover, for any 𝛼 ≤ 0, the operator 𝑄𝑡 : 𝐶 (𝑤) → 𝐶 (𝑤) is continuously extended to
the operator 𝑄𝛼𝑡 : 𝐶𝛼,𝑄 (𝑤) → 𝐶 (𝑤) and they satisfy the relation

𝑄𝛼1
𝑡 ◦ 𝜄𝛼2

𝛼1 = 𝑄
𝛼2
𝑡

for any 𝛼1 < 𝛼2 ≤ 0. For this compatibility, we can omit the letter 𝛼 and use the
notation 𝑄𝑡 to mean its extension 𝑄𝛼𝑡 regardless of its domain.
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3.2.2 Temporal weights
In what follows, the first variable 𝑥1 in 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ R𝑑 is regarded as
the temporal variable, and the others (𝑥2, . . . , 𝑥𝑑) are spatial variables, denoted by
𝑥′ = (𝑥2, . . . , 𝑥𝑑). Accordingly, we denote 𝔰′ = (𝔰2, . . . , 𝔰𝑑). The aim of this paper is
to extend the results in [59] to norms allowing a singularity at the hyperplane {0}×R𝑑−1.
We define the weight 𝜑 : R𝑑 → [0, 1] by

𝜑(𝑥) := |𝑥1 |1/𝔰1 ∧ 1

and set 𝜑(𝑥, 𝑦) := 𝜑(𝑥) ∧ 𝜑(𝑦). The following inequalities are used frequently through-
out this paper.

Lemma 3.2.6. Let 𝑤 be a 𝐺-controlled weight. For any 𝛼 ≥ 0 and 𝛽 ∈ [0, 𝔰1), there
exists a constant 𝐶 such that, for any 𝑡 ∈ (0, 1] and 𝑥 ∈ R𝑑 we have∫

R𝑑
𝜑(𝑦)−𝛽 ‖𝑥 − 𝑦‖𝛼𝔰 𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦 ≤ 𝐶𝑡𝛼/ℓ

{
𝜑(𝑥)−𝛽 ∧ 𝑡−𝛽/ℓ

}
and ∫

R𝑑
𝜑(𝑥, 𝑦)−𝛽 ‖𝑥 − 𝑦‖𝛼𝔰 𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦 ≤ 𝐶𝑡𝛼/ℓ𝜑(𝑥)−𝛽 .

Proof. The second inequality immediately follows from the first one because of the
trivial inequality 𝜑(𝑥, 𝑦)−𝛽 ≤ 𝜑(𝑥)−𝛽 + 𝜑(𝑦)−𝛽 . Hence we focus on the first inequality.
To obtain the bound 𝐶𝑡 (𝛼−𝛽)/ℓ , we divide the integral into two parts. In the region
{|𝑦1 |1/𝔰1 > 𝑡1/ℓ }, since 𝜑(𝑦)−𝛽 ≤ 𝑡−𝛽/ℓ we have∫

|𝑦1 |1/𝔰1>𝑡1/ℓ
𝜑(𝑦)−𝛽 ‖𝑥 − 𝑦‖𝛼𝔰 𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦

≤ 𝑡−𝛽/ℓ
∫
R𝑑

‖𝑧‖𝛼𝔰 𝑤∗ (𝑧)𝐺𝑡 (𝑧)𝑑𝑧

≤ 𝑡 (𝛼−𝛽)/ℓ
∫
R𝑑

‖𝑧‖𝛼𝔰 𝑤∗ (𝑡𝔰/ℓ 𝑧)𝐺 (𝑧)𝑑𝑧 ≲ 𝑡 (𝛼−𝛽)/ℓ .

In the region {|𝑦1 |1/𝔰1 ≤ 𝑡1/ℓ }, by treating the temporal variable and spatial variables
separately, we have∫

|𝑦1 |1/𝔰1 ≤𝑡1/ℓ
𝜑(𝑦)−𝛽 ‖𝑥 − 𝑦‖𝛼𝔰 𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦

≤
( ∫

|𝑦1 |1/𝔰1 ≤𝑡1/ℓ
|𝑦1 |−𝛽/𝔰1𝑑𝑦1

) ( ∫
R𝑑−1

sup
𝑧1∈R

‖(𝑧1, 𝑧′)‖𝛼𝔰 𝑤∗ (𝑧1, 𝑧′)𝐺𝑡 (𝑧1, 𝑧′)𝑑𝑧′
)

≲ (𝑡𝔰1/ℓ)1−𝛽/𝔰1

×
(
𝑡−𝔰1/ℓ

∫
R𝑑−1

sup
𝑧1∈R

‖(𝑡𝔰1/ℓ 𝑧1, 𝑡
𝔰′/ℓ 𝑧′)‖𝛼𝔰 𝑤∗ (𝑡𝔰1/ℓ 𝑧1, 𝑡

𝔰′/ℓ 𝑧′)𝐺 (𝑧1, 𝑧′)𝑑𝑧′
)

= (𝑡𝔰1/ℓ)1−𝛽/𝔰1

(
𝑡−𝔰1/ℓ+𝛼/ℓ

∫
R𝑑−1

sup
𝑧1∈R

‖(𝑧1, 𝑧′)‖𝛼𝔰 𝑤∗ (𝑡𝔰1/ℓ 𝑧1, 𝑡
𝔰′/ℓ 𝑧′)𝐺 (𝑧1, 𝑧′)𝑑𝑧′

)
≲ 𝑡 (𝛼−𝛽)/ℓ .
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Therefore, we obtain the upper bound 𝐶𝑡 (𝛼−𝛽)/ℓ . Moreover, by decomposing

𝜑(𝑥)𝛽 ≲ |𝑥1 − 𝑦1 |𝛽/𝔰1 + 𝜑(𝑦)𝛽 ≲ ‖𝑥 − 𝑦‖𝛽𝔰 + 𝜑(𝑦)𝛽 , (3.5)

we have

𝜑(𝑥)𝛽
∫
R𝑑
𝜑(𝑦)−𝛽 ‖𝑥 − 𝑦‖𝛼𝔰 𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦

≲
∫
R𝑑

{𝜑(𝑦)−𝛽 ‖𝑥 − 𝑦‖𝛼+𝛽𝔰 + ‖𝑥 − 𝑦‖𝛼𝔰 } 𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦

≲ 𝑡𝛼/ℓ .

This yields another bound 𝐶𝑡𝛼/ℓ𝜑(𝑥)−𝛽 . □

From the above lemma, we obtain an inequality similar to (3.3).

Corollary 3.2.7. Let 𝑤 be a 𝐺-controlled weight. For any 𝛽 ∈ [0, 𝔰1), there exists a
constant 𝐶 such that, for any 𝑓 ∈ 𝐿∞ (𝜑𝛽𝑤) we have

sup
0<𝑡≤1

‖𝐺𝑡 ∗ 𝑓 ‖𝐿∞ (𝜑𝛽𝑤) + sup
0<𝑡≤1

𝑡𝛽/ℓ ‖𝐺𝑡 ∗ 𝑓 ‖𝐿∞ (𝑤) ≤ 𝐶‖ 𝑓 ‖𝐿∞ (𝜑𝛽𝑤) .

Proof. By Lemma 3.2.6, we have

𝑤(𝑥) | (𝐺𝑡 ∗ 𝑓 )(𝑥) | ≤
∫
R𝑑
𝜑(𝑦)−𝛽𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝜑(𝑦)𝛽𝑤(𝑦) | 𝑓 (𝑦) |𝑑𝑦

≤ 𝐶
{
𝜑(𝑥)−𝛽 ∧ 𝑡−𝛽/ℓ

}
‖ 𝑓 ‖𝐿∞ (𝜑𝛽𝑤) .

□

We obtain the following assertions by arguments similar to [59].

Proposition 3.2.8. Let 𝑤 be a 𝐺-controlled weight and let {𝑄𝑡 }𝑡>0 be a 𝐺-type semi-
group. We consider the weight 𝑤̃ := 𝜑𝛽𝑤 for any fixed 𝛽 ∈ [0, 𝔰1).

(i) For any 𝑓 ∈ 𝐿∞ (𝑤̃) and 𝑡 > 0, the function 𝑄𝑡 𝑓 belongs to 𝐶 (𝑤).

(ii) For any 𝛼 ≤ 0, the Besov norm

‖ 𝑓 ‖𝐶𝛼,𝑄 (𝑤̃) := sup
0<𝑡≤1

𝑡−𝛼/ℓ ‖𝑄𝑡 𝑓 ‖𝐿∞ (𝑤̃)

is nondegenerate on 𝐶 (𝑤̃), so we can define 𝐶𝛼,𝑄 (𝑤̃) as the completion of 𝐶 (𝑤̃)
under this norm.

(iii) For any 𝛼1 < 𝛼2 ≤ 0, the identity 𝜄𝛼1 : 𝐶 (𝑤̃) ↩→ 𝐶𝛼1 ,𝑄 (𝑤̃) is uniquely extended
to the continuous injection 𝜄𝛼2

𝛼1 : 𝐶𝛼2 ,𝑄 (𝑤̃) ↩→ 𝐶𝛼1 ,𝑄 (𝑤̃). For any 𝛼 ≤ 0,
the operator 𝑄𝑡 : 𝐶 (𝑤̃) → 𝐶 (𝑤̃) is continuously extended to the operator 𝑄̃𝛼𝑡 :
𝐶𝛼,𝑄 (𝑤̃) → 𝐶 (𝑤̃), where𝐶 (𝑤̃) is the closure of𝐶 (𝑤̃) under the norm ‖ · ‖𝐿∞ (𝑤̃) .
Moreover, they satisfy 𝑄̃𝛼1

𝑡 ◦ 𝜄𝛼2
𝛼1 = 𝑄̃

𝛼2
𝑡 for any 𝛼1 < 𝛼2 ≤ 0.
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(iv) For any 𝛼 ≤ 0, the identity 𝑖 : 𝐶 (𝑤) ↩→ 𝐶 (𝑤̃) is uniquely extended to the
continuous injection 𝑖𝛼 : 𝐶𝛼,𝑄 (𝑤) ↩→ 𝐶𝛼,𝑄 (𝑤̃). Moreover, the extensions
𝑄̃𝛼𝑡 : 𝐶𝛼,𝑄 (𝑤̃) → 𝐶 (𝑤̃) and 𝑄𝛼𝑡 : 𝐶𝛼,𝑄 (𝑤) → 𝐶 (𝑤) defined in (iii) and
Remark 3.2.5 satisfy the relation

𝑖 ◦𝑄𝛼𝑡 = 𝑄̃𝛼𝑡 ◦ 𝑖𝛼 .

Consequently, we can use the same notation 𝑄𝑡 to denote both 𝑄𝛼𝑡 and 𝑄̃𝛼𝑡 .

(v) For any 𝛼 ≤ 0, there exists a constant 𝐶 > 0 such that, for any 𝑓 ∈ 𝐶𝛼,𝑄 (𝑤̃),
𝑡 ∈ (0, 1], and 𝜀 ∈ [0, ℓ], we have

‖(𝑄𝑡 − id) 𝑓 ‖𝐶𝛼−𝜀,𝑄 (𝑤̃) ≤ 𝐶 𝑡 𝜀/ℓ ‖ 𝑓 ‖𝐶𝛼,𝑄 (𝑤̃) .

The norm 𝐶𝛼,𝑄 (𝜑𝛽𝑤) is used in the proof of Theorem 3.3.7.

Proof. (i) We have 𝑄𝑡 𝑓 ∈ 𝐿∞ (𝑤) by Corollary 3.2.7. To show the continuity of
(𝑄𝑡 𝑓 )(𝑥) with respect to 𝑥, it is sufficient to consider the case 𝑡 = 1. By the property
(3.2), for any fixed 𝑅 > 0 and 𝑛 ≥ 0, the inequalities

𝑤(𝑥) |𝑄1 (𝑥, 𝑦) 𝑓 (𝑦) | ≲ 𝑤∗ (𝑥 − 𝑦)𝑤(𝑦)𝐺 (𝑥 − 𝑦) | 𝑓 (𝑦) | ≲ 𝜑(𝑦)−𝛽
1 + ‖𝑦‖𝑛𝔰

‖ 𝑓 ‖𝐿∞ (𝑤̃)

hold uniformly over ‖𝑥‖𝔰 ≤ 𝑅 and 𝑦 ∈ R𝑑 . Since
∫
R𝑑 𝜑(𝑦)−𝛽/(1 + ‖𝑦‖𝑛𝔰 )𝑑𝑦 < ∞ for

𝑛 > |𝔰 |, we have

lim
𝑧→𝑥

(𝑄1 𝑓 ) (𝑧)𝑤(𝑧) =
∫
R𝑑

lim
𝑧→𝑥

𝑄1 (𝑧, 𝑦) 𝑓 (𝑦)𝑤(𝑧)𝑑𝑦 = (𝑄1 𝑓 )(𝑥)𝑤(𝑥)

by Lebesgue’s convergence theorem. Since 𝑤 is strictly positive and continuous, we
have lim𝑧→𝑥 (𝑄1 𝑓 ) (𝑧) = (𝑄1 𝑓 )(𝑥).

(ii) It is sufficient to show that

lim
𝑡↓0

(𝑄𝑡 𝑓 ) (𝑥) = 𝑓 (𝑥)

for any 𝑓 ∈ 𝐶 (𝑤̃) and 𝑥 ∈ R𝑑 . For any 𝜀 > 0, we can choose 𝛿 > 0 such that
| 𝑓 (𝑦) − 𝑓 (𝑥) | < 𝜀 if ‖𝑦 − 𝑥‖𝔰 < 𝛿, and have

|𝑤(𝑥) (𝑄𝑡 𝑓 − 𝑓 )(𝑥) |

= 𝑤(𝑥)
���� ∫

R𝑑
𝑄𝑡 (𝑥, 𝑦)

(
𝑓 (𝑦) − 𝑓 (𝑥)

)
𝑑𝑦 +

( ∫
R𝑑
𝑄𝑡 (𝑥, 𝑦)𝑑𝑦 − 1

)
𝑓 (𝑥)

����
≤ 𝑤(𝑥)𝜀

∫
‖𝑦−𝑥 ‖𝔰<𝛿

𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦 + 𝑤(𝑥)
∫
‖𝑦−𝑥 ‖𝔰≥ 𝛿

𝐺𝑡 (𝑥 − 𝑦) | 𝑓 (𝑦) |𝑑𝑦

+ 𝑤(𝑥) | 𝑓 (𝑥) |
∫
‖𝑦−𝑥 ‖𝔰≥ 𝛿

𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦 + 𝑤(𝑥) | 𝑓 (𝑥) |
���� ∫

R𝑑
𝑄𝑡 (𝑥, 𝑦)𝑑𝑦 − 1

����.
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In the far right-hand side, the only nontrivial part is the second term. We bound it
from above by∫

‖𝑦−𝑥 ‖𝔰≥ 𝛿
𝐺𝑡 (𝑥 − 𝑦)𝑤∗ (𝑥 − 𝑦) | 𝑓 (𝑦) |𝑤(𝑦)𝑑𝑦

≤ ‖ 𝑓 ‖𝐿∞ (𝑤̃)

∫
‖𝑦−𝑥 ‖𝔰≥ 𝛿

𝜑(𝑦)−𝛽𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦

≤ ‖ 𝑓 ‖𝐿∞ (𝑤̃)𝛿
−𝔰1

∫
R𝑑

‖𝑦 − 𝑥‖𝔰1
𝔰 𝜑(𝑦)−𝛽𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑑𝑦

≲ ‖ 𝑓 ‖𝐿∞ (𝑤̃)𝛿
−𝔰1 𝑡 (𝔰1−𝛽)/𝔰1 .

Since 𝛽 < 𝔰1, we obtain the convergence as 𝑡 ↓ 0.

The proofs of (iii) and (iv) are similar to [59, Proposition 2.14], and the proof of (v)
is similar to [59, Lemma 2.15]. □

3.3 Reconstruction of singular modelled distributions
In this section, we recall from [52] the definitions of regularity structures, models,
and singular modelled distributions, and prove the reconstruction theorem for singular
modelled distributions using the operator semigroup. For simplicity, we consider only
regularity structures, rather than general regularity-integrability structures as in [59].
Throughout this and next sections, we fix a 𝐺-type semigroup {𝑄𝑡 }𝑡>0.

3.3.1 Regularity structures and models
Definition 3.3.1. A regularity structure 𝒯 = (A,T,G) consists of the following ob-
jects.

(1) (Index set) A is a locally finite subset of R bounded below.

(2) (Model space) T =
⊕

𝛼∈A T𝛼 is an algebraic sum of Banach spaces (T𝛼, ‖ · ‖𝛼).

(3) (Structure group) G is a group of continuous linear operators on T such that, for
any Γ ∈ G and 𝛼 ∈ A,

(Γ − id)T𝛼 ⊂ T<𝛼 :=
⊕

𝛽∈A, 𝛽<𝛼
T𝛽 .

The smallest element 𝛼0 of A is called the regularity of 𝒯. For any 𝛼 ∈ A, we denote
by 𝑃𝛼 : T → T𝛼 the canonical projection and write

‖𝜏‖𝛼 := ‖𝑃𝛼𝜏‖𝛼

for any 𝜏 ∈ T, by abuse of notation.
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Following [59], we define the topology on the space of models by using {𝑄𝑡 }𝑡>0. For
two Banach spaces 𝑋 and 𝑌 , we denote by L(𝑋,𝑌 ) the Banach space of all continuous
linear operators 𝑋 → 𝑌 . When 𝑌 = R, we write 𝑋∗ := L(𝑋,R).

Definition 3.3.2. Let 𝑤 be a 𝐺-controlled weight. A smooth model 𝑀 = (Π, Γ) is a
pair of two families of continuous linear operators Π = {Π𝑥 : T → 𝐶 (𝑤)}𝑥∈R𝑑 and
Γ = {Γ𝑥𝑦}𝑥,𝑦∈R𝑑 ⊂ G with the following properties.

