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Abstract
In this article we construct all the primitive idempotenfstiee restricted quantum
groupUg(sk) and also describb,(sl) as the subalgebra of the direct sum of matrix
algebras. By using this result we construct a basis of theesp& symmetric linear
functions ofUg(sl) and determine the decomposition of the integral of the ddal

Uq(sk) twisted by the balancing element to the basis of the spasgrametric linear
functions.

1. Introduction

The restricted quantum grougq(sk) at roots of unity has been studied in vari-
ous contexts. In [2] and [3] it is shown that the category ofdoies of the irrational
vertex operator algebr#)/(p) is closely related with the category of finite-dimensional
modules ofUqy(sk) at q = exp@r+/—1/p) for p > 2. More precisely, the Grothendieck
group and the center &J4(sk) are determined and it is also proved that the center and
the space related withV(p), which is invariant under the canonic8l,(Z) action, are
isomorphic to each other. Then it is also proved thatp i 2, the category of finite-
dimensional modules of4(sl,) and the category of modules a%(p) are equivalent
to each other. Furthermore we can expect that the equivalehthese categories holds
for any p > 2.

Let SLF(Uq(slg)) be the space of all the symmetric linear functions L(_bq(slz),
that is, SLFUq(slz)) is the space over the complex number fi€ldformed by all the
C-linear mapsp: Uq(sk) — C with g(ab) = ¢(ba) for all a, b € Uy(sh). In this paper
we construct a basis of SLB{(sk)). In order to construct a basis we determine a cer-
tain basis ofUq(sl) which corresponds to indecomposable projective moduBiisce
Uq(sk) is a finite-dimensional unimodular Hopf algebra and theasgof the antipode
is inner, we can see that SWK{(sk)) is isomorphic to the center by [10]. Fakq(sl)
the center is (B—1)-dimensional (see [2]) so we see that SUF(sL)) is also (—1)-
dimensional. It also follows from [10] that the linear fuitets given by the action of
the balancing element d,(sk) to the left and right integrals of the dual Hopf algebra
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536 Y. ARIKE

of Uq(slz) are symmetric. We determine the decomposition of thisalirfeinction into
the basis of SLR{q(sk)).

Our motivation to study SLFEIq(sIZ)) comes from conformal field theories. For
conformal field theory associated with a vertex operatoelalg (VOA), the represen-
tation theory of VOAs plays an important role. In fact, thenfromal field theory with
the factorization property for any VOA with some regularitygd some finiteness condi-
tion is established over the projective line in [9]. Notetteach a VOA is rational. For
an elliptic curve, under the rationality and the finitenessdition, the space of con-
formal blocks with a VOAV is finite-dimensional and its dimension coincides with
the number of simple modules f&f. Any conformal block is related with symmetric
linear functions on Zhu's algebrag(V) (cf. [7], [12]).

On the other hand, the theory for irrational VOAs is difficbikcause there could
be logarithmic modules (see [7]). In this case, under theesfiniteness condition, the
number of simple modules is less than or equal to the dimansidhe space of con-
formal blocks and we have to consider pseudo-trace furetmnlogarithmic modules.

There is an example of irrational conformal field theory whis called logarith-
mic conformal field theory. A typical example of irrationabrdormal field theory is a
VOA W(p), whose conformal blocks involve logarithmic function ofodulusq (re-
call that no logarithmic terms appear in rational cases)thia example it is difficult
to determine the dimension of conformal blocks.

By the arguments given in [7] and [8], we can expect that thecemf conformal
blocks is isomorphic to the space of the symmetric lineactions on a finite dimen-
sional algebra whose category of modules is equivalent ¢éoctitegory ofV-modules
(also see [6]). This naturally indicates that the space ofaronal blocks associated to
W(p) is closely related with SLFEIq(sIZ)).

This paper is organized as follows. In Section 2 we recalldénitions and basic
properties of symmetric linear functions and integrals ofté-dimensional Hopf alge-
bras. We also introduce the relationship given in [10] betwéhe space of symmetric
linear functions on a finite-dimensional Hopf algebra arsdciénter.

In Section 3 we recall the definition &f,(sl,). We describe left and right integrals
of Uq(slz), which turn out to be equal to each other, hetit;gslz) is unimodular. Left
and right integrals of the dual dJ,(sl,) are determined. In addition, we recall that the
square of the antipode chiq(slz) is inner. The above results can be found in [2].

