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Abstract

In this thesis, we analyze rough volatility models and parabolic Anderson model, which
arise in mathematical finance and physics respectively, using rough path theory and the
theory of regularity structures. Chapter 1 and Chapter 2 are devoted to rough volatility
models, where we establish a large deviation principle (LDP) under weaker assumptions
on the coefficients than in previous works.

Chapter 1 introduces partial rough paths, functionals of the noise (X, X), where
X is a Brownian motion and X is typically Riemann-Liouville fractional Brownian
motion. The structure of such partial rough paths is determined from approximations
of integrals of the form f f(X) dX, obtained via Taylor expansion of a smooth function
f- Using this framework, we prove an LDP for rough volatility models and derive the
asymptotic behavior of the implied volatility, consistent with the power-law behavior
observed in equity option markets.

Chapter 2 analyzes one-dimensional rough volatility models within the standard
rough path framework. To this end, we focus on stochastic integrals whose integrand is
given by the volatility process, constructing rough paths via Young pairing. Establishing
an LDP for these stochastic integrals yields an LDP for rough volatility models, again
characterizing the asymptotic behavior of the implied volatility.

Although both chapter share the common goal of analyzing rough volatility mod-
els through rough path techniques, their methodology differs. Chapter 1 emphasizes
advancing rough path theory itself through the concept of partial rough paths, with
largely deterministic tools. Chapter 2 takes a more probabilistic route, focusing on
LDPs for stochastic integrals. Both approaches offer advantages over previous studies
by requiring weaker assumptions on volatility coefficients though the precise conditions
differ slightly between them.

Chapter 3 turns to singular stochastic partial differential equations, studied via the
theory of regularity structures. A central object of interest is the construction of solution
maps, achieved by combining the reconstruction theorem with the multi-level Schauder
estimate. As an application, we construct local-in-time solutions to the two-dimensional
parabolic Anderson model with a non-translation-invariant differential operator, again
under weaker assumptions on the coefficients than those in previous works.

A main theme throughout the thesis is the analysis of random time evolutions
through modern analytic frameworks, rough path theory and the theory of regularity
structures. These methods are inherently pathwise, yet in finite-dimension settings they
remain consistent with Itd calculus. Rough analysis thus presents a formulation that
looks quite different from the classical Itd calculus, offering new insights. The results
presented in this thesis contribute to broadening the mathematical foundations of rough
path analysis and regularity structures in the study of stochastic models in finance and
physics. It is hoped that further development of such analytic techniques will continue
to deepen our understanding of stochastic analysis and its applications.
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Chapter 1

A partial rough path space for
rough volatility™

1.1 Introduction

A rough volatility model is a stochastic volatility model for an asset price process with
volatility being rough, meaning that the Holder regularity of the volatility path is less
than half. Recently, such models have been attracting attention in mathematical finance
because of their unique consistency to market data. Indeed, rough volatility models are
the only class of continuous price models that are consistent to a power law of implied
volatility term structure typically observed in equity option markets, as shown by [31].
One way to derive the power law under rough volatility models is to prove a large
deviation principle (LDP) as done by many authors [23, 9, 8, 24, 25,48, 50, 51, 62, 42,

, 49] using various methods. An introduction to LDP and some of its applications to

finance and insurance problems can be found in [71, 26]. In the context of the implied
volatility, a short-time LDP under local volatility models provides a validity proof for a
precise approximation known as the BBF formula [12, 1]. The SABR formula, which

is of daily use in financial practice, is also proved as a valid approximation under the
SABR model by means of LDP [69]. From these successes in classical (non-rough)
volatility models, we expect LDP for rough volatility models to provide in particular
a useful implied volatility approximation formula for financial practice such as model
calibration.

For the classical models that are described by standard stochastic differential equa-
tions (SDEs), an elegant way to prove an LDP is to apply the contraction principle
in the framework of rough path analysis [29, 30]. Under rough volatility models, the
volatility of an asset price has a lower Holder regularity than the asset price process.
The stochastic integrands are therefore not controlled by the stochastic integrators in
the sense of [43]. Hence, a rough volatility model is beyond the scope of rough path

*Reproduction of a joint work with Professor Masaaki Fukasawa (The University of Osaka), first pub-
lished in Electronic Journal of Probability, Vol.29, No.18, pp.1-28, (2024), https://doi.org/10.1214/24-
EJP1080.



theory, which motivated [8] to develop a regularity structure for rough volatility. For
classical SDEs, the Freidlin—Wentzell LDP can be obtained as a consequence of the
continuity of the solution map (the Lyons—Itd map) that is the core of rough path theory.
In [8], the LDP for rough volatility models is obtained using the continuity of Hairer’s
reconstruction map. Herein, we take an approach that is similar to that of [8] in spirit
but differs somewhat. Instead of embedding a rough volatility model into the abstract
framework of regularity structure, we develop a minimal extension of rough path theory
to incorporate rough volatility models. Besides the relatively elementary construction,
an advantage of our theory is that it ensures the continuity of the integration map
between rough path spaces, which enables us to treat a more general model than [8].
We focus on a model of the following form:

dS; = o (S)) f(Xe, 1)dX;, S €R, (1.1)

where X is a d-dimensional Brownian motion, X is an e-dimensional stochastic process
of which components include fot k(t — s)dX; with a deterministic L> kernel x. The
stochastic integration is in the It6 sense. An example is the rough Bergomi model
(k = kg is the Riemann-Liouville kernel (1.4), f is exponential, and o (s) = s in (1.1))
introduced by [7]. When k = kg or more generally « has a similar singularity to kg
with H < 1/4, beyond the case of o (s) = 1 or o (s) = s, no LDP is available in the
literature so far, including [8]. As mentioned above, the difference between classical
SDEs and (1.1) is that the volatility process X is not controlled by X because of its lower
regularity. From empirical evidence, we are particularly interested in the case where
X is correlated with X and H < 1/4 [40, 11, 36, 14]. Unfortunately, the application
of existing rough path theory involves iterated integrals of X while, as is well-known,
the standard rough path lift of (X, X) that is amenable to LDP does not work when
H < 1/4;seee.g., [30].

Our idea, inspired by [8], is to consider a partial rough path space in which we lack
the iterated integrals of X but are still able to treat (1.1). More precisely, we define
the space of a triplet of iterated integrals driven by X (we do not consider iterated
integrals driven by X) and rederive analytical results obtained in existing rough path
theory. The notion of a partial rough path was introduced in [46] to prove the existence
of global solutions for differential equations driven by a rough path with vector fields
of linear growth. Our motivation is different and requires a space of higher-level paths.
In contrast to [8], our method does not rely on the theory of regularity structure and
enables us to treat not only the rough Bergomi model but also the following rough
volatility models:

- the rough SABR model [35, 67, 34, 32];

the mixed rough Bergomi model [15];

- rough local stochastic volatility [61];

the two-factor fractional volatility model [38].

To the best of our knowledge, no LDP for these models is established so far in the
literature.



To explain the idea of the partial rough path, here, we argue for how such a partial
rough path space should be. Suppose that d,e = 1, x : [0,T] — R, % [0,T] — R,
and f : R® — R are good enough. By the Taylor expansion, for s < ¢ (which are close

enough), we have
[ rm = o s+ Y, 1ot [ -

lil=n

and

[([ o)
> ]—6]f(x 0% f (%) [ / (& — £)" ( / (fu—fs)fdxu)wxr],

|j+k|<n
where y; := fot f(®;)dx,, i, j, k are multi-indices, and we use the following notation:
. N . . < . l L l l £ 8 i[
|1|:=Zzl, 1!:=1_[ll!, x' = n(xl)’, 0 :=l—l F
=1 I=1 I=1 =1 \OX

fori = (iy,...,i¢), x = (x1,...,x.). Therefore, following the idea of rough path theory,
we would be able to define a rough path integral f f(&;)dx, if we could define

)= [ s, x00 = [ Gt s a,

for Xy 1= £ — £5. By the linearity of the integration and the binomial theorem (see
Section 8.1 in [22]), X and X/%) should satisfy the following formulas respectively:
foranyi,j,k € Z{ands S u =t

x4 = (')+Z(l ),(Xsu)’ rx(p) (1.2)
psi

and

(K _ (k)
X" =Xl +Z(k Y
qsk

"2, (- p)'(k nI CUBR R

P=jqsk

(Xsu)k qX(j) ®X(‘1)
(1.3)

where, fori,j € Z¢,i £ jmeans forall/ € {1,...,e}, i; £ ji, and Z, is the set of the
nonnegative integers. Our partial rough space is a space for X, X©) and X% where
the formulas (1.2) and (1.3) should play the role of Chen’s identity.

In Section 1.2, we formulate such a partial rough path space and state some funda-
mental properties including the continuity of the integration map. In Section 1.3, we
construct a rough path lift of our rough volatility model and state an LDP. Proofs are
relegated to Section 1.4.



1.2 A partial rough path space
1.2.1 Definition

Throughout this article, we fix @ € (%, %], B € (0, %), T > 0 and denote
Ar ={(s,0)|0< st T}, I:={ieZl|ilB+a <1},

and
Ji={(. k) € ZS X ZS| |j +k|B+2a < 1),

Extending the notion of an a-Holder rough path in rough path theory, here we define
an (a, ) rough path.

Definition 1.2.1. An («, 8) rough path X = (X, X, XUR) (j.xyes 18 a triplet of
functions on Ar satisfying the following conditions for any i € I,(j,k) € J, and
sfSust.

(i) X is Re-valued, XV is R%-valued, and XK is R¢ @ R¥-valued.

(ii) Modified Chen’s relation: Xg = Xg + Xy, and X and XUK) satisfy (1.2) and
(1.3), respectively.

(iii) Holder regularity:
A P . ik .
Xoel < It —sP, X0 je— 5|8+, XYY < o — 5)HkIB*20

Let Q(,p)-H1a denote the set of («, B) rough paths. We define a metric function d(, g)
on Q4 g)-aid and a homogeneous norm |||X||| (o ) respectively by

diap) (X, Y)

= ||X = ¥llg-ra + Z XD =Y Dipramma + [1XYE = YUR i ks2amia
iel,(j,k)eJ

and
X (a.p)

N . L/(]i]+1) .
=1 X]|g-11a + Z (||X(l)|||i|ﬁ+(x—Hld) + (||X(]k)||\j+klﬁ+2(x—Hld
iel,(j,k)ed

)1/(|j+k|+2>

k]

where || - ||,-miq is the y-Holder norm for two-parameter functions for y € (0, 1]:

[ X
[1X|ly-H1d :=  sup .
7 oss<t<T |t =SV

Remark 1.2.2. The modified Chen’s relation and the Holder regularity of XV and
X %) are from the following correspondence:
1 [! 1

t
A i 0 ik A k 1 0
s Jds s Jds



when X and X have Holder regularity o and S, respectively. Note also that
(X, X0} s an a-Hélder rough path with the first level X(©) and the second level
X () in the usual rough path terminology. An (, 8) rough path has two first-level
paths: X and X.

Remark 1.2.3. Our modified Chen’s relation is a particular form of the algebraic
structure of branched rough paths studied in [44]. However, because X is not a controlled
path of X, the novel framework of (@, 8) rough paths is essential for establishing the
rough path integral stated in the Introduction.

Remark 1.2.4 (A comparison with [8]). The iterated integral X, @) _ / dX; (0

plays a key role also in [8] (see Section 3.1 in [8], where Xs(l) W‘, in their notatlon)
In [8], its derivative 3 3 LW appears in the structure space of regularity structure. Our
(a, B) rough path consists of not only XS) but also Xs(f ) The latter is required to
construct a rough path integral as an element of a rough path space, while in [8] the
corresponding integral is constructed as merely a distribution and such terms as ng k)
are not necessary for that purpose. As mentioned in Introduction, the key to treat (1.1)
with a general function o is to construct f f(X;,1)dX, as an element of a rough path

space.

1.2.2 (a, B) rough path integration

Extending the rough path integration, here we introduce an integration with respect to
an (a, B) rough path.

Definition 1.2.5. Fix X € Q4. 5)-ma. We define Y1) and Y(? as follows if they exist:

v . w0
e g5

p=1iel
N
2) ._ 13 (1 (1) i r(a kpra (Jk)
v = Dim DO\ @YD D 8 f G, )0 f Ry, )X
p=1 (J,k)e

where &5 = Xos, and P = {s =19 < t; < ... <ty =t}isa partition of the interval
[s,t]. The mesh size |P| is defined by |P| = max,, |t, — t,—1]|. If they exist on Az, we
denote (Y1), Y®)) by [ £(X)dX, and we call this the (a, B) rough path integral of f.

Denote by Q,-mig the a-Holder rough path space, and denote by d, the metric
function on Q,.mq; see [27], for example. Here, we state our first main result, the proof
of which is given in Section 1.4.1.

Theorem 1.2.6. Let n := max{|i| : i € I} and assume that f : R — R is C"*2.

(i) Forany X € Q(, g)-Hu, the (@, §) rough path integral f f(X)dX is well-defined,
and /f(X)dX S Q(l-Hld'



(i) The integration map / 1 Q(a,p)-HId — ¢-H1d is locally Lipschitz continuous.
More precisely, for any M > 0, the map / |, - Testricted on the set

Em = {X € Qapymal 1Xll(ap <M},

is Lipschitz continuous; that is, there exists a positive constant C > 0 such that

dq ( / F(¥av, / f(W)dW)ng((,ﬁ) (V,W), V.Weé&y.

1.3 Large deviation

1.3.1 A lift to the partial rough path space

We now construct an («, 8) rough path, which plays an important role in this paper.
For notational simplicity we focus on a low dimensional case (both x and W below are
one-dimensional) but extensions to higher dimensional cases are straightforward. The
proof is deferred to Section 1.4.2. Let x : (0,7] — [0, o) as

k(t) =g(Ot*™Y, te(0,T],
where v, £ € (0, 1) and g is a Lipschitz function. For example, the Riemann-Liouville
kernel
(H-1/2

TH+1/2) te(0,T], He(0,1/2) (1.4)

kg (t) =
has the above form ({ = H-06,y =1/2-06,g(t) = 1/T'(H + 1/2), where 6 € (0, 1/2)).
For « € (0, 1], let C%H4 denote the space of a-Holder continuous functions on [0, T7].
Let K : Cv-Hld _, c4-HId g

K (1) = lim {w— WO =FON+ [ —f(t))K'(t—s)ds}

=) (f(1) - f(0)) + /0 (f(s) = f(D)K (1 = s)ds.

Proposition 1.3.1. Let (Q, 7, P, {#;}:20) be a filtered probability space, and fix a €
(1/3,1/2], B € (0,1/2), and y,¢ € (0,1) with y < 1/2, B < £. Suppose that
X = (X', ..., X%) is a d-dimensional (possibly correlated) Brownian motion, and W is a
one-dimensional Brownian motion possibly correlated to X. Using the Itd integration,
define X, X, and XK ag follows: for (s,t) e Ar,ieland (j,k) € J,

X = KW (1) - KW (s),



Let kg (r) :== (k(t = r) — k(s = r)1(0,5)(r)) 1(0.r)(r) and assume that

el s, S Cle = sPE7H,

Then we have the following.

(i) Foras.w € Q,X(w) = (X(w), X (w),XUR (@))er.(.1)es 15an (@, B) rough
path.

(ii) It holds that

(1) t
( / f(X)dX) - / FRo)dX, s,
0t 0

where the left-hand side is the first level of the (a, 8) rough path integral and the
right-hand side is the Itd integral.

1.3.2 The large deviation principle on Q, g).Hia

We now discuss the LDP on Q4 g)-miq- Following [62, 42], we use Garcia’s theorem
[39]. Let (W, W) be a two-dimensional standard Brownian motion and X := pW +

V1= p2W*, p € [-1,1]. Define X, X, XU¥) as in Proposition 1.3.1 with d = 1,
e =2 . We state our second main result, the proof of which is given in Section 1.4.3.

Theorem 1.3.2. Let X = (X, X, XUK)) be the random variable taking values on
(Q(a,p)-Hld> d(a,p)) defined as above. Then, the sequence of triplets

X€ = (61/25(,E(|i|+1>/zx<i>,E<|j+k|+2>/zx<jk))
satisfies the LDP on ((4,8)-Hid> d(a,p)) With speed e~ with good rate function
(%, xD, xUR)) = inf {f#(v)|v e H, (2,21 xU0) =LoK(1)},
where H is the Cameron—Martin space from [0, T'] to R2,

K@) = ((/ k(- — r)dﬁﬁl),O) LD 441 —p2\7(2))
0

and
L(u,v) = (6u,u-v,uxv), u,veCpr),veH,

Ougr = up —ug,u-v="_(~u~v),u*v=_(uxv),and

t t
(Ui v)g = / (uy = us)ldvr’ (u *jk V)st = / (u j V)sr(y — us)kdvr-
N N
Here, I* : C —> [0, o0) is the rate function of two-dimensional Brownian motion:

P(5) = {%”9“3{’ veH,

00, otherwise.

11



Theorem 1.3.3. The sequence of the processes {Y €= f f(Xe)dxe } > Satisfies the
LDP on (Q4-p1d, do) with speed e~ ! with good rate function

" (y) := inf {f##(X)

X eQap)md ¥ = / f(X)dX}

= inf{i#(v)

veH, (u,v)=K®©@), y= / f(i(u,v))dL(u,v)},

where " is defined in Theorem 1.3.2.

Proof. By Theorems 1.2.6 and 1.3.2 together with the contraction principle, we have
the claim. o

1.3.3 Rough differential equations and their LDP

We now discuss the following type of rough differential equation (RDE) (in Lyons’
sense; see Section 8.8 of [27], for example):
S, = /OI&(E,,)dYu, (1.5)
where §;, = S; — So, 7 (s) = 0 (Sp + 5) and
Y = / FX)dX € Quma([0,T],RY), X € Qap)-Hid- (1.6)

Theorem 1.3.4. Let o € C;.
(i) RDE (1.5) driven by (1.6) has a unique solution ®(Y) = (Y, §), where
@ : Qoma([0, 7], RY) X R = Qqoia ([0, TT, R

is the solution map of (1.5) that is locally Lipschitz continuous with respect to
da.

(i1) The first level of the last component S of the solution to RDE (1.5) for (1 ._6) with
X = X(w) defined in Proposition 1.3.1 gives the solution S(w) = Sy + S to the
1t6 SDE (1.1).

Proof. (i) is a standard result from rough path theory; see e.g., Theorem 1 in [65] or
Chapter 8 in [27]. (ii) follows from Proposition 1.3.1; see Chapter 9 in [27]. |

Theorem 1.3.5. Let o € Ci and S§€ := ®(Y€), where ® is the solution map of
Theorem 1.3.4. Then the sequence of the processes {S€}¢x¢ satisfies the LDP on
Qo miq With speed e~ ! with good rate function

I(3) = inf {I"™(¥)| Y € Qqopa, 5= DY)}

=inf {i#(ﬁ) veH, (u,v) =K(@), 5= / 7 (5) f (L(u, v))dL(u, v)} .

Proof. Because the solution map @ is continuous, Theorem 1.3.4 and the contraction
theorem imply the claim. O

12



1.3.4 Short-time asymptotics

We consider the case «k = kg (see (1.4)). By the scaling property of the Riemann—
Liouville fractional Brownian motion X and the standard Brownian motion X, we
have

)?E, ~ EHXI, Xer ~ el/zX,.

This implies
€t t
7€ =12 / F(X)dX, ~ / F(XHAXE,
0 0
where (X€,X€) = €M (X, X), of which the rough path lift is X¢ of Theorem 1.3.2.
Letting
& Se - SO ~ -
P = Elt/ﬂ T€(s) = o (So +€'*Hy),
we have ,
§e = / € (S9)dPe,
0
and we can derive an LDP for §€ by an extended contraction principle [72].

Theorem 1.3.6. Let o € Cg. Then {§5}0<E§1 satisfies the LDP on Qg as € — 0
with speed e 2H with good rate function

J(5) = inf {i‘#(v)

veH, (u,v) =K(@), §=0(Sp) / f(lfd(u, v))d]L(u,v)} .

Proof. Denote by @, the solution map of the RDE (1.5) with & = €. We are going
to show that @ is locally equicontinuous. Because for all i € Z,,

V'3l £ (14 €)'Vl £ 27[| V0|,

the local Lipschitz constants of @, can be taken uniformly in € by Theorem 4 in
[65]. Therefore @ is equicontinuous on bounded sets, and we conclude @ (Y,) —
®(Y) for any converging sequence Y. — Y for any ¥ with I*#(Y) < co. Then by
Theorem 1.3.3 and an extended contraction principle [72][Theorem 2.1], we have the
desired results. O

Remark 1.3.7. By the usual argument, adding a drift term to the above RDE is straight-
forward. The result then generalizes the existing LDP for the rough Bergomi model:

1 A A
dlog §; = =2 f*(X)dt + £ (X,)dX,

in [23, 8, 48, 62, 42]. To deal with the mixed rough Bergomi model [|5] or the two-
factor fractional volatility model [38], we need an extension with higher dimensional «
and W that is also straightforward.

An LDP for the marginal distribution S’f follows from the contraction principle, and
the corresponding one-dimensional rate function extends the one obtained by [23] as
follows.

13



Theorem 1.3.8. Assume o € CZ and |p| < 1. Then t7-1/2§, satisfies the LDP as

-2H

t — 0 with speed ¢ with good rate function

J ()= inf
geL2([0,1

2
1 /1 | y {Z - po(So) ./01 f (Kyg(r),0) grdr}
= r+ ,
D12 Jo 8 2(1 = p2)o(Sp)? /01 £ (Kug(r). 00 dr

where Kyg(t) = fot kg (t —r)gydr.

Proof. See Section 1.6. O

A short-time asymptotic formula of the implied volatility (regarding S as a price
or a log-price process) then follows from Theorem 1.3.8 as in [23]. From the rate
function of Theorem 1.3.8, we observe that the effect of the function o to the short-
time asymptotics is only through the constant o-(Sp). In particular, the local volatility
function o does not add any flexibility to the asymptotic shape of the implied volatility
surface.

1.4 Proofs of main theorems

1.4.1 Proof of Theorem 1.2.6

Proof. By a localizing argument, we can assume without loss of generality that the
derivatives of f are bounded. For brevity, let K := || f ||CZ+2 and M = |||X[||(a.p). Let

I =T @)= Y 0 @OXG TP =10 @ = Y 9 ()M F(RXGY,
iel (j.k)eJ

where £, := Xo;. Below, we follow the standard argument of rough path theory with
Chen’s identity replaced by our modified version (1.2), (1.3).

(Claim 1) The first level of the (a, B) rough path integral Y, Y(tl) is well-defined and has
the following inequality:

YV < kCylt - s, (1.7)
where
Cr=(n+ D>+ M) (1+T) V{14 20%0B r(n+ DB+ )},
- o 1
and {(r) := szl o

14



Proof. By Taylor expansion, we have

; I, IS i i
20N =38 D ) () X R

iel iel | |p|lsn-|i]
=0 (@)Y - (R ”’X(")} D RX,
iel psi ( p) iel
(1.8)
where
R; = R(X);
_ n+l—|i|
( / Lo s "')a"f(aes+e>?m)de) (%) (1.9)
|pl=n+1-i|

By the modified Chen’s relation (1.2) and (1.8), for any s < u < ¢,
i+ g =0
= 220G (X0 - XD )+ 0 a0y

iel iel
__ 2) P XP) (i)
> f(xx){z R } D)X
iel psi iel
=ZR,~X$>. (1.10)
iel

Because foralli € I,

<K+ 1)6(1 +M)n+2|l _ Sl(n+1),8+a,

<k D |Rwrxy

Ipl=n+1-|i|
we have
JO g JS(,”( < K(n+1)%(1+ M)"™2| — 5|0+
For any partition P = {s =19 < t] < ... <ty =t}, let J(l)(P) = ]Iy:l J,(pl_)l,p.
By Lemma 1.5.1, there exists p € {1 ., N} such that
|tp+l _tp+1| S |t—S|. (111)

N-1
Then we have

(P\{tp}))
(1) &) (1
Jtp ]Ip + Jtptpﬂ - Jtp—ltpﬂ

< K(l’l+ 1)2@(1 _{_1‘4)n+2|l‘p+1 _ tp_1|(n+l)ﬁ+a'

(n+1)B+a
) |t _ s|(n+1),8+a’

S Km+1)%*(1+M)™? (ﬁ

15



and this implies (note that (n+ 1)B +a > 1)
1P @ -1

< K+ D)*(1+ M) 22008 r (n 1+ DB+ a) |t — s| DB (1.12)

(Claim 1a) {Js(tl) (P)}p is a Cauchy sequence with |P| \ 0.
Let Q be any subdivisionof P: Q = {s =1 <7 <..<71,=1}L > N.
Consider the subsequence {7, < 7, < ... < 7, } with 7, = 1,,, and let ), :=

QN [t,-1,t,]. Then Q, is a partition of [¢,_1,1,]. By using (1.12), we have
that

1V @-1 @)
N
<

N
§ K(l’l+ 1)2@(1 +M)n+22(n+l)p’+a§((n+ 1),B+a) Z |tp _ tp_1|(n+l)ﬁ+a/

p=1

T (@) = )]

tp—ltp

< K(n+ 1) (1+ M)y™2008 e s (n+ 1)+ a) T ( sup |t - s|<"+1>ﬁ+“—1) :
t—s<|P|

Hence for any partition P, P’ with |P| V |P’| £ §, we have that

1 1 ’
I Py -1 (P

=

L@ =0 P ue|+

IP@uP) I (@)

< K(I’l+ 1)26(1 +M)n+22(n+1),8+a+1§((n+ 1)ﬁ+a')T( sup = s|(n+1),8+(t—1 ,

t—s<6

and because (n+1)B+a > 1, we conclude that {Js(tl) (P)}p is a Cauchy sequence.
Therefore, Y, ‘,(,1) is well-defined. Furthermore, by (1.12), we have
1 1 1 1
YT D1+ 1D = I < Kele - s
Thus we have proved the statement of Claim 1.

O

(Claim 2) Letm := max(; x)cs |j + k|. Then the second level of the («, 8) rough path
integral Y, 5(3 ) is well-defined and has the following inequality:

y?| < K2G, |t - s,

where

Cy = (1+m)**M(1+T)"F + (C’2 + 2ch<"—'">3) 2 DBy (4 1)B +20)
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and
Cr=2(1+n+m)*(1+M)"™3(1+1) =1,

In particular, we have f f (X)dX € Qu-Hid.

Proof. By the modified Chen’s relation (1.3), forall s £ u < ¢,

I+ 1D eyl e sl - 5@

=)+ Y 0700 (8 (XE - XN 407 (500" f(RXY

(j,k)eJ
= Sl + Sz,
where
S1=81(X)
. . 1 s\ k— i
= edy = Y P FE) )| D] (Ro)" ™ X3 @ X\
(k- q)!
(.k)ed qsk
and
82 = 52(X)
= 0 f(R)* f(R)XGY
(J.kyes
oo 5 1 0 \itk=p=d 5 (pa)
SISO DYDY (Ky) PO |
. | _ | ut
(el reast U - pk=a)!
Note that
I oy = (Z ¥ fE)X | @ (Z O (&)XY
jel kel

=33 0 (500 F (20X @ XP

jel kel
= D) A fE)FEIXD e X+ Y 0 f(R)O*F(R)XE @ XP.
(j.k)eJ (j,k)eIxI\J

By Taylor expansion, we have

D EIFFRIXG © Xy
(J.k)eJ

1 .. . R I i k i rra 1 j k
=01 DL SV fEITFE)Ra)TXE © Xl + 0T FEORY X4 © X\
(ke \lglsm—|j+k| =

= D, 1@ FEI| D]

(j.k)eJ qsk

1
(k-q)!