(1) (Algebraic conditions) Π𝑥Γ𝑥𝑦 = Π𝑦 , Γ𝑥𝑥 = id, and Γ𝑥𝑦Γ𝑦𝑧 = Γ𝑥𝑧 for any
𝑥, 𝑦, 𝑧 ∈ R𝑑 .

(2) (Analytic conditions) For any 𝛾 ∈ R,

‖Π‖𝛾,𝑤 := max
𝛼∈A, 𝛼<𝛾

sup
0<𝑡≤1

sup
𝑥∈R𝑑

(
𝑡−𝛼/ℓ𝑤(𝑥)



𝑄𝑡 (𝑥,Π𝑥 (·))

T∗
𝛼

)
= max
𝛼∈A, 𝛼<𝛾

sup
0<𝑡≤1

sup
𝑥∈R𝑑

sup
𝜏∈T𝛼\{0}

(
𝑡−𝛼/ℓ𝑤(𝑥) |𝑄𝑡 (𝑥,Π𝑥𝜏) |‖𝜏‖𝛼

)
< ∞

and

‖Γ‖𝛾,𝑤 := max
𝛼,𝛽∈A
𝛽<𝛼<𝛾

sup
𝑥,𝑦∈R𝑑 , 𝑥≠𝑦

𝑤(𝑥)‖Γ𝑦𝑥 ‖L(T𝛼 ,T𝛽 )

𝑤∗ (𝑦 − 𝑥)‖𝑦 − 𝑥‖𝛼−𝛽𝔰

= max
𝛼,𝛽∈A
𝛽<𝛼<𝛾

sup
𝑥,𝑦∈R𝑑 , 𝑥≠𝑦

sup
𝜏∈T𝛼\{0}

𝑤(𝑥)‖Γ𝑦𝑥𝜏‖𝛽
𝑤∗ (𝑦 − 𝑥)‖𝑦 − 𝑥‖𝛼−𝛽𝔰 ‖𝜏‖𝛼

< ∞.

We write |||𝑀 |||𝛾,𝑤 := ‖Π‖𝛾,𝑤 + ‖Γ‖𝛾,𝑤 . In addition, for any two smooth models
𝑀 (𝑖) = (Π (𝑖) , Γ (𝑖) ) with 𝑖 ∈ {1, 2}, we define the pseudo-metrics

|||𝑀 (1) ;𝑀 (2) |||𝛾,𝑤 := ‖Π (1) − Π (2) ‖𝛾,𝑤 + ‖Γ (1) − Γ (2) ‖𝛾,𝑤

by replacing Π and Γ above with Π (1) − Π (2) and Γ (1) − Γ (2) respectively. Finally, we
define the space ℳ𝑤 (𝒯) as the completion of the set of all smooth models, under the
pseudo-metrics |||·; ·|||𝛾,𝑤 for all 𝛾 ∈ R. We call each element of ℳ𝑤 (𝒯) a model for
𝒯. We still use the notation 𝑀 = (Π, Γ) to denote a generic model.

When ℓ = 2 and 𝑄𝑡 is the heat semigroup 𝑒𝑡Δ, the above definition essentially
coincides with the original definition of models [52, Definition 2.17] if we ignore the
difference between local and global bounds. For more general semigroups, such an
equivalence is unclear by the same reason as the case of Besov norms.

Remark 3.3.3. As stated in [59, Proposition 3.3], if there exist two𝐺-controlled weights
𝑤1 and 𝑤2 that satisfy

sup
𝑥∈R𝑑

{
‖𝑥‖𝑛𝔰 𝑤∗ (𝑥)𝑤1 (𝑥)

}
+ sup
𝑥∈R𝑑

{
‖𝑥‖𝑛𝔰 𝑤∗

1 (𝑥)𝑤2 (𝑥)
}
< ∞
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for any 𝑛 ≥ 0, and such that 𝑤𝑤1 and 𝑤𝑤2 are also 𝐺-controlled, then we can regard
Π𝑥 as a continuous linear operator from T to 𝐶𝛼0∧0,𝑄 (𝑤𝑤1), where 𝛼0 is the regularity
of 𝒯. More precisely, for any 𝛼 < 𝛾 and 𝜏 ∈ T𝛼 we have

sup
𝑥∈R𝑑

(𝑤𝑤2) (𝑥)‖Π𝑥𝜏‖𝐶𝛼0∧0,𝑄 (𝑤𝑤1 ) ≲ ‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤)‖𝜏‖𝛼 .

In what follows, we assume the existence of 𝑤1 and 𝑤2 as above, and regard Π𝑥𝜏 as an
element of 𝐶𝛼0∧0,𝑄 (𝑤𝑤1) for any 𝜏 ∈ T.

3.3.2 Singular modelled distributions
Throughout the rest of this section, we fix a regularity structure 𝒯 of regularity 𝛼0, and
also fix 𝐺-controlled weights 𝑤 and 𝑣 such that 𝑤𝑣 is also 𝐺-controlled. Recall the
definitions of functions 𝜑(𝑥) and 𝜑(𝑥, 𝑦) from Section 3.2.2.

Definition 3.3.4. Let 𝑀 = (Π, Γ) ∈ ℳ𝑤 (𝒯). For any 𝛾 ∈ R and 𝜂 ≤ 𝛾, we define
D𝛾,𝜂
𝑣 (Γ) as the space of all functions 𝑓 : (R \ {0}) × R𝑑−1 → T<𝛾 such that

L 𝑓 M𝛾,𝜂,𝑣 := max
𝛼<𝛾

sup
𝑥∈ (R\{0})×R𝑑−1

𝑣(𝑥)‖ 𝑓 (𝑥)‖𝛼
𝜑(𝑥) (𝜂−𝛼)∧0 < ∞,

‖ 𝑓 ‖𝛾,𝜂,𝑣 := max
𝛼<𝛾

sup
𝑥,𝑦∈ (R\{0})×R𝑑−1 , 𝑥≠𝑦

‖𝑦−𝑥 ‖𝔰≤𝜑 (𝑥,𝑦)

𝑣(𝑥)‖ΔΓ
𝑦𝑥 𝑓 ‖𝛼

𝜑(𝑥, 𝑦)𝜂−𝛾 𝑣∗ (𝑥 − 𝑦)‖𝑦 − 𝑥‖𝛾−𝛼𝔰
< ∞,

where ΔΓ
𝑦𝑥 𝑓 := 𝑓 (𝑦) − Γ𝑦𝑥 𝑓 (𝑥). We write ||| 𝑓 |||𝛾,𝜂,𝑣 := L 𝑓 M𝛾,𝜂,𝑣 + ‖ 𝑓 ‖𝛾,𝜂,𝑣 . We call

each element of D𝛾,𝜂
𝑣 (Γ) a singular modelled distribution.

In addition, for any two models 𝑀 (𝑖) = (Π (𝑖) , Γ (𝑖) ) ∈ ℳ𝑤 (𝒯) and singular mod-
elled distributions 𝑓 (𝑖) ∈ D𝛾,𝜂

𝑣 (Γ (𝑖) ) with 𝑖 ∈ {1, 2}, we define ||| 𝑓 (1) ; 𝑓 (2) |||𝛾,𝜂,𝑣 :=L 𝑓 (1) − 𝑓 (2) M𝛾,𝜂,𝑣 + ‖ 𝑓 (1) ; 𝑓 (2) ‖𝛾,𝜂,𝑣 by

L 𝑓 (1) − 𝑓 (2) M𝛾,𝜂,𝑣 := max
𝛼<𝛾

sup
𝑥∈ (R\{0})×R𝑑−1

𝑣(𝑥)‖ 𝑓 (1) (𝑥) − 𝑓 (2) (𝑥)‖𝛼
𝜑(𝑥) (𝜂−𝛼)∧0 ,

‖ 𝑓 (1) ; 𝑓 (2) ‖𝛾,𝜂,𝑣 := max
𝛼<𝛾

sup
𝑥,𝑦∈ (R\{0})×R𝑑−1 , 𝑥≠𝑦

‖𝑦−𝑥 ‖𝔰≤𝜑 (𝑥,𝑦)

𝑣(𝑥)‖ΔΓ
𝑦𝑥 𝑓

(1) − ΔΓ
𝑦𝑥 𝑓

(2) ‖𝛼
𝜑(𝑥, 𝑦)𝜂−𝛾 𝑣∗ (𝑥 − 𝑦)‖𝑦 − 𝑥‖𝛾−𝛼𝔰

.

In [52], the topologies of the space of models and the space of modelled distributions
are defined by the family of pseudo-metrics parametrized by compact subsets 𝐾 of R𝑑 ,
where 𝑥 and 𝑦 in the above definitions are restricted within 𝐾 . In this paper, we employ
weight functions 𝑤 and 𝑣 instead of such local bounds.

We consider the relations between D𝛾,𝜂
𝑣 under varying parameters 𝛾, 𝜂, as well as

the relation between D𝛾,𝜂
𝑣 and a variant. We say that the function 𝑢 : R𝑑 → R is

symmetric if 𝑢(−𝑥) = 𝑢(𝑥) for any 𝑥 ∈ R𝑑 .

Proposition 3.3.5. Let 𝑀 = (Π, Γ) ∈ ℳ𝑤 (𝒯) and 𝜂 ≤ 𝛾.
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(i) For any 𝜃 ≤ 𝜂, we have the continuous embedding D𝛾,𝜂
𝑣 (Γ) ↩→ D𝛾,𝜃

𝑣 (Γ).

(ii) Assume that 𝑤∗ is symmetric. For each 𝛼 ∈ R, we denote by 𝑃<𝛼 : T → T<𝛼 the
canonical projection. For any 𝜂 ≤ 𝛿 ≤ 𝛾, the map 𝑃<𝛿 extends to a continuous
linear map D𝛾,𝜂

𝑣 (Γ) → D 𝛿,𝜂
𝑤𝑣 (Γ). To be precise, we have the inequality

‖𝑃<𝛿 𝑓 ‖ 𝛿,𝜂,𝑤𝑣 ≲ ‖Γ‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 + ‖ 𝑓 ‖𝛾,𝜂,𝑣 .

(iii) Instead of the norm ‖ 𝑓 ‖𝛾,𝜂,𝑣 , we define

‖ 𝑓 ‖#
𝛾,𝜂,𝑣 := max

𝛼<𝛾
sup

𝑥,𝑦∈ (R\{0})×R𝑑−1 , 𝑥≠𝑦

𝑣(𝑥)‖ΔΓ
𝑦𝑥 𝑓 ‖𝛼

𝜑(𝑥, 𝑦)𝜂−𝛾 𝑣∗ (𝑥 − 𝑦)‖𝑦 − 𝑥‖𝛾−𝛼𝔰
.

Then the inequality ‖ 𝑓 ‖𝛾,𝜂,𝑣 ≤ ‖ 𝑓 ‖#
𝛾,𝜂,𝑣 obviously holds. Conversely, if 𝑤∗ is

symmetric, then we also have

‖ 𝑓 ‖#
𝛾,𝜂∧𝛼0 ,𝑤𝑣 ≲ (1 + ‖Γ‖𝛾,𝑤)L 𝑓 M𝛾,𝜂,𝑣 + ‖ 𝑓 ‖𝛾,𝜂,𝑣 .

Proof. (i) The assertion immediately follows from the inequalities 𝜑(𝑥) (𝜂−𝛼)∧0 ≤
𝜑(𝑥) (𝜃−𝛼)∧0 and 𝜑(𝑥, 𝑦)𝜂−𝛾 ≤ 𝜑(𝑥, 𝑦) 𝜃−𝛾 .

(ii) For any 𝑥, 𝑦 ∈ (R \ {0}) × R𝑑−1 such that ‖𝑦 − 𝑥‖𝔰 ≤ 𝜑(𝑥, 𝑦) and any 𝛼 < 𝛿,
we decompose

(𝑤𝑣) (𝑥)‖ΔΓ
𝑦𝑥𝑃<𝛿 𝑓 ‖𝛼 ≤ 𝑣(𝑥)‖ΔΓ

𝑦𝑥 𝑓 ‖𝛼 + (𝑤𝑣)(𝑥)
∑

𝛽∈[ 𝛿,𝛾)
‖Γ𝑦𝑥𝑃𝛽 𝑓 (𝑥)‖𝛼

=: 𝐴1 + 𝐴2.

For 𝐴1, by definition of the norm ‖ 𝑓 ‖𝛾,𝜂,𝑣 we have

𝐴1 ≤ ‖ 𝑓 ‖𝛾,𝜂,𝑣 𝑣∗ (𝑥 − 𝑦)𝜑(𝑥, 𝑦)𝜂−𝛾 ‖𝑦 − 𝑥‖𝛾−𝛼𝔰

≤ ‖ 𝑓 ‖𝛾,𝜂,𝑣 𝑣∗ (𝑥 − 𝑦)𝜑(𝑥, 𝑦)𝜂−𝛿 ‖𝑦 − 𝑥‖ 𝛿−𝛼𝔰 .

For 𝐴2, by definitions of the model and the norm L 𝑓 M𝛾,𝜂,𝑣 we have

𝐴2 ≤
∑

𝛽∈[ 𝛿,𝛾)
𝑤(𝑥)‖Γ𝑦𝑥 ‖L(T𝛽 ,T𝛼 )𝑣(𝑥)‖ 𝑓 (𝑥)‖𝛽

≤ ‖Γ‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 𝑤∗ (𝑦 − 𝑥)
∑

𝛽∈[ 𝛿,𝛾)
‖𝑦 − 𝑥‖𝛽−𝛼𝔰 𝜑(𝑥)𝜂−𝛽

≤ ‖Γ‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 𝑤∗ (𝑥 − 𝑦)‖𝑦 − 𝑥‖ 𝛿−𝛼𝔰 𝜑(𝑥, 𝑦)𝜂−𝛿 .

Thus we obtain the desired inequality for ‖𝑃<𝛿 𝑓 ‖ 𝛿,𝜂,𝑤𝑣 .
(iii) It is sufficient to show the estimate of ΔΓ

𝑦𝑥 𝑓 on the region ‖𝑦 − 𝑥‖𝔰 > 𝜑(𝑥, 𝑦).
For any 𝛼 < 𝛾 we decompose

(𝑤𝑣) (𝑥)‖ΔΓ
𝑦𝑥 𝑓 ‖𝛼 ≤ 𝑣(𝑥)‖ 𝑓 (𝑦)‖𝛼 + (𝑤𝑣)(𝑥)

∑
𝛽∈[𝛼,𝛾)

‖Γ𝑦𝑥𝑃𝛽 𝑓 (𝑥)‖𝛼 =: 𝐵1 + 𝐵2.
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For 𝐵1, by definition of the norm L 𝑓 M𝛾,𝜂,𝑣 we have

𝐵1 ≤ 𝑣∗ (𝑥 − 𝑦)𝑣(𝑦)‖ 𝑓 (𝑦)‖𝛼
≤ L 𝑓 M𝛾,𝜂,𝑣 𝑣∗ (𝑥 − 𝑦)𝜑(𝑦) (𝜂−𝛼)∧0

≤ L 𝑓 M𝛾,𝜂,𝑣 𝑣∗ (𝑥 − 𝑦)𝜑(𝑥, 𝑦) (𝜂−𝛼)∧0

≤ L 𝑓 M𝛾,𝜂,𝑣 𝑣∗ (𝑥 − 𝑦)𝜑(𝑥, 𝑦)𝜂∧𝛼−𝛾 ‖𝑦 − 𝑥‖𝛾−𝛼𝔰 .

For 𝐵2, by an argument similar to 𝐴2 in the proof of (ii), we have

𝐵2 ≤ ‖Γ‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 𝑤∗ (𝑦 − 𝑥)
∑

𝛽∈[𝛼,𝛾)
‖𝑦 − 𝑥‖𝛽−𝛼𝔰 𝜑(𝑥) (𝜂−𝛽)∧0

≲ ‖Γ‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 𝑤∗ (𝑥 − 𝑦)‖𝑦 − 𝑥‖𝛾−𝛼𝔰 𝜑(𝑥, 𝑦)𝜂∧𝛼−𝛾 .

Thus we obtain the desired inequality. □

We also recall the definition of reconstruction.

Definition 3.3.6. Let 𝑀 = (Π, Γ) ∈ ℳ𝑤 (𝒯). For any 𝜂 ≤ 𝛾 and 𝑓 ∈ D𝛾,𝜂
𝑣 (Γ), we

say that Λ ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣) with some 𝜁 ≤ 0 is a reconstruction of 𝑓 for 𝑀 , if it satisfies

ÈΛÉ𝛾,𝜂,𝑤𝑣 := sup
0<𝑡≤1

sup
𝑥∈ (R\{0})×R𝑑−1

(
𝑡−𝛾/ℓ𝜑(𝑥)𝛾−𝜂 (𝑤𝑣) (𝑥) |𝑄𝑡 (𝑥,Λ𝑥) |

)
< ∞,

where Λ𝑥 := Λ − Π𝑥 𝑓 (𝑥). Furthermore, for any 𝑀 (𝑖) = (Π (𝑖) , Γ (𝑖) ) ∈ ℳ𝑤 (𝒯),
𝑓 (𝑖) ∈ D𝛾,𝜂

𝑣 (Γ (𝑖) ), and any reconstructions Λ(𝑖) ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣) of 𝑓 (𝑖) for 𝑀 (𝑖) with
𝑖 ∈ {1, 2}, we define

ÈΛ(1) ;Λ(2)É𝛾,𝜂,𝑤𝑣
:= sup

0<𝑡≤1
sup

𝑥∈ (R\{0})×R𝑑−1

(
𝑡−𝛾/ℓ𝜑(𝑥)𝛾−𝜂 (𝑤𝑣) (𝑥)

��𝑄𝑡 (𝑥,Λ(1)
𝑥 − Λ(2)

𝑥

) ��) ,
where Λ(𝑖)

𝑥 := Λ(𝑖) − Π (𝑖)
𝑥 𝑓 (𝑖) (𝑥) for each 𝑖 ∈ {1, 2}.