In Section 4, by using the structure of projective modulei]@(slz) given in [2],
we construct all indecomposable left idealsl]u‘(slg) which are isomorphic to project-
ive modules and we also construct all primitive idempotem‘tsjq(slg).

In Section 5 we describe_Jq(slz) as the subalgebra of the direct sum of matrix
algebras. By using this result we construct a basis of S_Lr(?sqg)). Moreover we de-
termine the decomposition of the linear functions given by &ction of the balancing
element to the left and right integrals into the basis.
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2. Preliminaries

In this paper we will always work over the complex number fi€@d For any
vector space/ we denote the space HeitV, C) by V*.

2.1. Symmetric linear functions. Let A be a finite-dimensional associative al-
gebra. A symmetric linear functiop on A is an element ofA* which satisfiesp(ab) =
o(ba) for all a, b € A. We denote the space of symmetric linear functions /Aoty
SLF(A). If A is a finite-dimensional Hopf algebra, the space SA)F¢oincides with
the space of cocommutative elementsASf ([10]).

2.2. Integrals and the square of antipode of Hopf algebras. Let A be a finite-
dimensional Hopf algebra with the coprodutt the counite and the antipodé. Each
element of the subspaces

La={A e AlaA =¢e(a)A for all a e A},
Ra={A e Al Aa=c¢(@)A for all ac A},
is called a left integral and a right integral Af respectively. Sincd is finite-dimensional,
the spaceC (respectivelyR ) is one-dimensional (cf. [1]). Similarly a left (respeety,
right) integral of the dual Hopf algebra* is an elemenf € A* which satisfiespr =
p(L)A (respectivelyrp = p(1)r) for all p € A*. Equivalently we can see
La={Ae A" | (1 L)A(X) = A(x) for all x € A},
Ra ={r e A" | (A®DA(X) = A(x) for all x € A}.

If £La =Ra the Hopf algebraA is called unimodular.

Proposition 2.1 ([10]). Let A be a finite-dimensional unimodular Hopf algebra
with the antipode S. Suppose thatis a left integral of A and thatu is a right
integral of A*. Then
(1) A(ab) = A(bS(a)),

(2) w@b) = u(S(b)a).

The square of the antipode is call@ther if there exists an invertible elememt
such thatS?(x) = txt~! for all x € A.
Denote by— and < the left and right actions oA on A*:

a— p(b) = p(ba), p < a(b) = p(ab),

for pe A* anda, b e A
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Proposition 2.2 ([10]). Let A be a finite-dimensional unimodular Hopf algebra
with the antipode S. Suppose thatis a left integral of A and thatu is a right
integral of A If S? is inner the linear maps |f f,: Z(A) — SLF(A) defined by
fi(c) =t~lc — 1 and f(c) = u — tc are isomorphisms.

3. The restricted quantum group Uq(slz)

3.1. Definition. Let p > 2 be an integer and = exp(r+—1/p) be a primitive
2p-th root of unity. The restricted quantum groly(sh) is a Hopf algebra oveC
generated byE, F, K and K~1 with the relations

KK1=K?}K =1,
K—-K™1
KEK'=qg°E, KFK'=q?F, [E Fl=—H,
a-g-
EP=FP=0, K2 =1,
as an algebra. We define the coprodugtthe counite and the antipodes by
AE)=1Q9E+E®K, AF)=K'®F+F®1l AK)=K®K,
e(E) =¢(F) =0, &(K)=1,
S(E) = —EK™!, SF)=-KF, S§K)=K™2

Lemma 3.1. The 2p® elements EF"K!', where0<m,n<p—-1land0<I <
2p—1, form a basis ofuy(sl) as a vector space.

For m, n € Z we use the standard notation

_q"—q™
=g
[n]! = [n][n—1]---[2][1], [O]! =1,
mj| [m]! - -
[ N ] = —[n]![m—n]! for n>0 and m—n=>0.

We can write down the coproduct of the basisfta‘(slz) in Lemma 3.1 by using
induction.

Lemma 3.2.

A(EanKl) — Zm: Zn: qr(mr)+s(ns)2rs|: rrn ] |: 2 i|

r=0 s=0
x Ean75K75+| ® Emfr FSKI'+|.
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3.2. The integrals. The integral ofUqy(sk) and the right integral ofJq(sh)* is

given in [2]. A basis of the space of left integrals is given by

2p-1
EP-1EP-1 Z K,
1=0

which also belongs to the space of right integrals. Theeefoe can see thaﬂq(S|2)
is unimodular.
Define the elements iklg(sh)* by

A(EanKl) = 8m, p-16n, p—181, p—1,
u(EanKI) = 8m, p-16n, p-101, p+1,

forO<mn<p-1and 0| <2p-—1.