A ke ; PN ] k
(%) 1 XD 0 X |+ 07 f @R XD @ X

17
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where

(M _ gD
Rijic = Rjic &)

o Z ( (=)™l G+ 1 — |j + k)
o 0 q!

O f (&5 + 0X5,)dO | (Xsu)9,
lq|=m+1-|j+k|

and so we obtain that

PN . 1 o \k=q
St=dnl @) = ) 0IfEN )| ) gy (e T X @ X
(j.k)ed qsk 9):

= D, VrEIRYXD ex+ Y 9 @) fRIx @ X,y

ut

(j.k)eJ (j.k)eIxI\J
(1.13)

and
IS1]
< 3 |orreorYx@exPle Y o ra0et reox® e xly)

(J.k)eJ (j,k)eIxI\J

A P k . k

< > ), KlRwixd exPle > KIXE e xy)

(j.k)eJ |ql=m+1—|j+k| (j.k)eIXI\J
< K2(1 +m)3e(] +M)m+3|l _Sl(m+1)ﬁ+2(1'

+K2(1 +n)26(1 +M)2(1 +T)(2n—m7]),8|t _ s|(m+]),8+2(1/
S2K*(1+n+m)3(1+ M) (1 +T)Z=m=DB|; _ g|(m+Df+2a (1.14)

Here we use m < n (because (n+ 1)B+ a > 1, we have (n+ 1)B + 2a > 1, and
the definition of m implies m < n).

On the other hand, one can show that

1 . . R " R ”

5= 01 DL S0P FEIRG) (Ra)PXE ok FrORE XY
Gioer \Iplzm-tjsk P

(1.15)
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by using the Taylor expansion

PO EDEAIEN) vk

(j.k)eJ

L c 2 . ik
= DD SRR R+ R FOF f(R)XGY
(j.k)ed \Iplsm—|j+k| ©°

k
= > > 2 ,af+Pf( D F(25) (Rou)PHIX 7
(J,k)eJ |plsm—|j+k| |g|Sm—|j+k+p|

| “ 3) o ik
LD T ERIRG, (R PX
(J-k)eJ |plsm—|j+k|

+ Z R(z)akf(xu)X(Jk),
(j,k)eJ

where
R = RY (%)

) (1 =)™ 1=kl (m + 1 — | j + k|)
. (/ p!

AP f (&5 + Hfsu)dt?) (Xsu)?,

Ipl= m+1 [j+k|

(3) (3)
R/kp - R/kp (X)

- (/ (1= o)™ l+kPlGn +1 | +k + pl)
= pr

0" f (% + Hf(su)dé’) (Xsu)?.

|t1|—m+l |j+k+p|
Because for all (j,k) € Jand 0 £ |p| £ m —|j + k|,

. N 3 5 jk X k
077 F R, (RPXGP < KN IR X )
|g|l=m+1—|j+k+p|
< K2(l +m)e(1+ M)m+2|t _ s|(m+1)'8+2“,

and
2 N ik k
ISEUTIER) Al ES S YN S0 il
|pl=m+1~|j+k|
< K2(1 +m)e(1 +M)m+2|1 _ S|(m+l)ﬁ+2ar’
we have
|52
i A 3) v ik X 2) v ik
< >0 DT @R Ra)PXU 1+ D 10k FRORXY
(j,k)eJ |plsm—|j+k| (j,k)eJ
< K2(1 +m)48(1 +M)m+2|t _ Sl(m+l)ﬁ+2a +K2(1 +m)36’(1 +M)m+1|l _ s|(m+l)ﬁ+2a/
< 2K%(1+m)* (1 + M)"™?|t — 5| m+DB+2a (1.16)
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By (1.14) and (1.16), we have

IR TP 10 @I — P2 151+ 1S2] £ K2Calt — 5| mHDBR2a

where C; = 2(1+n+m)*(1+M)"*3(1+T)?=m=DB_Moreover, by (1.7) and
(1.12), we have

rW ey -y e b

ut

1 1 1
=< Ys(u) Ys(u) _Js(u)

v - I+

ut

];p‘ < 2K2C2|¢ — 5| (MDB2a

Let Js(,z)(P) = 2o Y,f)il_l ® ng,l_)ltp + Jt(f_)l,p. By Lemma 1.5.1, there exists

p € {1,...,N} such that (1.11) holds. Note that m < n. Then, the above
inequalities imply that

I P) =17 (P\{tp})

(2) (2) (1) &) (2)
é Jtp—ltp + Jtptp+l + Ytp—ltp ® Ytptp+l - Jtp—ltp+l

(2) (2) (1) 1) (2) (1) &) €] )
é Jtp—l[p J[ptpH +J[p—ltp ® J[ptpﬂ - tp—ltp+l + Ytp—]tp ® Ytptp+l - Jtp—l[p ® Jtptp+l

< K262|fp+1 _ tp_1|(m+l)ﬁ+2(zf + 2K2C12|fp+1 _ tp_ll(n+1)ﬁ+2(1/

m+1)B+2a

o) (m+1)B+2a
) | = )¢

< K2 (62 + ZCfT("’m)ﬁ) =
N-1

This implies that (note that (m + 1) + 2a > 1)

72 (P) - 1P| < K2Cy |t — 5|20 (1.17)

This shows that {J 3(12) (P)}p is a Cauchy sequence when |P| \, 0 (one can adapt
the argument of Claim la in the proof of Claim 1 by using (1.17) instead of

(1.12)). Hence v is well-defined. We also obtain that

> Lst
2 2 2 2
V21 1+ 10 -1 s K2Cale = 5P
Next, we prove that f f(X)dX satisfies Chen’s relation. Fix € > Oand s < u < 1.

By taking a partition P = {s =ty < t] < ... < ty =t} of [s,¢] small enough
(which has the point 5 = u), we have

1 1 1
Wy _y

ut
N N N
s Ys(tl) _ij(p],)lt,, + Ys(,i) _ij(p],)lt,, + ngtl) - Z Jt(,,l,)lzp
p=l1 p=1 p=N+1
< 3e
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and so the first level of / f(X)dX satisfies Chen’s relation. Note that this result
implies that

(D) n  _ (1) (1
Z Ytottl—l ® Y’q—llq - Z Y, ®Y,

t])—lt]) Iq—ltq'
g=1 O<p<gsN

Note also that

TP oy

ut

N W N
— 1 &)
- ZY’IH’P ® Z Y’qfltq
p=1

g=N+1

— (1) (€] &) (1 (1 (1
- Z Y’p*ltp ® Y’qfltq B Z Y’Pfltp ® Ytqfltq h Z Y’Pfltp Y’qfltq
O<p<gsN 0<p<gs<N N<p<q<N

N N N
— (1 (1) (1 (1) 1 (1
- Z YIOIP*I ® Y’l’*ltp B Z YtO’pfl 8, B Z Y 8,

tp-1tp ttp-1 tp—1tp?
p=1 p=1 p=N+1

and so we have

Y2 _y® _y® _yh gy

st su u

= Ys(tz ) - SW

YS(L%) - Ssu

+

+r? 8, < 3,

N
1 1 1 A A jk
Swi= Y |Ye) v 3T 0T (&, )0 F R, )X,
p=l1 (J.k)eJ

)

>

N
1 1 PR N ik
Ssu = Z Ytgt;)a—l ® YIE;-)lfp + Z a]f(xtp-l)akf(xtp-l)xl(;—l)fp
p=1 (j,k)ed

1 1 i N N ik
Su = D, |V @Y e Y0 f R, )08 (R, )XY,
p=N+1 (J.k)eJ

Therefore, the second level of f £(X)dX also satisfies Chen’s relation. The above

argument proves statement (i) of Theorem 1.2.6. O

(Claim 3) Suppose that there exist M > 0 and € > 0 such that
Vel V IWsel < Ml =51, VPV W] < Mt = 5|15,

" y . o
VIV IWETE < M= |V 10, — W < et - 1P,

and
|Vv(tl) _ W;(;)| < E|f _ s||i|ﬁ+a/’ |V£{k> _ Wg;k)l < E|l _ s||j+k|B+2(1‘
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Then, there exists C3 > 0 such that
A (1) A (1)
[ s -
St st

Cs = (1+n)* N1+ 7)™ DB+ Be +2)(1 + M) 22 DB (4 1)B + @)}

< KeGslt - 5|9, (1.18)

where

Proof. By the assumption and the mean value theorem, we have

0 )y - 1D )

pWUCNIES YR

iel iel
< > {0 @0 =8 ra IV 1+ 10" FRONVE = Wi}
iel
< Ke(1+eM)(1+n)¢(1+T) DB — g2, (1.19)

By (1.9), (1.10), and the mean value theorem, for all s < u < ¢,

|J(l)(V)su +J(1)(V)ut _J(l)(v)st - {J(l)(w)su +J(])(W)ut - J(l)(W)st}

< Y RCOVA = RiCEW
iel
< 3" R = ROV L+ IRV = W)

iel

< e+ DKe(1+n)2 (1 +T)P (1 + M)t — 5| DB+
+KE(1 +n)2e'(1 +M)n+1|t _ S|(n+l)B+(t
< (2e +2)Ke(1+n)* (1 +T)P(1+ M)™ 2|t — 5| DB+

By Lemma 1.5.1, there exists p € {1,..., N} such that (1.11) holds. By the above
inequality, we have that

70 (750 (P) = TV ()0 (Pt }) = {70 (W (P) = IV (W0 (P2}

AN PP AT 0 PP AL A4 PP

t])+l

IO W), e, + TV W) =T D W)}

< e+ )Ke(1+m)* (A + TP (14 M)ty = 15| DR

(n+1)B+a
< (2e+2)Ke(1+n)>* 1 (1+T)P(1 +M)"+2( ) |t — s|(1* DB+

N-1

22



This implies that (note that (n + 1)+ a > 1)

TV (V)5 (P) = IV (Vg = {TD (W) (P) = TV (W)}

< (2e +2)Ke(1+n)** (1 +T)P (1 + M) 220 DB @ r (n+ 1B + )|t — 5| " DFe.
(1.20)

Therefore, by (1.19) and (1.20), we conclude that
70 (P) = 70 () ()|

< O ) -0 W)y

O (P) = IV = IO (W (P) = TV (W)}
< Ke(1+eM)(1+n)(1+T) DBt — 5@

+(2e +2)Ke(1 +n)* N (1 + TP (1 + M)™220* DB 1 ((n 4 1) B + )|t — 5| DB+
< KeGslr - s|“.

Taking |P]| \, 0, we prove (1.18). O
(Claim 4) Suppose that there exist M > 0 and € > 0 such that
Vol v IWeal < Ml =52, VD1V WG| < Mo = s] 15+,

N N . .
IV IV IWETE < Ml 5|V 10, — W < et - 1P,

and
Vi) = W1 < el =] (VIO - WP < elr - sftHP2e,
Then
R 2) X @)
(/f(V)dV) —(/ f(W)dW) < K%eCylt — 5%, (1.21)
st st
where

Cy := (14m) % (142e M) (1+T) DB L (14T =BY (Cy+4C1 C3)2 VB2 £ (m+1) B+2a),

Cy = (15e + ) (1 +n+m)¢(1+M)™3 (1 +T) 8,

In particular, the integration map is Lipschitz continuous.
Proof. The assumption and the mean value theorem imply that

@ )y = 52 ),

< D |07 r0a s eIVER = 87 f et Foi WY
(J.k)eJ
< K2e(1+m)*(2eM + 1) (1 +T) ™8| — g2 (1.22)
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On the other hand, by (1.13) and (1.15), we can calculate

151(V) = S1(W)]

i pra j k 1 N ] k
s D) IR (VS @V =8 fOh )RS (W)Wl @ W]
(J.k)yeJ

) 1 FE)F @V @ Ve = Fh)at F Wi @ W]
(j,k)eIxI\J
< K2e(1+m)>(1+ M)"3 (1 +T)P(5e +2)|t — s|m+1B+2a
+K2e(1+n)%(1+ M)>(1 +T)2"mPB (2¢ 4. 2) |1 — 5| (m*DB+2a

< K2 e(1+n+m)(1+M)"3 (1 +T) 2B (Te + 4)|¢ — s|m*DE2a

and

|52(V) = S2(W)]

<

O FDORG (V) (V) PV = 077 F ()RS (W) (Weu) W
(j,k)eJ |plsm—|j+k|

N 14 N jk
+ 0% 0ROV = 9% £ ()R (oW
(J,k)eJ |plsm—|j+k|

< K%e(Se +2)(1+m)>** (1 + TP (1 + M)™2|r — 5|Um+DB+2a
+K2€(36‘ + 1)(1 +m)3e+l(] +M)m+2|l _S|(m+l)ﬁ+2(1/
§ K26(86+3)(1+m)3e+1(1+T)ﬁ(1 +M)m+2|t_s|(m+]),8+2(1/.

Therefore, we have

|Z(V)sut - 2(Vv)su”
< I81(V) = S1(W)| +[82(V) = So(W)| £ K2eCylt — s|m+DB+2e

where

Zsut (V) = J(Z) (V)su"'J(Z) (V)MZ+J(1) (V)su®](l) (V)MI_J(z) (V)St,

sSust
and
Ci=(15e+7) (1 +n+m)* (1 + M)™3 (1 +T)~m8,
Let
T (Vg =Y (V) @ YD (V) =TV (V) @ T (V)r, s<ust.
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Then by (1.7), (1.12), (1.18), and (1.20), we have

|F(V)Sut - F(W)Sutl

S PO Vg ® YD (Ve = IV (V)g) =YD (W) ® XD (W)yp = D (W),)|
+| D (Vg =TV (V)5) @ TV (V) = D (W) = TP (W) @ TD (W),

< [0 @) [ O Vs =T () = Y (W 4T (W

+ ’Y(l)(v)su - Y(l)(W)su Y(l)(W)ut - J(l)(W)ut

YO ) = O g =YD W+ 7D )] [0 ()

+ [y O @ = 1D | [7D () = IO (W)

< K264C1C3|l‘ - Sl(n+l)ﬁ+20.

By Lemma 1.5.1, there exists p € {1, ..., N} such that (1.11) holds. Then we
have

7@ (750 (P) = TP () P\t 1) = {12 ()50 (P) = TP (W) (P D)
< |E(V)tp_lt,,tp+1 - Z(W)t,,_ltpt,,ﬂ i + |F(V)tp_lzptp+1 - F(V)t,,_lt,,tp+1|

< K2€Cultinr — t;-1|"VBRY 4 K2AC| Csltigy — ti-| (DB

|t _ Sl(m+1),8+2a.

(m+1)B+2a
N-1 )

< K2e(1 +T""™B)(Cy + 4C1C3) (—

This implies that (note that (m + 1)8 +2a > 1)

JO W) (P) = I P (V)5 = {TP (W) (P) = TP (W), }

< K2e(1+ TP (Cy +4C,C3)20mDBY20 1 (1 4 1) B + 2a) |t — 5| DB
(1.23)

Therefore, by (1.22) and (1.23) we conclude that
7@ ()i (P) = 7 ()0 ()|

< O (W) = ()

@ ) (P) = 7D (Vg = O (W) (P) - T (W)

< K%eCylt — 5|2

Taking |P]| N\, 0, we have (1.21).
For any V, W € &y, take € := d(4,)(V, W). Then we have

Wl V IWeel < Mt = s, VTV IWD] < Mt - |l 1B+,
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. . . S
VIV IWTE ] < M= 5|20 10, — W < et - 1P,
and
Vi) =W < ele = sllP7e, VD = W) < el — |k

Therefore, by (1.18) and (1.21) we conclude that for all V, W € &,

dq ( / F(Hav, / f(W)dW) < KCze + K?Cye
S K(C3+KCy)d(qp)(V, W),

and this is the claim. |

Claims 14 complete the proof of Theorem 1.2.6. O

1.4.2 Proof of Proposition 1.3.1

We use the following lemmas.

Lemma 1.4.1 ([68] Proposition 1.1.2).

LIy (8%7) = Ipar (8%P*) + pligl7 2 Ip-1(8®P7"), ge L*(Ry), p 2 1.

Lemma 1.4.2 ([60] Corollary 9.7). Let Y belong to the m-th Wiener chaos and p = 2.
Then we have

IY]l, < Vi + 1(p = D)™2||Y]|2.

Proof of Proposition 1.3.1. (i) Because y < 1/2, X is well-defined and one can prove
that KW (r) = /Ot k(t —r)dW,. The modified Chen’s relation follows from the binomial
theorem as illustrated in the Introduction. For the Holder property, by Kolmogorov’s
continuity theorem (see Theorem 3.1 in [27]), it is sufficient to prove the following
inequalities: forp 2 2, i € I, (j, k) € J,and (s,7) € Ar

[ [ 1/2 ik i+k 1
XD, < Cle—sl144172, XUR)| ) < ) — s|lHkIEe

Fix s < r < t. Note that )A(s(rl) = for Ksr (u)dW,,. Then by using Lemma 1.4.1 repeatedly,
we have that for all m € Z,,

2m n
A 1 ~ _
(Xs(r)) = § Cl,mIZI(K§r21)I|Ksr||i};l 21,

1=0
2m+l &
& (1) _ ®(21+1) 2m-21
(£2) = D ctmbarna (65 ) i 12272,
=0
where co o =1,
€o,m-1 =0,

El,m =3Cl-1,m-1+ (2[ + l)cl,m—l [ = 1, e, M — 1,
1 otherwise,
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and

Clm+2(l+1)ﬂl+1m l=0,...,m—l,
Clom = .
1 otherwise.

Then the assumption y < 1/2 and Lemma 1.4.2 imply that for all m € Z,,
r, 2m 12

/ () (22)" ax,

s

m .

< >t [ B M2 = sl ax,

N
< Z Epmp 212

m
< p(i1+1)/2 (Z El’mpl—m) |t S||i\(+1/2—i|/2(2'y—1)
1=0

m
pD/2 (Z P m) It — 5]l1+172,

1=0

p

p

/ I (K82 lkop | 2272 — s[€20X,

S

2

and

LV 2m+1 i
/ () (%) ax,
N

p

20+1 1
" / 121+1(K®< " ))” sr||2m 2l|r_s|£lzdxr

A

IA

p

I\

cmp 22

21+1 j
[ G Dl 22 = 510,

A

2

m
< p(i1+l)/2 (Z Cl,mpl_m) It s||i|§+1/2—i1/2(27—l)
1=0
m
< Cp(i1+l)/2 (Z Cl,mpl_m) It - S|\i|§+1/2.
1=0

Therefore, we conclude that for all i = (iy,i) € Zi,

t, i/, i
/ (22)" (x2) dxr’
s p

and this implies the claim. By the same argument, we have

11X, = < CpUID P — g1 (1.04)

k i i . .o
||X(J )”p < CpUrtkix2) 2y _ g|U+KIEHL (i k) = (1, ja), (K1, ko)) € 72 x 72.
(1.25)
(i1) By (i) and Theorem 1.2.6, for a.s. w, the limit

e N
([ sna] = ym 3% Sk, %0

g=1 i€l
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exists. Because

t N
A . A 0
/S FR)AX, = tim 3 f(%, )X,
q=1

in the sense of the convergence in probability, it is sufficient to prove that for all
i € I\{0},
Ig-11lg

N

p i i _

i 218 A, =0
q:

in probability. Fix i € I\{0}. We can assume f € CZ*Z without loss of generality. By
the result (i), we have

A\ 2 .
E [(x}?) ] = Clr = sPHIEH < oo,

and so taking K := || f]| cps We conclude that

2
N . N ) N
E Zazf()e,qq)xt(;fw ‘ = Z E (azf()etqfl)x,(qfltq) ]
g=1 g=1

N
< KZ Z Itq _ tq_1|2|t|{+l
q=1

2lilg
=K>| sup |t—s|) T

l1=s|<| 2|
=0 (as [P\ O),

and this indicates the L? convergence. O

1.4.3 Proof of Theorem 1.3.2

Denote by C|o,r) the set of the R-valued continuous functions on [0, 7] equipped with
the uniform topology. Let Ca,. be the set of continuous functions on A7, taking values
in R?, equipped with the uniform topology for the metric

d(X’Y) ‘= sup |XSt - Stl > X7Y € CAT'

(s,t)EAT

We use the same notation Cy, for different dimensions D, more specifically any one of
D =1, D =max{|i|| i € I}, or D = max{|j + k|| (, k) € J}. Let Sy be the set of the
R-valued {; }-adapted simple processes on [0, 7] x Q and

SZZ{ZESO

sup |Z;| = 1;.
t€[0,T]

28



Definition 1.4.3 ([39]). Let {V"} be a sequence of R-valued semimartingales on [0, 7] x
Q . We say that the sequence is uniformly exponentially tight (UET) if for every T > 0
and every a > 0 there is K7 , such that

1
lim sup — log sup P

sup [(Z- V") |2 K10
n—oo N ZeS

t€[0,T]

< -a, (1.26)

where Z_ - V is the It6 integral of Z with respect to V:
t
V= [ z-av.
0

For a one-dimensional Brownian motion W, V" = n~!'/>W is an example of a UET
sequence; see Lemma 2.4 of [39].

Theorem 1.4.4. Let {U"} be a UET sequence of R-valued semimartingales and {V"}
a sequence of R-valued continuous adapted processes. Assume that the sequence
{(U", v™)} satisfies the LDP on Cjo, 71X C|o, 7] With speed n~! and good rate function J*.
Then the sequence {(U", V", (U™ -; V");c1) } satisfies the LDP on Cjo 71 X C[o,7] X Car
with speed n~! and good rate function

J*(u,v), veBV,Vie Lx® =y v,
00, otherwise, (1.27)

J*(u,v,x) = {

= inf{f*(u,v) u,v € Cro,r),v € BV, Vi e I,x(i) =u- v} s

where BV is the set of the functions of bounded variation on [0, T], x = ()c("))ie 1 € Cap
and

t
(I/t T V)St = / (ur - us)idvr.

Proof. By the assumption and the contraction principle, {(U", V", ((U")");cr)} satis-
fies the LDP with good rate function

A1 (u,v, @) = inf {f*(u,v)| Viel oW = ui} .

Therefore, by [39][Theorem 1.2], we have that {(U", V", (U™)}, U"®;V™);c1)} satisfies
the LDP with good rate function

Ao (u,v, ¢, x) = inf{f*(u,V)‘u,v € Clor), v € BV, (97, x) = (u',ue;v)},

where (1 ©; v); := (u +; v)o,. Note that by the modified Chen’s relation (1.2), we have

1 i
(i V) = (O V) = (O v)s = Y ———= (g = u0) P (up V)i
2= (i=p)!
Hence, by the contraction principle again with the aid of induction, we see that
{m,v", (U™ -; V")icr)} satisfies the LDP with good rate function (1.27). O
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Theorem 1.4.5. Under the same conditions as in Theorem 1.4.4, the sequence
{@6U", (U" i VYier, (U" #jx V") (jkyes)}

satisfies the LDP on Ca,. X Ca, X Ca, with speed n=! with good rate function

J**(%,x,%) = inf {f*(u, V)

u,v € Cpo,r], v € BV, }

Viel,Y(j, k) €eJ, (ﬁ,x(i),x(jk)) = (0u,u - v,u *ji v)
(1.28)

where (6u)g; := u; — ug and
t
(u *jk Vst = / (u j V)sr (y — us)kdvr-

Proof. By Theorem 1.4.4 and the contraction principle, the sequence

{(om v @ vier (W 0; VU™ e )|
satisfies the LDP with good rate function
As(u,v,x, @) =inf {f*(u,v))u,v € Cio,11, v € BY, (x(i),go(jk)) =(u-v,(u0o; v)uk)} .
Therefore, by [39][Theorem 1.2], we have that

{(U", (U™ i V"ier, (U" @k V) (jkyed) }

satisfies the LDP with good rate function

Aq(u, x, ) = inf {f* (u,v)

u,v € Cror), v € BY, (x7,0V0) = (u s v,uejrv)},

where (U ® ;¢ V); = (U *jx V)o;. Note that by the modified Chen’s relation (1.3), we
have

(U™ #jx Ve = (U" @3 V') — (U™ @k V™ )os

_ Z (k_;q)!(l]gs)k—q(l]n . Vn)OS ® (U" q Vn)st

q<k
Z ; ! U(r)l )j+k—p—q(Un *pq V")st-
pio U= k=gt

Hence, by the contraction principle again with the aid of induction, we see that
{6U", (U™ s VMier, (U™ %jx V")(j.k)es)} satisfies the LDP on Cp, X Cp; X Cay
with good rate function (1.28). m|

Lemma 1.4.6. (i) The (a, 8) rough path X of Theorem 1.3.2 has exponential inte-
grability, i.e., there exists 7 > O such that

E [exp {nllIIIE, 5 || < o
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(i) Assume that the family of random variables

X€ = (/28,2 x (0 (k1) /25 (k)

taking values in €2, g).Hiq satisfies the LDP on Cp; X Cap X Ca, (with the uniform
topology). Then, X€ satisfies the LDP on Q4 g).mia (in the d(4 g) topology)

with the same good rate function.

Proof. (i) Let Z := |||X[||(a,5). By the inequality (1.24), (1.25), we have that for all

p € [2,00),
@) < (i1+1) /21, _ o(lilg+1/2 Gk < Gi+ki+2) /21, _ oqlj+k|Z+1
X5 llp = Cp |7 = s] X5 'llp < Cp |t = s] ,

and this inequality and Kolmogorov’s continuity theorem (see Theorem 3.1 in [
imply that for p = €,

””ﬁHB-Hld”p < &Vps H”X(i)“\ﬂﬁﬂy»Hlde < cplithi2,

and
(J'1+k1+2)/2’

HHX(jk)|||j+k|ﬁ+2a-H1d“p <¢ép
where £ := [ 14+max;e; [¢] ' T+max j x)es [€701, € i= (=B, & = |i|({-B)+(1/2~a),

Ejk = j+kl(¢ = B) + (1 -2a), € :=¢+max;es ¢; + MaX(;j k)es Cjk, and

2C o 2C o 2C
€= 1-(1/2)&E=¢17 k= 1= (1/2)En=¢D"

2.

- (1)2)E-E’

Then Jensen’s inequality implies that

1/(lil+1)

)1/(|i|+1>‘ < 51/(""“)\/7%

"(||X(i)|||i|/5’+a—Hld < ||||X(i)|||i|/5’+a—Hld||
4

p
and similarly
) 1/(1j+k|+2)

< 51/(|j+k|+2)\/ﬁ
p

H (| IXVR || i1k pr20-m1d

Therefore, we have that
ZIl, < cvp, pZE&,

where ¢ := ¢+ Y;c; ¢/ UTHD 4 2 kel ¢!/ (7+kI+2)  Then we have that

20 N in n" e @,
E [exp(nZz*)] —;ﬁnznzng D 2+ Y

2nsé 2n>¢&

and so taking 7 > 0 small enough (2¢%5je < 1), Stirling’s formula implies the claim.