3.3.3 Reconstruction Theorem
In this subsection, we provide a short proof of the reconstruction theorem. First, we
prove the theorem for the subclass D𝛾,𝜂

𝑣 (Γ)# of D𝛾,𝜂
𝑣 (Γ) consisting of all functions

𝑓 : (R \ {0}) × R𝑑−1 → T<𝛾 such that

||| 𝑓 |||#𝛾,𝜂,𝑣 := L 𝑓 M𝛾,𝜂,𝑣 + ‖ 𝑓 ‖#
𝛾,𝜂,𝑣 < ∞.

In addition, for any 𝑀 (𝑖) = (Π (𝑖) , Γ (𝑖) ) ∈ ℳ𝑤 (𝒯) and 𝑓 (𝑖) ∈ D𝛾,𝜂
𝑣 (Γ (𝑖) )# with 𝑖 ∈

{1, 2}, we define ||| 𝑓 (1) ; 𝑓 (2) |||#𝛾,𝜂,𝑣 := L 𝑓 (1) − 𝑓 (2) M𝛾,𝜂,𝑣 + ‖ 𝑓 (1) ; 𝑓 (2) ‖#
𝛾,𝜂,𝑣 similarly

to definition 3.3.4.
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Theorem 3.3.7. Let 𝛾 > 0 and 𝜂 ∈ (𝛾 − 𝔰1, 𝛾]. Then for any 𝑀 = (Π, Γ) ∈ ℳ𝑤 (𝒯)
and 𝑓 ∈ D𝛾,𝜂

𝑣 (Γ)#, there exists a unique reconstruction R 𝑓 ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣) of 𝑓 for 𝑀
with 𝜁 := 𝜂 ∧ 𝛼0 ∧ 0 and it holds that

‖R 𝑓 ‖𝐶𝜁 ,𝑄 (𝑤𝑣) ≲ ‖Π‖𝛾,𝑤 ||| 𝑓 |||#𝛾,𝜂,𝑣 , (3.6)

ÈR 𝑓 É𝛾,𝜂,𝑤𝑣 ≲ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣 . (3.7)

Moreover, there is an affine function 𝐶𝑅 > 0 of 𝑅 > 0 such that

‖R 𝑓 (1) − R 𝑓 (2) ‖𝐶𝜁 ,𝑄 (𝑤𝑣) ≤ 𝐶𝑅
(
‖Π (1) − Π (2) ‖𝛾,𝑤 + ||| 𝑓 (1) ; 𝑓 (2) |||#𝛾,𝜂,𝑣

)
,

ÈR 𝑓 (1) ;R 𝑓 (2)É𝛾,𝜂,𝑤𝑣 ≤ 𝐶𝑅
(
‖Π (1) − Π (2) ‖𝛾,𝑤 + ‖ 𝑓 (1) ; 𝑓 (2) ‖#

𝛾,𝜂,𝑣

)
for any 𝑀 (𝑖) = (Π (𝑖) , Γ (𝑖) ) ∈ ℳ𝑤 (𝒯) and 𝑓 (𝑖) ∈ D𝛾,𝜂

𝑣 (Γ (𝑖) ) with 𝑖 ∈ {1, 2} such that
|||𝑀 (𝑖) |||𝛾,𝑤 ≤ 𝑅 and ||| 𝑓 (𝑖) |||#𝛾,𝜂,𝑣 ≤ 𝑅.

Proof. The proof is carried out by a method similar to that of [59, Theorem 4.1], but
we have to treat the temporal weight more carefully. For 𝑡 > 0 and 0 < 𝑠 ≤ 𝑡 ∧ 1, we
define the functions

R𝑡𝑠 𝑓 (𝑥) :=

∫
R𝑑
𝑄𝑡−𝑠 (𝑥, 𝑦)𝑄𝑠

(
𝑦,Π𝑦 𝑓 (𝑦)

)
𝑑𝑦, 𝑠 < 𝑡,

𝑄𝑡
(
𝑥,Π𝑥 𝑓 (𝑥)

)
, 𝑠 = 𝑡.

Note that

(𝑤𝑣) (𝑥)
��𝑄𝑡 (𝑥,Π𝑥 𝑓 (𝑥)) �� ≤ ∑

𝛼<𝛾

𝑤(𝑥)


𝑄𝑡 (𝑥,Π𝑥 (·))

T∗

𝛼
𝑣(𝑥)‖ 𝑓 (𝑥)‖𝛼

≤ ‖Π‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 ∑
𝛼<𝛾

𝑡𝛼/ℓ𝜑(𝑥) (𝜂−𝛼)∧0.

Thus, by Proposition 3.2.8-(i), for any 𝑠 ∈ (0, 𝑡) we have R𝑡𝑠 𝑓 ∈ 𝐶 (𝑤𝑣) and

‖R𝑡𝑠 𝑓 ‖𝐿∞ (𝑤𝑣) ≲ ‖Π‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 ∑
𝛼<𝛾

𝑠𝛼/ℓ (𝑡 − 𝑠) (𝜂−𝛼)∧0. (3.8)

We separate the proof into four steps.

(1) Cauchy property. Set 𝐹𝑥 := Π𝑥 𝑓 (𝑥). By the definition of norms, we have

(𝑤𝑣)(𝑦) |𝑄𝑡 (𝑥, 𝐹𝑦 − 𝐹𝑥) |
= (𝑤𝑣) (𝑦)

��𝑄𝑡 (𝑥,Π𝑥 {Γ𝑥𝑦 𝑓 (𝑦) − 𝑓 (𝑥)
})��

≤ 𝑤∗ (𝑦 − 𝑥)
∑
𝛼<𝛾

𝑤(𝑥)‖𝑄𝑡 (𝑥,Π𝑥 (·))‖T∗
𝛼
𝑣(𝑦)‖Γ𝑥𝑦 𝑓 (𝑦) − 𝑓 (𝑥)‖𝛼

≤ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣 (𝑤∗𝑣∗) (𝑦 − 𝑥)

∑
𝛼<𝛾

𝑡𝛼/ℓ𝜑(𝑥, 𝑦)𝜂−𝛾 ‖𝑦 − 𝑥‖𝛾−𝛼𝔰 .

(3.9)

By the semigroup property, for any 0 < 𝑢 < 𝑠 < 𝑡 ∧ 1 we have
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(𝑤𝑣)(𝑥) |R𝑡𝑠 𝑓 (𝑥) − R𝑡𝑢 𝑓 (𝑥) |

≤
∫
(R𝑑 )2

(𝑤∗𝑣∗)(𝑥 − 𝑦) (𝑤𝑣)(𝑦) |𝑄𝑡−𝑠 (𝑥, 𝑦)𝑄𝑠−𝑢 (𝑦, 𝑧)𝑄𝑢 (𝑧, 𝐹𝑦 − 𝐹𝑧) |𝑑𝑦𝑑𝑧

≲ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣

∑
𝛼<𝛾

𝑢𝛼/ℓ
∫
(R𝑑 )2

(𝑤∗𝑣∗)(𝑥 − 𝑦)(𝑤∗𝑣∗) (𝑦 − 𝑧)

× 𝐺𝑡−𝑠 (𝑥 − 𝑦)𝐺𝑠−𝑢 (𝑦 − 𝑧)𝜑(𝑦, 𝑧)𝜂−𝛾 ‖𝑦 − 𝑧‖𝛾−𝛼𝔰 𝑑𝑦𝑑𝑧.

By applying the second inequality of Lemma 3.2.6 to the integral with respect to 𝑧
and then applying the first inequality of Lemma 3.2.6 to the integral with respect to 𝑦,
we obtain

(𝑤𝑣) (𝑥) |R𝑡𝑠 𝑓 (𝑥) − R𝑡𝑢 𝑓 (𝑥) |
≲ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#

𝛾,𝜂,𝑣

×
∑
𝛼<𝛾

𝑢𝛼/ℓ (𝑠 − 𝑢) (𝛾−𝛼)/ℓ
∫
(R𝑑 )2

(𝑤∗𝑣∗) (𝑥 − 𝑦)𝐺𝑡−𝑠 (𝑥 − 𝑦)𝜑(𝑦)𝜂−𝛾𝑑𝑦

≲ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣

∑
𝛼<𝛾

𝑢𝛼/ℓ (𝑠 − 𝑢) (𝛾−𝛼)/ℓ𝜑(𝑥)𝜂−𝛾 .

Consequently, when 𝑢 ∈ [𝑠/2, 𝑠) we have the inequality

(𝑤𝑣) (𝑥) |R𝑡𝑠 𝑓 (𝑥) − R𝑡𝑢 𝑓 (𝑥) | ≲ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣 𝜑(𝑥)𝜂−𝛾𝑠𝛾/ℓ . (3.10)

Similarly to the proof of [59, Theorem 4.1], we can also extend it into 𝑢 ∈ (0, 𝑠/2) by
decomposing

|R𝑡𝑠 𝑓 (𝑥) − R𝑡𝑢 𝑓 (𝑥) | ≤
∞∑
𝑛=0

|R𝑡(𝑠/2𝑛 )∧𝑢 𝑓 (𝑥) − R𝑡(𝑠/2𝑛+1 )∧𝑢 𝑓 (𝑥) |.

The same inequality for the case 𝑠 = 𝑡 ≤ 1 can be obtained by a similar argument. In
the end, the inequality (3.10) holds for any 0 < 𝑢 < 𝑠 ≤ 𝑡 ∧ 1.

(2) Convergence as 𝑠 ↓ 0. Note that 𝑄𝑠R𝑡𝑢 𝑓 = R𝑡+𝑠𝑢 𝑓 follows from the semigroup
property. By the inequality (3.10), for any 0 < 𝑢 < 𝑠 ≤ 𝑡/2 we have

(𝑤𝑣) (𝑥) |R𝑡𝑠 𝑓 (𝑥) − R𝑡𝑢 𝑓 (𝑥) |

≤
∫
R𝑑

(𝑤∗𝑣∗) (𝑥 − 𝑦) (𝑤𝑣) (𝑦) |𝑄𝑡/2 (𝑥, 𝑦) (R𝑡/2𝑠 𝑓 − R𝑡/2𝑢 𝑓 )(𝑦) |𝑑𝑦

≲ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣 𝑠

𝛾/ℓ
∫
R𝑑

(𝑤∗𝑣∗)(𝑥 − 𝑦)𝐺𝑡/2 (𝑥 − 𝑦)𝜑(𝑦)𝜂−𝛾𝑑𝑦

≲ ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣 𝑠

𝛾/ℓ 𝑡 (𝜂−𝛾)/ℓ .

(3.11)

Since 𝛾 > 0, this implies that {R𝑡𝑠 𝑓 }0<𝑠≤𝑡/2 is Cauchy in 𝐶 (𝑤𝑣) as 𝑠 ↓ 0. We denote
its limit by

R𝑡0 𝑓 := lim
𝑠↓0

R𝑡𝑠 𝑓 .
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We also have 𝑄𝑠R𝑡0 𝑓 = R𝑡+𝑠0 𝑓 by taking the limit 𝑢 ↓ 0 in 𝑄𝑠R𝑡𝑢 𝑓 = R𝑡+𝑠𝑢 𝑓 .

(3) Convergence as 𝑡 ↓ 0. Combining the Cauchy property (3.11) and the bound (3.8)
with 𝑠 = 𝑡/2, we have

‖R𝑡0 𝑓 ‖𝐿∞ (𝑤𝑣) ≤ ‖R𝑡𝑡/2 𝑓 ‖𝐿∞ (𝑤𝑣) + ‖R𝑡𝑡/2 𝑓 − R𝑡0 𝑓 ‖𝐿∞ (𝑤𝑣)

≲ ‖Π‖𝛾,𝑤 ||| 𝑓 |||#𝛾,𝜂,𝑣 𝑡 (𝜂∧𝛼0 )/ℓ .

Since 𝑄𝑠R𝑡0 𝑓 = R𝑡+𝑠0 𝑓 , this implies

sup
0<𝑡≤1

‖R𝑡0 𝑓 ‖𝐶𝜂∧𝛼0∧0,𝑄 (𝑤𝑣) ≲ ‖Π‖𝛾,𝑤 ||| 𝑓 |||#𝛾,𝜂,𝑣 .

From here onward, in exactly the same way as the part (4) of the proof of [59, Theorem
4.1], we can show the existence of R 𝑓 ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣) with 𝜁 = 𝜂 ∧ 𝛼0 ∧ 0 which satisfies
the bound (3.6) and

lim
𝑡↓0

‖R 𝑓 − R𝑡0 𝑓 ‖𝐶𝜁 −𝜀,𝑄 (𝑤𝑣) = 0

for any 𝜀 ∈ (0, ℓ]. Moreover, we have 𝑄𝑡R 𝑓 = R𝑡0 𝑓 by taking the limit 𝑠 ↓ 0 in
𝑄𝑡R𝑠0 𝑓 = R𝑡+𝑠0 𝑓 . We have another bound (3.7) by letting 𝑢 ↓ 0 and 𝑠 = 𝑡 in the
inequality (3.10).

(4) Uniqueness. Let Λ,Λ′ ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣) be reconstructions of 𝑓 for 𝑀 . By the property
of reconstruction, 𝑔 := Λ − Λ′ satisfies

sup
𝑥∈R𝑑

𝜑(𝑥)𝛾−𝜂 (𝑤𝑣)(𝑥) |𝑄𝑡𝑔(𝑥) | ≲ 𝑡𝛾/ℓ .

Set 𝑤̃ := 𝜑𝛾−𝜂𝑤𝑣. By Proposition 3.2.8-(iv) and (v), for any 𝜀 ∈ (0, ℓ] we have

‖𝑔‖𝐶𝜁 −𝜀,𝑄 (𝑤̃) ≤ ‖(𝑄𝑡 − id)𝑔‖𝐶𝜁 −𝜀,𝑄 (𝑤̃) + ‖𝑄𝑡𝑔‖𝐶𝜁 −𝜀,𝑄 (𝑤̃)

≲ 𝑡 𝜀/ℓ ‖𝑔‖𝐶𝜁 ,𝑄 (𝑤̃) + ‖𝑄𝑡𝑔‖𝐿∞ (𝑤̃)

≲ 𝑡 𝜀/ℓ ‖𝑔‖𝐶𝜁 ,𝑄 (𝑤𝑣) + 𝑡𝛾/ℓ .

By taking the limit 𝑡 ↓ 0, we have 𝑔 = 0 in 𝐶𝜁 −𝜀,𝑄 (𝑤̃). By Proposition 3.2.8-(iii) and
(iv), we also have 𝑔 = 0 in 𝐶𝜁 ,𝑄 (𝑤𝑣). □

The following result is used in Section 3.5.

Proposition 3.3.8. In addition to the setting of Theorem 3.3.7, we assume that the
model 𝑀 is smooth in the sense of Definition 3.3.2 and

sup
𝑥∈R𝑑

sup
𝜏∈T𝛼\{0}

𝑤(𝑥) |(Π𝑥𝜏) (𝑥) |‖𝜏‖𝛼
< ∞

for any 𝛼 ∈ A. Then the reconstruction R 𝑓 of 𝑓 ∈ D𝛾,𝜂
𝑣 (Γ)# is realized as a continuous

function on (R \ {0}) × R𝑑−1 such that

(R 𝑓 ) (𝑥) =
(
Π𝑥 𝑓 (𝑥)

)
(𝑥)

for any 𝑥 ∈ (R \ {0}) × R𝑑−1.
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Proof. Set Λ(𝑥) =
(
Π𝑥 𝑓 (𝑥)

)
(𝑥). Since (Π𝑥𝜏) (𝑥) = lim𝑡↓0𝑄𝑡 (𝑥,Π𝑥𝜏) = 0 if 𝜏 ∈ T𝛼

with 𝛼 > 0, we have

(𝑤𝑣) (𝑥) |Λ(𝑥) | ≤
∑
𝛼≤0

𝑤(𝑥)


(Π𝑥 (·)) (𝑥)

T∗

𝛼
𝑣(𝑥)‖ 𝑓 (𝑥)‖𝛼

≲
∑
𝛼≤0

𝜑(𝑥) (𝜂−𝛼)∧0 ≲ 𝜑(𝑥)𝜂∧0.

Since 𝜂 > −𝔰1, we have Λ ∈ 𝐶𝜂∧0,𝑄 (𝑤𝑣) ⊂ 𝐶𝜁 ,𝑄 (𝑤𝑣) by Corollary 3.2.7. Moreover,
since

(𝑤𝑣)(𝑥) |𝑄𝑡 (𝑥,Λ𝑥) | = (𝑤𝑣) (𝑥)
���� ∫

R𝑑
𝑄𝑡 (𝑥, 𝑦)Π𝑦

(
𝑓 (𝑦) − Γ𝑦𝑥 𝑓 (𝑥)

)
(𝑦)𝑑𝑦

����
≲

∑
𝛼≤0

∫
R𝑑
𝑤∗ (𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)𝑤(𝑦)



(Π𝑦 (·)) (𝑦)

T∗
𝛼
𝑣(𝑥)‖ 𝑓 (𝑦) − Γ𝑦𝑥 𝑓 (𝑥)‖𝛼𝑑𝑦

≲
∑
𝛼≤0

∫
R𝑑

(𝑤∗𝑣∗)(𝑥 − 𝑦)𝐺𝑡 (𝑥 − 𝑦)‖𝑦 − 𝑥‖𝛾−𝛼𝔰 𝜑(𝑥, 𝑦)𝜂−𝛾𝑑𝑦

≲
∑
𝛼≤0

𝑡 (𝛾−𝛼)/ℓ𝜑(𝑥)𝜂−𝛾 ≲ 𝑡𝛾/ℓ𝜑(𝑥)𝜂−𝛾 ,

we have ÈΛÉ𝛾,𝜂,𝑤𝑣 < ∞. Hence R 𝑓 = Λ by the uniqueness of the reconstruction. □

Combining Theorem 3.3.7 with Proposition 3.3.5-(iii), we have the following result.