Proposition 3.3. Each of the spaces of left integrals and right integrals of th
dual Hopf algebra ofUqy(sh) is spanned by. and 1 respectively.

Proof. It follows from Lemma 3.2. O

3.3. The square of the antipode. It is shown in [2] that there exists a ribbon
Hopf algebraD which containsﬂq(slz) as a Hopf subalgebra. It is also shown in [2] that
the Drinfeld element and the ribbon element®belong tqu(slz). Thus the balancing
element ofD is in Ug(sk). The balancing element is given lay= K P*1 in [2].

Proposition 3.4 ([2]). The square of the antipode &f;(sk) is inner in particu-
lar, S*(x) = gxg ! for all x € Uq(slk) where g= KP*1,

3.4. lIrreducible modules. Let {X{ | =+, 1< s =< p} be the complete set of
non-isomorphic irreducible modules b_rq(slz). The irreducible moduleYy has a basis
formed by weight vectorsy (s), 0 < n < s—1 with the action oﬂ]q(slz) defined by

Kafi(s) = aq*'~2"a(s),
E&i(s) = a[n][s — nlag_;(s),
Fag(s) = ag,4(9),

wherea“;(s) = aZ(s) = 0.

3.5. Casimir element. The Casimir element o@q(slz) is given by

g 'K +gK?

(3.1) C=EF+- oy

e Z(Uqg(sh)).
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Proposition 3.5 ([2]). The minimal polynomial relation of the Casimir element is

p—-1
(3.2) Dp(x) = (X = Bo)(x — Bp) [ [(x — B)?

s=1
where s = (9° + q7°%)/(q — q 1)

This relation gives the decomposition BE(S|2) into its subalgebras by the Casimir
element:

p
(3.3) Ug(sh) = €D Qs
s=0

where Qs for 0 < s < p is a generalized eigenspace with eigenvatde

4. ldempotents of Uy(sl2)

In this section we construct primitive idempotents LM(S'Q) by referring to the
structure of projective modules (see [2]). We constructirdlecomposable left ideals
generated by primitive idempotents lﬂh(slg). It is well known that these ideals are
indecomposable projective modules.

4.1. Indecomposable modules irflq(slz). In order to construct projective mod-
ules in Uq(slz), first we construct the module whose socle is isomorphibéarreducible
module XY

We quote the useful lemma.

Lemma 4.1 ([4]). For 1 <m =< p—1, the following relations hold irﬂq(slg):

mfl)K _ qulel
q—q

qmflK _ qf(mfl)Kfl
q—q
m—lK _ q—(m—l)K—l

q—gt

—(m—l)K _ m—lK—l

—m q q

— Em—l_
m) q-—qt

(€, Fm = 19

— [m] mel’

[E™, F] = [m]E™

Then we have a generalization of this lemma (cf. [5], [11]).
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Lemma 4.2.

min(r,s) _ .
[Er, FS] — Z Er— gsi fir’S(K),
i=1

where {°(2) € C[z, 7Y].

For 1<s<p,1<t<sanda =+, we set

2p-1
va(s, t) — 2((Xq7(572t+1))| KI )

1=0

Then we can see tha€ v (s, t) = aqs2T1v4(s, t).
Define

(4.1) ag(s, t) = EPIRP (s, t).

This is a highest weight vector of highest weighg®®. Seta’(s,t) = F"a(s, t).
Then Lemma 4.1 shows

(4.2) Kafi(s, 1) = aq® * "a(s, 1),
(4.3) Eal(s, 1) = a[n][s—nlag 4(s, 1),
(4.4) Fag(s, t) = an4(s, 1),

and E&(s, t) = 0. By (4.3), we havea(s, t) #0 for 0<n <s—1. Let XZ(t) be a
space spanned bgf(s,t), 0<n =<s-—1. Itis clear that the spac&p(t) is isomorphic
to the irreducible modulety for 1 <t < p. It is expected thagg(s, t) is zero for
1<s<p-1hbutitis hard to prove by direct calculation. In fact, thect will be
proved in the following argument.

We consider the element which is sent&8Xs, t) by the action ofF.