31



(i) We adapt the argument of [30][Proposition 13.43]. By the inverse contraction
principle (see Theorem 4.2.4 of [21]), it is sufficient to prove that {X€} is exponentially
tight on Q4 g)-mid- By (i), there exists ¢ > 0 such that

P IIIXIll(ar gy > 1] < exp (=cl?)

forany @’ € (@, 1/2) and B’ € (B, 1/2), and this implies that for all M > 0, there exists
a precompact set

Kyt = {% € Qo s 1% o) < VM)

on (4 g)-id such that
M
Nl > \/71

M
X ’rpry > —_ S—M,
X e pr) \/cel_

from which we conclude the claim. O

elogP [X€ € K§,| = elogP

=elogP

The inverse contraction principle (see Theorem 4.2.4 of [21]) implies that {!/>(W, W)}
satisfies the LDP on C*H¢ with speed e~! with good rate function I* (note that
v € (0,1/2)). By Theorem 1 in [33], the map f +— K f is continuous from C?Hld to
C4Hld_ Then the contraction principle implies that {e'/2(X(1), X) = €'/2(KW, pW +
V1 —p2W+)} satisfies the LDP on Cjo 7] X Cjo.r] with speed e~! with good rate
function

I (w,v) = inf {f#(ﬁ)

ﬁe?-(,(w,v):(/ K(-—r)dﬁﬁl),pf/(l)+ 1—p217(2))}.
0

Let FE : C[(),TJ X C[()’TJ i C[()’TJ X C[(),TJ X C[()’TJ and F : C[()’TJ X C[(),TJ -
Cio,r) X Cjo,71 X Clo,1) as Fe(w,v); = ((w, €'21),v;) and F(w,v); := ((wy,0), v;).
Then F is continuous and F¢(w€,v€) — F(w,v) for all converging sequences
(w€,v€) — (w,v) with I (w,v) < co. Hence the extended contraction principle
[72][Theorem 2.1]implies that {€!/?(X, X)} satisfies the LDP on C[o 71X Cj0.71XC[0.7]
with speed e~! with good rate function

J*(u,v) =1inf {I*(%)[7 € H, (u,v) =K(@)}.

As mentioned earlier, {X€ = €'/2X} is UET by Lemma 2.4 of [39] with n = €.
Therefore, by Lemma 1.4.6 (ii) and Theorem 1.4.5 (regarding n = ¢!, U = X and
V = X), we have proved Theorem 1.3.2.

1.5 A lemma from rough path theory

Lemma 1.5.1 ([60] Proposition 1.6). Let w be a control function, i.e.,

w(s,u) +w(u,t) £ w(s,t), 0Zs2ugtsT,
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and P ={s =1ty <t] < .. <ty =t}beapartitionon [s,¢] (N = 2). Then there exists
an integer i (1 £ i £ N) such that

2
w(ti-1,ti1) < mw(s, t).

Proof. By the definition of w, we have

N-1
Z w(ti-1,tis1) = Z w(ti-1,tin) + Z w(ti-1,tin1) S 20(s,1).
p=1 i:odd i:even
Therefore, there exists such i that satisfies the desired inequality. O

1.6 Proof of Theorem 1.3.8

Proof. For brevity, let o := 07(So). By Theorem 1.3.6 and the contraction principle,
tH-1/2§, satisfies the LDP with speed ~2# with good rate function

o (1)
J(5) = inf{f#(ﬁ)ﬁ eEH, 5= (a/f(LoK(ﬁ)dLoK(ﬁ)) }

01

Let 7 = (h', h?) € H(R) x H(R). Then
(1)

3 (a / FESE()Lo K(ﬁ))

01
1 t
:0’/ f(/ KH(I—V)hldV,O)d(phtl+w/l—p2h?)
0 0
1 t | ;
:pg/ f(/ K”(I")hid”o) dhy + 1 —920/ f(/ KH(t—r)h}dr,o) di2,
0 0 A ;

and so

§—po fol f (fot kg (t —r)hldr, 0) dh} 1 t _
=0'/ f(/ KH(z—r)h}dr,o) dn?.
Ny 0 0

Fix Ay, and minimize %||17||

(1.29)

(2H ®2) with respect to iy € H (R) under the condition (1.29).

Let / be the minimizer. Take € > 0 and i € H(R), and consider & + eh. Because h
satisfies the condition (1.29),

1 t
/ f(/ KH(t—r)iz;dr,o) dh; = 0. (1.30)
0 0

Because / is the minimizer, we have

1 b, A L
-/ (hy +€hy)?dr =0, ie., / hyhedr =0,
e=0 2 0 0
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for any h with (1.30). Therefore, there exists ¢ € R such that

]’;ZCf('/ONKH('—I’)]:lidr,O).

Hence

§—p0'f01f(/0t kg (t —r)hldr, O) dh! 1 t )
=c0'/ 12 (/ KH(t—r)h}dr,o) dr,
1 _p2 0 0

and we conclude that

{5 - po /01 f (fot ky (t —r)hldr, O) dh,l}2

2(1 = p?)o2 /01 12 (/0’ ku (f = r)h}dr,o) dr

. - 1 rt.
J(§)=1#(v)=§/0 |l ds +

which is the claim.
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Chapter 2

LDP for stochastic differential
equations driven by stochastic
integrals’

2.1 Introduction

A rough volatility model is a stochastic volatility model for an asset price process in
which the Holder regularity of volatility processes is less than half. In recent years, such
a model has attracted attention, because as shown by [3 1], rough volatility models are
the only class of continuous price models that are consistent to a power law of implied
volatility term structure typically observed in equity option markets. Proving a large
deviation principle (LDP) is one way to derive the power law under rough volatility
models as done by many authors using various methods [23, 9, 8, 24, 25, 48, 50, 51,

,42,63,49,37]. An introduction to LDP and some of its applications to finance and
insurance problems are discussed in [71, 26]. One precise approximation formula for
implied volatility is the BBF formula [12, 1], which follows from short-time LDP under
local volatility models. On the other hand, the SABR formula, which is of daily use
in financial practice, is also proved for a valid approximation under the SABR model
by means of LDP [69]. From these relations between LDP and precise approximation
under classical (non-rough) volatility models, we expect LDP for rough volatility models
to provide in particular a useful implied volatility approximation formula for financial
practice such as model calibration.

For the proof for pathwise LDP of standard stochastic differential equations (SDEs),
an elegant method using rough path theory was proposed [29, 30]. The continuity of
the solution map on rough path spaces is key to derive the pathwise LDP for such SDEs.
However, when considering rough volatility models, the usual rough path theory does
not work because the regularity of the volatility process is lower than that of asset prices,

TReproduction of a work, first published in SIAM Journal on Financial Mathematics, Vol.16, No.2,
pp480-515, (2025), https://doi.org/10.1137/24M1653306.
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and so stochastic integrands are not controlled by the stochastic integrators in the sense
of [43]. Nevertheless, methods which are analogue of rough path theory have been
proposed to prove the pathwise LDP for rough volatility model, one uses the theory of
regularity structure [8], and another uses a variant of rough path theory [37]. In [62, &],
the following It6 SDE is discussed (here Y represents the dynamics of the logarithm of
a stock price process):

s 1 N
dYt = f(Xt,t)dXt - zfz(Xt,t)dt,

where X is a Brownian motion, X is the Riemann-Liouville type fractional Brownian
motion with Hurst index H € (0, 1/2), and f is a smooth function. This SDE is called
rough Bergomi model [7]. In [8], the authors proved the short-time LDP for rough
Bergomi models and by using the continuity of Hairer’s reconstruction map. The point
is that its proof comes down to the small-noise LDP for “models” which construct the
solution of the rough Bergomi model. On the other hand, this result was extended to
situations where rough volatility models have local volatility in [37];

dY = o (Y) f(X, 1)dX — %O'Z(Y) F2(X,0)dt, (2.1

where X is a Brownian motion, X := f()' k(-—s)dW, (where « is a deterministic singular
kernel and W is a Brownian motion), o~ and f are smooth functions respectively. If
o =1 and k = kg (kg is the Riemann-Liouville kernel, see (2.10)), (2.2) is the rough
Bergomi model. In [37], partial rough path spaces lacking the iterated integral of X
were considered, and a partial rough path integration map was constructed. By using
the continuity property of this integration map, the small-noise and short-time LDP for
(2.1) were proved based on the pathwise LDP for the canonical noises constructed by
(X, X) on partial rough path spaces. Compared with [8], the framework of [37] is more
elementary and one can prove that not only the LDP for rough Bergomi model but also
that for many rough volatility models, see the lists of Introduction in [37]. However,
the continuity property of the integration map in [37] relies on the smoothness of the
coefficient f, because the higher order Taylor expansion of f is needed to cover the low
regularity of X. For these reason, although the previous work [37] is widely applicable,
it goes beyond the framework of it when f is not smooth. For example generalized
rough volatility models discussed in [58] or when f(y, ) 1= +/y [23].

Inspired by above previous research, we will discuss the following SDE in one
dimension in this paper:

1
dY€ = o (Y$)AFdX€ - Eaz(yf)(Af)fdt (2.2)

Here X€ := €!/2X, X is a one dimensional Brownian motion, A€ is an adapted contin-
uous process and o is a smooth function. If A€ = f(f(f, -), (2.2) coincides with (2.1).
In this paper, we will discuss the pathwise LDP for (2.2).

Now we consider how to prove the pathwise LDP for (2.2). Let A - X be the
Itd stochastic integral for A with respect to X and A(f) := r. Let also Z€ = (A€ -
X¢€,(A€)?-A) and we will regard Z€ as the driver for (2.2). Then we define the Young
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pairing (see Section 9.4 in [30]) Z€ for Z€ and we regard Z€ as the canonical lift for
rough path spaces. Since X€ are one dimensional paths, the mapping Z€ — Z€ is
continuous. Combining to the usual rough path theory, we finally can construct the
solution Y € of (2.2) from Z€:

sol. map
GQoud ¢ — Y*
Young pair projection
Ca/-Hld Z€ Y€

Here for a € (1/3,1/2], C*H4 is Holder spaces, and GQ.pyq is rough path spaces,
and “sol. map” in the above diagram means the solution map in the sense of rough
differential equations. Therefore, the pathwise LDP for (2.2) can be proved from the
small noise LDP for {Z € } ¢ on Holder spaces. This idea enables us to avoid adherence
to use the smoothness of coefficient f which is the essential condition to cover the low
regularity of X in [8, 37]. We also note that our approach does not use a variant of
rough path theory or regularity structure theory, which means we are able to obtain
simpler proof. Although the small noise LDP for stochastic integrals with respect to the
uniform topology was proved in [39], this results cannot be applied for our methods,
because our idea requires the small noise LDP for stochastic integrals with respect to
“Holder topology™.

Our method also allows for a unified treatment of pathwise LDP for rough volatility
models, compared with [8, 37]. For example, the pathwise LDP for rough volatility
models were discussed under the different assumptions which are not mutually inclusive
[23,58,47,37, 8], but these results indeed are included in our setting. To the best of the
author’s knowledge, no such pathwise LDP for these models is known in the literature.

In the perspective of applications for mathematical finance, it is important to derive
the asymptotic formula of the implied volatility because of the pricing of put/call
options. Moreover, the formula is applicable to check whether models are consistent
to the power law of implied volatility or not. For example, generalized rough volatility
models discussed in [58] are widely applicable, in the sense that the authors of [58]
provide us how to make a numerical approximation of such models. Although one
reason for using and studying such models is that it is expected to be consistent with
the power laws of the implied volatility observed in the market, there is no justifications
of this expectation in the literature. As an application of our analysis, we will prove
the short-time LDP of them (actually one can treat more general models) and derive an
asymptotic formula of the implied volatility which tells us the models are consistent to
the power law of the implied volatility (Corollary 2.3.12). This formula is described as
a generalization of Forde and Zhang’s work [23].

In section 2.2, we first discuss the pathwise LDP for stochastic integrals on Holder
spaces, this is Theorem 2.2.6. We next discuss the pathwise LDP for (2.2) (actually we
will discuss the Stratonovich SDEs (2.5) corresponding to (2.2)), see Theorem 2.2.11.
In section 2.3, we will first show how to apply main results to the pathwise LDP for
rough volatility models, see Theorem 2.3.2 for small-noise LDP and see Theorem 2.3.7
for short-time LDP. Then we will derive an asymptotic formula for implied volatility,
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see Corollary 2.3.12. In section 2.4, we will prove the main theorem in order.

2.2 Main results

2.2.1 Large deviation principle for stochastic integrals

We first review the LDP for stochastic integrals with respect to the uniform topology
discussed in [39]. In [39], the index set of a sequence of stochastic processes is the
natural number set n € N, but regarding as n = !, we consider the family of stochastic
processes {X €}¢~o which means that the index set of it is (0, 1]. We say that a real
function x : [0,00) — R is cadlag if x is continuous on the right and has limits on
the left. Throughout this paper, we fix a filtered probability space satisfying the usual
conditions (L, F, (%7)rs0, P) .

Definition 2.2.1 (Definition 1.1 [39]). Let {X€}.-¢ be a family of real valued cadlag
semi-martingales. We say that the family {X€}¢>¢ is uniformly exponentially tight
with speed e~ ! if for every ¢ > 0 and every M > 0, there is K37, > 0 such that

lim sup € log sup P [sup [(U- - X%)g| 2 KM,,] <-M, 2.3)
e\o0 UeS s<t

where S be the set of all simple adapted processes U with sup, |U;| < 1 and (U-); =
limg_,,_ Us. In this paper, denote U - X by the stochastic integral for U with respect to
a semi-martingale X in Itd sense:

t
(U-X), := / U,dX,.
0

Definition 2.2.2 (Section 1.2 [21]). Let (E,B(E)) be a metric space with a Borel
o-algebra B(E).

(/) We say that a function I : E — [0,00] be a good rate function if, for all
A € [0, ), the set
{xeE:I(x) <A},

is compact on E.

(if) We say that the family of measures {u¢ }¢>0 on E satisfies the LDP with speed
e~ with good rate function [ if, for all T € B(E),

— inf I(x) < liminf elogu(T) < limsupelog u (') < —inf I(x),
xelre e\0 eN0 xel

where T is the closure of ', and I"° is the interior of I.

In this paper, “ with speed € ~!” is omitted. Denote by D ([0, c0), R) the space of all
cadlag functions and denote by dp the Skorohod topology (see Chapter 3 in [13]).
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Lemma 2.2.3 (Theorem 1.2 [39]). Let {X€}¢~0 be a uniformly exponentially tight
family of cadlag adapted semi-martingales on R and {A€}¢-¢ be a family of real
valued cadlag adapted processes. Assume that {(A€, X€)}~o satisfies the LDP
on (D([0,),R),dp) x (D([0,),R),dp) with good rate function I¥. Then the
family of triples {(A€, X, A€ - X)}¢s satisfies the LDP on (D([0, »),R),dp) X
(D(]0,00),R),dp) x (D([0, ),R), dp) with good rate function

I*(a,x), z=a-x, x €BV,

+00, otherwise,

I(a,x,z) = {

where BV is the set of bounded variation and a - x means the Riemann-Stieltjes integral
for a with respect to x.

We wii improve on this result in terms of Holder topology. For a € (0, 1], denote
by C*Hl4(]0, 1], R) the Holder space with the Holder norm

lx; — xs]
lIx|lq-ra = lxol + sup -
oss<r<1 |1 = 5]

>

and let
cgM([0,1],R) = {x € C*M([0,1],R) : lim wa (6,.x) = 0},

where
wq(8,x) := sup M
i-s|<s |t —s]?
Note that C¢H14([0, 1], R) is a separable Banach space, see [56]. We next introduce a
concept of @-Uniformly Exponentially Tight.

Definition 2.2.4. We fix @ € (0,1]. Let {X€}¢5o be a family of real valued con-
tinuous semi-martingales on [0, 1]. We say that the family {X€}¢so is a@-Uniformly
Exponentially Tight if, for all M > 0, there exists Kj; > 0 such that
lim sup € log sup PIIIU-X€||la-td = Km] £ —-M, 2.4)
e\ UeB([0,1],R)
where B([0, 1],R) is the set of all adapted, left continuous with right limits processes
U on [0, 1] such that sup, (g 1) [U| < 1.

Remark 2.2.5. @-Uniformly Exponentially Tight is stronger than uniformly exponen-
tially tight in the following sense. Assume that {X €} ~¢ is @-Uniformly Exponentially
Tight. Note that forall U € S, U- € 8([0,1],R). For all M > 0, take K3; > 0 such
that (2.4) holds. Then we have that for all 7 € (0, 1),

lim sup e log sup P [sup [(U- - X€)s| = Kpr
E\O UES s<t

< limsup € log sup P [||17 - XN o-Ha = KM]
e\0 UeB([0,1],R)

<-M.

Hence we conclude that {X €} . satisfies (2.3) when 7 € (0, 1).
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Let C([0, 1], R) be the set of all real valued continuous functions on [0, 1] equipped
with the uniform topology. Here, we state our first main result, the proof is given in
Section 2.4.1.

Theorem 2.2.6. We fix @ € (0,1] and 8 < a. Let {X €}~ be a family of real valued
a-Holder continuous semi-martingales on [0, 1] and {A € } ¢ be a family of real valued
adapted continuous processes on [0, 1] such that A€ - X€ e C*Hld([0, 1], R). Assume
that {(A€, X€)} >0 satisfies the LDP on C([0, 1], R) x C¢H4([0, 1], R) with good rate
function I*.

Then if {X€}¢s0 is @-Uniformly Exponentially Tight, {(A€, X€, A€ - X€)}es0
satisfies the LDP on C ([0, 1], R) x C¢H4([0, 1], R) x Cg'md( [0, 1], R) with good rate
function I;

I*(a,x), z=a-x, x € BV,
I(a,x,z) = .
+00, otherwise.
Remark 2.2.7. LetV is an adapted continuous process. Note thatif V e C*Hd ([0, 1], R)

and B8 < a,thenV € Coﬁ 'Hld( [0,1],R). Note also that since V is an adapted continuous
process, we have that

Vi = Vsl
IV|g-ria = sup - /;
0<s<t<l,s,reQ |t - S|

is ¥ /B (R)-measurable. Since Cg 'Hld([O, 1],R) is a separable Banach space, we con-
clude that V is T/B(Cg'md( [0, 1], R))-measurable.

One of the most important family of @-Uniformly Exponentially Tight semi-
martingales is constructed from scaled Brownian motions. The proof is deferred to
Section 2.4.1.

Proposition 2.2.8. We fix @ € [1/3,1/2). Let B be an R-valued standard Brownian
motion on [0, co) and assume that B is (7;)-adapted. Let B€ := €!/?B and B€ := B,..
Then we have that:

(i) forall (7;)-adapted continuous processes A on [0, 1], we have A-B€ € C*H4([0, 1],R),
and {B€}¢so is a-Uniformly Exponentially Tight: for all M > 0, there exists
Kjs > 0 such that

lim sup € log sup PIIU-B|la-ma = Kpm] < —M.
e\0 UeB([0,1],R)

(i) Let 7, := Fe;. Then for all (%,°)-adapted continuous processes A on [0,1],
we have A - B¢ € C*H4(]0,1],R) and {B€}¢>¢ is a-Uniformly Exponentially
Tight.
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2.2.2 LDP for SDE driven by stochastic integrals

In this section, we will discuss how to derive the LDP for SDEs driven by stochastic
integrals in one dimension from Theorem 2.2.6. Consider the Stratonovich SDEs in
one dimension:

dYy, = o (Y;) 0 A,dX, + oo (Y,)A,dr, Yy €R, (2.5)

where 7,0, € C;, X is a one-dimensional standard Brownian motion, and A and A
are real valued adapted continuous processes respectively. Note that we regard (2.5) as
the equation driven by a stochastic integral A - X and A - A where A(t) :=t.

Let

Z=(zZW,ZP):=(A-X,A-N),
where - means the Itd integral. Let also that
Zg=(1,Zgy, L), 0<s<rt<l, (2.6)
where for i, j € {1,2},

2-1(zM)2, i=j=1,

Zo =7 —Zs, 2 = ; . .
ot o st fst(Zr(’) ~zdzY | otherwise,

and Z is defined by the Young integral (see also Section 9.4 in [30], this is the Young pair-
ing). Note that by Proposition 2.2.8 (i), for a € (1/3,1/2), Z € C*Hld x c1Hld 3pd 50
the Young integral is well-defined. For a € (1/3,1/2], denote by GQ> ([0, 1], R?)
the geometric rough path space and d,, the metric function on GQ*H4 ([0, 1], R?) (see
Section 2.2 in [27]). One can prove that for a € (1/3,1/2), Z € GQ*H4([0, 1],R?),
see the proof of Theorem 2.2.11.

We now discuss the following type of rough differential equation (RDE) (in Lyons’
sense; see Section 8.8 of [27], for example):

Y, = / 7 (Y,)dZ, 2.7
0

where ¥, =Y, = Yo, 5(y) = (1 (Yo + ), oo (Yo + ).
Theorem 2.2.9. Let 1,0, € C;.
(i) RDE (2.7) driven by (2.6) has a unique solution ¥ = ®(Z, y), where
@ : Quma([0,T],R?) xR — c*H(]0,T], R)

is the solution map of (2.7) that is locally Lipschitz continuous with respect to
da.

(i) The first Ievel of the last component Y of the solution to RDE (2.7) for (2.6) gives
the solution Y (w) = yo + Y to the stratonovich SDE (2.5).
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Proof. These are standard results from rough path theory; see e.g., Theorem 1 in [65]
or Chapter 8 in [27] for (i) and Chapter 9 in [27] or Theorem 17.3 in [30] for (if). O

Remark 2.2.10. Although the solution Y is one-dimension, the noise Z is a two
dimensional path and so it is not trivial whether Y can be constructed from Z or not,
and this is why we need to consider rough paths Z of Z.

Let X€ := €'/2X, and A€, A€ are (7;) adapted continuous processes respectively
(these correspond scaled processes of A, A respectively). Let

Z¢=((Z"),(2?)9) = (AT - XA - A,
and we define Z€ like (2.6). We now consider the following scaled SDEs:
dYF = o (YF) o ASAXSE + o (YS)ASdt, (2.8)
We state the second main result, the proof is given in Section 2.4.2.

Theorem 2.2.11. We fix a € [1/3,1/2). Assume that there exists &’ € [1/3, 1/2) with
@’ > a such that {(A€, A€, X€)} .- satisfies the LDP on C([0, 1],R) x C([0, 1], R) x
Cy M4 ([0, 1], R) with good rate function J*.

Then {Y €} - satisfies the LDP on C¢H4([0, 1], R) with good rate function

J(y) = inf{J#(a,d,x) cy=®oF(a-x,a-AN), xe BV} ,
where

F(2)s = (]’Zst» zst), (2.9
and for i, j € {1,2},

—1,(i) =i =
00, e [TIED ==t
st t 'S st /: (Z’(f) — Zgl))dzﬁj), OthCI‘WiSe,

and z is defined by the Young integral.

2.3 An application for mathematical finance

2.3.1 Small noise asymptotics for rough volatility models (2.12)
We now discuss an application of Theorem 2.2.11. Let « : (0, 1] — [0, o) as
k(t) =g’ %, te(0,1],

where @,y € (0,1) and g is a Lipschitz function. Let X : C*H4([0,1],R) —
crHd([0,1],R) as

K0 = tim {160 =97 = 0l <+ [0 = 0w - sias)

= k() (f(1) - f(0) + /0 (f(s) = fF()K (= s)ds.
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This map is called the fractional integral for ¥ > « and the fractional derivative for
v < a, see [33] for details. For simplicity, let 4 :=y — a.

Remark 2.3.1. Because of the existence of Lipschitz part g, « has sufficient generality
for applications. For example, we can take the following singular kernels.

1. the Riemann-Liouville kernel
kp(t) =712 1 e(0,1], H € (0,1/2) (2.10)
has the above form (u = H — 1/2).
2. the Gamma fractional

k(t) ==t exp(ct), te(0,1], ue(-1,1), ¢ <O,

3. Power-law

k() =" (1+0)f7#, 1e(0,1], ue(-1,1), B < -1I.

For convenience, we denote Ky by K associated with the Riemann—Liouville kernel
kp, which means %K is the usual fractional operator.

We fix @ € (0,1/2) and y € (0, 1) (a and y are the parameters of K respectively).
Denote by (W, W+) a two-dimensional standard Brownian motion. Set

X = pW++1-p2Wt, V:=¥(KA), pel[-1,1], (2.11)
where A is the solution to the SDE
dA; = b(A))dt +a(A,)dW;, Ag eR,

a,b € C,‘i, and ¥ : R — R is a nice function (see in Remark 2.3.3). Consider the
following It6 SDEs (here Y represents the dynamics of the logarithm of a stock price
process):

1
d¥, = o (¥) f (Vi, )dX; = 302 (Y) [ (Vi D)t Yo € R (2.12)
where f : Rx [0, 1] — [0, o0) be a nice function (see in Remark 2.3.3), and o : R - R
is in C;‘. In this paper, we call (2.12) rough volatility models. The equation can be
rewrite in the Stratonovich sense:
1
d¥; = o (¥,) o f(Vi,)dX, = S o (V) + o (Yo (Y)} £ (Vi )dr
Note that we regard this SDE as the equation driven by a stochastic integral f(V,-) - X
and f2(V,-) - A. Fore > 0, let (X€,V¢) := (¢'/2X, €!/2V) and consider the following
SDEs:
1
Ay = o (YE) o f(VE, 1)dXF — 5 {2 + (YO (Y} fA(VE, t)dt, € >0,
(2.13)
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Let
Z€ = (f(Ve,)- X, f2(VE,) - A), €>0.

We state an application of Theorem 2.2.11 for rough volatility models, the proof is
given in Section 2.4.2.

Theorem 2.3.2. We fix @ € [1/3,1/2) and y € (0,1). Assume that x — f(x,-) is
continuous map on C([0, 1], R), x — ¥(x) continuous map from Cg 'H]d( [0,1],R) into
C([0,1],R) and let Y€ is the solution of (2.13). Then {Y €}, satisfies the LDP on
ceH4([0,1],R) with good rate function

- 1
J(y) := inf{§||(w,wi)||${ cy=®oFoFpoK(w,wh), (wwh) € 7—(},

where H is the Cameron-Martin space on RZ,

Kw := (PK(a(Ag)w™), pw® + 41 = p2w @), Fy(v,x) := (f(v, D x, f(v, )2 A) ,
(2.14)

F is defined as (2.11).

Remark 2.3.3 (assumptions for f and ¥). If f : Rx[0, c0) — Risin C'-class or f(x, )
does not depend on ¢ € [0, o) and locally S-Holder continuous with respect to x € R
(B € (0,1]), then f satisfies the assumption of Theorem. Similarly, if ¥ : R — R is
B-Holder continuous, then W satisfies the assumption of Theorem. As will be discussed
later (Remark 2.3.8 and Table 2.1), these sufficient assumptions are weaker than these
in previous works [8, 37, 23, 62].