Corollary 3.3.9. Assume that 𝑤2𝑣 is also 𝐺-controlled. If 𝛾 > 0 and 𝜂 ∧ 𝛼0 ∈
(𝛾−𝔰1, 𝛾], then for any 𝑀 = (Π, Γ) ∈ ℳ𝑤 (𝒯) and 𝑓 ∈ D𝛾,𝜂

𝑣 (Γ), there exists a unique
reconstruction R 𝑓 ∈ 𝐶𝜂∧𝛼0∧0,𝑄 (𝑤2𝑣) of 𝑓 for 𝑀 and it holds that

‖R 𝑓 ‖𝐶𝜂∧𝛼0∧0,𝑄 (𝑤2𝑣) ≲ ‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤) ||| 𝑓 |||𝛾,𝜂,𝑣 ,
ÈR 𝑓 É𝛾,𝜂∧𝛼0 ,𝑤2𝑣 ≲ ‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤)‖ 𝑓 ‖𝛾,𝜂,𝑣 .

The local Lipschitz estimates similar to the latter part of Theorem 3.3.7 also hold.

3.4 Multilevel Schauder estimate
This section is devoted to the proof of the multilevel Schauder estimate for singular
modelled distributions. After recalling from [59] the basics of regularizing kernels in
the first subsection, we prove the multilevel Schauder estimate in the second subsection.

3.4.1 Regularizing kernels
We recall from [59, Section 5.1] the definition of regularizing kernels.

Definition 3.4.1. Let 𝛽 > 0. A 𝛽-regularizing (integral) kernel admissible for {𝑄𝑡 }𝑡>0
is a family of continuous functions {𝐾𝑡 : R𝑑×R𝑑 → R}𝑡>0 which satisfies the following
properties for some constants 𝛿 > 0 and 𝐶𝐾 > 0.
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(i) (Convolution with 𝑄) For any 0 < 𝑠 < 𝑡 and 𝑥, 𝑦 ∈ R𝑑 ,∫
R𝑑
𝐾𝑡−𝑠 (𝑥, 𝑧)𝑄𝑠 (𝑧, 𝑦)𝑑𝑧 = 𝐾𝑡 (𝑥, 𝑦).

(ii) (Upper estimate) For any k ∈ N𝑑 with |k|𝔰 < 𝛿, the k-th partial derivative of
𝐾𝑡 (𝑥, 𝑦) with respect to 𝑥 exists, and we have for any 𝑡 > 0 and 𝑥, 𝑦 ∈ R𝑑 ,

|𝜕k
𝑥𝐾𝑡 (𝑥, 𝑦) | ≤ 𝐶𝐾 𝑡 (𝛽−|k |𝔰 )/ℓ−1𝐺𝑡 (𝑥 − 𝑦).

(iii) (Hölder continuity) For any k ∈ N𝑑 with |k|𝔰 < 𝛿, any 𝑡 > 0 and 𝑥, 𝑦, ℎ ∈ R𝑑

with ‖ℎ‖𝔰 ≤ 𝑡1/ℓ , ����𝜕k
𝑥𝐾𝑡 (𝑥 + ℎ, 𝑦) −

∑
|l |𝔰<𝛿−|k |𝔰

ℎl

l!
𝜕k+l
𝑥 𝐾𝑡 (𝑥, 𝑦)

����
≤ 𝐶𝐾 ‖ℎ‖ 𝛿−|k |𝔰𝔰 𝑡 (𝛽−𝛿 )/ℓ−1𝐺𝑡 (𝑥 − 𝑦).

We fix a 𝛽-regularizing kernel {𝐾𝑡 }𝑡>0 throughout this section. For any 𝑓 ∈ 𝐿∞ (𝑤)
with a 𝐺-controlled weight 𝑤 and any |k|𝔰 < 𝛿, we define

(𝜕k𝐾𝑡 𝑓 )(𝑥) :=: 𝜕k𝐾𝑡 (𝑥, 𝑓 ) :=
∫
R𝑑
𝜕k
𝑥𝐾𝑡 (𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦.

Moreover, we write 𝜕k𝐾 𝑓 :=
∫ 1
0 𝜕k𝐾𝑡 𝑓 𝑑𝑡 if the integral makes sense.

Lemma 3.4.2. Let 𝑤 and 𝑣 be 𝐺-controlled weights such that 𝑤2 and 𝑤𝑣 are also 𝐺-
controlled. Let 𝒯 = (A,T,G) be a regularity structure and let 𝑀 = (Π, Γ) ∈ ℳ𝑤 (𝒯).

(i) [59, Lemma 5.4] For any 𝛼 ≤ 0, |k|𝔰 < 𝛿, and 𝑓 ∈ 𝐿∞ (𝑤), we have

‖𝜕k𝐾𝑡 𝑓 ‖𝐿∞ (𝑤) ≲ 𝐶𝐾 𝑡
(𝛼+𝛽−|k |𝔰 )/ℓ−1‖ 𝑓 ‖𝐶𝛼,𝑄 (𝑤) ,

where the implicit proportional constant depends only on𝐺 and𝑤. Consequently,
if |k|𝔰 < (𝛼 + 𝛽) ∧ 𝛿, the integral 𝜕k𝐾 𝑓 :=

∫ 1
0 𝜕k𝐾𝑡 𝑓 𝑑𝑡 converges in 𝐶 (𝑤).

(ii) [59, Lemma 5.6] For any 𝛼 < 𝛾, 𝜏 ∈ T𝛼, |k|𝔰 < 𝛿, and 𝑡 ∈ (0, 1], we have

‖𝜕k𝐾𝑡 (𝑥,Π𝑥𝜏)‖𝐿∞
𝑥 (𝑤2 ) ≲ 𝐶𝐾 𝑡

(𝛼+𝛽−|k |𝔰 )/ℓ−1‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤)‖𝜏‖𝛼,

where the implicit proportional constant depends only on 𝐺, 𝑤, and A. Conse-
quently, if |k|𝔰 < (𝛼 + 𝛽) ∧ 𝛿, the integral 𝜕k𝐾 (𝑥,Π𝑥𝜏) :=

∫ 1
0 𝜕k𝐾𝑡 (𝑥,Π𝑥𝜏)𝑑𝑡

converges for any 𝑥 ∈ R𝑑 .

(iii) Let 𝛾 ∈ R, 𝜂 ∈ (𝛾 − 𝔰1, 𝛾], and 𝜁 ≤ 0. For any 𝑓 ∈ D𝛾,𝜂
𝑣 (Γ)# and its

reconstruction Λ ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣), |k|𝔰 < 𝛿, and 𝑡 ∈ (0, 1], we have

(𝑤𝑣)(𝑥) |𝜕k𝐾𝑡 (𝑥,Λ𝑥) |
≲ 𝐶𝐾 𝑡 (𝛾+𝛽−|k |𝔰 )/ℓ−1 𝜑(𝑥)𝜂−𝛾

(
ÈΛÉ𝛾,𝜂,𝑤𝑣 + ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#

𝛾,𝜂,𝑣

)
,
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where the implicit proportional constant depends only on 𝐺, 𝑤, 𝑣, and A. Con-
sequently, if |k|𝔰 < (𝛾 + 𝛽) ∧ 𝛿, the integral 𝜕k𝐾 (𝑥,Λ𝑥) :=

∫ 1
0 𝜕k𝐾𝑡 (𝑥,Λ𝑥)𝑑𝑡

converges for any 𝑥 ∈ (R \ {0}) × R𝑑−1.

Proof. We prove only (iii). By Definition 3.4.1-(i), we can decompose

|𝜕k𝐾𝑡 (𝑥,Λ𝑥) | ≤
���� ∫

R𝑑
𝜕k𝐾𝑡/2 (𝑥, 𝑦)𝑄𝑡/2 (𝑦,Λ𝑦)𝑑𝑦

����
+

���� ∫
R𝑑
𝜕k𝐾𝑡/2 (𝑥, 𝑦)𝑄𝑡/2

(
𝑦,Π𝑦 𝑓 (𝑦) − Π𝑥 𝑓 (𝑥)

)
𝑑𝑦

����.
For the first term, by Definition 3.4.1-(ii) and by the property of reconstruction, we have

(𝑤𝑣) (𝑥)
���� ∫

R𝑑
𝜕k𝐾𝑡/2 (𝑥, 𝑦)𝑄𝑡/2 (𝑦,Λ𝑦)𝑑𝑦

����
≲ 𝐶𝐾 𝑡 (𝛽−|k |𝔰 )/ℓ−1

∫
R𝑑

(𝑤∗𝑣∗) (𝑥 − 𝑦)𝐺𝑡/2 (𝑥 − 𝑦) (𝑤𝑣)(𝑦) |𝑄𝑡/2 (𝑦,Λ𝑦) |𝑑𝑦

≲ 𝐶𝐾 𝑡 (𝛾+𝛽−|k |𝔰 )/ℓ−1ÈΛÉ𝛾,𝜂,𝑤𝑣
∫
R𝑑
𝜑(𝑦)𝜂−𝛾 (𝑤∗𝑣∗)(𝑥 − 𝑦)𝐺𝑡/2 (𝑥 − 𝑦)𝑑𝑦

≲ 𝐶𝐾 𝑡 (𝛾+𝛽−|k |𝔰 )/ℓ−1 𝜑(𝑥)𝜂−𝛾 ÈΛÉ𝛾,𝜂,𝑤𝑣 .

For the second term, by using the inequality (3.9) obtained in the proof of Theorem
3.3.7 with 𝑥 and 𝑦 swapped, we have

(𝑤𝑣)(𝑥)
���� ∫

R𝑑
𝜕k𝐾𝑡/2 (𝑥, 𝑦)𝑄𝑡/2

(
𝑦,Π𝑦 𝑓 (𝑦) − Π𝑥 𝑓 (𝑥)

)
𝑑𝑦

����
≲ 𝐶𝐾 𝑡 (𝛽−|k |𝔰 )/ℓ−1

∫
R𝑑
𝐺𝑡/2 (𝑥 − 𝑦)(𝑤𝑣) (𝑥)

��𝑄𝑡/2 (𝑦,Π𝑦 𝑓 (𝑦) − Π𝑥 𝑓 (𝑥)
) ��𝑑𝑦

≲ 𝐶𝐾 ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#
𝛾,𝜂,𝑣

∑
𝛼<𝛾

𝑡 (𝛼+𝛽−|k |𝔰 )/ℓ−1
∫
R𝑑
𝜑(𝑥, 𝑦)𝜂−𝛾 ‖𝑦 − 𝑥‖𝛾−𝛼𝔰

× (𝑤∗𝑣∗)(𝑥 − 𝑦)𝐺𝑡/2 (𝑥 − 𝑦)𝑑𝑦
≲ 𝐶𝐾 𝑡 (𝛾+𝛽−|k |𝔰 )/ℓ−1 𝜑(𝑥)𝜂−𝛾 ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#

𝛾,𝜂,𝑣 .

□

3.4.2 Compatible models and multilevel Schauder estimate
We recall from [59, Section 5.2] the notions of abstract integrations and compatible
models. Hereafter, we use the polynomial structure generated by dummy variables
𝑋1, . . . , 𝑋𝑑 as in [52, Section 2].

Definition 3.4.3. Let 𝒯̄ = (Ā, T̄, Ḡ) be a regularity structure satisfying the following
properties.

(1) N[𝔰] ⊂ Ā.

91



(2) For each 𝛼 ∈ N[𝔰], the space T̄𝛼 contains all 𝑋k :=
∏𝑑
𝑖=1 𝑋

𝑘𝑖
𝑖 with |k|𝔰 = 𝛼.

(3) The subspace span{𝑋k}k∈N𝑑 of T̄ is closed under Ḡ-actions.

Let 𝒯 = (A,T,G) be another regularity structure. A continuous linear operator
I : T → T̄ is called an abstract integration of order 𝛽 ∈ (0, 𝛽] if

I : T𝛼 → T̄𝛼+𝛽

for any 𝛼 ∈ A. For a fixed 𝐺-controlled weight 𝑤, we say that the pair (𝑀, 𝑀̄) of two
models 𝑀 = (Π, Γ) ∈ ℳ𝑤 (𝒯) and 𝑀̄ = (Π̄, Γ̄) ∈ ℳ𝑤 (𝒯̄) is compatible for I if it
satisfies the following properties.

(i) For any k ∈ N𝑑 ,

(Π̄𝑥𝑋k)(·) = (· − 𝑥)k, Γ̄𝑦𝑥𝑋
k =

∑
l≤k

(
k
l

)
(𝑦 − 𝑥)l𝑋k−l.

(ii) For each 𝑥 ∈ R𝑑 , we define the linear map J (𝑥) : T<𝛿−𝛽 → span{𝑋k} |k |𝔰<𝛿 ⊂ T̄
by setting

J (𝑥)𝜏 =
∑

|k |𝔰<𝛼+𝛽

𝑋k

k!
𝜕k𝐾 (𝑥,Π𝑥𝜏) (3.12)

for any 𝛼 ∈ A such that 𝛼 + 𝛽 < 𝛿 and 𝜏 ∈ T𝛼. Then for any 𝜏 ∈ T<𝛿−𝛽 ,

Γ̄𝑦𝑥
(
I + J (𝑥)

)
𝜏 =

(
I + J (𝑦)

)
Γ𝑦𝑥𝜏.

In addition, if the regularity 𝛼0 of 𝒯 is greater than −𝛽 and

(Π̄𝑥I𝜏) (·) = 𝐾 (·,Π𝑥𝜏) −
∑

|k |𝔰<𝛼+𝛽

(· − 𝑥)k

k!
𝜕k𝐾 (𝑥,Π𝑥𝜏) (3.13)

for any 𝜏 ∈ T𝛼 with 𝛼 + 𝛽 < 𝛿, then we say that the pair (𝑀, 𝑀̄) is 𝐾-admissible for I.

In (3.12) and (3.13), the function 𝐾 (·,Π𝑥𝜏) and the coefficients 𝜕k𝐾 (𝑥,Π𝑥𝜏) are
well-defined by Lemma 3.4.2. The following theorem is the second main result of this
paper.

Theorem 3.4.4. Let𝒯 and 𝒯̄ be regularity structures satisfying the setting of Definition
3.4.3 and let I : T → T̄ be an abstract integration of order 𝛽 ∈ (0, 𝛽]. Let 𝑤 and 𝑣
be 𝐺-controlled weights such that 𝑤2𝑣 is also 𝐺-controlled. Given (Π, Γ) ∈ ℳ𝑤 (𝒯),
𝑓 ∈ D𝛾,𝜂

𝑣 (Γ)# with 𝛾+𝛽 < 𝛿 and 𝜂 ∈ (𝛾−𝔰1, 𝛾], and its reconstructionΛ ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣),
we define the functions

N(𝑥; 𝑓 ,Λ) =
∑

|k |𝔰<𝛾+𝛽

𝑋k

k!
𝜕k𝐾 (𝑥,Λ𝑥)

and
K 𝑓 (𝑥) := I 𝑓 (𝑥) + J (𝑥) 𝑓 (𝑥) + N (𝑥; 𝑓 ,Λ)

for 𝑥 ∈ (R \ {0}) ×R𝑑−1. We assume 𝜁 ≤ 𝜂∧𝛼0 and either of the following conditions.
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(1) 𝛽 < 𝛽.

(2) 𝛽 = 𝛽 and
{
𝛼 + 𝛽 ; 𝛼 ∈ A ∪ {𝛾, 𝜁 }

}
∩ N[𝔰] = ∅.

Then for any compatible pair of models
(
𝑀 = (Π, Γ), 𝑀̄ = (Π̄, Γ̄)

)
∈ ℳ𝑤 (𝒯) ×

ℳ𝑤 (𝒯̄) and any singular modelled distribution 𝑓 ∈ D𝛾,𝜂
𝑣 (Γ)#, the function K 𝑓

belongs to D𝛾+𝛽,𝜁+𝛽
𝑤2𝑣

(Γ̄)#, and we have

LK 𝑓 M𝛾+𝛽,𝜁+𝛽,𝑤2𝑣 ≲ ‖I‖L 𝑓 M𝛾,𝜂,𝑣 + 𝐶𝐾 {
‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤) ||| 𝑓 |||#𝛾,𝜂,𝑣

+ ‖Λ‖𝐶𝜁 ,𝑄 (𝑤𝑣) + ÈΛÉ𝛾,𝜂,𝑤𝑣
}
,

(3.14)

‖K 𝑓 ‖#
𝛾+𝛽,𝜁+𝛽,𝑤2𝑣

≲ ‖I‖‖ 𝑓 ‖#
𝛾,𝜂,𝑣 + 𝐶𝐾

{
‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤)‖ 𝑓 ‖#

𝛾,𝜂,𝑣 + ÈΛÉ𝛾,𝜂,𝑤𝑣
}
,

(3.15)

where ‖I‖ is the operator norm from T<𝛾 to T̄<𝛾+𝛽 , and the implicit proportional
constant depends only on 𝐺, 𝑤, 𝑣, 𝛾, 𝜂, and A. Moreover, there is a quadratic function
𝐶𝑅 > 0 of 𝑅 > 0 such that

|||K 𝑓 (1) ;K 𝑓 (2) |||#
𝛾+𝛽,𝜁+𝛽,𝑤2𝑣

≤ 𝐶𝑅
(
|||𝑀 (1) ;𝑀 (2) |||𝛾,𝑤 + ||| 𝑓 (1) ; 𝑓 (2) |||#𝛾,𝜂,𝑣

)
,

for any 𝑀 (𝑖) = (Π (𝑖) , Γ (𝑖) ) ∈ ℳ𝑤 (𝒯) and 𝑀̄ (𝑖) = (Π̄ (𝑖) , Γ̄ (𝑖) ) ∈ ℳ𝑤 (𝒯̄) such
that (𝑀 (𝑖) , 𝑀̄ (𝑖) ) is compatible and any 𝑓 (𝑖) ∈ D𝛾,𝜂

𝑣 (Γ (𝑖) ) with 𝑖 ∈ {1, 2} such that
|||𝑀 (𝑖) |||𝛾,𝑤 ≤ 𝑅 and ||| 𝑓 (𝑖) |||#𝛾,𝜂,𝑣 ≤ 𝑅.