Lemma 4.3. Forl1<s<p-1landl<t <s, we have

p—s
ag(s,t) = F D ua()EP "FP M (s, 1)

n=1

where ué(s) = TTP-5% 0 o(—alKIp — s — K]).
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Proof. By Lemma 4.1,
FEPFPtMy%(s, t)
= E p—n F p7t7n+lva (S, t)

[p ](q—(p n— l)K qp -1k - 1)Ep n—1pp-n-t a(s t)

q—qt
= EPTFPNLye(s t) + afn][p — s — N]EPTMIEPT (s, ).
We can see
p-s
F Y ui(s)EP"FPM(s, 1)
n=1
p-s
Z/’L (S)Ep nNEp-t- n+1 a(s t)
n=1
p—s
+ > pi(ealn][p—s—n]EPIREPT(s, 1)
n=1
= EPTIEP (s, t)
p—s—1
+ D () +elnllp—s—nlug(s)EP " TFP (s, 1),
n=1
since u4(s) = [T0=5 «_n_1(—e[KI[p — s — k]), the second term vanishes. O
Set

EP-s—k-1 p—s

- . “(S)EPTFPTINy% (s, 1).
[P M elillp—s—i]) = Z“

Then we can easily see that

45)  x¥(st) =

- S(S)EP LIRS tya(s, t)
P (—afillp—s—il)

x4(s, t) = = EPIEStye(s, 1),

soxg(s, t) is non-zero anag (s, t) is a highest weight vector of highest weighiqP—S1.
Then, by Lemma 4.1 and Lemma 4.3, we have

(4.6) Kxg (s, t) = —aq p—S—l—ZKXz(S, t),

o _ | —alkllp—s—k]x_y(s, 1), 1<k<=p-s—1,
(4.7) EXI(s,t) = [0, e

ve 1y _ | XS 1), 0=k=p-s-2,
“9) P, 1) = [GS‘YS, t), k=p-s-—1.
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By above relations we obtain
al(s,t) = F%a§(s, t) = F¥"P°x§(s, t) = 0
forl<s<p-1land 1<t <s.

Proposition 4.4. For 1<s =< p and1 <t <s, the spaceX¢(t) spanned by the
vectors of the form (s, t), 0 < n < s—1 is isomorphic to the irreducible modul&y.

Set
p-s
(4.9) bi(s, t) = F" > ug(s)EP"IF PN (s, 1),
n=1
(4.10) ye(s, t) = FSKpg(s, t)

for0<n<s—-1,0<k=<p-s—1, anda = £. By Lemma 4.1 we have following
relations:

(4.11) Kb(s, t) = ag>2"bi (s, 1),

a[n)[s—n]b%_,(s,t) + &% ,(s,t), 1<n=<s-1,
Xp s 1(S: 1), n=0,

(4.12) Ebf (s, t) = [

" _|bBg(s 1), 0=<n=<s-2,
(413) an(S, t) - [yg?;’ t), n=s— 1,
(4.14) Kyg(s, t) = —aqP S &yi(s, 1),
_ [~elKlp—s—Kyy(s,t), 1<k<p-s—1,
(415) Eyﬁ[(s! t) - [ag_l(s, t)’ «“ k = 0,
“ (s,t), 0<k<p-s—2,
(4.16) Fyg(s t) = [gf“(s g K i p<_ E_ :

By (4.15), we haved;(s,t) #0 for 0<n <s—1 andyi(s,t) #0 for 0<k < p—s—1.
Let P¢(t) be a space spanned by the elements of the form

br(s, t), xg(s,t), yi(s, 1), ai(s,t), 0<n=<s—-1 0<k=<p-s—-1,
forl<s<p-1and 1<t <s. By (4.2)—(4.4), (4.6)—(4.8) and (4.11)-(4.16), the

2p-dimensional spacé@¢(t) is an indecomposable lefi;(sk)-module. Note that the
modulesP¢(t) for 1 <t < s are isomorphic to each other so we &t >~ P(t).
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Proposition 4.5. The 2p-dimensional indecomposable left moddg¢, 1 < s <
p—1anda = %, has a basis formed by weight vectors

br(s),  Xc(s), Yk(s), an(s),
for0<n<s—-1and0<k < p-s—1with left actions defined by
Kbr(s) = ag®* 2"b3(s),