Remark 2.3.4 (comparison with previous studies : small-noise LDP). Although there
are few previous works about small-noise LDP for rough volatility models when com-
pered with short-time LDP, this Theorem is a natural extension of the previous work
[37]. In [37], the authors discussed in the case of generalized rough SABR models
(the case when f € C*®, o € Cﬁ, ¥ :=id, and A is a Brownian motion). The main
difference is that the proof of Theorem 2.3.2 is much simpler than that of [37], because
our method only uses the standard rough path theory while the method of [37] need to
use a partial rough path theory which is further developments of it. Also, our theorem
is more flexible than the previous result in terms of f, K, A, and ¥. For example, one
can derives the small-noise LDP for generalized rough Heston models discussed in [58]
(see also Remark 2.3.8).

2.3.2 Short time asymptotics for rough volatility models (2.12)

In this subsection, we prove the LDP for {t*(Y; — Yy)};~0 on R when ¢ \, 0, where Y
is the solution for (2.12), u := y — @, and 7y, a are the parameter for a kernel x. To do
so, let

YE =€t (Ye, - V).
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Note that
Ver = P(KAer) = P(K (e (Ae. — Ao)y) =1V,
where

, €>0,

K@) 5= |00 = 1)+ [ () = F) ela =51

and k¢ (t) := «(et). Here we use the relation KA(et) = K€ (e*A¢.) in the second
equality. By using the change of variables for stochastic integrals and Riemann integrals,
one has that

7e = e { ) " o) Vx| / ) crz(mfz(vu,u)du}
= " ey e _ L [Mse2 ye (2)ye
/O Fere)d(zM)e 2/0 () (Y )d(Z7),,
where
Z(l) € = t Ve, d 'uXeu 5
(z); /0 FOVE, ewyd(e" X o)
Z(Z) € = u+l ! 2 Ve’ d ,
(ZD)e = e /0 PAVE, euydu

and
F€(s) =0 (Yp+eHs).

Note that Z(!) is well-defined since V€ and X.. are (7€) = (Fer)-adapted respectively.
Indeed, we can derive an LDP for {¥ €} under the following Hypothesis 2.3.5.

Hypothesis 2.3.5. We assume that « satisfies the following conditions:
1. «€(0,1/2),and u < 0, and o € C?,
2. the Lipschitz part g of « is in Cf., and sup, (o 1) [g(et) = 1] — Oas e \, 0.

3. f:RX[0, ) — Risacontinuous function and satisfies the following conditions:
for all v, v € C([0, 1],R) withv" — v in C([0, 1],R),

sup sup |f(v,er) — f(vi,et)] > 0, asn— oo.
e€(0,1) t€[0,1]

sup |f(vs,et) = f(vs,0)] > 0, ase\,O0.
te(0,1]

Note that the assumption 2 is harmless in the sense that all examples which appear
in Remark 2.3.1 satisfy them. Note also that the assumption 3 is harmless in the sense
that the all functions discussed in Remark 2.3.3 satisfy this condition.
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Theorem 2.3.6. Assume that Hypothesis 2.3.5.
Then {V€}o<e<; satisfies the LDP on C*H4([0,1],R) as € \, 0 with speed
e~ (21+1) with good rate function

x=pw++v1 - pZwt,

- 1
J(3) = inf 3 Sl ow, wh I3, : '
2 7=000) [ FOFK(a(Aawr 0 (o) € H
0
The proof of Theorem 2.3.6 is given in Section 2.4.3.
An LDP for the marginal distribution ¥, ¢ follows from the contraction principle,
and the corresponding one-dimensional rate function as follows.

Theorem 2.3.7. Assume Hypothesis 2.3.5. Then {t*(Y; — Yy) }1>+>0 satisfies the LDP
on R with 7 \, 0 with speed r~(?**1) with good rate function

J )= inf
geL2([0,1]

2
L e [ (9, 0) )
) 5/0 g Pdr + (2.15)

21 - p)r (¥0)? fi f (v(8), 0)>dr |

where v(g) = a(Ag)¥(Kog), and Kog := fov kp(t—r)g.dr.

Proof. By the contraction principle and the previous theorem, {*(Y; — Yy)}i>¢>0
satisfies the LDP on R with ¢ \, 0 with speed 7~ (>#*1) with good rate function

x=pw++v1-p2wt,

- 1
F#(2) = inf Sl 0me w13, 1
2 " = (v /0 FOPK(a(Ao)w)r 0)drr, (w,wh) € H

By using the argument in Theorem 3.8 in [37], one can prove that J* has the above
representation (2.15). |

Remark 2.3.8 (comparison with previous studies : short-time LDP). The theorem is
a natural extension for the results in [23, 62, &, 37] because if ¥ = id, ¢ = 1, and
b = 0, then the statement (in particular, the rate function (2.15)) corresponds to that
appeared in the previous works. First we will compare the assumption for the parameter
of models (see Table 2.1). In view of the local volatility function o, our method
outperforms [23, 62, 8], although we have to assume a slightly stronger smoothness
than [37] because we transform (2.12) into stratonovich SDEs. On the other hand, our
assumption of the stochastic volatility function f is the most general in the sense of
Remark 2.3.3. Also, our method is more flexible than the others in the sense of the
fractional operator K, A, and ¥. Our method allows us to add a Lipschitz part of «, a
diffusion process A, and some transformation ¥ of volatility processes.

As mentioned Remark 2.3.4, our first contribution is that the proof is much simpler
than that of previous works, because our method only uses the standard rough path
theory, while the method of [8, 37] need to use regularity structures or a partial rough
path theory which are further developments of it ([23, 62] is somewhat less applicable).
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Table 2.1: Short time asymptotics for rough volatility models (2.12)

method o f K A v
Forde & Zhang [23] 1 Holder continuous Ko a=1,b=0 id
Jacquier et al. [62] 1 Vexp (x — t2H /2) Ko a=1,b=0 Id

Bayer et al. [8] 1 c® Ko a=1,b=0 id
Fukasawa & T [37]  C} c> Ko a=1,b=0 id
Our method Cf; general (see Remark 2.3.3)  general general general

Moreover, our method allows for a unified treatment of short-time LDP for rough
volatility models. For example, the result obtained by [37] does not contain the Forde
& Zhang’ result [23] since Holder continuous function is not smooth in general.

Furthermore, one can derives the short-time LDP for generalized rough Heston
models discussed in [58]:

1
dY, = = V,dr + WVidX,, Yy=0, (2.16)

Vi = li1(7<A)z7

where x — ¥(x) is a continuous map from C?*M4(]0, 1]) into CI'Hld([O, 1]). The
equation (2.16) coincides with the equation (2.12) with o = 1 and f(v,1) := \/v.
(2.16) are widely applicable, in the sense that the authors of [58] provide us how to
make a numerical approximation of the solution of (2.16). Although a reason for using
and studying such models is that it is expected to be consistent with the power laws of
implied volatility observed in the market, there is no justifications of this expectation
in the literature because f is not smooth and K, A, or ¥ are general. One can remedy
this problem in the sense that the approximation formula (2.18) which is given later and
consistent to the power law of the implied volatility in the market is obtained.

Remark 2.3.9 (flexibility of the parameters of (2.12)). Although we adopt the gener-
alized fractional operator K, it is Ko that appears in the rate function (2.15) for the
short time asymptotics of (2.12) and so the effect of K is partial in this sense. In other
words, the generality of Lipschitz part g of x does not affect it. On the other hand, ¥
and a(Ay) truly affects the rate function for the short time asymptotics of (2.12). Also
the scaling order for Y does depends on the parameter u, and these suggests that u does
affect the implied volatility skew.

2.3.3 Short time asymptotics for put/call options and implied volatil-
ity
Let

. infy~, J*(y), x>0,
A =g 7
infy., J°(y), x<0.
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where J* is defined in Theorem 2.3.7. Let (x); :=x V 0.
Theorem 2.3.10. Under the Hypothesis 2.3.5, we have the following:

(i) we have the following small-time behavior for out of the money put option on
S; = exp (¥y) with S = 1:

- li{r(l) 2 100 E [(exp (xt7H) = 81).] = A*(x), x <0,
t

where x := log K is the log moneyness.

(i1) Moreover, if we assume that

limsup*#*' log E[S{] =0, ¢>1, (2.17)
\0

then we also have the following small-time behavior for out of the money call
option on S; = exp (¥;) with Sy = 1:

- n\n(l) P22 o0 E[(S, —exp (x17H)),] = A*(x), x> 0.
t

Proof. See Section 2.6 O

Remark 2.3.11. Because it is difficult to check the exponentially integrability of S in
general, the assumption (2.17) is natural, see Assumption 2.4 in [9], for example.

Corollary 2.3.12. Denote X(x, r) by the implied volatility at the log moneyness x and
the maturity ¢. Then for the rough volatility models (2.12), we have

. _ X

th\rr(l)Z(xt Koty = \/ﬁ x <0. (2.18)
Moreover, if we assume that (2.17), then

lim X (xt™#,1) = L x> 0.

A8 Noem)
Proof. One can adapt the same argument as Corollary 4.13 in [23]. O

Remark 2.3.13 (observation and future works for (2.18)). The corollary is an extension
for Corollary 4.15 in [23], and our result outperforms the previous results in the sense
that o, f, K and A is more general. The dependence of these parameters is determined
by how the rate function J# depends on them (see Remark 2.3.9). Note that if —u is
negative, then the steepness of the implied volatility smile is infinite V-shape as ¢ \, 0,
while it is flat when —pu is positive.

Although justifications are left in the future, I think there are several chances to
apply the asymptotic formula (2.18) for practical applications. For one thing, the
approximate formula (2.18) has a slightly different structure compared to previous
studies [23] because of the generality of (2.12). As a result, the right-hand side of
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(2.18) may be explicitly solved. Even if it cannot be explicitly solved, further precise
approximation formula may be found here. Furthermore, (2.18) is more flexible than
that of [23] in terms of the parameters of (2.12). This flexibility may have an impact on
approximation accuracy when compared with the previous work [23]. Moreover, the
formula may suggest a reasonable and concrete model which is consistent to the power
law of the implied volatility. Finally, by using a numerical implementation method
suggested by [23], one can apply (2.18) to the pricing of put/call options with being
consistent to the power law of the implied volatility.

2.4 Proof of main theorems

2.4.1 Proof of Theorem 2.2.6 and 2.2.8

We fix @ € (0,1] and B < a. For simplicity, we will write Cél'Hld [0,1],R) as
CyM9([0,1]), and {X €} 50 as {X €} .

Definition 2.4.1. For § > 0, we define the map Gs : C([0, 1]) x C(?'Hld([O, 1]) —»
Cg 'Hld([O, 1]) as follows:

)

Gslax) = ags (x,mlf - xmf_l) . refo1],
k=1

where T(f =0and
2 =10(a):=inf{t >7° i |la;—a.s |>6}A1l, keN
=T la): k=11t = A ’ ’

Remark 2.4.2. We fix a € C([0,1]). By the definition of {T,f(a)}k, for all k € N,
T]f (a) < T,f+1(a) or T]f(a) = 1. Moreover, there exists k € N such that T]f (a) = 1.

Remark 2.4.3. We fix a € C([0,1]) and 6 > 0. Let k;, is the smallest integer such
that T,f, (a) = 1. Forall 0 < s <t < 1, take the smallest number /,!” € N such that
0

5 -6 5 -6
se [, 75, land € [77, 77,1 (1 <" < kjj— 1). Because

l/
|Gé(a9-x)t - Gé(a,x)s| < ||a||00 { Z |x‘rlf _xTIf—l | + |-x1 _-xrl‘?l + |le‘il _-xsl}
k=142

< |lallollxll a-makglt = s,

we conclude that G (a,x) belongs to C*Hd(]0,1]). Since B < @, we have that
Gs(a,x) € Cy ([0, 1)).

Lemma 2.4.4. We fix 6 > 0. For a(n),a € C([0,1]), assume that a(n) — a in
C([0, 1]). Then there exists a subsequence {a(n’)}, of {a(n)}, and a sequence {r,f}k
on [0, 1] such that the following properties hold;

(i) forall k > 1, 72(a(n’)) = rf asn’ — oo, and {rg}y is non-decreasing,
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(ii) for alllck > 1, either r,‘f < ‘r,f(a(n’)) for all n’ > k, or r]f > Tlf(a(n’)) for all
n >k,

(iii) forall k > 1, a(n’),lf(a(n,)) — a6 as n’ — oo,

(iv) forall k > 1, rlf =lorr?

5
k=1 <Tg>

(v) there exists k’ € N such that r}, = 1.

Proof. We adapt the argument of Theorem 6.5 in [39]. We fix § > 0. For brevity, we
write T,f as 7 (we apply the same notation to r]f). Since {11(a(n))}, is a sequence
on [0, 1], there exists a subsequence {a(n")}, ) of {a(n)}, and r; € [0, 1] such
that 71 (a(n'")) — ry as n) — co. Since {2 (a(n'"))}, ) is a sequence on [0, 1],
there exists a subsequence {a(n®)},c of {a(n")},q and o € [0,1] such that
7 (a(n®)) - ryasn® — co. By using the same argument, for all k € NN, there exists
a subsequence

{a(n™)}, 0 c {a(n* "N} u-n C ... ¢ {a('M)},0) € {a(n)}n

and ri € [0, 1] such that 7% (a(n®)) — rp as n®) — co. Let a(ny) = a(n,(ck)) (here
n; means the k-th number of n’). Then we have that {a(n’)},  is a subsequence of
{a(n)}y, and for all k > 1, {a(n;.)}jzk c {a(n™)},w. So we have that for k > 1,
Tx(a(n’)) — rp asn’ — oo. Since 14— (a(n’)) < 1x(a(n’)), we have ry_; < rr. So
this is a subsequence {a(n’) }, of {a(n)}, such that {a(n")},  satisfies (/). We can also
select a subsequence {a(n”’)},» of {a(n’)}, satisfies (if). We fix this subsequence
{a(n"")},» and rewrite {a(n"")},~ as {a(n’)},  for brevity.

It is straightforward to show (ii7) because of the fact that 7 (a(n’)) — ry and the
uniform convergence of {a(n’)},.

Let us verify the property (iv). If this were not true, there exists k € N such that
r =rr_1 =rr < 1. From (iii), we have

a(n) g (a(ny) = ars a(W)g_ (a(w)) = @, asn’ — oo,
In particular, there exists N’ () € N such that if n’ > N’(6),

la(n')z (ary) = a(n )y (a(n))] < 6.

On the other hand, by using (ii), we can prove that there exists N/ (k) > 1 such that if
n’ > N"”(k), tk_1(a(n’)) < 1x(a(n’)). This is because in the case of 7x_1(a(n’)) <
rip—1, k-1 < 1 implies that x_;(a(n’)) < 1 and so by Remark 2.4.2, we have that
Tr—1(a(n’)) < 1 (a(n’)). Inthecase of ry.—1 (a(n’)) > rr_1,sincer_; < 1, there exists
N (k—1) suchthatifn’ > N”(k—1),1r—1(a(n’)) < landsoti_i(a(n’)) < tx(a(n’)).
Then the definition of 73 implies that if n” > N”'(k),

6 <la(n)re(a(my) = a( )z (amy)l;

and this is a contradiction.
It remains to verify (v). If this were not true, for all k > 1, ry < 1. By using
the same argument in the proof of (iv), we can prove that for all k& > 1, there exists
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N’(k) = 1 such thatif n’ > N”(k), tx—1(a(n’)) < 1¢(a(n’)). Then by the definition
of 7, if n > N (k),

6 <la(n) (@) —a( )z @)l
Since ry < 1, (iv) implies that r,._; < ry. Then (iii) implies that
0 <lay, —ar,_,|.

On the other hand, since {rg } is a non-decreasing and bounded sequence, there exists
R € [0,1] such that rp, — R as k — oo and so the continuity of a implies that
ay, — ag as k — oo. In particular, {a,, } is a Cauchy sequence. However, this is the
contradiction. O

Definition 2.4.5 (Definition 6.1 [39]). Let E, E; be a metric space respectively. We
say that a function G : E1 — E; is almost compact if for all x € E| and {x(n)}, C E;
with x(n) — x in Ej, there exists a subsequence {x(nz)}x and y € E; such that
G(x(ng)) — yin Es.

Lemma 2.4.6. For all 6 > 0, G is almost compact.

Proof. We fix 6 > 0. Assume that (a(n),x(n)) — (a,x) in C([0, 1]) x C&H4([0, 17).
Take a subsequence {a(n’)} of {a(n)}, and {ry} such that the properties of Lemma
2.4.4 hold. Let k¢ be the smallest number such that (v) holds in Lemma 2.4.4 and let

00
r = Z ark,l (xt/\rk _-xt/\rkq) ’ re [0’ 1]
k=1

By using the same argument as G s(a, x) in Remark 2.4.3, one can show that
|2 — 25| < kollalleollx|l o-rualt — 517,

and this implies that z € C2™([0, 1]).

We will show that G s(a(n’),x(n’)) — z in Cg'H]d([O, 1]). We fix 5 > 0 and we
will prove that there exists N(n) € N such thatif n > N(n),

1Gs(a(n’), x(n")) = zllp-rma < 7.

To show the assertion, we fix 0 < s < ¢ < 1 and take the smallest number /”,/ € N such
that s € [rp,rps] andt € [r,rppr] (U <1< ko—1).

Let § = &(ko,n) := (ming<k<k, Irk — ri—1]) A 1 and N() := maxo<k<k, N(k,7),
where N (k,n) is a number such that if n’ > N(n, k) : for 0 < k < ko,

(D) |te(a(n’)) —rel <6/2,
(I1) |la(n' )z, (amry) = ar | <M,

(1) la(n’) - allo < 7 and [[x(n’) = X[l < 7.
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Now we fix n” > N(n). For brevity, we write 7¢(a(n’)) as 7. By (I), we can prove
that rp41 < Tr42 and Tx— < rg for all 0 < k < ko. Hence we consider the following

nine cases.
(Casel) s € [Tl/,T1/+1] andt € [Tl,T1+1].

IGs(a(n),x(n"): = Gs(a(n),x(n")s = (2 — 25|

< la(n)z (x(n')e = x(n')7) = ar, (x = x|

!
+ ) 1l o e )y =X (1)) = i G =, )]
k=l'+2
+ |(1(7’l,)-rl, ('x(nl)Tll+] - x(nl)s) — Qyy, (xr1/+| _xs)| =Ty +Tp+Ts.

Since |7 —ry| < |t=s]|, |71 —¢t| < |t —s|,and |t —r;| < |t —s|, (I) to (III) imply
that

Tll < Ia(n,)‘l'l - arl||x(n'), _-x(n/)‘l'll + |arl||x(n’), —X(}’l/)‘,—l - (-xt _Xrl)l
< Ia(”/)‘rl —ay |||x(nl)”a—Hld|t - Tlla

+llalloo {1x(n") = x(0")r, = (e = x| + X (1), = x(0")7, |}
< [la(n’)n = an|llx(n")|la-rd + llallollx(n’) = x|l o-11a

+ llalleollx ()| g-rual 7 = | “ 7P |2 = 51P
s +n* P —slP.

Since |ry — re—1| < |t = s, |7k — Tk—1] < |t = s|, and |1x — ri| < |t — s| for all
I"+2 <k <1, (I)to (III) imply that

Tio < la(m)zy — an 1x(0") 7 —x(n) 7, |
+ |ark,| ”-x(n’)‘l'k _x(n,)‘rkq - (-xrk _xrk,1)|

<la(n )z, = ar_ x| g-malte — to-11¢
#lallo{ b, =20y = (i =)
) e, =¥ g, = (0 = x00))
< {100, = an 10 Laesna + llalla 6 () = ¥l -1
+ [lalloollx () | a-ruafl7a = rel 7 + [te1 = rk—1|“73}}|l - sl

S (m+n* Pt -5,

and we can estimate T1,. Since |14 — s| < |t — 5|, |rre1 — 5| < |t — s/, and
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|Tp41 = resa] < |t =),

T3 < Ia(n,)fy - ary“x(n’)ﬁm _x(n’)sl
+ |arl/ ||x(n,)-rl/+] —X(I’l,)s - (xrl’+l - xs)l

< la(n')z, = an, |lIx(n")| q-rual 1 = 51
#llall{l ), = X005 = Gy =21+ 1)y = X000 1}
< {la(0)z, = ap 1)l a1
+llalleo{llx(n") = xlla-tia + [1X(n") ] @-ralri1 = i1 I"_B}}It sl
< (n+n* Pt - sPP,
and so by using these inequalities, we have that
Gs(a(n’),x(n)): = Gs(a(n'),x(n")s = (z = z)| s (p+0"P)|t = s/P.
(Case2) s € [1p,1pr+1] and t € [1741, Ti42].
IGs(a(n’),x(n) = Gs(a(n'),x(n"))s = (2 = 25|

< |a(n’)‘l'l+1 (X(I’l/)[ _x(nl)T1+1)| + |a(n,)7‘l (X(n,)rm _x(nl)‘l'l) —dap (xt - xrz)'

1
+ Z |a(n/)‘rk71(x(n’)‘rk _x(n’)‘l'kfl) - ark,l (xrk _xrk71)|

k=742
+la(m )z, (x(n')7,,, —x(10')s) = ar, (xp,,, —xs)| = To1 + Too + To3 + Tog.

We can estimate 773 and T»4 as the same argument of 77, and 73 in (Casel). To
estimate 731, let us note that (/) implies

Tie1 <1<y < T +6/2,
and so |t — 1741| < 6/2. Then |17, — t| < |t — s| implies that
Tor < lla(n)eollx () la-tnalt = Tt |“ Pl = s1P < n*Pe - 5.

Since |tpy1 — 7| < |t =s|, |ri— 7| < |t —s|,and |14 — 2] < |t = s|, (I) to (I1])
imply that

T22 < |a(n/)‘rl - an”x(n’)‘rlﬂ _'x(n/)‘rll + |Clrl||.x(l’l,)1-l+1 _x(n/)‘rl - (-xt _xrl)l

< la(n'), = anlllx(n)ll e-maltier — 7l *
#lall {0 ey =20y = (g = )+ e = = (e = 2,
< {la(0)z, = an 160l
#llala () = g + I¥lla-sa{lr = 7|7 4 17y = 1] * Py 1e = o

s (m+n Pt -5l
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(Case3) s € [tp,1p41] and t € [17-1, 71].

IGs(a(n’),x(n); = Gs(a(n'),x(n"))s = (z: = 25|

< |ar1 (xl _xrl)l + |a(n/)Tl_1 (X(}’l,)t _x(n’)Tl_l) - arl_l(xrl _xr1_1)|

-1
3 a0 ) =X () )) = ., (i = )]

k=2
+la(n)z, (x(n" )z, —x(0')s) = ar, (xp,,, —Xx5)| = T31 + T30 + T33 + T34.

We can estimate 733 and T34 as the same argument 7}, and 713 in (Casel). To
estimate 731, let us note that (I) implies

rl—5/2<tSTl <I"l+(§/2
and so |t — ;| < §/2. Since |t — r;| < |t — 5|, (II) implies that
Ts1 < llallolx: = xn,| < llalloollxlla-rnalt = ri]* < 7 P|r = s1P.

On the other hand, since |[t—r;| < |t—s|, [t—1j_1] < |t—s]|,and |1j_1—r;_1]| < |t—s5],
(I) to (111) imply that

T < lay,., = a(n )y |16 = X (0 )y, |+ ey W)y = 60V, = Gy =)
< lar, , = a0 e, | losnalt = 71|
ol =y = O = X0 D+ 1Yy =50+ iy = i1}
< {lar., = a0y 10 asna + lalloo{ 16 G) = Xl asno
+ 1 (n) | acsmalri-t = 7117 + [|x]| q-palt = r1|”_ﬁ}|t - P

<+ Pt - slP.

(Case4) s € [1p41, Trr42] and 1 € [17, 741].

|Gs(a(n’),x(n")); = Gs(a(n'),x(n"))s — (21 = z5)|

< |a(nl)‘rl (X(}’l/)t _x(n/)ﬂ) —ap (-xt _xrl)l

1
+ Z |a(n’)7’k71 (-x(nl)‘rk —X(}’l/)‘rkil) - arkfl(-xrk _-xrk,])|

k=I'+3
+ |a(n,)‘l'[/+1 (x(n,)T[q.z - x(nl)S) - ar[/+1 (xr[/+2 - xr,/+1)| + |aT[/ (xr[/+1 - xS)l
=Ty +Tap + Tyz + Tyg.
We can estimate 74, and Ty, as the same argument 77, and Tj, in (Casel). To
estimate Ty3 and Ty4, let us note that by using the same argument in (Case2),

|s—rpa1] < 6/2. Since |rpp—s| < [t=sl|, [rpe1—s| < |t —s|, and [rp2 — 1142] <
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|t —s|, (1) to (11I) imply that

Ty < |a(n/)‘rl»+1 - Clrl,+1||)C(l’l’)-,-l,+2 _x(n’)sl + |ar,/+| ||x(n/)‘rlr+2 _x(n/)s - (xr,/+2 - xr1/+1)|

< Ja(n)ey., = ary, 1160 ] qtnal sz — 1
tlall {0y, =3 00)y = (i =21+ By = 2]+ )y = X021}
< {1at ey, = a1 lasma + llalleo{ I 1") = 3l 10

+|1x Nl a-alrist = 5197 + 1x(0)) || a-pnalresa — Tz'+2|a_ﬁ}}|t —slP

< (+n* Pt —s)P.
Since |rp4 — 5| < |t = s,

Tas < llallcollxllapnalrisr = 5| < n@ Pl = s/

(Case5) s € [1y41, Tre2] and t € [1741, T42].

Gs(a(n),x(n); = Gs(a(n’), x(n'))s = (2 = 25|
< la(n) g, (x(n)e = x(n')7,,,)]

+ |a(n/)‘fl (-x(n,)‘fu] - x(nl)Tl) —dp (xt - xr1)|

l
+ ) a0 ) =X (1)) = ey (o = )

k=l"+3
+ |a(n/)Tl/+1 ('x(n,)Tl/+2 - x(n,)s) - arl/“ (x"1'+z - -xl"lur])l

+lag, (X, —xs)| = Ts1 + Tso + T53 + Ts4 + Tss.

We can estimate 751 and 75, as the same argument 751 and 75 in (Case2) and
Ts3 as the same argument 77, in (Casel). We can also estimate 754 and 755 as the
same argument 743 and Ty4 in (Case4).