Proof. The proof is carried out by a method similar to that of [59, Theorem 5.12], but
we have to prove (3.14) more carefully than [59]. For the I term, by the continuity of
I we immediately have

𝑣(𝑥)‖I 𝑓 (𝑥)‖𝛼 ≤ 𝑣(𝑥)‖I‖‖ 𝑓 (𝑥)‖𝛼−𝛽 ≤ ‖I‖L 𝑓 M𝛾,𝜂,𝑣 𝜑(𝑥) (𝜂+𝛽−𝛼)∧0

for any 𝛼 < 𝛾 + 𝛽. For the J and N terms, we decompose

J (𝑥) 𝑓 (𝑥) + N (𝑥, 𝑓 ;Λ) =
∑

|k |𝔰<𝛾+𝛽

𝑋k

k!
Ak (𝑥),

where
Ak (𝑥) =

∑
𝛼∈[𝛼0 ,𝛾) , |k |𝔰<𝛼+𝛽

𝜕k𝐾
(
𝑥,Π𝑥𝑃𝛼 𝑓 (𝑥)

)
+ 𝜕k𝐾 (𝑥,Λ𝑥).

We further define the decomposition Ak (𝑥) =
∫ 1
0 Ak

𝑡 (𝑥)𝑑𝑡 according to the integral
form 𝐾 =

∫ 1
0 𝐾𝑡𝑑𝑡, where Ak

𝑡 is defined in the same way as Ak with 𝐾 replaced by 𝐾𝑡 .
By using Lemma 3.4.2-(ii) for 𝜕k𝐾𝑡

(
𝑥,Π𝑥𝑃𝛼 𝑓 (𝑥)

)
and (iii) for 𝜕k𝐾𝑡 (𝑥,Λ𝑥), we have

(𝑤2𝑣)(𝑥) |Ak
𝑡 (𝑥) | ≲ 𝐿1

∑
𝛼∈[𝛼0 ,𝛾 ], |k |𝔰<𝛼+𝛽

𝜑(𝑥) (𝜂−𝛼)∧0 𝑡 (𝛼+𝛽−|k |𝔰 )/ℓ−1
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where 𝐿1 := 𝐶𝐾
{
‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤) ||| 𝑓 |||#𝛾,𝜂,𝑣 + ÈΛÉ𝛾,𝜂,𝑤𝑣

}
. Since all powers of 𝑡

above are greater than −1, we have

(𝑤2𝑣)(𝑥)
∫ 𝜑 (𝑥 )ℓ

0
|Ak

𝑡 (𝑥) |𝑑𝑡 ≲ 𝐿1
∑

𝛼∈[𝛼0 ,𝛾 ], |k |𝔰<𝛼+𝛽
𝜑(𝑥)𝜂∧𝛼+𝛽−|k |𝔰

≲ 𝐿1 𝜑(𝑥) (𝜂∧𝛼0+𝛽−|k |𝔰 )∧0.

For the integral over 𝜑(𝑥)ℓ < 𝑡 ≤ 1, we use another decomposition

Ak
𝑡 (𝑥) = 𝜕k𝐾𝑡

(
𝑥,Λ) −

∑
𝛼∈[𝛼0 ,𝛾) , |k |𝔰≥𝛼+𝛽

𝜕k𝐾𝑡
(
𝑥,Π𝑥𝑃𝛼 𝑓 (𝑥)

)
and consider the two terms in the right hand side separately. For the first term, by the
assumption that Λ ∈ 𝐶𝜁 ,𝑄 (𝑤𝑣) and by Lemma 3.4.2-(i), we have

(𝑤𝑣)(𝑥) |𝜕k𝐾𝑡
(
𝑥,Λ) | ≲ 𝐶𝐾 ‖Λ‖𝐶𝜁 ,𝑄 (𝑤𝑣) 𝑡

(𝜁+𝛽−|k |𝔰 )/ℓ−1.

If 𝜁 + 𝛽 − |k|𝔰 ≠ 0, we have∫ 1

𝜑 (𝑥 )ℓ
𝑡 (𝜁+𝛽−|k |𝔰 )/ℓ−1𝑑𝑡 ≲ 𝜑(𝑥) (𝜁+𝛽−|k |𝔰 )∧0 ≲ 𝜑(𝑥) (𝜁+𝛽−|k |𝔰 )∧0.

Otherwise, since 𝜁 + 𝛽 − |k|𝔰 < 𝜁 + 𝛽 − |k|𝔰 = 0 by assumption we have∫ 1

𝜑 (𝑥 )ℓ
𝑡 (𝜁+𝛽−|k |𝔰 )/ℓ−1𝑑𝑡 ≲

∫ 1

𝜑 (𝑥 )ℓ
𝑡 (𝜁+𝛽−|k |𝔰 )/ℓ−1𝑑𝑡 ≲ 𝜑(𝑥)𝜁+𝛽−|k |𝔰 .

In either case, we obtain the desired estimate. For the remaining term, by Lemma
3.4.2-(ii) we have

(𝑤2𝑣) (𝑥)
∑

𝛼∈[𝛼0 ,𝛾) , |k |𝔰≥𝛼+𝛽

��𝜕k𝐾𝑡
(
𝑥,Π𝑥𝑃𝛼 𝑓 (𝑥)

) ��
≲ 𝐿2

∑
𝛼∈[𝛼0 ,𝛾) , |k |𝔰≥𝛼+𝛽

𝜑(𝑥) (𝜂−𝛼)∧0 𝑡 (𝛼+𝛽−|k |𝔰 )/ℓ−1,

where 𝐿2 := 𝐶𝐾 ‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤)L 𝑓 M𝛾,𝜂,𝑣 . For 𝛼 such that |k|𝔰 > 𝛼 + 𝛽, we easily
have

𝜑(𝑥) (𝜂−𝛼)∧0
∫ 1

𝜑 (𝑥 )ℓ
𝑡 (𝛼+𝛽−|k |𝔰 )/ℓ−1𝑑𝑡 ≲ 𝜑(𝑥) (𝜂−𝛼)∧0

∫ 1

𝜑 (𝑥 )ℓ
𝑡 (𝛼+𝛽−|k |𝔰 )/ℓ−1𝑑𝑡

≲ 𝜑(𝑥)𝜂∧𝛼+𝛽−|k |𝔰 .

If there exists 𝛼 such that |k|𝔰 = 𝛼 + 𝛽, then since 0 = 𝛼 + 𝛽 − |k|𝔰 < 𝛼 + 𝛽 − |k|𝔰 by
assumption, we have

𝜑(𝑥) (𝜂−𝛼)∧0
∫ 1

𝜑 (𝑥 )ℓ
𝑡 (𝛼+𝛽−|k |𝔰 )/ℓ−1𝑑𝑡 ≲ 𝜑(𝑥) (𝜂−𝛼)∧0 = 𝜑(𝑥)𝜂∧𝛼+𝛽−|k |𝔰 .
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Consequently, we obtain

(𝑤2𝑣)(𝑥)
∫ 1

𝜑 (𝑥 )ℓ
|Ak

𝑡 (𝑥) |𝑑𝑡 ≲ {𝐶𝐾 ‖Λ‖𝐶𝜁 ,𝑄 (𝑤𝑣) + 𝐿2}𝜑(𝑥) (𝜁+𝛽−|k |𝔰 )∧0.

The proof of (3.15) is completely the same as that of [59, Theorem 5.12] except the
existence of the factor 𝜑(𝑥, 𝑦)𝜂−𝛾 . □

The following theorem is obtained similarly to [59, Theorem 5.13], so we omit the
proof.

Theorem 3.4.5. In addition to the setting of Theorem 3.4.4, we assume that 𝜁 + 𝛽 > 0
and that (𝑀, 𝑀̄) is 𝐾-admissible for I. Then 𝐾Λ ∈ 𝐶 (𝑤𝑣) is a reconstruction of
K 𝑓 ∈ D𝛾+𝛽,𝜁+𝛽

𝑤2𝑣
(Γ̄)# and

È𝐾ΛÉ𝛾+𝛽,𝜁+𝛽,𝑤2𝑣 ≲ 𝐶𝐾
(
ÈΛÉ𝛾,𝜂,𝑤𝑣 + ‖Π‖𝛾,𝑤 ‖ 𝑓 ‖#

𝛾,𝜂,𝑣

)
.

A similar local Lipschitz estimate to the latter part of Theorem 3.4.4 also holds.

Combining Theorem 3.4.4 with Proposition 3.3.5-(iii), we have the following result.

Corollary 3.4.6. In addition to the setting of Theorem 3.4.4, assume that 𝑤3𝑣 is 𝐺-
controlled and that 𝛼0 > 𝛾 − 𝔰1. Then for any compatible pair of models

(
𝑀 =

(Π, Γ), 𝑀̄ = (Π̄, Γ̄)
)
∈ ℳ𝑤 (𝒯) × ℳ𝑤 (𝒯̄) and any singular modelled distribution

𝑓 ∈ D𝛾,𝜂
𝑣 (Γ), the function K 𝑓 belongs to D𝛾+𝛽,𝜁+𝛽

𝑤3𝑣
(Γ̄), and we have

LK 𝑓 M𝛾+𝛽,𝜁+𝛽,𝑤3𝑣 ≲ ‖I‖L 𝑓 M𝛾,𝜂,𝑣 + 𝐶𝐾 {
‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤)2 ||| 𝑓 |||𝛾,𝜂,𝑣

+ ‖Λ‖𝐶𝜁 ,𝑄 (𝑤𝑣) + ÈΛÉ𝛾,𝜂,𝑤𝑣
}
,

‖K 𝑓 ‖𝛾+𝛽,𝜁+𝛽,𝑤3𝑣 ≲ ‖I‖
{
‖Γ‖𝛾,𝑤L 𝑓 M𝛾,𝜂,𝑣 + ‖ 𝑓 ‖𝛾,𝜂,𝑣

}
+ 𝐶𝐾

{
‖Π‖𝛾,𝑤 (1 + ‖Γ‖𝛾,𝑤)2‖ 𝑓 ‖𝛾,𝜂,𝑣 + ÈΛÉ𝛾,𝜂,𝑤𝑣

}
.

A similar local Lipschitz estimate to the latter part of Theorem 3.4.4 also holds.

3.5 Parabolic Anderson model
In this section, we study the parabolic Anderson model (PAM)(

𝜕1 − 𝑎(𝑥′)Δ + 𝑐
)
𝑢(𝑥) = 𝑏

(
𝑢(𝑥)

)
𝜉 (𝑥′) (𝑥 ∈ (0,∞) × T2) (3.16)

with a spatial white noise 𝜉 defined on a probability space (Ω, F , P). Recall that 𝑥1
in 𝑥 = (𝑥1, 𝑥2, 𝑥3) denotes the temporal variable and 𝑥′ = (𝑥2, 𝑥3) denotes the spatial
variables. Throughout this section, we fix the function 𝑏 : R → R in the class 𝐶3

𝑏, and
the function 𝑎 : T2 → R which is 𝛼-Hölder continuous for some 𝛼 ∈ (0, 1) and satisfies

𝐶1 ≤ 𝑎(𝑥′) ≤ 𝐶2 (𝑥′ ∈ T2)

for some constants 0 < 𝐶1 < 𝐶2. The constant 𝑐 > 0 in the left hand side of (3.16) is
fixed later (see Proposition 3.5.1 and 3.5.2). We prove the renormalizability of (3.16)
in Section 3.5.6. We fix 𝛼 ∈ (0, 1), 𝑑 = 3, 𝔰 = (2, 1, 1), and ℓ = 4 throughout this
section.
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3.5.1 Preliminaries
We denote by 𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), and 𝑒3 = (0, 0, 1) the canonical basis vectors
of R3. We define𝐶𝑏 (R×T2) as the set of all bounded continuous functions 𝑓 : R3 → R
such that

𝑓 (𝑥 + 𝑒𝑖) = 𝑓 (𝑥)
for any 𝑥 ∈ R3 and 𝑖 ∈ {2, 3}. For any 𝛽 > 0, we define 𝐶𝛽𝔰 (R × T2) as the set of
all elements 𝑓 ∈ 𝐶𝑏 (R × T2) such that 𝜕𝑘𝑥 𝑓 ∈ 𝐶𝑏 (R × T2) for any |𝑘 |𝔰 < 𝛽, and if
|𝑘 |𝔰 < 𝛽 ≤ |𝑘 |𝔰 + 𝔰𝑖 , we have

|𝜕𝑘 𝑓 (𝑥 + ℎ𝑒𝑖) − 𝜕𝑘 𝑓 (𝑥) | ≲ |ℎ| (𝛽−|𝑘 |𝔰 )/𝔰𝑖

for any 𝑥 ∈ R3 and ℎ ∈ R.
We denote by 𝑃𝑥1 (𝑥′, 𝑦′) the fundamental solution of the parabolic operator 𝜕1 −

𝑎Δ + 𝑐. Moreover, we introduce the anisotropic elliptic operator

L :=
(
𝜕1 − 𝑎(𝑥′)Δ

)
(𝜕1 + Δ)

on R3 and denote by 𝑄𝑡 (𝑥, 𝑦) the fundamental solution of 𝜕𝑡 −L + 𝑐 with an additional
variable 𝑡 > 0. We recall from [6, Appendix A] some properties of 𝑃𝑥1 (𝑥′, 𝑦′) and
𝑄𝑡 (𝑥, 𝑦).
Proposition 3.5.1 ([6, Theorem 57]). For any 𝐶 > 0, we define the function 𝐺 (𝐶 ) on
R3 by

𝐺 (𝐶 ) (𝑥) = exp
{
− 𝐶

(
|𝑥1 |2 + |𝑥2 |4/3 + |𝑥3 |4/3

)}
.

For sufficiently large 𝑐 > 0, {𝑄𝑡 }𝑡>0 is a𝐺 (𝐶 ) -type semigroup for some constant𝐶 > 0,
in the sense of Definition 3.2.3.

In what follows, we fix 𝐶 > 0 and write 𝐺 = 𝐺 (𝐶 ) . For any 𝐺-controlled weight 𝑤
and any 𝜁 ≤ 0, we can define the Besov space𝐶𝜁 ,𝑄 (𝑤) in the sense of Definition 3.2.4.
We denote by 𝐶𝜁 ,𝑄 (R × T2) the closure of 𝐶𝑏 (R × T2) in the space 𝐶𝜁 ,𝑄 (1) with the
flat weight 𝑤 = 1.

Proposition 3.5.2. For sufficiently large 𝑐 > 0, we have the following.

(i) [6, Theorems 61 and Proposition 62] Let 𝛽 ∈ (0, 𝛼). For any 𝑔 ∈ 𝐶𝛽𝔰 (R × T2),
we can define the function on R × T2 by(

(𝜕1 − 𝑎Δ + 𝑐)−1𝑔
)
(𝑥) :=

∫
(−∞,𝑥1 ]×R2

𝑃𝑥1−𝑦1 (𝑥′, 𝑦′)𝑔(𝑦)𝑑𝑦.

Then ℎ = (𝜕1 − 𝑎Δ+ 𝑐)−1𝑔 is the unique solution of (𝜕1 − 𝑎Δ+ 𝑐)ℎ = 𝑔 such that
ℎ ∈ 𝐶𝛽+2

𝔰 (R × T2) and lim𝑥1→−∞ ℎ(𝑥) = 0.

(ii) [6, Theorem 63] The operator 𝑐 − L has an inverse of the form

(𝑐 − L)−1 𝑓 =
∫ ∞

0
𝑄𝑡 𝑓 𝑑𝑡 =

∫ 1

0
𝑄𝑡 𝑓 𝑑𝑡 +𝑄1 (𝑐 − L)−1 𝑓 .

For any 𝜁 ∈ (−4, 0) \ Z, the map (𝑐 − L)−1 uniquely extends to a continuous
operator from 𝐶𝜁 ,𝑄 (R × T2) to 𝐶𝜁+4

𝔰 (R × T2).
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(iii) [6, Theorem 6] We can decompose (𝜕1 − 𝑎Δ + 𝑐)−1 = 𝐾 + 𝑆, where

𝐾 :=:
∫ 1

0
𝐾𝑡 𝑑𝑡 := −

∫ 1

0
(𝜕1 + Δ)𝑄𝑡 𝑑𝑡

and
𝑆 := 𝐾1 (𝑐 − L)−1 + 𝑐(𝜕1 − 𝑎Δ + 𝑐)−1 (1 + 𝜕1 + Δ) (𝑐 − L)−1.

Then {𝐾𝑡 }𝑡>0 is a 2-regularizing kernel admissible for {𝑄𝑡 }𝑡>0 in the sense
of Definition 3.4.1, where 𝛿 ∈ (2, 2 + 𝛼) in the condition (iii). Moreover, for
any 𝜁 ∈ (−2, 0) \ {−1} and 𝜀 > 0, 𝑆 is continuous from 𝐶𝜁 ,𝑄 (R × T2) to
𝐶
𝛼∧(𝜁+2)+2−𝜀
𝔰 (R × T2).