_|e[n[s—=n]by_i(s) +a7_4(s), 1<n<s-1,
Etﬁ(s) - [ngl(S), ! ! n= 0’

arey _ |Pia(s), 0=n=s-2,
P = [YSE), n=s-1,
KX (s) = —aqP S 1 2xg(s),
Ex(s) = [g“[k“ p—s—KIX(9), i = IE)S b_s 1,

wrey | Xe41(8), 0=<k=p-s-2,
SR I R

KYE(8) = —aqP~> 2y (s),

—a[K[p—s—Klyy (), 1<k=p-s—-1,

EXO) =5 ,(s), k0.
, 0<k=p-s-2
Fyg(s) = é’u’?ﬂ(s) kz pig_ f

Kag(s) = aq® a(s),

Ea¥(s) = g[n][s— njay_s(s), 1 igi s—1,

n
an q1(s), 0=n<s-2

Fan(s) = 0, n=s-—1

It is shown in [2] that the actionQ — Bs)? vanishes on the moduleB;" and Pps
for 1 < s < p—1. Hence there are inclusion mags" — Qs and Pos — Qs for
1<s=<p-1 ltis also shown in [2] each of the actions @& & Bo) and C — Bp)
vanishes ont,; and X[jr respectively. Thus there are inclusion mags — Qo and
Xy — Qp.

4.2. Primitive idempotents of Oq(slz). First we show that the irreducible mod-
ules X7(t) contain primitive idempotens dﬂq(slz).
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Proposition 4.6. Set

1
4.17 “(p, t) = (1) € X2(t).
i T e et P =Y
Then
(4.18) & (p, e (p, tz)=[§(p’ 2 n-e

In particular e"(p,t) € Qp and e (p,t) € Qo for 1 <t < p are primitive idempotents.

Proof. It is clear tha€”(p, t) generates the irreducible moduley by the struc-
ture of irreducible modules. By the left action &f on the irreducible module,

2pa; 4(p ), ti=ty
0,

v (p, a1 (p, t2) = I otherwise.

Thus we have

p—1

ay(p, 1)? = 2pF IEPTIEP T (p, 1) = 2p [ [elillp - iD&s(p, 1), O

i=1
To find other primitive idempotents dﬁq(slz) the following lemma is useful.

Lemma 4.7. Letg, be an element itlg(sk) with weight ¢~2-2"for0<n <s-1
and ¥ be an element itJq(sk) with weight—qP5-3-% for 0 <k < p—s—1. Then

Zp(Pnu n = t - 1’
+ p—

vT(s, en = IO, otherwise
U+(Sv t)wk = O'

v (p—s, Ugn =0,

2py, k=u-1,
0, otherwise

vT(p—s, Uy ={
foril<s<p-1,1<t<sandl<u=<p-s.

Proof. It follows from direct calculation. O
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Forl<s<p-1and 1<t <s, set

1 8¢
(4.19) S0 =0 (bi”l(s. t)— y((ss)) a4(s, t)) € PL(t)
where
p—s-1
(4.20) y*(s) = 2p H( a[ml[p—s—m )H(a[u][s—u)
i=1
p—s—1 s—1 s-1
5°(s) =2p [] (~e[ml[p—s—m]) H(a[kl[s—k])
m=1 J:]_ =1
(4.21) 7l
p—s—1 p—s-1
+2pH(a[I][S—I]) > ] —elkip—s—k).
n=1 k=1
k#n

Note thaty T (s) = y (p—s) ands*(s) = 6 (p—s). Then we see tha# (s,t) generates
the modulePy.
Using Lemma 4.7 and the action bk,(sl), we have the following.

Proposition 4.8. The elements s, t) for 1 <t <s and e(p—s, u) for 1 <
u < p—s are mutually orthogonal primitive idempotents of @r 1 <s< p—1.

Proof. Using Lemma 4.7, we have

(e (s, )2
Fit 5(9) +( 9 s

F (s g 81 .
=20—— + Ep i le t—i p le t
p(y+<s))2(§ wE mIck )

+ O
x (b q(s, ) — TR )at (s 1))
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By the action ofqu(slz) on PF, we obtain

p-s ) ) +
(B e Yas o= ge)
i=1

s—1 i
= o [0 1D (5502 Dai0)

s—1 s-1
+ups© D [Jills— iDad (s t)
i=1j

=1
j#
s—1 p—s—1 p—s—1-i
+T]as=in > ui e ] Lllp-s—iDags b
i=1 i=1 j=1
+ S+ s+
el AU D) BRSS!
and
5+
EP-1Ep-t (b;rl(s, t) — y+((ss)) a4 (s, t))
(4.22) p-s-1 s-1 v H(s)
= [] lillp—s—iD [Jills— iDag (s, 1) = Zp @G,
i=1 j=1
since i (s) = f’;spilsf(ifl)(—[j][ p—s— j]). Hence we have
F (v 5 (9)
(€ (s 1) = ZDW( 2p (bg(s, t) - y+(s)ao+(5, t))
37(s) 37(s) y*(s) _
+ e ) - S e t)) et (s 1),
By Lemma 4.7 these idempotents are mutually orthogonal. ]

Corollary 4.9. The modulesty and P¢ for « =+ and1<s =< p—1 are in-
decomposable projective modules.