(Case6) s € [1p41, Tr42] and 1 € 171, 77].

|G s(a(n’),x(n')); = Gs(a(n'),x(n')s — (z: — z5)|
< |ai’[ ('xl‘ _xrl)l + |a(n,)T[_1(x(n,)l _'x(n,)T[_l) - ar[_l (xr[ _-xr[_l)|
-1

+ Z |a(n/)‘1'k_1 (x(nl)Tk _-x(nl)Tk_|) - ark_| (xrk _xrk_l)l

k=l"+3
+ Ia(n’)‘l'lq.] (‘x(n/)‘l'1/+2 - 'x(n/)s) - arl/+1 (xrlr+2 - xrlr+1)| + |a711 (xr1/+1 - -xS)l

=Te1 + Tep + T3 + Teq + To5.
We can estimate Tg; and Tg, as the same argument 73; and 73, in (Case3) and

Ts3 as the same argument T, in (Casel). We can also estimate g4 and Tgs as the
same argument 743 and Ty4 in (Case4).
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(Case7) s € [tp—1, 7] and t € [17, Tj41].

|Gs(a(n'),x(n'); = Gs(a(n'),x(n')s — (2 — z5)|
< |a(n/)‘r1 (x(nl)t _x(n,)ﬂ) —dap (xl _xrl)l
I
+ Z Ia(n’)‘l'kfl (x(nl)‘rk —X(}’ll).,-kil) - arkq (er _xrk71)|
k=l"+2
+ |a(n’)‘r,/ (x(n,)‘r,u,l - x(n,)‘r,/) — Ay, (xr,u,l - x5)|
+la(n)e, ,(x(n')z, =x(n")s)| = Ty1 + T2 + T3 + Ta.
We can estimate 77; and T7; as the same argument 77; and 77, in (Casel). To
estimate 773 and 774, let us note that by using the same argument in (Case2),
ls — 7| < 0/2. Since |tpy — 1| < |t = sl, |trsr —rral < |t =5, and
|ty —s| < |t —s|, (I) to (II11) imply that
T3 < |a(n’),l, — Ay ||x(n/)‘rl/+1 - x(n/)T1/|
+ |arll||x(n/)7'1'+] _X(f’l/)-l-l, - ('xr]/+1 - xS)I
< 1a(") 2y — N smalrsr — 7017
+ ”a”‘x’“x(n/)ﬁ’ﬂ _x(n/)TI’ - (le'+1 _le’) + |x71’+1 X7y~ (x"l'+1 _xb‘)|}

< {la ()2, = ap el asma + llalls{Ile() = lla-mg

#Wellama (7 = st s =71 ) i = o < ()l = 518,

Since |1 — s| < |t — 5],
T14 < lla(n’)|loollx ()l qpnal T = 51 < 0Pl = 5P,

(Case8) s € [tp_1, 7] and ¢ € [1741, Tie2].

|G5(a(n’),x(n’))t - G(;(a(n’),x(n’))S - (Zt - Zs)'

< |a(n,)T1+1 (X(l’l’)t _x(n,)TH])l + |a(l’l,)-,-1 (.X(}’l,)-,-lﬂ _-x(n,)Tl) —dap (xt _xr1)|
!

3 a0 ) =X ()i )) =y, (o = )

k=1"+2

+ Ia(l’l’)fl, (x(n/)‘r,url - x(n’)rlr) —ary (xr,url —x5)| + |a(n/)‘rl/,1 (x(nl)‘rp - x(n,)s)|
= Tgl +T82 +T83 +Tg4 +Tg5.

We can estimate Tg; and Ty, as the same argument 75 and 7>, in (Case2) and

Tg3 as the same argument 77, in (Casel). We can also estimate 7g4 and T35 as the
same argument 773 and T74 in (Case7).
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(Case9) s € [ty—1, 7] and t € [17-1,71].

1Gs(a(n’),x(n")); = Gs(a(n’),x(n"))s = (21 = z,)|

< |aV1 (xt _xr1)| + |a(n,)‘l'1,1 (x(n’)t _x(n/)‘rl,]) - ar1,| (-xrl _xV1,1)|
-1

+ Z |a(”,)'rk,1 (x(n,)Tk - ‘x(nl)Tk—l) —Arey (xrk - xrk—l)l

k=1'+2
+ |a(n/)TV (X(n’)7-l,+l - x(n’)Tl/) - arl/ ('xl’l/+1 - 'xS)| + |a(n,)7'1/,1 ('x(n,)Tl/ - x(n’)‘i‘)l

= T91 + T92 + T93 + T94 + T95.

We can estimate Ty, and Ty, as the same argument 73; and 73, in (Case3) and
To3 as the same argument T, in (Casel). We can also estimate To4 and Tos as the
same argument 773 and 774 in (Case7).

By using the all estimation of (Casel)-(Case9), we conclude that
IGs(a(n’),x(n); = Gs(a(n'),x(n")s — (2 = 25)| S M +n*P)|t - s/,
and this is the claim. O

Definition 2.4.7 (Definition 4.2.14 in [21]). Let (Q, F, P) be a probability space and
5,€ > 0. Let Z%€ and Z€ be random functions on a metric space (E, df) respectively.
We say that {Z %€} s .~ are exponentially good approximation of {Z€} . if for every
n >0,

{weQ:dp(Z%¢(w), Z¢(w)) > n} € F,

and

lim lim sup € log P [dE(Z(S’E7ZG) > 7] = —co.
o0 e\,0

Now let us note that one can represent G s as a stochastic integral. For {T]f} =
{T]f(AE)}, let

Ws(AS), = ZAjf_ll(Tf_l’Tf](t), te[0,1].
k=1

Then the definition of {TI? }, the process {Ps(A€)}s.e is a family of adapted, left
continuous with right limits processes on [0, 1]. Therefore, we have that

t
Ga(a%.x) = [ ws(a0)axs, re o, (2.19)
0
where the integration in the right hand side is Itd integral. By Remark 2.4.3, we have
Ws(A€) - X< e cFM([0,1).

Lemma 2.4.8. If {X€}. is @-Uniformly Exponentially Tight, {¥s(A€) - X€}c.s is
exponentially good approximation of {A€ - X€}, on Cg ’Hld([O, 1]): for all > 0 and
M > 0, there exists §(n, M) > 0 such that if 0 < 6§ < 6(n, M),

lim sup elog P [ (¥5(A) ~ A) - X<[|psma > 1] < M.
e\0
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Proof. The measurability requirement in Definition 2.4.7 is satisfied by the fact that
A€ - X€ is an adapted process and
sup =%l e =5l a0, 1)),

o<s<t<l [E=5|%  o<s<r<i,sieq |t =S

To verify the remaining assertion, fix M > 0 and n > 0. Take Kj; > O such that
(2.4) holds. For this  and K, taking § small enough (n6~! > Kj;). Note that the
definition of {7 (A€)} implies that [Af —W5(A€),| < 6,and s0 6~ (A€ = Ws(A)) €
B([0,1],R). Then one has that

P{I(A° - ¥s(A9) X lptna > ] = [||6 (A€ =Ws(A)) - X g > 6™ ]

<P [[l671 (A% = W (A)) - X[y s > K

IA

sup  P[IIU- X llg-ra > Kn]
UeB([0,1],R)

and so (2.4) implies the claim. |

Definition 2.4.9. Let X€ is a random function taking value a Banach space E. We say
that {X €} ¢~ is exponentially tight if for all M > 0, there exists a compact set K»; on
E such that

limsupelogP [X€ € K§;| < -M.
e\0
Proof of Theorem 2.2.6. We will first prove that { (A€, X€, A€ - X€)}, is exponentially
tight on C([0, 1]) x €& ([0, 1]) x £ M([0, 11). Since C ([0, 1]) x C&H4([0, 1])
is Polish space, the assumption implies that {(A€, X€)} is exponentially tight on
C([0,1]) x C&MI([0,1]) (see Exercise 4.1.10 in [21]). Lemma 2.4.6 implies that
(a,x) =, G s(a,x) is almost compact from C([0, 11)xC¢H4([0, 1]) into Cg"md( [0,1]).
Since {X€}¢ is @-uniformly exponentially tight, (2.19) and Lemma 2.4.8 imply that
{Gs(A€,X)}s.c isexponentially good approximation of {A€-X €} on Cg‘md ([0, 11).
Therefore Theorem 7.1 in [39] implies that {(A€, X€, A€ - X€)}¢ is exponentially tight
on C([0, 1]) x c&M4([0, 17) x & M(10, 17).
Let C([0, )) is the set of all continuous function with the metric

(o)

duo(x.) = Z (1A sup |x = yil), %y e€C([0,00)),

n=1 te[0,n]

and let (D([0, =)), d) is the set of all cadlag function equipped with d.. Let F] :
C([0,1]) — C([0,0)) as Fi(x); := x;a1 and let I, : C([0,1]) — (D([0, ®0)), dw)
as F>(x); := x;1j0,1)(t). Since F; and F, are continuous and injective respec-
tively, the contraction principle implies that {(F>(A€), F|(X€))} satisfies the LDP
on (D ([0, )), ds) X C([0, c0)) with good rate function

1(1)(5 %) = I*(a,x), 3(a,x) € C([0,1]) x C([0,1]) s.t. (d,%) = (Fa(a), F1(x)),
e 00, otherwise.
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Note that for a real valued adapted left continuous with right limits process H and a
real valued semi-martingale V, we have that

H-Fi(V)=F,H) -F(V)=F(H-V), (2.20)

see Theorem 5.6 in [64], for example. Then we have that for all 7 € [0, o), U € S, and
K >0,

P |sup [(U- - F1(X€))s| > K] =P [sup|Fl(U_ -X%)| > K
s<t s<t

< Plsup|F(U--X)| >K
s<1
<P [IIU-l10,1]) - Xl q-ria > K|

IA

sup  P[IIU- X lo-ta > K],
UeB([0,1].R)

where U_|[o,1] is the restriction of U_ to [0, 1]. Because {X€} is the @-Uniformly
Exponentially tight, {F;(X€)} is a martingale satisfying (2.3). Then Lemma 2.2.3
implies that

{(F2(A), Fi(X), F2(A) - Fu(X))}e = {(F2(A), FL(X), Fi (A - X))}
satisfies the LDP on (D ([0, ©)), de) X C([0, 0)) X C ([0, c0)) with good rate function
1(2)(a,x,z) _ {I#(a,x), 7= Fzga) . Fi(x), x € BV
00, otherwise

B I#(a,x), Z=Fi(a-x), x € BV
" e, otherwise.

By using Lemma4.1.5 (b) in[21], itis straightforward to prove that { (F>(A€), F (X€), F1 (A€-
X))} e satisfiesthe LDPon (F>(C([0,1])), deo)X(F1(C([0,1])), deo)X(F1 (C([0, 1])), ds)
with good rate function /().

Let & := (F2(C([0,1])),dw) X (F1(C([0,1])),dw) X (F1(C([0,1])), dw) and let
F3:8 — C([0,1]) x C([0,1]) x C([0,1]) as
(Gr, X, 21) t€[0,1)
(lim; ~ @;,%1,21) t=1.

F3(ﬁ,)?, Z)t = {

Because F3 is continuous and injective, the contraction principle implies that { (A€, X €, A€-
X€)}e satisfies the LDP on C([0, 1]) x C([0, 1]) x C([0, 1]) with good rate function

I ) I#(a,x) z=a-x, x € BV,
a,x,z) = .
00, otherwise.

Therefore the inverse contraction principle (Theorem 4.2.4 in [21]) implies that
{(A€, X, A - X},
satisfies the LDP on C([0, 17) x C&H14([0, 17) x Cg'md( [0, 1]) with good rate function

I, and this is the claim. |
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Proof of Proposition 2.2.8. To verify A - B€ € C*H4([0,1],R), we fix any (F;)-
adapted continuous processes A on [0, 1] and @ € [1/3,1/2). For brevity, we assume
that e = 1. Let F5 : C([0,00)) — D([0,00)) as F>(x); = x;1[0,1)() + 1[1,00)(£)
and 7, := inf{t > 0 : |F2(A;)| > n}. Then we have that 7, is a (¥;)-stopping time,
Tp < Tyyp as. forallm € N, and 7, — o0 as n — oo a.s. One can also prove that
SUP; c(0.1n7,] [As] < 1. Let ||x]| g-mia.[0,c] = X0l + SUPg<s<s<c ||);’_;’|Cf,‘. Then we have
that

PIIA - Bllo-ma,[o,1] < 00| = P [N, {IlA - Blla-mid,[0,1a7,] < ©}]

= lim P [[|A - Bllo-tid,[0,1a7,] < ] »
n—oo
and so it is sufficient to prove that for all n € N,

P [IIA - Bllg-md, 0,1n7,] < %] = 1. (2.21)

Let A" := A 1[0.107,1 () + 1 (1n1, 00) (), then [ A Bll . (0.127,] = 1A - Blla.[0.127,]-
Since

t
Y (0 (I
0

and A™ . B is a local continuous martingale, the Dambis-Dubins-Schwarz’s Theorem
implies that there exists a Brownian motion B such that

(A" - B); = B i gy, 1€[0,00). (2.22)

We now restrict A" - B on [0, 1]. Since sup; (o ix, ] |At(")| = SUP;c(0,1n7,] [AL] < 1,
one has that (A - B), < n? for t € [0, 1], and this implies that for0 < s < 7 < 1,

~ ~ ~ ~ - (e
Bz .y, = Bam.py,| < 1Bllamd,[0.n2] (A" . By, - (A™ . By,

< | Bll gorna o, 1t = 517
Combined with (2.22), we have

A - Bllaia[0.1r5,] = 1A - Bl g, fo.1] < n2”||§||a.H1d,[0,n2], a.s.

and this implies that for all n, we have (2.21). Hence we conclude that A - B¢ €
c*M4([0, 1], R),

To verify the a-Uniformly Exponentially Tightness of {B€}, we fix M > 0 and
U € B([0,1],R). To regard U as a process on [0, o), define U; = 1, t € (1, 00). Then
we have

t
(U-B),z/ Uldr — 0, t— co.
0

Since U - B is a continuous martingale, the Dambis-Dubins-Schwarz’s Theorem implies
that there exists a Brownian motion B’ such that

(U-B) =Bly.p . t€[0,00). (2.23)
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We now restrict U - B on [0, 1]. Since sup, (o7 |U:| < 1, one has that (U - B), <1,
and this implies that for 0 < s <t < 1,

BQU'B% - BQU'BL- < ”B/”(I—Hld KU ) B>t - <U : B>s|a

< ||1B'|| g-ria It = 5|
Combined with (2.23), we have

U - Blla-tid < |B']l a-1id-

Since B is an one dimensional Brownian motion, || B|| 4-m14 has a Gaussian tail (Corollary
13.14 in [30]). Therefore, there exists ¢ > 0 such that for all K > 0,

PIU - Bl atna > K1 =P [IIU - Bllgng > € 2K
< P[IIB lama > € ?K]| < ¢ Vexp (—ce7'K?).
This implies that

lim sup € log sup P|U - BE||ypa > K] < —cK?,
e\o UeB([0,1],R)

and so take K, large enough (cKIZVI > M), then we conclude that

lim sup € log sup PIU - B|| yomna > Km] £ —M,
e\O UeB([0,1],R)

and this is the claim.

It remains to verify (ii). The proof of A - B¢ € C%Hl follows from a simple
modification of (i) and so we will focus on a-Uniformly Exponentially Tightness
of {B€}. We fix U € B([0,1],R) (note that U is an (¥ €)-adapted process). Let
U, := U 110,11 (t) + 1(1,00) (1). Then we have that for all € > 0,

@8, = [[(@a@, = [ o 1o

and so for each € > 0, there exists a Brownian motion B(€) such that

( 9 =g t € [0, ).

(
(OB) ([ @niar)

Ql
[oo]]
)
Il
oo

Since sup, (9,1 |f0t(l7)3dr| < 1, we have that

a
E(E) _ I;(f)

p(e)
s <|Be la-
e(ﬁ(f/)%dr) f(fo (U)Edr) ” € ”(zHld,[O,l]

[wmﬁAVMm

< ||1§(:)||a-H1d,[o,1] |t —s]%,

and so one has
U - BNlavor) < 1B lamnafo.1) 2.
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Since B(¢) is a Brownian motion, one can prove that
5e) _ mlonp]P 12
E[18 - B < Veyplr- sl

Then the argument of Gaussian tails in Lemma A.17 in [30], one can prove that there
exists ¢ > 0 (e-uniform) such that

~(e K2
P [||B(e~)||a-H]d,[(),l] > K] < cexp (— )

8ecq €

and so

2
- 5() K
P [HU-BGHWHM’[O’lJ > K] <P [”Be~ | -, 0,11 > K] S cexp (_Secae)’

and we have the claim. |

2.4.2 Proof of Theorem 2.2.11 and 2.3.2

Proof of Theorem 2.2.11. Wefixa € [1/3,1/2)and 1/2 > @’ > a suchthat {(A€, A€, X€)}.
satisfies the LDP on C([0,1]) x C([0, 1]) x C&H4([0, 1]) with good rate function

J*. Take ” with @’ > @” > a. Note that A€ - X¢ € ¥ Hd([0,1]) and {X€}.

is @’-Uniformly Exponentially Tight by Proposition 2.2.8 (/). Then Theorem 2.2.6
implies that {(A€, A€, X€, A€ - X€)}. satisfies the LDP on C([0, 1]) x C([0,1]) x
Cé’/'Hld( [0,1]) x Cé’”'Hld([O, 1]) with good rate function

J#(a,d,x) z=a-x, x € BV

00, otherwise.

J(l)(a,d,x, z) = {

Since x > [ x,dr is continuous from C([0,1]) to C'™M9([0, 1]), the contraction
principle implies that {Z€ := (A€-X€, A€-A)} . satisfies the LDP on C(?"'Hld( [0,1])x
Cc'"Hd (10, 1]) with good rate function

JP M, 2y .= inf {J#(a,c"i,x) M,z =(a-x,a-N), x € BV} .
We define F : C¢"H19(]0, 1],R) x CH4([0, 1], R) — GQHY([0, 1], R?) as (2.9):
F(2)s = (L zor,2sr),  z € Cy M(R) x CH(R).

We first prove F(z) € GQ* ([0, 1],R?). It is straightforward to show that F(z) =
(1, z,z) has the Chen’s relation: for s < u < t,

Zst = Zsu + Zuts  Zst = Zsu + Zyr + Zsu @ Zur-

We also have that

F |z |
)

)

sup

O<s<r<l |t - S|d 0<s<r<l |t - S|2“
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by the estimate of Young integral (Theorem 6.8 in [30])

t . . . . .
/ (2 = 2z < 12D 0o suallz M ae-sual? = 5127, (2.24)
S

where o) = o’ if i = 1, otherwise ) = 1. By using Theorem 5.25 in [30] and
the estimate of Young integral, one can prove that F(z) € GQ* ([0, 1],R?). Now
we will show that F is continuous. Assume that z(n) — z in C&19([0,1],R) x
C'"M4(10,1],R). It is sufficient to consider the continuity of z(*/). It is obvious when
i = j = 1. In the other case, by using (2.24), we have that

|Z(I”l)§;l) _ zi;})| <

I . . . . .
/ G — 2@ — 2D 1+ 2 ydz ()

t . B - .
/ 9~ Ny - 9

< ||Z(n)<i) - Z(i)”a(i)_Hld”Z(n)(j)||a(f)—Hld|t - s

. : . 5
+ ”Z(l)”n(i)_Hld”Z(n)(j) - Z(J)||a<f>-H1d|l - 5|7,

+

and so we have that F is continuous. Hence the contraction principle implies that
{Z€ = F(Z¢)} satisfies the LDP on GQ*H4([0, 1], R?) with good rate function

I3 (@) = inf {J*(a,d,x) :Z=F(a-x,a-A), x € BV},

Because the solution map ® : GQ* ([0, 1],R?) — Cc*H4([0,1]) is continuous,
the contraction principle implies that {Y¢ = ® o F(Z€)}, satisfies the LDP on
CcH4([0, 1]) with good rate function

J(y) = inf{J#(a,d,x) cy=®oF(a-x,d-N), x€ BV} ,
and so Theorem 2.2.9 implies the claim. O

Lemma 2.4.10. We fix @ € (1/3,1/2), ¥ € (0,1), and let X and X be a stochastic
process defined as (2.11) respectively. Then {(f(f(f, Y, f2(XE, ), Xf)}e satisfies the

LDP on C([0, 1]) x C([0, 1]) x C¢"M4(]0, 1]) with good rate function
3 1
J*(a,d,x) = inf :EH(W, wl)||?H :(a,@) = FpoK(w,wb), (w,wt) € 7{} .

Proof. Ttis well-known that {e!/2(W, W)} ¢ satisfies the LDP on C([0, 1]) xC([0, 1])
with good rate function

Mo, wHI2, (w,wh) e H,

00, otherwise.

1O 6w, wh) = {

Since @ € (0,1/2) and ||(W, WH)|| o-nig has a Gaussian tails, the inverse contraction
principle (see Theorem 4.2.4 in [21]) implies that {e'/>(W, W')} satisfies the LDP
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on Cé"Hld([O, 1]) x Cé"Hld([O, 1]) with good rate function 1(®) (here we use the ar-
gument of Proposition 13.43 in [30]). By Theorem 1 in [33], the map f — Kf
is continuous from C*H4([0,1]) to C*H94([0,1]). Then the contraction princi-

ple implies that {EI/Z(X,X) = €' 2(KW, pW +4/1 —p2Wl)} satisfies the LDP on
C([0,1]) x g H4([0, 17) with good rate function

i |
TN (2,x) = inf{ill(w,wi)llrzy

weH, (& x)=Kw,wh), (w,wh) € 7{} .
Hence the contraction principle again,
{(f(XE’ '),fZ(XG’ ')’XE)}E

satisfies the LDP on C([0, 1) x C([0, 17) x C¢™M4([0, 1]) with good rate function
- 1
J*(a,a,x) = inf{zu(w,wl)Il?H :(a,@) = FroK(w,wh), (w,wh) € 7{} )

and this is the claim. |

Proof of Theorem 2.3.2. Since o € Cj, the coefficient of drift term (o + o0”’) in
(2.13) is in Ci. Then by Lemma 2.4.10 and Proposition 2.2.8 (i), one can apply
Theorem 2.2.11 by taking

(AE»AG’XE) = (f(}?f")’fz()?éf)’xe)
and the rate function is given by
J(y) :=inf{f#(a,d,x) cy=®oF(a-x,a-N), xeBV,}

1
= inf{zﬂ(w,wl)H%H cy=®oFoFsoK(w,wh), (wwh) e (H},
and this is the claim. |

2.4.3 Proof of Theorem 2.3.6

Proof. Since {e*(W,.,WL)} and {e**!/2(W,W*)} are the same law, one can show
that {e#(W,., WL )} satisfies the LDP on C([0,1]) x C([0, 1]) with speed €**! with
good rate function

s whIZ,  (wowh) e H,

o0, otherwise.

1O (w,wh) = {

Since ||(We., W2)|lo-ma has a Gaussian tails (see the proof of Proposition 2.2.8
(ii)), one can also prove that {e*(W.,W2)} satisfies the LDP on CFH4([0,1]) x
CyM4(10,1]) with speed €*#*! with good rate function 7®. Let (W€, (W*)€) :=
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(e"We.,e"WL) and X€ := pW€ + /1 — p2(W*)€. Then the contraction principle
implies that {(X€, F(W€, A))} satisfies the LDP on C&H4(R) x GQH4(R?) with
speed e2#*! with good rate function

1
1D (x, X) = inf{§||(w, w2, x = pw+ V1= p2wk, X = F(w,A), (w,wb) € H},

where F is the Young pair, see (2.9). Let Af = € (A¢; — Ao). By using the change
of variable for stochastic integrals and Riemann-integrals, one can prove that A€ is the
solution of the following It6 SDE:

t t
je = / € (AE)d( W) + / B (AS)du,
0 0
where
a(y) = a(Ag+e*y), be(y):=€*b(Ag+eHy).

Then one can show that A€ is the solution of the following Stratonovich SDE,

B t B 1 t B r 5
Af:/ de(Aj)od(e"WEu)—E/ df(df)’(A;)d(ez’“‘+1u)+/ b€ (AS)du,
0 0 0

and by Theorem 2.2.9, A€ is the solution of RDE with a coefficient (4 €, — #df (ac)y+
be).
Let @, be the solution map of RDE with the coefficient (&€, _er e (@) +be)

p)
ie. A€ =®, o F(W,A). Note that

~ 2u+1 e~ =
lalcs < llallca, Il = (€41/2)a€ @) +5</2lls < (lalls + IBllcs,

where the proportional constant does not depend on €. Let & be the solution map
of RDE with the coeflicient (a(Ag),0). Since the upper bound of || - ”c,i norm for

. . el g, Zen . = .
the coefficient (G€,—< ;” ac(ac)’ + b¢) is e-uniform, we can show that {®,}, is

equicontinuous, and for any (x, X) € C(g"Hld [0,1]) X GQq-p1a(R?) with IV (x, X) <
00, ®.(X) — ®(X). Then we have that for any converging sequence (x., X¢) — (x, X)
with 7 (x, X) < oo, (x¢, P (X)) converges to (x,Po(X)), and so the extended
contraction principle (Theorem 2.1 in [72]) implies that {(X€, A€)} satisfies the LDP
on CHld(R?) with speed e2#*! with good rate function

1
1? (x,a) := inf {En(w,wﬂn?H cx=pw+yl-p2wt, a= a(Ao)w} .

Since {K¢ } >0 is equicontinuous and converge to the usual fractional kernel Ky (see
Section 2.5), the extended contraction principle implies that {(X€,V€)} satisfies the
LDP on C@H4(R) x C(R) with speed €2**! with good rate function

13 (x,v) := inf{%”(w,wL)H%{ cx=pw+y1—p2wt, v = ‘P?(g(a(Ao)w)} ,
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By using the assumption of f, and Proposition 2.2.8 (ii), we can apply the contrac-
tion principle and Theorem 2.2.6, and so {F(Z€) := F((ZV)€, (Z»)€)} satisfies the
LDP on G4 (R?) with speed €2#*! with good rate function

1
19(x) ;:inf{lu(w,wi)n;,;""OW+ VI = ptw, }
2 X = F(f(¥Ko(a(Ao)w),0) - x,0)

Let @, be the solution map of RDE with the coefficient (5 €, —%{5’6 (7€) +(5)%))
ie. Y€ =®, o F(Z¢). Since the same reason as @, {Pc}cc(0,1] is equcontinuous,
and one can prove that for any sequence with X, — X with I*) (X) < oo, . (X,) —
®(X). Therefore, the extended contraction principle [72] implies that {¥ €} satisfies
the LDP on C 14 with speed €2#*! with good rate function

x=pw++1-pZwt,

- 1
TGy =it 2 {00 whIR, -
$ =it 0wl o o) /0 F(FKo(a(Ag)w),, 0)dx,

and this is the claim. |

2.5 Some properties for K¢

Proposition 2.5.1. We fix @,y € (0,1). Under the Hypothesis 2.3.5, we have the
following:

1. {K*€}ee(0,1] is equicontinuous,
2. forall f € C%, K€ f converges to Ky f.