Remark 3.5.3. One needs to pick a constant 𝑐 > 0 large enough to construct the inverse
operator (𝑐−L)−1, see the proof of Theorem 63 in [6]. However, in the equation (3.16),
𝑐 can be an arbitrary constant. This is because we can replace the 𝑐 on the left-hand
side with a larger constant 𝑐′ by adding a linear correction term (𝑐′ − 𝑐)𝑢(𝑥) to the
right-hand side. This correction term has no serious influences on the discussion in this
section.

3.5.2 Regularity structure associated with PAM
Following [52], we prepare the regularity structure associated with PAM (3.16).

Definition 3.5.4. For any fixed 𝜀 ∈ (0, 1/2), we define the regularity structure 𝒯 =
(A,T,G) of regularity 𝛼0 := −1 − 𝜀 as follows.

(1) (Index set) A = {−1 − 𝜀, −2𝜀, −𝜀, 0, 1 − 𝜀, 1, 2 − 2𝜀, 2 − 𝜀}.

(2) (Model space) T is an eleven dimensional linear space spanned by the symbols

Ξ, I(Ξ)Ξ, 𝑋2Ξ, 𝑋3Ξ, 1, I(Ξ), 𝑋2, 𝑋3, I(I(Ξ)Ξ), I(𝑋2Ξ), I(𝑋3Ξ).

The direct sum decomposition T =
⊕

𝛼∈A T𝛼 is given by

T−1−𝜀 = span{Ξ}, T−2𝜀 = span{I(Ξ)Ξ},
T−𝜀 = span{𝑋𝑖Ξ}𝑖∈{2,3} , T0 = span{1},

T1−𝜀 = span{I(Ξ)}, T1 = span{𝑋𝑖}𝑖∈{2,3} ,
T2−2𝜀 = span{I(I(Ξ)Ξ)}, T2−𝜀 = span{I(𝑋𝑖Ξ)}𝑖∈{2,3} .

(3) (Structure group) G is a group of continuous linear operators on T such that, for
any Γ ∈ G and 𝛼 ∈ A,

(Γ − id)T𝛼 ⊂ T<𝛼 .

Although the above structure group is a more generic one copied from Definition
3.3.1 than the more particular one defined in [52, Section 8], we use the above definition
to avoid preparing algebraic matters such as Hopf algebras and comodules. The above
one is sufficient for the discussion in this section. The admissible model defined later
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is also realized in the particular structure group defined in [52, Section 8]. In what
follows, let 𝒯 be the regularity structure given in Definition 3.5.4 with fixed 𝜀.

We consider the models and modelled distributions as in Section 3.3 with slight
modifications. For any 𝑟 ≥ 0, we define the weight function

𝑣𝑟 (𝑥) = 𝑒−𝑟 |𝑥1 | .

It is easy to see that 𝑣𝑟 satisfies the inequality (3.1) with 𝑣∗𝑟 (𝑥) := 𝑒𝑟 |𝑥1 | and 𝑣𝑟 is 𝐺-
controlled. Moreover, 𝑣𝑟 satisfies the assumption of Remark 3.3.3 with𝑤1 (𝑥) = 𝑒−2𝑟 ‖𝑥 ‖

and 𝑤2 (𝑥) = 𝑒−3𝑟 ‖𝑥 ‖ , where ‖𝑥‖ :=
∑3
𝑖=1 |𝑥𝑖 |.

Definition 3.5.5. We say that a smooth model 𝑀 ∈ ℳ𝑣𝑟 (𝒯) (defined on R3) is
admissible if it satisfies the following properties.

(i) For any 𝑥, 𝑦 ∈ R3 and 𝑖 ∈ {2, 3}, we have(
Π𝑥+𝑒𝑖 (·)

)
(𝑦 + 𝑒𝑖) =

(
Π𝑥 (·)

)
(𝑦), Γ(𝑦+𝑒𝑖 ) (𝑥+𝑒𝑖 ) = Γ𝑦𝑥 .

(ii) We write ΠΞ = Π𝑥Ξ since it is independent of 𝑥. For any 𝑥 ∈ R3, we have

Π𝑥1 = 1, Π𝑥𝑋𝑖 = (·)𝑖 − 𝑥𝑖 , Π𝑥I(Ξ) = 𝐾 (·,ΠΞ) − 𝐾 (𝑥,ΠΞ),

and

Π𝑥I(𝜏Ξ) = 𝐾 (·,Π𝑥𝜏Ξ) − 𝐾 (𝑥,Π𝑥𝜏Ξ) −
∑

𝑖∈{2,3}
((·)𝑖 − 𝑥𝑖)𝜕𝑖𝐾 (𝑥,Π𝑥𝜏Ξ),

where 𝜏 ∈ {I(Ξ), 𝑋2, 𝑋3}.

(iii) For any 𝑥, 𝑦 ∈ R3, we have

Γ𝑦𝑥1 = 1, Γ𝑦𝑥𝑋𝑖 = 𝑋𝑖 + (𝑦𝑖 − 𝑥𝑖)1,
Γ𝑦𝑥Ξ = Ξ, Γ𝑦𝑥I(Ξ) = I(Ξ) +

(
𝐾 (𝑦,ΠΞ) − 𝐾 (𝑥,ΠΞ)

)
1,

and

Γ𝑦𝑥 (𝜏Ξ) = 𝜏Ξ + (Π𝑥𝜏) (𝑦)Ξ,
Γ𝑦𝑥I(𝜏Ξ) = I(𝜏Ξ) + (Π𝑥𝜏) (𝑦)I(Ξ)

+
(
𝐾 (𝑦,Π𝑥𝜏Ξ) − 𝐾 (𝑥,Π𝑥𝜏Ξ) −

∑
𝑖∈{2,3}

(𝑦𝑖 − 𝑥𝑖)𝜕𝑖𝐾 (𝑥,Π𝑥𝜏Ξ)
)
1

+
∑

𝑖∈{2,3}

(
𝜕𝑖𝐾 (𝑦,Π𝑦𝜏Ξ) − 𝜕𝑖𝐾 (𝑥,Π𝑥𝜏Ξ)

)
𝑋𝑖 ,

where 𝜏 ∈ {I(Ξ), 𝑋2, 𝑋3}.

(iv) For any 𝜏 ∈ {Ξ,I(Ξ)Ξ, 𝑋2Ξ, 𝑋3Ξ, 1}, we have

sup
𝑥∈R𝑑

𝑣𝑟 (𝑥) | (Π𝑥𝜏)(𝑥) | < ∞.

98



We define the closed subspace ℳad
𝑟 (𝒯) of ℳ𝑣𝑟 (𝒯) as the completion of the set of

smooth admissible models.

By definition, the subspace

S := span{1,I(Ξ), 𝑋2, 𝑋3,I(I(Ξ)Ξ),I(𝑋2Ξ),I(𝑋3Ξ)}

is invariant under the action of admissible models. In the sense of Definition 3.4.3, the
linear operator I : T → S defined by

I𝜏 =
{
I𝜏 (𝜏 ∈ {Ξ,I(Ξ), 𝑋2Ξ, 𝑋3Ξ})
0 (𝜏 ∈ {1,I(Ξ), 𝑋2, 𝑋3,I(I(Ξ)Ξ),I(𝑋2Ξ),I(𝑋3Ξ)})

is an abstract integration of order 2, and for any 𝑀 ∈ ℳad
𝑟 (𝒯), the pair (𝑀, 𝑀) is

𝐾-admissible for I. Therefore, we can define the operator K by Corollary 3.4.6.
The weight function 𝑣𝑟 is used only to ensure the global bound of the model 𝑀

defined from the white noise. For the definition of singular modelled distributions, the
flat weight 𝑣0 = 1 is sufficient since we study the local-in-time solution theory of (3.16).

Definition 3.5.6. For any interval 𝐼 ⊂ R and any 𝜂 ≤ 𝛾, we define D𝛾,𝜂 (𝐼; Γ) as the
space of all functions 𝑓 : (𝐼 \ {0}) × T2 → T<𝛾 such that

L 𝑓 M𝛾,𝜂;𝐼 := max
𝛼<𝛾

sup
𝑥∈ (𝐼\{0})×T2

‖ 𝑓 (𝑥)‖𝛼
𝜑(𝑥) (𝜂−𝛼)∧0 < ∞,

‖ 𝑓 ‖𝛾,𝜂;𝐼 := max
𝛼<𝛾

sup
𝑥,𝑦∈ (𝐼\{0})×T2 , 𝑥≠𝑦

‖𝑦−𝑥 ‖𝔰≤𝜑 (𝑥,𝑦)

‖ΔΓ
𝑦𝑥 𝑓 ‖𝛼

𝜑(𝑥, 𝑦)𝜂−𝛾 ‖𝑦 − 𝑥‖𝛾−𝛼𝔰
< ∞.

We denote by D𝛾,𝜂 (𝐼, S; Γ) the subspace of S-valued functions in the class D𝛾,𝜂 (𝐼; Γ).

3.5.3 Convolution operators
We can rewrite the equation (3.16) in the form

𝑢(𝑥) =
∫
R2
𝑃𝑥1 (𝑥′, 𝑦′)𝑢0 (𝑦′)𝑑𝑦′ + (𝜕1 − 𝑎Δ + 𝑐)−1{1(0,∞)×R2𝑏(𝑢)𝜉

}
(𝑥), (3.17)

where 𝑢0 is the initial value of 𝑢 at 𝑥1 = 0. In this subsection, we prepare some operators
to reformulate the equation (3.17) at the level of singular modelled distributions.

First, the function 𝑃𝑢0 (𝑥) :=
∫
R2 𝑃𝑥1 (𝑥′, 𝑦′)𝑢0 (𝑦′)𝑑𝑦′ can be lifted to the singular

modelled distribution taking values in the polynomial structure. For any sufficiently
regular function 𝑓 on (R \ {0}) × R2, we define the T-valued function

𝐿 𝑓 (𝑥) := 𝑓 (𝑥)1 + (𝜕2 𝑓 )(𝑥)𝑋2 + (𝜕3 𝑓 )(𝑥)𝑋3 (𝑥 ∈ (R \ {0}) × R2).

Lemma 3.5.7 ([6, Lemma 29]). Let 𝜃 ∈ (0, 1) and 𝑢0 ∈ 𝐶 𝜃 (T2). Then the lift 𝐿 (𝑃𝑢0)
of the function 1𝑥1>0𝑃𝑢0 (𝑥) is in the class D𝛾,𝜃 for any 𝛾 ∈ (0, 2) and we have

‖𝐿 (𝑃𝑢0)‖𝛾,𝜃 ;(0,𝑡 ) ≲ ‖𝑢0‖𝐶 𝜃 (T2 )

for any 𝑡 > 0.
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Next, to lift the second term on the right hand side of (3.17), we prepare two lemmas.
The first one is used to “extend” the domain of singular modelled distributions from
(0, 𝑡) × T2 to R × T2.

Lemma 3.5.8. We fix a smooth non-increasing function 𝜒 : (0,∞) → [0, 1] such that

𝜒(𝑡) =
{

1 (0 < 𝑡 ≤ 1),
0 (𝑡 ≥ 2).

For each 𝑡 > 0, we define the function 𝜒𝑡 : R3 → R by setting 𝜒𝑡 (𝑥) = 1𝑥1>0𝜒(𝑥1/𝑡).
Let 𝑀 = (Π, Γ) ∈ ℳad

𝑟 (𝒯) with some 𝑟 > 0 and let 𝛾 ∈ (0, 1 − 2𝜀) and 𝜂 ≤ 𝛾. For
any 𝑡 ∈ (0, 1] and any 𝑓 ∈ D𝛾,𝜂 ((0, 2𝑡); Γ), we define the function

(𝐸𝑡 𝑓 )(𝑥) = 𝑃<𝛾
(
(𝐿𝜒𝑡 )(𝑥) · 𝑓 (𝑥)

)
,

where the (partial) product (·) on T is defined by

1 · 𝜏 = 𝜏 (𝜏 ∈ {Ξ,I(Ξ)Ξ, 𝑋2Ξ, 𝑋3Ξ, 1}), 𝑋𝑖 · Ξ = 𝑋𝑖Ξ (𝑖 ∈ {2, 3}).

(Other products do not appear due to the assumption on 𝛾.) Then the function 𝐸𝑡 𝑓
belongs to D𝛾,𝜂∧𝛼0 (R; Γ) and satisfies

|||𝐸𝑡 𝑓 |||𝛾,𝜂∧𝛼0;R ≤ 𝐶 (1 + ‖Γ‖𝛾,𝑣𝑟 ) ||| 𝑓 |||𝛾,𝜂;(0,2𝑡 )

for some constant 𝐶 > 0 independent of 𝑡. Moreover, (𝐸𝑡 𝑓 ) | (0,𝑡 ]×T2 = 𝑓 | (0,𝑡 ]×T2 .

Proof. We can check that |||𝐿𝜒𝑡 |||𝛾′ ,0;R ≲ 1 for any 𝛾′ ∈ (1, 2) by definition, so by
applying the continuity of the multiplication of modelled distributions [52, Proposition
6.12], we have

|||𝐸𝑡 𝑓 |||𝛾,𝜂∧𝛼0;(0,2𝑡 ) ≲ ||| 𝑓 |||𝛾,𝜂;(0,2𝑡 ) .

We can extend it into |||𝐸𝑡 𝑓 |||𝛾,𝜂∧𝛼0;(0,2𝑡 ] ≲ ||| 𝑓 |||𝛾,𝜂;(0,2𝑡 ) by the uniform continuity. To
show that 𝐸𝑡 𝑓 ∈ D𝛾,𝜂∧𝛼0 ((0,∞);R), we pick 𝑥 ∈ [2𝑡,∞) × T2 and 𝑦 ∈ (0, 2𝑡) × T2.
By setting 𝑧 = (2𝑡, 𝑦′) we have

‖(𝐸𝑡 𝑓 ) (𝑦) − Γ𝑦𝑥 (𝐸𝑡 𝑓 ) (𝑥)‖𝛼
≤ ‖(𝐸𝑡 𝑓 )(𝑦) − Γ𝑦𝑧 (𝐸𝑡 𝑓 )(𝑧)‖𝛼 + ‖Γ𝑦𝑧 (𝐸𝑡 𝑓 ) (𝑧) − Γ𝑦𝑥 (𝐸𝑡 𝑓 ) (𝑥)‖𝛼
≤ ‖𝐸𝑡 𝑓 ‖𝛾,𝜂∧𝛼0;(0,2𝑡 ] 𝜑(𝑦)𝜂∧𝛼0−𝛾 ‖𝑦 − 𝑧‖𝛾−𝛼𝔰

≲ ||| 𝑓 |||𝛾,𝜂;(0,2𝑡 ) 𝜑(𝑥, 𝑦)𝜂∧𝛼0−𝛾 ‖𝑦 − 𝑥‖𝛾−𝛼𝔰 .

In the second inequality, we use the fact that (𝐸𝑡 𝑓 ) (𝑧) = (𝐸𝑡 𝑓 )(𝑥) = 0 because of
the definition of 𝐸𝑡 . For the case that 𝑥 ∈ (0, 2𝑡) × T2 and 𝑦 ∈ [2𝑡,∞) × T2, by the
properties of models we have

𝑣𝑟 (𝑥)‖(𝐸𝑡 𝑓 ) (𝑦) − Γ𝑦𝑥 (𝐸𝑡 𝑓 )(𝑥)‖𝛼 = 𝑣𝑟 (𝑥)‖Γ𝑦𝑥{Γ𝑥𝑦 (𝐸𝑡 𝑓 ) (𝑦) − (𝐸𝑡 𝑓 )(𝑥)}‖𝛼
≤ ‖Γ‖𝛾,𝑣𝑟 𝑣∗𝑟 (𝑦 − 𝑥)

∑
𝛼≤𝛽<𝛾

‖𝑦 − 𝑥‖𝛽−𝛼𝔰 ‖Γ𝑥𝑦 (𝐸𝑡 𝑓 )(𝑦) − (𝐸𝑡 𝑓 ) (𝑥)‖𝛽

≲ ‖Γ‖𝛾,𝑣𝑟 ||| 𝑓 |||𝛾,𝜂;(0,2𝑡 ) 𝑣
∗
𝑟 (𝑦 − 𝑥)𝜑(𝑥, 𝑦)𝜂∧𝛼0−𝛾 ‖𝑦 − 𝑥‖𝛾−𝛼𝔰 .
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Note that the supremum in the definition of the norm ‖ · ‖𝛾,𝜂;𝐼 is taken over ‖𝑦 − 𝑥‖𝔰 ≤
𝜑(𝑥, 𝑦). Since |𝑦1 | ≤ 1 + |𝑥1 | ≤ 3 in this region, the factors 𝑣𝑟 (𝑥) and 𝑣∗𝑟 (𝑦 − 𝑥)
are bounded both above and below. Thus we can ignore these weights and have
𝐸𝑡 𝑓 ∈ D𝛾,𝜂∧𝛼0 ((0,∞); Γ). On the other hand, 𝐸𝑡 𝑓 ∈ D𝛾,𝜂∧𝛼0 ((−∞, 0); Γ) is obvious
from the definition. Since ‖𝑦−𝑥‖𝔰 ≤ 𝜑(𝑥, 𝑦) implies that 𝑥1 and 𝑦1 have the same sign,
we obtain the assertion. □

Remark 3.5.9. Although the norm of Π-parts of models is perhaps different from the
original one in [52], the norms of Γ-part and modelled distributions are not different
since the semigroup {𝑄𝑡 } is not used for them. Because of this, here and in some
places below (Lemma 3.5.10 and Theorem 3.20), we can use the continuity results of
modelled distribution obtained in [52].

Next, we recall from [52] a different norm of singular modelled distributions. The
following result holds for any singular modelled distributions on R𝑑 taking values in
arbitrary regularity structures and any models.

Lemma 3.5.10 ([52, lemma 6.5]). Let 𝜂 ≤ 𝛾 and 𝑟 ≥ 0, and let 𝐼 ⊂ R be an interval.
For any function 𝑓 : (𝐼 \ {0}) × T2 → T<𝛾 , we define

L 𝑓 M◦𝛾,𝜂;𝐼 := max
𝛼<𝛾

sup
𝑥∈ (𝐼\{0})×T2

‖ 𝑓 (𝑥)‖𝛼
𝜑(𝑥)𝜂−𝛼 .

Then the inequality L 𝑓 M𝛾,𝜂;𝐼 ≤ L 𝑓 M◦𝛾,𝜂;𝐼 obviously holds. Conversely, if

lim
𝑥1→0

𝑃𝛼 𝑓 (𝑥) = 0

holds for any 𝛼 < 𝜂, then there exists a polynomial 𝑝(·) such that, for any 𝑀 ∈ ℳad
𝑟 (𝒯)

and 𝑓 ∈ D𝛾,𝜂 (𝐼; Γ), we have

L 𝑓 M◦𝛾,𝜂;𝐼 ≲ 𝑝(‖Γ‖𝛾,𝑣𝑟 ) ||| 𝑓 |||𝛾,𝜂;𝐼 .

In the end, we can lift the operator (𝜕1 − 𝑎Δ+ 𝑐)−1 to the level of singular modelled
distributions. Recall the decomposition (𝜕1 − 𝑎Δ + 𝑐)−1 = 𝐾 + 𝑆 from Proposition
3.5.2-(iii).

Theorem 3.5.11. Let 𝛾 ∈ (0, 𝛼 ∧ (1 − 2𝜀)), 𝜂 ∈ (𝛾 − 2, 𝛾], 𝑟 ≥ 0, and 𝑡 ∈ (0, 1]. For
any 𝑀 = (Π, Γ) ∈ ℳad

𝑟 (𝒯), 𝑓 ∈ D𝛾,𝜂 ((0, 2𝑡); Γ), and 𝛿 ∈ (0, 𝛾 + 2], we define the
function

P 𝛿
𝑡 𝑓 := 𝑃<𝛿{K(𝐸𝑡 𝑓 ) + 𝐿 (𝑆(R𝐸𝑡 𝑓 ))}.

ThenP 𝛿
𝑡 𝑓 ∈ D 𝛿,𝜂∧𝛼0+2

𝑣3𝑟 (R; Γ). If𝑀 is smooth and admissible in the sense of Definition
3.5.5, then we have

R(P 𝛿
𝑡 𝑓 ) (𝑥) = (𝜕1 − 𝑎Δ + 𝑐)−1 (R𝐸𝑡 𝑓 ) (𝑥). (3.18)

Moreover, there exists a polynomial 𝑝(·) such that, for any 𝜅 ≥ 0 we have

|||P 𝛿
𝑡 𝑓 ||| 𝛿,𝜂∧𝛼0+2−𝜅;(0,2𝑡 ) ≤ 𝑝( |||𝑀 |||𝛾,𝑣𝑟 ) 𝑡𝜅/2 ||| 𝑓 |||𝛾,𝜂;(0,2𝑡 ) . (3.19)

101



Finally, there exists a polynomial 𝑞(·) such that

|||P 𝛿
𝑡 𝑓

(1) ;P 𝛿
𝑡 𝑓

(2) ||| 𝛿,𝜂∧𝛼0+2−𝜅;(0,2𝑡 )

≤ 𝑞(𝑅) 𝑡𝜅/2
(
|||𝑀 (1) ;𝑀 (2) |||𝛾,𝑣𝑟 + ||| 𝑓 (1) ; 𝑓 (2) |||𝛾,𝜂;(0,2𝑡 )

)
for any 𝑀 (𝑖) ∈ ℳad

𝑟 (𝒯) and 𝑓 (𝑖) ∈ D𝛾,𝜂 ((0, 2𝑡); Γ (𝑖) ) with 𝑖 ∈ {1, 2} such that
|||𝑀 (𝑖) |||𝛾,𝑣𝑟 ≤ 𝑅 and ||| 𝑓 (𝑖) |||𝛾,𝜂;(0,2𝑡 ) ≤ 𝑅.

Proof. In the proof of inequalities, due to the density argument, we can assume that the
model 𝑀 is smooth.

We knowK𝐸𝑡 𝑓 ∈ D𝛾+2,𝜂∧𝛼0+2
𝑣3𝑟 (R; Γ) from Corollary 3.4.6, andR𝐸𝑡 𝑓 ∈ 𝐶𝜂∧𝛼0 ,𝑄 (𝑣2𝑟 )

from Corollary 3.3.9. Moreover, since 𝐸𝑡 𝑓 (𝑥) vanishes outside [0, 2] × T2, we also
obtain R𝐸𝑡 𝑓 ∈ 𝐶𝜂∧𝛼0 ,𝑄 (R × T2) by modifying the proof of Theorem 3.3.7. Then by
Proposition 3.5.2-(iii), we have 𝑆(R𝐸𝑡 𝑓 ) ∈ 𝐶

𝛾+2
𝔰 (R × T2) and thus 𝐿 (𝑆(R𝐸𝑡 𝑓 )) ∈

D𝛾+2,𝛾+2 (R; Γ). Therefore, P 𝛿
𝑡 𝑓 ∈ D 𝛿,𝜂∧𝛼0+2

𝑣3𝑟 (Γ) by Proposition 3.3.5-(ii). The
identity (3.18) follows from Theorem 3.4.5 and the definition of 𝐿 (𝑆(R𝐸𝑡 𝑓 )).

Note that |||P 𝛿
𝑡 𝑓 ||| 𝛿,𝜂∧𝛼0+2;(0,2𝑡 ) ≤ 𝐶𝑟 |||P 𝛿

𝑡 𝑓 ||| 𝛿,𝜂∧𝛼0+2,𝑣3𝑟 for some 𝑟-dependent con-
stant 𝐶𝑟 . We show (3.19) for 𝜅 > 0 by applying Lemma 3.5.10. By definition, the only
index 𝛼 ∈ A of elements in S smaller than 𝜂 ∧ 𝛼0 + 2 (≤ 1 − 𝜀) is 𝛼 = 0. Since 𝑀 is
smooth, by Proposition 3.3.8, the T0-component of P 𝛿

𝑡 𝑓 (𝑥) is equal to(
Π𝑥 (P 𝛿

𝑡 𝑓 ) (𝑥)
)
(𝑥) = (RP 𝛿

𝑡 𝑓 )(𝑥) = (𝜕1 − 𝑎Δ + 𝑐)−1 (R𝐸𝑡 𝑓 )(𝑥).

Since (R𝐸𝑡 𝑓 ) (𝑦) =
(
Π𝑦 (𝐸𝑡 𝑓 ) (𝑦)

)
(𝑦) = 0 vanishes on 𝑦 ∈ (−∞, 0) × T2, we also have

(𝜕1 − 𝑎Δ + 𝑐)−1 (R𝐸𝑡 𝑓 ) (𝑥) =
∫
[0,𝑥1 ]×R2

𝑃𝑥1−𝑦1 (𝑥′, 𝑦′) (R𝐸𝑡 𝑓 )(𝑦)𝑑𝑦.

Note that, in the proof of Proposition 3.3.8, we obtained

|R𝐸𝑡 𝑓 (𝑦) | ≲ 𝜑(𝑦)𝜂∧𝛼0 .

Since 𝜂 ∧ 𝛼0 > −2, we can show that

| (𝜕1 − 𝑎Δ + 𝑐)−1 (R𝐸𝑡 𝑓 ) (𝑥) | ≲
∫ 𝑥1

0
|𝑦1 | (𝜂∧𝛼0 )/2𝑑𝑦1 → 0

as 𝑥1 ↓ 0. Therefore, by Lemma 3.5.10 we have

|||P 𝛿
𝑡 𝑓 |||𝛾,𝜂∧𝛼0+2−𝜅;(0,2𝑡 ) ≲ |||P 𝛿

𝑡 𝑓 |||◦𝛾,𝜂∧𝛼0+2−𝜅;(0,2𝑡 )

≲ 𝑡𝜅/2 |||P 𝛿
𝑡 𝑓 |||◦𝛾,𝜂∧𝛼0+2;(0,2𝑡 ) ≲ 𝑡𝜅/2 |||P 𝛿

𝑡 𝑓 |||𝛾,𝜂∧𝛼0+2;(0,2𝑡 ) ,

where ||| · |||◦𝛾,𝜂;𝐼 := L · M◦𝛾,𝜂;𝐼 + ‖ · ‖𝛾,𝜂;𝐼 . The proof of the local Lipschitz estimate is a
slight modification. □
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3.5.4 Solution theory for PAM
We show the local-in-time well-posedness of the equation

𝑈 = 𝐿 (𝑃𝑢0) + P𝛾𝑡
(
𝑏(𝑈)Ξ

)
(3.20)

in the class D𝛾,𝜂 ((0, 2𝑡), S; Γ) with some appropriate choices of 𝛾 and 𝜂. The term
𝐿 (𝑃𝑢0) and the operator P𝛾𝑡 was defined in the previous subsection. The only undefined
object 𝑏(𝑈) is the lift of the composition map 𝑢 ↦→ 𝑏(𝑢) defined in [52, Proposition
6.13]. In the present case, for sufficiently small 𝜀 and any𝑈 ∈ D𝛾,𝜂 ((0, 2𝑡), S; Γ) with
𝛾 ∈ (1, 2 − 2𝜀) and 𝜂 ∈ [0, 𝛾] of the form

𝑈 (𝑥) = 𝑢(𝑥)1 + 𝑣(𝑥)I(Ξ) + 𝑢2 (𝑥)𝑋2 + 𝑢3 (𝑥)𝑋3,

we can define 𝑏(𝑈) ∈ D𝛾,𝜂 ((0, 2𝑡), S; Γ) by the concrete form

𝑏(𝑈)(𝑥) = 𝑏(𝑢(𝑥))1 + 𝑏′ (𝑢(𝑥)){𝑣(𝑥)I(Ξ) + 𝑢2 (𝑥)𝑋2 + 𝑢3 (𝑥)𝑋3}.

Then the map𝑈 ↦→ 𝑏(𝑈) is locally Lipschitz continuous.

Theorem 3.5.12. Assume 𝜀 ∈ (0, 𝛼 ∧ (1/4)) and let 𝜃 ∈ (0, 1 − 𝜀). Then there
exists a function 𝑡0 : (0,∞)2 → (0, 1] such that, the following assertion holds for any
𝑅1, 𝑅2 > 0: For any 𝑢0 ∈ 𝐶 𝜃 (T2) such that ‖𝑢0‖𝐶 𝜃 (T2 ) ≤ 𝑅1, and any 𝑀 ∈ ℳad

𝑟 (𝒯)
such that ‖𝑀 ‖𝛾,𝑣𝑟 ≤ 𝑅2, the equation (3.20) with 𝑡 = 𝑡0 (𝑅1, 𝑅2) and 𝛾 = 1 + 2𝜀 has a
unique solution𝑈 in the class D1+2𝜀,𝜃 ((0, 2𝑡), S; Γ). Moreover, the mapping

𝑆𝑡 : (𝑢0, 𝑀) ↦→ 𝑈

is Lipschitz continuous on the space {𝑢0 ; ‖𝑢0‖𝐶 𝜃 (T2 ) ≤ 𝑅1} × {𝑀 ; ‖𝑀 ‖𝛾,𝑣𝑟 ≤ 𝑅2}.

Proof. The proof is a standard fixed point argument. Note that, the following operators
are well-defined and locally Lipschitz continuous.

• ([52, Proposition 6.13])𝑈 ∈ D1+2𝜀,𝜃 ((0, 2𝑡), S; Γ) ↦→ 𝑏(𝑈) ∈ D1+2𝜀,𝜃 ((0, 2𝑡), S; Γ).

• ([52, Proposition 6.12])𝑉 ∈ D1+2𝜀,𝜃 ((0, 2𝑡), S; Γ) ↦→ 𝑉Ξ ∈ D 𝜀,𝜃−1−𝜀 ((0, 2𝑡); Γ).

• (Theorem 3.5.11) 𝑊 ∈ D 𝜀,𝜃−1−𝜀 ((0, 2𝑡); Γ) ↦→ P1+2𝜀
𝑡 𝑊 ∈ D1+2𝜀,1−𝜀 ∈

((0, 2𝑡), S; Γ).

Therefore, by setting 𝐹 (𝑈) = 𝐿 (𝑃𝑢0) + P1+2𝜀
𝑡

(
𝑏(𝑈)Ξ

)
, we have

|||𝐹 (𝑈) |||1+2𝜀,𝜃 ;(0,2𝑡 ) ≲ ‖𝑢0‖𝐶 𝜃 + 𝑡 (1−𝜀−𝜃 )/2 |||𝑏(𝑈)Ξ|||𝜀,𝜃−1−𝜀

≲ ‖𝑢0‖𝐶 𝜃 + 𝑡 (1−𝜀−𝜃 )/2 |||𝑏(𝑈) |||1+2𝜀,𝜃

≲ ‖𝑢0‖𝐶 𝜃 + 𝑡 (1−𝜀−𝜃 )/2𝑝( |||𝑈 |||1+2𝜀,𝜃 )

for some polynomial 𝑝(·). From this inequality, we can find a large 𝑅 > 0 depending
on 𝑢0 and 𝑀 and show that 𝐹 maps a ball of radius 𝑅 in D1+2𝜀,𝜃 ((0, 2𝑡), S; Γ) into
itself. From here onward, we can show the assertion by an argument similar to [52,
Theorem 7.8]. □
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3.5.5 Convergence of models
In this subsection, we define the sequence of smooth admissible models associated with
regularized noises and show its probabilistic convergence. We fix an even function
𝜚 : R2 → [0, 1] in the Schwartz class and such that

∫
R2 𝜚(𝑥)𝑑𝑥 = 1, and set 𝜚𝑛 (𝑥) =

22𝑛𝜚(2𝑛𝑥) for each 𝑛 ∈ N. We define the smooth approximation of the spatial white
noise 𝜉 by

𝜉𝑛 (𝑥) =
∫
T2
𝜌̃𝑛 (𝑥 − 𝑦)𝜉 (𝑦)𝑑𝑦, (𝑥 ∈ T2)

where 𝜌̃𝑛 denotes the spatial periodization of 𝜌𝑛 defined by 𝜌̃𝑛 (𝑥) :=
∑
𝑘∈Z2 𝜌𝑛 (𝑥 + 𝑘).

For such 𝜉𝑛, we can define the unique smooth admissible model 𝑀𝑛 = (Π𝑛, Γ𝑛) ∈
ℳad
𝑟 (𝒯) by the properties

(Π𝑛𝑥Ξ) (𝑦) = 𝜉𝑛 (𝑦′), (Π𝑛𝑥𝑋𝑖Ξ)(𝑦) = (𝑦𝑖 − 𝑥𝑖)𝜉𝑛 (𝑦′),(
Π𝑛𝑥I(Ξ)Ξ

)
(𝑦) =

(
𝐾𝜉𝑛 (𝑦) − 𝐾𝜉𝑛 (𝑥)

)
𝜉𝑛 (𝑦′) − 𝐶𝑛 (𝑦),

where the function 𝐶𝑛 is defined by

𝐶𝑛 (𝑥) = E
[
(𝐾𝜉𝑛) (𝑥)𝜉𝑛 (𝑥′)

]
=

∫
R3
𝐾 (𝑥, 𝑦)𝑐𝑛 (𝑥′ − 𝑦′)𝑑𝑦

with 𝑐𝑛 (𝑥′ − 𝑦′) := E[𝜉𝑛 (𝑥′)𝜉𝑛 (𝑦′)] = 𝜚̃∗2𝑛 (𝑥′ − 𝑦′).
Theorem 3.5.13. For any 𝑟 > 0 and 𝑝 ∈ [1,∞), the sequence {𝑀𝑛}𝑛∈N of models
defined above converges in 𝐿 𝑝 (Ω,ℳad

𝑟 (𝒯)).
Proof. In view of the inductive proof as in [5], it is sufficient to show the uniform
bounds ��E[

𝑄𝑡 (𝑥,Π𝑛𝑥𝜏)
] �� ≲ 𝑡𝛽/4 (3.21)

for any 𝛽 ∈ {−1 − 𝜀,−2𝜀,−𝜀} and 𝜏 ∈ T𝛽 . Note that the assumptions in [5] are more
restrictive: the kernel 𝑄𝑡 (𝑥, 𝑦) is homogeneous in the sense that it depends only on
𝑥− 𝑦, and the renormalization model is defined from an 𝑥-independent preparation map.
However, the first restriction is used only to prove the above estimate in [5], so if we
can establish this estimate in some alternative way, we can still follow the discussion in
[5]. Moreover, the second restriction is also not problematic, as the algebraic relations
derived from preparation maps can be easily adapted to include 𝑥-dependent preparation
maps. Such a modification is carried out in [6].

Since 𝜉 is a centered Gaussian, we have only to show (3.21) for 𝜏 = I(Ξ)Ξ. By
definition,

E
[
𝑄𝑡 (𝑥,Π𝑛𝑥𝜏)

]
= −

∫
R3
𝑄𝑡 (𝑥, 𝑦)E[(𝐾𝜉𝑛)(𝑥)𝜉𝑛 (𝑦′)]𝑑𝑦

= −
∫
(R3 )2

𝑄𝑡 (𝑥, 𝑦)𝐾 (𝑥, 𝑧)𝑐𝑛 (𝑧′ − 𝑦′)𝑑𝑦𝑑𝑧.