Proof. (i) Since K€ is linear, it is enough to show that for any f € C@H there exists
a constant C > 0 (uniformly € and f) such that || f]|, < C||f|lo. First note that

2

d_Ke(t)

< el 5 < M2,
dr

d
< MM —
ke ()] s €¥t¥, ‘dtke(t)

We will estimate the first term. Let ¢ (¢) := e k¢ (¢)(f(¢) — f£(0)). For vVt € [0, 1]
and Vh € (0,1 — t], we have that

lpe (t+h) —pe ()] < e #{lke(t+h)|f(t+h) = fF(D)|+1f(2) = f(O)||ke(t +h) — ke (D)]}
t+h
< Nlah® (@ + B)* + e || f]lat® (/ dr)

S I lla (1B + 251" = (e + B)*)} < | fllalhl”.

ake (r)

Here we use that
Y+ ((t+h)7H—tTH) < R, (2.25)

in the final inequality (see [67][Chapterl, Page 15]). The case & < 0 is analogous.
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We now consider the second term. Let

ety = e [0 = N Treli=9ds = [ (0= =) Frear

Then the change of variables implies that
! d d
pe(t+h) —p(1) = 67#'/ (f() = f(t=1)) ((Tke(r+h) - d_Ke(r) dr
0 r r
+eH /t(f(t +h) - f(t))ixé(r + h)dr
0 dr

0 d
+6‘”/ (fe+h)—f(t—r)—ke(r+h)dr =1 +1 +I5.
—h dr

Then we have that

t r+h
1] < e /0 / £ () = ft—1)]

t r+h
< ||f||a/ / reut 2 dudr
0 r
h

Y ! ar,pu—1 _ p-1 Y
< 1 fllalhl (/0 relr (1+7) ]dr)sllfllalhl :

d2
d—uzke (u)| dudr

Here we use that the function y +— 1 —(1+y)*~! 4+ (u— 1)y is concave with a maximum
value of 0 at y = 0 in the last inequality. One can also obtain that

t
L] < € H 1l / B
0

d t
g Ke(r+h)dr < ||f||ah"/ (r+h)*'dr < I fllah”
0

d 0
el <l [ e ny i < fon
r -h

0
Bl <l [ e
-h

and these inequalities imply the first assertion.
(if) The simple calculation implies that

K f (1) = Ko f (1) =K f(s) + Ko f (s)]
< |pe(r) = (f (1) = fONH = pe(s) + (f(s) - £(0))s”]

el —a /O (F(0) = @)t = ) du — g (s) + /0 () = F @) (s — ) du

< |eTH(f (D) = f()ke () = (f (1) = f(s))tH]
+1eH(f(s) = f(0) (ke (1) — ke (5)) = (f(s) = f(0) (= s%)]

+ /Os(f(s) - f() (f_y%Ke(t —r)—pu(t- r)y—1) dr

+

o [0 = 1) [ et =t - e s s = ar

=T+ +T;+ T4+ Ts,

+ ‘[t(f(”) - f(0) (6_#diKe(l—V) —u(t - r)/t—l) dr

t
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and so we will estimate them. 7} is simply estimated by

T < (1 fllalt = s||e ke () — ¥

_ —M
s||f||a|r—s|7(@) (sup Ig(ft)—ll)sllfllalt—SIy( sup |g<er)—1|).

t€[0,1] t€[0,1]

We also have that

T2l = 1(f (s) = f(0){(g(€r) — g(es))t + (g(es) — (" = s*)}

€t d
< |f(S)—f(0)|/ 38(ndr " +f(s) = f(O)lIg(es) — 1[|eH — s*
< ||f||a{e|t—s|s“t"+s“( sup |g(et) — 1|) |t"—s"|}
t€[0,1]

te|0,

< flla {Elt —s|” + ( sup |g(er) - ll) sY(sH - t”)}
(0.1]

te(0,1]

< 1 flla (€+ sup |g(et) — 1|) It —s|”.
Here we use (2.25) in the last inequality. 73 is estimated by

d
€ k(=) = p(t =) dr

A
I3 < t—s|?
T3l < 1ol =51 [ e

= ”f”a'f‘SV'/O leg’ (e(t = ) (1 = r)¥ + pg(e(t = 1) (t = )" = p(t = r)*~ Y| dr
< IIfIIaIt—SI“:efos(t—r)"drﬂulfos g€t =) - 1|(t—r)”_ldr}

S I llale = s (6+ sup Ig(ft)—ll)-

te(0,1]
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To estimate 74, we decompose it as follows:

Tyl < [1flla /Os(s - r)“{ leg’ (e(r =) (1 = r)H — eg’(e(s = r)) (s = r)¥|

+lullg(e(t—=m)(t=r* ' =t =) —g(e(s =) (s =)+ (s = r)* }dr
< /Os<s—r)“ leg’(e(t =) (t =) — eg’(e(s = 1)) (s = r)¥| dr
+ /0 (5= r)®lg (el = ) — gle(s — I =~ = (s = A1 dr
o [ = st =) - gtets =l

N
+/ (s=1)%g(e(s = 1) = Ut =r)* " = (s = r)* dr =: Ty + Tip + Ty3 + Tua,
0
The estimations of them are obtained as follows:

Ta| = G/OSFQ {g'(e(t —s+r)) =g (er)}(t = s+r)* + g'(er)((t = s + )" —rH)|dr

s €(t—s+r)
< e/ r (/ g”(u)du) (t—s+r)#
0 €r

N N
< et - 9|/ re(t—s+r)dr+ E/ r¢(r* = (t —s+r)")dr
0 0

N S
< et —s|1HH (/ r"dr) +elr— s|7/ dr
0 0

< (e+ )|t —s|”

s e(t-r)
|Tyo| < / (s—r)¢ / g (u)du
0 €(s—r)

A
< €|t —s| / et = (t = s+ )P dr < €elr - 5],
0

R

dr + E/ relg’ (en)||(t — s +r)¥* —r¥|dr
0

|(t =)~ = (s = )" dr

Here we use the same argument as the estimation of /; in (i) in the final equality.

K e(t-r) K
|Ty3] < (s—r)"! / g’ (u)du|dr < €|t — s|/ (s—r)'dr < €|t — s,
0 e(s—r) 0
N
Tl < [ sup Jeten=11) [ (5=l =t = (s =
te[0,1] 0

t€[0,1]

S
< ( sup |g(et) — 1|)/ rerF T~ (t— s+ )R dr < €]t - s,
0
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Here we use again the same argument as the estimation of /; in (i) in the final equality.
These inequalities imply the desired estimate of 7. Finally, one has that

IT5]| < / £ (1) = F(r)l[eg” (et =) (2 = 1) + pg (et = ) (1 = r)* ™" = p(r = r)*~!|dr

IA

||f||a{e / (t = r)dr + |4l / (r—r>7‘|g<e<r—r)>—1|dr}

A

elr — s + ( sup |g(et)—l|)/ (t—r)’tdr

te[0,1]

IA

(e+ sup |g(et) - ll) [t —s|”

te[0,1]

and so we have the claim. O

2.6 Proof of Theorem 2.3.10

Proof. (i) Lower bound
For x < 0and 6 > 0, one has that

E[(exp(xt™)-8:)+] = E [l{exp (x(1+8)1-1)>S;} (exp (xt™#) — S,)]
> (exp (xt ) —exp (x(1 +6)r™#)) P lexp (x(1 +8)t7#) > S;]
>exp (x(1+8)t™#)(—x6t )P [exp (x(1 +8)t™#) > S;] .
Since lim,~ o #***! logt = 0, one has that
nm\%lf 1 1og E [(exp (xt™H) = S;)4]
t
2u+l

> lim\iglft (x(1+6)t ™ +1log(—x) +logd + —ulogt +1log P [exp (x(1 +6)t™#) > S,])
t

= lim\iélf 1+ Jog P [exp (x(1 +6)t™H) > S,]
t
and so Theorem 2.3.7 implies that

1im\i(1)lf 2+ log E [(exp (xt7#) = S,)+] = A" (x(1 +6)),
t

and so the continuity of A* implies the lower bound.
(ii) Upper bound.
For all g > 1, the Holder inequality implies that

E [(exp (xt ™) = S)+] = E [(exp (xt ™) = S) 1 {exp (xt-#)>5,} |
_ 1 -
< E[(exp (xt™#) = 8,)?] l1g [1(exp (x-#)>5,} | V4
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and so

17+ log E [(exp (xt™#) = S,),]
2u+1
<

log E [(exp (xt ™) = S)2] + 21 (1 = 1/q)P [Vjexp (xi-w)»s5,1 | = T + T2,

Since S is positive,

t2;1+1

lim sup Tt(l) < lim sup log E [exp (gxt™#)] = lim sup xt**! = 0. (2.26)
AN} \0 q \0

By Theorem 2.3.7, it is also true that

lim sup T,(Z) < =A*(x).
\0

Combined with above two inequalities one can obtain the upper bound. By (i), (if),
one can obtain the first assertion.

In the second assertion, one has to improve the estimate of (2.26) because (- —
exp (xt™#)), is not bounded. By using the assumption (2.17), one can estimate E [S?]

instead of E [exp (gxt™#)] and the same argument as above implies the required bound.
O
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Chapter 3

A semigroup approach to the
reconstruction theorem and its
applications”

3.1 Introduction

The theory of regularity structures established by Hairer [52] provides a robust frame-
work adapted to a wide class of (subcritical) singular stochastic PDEs. One of the
most important concepts in this theory is the notion of modelled distributions, which
are considered as “generalized Taylor expansions” of the solutions to the underlying
equations. The analytic core of the theory is to prove two key theorems for modelled dis-
tributions: the reconstruction theorem [52, Theorem 3.10] and the multilevel Schauder
estimate [52, Theorem 5.12]. The former theorem constructs a global distribution by
gluing local distributions derived from a given modelled distribution together. The
latter translates an integral operator such as the convolution operator with Green func-
tion into the operator on the space of modelled distributions. Since Hairer first proved
the reconstruction theorem, some alternative proofs have been proposed using various
approaches, such as Littlewood—Paley theory [45], the heat semigroup approach [70, 4],
the mollification approach [75], and the convolution approach [27]. Inspired by [70],
the first author of this paper proved both theorems by using the operator semigroup in
[59]. On the other hand, Caravenna and Zambotti [|9] introduced the notion of germs
to describe the analytic core of the proof of the reconstruction theorem, and later, they
and Broux [16] proved the multilevel Schauder estimate at the level of germs. See also
[53, 20, 57, 66, 73, 17, 76, 55] for extensions of the theorems into different settings,
such as Besov or Triebel-Lizorkin norms, or Riemannian manifolds. See also [28] for
a Besov extension of the sewing lemma, which plays a role similar to the reconstruction

#Reproduction of a joint work with Professor Masato Hoshino (Institute of Science Tokyo), first pub-
lished in Stochastics and Partial Differential Equations: Analysis and Computations, online first, (2025),
https://doi.org/10.1007/s40072-025-00352-5. Reproduced with permission from Springer Nature.
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theorem in rough path theory.

In the aforementioned literatures, modelled distributions are often defined on the
entire space R to avoid technical difficulties related to boundary conditions. However, it
is not sufficient for applications. To apply the theory of regularity structures to parabolic
equations, it is necessary to define modelled distributions on the time-space region
(0, 00) x R4 allowing a singularity at the hyperplane {0} x R“. This modified version of
modelled distributions is called singular modelled distributions. In [52, Section 6], the
reconstruction theorem and the multilevel Schauder estimate were extended to the class
of singular modelled distributions. An extension to Besov norms is demonstrated in
[54], and boundary conditions on both time and space variables are considered in [41].
However, compared to the case of modelled distributions without boundary conditions,
there seems to be a less number of studies on alternative proofs and extensions. It
should be mentioned that, in the context of rough path theory, the sewing lemma is
extended into the singular path spaces allowing a singularity at time ¢ = 0 by [10].

The aim of this paper is to extend the semigroup approach used in [59] and provide
alternative proofs of the reconstruction theorem (see Corollary 3.3.9) and the multilevel
Schauder estimate (see Corollary 3.4.6) for singular modelled distributions. The proofs
use arguments similar to [59], but require the following technical modifications.

(i) Following [59], we define Besov norms using the operator semigroup {Q;}s>0.
The associated integral kernel Q;(x,y) is inhomogeneous and has restricted
regularities with respect to x and y in general. Hence the equivalence between the
norm associated with {Q; };~o and the standard norm defined from Littlewood—
Paley theory is uncertain. For this reason, we need some nontrivial arguments to
prove the uniqueness of the reconstruction.

(i1) Since Q; is an integral operator defined over the entire spacetime, we always
require global bounds on models and modelled distributions, unlike the original
definitions in [52] that assume only local bounds. Consequently, in addition
to the definition of singular modelled distributions (see Definition 3.3.4) which
is closer to the original one, we use a different definition that assumes global
bounds (see Proposition 3.3.5-(iii)). For this reason, as for the existence of the
reconstruction, we assume a stronger condition “n —y > —s;” for the parameters
appearing in the definition of singular modelled distributions than the condition
“n > —s1” as in [52]. It is not actually a serious problem in applications because
we can switch to a small y to apply the reconstruction theorem.

Moreover, as an application, we discuss the parabolic Anderson model (PAM)
(01 —a(x)A)u(t,x) = b(u(t,x))&(x) ((1,x) € (0,00) X T?)

with a spatial white noise £&. Here b : R — R is in the class Cg and a : T> = Ris an
a-Holder continuous function for some a € (0, 1) and satisfies

Ci<alx) <G (x € T?)

for some constants 0 < C; < C,. When a is a constant, the above equation is one of
the simplest examples of subcritical singular stochastic PDEs, as studied in [52, 20].
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We show that the equation with general coefficients as above can be renormalized,
with the spacetime dependent renormalization function (see Theorem 3.5.14). Such
“non-translation invariant” equations are more generally studied by [3, 74]. The aim of
this paper is to deepen the analytic core of [3], which uses the semigroup approach. On
the other hand, [74] is a direct extension of [52]. One of the differences between this
paper and [74] is in the requirements of the smoothness of coefficients. In [74], a bit
of smoothness is required, but in this paper the coefficients only need to have positive
Holder continuities.

This paper is organized as follows. In Section 3.2, we recall from [59] Besov
norms associated with the operator semigroup, and prove important inequalities used
throughout this paper. In Section 3.3, we recall the basics of regularity structures
and prove the reconstruction theorem for singular modelled distributions. Section
3.4 is devoted to the proof of the multilevel Schauder estimate for singular modelled
distributions. In Section 3.5, we discuss an application to the two-dimensional PAM.

Notations

The symbol N denotes the set of all nonnegative integers. Until Section 3.4, we fix
an integer d > 1, the scaling s = (s1,...,54) € [1, )4, and a number £ > 0. We
define |s| = Zle s;. For any multiindex k = (kl-)f:l e N9 any x = (xi)lfl:l € R?, and
any ¢ > 0, we use the following notations.

d

d d
[Trit IKlso= D> sikin s = ) Jl =,
i=1 i=1 i=1

ki . i - e (4750
= nxi . 5= (50 7 = (0 /[xi)lfizl.

=1
i=1

k!:
x*

We define the set N[s] := {|k|s; k € N4}, which will be used in Section 3.4. The
parameter ¢ is not a physical time variable, but an auxiliary variable used to define
regularities of distributions. For multiindices k = (kl-)f’:1 and1 = ()%, we writel < k

i=1’
if[; < k; forany 1 <i < d, and then define (ll() = Hflzl (];‘)
We use the notation A < B for two functions A(x) and B(x) of a variable x, if there
exists a constant ¢ > 0 independent of x such that A(x) < ¢B(x) for any x.

3.2 Preliminaries

In this section, we introduce some function spaces and prove important inequalities
used throughout this paper. Until Section 3.4, we fix a nonnegative measurable function
G : R? — R and define for any ¢ > 0,

G (x) = t_lsl/[G(t_s/[x).
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3.2.1 Weighted Besov space

In this subsection, we recall from [59] some basics of Besov norms associated with the
operator semigroup. For simplicity, we consider only L* type norms.

Definition 3.2.1. A continuous function w : R¢ — [0, 1] which is strictly positive
outside a set of Lebesgue measure O is called a weight. For any weight w, we define the
weighted L norm of a measurable function f : R¢ — R by

Nl owy == 1fwllpe may-

We denote by L™ (w) the space of all measurable functions with finite L*(w) norms,
and define C(w) = C(RY) N L™ (w).

While we assumed that w(x) > 0 for every x € R? in [59], we impose a weaker
condition to consider a weight vanishing on the hyperplane {0} xR¢~! in next subsection.
Note that || - ||z (w) is nondegenerate because w(x) > 0 for almost every x € R?. If
w(x) > 0 for any x € R?, then C(w) is a closed subspace of L™ (w).

Definition 3.2.2. A weight w is said to be G-controlled if w(x) > 0 for any x € R¢
and there exists a continuous function w* : R? — [1, co) such that

w(x +y) <w (x)w(y) (3.1)
for any x, y € R¢ and
sup sup {||x||;’ w*(ts/fx)G(x)} < o0 (3.2)
0<t<T xeR4

foranyn > Oand 7T > 0.

From the properties (3.1) and (3.2), we have that

IG: * flleeowy S N fIlLe(w) (3.3)

uniformly over f € L*(w) and ¢ € (0,T] for any T > 0. This is a particular case of
[59, Lemma 2.4]. Next we introduce a semigroup of integral operators.

Definition 3.2.3. We call a family of continuous functions {Q; : RY x R¢ — R},>¢ a
G-type semigroup if it satisfies the following properties.

(i) (Semigroup property) For any 0 < s < r and x,y € R?,
[, 0-sx. 000z = 015,
(ii) (Conservativity) For any x € R¢,
ltil%l /Rjd O:(x,y)dy =1.
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(iii) (Upper G-type estimate) There exists a constant C; > 0 such that, for any ¢ > 0
and x,y € R¢,

10/ (x,y)| < C1Gi(x - y).

(iv) (Time derivative) For any x,y € R¢, Q,(x, ) is differentiable with respect to .
Moreover, there exists a constant C, > 0 such that, forany # > O and x,y € RY,

|00 (x,¥)| < Co t_lG,(x -y).

We fix a G-type semigroup {Q; },~¢ until Section 3.4. If w is a G-controlled weight,
the linear operator on L*(w) defined by

©NW =051 i= [ Qe )y (f L), xR

is bounded in L*(w) uniformly over ¢ € (0, 1], by Definition 3.2.3-(iii) and the in-
equality (3.3). As an important fact, Q, f is a continuous function for any f € L™ (w)
and t > 0. Moreover, if f € C(w), we have

ltifg(Q’f )(x) = f(x) G4

for any x € R%. See [59, Proposition 2.8] for the proofs.

Definition 3.2.4. Let w be a G-controlled weight and let {Q; },~o be a G-type semi-
group. For every @ < 0, we define the Besov space C%2(w) as the completion of
C(w) under the norm

I lcoeqw = sup 1= /NQ: fllL=w)-
0<r<l1

By the property (3.4), the norm || - [[ca.0(y,) is nondegenerate on C(w). When
s=(1,1,...,1), £ =2, and Qy is the heat semigroup e, the above norm (with @ < 0
and w = 1) is equivalent to the classical Besov norm in Euclidean setting, see e.g., [2,
Theorem 2.34]. For more general semigroups, a similar equivalence is obtained by [ 18,
Theorem 5.1] when the adjoint operator of Q; also satisfies some conditions similar
to those in Definition 3.2.3. As far as the authors know, without such an additional
assumption for the semigroup, it is unclear whether the equivalence holds even for the
case of isotropic scaling and no weight.

Remark 3.2.5. As stated in [59, Proposition 2.14], for any @ < a < 0, the identity
Lo, : C(w) = C-2(w) is uniquely extended to the continuous injection

& 02 (w) > C2(w).
Moreover, for any a < 0, the operator Q, : C(w) — C(w) is continuously extended to

the operator Q2 : C%2(w) — C(w) and they satisfy the relation

aj @ _ H@
t oLaq_ t

for any @ < ap < 0. For this compatibility, we can omit the letter & and use the
notation Q; to mean its extension Qy regardless of its domain.
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3.2.2 Temporal weights

In what follows, the first variable x; in x = (x1,x2,...,X4) € RY is regarded as
the temporal variable, and the others (x,...,xy) are spatial variables, denoted by
x" = (x2,...,xq). Accordingly, we denote s’ = (s5,...,54). The aim of this paper is

to extend the results in [59] to norms allowing a singularity at the hyperplane {0} xR~
We define the weight ¢ : R? — [0, 1] by

o(x) = |5 A

and set ¢(x, y) := ¢(x) A ¢(y). The following inequalities are used frequently through-
out this paper.

Lemma 3.2.6. Let w be a G-controlled weight. For any @ > 0 and 8 € [0, 1), there
exists a constant C such that, for any 7 € (0, 1] and x € R4 we have

L, 00—  w  =3)Ga = )y < ol gl P AP

and

[, e Pl =0 w5 = )G (s = iy < o).
Proof. The second inequality immediately follows from the first one because of the
trivial inequality ¢(x, y) # < ¢(x)™# +¢(y) . Hence we focus on the first inequality.
To obtain the bound Ct(®=#)/¢ we divide the integral into two parts. In the region

{y1]'/5r > £1/¢}, since @(y) P < 178/ we have
/ () Pl = YIE W (x = )Gr (x = y)dy
[y [V >g1¢
< Bl / 1212w ()G (2)dz
Rd
< (@At ‘/Rd 2l w* (¢5¢2) G (2)dz < 1@ P)L.

In the region {|y;|'/* < ¢/}, by treating the temporal variable and spatial variables
separately, we have

/I |1 <g1/t #(3) P lbx - YIS W (x = y)Gi(x = y)dy
yil'/er<e

< ( / |y1|-ﬁ/51dy1)( / sup ||<zl,z'>||3w*(zl,sz,(m,z')dz')
[y1|Mor <et/e d-1 z1eR
< (tsl/[)l_ﬁ/sl

z1€R

X (rf’l/" / sup [z g w*(ﬁl”m,ﬁ'/fz/)c(m,zvdz')
-

— (tsl/[)l—,B/sl (t—51/£’+a//[’/ sup ||(Zl,Z')||g W*(l‘sl/{Z],tsl/fZ,)G(Z],Z,)dZ,)
R

d-1 Z]ER
< =P,
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Therefore, we obtain the upper bound Ct(@=5)/¢ Moreover, by decomposing

0P < 1 =31l + ()P < [lx = yIE + ()P, (3.5)
we have
e [ o) Pl =yl W= 3)Ga s = )y
-B _ a+f _ a % _ _
S/Rl{QO(y) lx = ylls = +llx = yllg} w"(x = ¥)Gi (x = y)dy
< t(l/[.
This yields another bound Cr®/¢p(x)~#. O

From the above lemma, we obtain an inequality similar to (3.3).

Corollary 3.2.7. Let w be a G-controlled weight. For any 8 € [0, s1), there exists a
constant C such that, for any f € L*(¢®w) we have

up G * flli(pow) + sup, PING * fllow) < ClFIlLs (-
<t<

0<z<1

Proof. By Lemma 3.2.6, we have

w)(Ge * f(x)] < /Rd (N PW (x = )G (x = »)e(NPwIf (y)ldy

< Cle@) P APIY FllLs (ghu)-

We obtain the following assertions by arguments similar to [59].

Proposition 3.2.8. Let w be a G-controlled weight and let {Q; },-¢ be a G-type semi-
group. We consider the weight 1 := ¢#w for any fixed 8 € [0, s1).

(1) Forany f € L*(Ww) and > 0, the function Q f belongs to C(w).

(ii) For any @ < 0, the Besov norm

I fllcac = sup N0 fllL=w)
0<r<1

is nondegenerate on C (W), so we can define C%< (%) as the completion of C (W)
under this norm.

(iii) Forany a < @y < 0, the identity 7,, : C(W) — C*2 () is uniquely extended
to the continuous injection g2 : C®2 (W) — C*C(). For any & < 0,

the operator Q, : C(W) — C(w) is continuously extended to the operator Q¢ :

C%2(Ww) — C(w), where C(w) is the closure of C (W) under the norm || - L= () -

Moreover, they satisfy Q;" o ig> = 0} for any @) < a; < 0.
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(iv) For any o < 0, the identity i : C(w) < C(W) is uniquely extended to the
continuous injection i, : C*2(w) — C%2(#). Moreover, the extensions

0% : C*2(Ww) — C(Ww) and Q% : C¥2(w) — C(w) defined in (iii) and
Remark 3.2.5 satisfy the relation

i0Q%=0%0i,.
Consequently, we can use the same notation Q, to denote both Q;* and Q~,"

(v) For any a < 0, there exists a constant C > 0 such that, for any f € C2(w),
t € (0,1], and € € [0, ], we have

1(Q: —id) fllca-s.0(w) < Cl‘s/f”f”ch(W)-

The norm C*€2(¢Pw) is used in the proof of Theorem 3.3.7.

Proof. (i) We have Q,f € L*(w) by Corollary 3.2.7. To show the continuity of
(Q¢f)(x) with respect to x, it is sufficient to consider the case t = 1. By the property
(3.2), for any fixed R > 0 and n > 0, the inequalities

. e(y)#
w01, W S w x=yIwGx-y)f(y)] < Wllfllmm)

hold uniformly over ||x||s < R and y € RY. Since [, ¢(y) /(1 +|lyl|2)dy < oo for
n > |s|, we have

lim (@)@ = [ lim 012wy = (@1 (w()

by Lebesgue’s convergence theorem. Since w is strictly positive and continuous, we

have lim, ., (Q1f)(z) = (Q1f)(x).

(i1) It is sufficient to show that

lim(Q: f)(x) = ()

for any f € C() and x € RY. For any £ > 0, we can choose ¢ > 0 such that
If(y) = f(¥)] <eif |y — x|ls < 6, and have

W) Q1 f — )|
/ 0, (e V) (£ () - £(0))dy + ( / 0, (x.y)dy - 1)f(x)
R4 R4

=w(x)

< w(x)s / Gy (x = y)dy + w(x) Gy (x = VIf()ldy
ly—xlls<é

ly—xlls=6
/ 0, (x.y)dy - 1’.
Rd

+w(x)]f(x)] - éGz(x—y)dy+W(X)If(X)I
y—x|[s=>
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In the far right-hand side, the only nontrivial part is the second term. We bound it
from above by

/ G ()

y—X|ls=

< flleoo) / 0(0) P (x = )Gy (x - y)dy
ly-xlls=6

<M llz=)e™ /Rd Iy = xIIZ' e () Fw* (x = )G (x = y)dy
S N flls oy~ 51
Since B < s1, we obtain the convergence as ¢ | 0.

The proofs of (iii) and (iv) are similar to [59, Proposition 2.14], and the proof of (v)
is similar to [59, Lemma 2.15]. O

3.3 Reconstruction of singular modelled distributions

In this section, we recall from [52] the definitions of regularity structures, models,
and singular modelled distributions, and prove the reconstruction theorem for singular
modelled distributions using the operator semigroup. For simplicity, we consider only
regularity structures, rather than general regularity-integrability structures as in [59].
Throughout this and next sections, we fix a G-type semigroup {Q; };>0.

3.3.1 Regularity structures and models

Definition 3.3.1. A regularity structure = (A, T, G) consists of the following ob-
jects.

(1) (Index set) A is a locally finite subset of R bounded below.

(2) (Model space) T = P T, is an algebraic sum of Banach spaces (T, || - ||«)-

acA

(3) (Structure group) G is a group of continuous linear operators on T such that, for
any"e Ganda € A,

C-id)Ty c Teg = P Ty
BeA, B<a

The smallest element o of A is called the regularity of 7. For any @ € A, we denote
by P, : T — T, the canonical projection and write

Ille = I1Patlla
for any 7 € T, by abuse of notation.
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Following [59], we define the topology on the space of models by using {Q; };~¢. For
two Banach spaces X and Y, we denote by L(X,Y) the Banach space of all continuous
linear operators X — Y. When Y = R, we write X* := L(X,R).

Definition 3.3.2. Let w be a G-controlled weight. A smooth model M = (I1,T") is a
pair of two families of continuous linear operators IT = {Il, : T — C(w)},cpe and
['={Txy}y,yere C G with the following properties.