To estimate this integral, we decompose 𝐾 =
∫ 1
0 𝐾𝑠𝑑𝑠 and set

𝐼𝑛𝑡,𝑠 (𝑥) = −
∫
(R3 )2

𝑄𝑡 (𝑥, 𝑦)𝐾𝑠 (𝑥, 𝑧)𝑐𝑛 (𝑧′ − 𝑦′)𝑑𝑦𝑑𝑧.
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By the Gaussian estimates of 𝑄𝑡 and 𝐾𝑠 , their time integral is estimated as∫
R
|𝑄𝑡 (𝑥, 𝑦) |𝑑𝑦1 ≲ ℎ (𝐶 )

𝑡 (𝑥′ − 𝑦′),
∫
R
|𝐾𝑠 (𝑥, 𝑧) |𝑑𝑧1 ≲ 𝑠−1/2ℎ (𝐶 )

𝑠 (𝑥′ − 𝑧′),

for some constant 𝐶 > 0, where ℎ (𝐶 )
𝑡 (𝑥′) := 𝑡−1/2𝑒−𝐶 { ( |𝑥2 |4/𝑡 )1/3+( |𝑥3 |4/𝑡 )1/3 } . Thus we

have

|𝐼𝑛𝑡,𝑠 (𝑥) | ≲ 𝑠−1/2 (ℎ (𝐶 )
𝑡 ∗ ℎ (𝐶 )

𝑠 ∗ |𝑐𝑛 |) (0).

Since |ℎ (𝐶 )
𝑡 ∗ ℎ (𝐶 )

𝑠 (𝑥) | ≲ ℎ (𝑐)𝑡+𝑠 (𝑥) for some constant 𝑐 ∈ (0, 𝐶) (see [6, Lemma 55] for
instance), we have

|𝐼𝑛𝑡,𝑠 (𝑥) | ≲ 𝑠−1/2 (𝑡 + 𝑠)−1/2.

Since we have∫ 1

0
|𝐼𝑛𝑡,𝑠 (𝑥) |𝑑𝑠 ≲

∫ 𝑡

0
𝑠−1/2𝑡−1/2𝑑𝑠 +

∫ 1

𝑡
𝑠−1𝑑𝑠 ≲ − log 𝑡 ≲ 𝑡−𝜀/2

for any 𝜀 > 0, we obtain the estimate (3.21) for 𝜏 = I(Ξ)Ξ. □

3.5.6 Renormalization of PAM
For a fixed initial condition 𝑢0 ∈ 𝐶 𝜃 (T2) and the sequence of random models {𝑀𝑛}
constructed in the previous subsection, we denote by

𝑈𝑛 = 𝑆𝑡 (𝑢0, 𝑀
𝑛)

the solution of the equation (3.20) with 𝛾 = 1 + 2𝜀 and with the random time

𝑡 = 𝑡0

(
‖𝑢0‖𝐶 𝜃 (T2 ) , sup

𝑛∈N
‖𝑀𝑛‖𝛾,𝑣𝑟

)
.

Combining Theorem 3.5.13 with Theorem 3.5.12, we have the following theorem.

Theorem 3.5.14. For each 𝑛 ∈ N, we denote by R𝑛 the reconstruction operator asso-
ciated with 𝑀𝑛. Then the function 𝑢𝑛 = R𝑛 (𝐸𝑡𝑈𝑛) converges in 𝐿∞ ((0, 𝑡) × T2) in
probability as 𝑛→ ∞ and coincides with the unique solution of the equation(

𝜕1 − 𝑎(𝑥′)Δ + 𝑐
)
𝑢𝑛 (𝑥) = 𝑏

(
𝑢𝑛 (𝑥)

)
𝜉𝑛 (𝑥′) − 𝐶𝑛 (𝑥) (𝑏𝑏′)

(
𝑢𝑛 (𝑥)

)
(3.22)

with the initial value 𝑢0 ∈ 𝐶 𝜃 (T2) on 𝑥 ∈ (0, 𝑡) × T2.

As noted in Remark 3.5.3, the constant 𝑐 in the equation (3.22) can be arbitrary.

Proof. On the region 𝑥 ∈ (0, 𝑡) ×T2, since 𝑢𝑛 (𝑥) =
(
Π𝑛𝑥𝑈𝑛 (𝑥)

)
(𝑥), we can assume that

𝑈𝑛 is of the form

𝑈𝑛 (𝑥) = 𝑢𝑛 (𝑥)1 + 𝑣𝑛 (𝑥)I(Ξ) + 𝑢2,𝑛 (𝑥)𝑋2 + 𝑢3,𝑛 (𝑥)𝑋3. (3.23)
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The convergence of {𝑢𝑛} in 𝐿∞ ((0, 𝑡) × T2) follows from the convergence of {𝑈𝑛} and
the definition of the norm L · M𝛾,𝜂;(0,𝑡 ) .

Finally, we show that 𝑢𝑛 satisfies the equation (3.22) on the region (0, 𝑡) × T2. For
any 𝑥 ∈ (0, 𝑡) × T2, the function 𝑏(𝑈𝑛) (𝑥) is of the form

𝑏(𝑈𝑛) (𝑥) = 𝑏(𝑢𝑛 (𝑥))1 + 𝑏′ (𝑢𝑛 (𝑥)){𝑣𝑛 (𝑥)I(Ξ) + 𝑢2,𝑛 (𝑥)𝑋2 + 𝑢3,𝑛 (𝑥)𝑋3},
and then P1+2𝜀

𝑡

(
𝑏(𝑈)Ξ

)
is of the form

P1+2𝜀
𝑡

(
𝑏(𝑈)Ξ

)
(𝑥) = 𝑤𝑛 (𝑥)1 + 𝑏(𝑢𝑛 (𝑥))I(Ξ) + 𝑤2,𝑛 (𝑥)𝑋2 + 𝑤3,𝑛 (𝑥)𝑋3

for some functions 𝑤𝑛, 𝑤2,𝑛, and 𝑤3,𝑛. For 𝑈𝑛 to solve the equation (3.20), the
coefficient 𝑣𝑛 (𝑥) in (3.23) must be equal to 𝑏(𝑢𝑛 (𝑥)) for any 𝑥 ∈ (0, 𝑡) × T2. By
Theorem 3.5.11, the function 𝑢𝑛 satisfies

𝑢𝑛 (𝑥) = 𝑃𝑢0 (𝑥) +
∫
[0,𝑥1 ]×R2

𝑃𝑥1−𝑦1 (𝑥′, 𝑦′) (R𝑛𝐸𝑡 𝑓 (𝑈𝑛)Ξ) (𝑦)𝑑𝑦.

Since 𝑦 ∈ (0, 𝑡) × T2, from the definition of Π𝑛𝑥I(Ξ)Ξ, we obtain

(R𝐸𝑡𝑏(𝑈𝑛)Ξ) (𝑦) =
(
Π𝑦𝐸𝑡𝑏(𝑈𝑛)(𝑦)Ξ

)
(𝑦) =

(
Π𝑦𝑏(𝑈𝑛)(𝑦)Ξ

)
(𝑦)

= 𝑏(𝑢𝑛 (𝑦))𝜉𝑛 (𝑦′) − 𝐶𝑛 (𝑦)(𝑏𝑏′) (𝑢𝑛 (𝑦)).

This implies that 𝑢𝑛 satisfies the equation (3.22) (in mild sense) on (0, 𝑡) × T2. □

We also have a stronger convergence result.
Corollary 3.5.15. In the setting of Theorem 3.5.14, the convergence of {𝑢𝑛} also holds
in the space 𝐶 𝜃𝔰 ((0, 𝑡) × T2).
Proof. We only show the uniform bounds of {𝑢𝑛} in the 𝜃-Hölder norm, since the proof
of the convergence is a simple modification. First, we set 𝑈̄𝑛 = P1+2𝜀

𝑡

(
𝑏(𝑈𝑛)Ξ

)
∈

D1+2𝜀,𝜃 ((0, 2𝑡), S; Γ𝑛) and decompose

𝑢𝑛 = 𝑃𝑢0 + 𝑢̄𝑛, 𝑢̄𝑛 := R𝑛 (𝐸𝑡𝑈̄𝑛).
Since the uniform bounds of {𝑃𝑢0} in the 𝜃-Hölder norm is more elementary (see
e.g. [6, Proposition 62]), we focus on the remaining term. By definition, for any
𝑥 ∈ (0, 𝑡) × T2, 𝑢̄𝑛 (𝑥) coincides with the 1-component of 𝑈̄𝑛 (𝑥), and also with that
of 𝑃<𝜃𝑈̄𝑛 (𝑥). Since {𝑃<𝜃𝑈̄𝑛} is uniformly bounded in the norm ‖ · ‖ 𝜃, 𝜃 ;(0,𝑡 ) by
Proposition 3.3.5-(ii), we have

|𝑢̄𝑛 (𝑦) − 𝑢̄𝑛 (𝑥) | ≲ ‖𝑦 − 𝑥‖ 𝜃𝔰
for any 𝑥, 𝑦 ∈ (0, 𝑡) × T2 such that ‖𝑦 − 𝑥‖𝔰 ≤ 𝜑(𝑥, 𝑦). Here and in what follows,
we omit proportional constants polynomially depending on the norms of {𝑈̄𝑛} and
{Γ𝑛}, which are uniform over 𝑛. It remains to show the same Hölder-type inequality
in the region 𝜑(𝑥, 𝑦) < ‖𝑦 − 𝑥‖𝔰. In this region, by using the inequality (3.5), we have
𝜑(𝑥) ∨ 𝜑(𝑦) ≲ ‖𝑦 − 𝑥‖𝔰. On the other hand, we also have that {𝑈̄𝑛} is uniformly
bounded in the norm L · M◦1+2𝜀,𝜃 ;(0,𝑡 ) by Lemma 3.5.10. Hence

|𝑢̄𝑛 (𝑦) − 𝑢̄𝑛 (𝑥) | ≤ |𝑢̄𝑛 (𝑦) | + |𝑢̄𝑛 (𝑥) | ≲ 𝜑(𝑦) 𝜃 + 𝜑(𝑥) 𝜃 ≲ ‖𝑦 − 𝑥‖ 𝜃𝔰
in the region 𝜑(𝑥, 𝑦) < ‖𝑦 − 𝑥‖𝔰. This completes the proof. □
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[66] C. Liu, D. J. Prömel, and J. Teichmann, Stochastic analysis with modelled distri-
butions. Stoch PDE: Anal Comp 9 (2021), 343–379.

[67] N. Muskhelishvili, Singular Integral Equations. Boundary Problems of Functions
Theory and Their Applications to Mathematical Physics, edited by J.R.M. Radok.
Reprinted. Wolters-Noordhoff Publishing, Groningen (1972).

[68] D. Nualart, The Malliavin Calculus and Related Topics, Springer, (2005).

[69] Y. Osajima, General asymptptics of Wiener functionals and applications to implied
volatilities, In: Large Deviations and Asymptotic Methods in Finance, Springer,
(2015).

[70] F. Otto and H. Weber, Quasilinear SPDEs via Rough Paths. Arch Rational Mech
Anal 232 (2019), 873–950.

[71] H. Pham, H. Some Applications and Methods of Large Deviations in Finance and
Insurance. In: Paris-Princeton Lectures on Mathematical Finance 2004, Lecture
Notes in Mathematics, vol 1919. Springer, Berlin, Heidelberg, (2007).

[72] A. Puhalksii, Large deviation analysis of the single server queue, Queueing Systems
21, 5-66, (1995).

[73] P. Rinaldi and F. Sclavi, Reconstruction theorem for germs of distributions on
smooth manifolds. J. Math. Anal. Appl. 501 (2021), Paper No. 125215, 14 pp.

[74] H. Singh, Canonical solutions to non-translation invariant singular SPDEs.
arXiv:2310.01085.

[75] H. Singh and J. Teichmann, An elementary proof of the reconstruction theorem.
arXiv:1812.03082.

[76] P. Zorin-Kranich, The reconstruction theorem in quasinormed spaces. Rev. Mat.
Iberoam. 39 (2023), 1233–1246.

111



Acknowledgment
I truly appreciate Professor Masaaki Fukasawa for his fruitful guidance and comments
for my research during my doctoral course. I would also like to thank Professor Masato
Hoshino, a collaborator in my research, for his valuable comments and the opportunity
for discussion.

The author was supported by JST (Grant Number JPMJSP2138) from April 2023 to
March 2025. The author is currently supported by JSPS KAKENHI (Grant Number
25KJ1763) from April 2025.

112



List of Works
This thesis is based on the following works:

Publications
1. M.Hoshino and R. Takano, A semigroup approach to the reconstruction theo-

rem and the multilevel Schauder estimate for singular modelled distributions,
Stoch PDE: Anal Comp (2025), https://doi.org/10.1007/s40072-025-00352-5,
arXiv:2408.04322.

2. R. Takano, Large Deviation Principle for Stochastic Differential Equations Driven
by Stochastic Integrals, SIAM Journal on Financial Mathematics Vol.16, 2, p480-
515, (2025), arXiv:2403.14321.

3. M. Fukasawa, R. Takano, A partial rough path space for rough volatility, Electron.
J. Probab. 29 (2024), article no. 18, 1–28, arXiv:2205.09958.

Talks
1. A semigroup approach to the reconstruction theorem and its applications,Far East

Probability Workshop 2025, Hokkaido university, June 2025. [invited]

2. A semigroup approach to the reconstruction theorem and its applications, Third
China-Japan-Korea Joint Probability Workshop, Kyoto university, May 2025.

3. A semigroup approach to the reconstruction theorem and its applications, 東北
大学数学教室確率論セミナー,東北大学, 2025年 4月. [invited]

4. A semigroup approach to the reconstruction theorem and its applications, 2024
年度日本数学会年会,早稲田大学, 2025年 3月.

5. Large deviation principle for rough volatility models, Winter Workshop on Op-
erations Research, Finance and Mathematics, 2025, Hokkaido, Feb. 2025.

6. A semigroup approach to the reconstruction theorem and its applications, New
Trends in Rough Path Analysis, Osaka university, Feb, 2025.

7. Large deviation principle for rough volatility models, Ritsumeikan University
Probability and Mathematical Finance Seminar, Ritsumeikan University, Jan.
2025. [invited]

8. A semigroup approach to the reconstruction theorem and the multilevel Schauder
estimate for singular modelled distributions, 2024年度確率論シンポジウム,京
都大学, 2024年 12月.

9. Large deviation principle for rough volatility models, UQ-Osaka Seminar on
Financial Mathematics and Economics, online, Dec. 2024. [invited]

113



10. Large deviation principle for stochastic differential equations driven by stochastic
integrals,確率解析とその周辺,ソニックシティビル, 2024年 12月.

11. Large deviation principle for rough volatility models, TMU Workshop on Finance
2024, Tokyo Metropolitan University, Sep. 2024. [invited]

12. A semigroup approach to the reconstruction theorem and the multilevel Schauder
estimate for singular modelled distributions, 2024 Open German-Japanese Con-
ference on Stochastic Analysis and Applications, Hokkaido University, Sep.
2024, poster session.

13. 確率積分が駆動する確率微分方程式に対する大偏差原理, 日本数学会 2024
年度秋季総合分科会,大阪大学, 2024年 9月．

14. A semigroup approach to the reconstruction theorem and the multilevel Schauder
estimate for singular modelled distributions, 2024年度確率論ヤングサマーセ
ミナー,西谷津温泉宮本の湯, 2024年 8月．

15. Large deviation principle for stochastic differential equations driven by stochastic
integrals, The Eighth Asian Quantitative Finance Conference, National Taipei
University of Technology, Aug. 2024.

16. Large deviation principle for stochastic differential equations driven by stochastic
integrals,九州大学確率論セミナー,九州大学, 2024年 6月. [invited]

17. ラフボラティリティモデルに対する大偏差原理, 丸の内 QFセミナー, 東京
都立大学, 2024年 5月. [invited]

18. Large deviation principle for stochastic differential equations driven by stochastic
integrals,関西確率論セミナー,京都大学, 2024年 5月. [invited]

19. A partial rough path space for rough volatility, Winter Workshop on Operations
Research, Finance and Mathematics 2024, Hokkaido, Mar. 2024.

20. A partial rough path space for rough volatility,関西大学確率論セミナー,関西
大学, 2024年 2月. [invited]

21. A partial rough path space for rough volatility, 16 Bachelier Colloquium, France,
Jan. 2024

22. A partial rough path space for rough volatility,大阪大学確率論セミナー,大阪
大学, 2023年 4月，

23. The large deviation for the Lyons-Victoir extension,確率論早春セミナー 2023,
奈良女子大学, 2023年 3月．

24. The large deviation for the Lyons-Victoir extension,日本数学会 2023年度年会,
中央大学, 2023年 3月．

25. The large deviation for the Lyons-Victoir extension, Osaka-UCL Mini-Workshop
on Stochastics, Numerics and Risk, Osaka University, Feb. 2023．

114



26. The large deviation for the Lyons-Victoir extension, 2022年度確率論シンポジ
ウム,京都大学, 2022年 12月.

27. A partial rough path space for rough volatility, 2022年度確率論ヤングサマー
セミナー,京都大学, 2022年 8月．

28. A partial rough path space for rough volatility,日本数学会 2022年度年会, 2022
年 3月,（コロナウイルス蔓延措置有）

29. A partial rough path space for rough volatility,日本応用数理学会第 18回研究
部会連合発表会,オンライン, 2022年 3月

30. A partial rough path space for rough volatility, 2021年度確率論シンポジウム,
オンライン, 2021年 12月．

31. Rough Pathについて, 2021年度確率論若手セミナー,オンライン, 2021年 8
月．

115