(1) (Algebraic conditions) II,I'y, = II,, I'tx = id, and I'yyI'y, = I’y for any
X,¥,7 € R4,

(2) (Analytic conditions) For any y € R,

ITT|l,,w:= max sup sup (t_"/{’)w(x)”Q,(x,l'[x(-))”m)

@€A, a<y 0<t<| xeRrd

II
= max sup sup  sup (t_a/gw(x)M

@€A, @<y 0<r<1 xeRrd 7€To\{0} I7lle
and
W(x)”Fyx”L(T‘,,TB)
1Ty = maExA sup - poyz
SIS xyerd,xy W (y = X)|ly — xlls
B w(X)[[Tyxllg
= max sup su - por
SBEN xyerd, xay re T\ 0} W (y = D)y = XIS Il
We write |M|ly,w := |IIIlly,w + ITlly,w. In addition, for any two smooth models

MO = (@D, 1TD) with i € {1,2}, we define the pseudo-metrics
MO MYy o= IO =1+ 0O T,

by replacing IT and I" above with IT(") — 1) and I'") — ') respectively. Finally, we
define the space .#,,(J) as the completion of the set of all smooth models, under the
pseudo-metrics ||-; ||, for all ¥ € R. We call each element of .Z,,(J") a model for
T . We still use the notation M = (I1,T") to denote a generic model.

When ¢ = 2 and Q; is the heat semigroup e’®, the above definition essentially
coincides with the original definition of models [52, Definition 2.17] if we ignore the
difference between local and global bounds. For more general semigroups, such an
equivalence is unclear by the same reason as the case of Besov norms.

Remark 3.3.3. Asstatedin [59, Proposition 3.3], if there exist two G-controlled weights
w1 and wy that satisfy

sup {llx[lZ w*()wi(x)} + sup {I[x[|Z wj(x)wa(x)} < o0
xeR4 xeRd
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for any n > 0, and such that ww; and ww, are also G-controlled, then we can regard
I1, as a continuous linear operator from T to C% %€ (ww ), where ay is the regularity
of . More precisely, for any @ < y and 7 € T, we have

SUPd(WW2)(X)IIHxTIICavo,Q(WWI) S Iy (T + Ty ) Tl
xeR

In what follows, we assume the existence of wi and w, as above, and regard Il,7 as an
element of C*"%2 (yyw,) for any 7 € T.

3.3.2 Singular modelled distributions

Throughout the rest of this section, we fix a regularity structure I of regularity @, and
also fix G-controlled weights w and v such that wv is also G-controlled. Recall the
definitions of functions ¢(x) and ¢(x, y) from Section 3.2.2.

Definition 3.34. Let M = (I1,T") € #,,(J). For any y € R and 5 < y, we define
D}"(T) as the space of all functions f : (R \ {0}) x R?~! — T_,, such that

v(O)|Lf ()l o
(f Dy.pv = max Sup —an0 =%
<Y e (R\{0})xrA-1 P(X)

V)AL flla
”f”y,n,v ‘= max sup =
<Y e R0 xR, xzy PGV v (x = p)|ly = x]|lI7
ly—xlls<e(x,y)

s

where AI):xf = f(y) = Tyx f(x). We write [| flly,,.v = (]fl)y,n,v + 1 flly,n.v. Wecall
each element of D" (") a singular modelled distribution.

In addition, for any two models M) = (11D, T")) € 4,,(F) and singular mod-
elled distributions f) € DY"(I'®D) with i € {1,2}, we define || f(1); f? Iy, 5.y =
(fD = FP )y + 1 D5 f Py by

(1) _ (2
VX X X
(FD = F@ ) = max sup N f (() —n{/\O )l o
<Y e (R\{0})xRA-! @(x)n
v AL f D — AT F @
£V F Pl .0 2= max sup - L

@Y | @m0 xR, xay LYY V(X = y)ly = x|I7T
ly=xlls<e(x,y)

s

In [52], the topologies of the space of models and the space of modelled distributions
are defined by the family of pseudo-metrics parametrized by compact subsets K of R?,
where x and y in the above definitions are restricted within K. In this paper, we employ
weight functions w and v instead of such local bounds.

We consider the relations between D" under varying parameters vy, 7, as well as
the relation between )7 and a variant. We say that the function u : RY — R is
symmetric if u(-x) = u(x) for any x € R,

Proposition 3.3.5. Let M = (I,T") € #,,(T) and iy < y.
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(i) For any # < 1, we have the continuous embedding D)7 (") < D ’Q(F).

(i) Assume that w* is symmetric. For each @ € R, we denote by P, : T — T, the
canonical projection. For any < 6 < v, the map P.s extends to a continuous
linear map D)7 () — D2.7(T). To be precise, we have the inequality

“P<(5f||(5,17,wv < ”F”y,wqfl)y,n,v + ”f”y,r],v-

(iii) Instead of the norm || f1|,,,,, we define

v AL, flla
||f||4;,1],v ‘= max sup _ % = y-ar
<Y e ®\{0}) xR xzy (X, V)TV v (x = y)[|y — xl[g

Then the inequality || f]l,,,,v < II.f ||§‘t,’,7,v obviously holds. Conversely, if w* is

symmetric, then we also have
LI naguwy S LHIT Iy (F Dyopw + 1LF llypo-
Proof. (i) The assertion immediately follows from the inequalities @ (x)(7~®"0 <
@(x) =0 and o(x, )77 < @(x,y)?77.
(i) For any x,y € (R \ {0}) x R¢~! such that ||y — x||ls < ¢(x,y) and any @ < §,

we decompose

(W) AL Posflla < vONIAL flla + (wv) (x) Z ITyxPp f(xX)]la
Bels.y)
= A1 + Az.

For Ay, by definition of the norm || f||,,,,, we have
AL <N fllypw v (= 2)pCe, )T NIy = 21177
< F Wy vV (= ), )72 lly = x11 7
For A,, by definitions of the model and the norm ( f)),,,, we have
Ay < Z w ) ITyxll £exg, o) vIf ()

Beld,y)

<0y Dy w G =2) D lly =2l ()"
Bel6,y)

< Iy f Dy W (= D)y = X1~ 0, )70,
Thus we obtain the desired inequality for ||[P<s f | 5,7, wv-

(iii) It is sufficient to show the estimate of Ag f on the region ||y — x||s > ¢(x,y).
For any @ < y we decompose

W) NIAS flla < vEILF )l + (wy) (x) Z ITyxPpf(x)|le =: B1 + B>.
Belayy)
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For By, by definition of the norm ( f |, ,., we have

By <vi(x =y ODlla
< f Dyapow v (= ) (y) 17 N0
< f Dyapow v (= ) (x, y) 770
S Dy v (x =), )T |y = x||277

For B,, by an argument similar to A, in the proof of (ii), we have

By < ITllyw( f Dy.ipw w*(y = %) Z lly — x|~ p(x) 1810
Bela,y)

S Tl (f Dy w7 (= W)y = I 0, 3) A7

Thus we obtain the desired inequality. O

We also recall the definition of reconstruction.

Definition 3.3.6. Let M = (I1,T") € #,,(J). Forany n < y and f € D})""(T), we
say that A € C4-2(wv) with some ¢ < 0 is a reconstruction of f for M, if it satisfies

[ATypn = 50 sup (177 (07T (o) (0101 (x, A < o0,
0<t<1 xe(R\{0})xRd-!

where A, := A — Il f(x). Furthermore, for any M) = (11D, T9) ¢ #,, (),
O e oY(r®), and any reconstructions A € €42 (wv) of £ for M) with
i € {1,2}, we define

HA(I);A(Z)]])/,U,WV

=sup s (7 ) e )0 (v ALY - AP)),
0<t<1 xe(R\{0})xR4~-1

where A .= A® —T1{Y £ (x) for each i € {1,2}.

3.3.3 Reconstruction Theorem

In this subsection, we provide a short proof of the reconstruction theorem. First, we
prove the theorem for the subclass D" (I')* of D)'"(T") consisting of all functions
f: R\ {0}) x R4"1 — T, such that

AU = Dy + 1115y < o0,
In addition, for any M) = (11D, TW) € #,,(F) and f© € DYT(T'D)* with i €
{1,2}, we define [l f 5 f@WE = (FY = £ Dy + 17D PN, similarly

V.1,V V.1,V
to definition 3.3.4.
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Theorem 3.3.7. Lety > 0and 5 € (y — s1,7y]. Then forany M = (I1,T") € A,,(T)
and f € D)'"(I')*, there exists a unique reconstruction Rf € C¢-2(wv) of f for M
with £ := 5 A @9 A 0 and it holds that

IR fllce.e vy < Iyl £, 0 (3.6)
[Rf1y.moww < Iy ol £IE - (3.7)

Moreover, there is an affine function Cg > 0 of R > 0 such that
IRFD = RF PN ceouny < CR(IMY =T+ 1D DU L),
[RFV:RFD Ty mww < C(TD =TI 1y o+ 1V 2N L)
forany M) = (I, TD) € #,,(T) and fO € DY (D) withi € {1,2} such that

1M < Rand 1F DR, < R.

Proof. The proof is carried out by a method similar to that of [59, Theorem 4.1], but
we have to treat the temporal weight more carefully. Forz > 0and 0 < s <t A 1, we
define the functions

/Rd Qs (x, MO (v. I, f(y))dy,  s<t,

RS (x) =
o (x7 fo(x)), s =1.
Note that
(wv) (0)|Q: (x, T f (x))| < Z w(x)||Q: (x, T (+)) V@I @l
a<y
<y e (f Dymw Z ta/ggo(x)(”_")/\o.

a<y

Thus, by Proposition 3.2.8-(i), for any s € (0, r) we have R. f € C(wv) and
IR 1l vy € Iy (F Dy D 57 (2 = ) 1700, (3.8)
a<y
We separate the proof into four steps.

(1) Cauchy property. Set F, :=II, f(x). By the definition of norms, we have

(Wv)DNQ: (x, Fy = Fy)|
= (WV)(y)|Qt (X, Hx{rxyf()’) - f(x)})l
<wi(y-x) Z w()1Q: ¢, TL (D lTe, v ITxy f () = fF() |2 (3.9)

a<y

< Ty LA 0V (3 =20 D 1% e, y) 7y = ]2

a<y

By the semigroup property, forany O < u < s <t A 1 we have
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(W) ()[R (x) - R £ ()]
< / W) (= ) 00) (D)@ —s (52 ) Qs (72 2)Qul (2. Fy — F2)ldydlz
(R4)2

Sl 30 [ 0000900 =2

a<y
X Gi—s(x = Y)Gs—u(y =) p(y,2)" " |ly — zll]” " dydz.

By applying the second inequality of Lemma 3.2.6 to the integral with respect to z
and then applying the first inequality of Lemma 3.2.6 to the integral with respect to y,
we obtain

(Wv) ()RS f (x) = Ry, f ()]
S| ([ A

X Y s =) [ = 3G = ) 0) 7 dy
= (ry?

STyl D (s =) 0= () 17

a<y

Consequently, when u € [s/2, s) we have the inequality

W) WIRLF () = R L] < T Wl £IE L o7 s7C (3.10)

Similarly to the proof of [59, Theorem 4.1], we can also extend it into u € (0, s/2) by
decomposing

IRLF () = REF < D IR oy e f ) = R f ).
n=0

The same inequality for the case s = # < 1 can be obtained by a similar argument. In
the end, the inequality (3.10) holds forany 0 < u <s <t A 1.

(2) Convergence as s | 0. Note that Q R! f = R f follows from the semigroup
property. By the inequality (3.10), for any O < u < s < #/2 we have

(W) ()|RGf (x) = Ry, f ()]

< /R )& = ) DI 2 (e, )R =R ) )y
3.11)
< ||H||%w”f”§,,,7,v v/t /Rd(w*v*)(x — )G (x = y)e(y)T Y dy

S Ty L1, 87770
Since y > 0, this implies that {R, f}o<s<;/2 is Cauchy in C(wv) as s | 0. We denote

its limit by
Ry S = liﬁ)l‘R;f.
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We also have Q R{ f = R(* f by taking the limit u | 0 in Q R/ f = R f.
(3) Convergence as ¢ | 0. Combining the Cauchy property (3.11) and the bound (3.8)
with s = ¢/2, we have

IROS Nz wvy < NRE o flls wvy + 1RG5 f = ROz vy

# 4
< My lF 0, t 700/

Since QR f = R(* f, this implies
#
sup [|RGfllemraono. vy S Tyl £, 4 0
0<r<1

From here onward, in exactly the same way as the part (4) of the proof of [59, Theorem
4.1], we can show the existence of R f € C4-2(wv) with ¢ =1 A ag A 0 which satisfies
the bound (3.6) and

ltilrg ”Rf - R(t)f”C{*EwQ(WV) =0

for any & € (0,¢]. Moreover, we have Q,Rf = R(f by taking the limit s | 0 in
QR f = Ry f. We have another bound (3.7) by letting u | 0 and s = ¢ in the
inequality (3.10).

(4) Uniqueness. Let A, A’ € C¢-2(wv) be reconstructions of f for M. By the property
of reconstruction, g := A — A’ satisfies

sup @(x)7 7 (wv) (0)|Qig ()| 5 1777

xeR4

Set w := ¢~ "wy. By Proposition 3.2.8-(iv) and (v), for any & € (0, £] we have

lgllce-s0wy < 1(Qr —id)gllce-2.0 ) + 1Q18llce-=.0(w)
gl ez ) + 1008l

1 gl .o vy +177°.

N

A

By taking the limit # | 0, we have g = 0 in C¢ %€ (w). By Proposition 3.2.8-(iii) and
(iv), we also have g = 0in C<-C (wv). O

The following result is used in Section 3.5.

Proposition 3.3.8. In addition to the setting of Theorem 3.3.7, we assume that the
model M is smooth in the sense of Definition 3.3.2 and

|(TLe7) (%)
sup  sup w(x)—————

< 0
xeRd T7€T,\{0} I7ll e

for any @ € A. Then the reconstruction R f of f € D)"(T")* is realized as a continuous
function on (R \ {0}) x R?~! such that

(R)(x) = (I f (%)) (x)
for any x € (R \ {0}) x R4~
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Proof. Set A(x) = (I1y f(x))(x). Since (I,7)(x) = lim, o Qs (x,I1,7) =0if 7 € T,
with @ > 0, we have

W) AT < D w) (M) (x)

a<0

< Z ‘p(x)(n—u)/\o < (p(x)n/\O-

a<0

VOIS D la

Since 7 > —s;, we have A € C"%C(wv) c C¢<(wv) by Corollary 3.2.7. Moreover,
since

(W) (0)Q: (x, Ax)| = (wv)(x) /Rd O, (x, I (f(y) = Dy f (1)) (»)dy

s ZO /R W (= 3)G: (x = W[ O) D], vEUF ) = Tyaf ()l addy

< 3 [0 = G = lly =l )Ty

< Z {0/ o)1 < V1 p(x) 1Y

a<0
we have [A],,,,wy < co. Hence R f = A by the uniqueness of the reconstruction. O
Combining Theorem 3.3.7 with Proposition 3.3.5-(iii), we have the following result.

Corollary 3.3.9. Assume that w?v is also G-controlled. If y > 0 and 7 A @ €
(y—s1,7y], thenforany M = (I1,T) € #,,(F) and f € D)""(I"), there exists a unique
reconstruction R f € C"7" 0@ (y2y) of f for M and it holds that

IR fll crragmoe oy S Ty 0 (1 + 1Ty w) 1f Ny .05
IRy nnaemwze S Iy (14 IT 1y ) Ly .0

The local Lipschitz estimates similar to the latter part of Theorem 3.3.7 also hold.

3.4 Multilevel Schauder estimate

This section is devoted to the proof of the multilevel Schauder estimate for singular
modelled distributions. After recalling from [59] the basics of regularizing kernels in
the first subsection, we prove the multilevel Schauder estimate in the second subsection.

3.4.1 Regularizing kernels

We recall from [59, Section 5.1] the definition of regularizing kernels.

Definition 3.4.1. Let 3 > 0. A B-regularizing (integral) kernel admissible for {Q;} >0
is a family of continuous functions {K; : R¢xR? — R}~ which satisfies the following
properties for some constants § > 0 and Cg > 0.
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(i) (Convolution with Q) Forany 0 < s < 7 and x,y € R?,
/d Ki—s(x,2)Qs(z, y)dz = K (x, y).
R
(ii) (Upper estimate) For any k € N¢ with |k|; < §, the k-th partial derivative of
K;(x,y) with respect to x exists, and we have for any > 0 and x, y € R?,
|0¥K, (x,y)| < Cxt BTG, (x - y).

(iii) (Holder continuity) For any k € N with |k|s < 8, any > 0 and x,y,h € R¢
with | A]ls < £/,

hl
KK (x+hy) = > SO (x, y)‘
Ms<o-Ikls

< C ||| 87Kl 1 B=OE1G, (x — y).

We fix a S-regularizing kernel {K; };-¢ throughout this section. For any f € L®(w)
with a G-controlled weight w and any |k|s < &, we define

(0K P01 04K )= [ 8K Fa,

Moreover, we write 0K f := fol O¥K, fdt if the integral makes sense.

Lemma 3.4.2. Let w and v be G-controlled weights such that w? and wv are also G-
controlled. Let I = (A, T, G) be a regularity structure and let M = (IL,T") € M, (T).

(i) [59, Lemma 5.4] For any @ < 0, |k|s < 6, and f € L*(w), we have
10K, fllo(wy s C @K £ oo,

where the implicit proportional constant depends only on G and w. Consequently,
if |K|s < (@ + B) A 8, the integral 0XK f := /01 A*K, fdt converges in C(w).

(i) [59, Lemma 5.6] Forany @ <y, 7 € Ty, |k|s < ¢, and ¢ € (0, 1], we have
105K: (x, TLe) |l oo (w2) S Ck A S | (/S ] I TP

where the implicit proportional constant depends only on G, w, and A. Conse-
quently, if |Kk|s < (@ + ) A, the integral 9K (x, T1,7) := _/01 %K, (x, TT7)dt
converges for any x € RY.

(iii) Let y € R,y € (y —s1,y], and £ < 0. For any f € D)7(I')* and its
reconstruction A € C4-2(wv), |k|s < 8, and 7 € (0, 1], we have

(W) (2)|0%K; (x, As)]
< Cx 1P o)1 ([A Ty own + 1Ty A1y )
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where the implicit proportional constant depends only on G, w, v, and A. Con-
sequently, if |k|s < (y + B) A 6, the integral %K (x, Ay) = /01 %K, (x, Ay)dt
converges for any x € (R \ {0}) x R4~

Proof. We prove only (iii). By Definition 3.4.1-(i), we can decompose

05K (x, Ay)| <

/Rd K, o (x, Y)Qz/z()’,Ay)dY‘

+

/Rd O Ky 2(x,9)Qu 2 (v. Ty £ (3) — fo(x))dy"

For the first term, by Definition 3.4.1-(ii) and by the property of reconstruction, we have

(wv)(x)

[, K000 A )|
< Ct B M [ ) = 3)Gupa = ) 0 )12 Ay

< CictBIAL, oy [ 60)T 00V 6= )Gl = dy
R
< C tHB=IKIDE=T )=y [ATy. v

For the second term, by using the inequality (3.9) obtained in the proof of Theorem
3.3.7 with x and y swapped, we have

(wv)(x)

/Rd Ko (6, 3) Q2 (v, Ty f () = fo(X))dy'
< Cit WM GG = 3) ) (a0 T £ ) = T )l

# 3-1kl|s)/E—1 - -
< Chly £y D W [ a7y =l

a<y
X (W) (x = y)Gipa(x = y)dy

< Cg 10PN ()T Ty L1,y

3.4.2 Compatible models and multilevel Schauder estimate

We recall from [59, Section 5.2] the notions of abstract integrations and compatible
models. Hereafter, we use the polynomial structure generated by dummy variables
Xi,...,Xgasin [52, Section 2].

Definition 3.4.3. Let 7 = (A, T, G) be a regularity structure satisfying the following
properties.

(1) N[s] c A.
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(2) For each a € N[s], the space T,, contains all X* := Hflzl Xl.ki with |k|s = a.
(3) The subspace span{X*}, .y« of T is closed under G-actions.

Let 7 :_(A, T, G) be another regularity structure. A continuous linear operator
I : T — T is called an abstract integration of order 8 € (0, 8] if

I: Ta 4 T(H.'g

for any @ € A. For a fixed G-controlled weight w, we say that the pair (M, M) of two
models M = (II,T) € M,,(F) and M = (II,T) € M,,(T) is compatible for T if it
satisfies the following properties.

(i) For any k € N¢,

X0 ==k, Faxt= Y (oot

I<k

(ii) Foreachx € R?, we define the linear map . (x) : Tos-p — span{Xk}‘k|s<5 cT
by setting

k
T0)T = Z X—'[ikK(x,Hx‘r) (3.12)
|kls<a+B

for any @ € A such that @ + 8 < 6 and 7 € T,,. Then for any 7 € T<s5_g,
Fyx(j +j(x))7' = (I +j(y))ryx7'
In addition, if the regularity aig of  is greater than — and

(L I7)() =K(.TLr) =y C=0® ke 1) (3.13)

k!
|k|s<a+B
for any 7 € T, with & + 8 < 6, then we say that the pair (M, M) is K-admissible for T .

In (3.12) and (3.13), the function K(-,I1,7) and the coefficients 0K (x,T1,7) are

well-defined by Lemma 3.4.2. The following theorem is the second main result of this
paper.
Theorem 3.4.4. Let 7 and I be regularity structures satisfying the setting of Definition
343 andlet 7 : T — T be an abstract integration of order 8 € (0,]. Let w and v
be G-controlled weights such that w2y is also G-controlled. Given (I,T") € M\, (T ),
f e D" (IN*withy+8 < §andn € (y—s1,7y], andits reconstruction A € C$-2 (wv),
we define the functions

Xk
Nafh) = 3 70K Ay)
kls<y+8

and
Kf(x) =T f(x)+T(x)f(x)+N(xs; f,A)

forx € (R\ {0}) x R, We assume ¢ < 1 A ag and either of the following conditions.
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() B<B
(2) B=Fand {a+B;acAU{y,}} NN[s] =0.

Then for any compatible pair of models (M = (II,T),M = (IL,T)) € 4, (T) x
M,,(T) and any singular modelled distribution f € D)*"7(I")*, the function K f
belongs to Z)V’;f “<*8(F)* and we have

(K1 Dyspzspmry S NN Dy + Cr 1My L+ Ty ) 1A,
+ ||A||C§vQ(wv) + [[A]]%’I’WV}’
(3.14)

HEFIE i gapwe S WA o+ CrAITly o (14 IT Ny LFIE s+ ATy aen
(3.15)

where || 7| is the operator norm from T, to T<y.s, and the implicit proportional
constant depends only on G, w, v,y,n, and A. Moreover, there is a quadratic function
Cgr > 0 of R > 0 such that

WD HF DU o < Cr(IMD MDYy + 17D PN, ),

for any MY = (IO, 1) ¢ #,,(F) and MO = (0D TD) € 4, (T) such
that (M, M®) is compatible and any f) € O}7(I'D) with i € {1,2} such that
IM Oy < Rand | FOU | < R.

Proof. The proof is carried out by a method similar to that of [59, Theorem 5.12], but
we have to prove (3.14) more carefully than [59]. For the 7 term, by the continuity of
7 we immediately have

v f)la < VUL @ lla-p < NTINF Dy, x) THE0"0

for any @ < y + . For the J and N terms, we decompose

k
TS+ NN = Y A,

[kls<y+B

where
AX(x) = Z K (x, TPy f(x)) + 0K (x, Ay).
a€lag,y), kls<a+B
We further define the decomposition AX(x) = /01 AX(x)dt according to the integral

form K = 01 K,dt, where AX is defined in the same way as A* with K replaced by K;.
By using Lemma 3.4.2-(ii) for 8%K, (x, TI, P, f (x)) and (iii) for 9K, (x, A,), we have

WVOIAE@I S LY ()00 ik
aclag,y], [kls<a+B
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where Ly := Cx {|ITT|l,,w(1 + ||F||7,W)|||f|||ﬁ’,7’v +[A]ly.;.wv}- Since all powers of ¢
above are greater than —1, we have

(x)f )
(WZV)(x)/Ow |AX (x)|dt < Ly Z o (x)Tha+B=IKls

aclap,y], [kls<a+B
<L go(x)("“"”ﬁ_lklsmo.

For the integral over ¢(x)¢ < ¢ < 1, we use another decomposition
AK(x) = %K, (x, A) - D 0K, (x, T Py f(x))
a€lap,y), |kls>a+B
and consider the two terms in the right hand side separately. For the first term, by the
assumption that A € C%-2(wv) and by Lemma 3.4.2-(i), we have
(W) (I*K: (x, M S CicllAllee. oy 1M

If £ + 3 — |k|s # 0, we have

1
/ (BRI gy () (EHBIRIIAD < (1 (4B=IKl )0,
@(x)¢
Otherwise, since £ + 8 — |K|s < ¢ + 8 — |k|s = 0 by assumption we have

1 _ 1
/ HEB=IK)E-1 gp / (EHB=IKID =1 gy < (1) BTkl
o(x)¢ @(x)¢

In either case, we obtain the desired estimate. For the remaining term, by Lemma
3.4.2-(ii) we have

(W) (x) > 05K, (x. TL Py f (x))]
aclap,y), [Klsza+pB
< L () 1= DN0 yasBlkle) /-1,
a€lap,y), Klsza+p
where Ly := Ck [Ty, w (1 + ITlly.w)( f)y,5,v. For @ such that |k|s > @ + 8, we easily
have

1 ) 1
(p(x)m—a)AO/ a1kl 61 gy < gD(x)(n—am/ (asB-IKls) £-1 g,
w(x)¢ e(x)¢

< So(x)n/\(y+ﬁ—|k|5 )

If there exists a such that |[K|s = a + 3, then since 0 = a + 8 — |k|s < @ + 5 — |K|s by
assumption, we have

1 _
go(x)(”“’)AO/( )ft(a+,8—|k\s)/€—ldt < SO(x)(q—a)Ao — ‘p(x)r]/\a+ﬁ—\k|s.
@(x
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Consequently, we obtain

1
(WQV)(X)/( y \AL()]dt 5 {Ck [IAllcz.0 oy + La}e(x) EF KD,
o(x

The proof of (3.15) is completely the same as that of [59, Theorem 5.12] except the
existence of the factor ¢(x,y)"7~7. O

The following theorem is obtained similarly to [59, Theorem 5.13], so we omit the
proof.

Theorem 3.4.5. In addition to the setting of Theorem 3.4.4, we assume that £ + 8 > 0
and that (M, M) is K-admissible for 7. Then KA € C(wv) is a reconstruction of
Kf e DV (F)* and
wsy
[KALyip.cepw2v S Ck ([A Ty + 1Ty w11, 0)-
A similar local Lipschitz estimate to the latter part of Theorem 3.4.4 also holds.
Combining Theorem 3.4.4 with Proposition 3.3.5-(iii), we have the following result.

Corollary 3.4.6. In addition to the setting of Theorem 3.4.4, assume that w3v is G-
controlled and that &9 > y — s;. Then for any compatible pair of models (M =
(I,T),M = (,T)) € M(T) x My (T) and any singular modelled distribution
f € DY'(I), the function K f belongs to Z):/;'f *A(F), and we have

(K Dyapzaponsv S WM Dy + Cr ANy (L Ty )20 Wy
+IAllce.0 vy + [ATy. v}
1K Fllys.cspawse S WU yan (F Dyopow + 1 F 1y }
+ Cr Iy 0 (1 + 1T My )21 Wlypow + DA Ty ipwv }-

A similar local Lipschitz estimate to the latter part of Theorem 3.4.4 also holds.

3.5 Parabolic Anderson model

In this section, we study the parabolic Anderson model (PAM)
(01 — a(x)A + c)u(x) = b(u(x))€(x") (x € (0,00) X T?) (3.16)

with a spatial white noise ¢ defined on a probability space (Q, #,P). Recall that x;
in x = (x1,x2,x3) denotes the temporal variable and x” = (x,,x3) denotes the spatial
variables. Throughout this section, we fix the function b : R — R in the class C 3 and

the function a : T> — R which is a-Holder continuous for some « € (0, 1) and satisfies
Ci<alx)<C, (¥ eT?

for some constants 0 < C; < C,. The constant ¢ > 0 in the left hand side of (3.16) is
fixed later (see Proposition 3.5.1 and 3.5.2). We prove the renormalizability of (3.16)
in Section 3.5.6. We fix @ € (0,1),d =3, s = (2,1,1), and £ = 4 throughout this
section.
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3.5.1 Preliminaries

We denote by e; = (1,0,0), e = (0, 1,0), and e3 = (0,0, 1) the canonical basis vectors
of R3. We define Cj, (R xT?) as the set of all bounded continuous functions f : R — R
such that

flx+e)=f(x)
for any x € R? and i € {2,3}. For any 8 > 0, we define C®(R x T2) as the set of
all elements f € Cp(R x T?) such that 89X f € Cp(R x T?) for any |k|s < B, and if
lkls < B < |k|s + s;, we have

6% £ (x + hey) = 0% £ (x)] < || BIKI)

for any x € R and / € R.
We denote by Py, (x’,y’) the fundamental solution of the parabolic operator 0y —
alA + c. Moreover, we introduce the anisotropic elliptic operator

L:= (01 —a(x")A) () + A)

on R? and denote by Q; (x, y) the fundamental solution of d; — £ + ¢ with an additional
variable t > 0. We recall from [6, Appendix A] some properties of Py, (x’,y") and

Ql(-x’ y)

Proposition 3.5.1 ([6, Theorem 57]). For any C > 0, we define the function G©) on
R3 by
G (x) = exp{ = C(Ix1* + x2l* + |x3*%) }.

For sufficiently large ¢ > 0, {Q; };>0 is a G ©)-type semigroup for some constant C > 0,
in the sense of Definition 3.2.3.

In what follows, we fix C > 0 and write G = G©). For any G-controlled weight w
and any £ < 0, we can define the Besov space C4*2 (w) in the sense of Definition 3.2.4.
We denote by C4-2 (R x T?) the closure of Cp, (R x T?) in the space C%-2(1) with the
flat weight w = 1.

Proposition 3.5.2. For sufficiently large ¢ > 0, we have the following.
(i) [6, Theorems 61 and Proposition 62] Let 8 € (0, @). For any g € Cf(R x T?),

we can define the function on R x T? by

(81— ab+0)'g)(x) o= / Pryoyy (38 (3)dy.

(—00,x1 | XR:

Then h = (8; —aA +c)~' g is the unique solution of (9; —aA +c)h = g such that
h e CP(R x T2) and limy, , _o h(x) = 0.

(i) [6, Theorem 63] The operator ¢ — £ has an inverse of the form

oo 1
(c—L)’1f=/O Q,fazr:/0 O fdi+01(c— L) F.

For any / € (—4,0) \ Z, the map (¢ — £)~! uniquely extends to a continuous
operator from C¢*2(R x T2) to CS ™ (R x T2).
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(iii) [6, Theorem 6] We can decompose (9 — aA +c)~! = K + S, where

1 1
K :=:/ K, dt = —/ (01 +AN)Q, dt
0 0

S=Ki(c—L) " +c(@—ar+c) ' A+, +A)(c— L)L,

and

Then {K;},~o is a 2-regularizing kernel admissible for {Q;};~¢ in the sense
of Definition 3.4.1, where 6 € (2,2 + @) in the condition (iii). Moreover, for
any £ € (=2,0) \ {1} and & > 0, S is continuous from C%2(R x T?) to
Ca/\((+2)+2—g(R > Tz).

S

Remark 3.5.3. One needs to pick a constant ¢ > 0 large enough to construct the inverse
operator (c— L)~ I see the proof of Theorem 63 in [6]. However, in the equation (3.16),
¢ can be an arbitrary constant. This is because we can replace the ¢ on the left-hand
side with a larger constant ¢’ by adding a linear correction term (¢’ — c¢)u(x) to the
right-hand side. This correction term has no serious influences on the discussion in this
section.

3.5.2 Regularity structure associated with PAM
Following [52], we prepare the regularity structure associated with PAM (3.16).

Definition 3.5.4. For any fixed € € (0, 1/2), we define the regularity structure I =
(A, T, G) of regularity @y := —1 — £ as follows.

(1) (Indexset) A={-1-¢, 2¢, -¢,0, 1 —¢, 1,2 -2¢, 2 - ¢&}.

(2) (Model space) T is an eleven dimensional linear space spanned by the symbols

[1]

L T(B)E, Xo8, X358, 1, I(E), Xo, X3, T(I(E)E), T(X:E), I(X;E).

The direct sum decomposition T = P ., T« is given by

T-i- = span{E}, T_2. = span{Z (E)E},

T_. = span{X;E};c (2,3}, To = span{1},

T\ =span{I(B)}, Ty = span{X;}ic (2,3},
Ty 2 = span{7 (I (E)E)}, Tr- ¢ = span{7 (X;E) }ie(2,3}-

(3) (Structure group) G is a group of continuous linear operators on T such that, for
any[' e Ganda € A,
('-id)T, c T<q,.

Although the above structure group is a more generic one copied from Definition
3.3.1 than the more particular one defined in [52, Section 8], we use the above definition
to avoid preparing algebraic matters such as Hopf algebras and comodules. The above
one is sufficient for the discussion in this section. The admissible model defined later
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is also realized in the particular structure group defined in [52, Section 8]. In what
follows, let I be the regularity structure given in Definition 3.5.4 with fixed €.

We consider the models and modelled distributions as in Section 3.3 with slight
modifications. For any r > 0, we define the weight function
—r|xi|

vir(x)=e

It is easy to see that v, satisfies the inequality (3.1) with v (x) := "l and v, is G-
controlled. Moreover, v, satisfies the assumption of Remark 3.3.3 withw (x) = e~ 2rlixl
and wy(x) = e~ Il where ||x|| := ¥2_; [x:].

Definition 3.5.5. We say that a smooth model M € ., (J) (defined on R?) is
admissible if it satisfies the following properties.

(i) Forany x,y € R3 and i € {2,3}, we have
(Hx+ei ())(y +e;) = (Hx('))(y), Iiyter) (x+er) = Tyx.
(ii) We write TIZ = I1,.E since it is independent of x. For any x € R3, we have
I,1=1, I X; = ()i — x4, I,7(E) =K(,IIE) - K(x,IIE),
and

M1 (78) = K(, TL,r8) - K(x, TLrE) = > ()i = x) 3K (x, TL7E),

i€{2.3)
where 7 € {1 (E), X», X3}.
(iii) For any x,y € R?, we have
Iy1=1, Oy Xi = Xi + (yi — xi)1,
Iy,E = &, a2 (8) = I(8) + (K(v. 1) - K (x, TE))1,

and
Fyx(TE) =71E+ (II,7)(y)E,
Iy Z (t8) = I(7E) + (Ilk7) (») L (E)

+ (K(y,HxTE) - K(x,TIx7E) - Z (yi —x;)0;K(x,II,7E) |1
i€{2,3}

+ Z (8:K (y,TI,7E) — 8;K (x, T, TE)) X,
i€{2,3}

where 7 € {1 (E), X», X3}.
(iv) Forany 7 € {E, I (E)E, X»E, X3E, 1}, we have

sup v, (x)[(ILy7) (x)] < eo.

xeRd
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We define the closed subspace .#24(T) of ., (T) as the completion of the set of
smooth admissible models.

By definition, the subspace
S = span{1, I (8), X2, X3, I (1 (E)E), I (X2E), I (X3E)}

is invariant under the action of admissible models. In the sense of Definition 3.4.3, the
linear operator 7 : T — S defined by

oo [Tt GeEIE.%EXE)
0 (e {LI(E), XX, [(I(DE), T (%E), T (:5))

is an abstract integration of order 2, and for any M € #*}(T), the pair (M, M) is
K-admissible for 7. Therefore, we can define the operator K by Corollary 3.4.6.

The weight function v, is used only to ensure the global bound of the model M
defined from the white noise. For the definition of singular modelled distributions, the
flat weight v = 1 is sufficient since we study the local-in-time solution theory of (3.16).

Definition 3.5.6. For any interval / C R and any < 7y, we define D?-7(I;T") as the
space of all functions f : (1\ {0}) X T?> — T, such that

Lf Gl
(fDy,;p :=max  sup T‘XAU <

<Y ye(n\{op)xm2 (X

)

A3 flla
”f”y,r];l = max sup _
OV ¢ ye(1\(0})xT2 xzy POV TVl —x[1277
ly—xlls<e(x,y)

We denote by D?Y-7(1, S; ") the subspace of S-valued functions in the class DY-7(I;T').

3.5.3 Convolution operators

We can rewrite the equation (3.16) in the form

u(x) = /R P (3o (y)dy” + (9 = ad+ ) {1 g .eopxmab()EH (), (B.1T)

where u is the initial value of u at x; = 0. In this subsection, we prepare some operators
to reformulate the equation (3.17) at the level of singular modelled distributions.

First, the function Pug(x) := /R2 Py, (x",y")uo(y")dy’ can be lifted to the singular
modelled distribution taking values in the polynomial structure. For any sufficiently
regular function f on (R \ {0}) X R?, we define the T-valued function

Lf(x) = fQ1+(0f) () X2+ (1) (0)X3  (x € (R\{0}) xR?).

Lemma 3.5.7 ([6, Lemma 29]). Let 6 € (0, 1) and ug € C?(T?). Then the lift L(Pu)
of the function 1,,~0Puo(x) is in the class D¢ for any y € (0,2) and we have

IL(Puo)lly.0:0.0) S lluollco )

for any ¢ > 0.
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Next, to lift the second term on the right hand side of (3.17), we prepare two lemmas.
The first one is used to “extend” the domain of singular modelled distributions from
(0,1) x T? to R x T2.

Lemma 3.5.8. We fix a smooth non-increasing function y : (0, c0) — [0, 1] such that

1 0<i<),
X(t)_{o (t>2).

For each t > 0, we define the function y, : R? — R by setting x, (x) = 1,,=0x(x1/1).
Let M = (IL,T) € .#*(J) with some r > 0 and let y € (0,1 —2¢) and < y. For
any 7 € (0,1] and any f € D?7((0,2t);T"), we define the function

(E f)(x) = Py ((Lxo) (x) - f(x)),
where the (partial) product (-) on T is defined by
1-7=7 (te{E I(B)E X5 X3E,1}), X -E=XE2 (ie{2,3}).

(Other products do not appear due to the assumption on y.) Then the function E; f
belongs to D77 (R;T") and satisfies

NE: flly.nraoz < CCL+ Ty v IS Ny, 0.20)
for some constant C > 0 independent of t. Moreover, (E; f)|(o.sjx2 = fl(0,11x2-

Proof. We can check that ||Ly;[|, oz < 1 for any " € (1,2) by definition, so by
applying the continuity of the multiplication of modelled distributions [52, Proposition
6.12], we have

|||Etf|||y,77Am);(O,21) < ”lf”ly,n;(O,Zz)'

We can extend it into ||E; fll,,7ra0:(0,2¢1 S W flly.5:(0,2¢) by the uniform continuity. To
show that E, f € DY-1"2((0, 00); R), we pick x € [2£,00) x T2 and y € (0, 2r) x T2.
By setting z = (2¢,y") we have

I(E:f)(¥) = Tyx (Ee /) (%) |l o
< NE)(Y) = Ty (Ee f)(@)la + [ITyz (Ee f)(2) = Tyx (Ee /) (%) || o
< NE fly.nnap0.20) ¢ |y = 2|7
S M0y 0.20) (e, )T |y = x| 27
In the second inequality, we use the fact that (E; f)(z) = (E,f)(x) = 0 because of

the definition of E,. For the case that x € (0,2¢f) x T? and y € [2¢, o) X T2, by the
properties of models we have

v OIES G) = Ty Ee )@ o = v Iy Tay (E ) 3) = (Ee /)0l
<Pl i G =) > My =Xl Iy (B ) = (E ) 0)llg

a<f<y
S My, Wy s020) Vi = )0 (e, ) TR0 1y = x 127
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Note that the supremum in the definition of the norm || - ||, ;.7 is taken over ||y —x||s <
@(x,y). Since |y1] < 1+ |x1| < 3 in this region, the factors v,(x) and v} (y — x)
are bounded both above and below. Thus we can ignore these weights and have
E,f € DY1"a((0, 00);T). Onthe other hand, E, f € D> ((-o0,0);T) is obvious
from the definition. Since ||y —x||s < ¢(x, y) implies that x; and y; have the same sign,
we obtain the assertion. O

Remark 3.5.9. Although the norm of II-parts of models is perhaps different from the
original one in [52], the norms of I'-part and modelled distributions are not different
since the semigroup {Q;} is not used for them. Because of this, here and in some
places below (Lemma 3.5.10 and Theorem 3.20), we can use the continuity results of
modelled distribution obtained in [52].

Next, we recall from [52] a different norm of singular modelled distributions. The
following result holds for any singular modelled distributions on R? taking values in
arbitrary regularity structures and any models.

Lemma 3.5.10 ([52, lemma 6.5]). Letn <y and » > 0, and let / C R be an interval.
For any function f : (1 \ {0}) x T> — T, we define

I/ )l

()50 =max  sup vl

@<Y xe(1\{0})xT2 ¢(x)

Then the inequality ( f)y,,.1 < ( f D"y ;.1 Obviously holds. Conversely, if

lim P,f(x)=0
x1—0

holds for any @ < 7, then there exists a polynomial p(-) such that, forany M € #*(T")
and f € D”'1(I;T), we have

(FD5st 5 PUTy )y

In the end, we can lift the operator (9, — aA +c)~! to the level of singular modelled
distributions. Recall the decomposition (9; — aA + ¢)~! = K + S from Proposition
3.5.2-(iii).

Theorem 3.5.11. Lety € (0,a A (1 =2¢)),n€ (y—=2,y],r 20,and ¢ € (0,1]. For
any M = (II,T) € 42T, f € DV((0,2¢);T), and § € (0,y + 2], we define the
function

PP f = Pes{K(ELf) + L(S(REf))}.

ThenP? f € D‘i’rn/\%ﬂ (R;T). If M is smooth and admissible in the sense of Definition
3.5.5, then we have

R(PPf)(x) = (9 — ad+¢) " (RE f) (x). (3.18)
Moreover, there exists a polynomial p(-) such that, for any ¥ > 0 we have
197 lls.nraos2-e:0.20) < PUAMIy ) 720 f ly.p:0.20)- (3.19)
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Finally, there exists a polynomial ¢(+) such that

122 FDO5 P2 F P s napra—x:0.20)
< qR) P(IMD; MDYy, + 1FD5 FDUy 02020

for any M) € #*(T) and f e D*1((0,2t);TD) with i € {1,2} such that
1My, < Rand If Dl 0200 < R

Proof. In the proof of inequalities, due to the density argument, we can assume that the
model M is smooth.

We know KE, f € DY %*2(R: T') from Corollary 3.4.6, and RE, f € C720:2(y,,)

Vir
from Corollary 3.3.9. Moreover, since E; f(x) vanishes outside [0,2] x T?, we also

obtain RE; f € C1"-C(R x T?) by modifying the proof of Theorem 3.3.7. Then by
Proposition 3.5.2-(iii), we have S(RE;f) € C;”Z(R x T?) and thus L(S(RE,f)) €
DY2YR;T). Therefore, P f € D" (T) by Proposition 3.3.5-(ii). The
identity (3.18) follows from Theorem 3.4.5 and the definition of L(S(RE; f)).

Note that |2 fl s, ynae+2:0.26) < CrIP? fll 5.nnags2.vs, for some r-dependent con-
stant C,. We show (3.19) for x > 0 by applying Lemma 3.5.10. By definition, the only
index a € A of elements in S smaller thanp A ap+2 (< 1 —¢) isa = 0. Since M is
smooth, by Proposition 3.3.8, the To-component of P2 f(x) is equal to

(I (P £)(0)) (x) = (RPS £)(x) = (8 — ah + )" (RE, ) (x).

Since (RE; f)(y) = (Hy(E,f)(y))(y) =0 vanishes on y € (=0, 0) x T2, we also have

h=abs T RENW = [ Py () RES )y

Note that, in the proof of Proposition 3.3.8, we obtained

IREf(y)] < @(y)""®.

Since A @g > —2, we can show that
x|
@ -ad+ 0 REN@I s [ Inl "y -0
0

as x1 | 0. Therefore, by Lemma 3.5.10 we have

o o
”lpt f|||y,77/\ao+2—/<;(0,2t) < |||Pt f|||;,17/\m)+271<;(0,2t)

2 S 2 5
tK/ |||Pz f|||;,7]/\a0+2;(0,2t) < tK/ ”lpz f|||'y,7]/\cxo+2;(0,2t),

N

where || - |||; gl = (]D; gt Il - ll,5:r- The proof of the local Lipschitz estimate is a
slight modification. o
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3.5.4 Solution theory for PAM

We show the local-in-time well-posedness of the equation
U = L(Pup) + P} (b(U)E) (3.20)

in the class D?°7((0,2t),S;T") with some appropriate choices of y and n. The term
L(Puy) and the operator P was defined in the previous subsection. The only undefined
object b(U) is the lift of the composition map u +— b(u) defined in [52, Proposition
6.13]. In the present case, for sufficiently small &£ and any U € D?-7((0, 2¢), S;T") with
v € (1,2 -2¢&) and n € [0, y] of the form

Ux)=ux)1+v(x)I(E) +uz(x)Xo + u3z(x) X3,
we can define b(U) € DY"7((0,2t),S;T") by the concrete form
b(U)(x) = b(u(x)1+ 5" (u(x){v(x) I (E) +u2(x) Xz + u3(x) X3}
Then the map U +— b(U) is locally Lipschitz continuous.

Theorem 3.5.12. Assume € € (0,a A (1/4)) and let 8 € (0,1 — &). Then there
exists a function #q : (0, 00)%> — (0, 1] such that, the following assertion holds for any
Ri, Ry > 0: For any ug € C?(T?) such that ||uo||co(r2y < Ri, and any M € #2(T)
such that [[M]|,,,, < Ro, the equation (3.20) with ¢ = #o(R1, R>) and y = 1 + 2¢ has a
unique solution U in the class D'*2¢:¢((0, 2¢),S;T'). Moreover, the mapping

St : (MO, M) — U
is Lipschitz continuous on the space {uo; ||uollco(m2) < Ri} X {M; [|M]],.y, < Ra}.

Proof. The proof is a standard fixed point argument. Note that, the following operators
are well-defined and locally Lipschitz continuous.

* ([52, Proposition 6.13]) U € D'*?2-¢((0,2¢),8;T) — b(U) € D'*?5-9((0,21),8S;T).
* ([52, Proposition 6.12]) V € D+22:9((0,21),8;T) — VE € D=971-5((0,2¢); ).

s (Theorem 3.5.11) W € D&971-¢((0,2);T) — PI?eW e D*2el-5 ¢
((0,21),8;T).

Therefore, by setting F(U) = L(Pug) + P}*2¢(b(U)E), we have

IE W) hs2e.0:0.20) S Nltollco + 12O b(U)EN 6, 0-1- &
S luollco + === b(U)l1426,0
|

S Nluolico + 1= p(|Ull1426,0)

for some polynomial p(-). From this inequality, we can find a large R > 0 depending
on up and M and show that F maps a ball of radius R in D'*?>2-¢((0,2¢),8;T) into
itself. From here onward, we can show the assertion by an argument similar to [52,
Theorem 7.8]. O
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3.5.5 Convergence of models

In this subsection, we define the sequence of smooth admissible models associated with
regularized noises and show its probabilistic convergence. We fix an even function
o : R? = [0, 1] in the Schwartz class and such that /RZ o(x)dx = 1, and set o, (x) =
22 0(2"x) for each n € N. We define the smooth approximation of the spatial white
noise & by

b0 = [ Fatr-nedy, (xe)

where p,, denotes the spatial periodization of p, defined by p,, (x) := Y cz2 Pn(x + k).
For such &,, we can define the unique smooth admissible model M" = (IT",T") €
A (T) by the properties

IGE)(y) =& (¥),  (EXE)(y) = (i = x0)én(¥"),
(YT (B)E)(y) = (K&n(y) = Kén(x))Ea(Y) = Ca(y),

where the function C,, is defined by
€)= B[(Ken (06, ()] = [ KGry)ens’ =)y

with ¢, (x' — ') := B[£,(x)€. ()] = 02 (x" — y").

Theorem 3.5.13. For any r > 0 and p € [1, ), the sequence {M"},cn of models
defined above converges in LP (Q, #*(T)).

Proof. In view of the inductive proof as in [5], it is sufficient to show the uniform
bounds
[E[Q: (x, TII7)]| < P14 (3.21)

for any 8 € {-1 — &, -2¢,—-¢} and 7 € Tg. Note that the assumptions in [5] are more
restrictive: the kernel Q,(x, y) is homogeneous in the sense that it depends only on
x —7y, and the renormalization model is defined from an x-independent preparation map.
However, the first restriction is used only to prove the above estimate in [5], so if we
can establish this estimate in some alternative way, we can still follow the discussion in
[5]. Moreover, the second restriction is also not problematic, as the algebraic relations
derived from preparation maps can be easily adapted to include x-dependent preparation
maps. Such a modification is carried out in [6].

Since ¢ is a centered Gaussian, we have only to show (3.21) for 7 = 7 (E)E. By
definition,

B0 10| = = [ 0u(x MEIKE (&, (" )1dy
—- [ QKD = Yy
(R3)?
To estimate this integral, we decompose K = /01 Kds and set

() = / 01 (v, WKy (v, 2)en (2 — ¥ )dydz.
(R3)2
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By the Gaussian estimates of Q; and Kj, their time integral is estimated as
[renian s kO -yy. [kl s s OG- 2,
R R
for some constant C > 0, where ht(c)(x’) i= 17 12e=ClUxl" 0P+ Thys we
have
- c c
17,0l < 5721 5 W % [eal) (0).

Since |ht(c) * hﬁc)(x)l S h§f2 (x) for some constant ¢ € (0, C) (see [6, Lemma 55] for
instance), we have
I ()] < 72 (e +5)7 12

Since we have

1 t 1
/ 115 (x)]ds < / sV 12 g +/ sTlds < —logr < 17%/?
0 0 '

for any £ > 0, we obtain the estimate (3.21) for 7 = 7 (E)E. O

3.5.6 Renormalization of PAM

For a fixed initial condition uy € C?(T?) and the sequence of random models {M"}
constructed in the previous subsection, we denote by

Up =S¢ (uo, M™)

the solution of the equation (3.20) with y = 1 + 2¢ and with the random time

t=t1o| lluollco 2y, sup IM" |y, |-
neN

Combining Theorem 3.5.13 with Theorem 3.5.12, we have the following theorem.

Theorem 3.5.14. For each n € N, we denote by R" the reconstruction operator asso-
ciated with M". Then the function u,, = R"(E,U,) converges in L*((0,1) x T?) in
probability as n — oo and coincides with the unique solution of the equation

(al —a(x)A+ C)un(x) = b(un(x))fn(x,) - Cn(x)(bb,)(un(x)) (3.22)
with the initial value uo € C?(T?) onx € (0,7) x T?.
As noted in Remark 3.5.3, the constant ¢ in the equation (3.22) can be arbitrary.

Proof. On the region x € (0,1) X T2, since u, (x) = (IT?U,(x))(x), we can assume that
U, is of the form

Un(x) =ty ()1 + v, (X)L (B) + uzn(x) X2 + u3 n(x) X3. (3.23)
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The convergence of {u,} in L*((0, 1) x T2) follows from the convergence of {U,,} and
the definition of the norm (- )y :(0,1)-
Finally, we show that u,, satisfies the equation (3.22) on the region (0, ) X T2. For
any x € (0,¢) x T2, the function b(U,,)(x) is of the form
b(Un)(x) = b(un (x))1+ D" (un (X)) {vn ()T (E) + uz,n(x) X2 + 3,0 (x) X3},
and then P*2¢ (b(U)E) is of the form
P22 (b(U)E) (x) = wa ()1 + b(un ()T (E) + won(x) Xz + w3, (x) X3

for some functions w,,ws ,, and w3,. For U, to solve the equation (3.20), the
coefficient v, (x) in (3.23) must be equal to b(u,(x)) for any x € (0,7) x T>. By
Theorem 3.5.11, the function u,, satisfies

(=P s [ P (0N RE WD)y

Since y € (0,¢) x T2, from the definition of IT" 7 (E)E, we obtain

(RE;b(Un)E)(y) = (IIyEb(U,) (»)E) () = (Iyb(U,) (»)E) (y)
= b(un(Y)én(y') = Cu(y) (bD") (un ().

This implies that u,, satisfies the equation (3.22) (in mild sense) on (0, 7) x T?. |

We also have a stronger convergence result.

Corollary 3.5.15. In the setting of Theorem 3.5.14, the convergence of {u,,} also holds
in the space CZ((0,1) x T?).

Proof. We only show the uniform bounds of {u,, } in the §-Holder norm, since the proof
of the convergence is a simple modification. First, we set U,, = P,”zg(b(Un)E) €
D2£.9((0,2¢),S;T™) and decompose

up = Pug + i, ity = R"(E;U,).

Since the uniform bounds of {Pup} in the §-Holder norm is more elementary (see
e.g. [6, Proposition 62]), we focus on the remaining term. By definition, for any
x € (0,1) x T2, ii,,(x) coincides with the 1-component of U, (x), and also with that
of PoUyn(x). Since {P-oU,} is uniformly bounded in the norm || - |lg.6:(0.r) by
Proposition 3.3.5-(ii), we have

i (y) = itn ()| < Ily = xI¢

for any x,y € (0,¢) x T2 such that ||y — x|ls < ¢(x,y). Here and in what follows,
we omit proportional constants polynomially depending on the norms of {U,} and
{I""}, which are uniform over n. It remains to show the same Holder-type inequality
in the region ¢(x,y) < ||y — x||s. In this region, by using the inequality (3.5), we have
e(x) V o(y) < |ly — x|ls. On the other hand, we also have that {U,} is uniformly

bounded in the norm (- )7, 9(0.1) Dy Lemma 3.5.10. Hence

litn () = itn ()] < liin ()] + liin ()] $ (1) +0(x)? < ly —x]1€
in the region ¢(x,y) < ||y — x||s. This completes the proof. O
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