It is clear that

=

©

s p
(4.23) Uq(sk) 2 (P & Pg (1) ® P, () @ X, (1))
S t=1 t=1

Il
=

Then the dimension of right hand side i®®2so the above inclusion is an equality.
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Theorem 4.10. The following equality holds

p-1 s p
Uq(sk) = @D P(Ps 1) & Ps (1) & DXy (1) & X5 (1)).
t=1

s=1 t=1

5. Symmetric linear functions on Ug(s2)

5.1. Basis and matrix representation ofQs. Let A be a finite-dimensional as-
sociativeC-algebra and lefP, |i € 1} be the complete set of non-isomorphic project-
ive A-modules. Then the map: A — @, End:(R) defined byp(a) = (pi(a))ie for
a € A is an algebra monomorphism whepge is the representation of on P,.

Recall thatUq(sk) has the decomposition into subalgebras:

p
Ug(sk) = €P Q.
s=0

By Proposition 4.6, each of the subalgeb@s and Q, has unique projective irredu-

cible module X, respectively. By Proposition 4.8, the subalgel@a for 1 < s <

p —1 has two projective moduleB; and Pp_s- So we can define the algebra mono-
morphisms

9o: Qo — Ende (X)),
¢p: Qp — ENCL(X}),
¢s: Qs — Ende(PS) ® Ende(P,_),

for 1 <s < p—1. In order to determine the images of above monomorphisrasfirat
give a certain basis of)s and their actions on projective modules.
For Qp we can choose a basis

61  AlpY)

1
= “(p,t), 0<n<p-1,1<t=<np.
i Cilp_ip " P 0=n=p P

For Q, we can choose a basis

(5.2) Af(p, t) = af(p,t), 0<n<p-1,1<t=<np.

1
2p [T (il p —i])

By the action ofUq(sk) on the irreducible modulety and Lemma 4.7, we have

(5.3) An(p, t)ay (p) = [g%(p)’ r<;t:etrv;isle.

By (5.3) we have the following theorem.
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Theorem 5.1. The subalgebra Qfor s =0, p is isomorphic to M(C). The iso-
morphism is given by A ;(p,t) = Em¢ for 1<m,t < p where K, is a matrix unit
of Mp(C).

For 1< s < p—1 the following elements define a basis Qf:

64 BE = (b6~ 2aie),
(5.5) XH(s, 1) 1= —x (s, 1) = EP B (s, 1)
' AR [Fea-lip-s—ip
(5.6) Yi(s 1) = 1 (s, t) = FST*B (s, 1),
(5.7) Af(s t):= yia:(s, t) = F"EB/ (s, 1),

) 1( _ 5y _
(58)  B(p—su) :=£(bk(p—s, - Za(p-s u)),

1 ES*I"I

5.9 X-(p—s,u):= —x-(p—s, —
(5.9) (=, 0)i= oy (P51 ) = g By (s ),

1
(10)  Yi(p—su)=_yi(p—s )= F"*"By(p—s, )
S

(511) AP U)i= —a(p—s u) = FIEB; (p—s, u),
Vs

for1<t<s 1<u=<p-s50=<n=<s—1and 0<k=<p-s—1 where
vs=r"(e) =y (p—59)
8s =8T(s) =8 (p—9).

By the action Oqu(Slg) on projective modulesP given in Proposition 4.5 and
Lemma 4.7, the following hold:

bt(s), n=t-1,
(5.12) Bl (s, t)bi(s) = [ 0. otherwise,
(5.13) B (s, t)x (s) =0,
(5.14) By (s, )Y (5) =0

alh(s), n=t-1,
(.15 B (5. Dan () = I otherwise,
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Table 1. The actions of the basis @ on PZ.
Qs\Ps bli(s) Xia(S)  Yaa(s)  al4(s)
Bi(s1) | bi(s O 0 af®
X (s, 1) X (s) 0 0 0
Yt | e 0 0 0
Afst) | afs) O 0 0
B (p—s, u) 0 XS(s) V() 0
X,(p—s.u) | O 0 a9 O
Yo(p-s,u)| O  afs O 0
A(p—s,u) 0 0 0 0
Table 2. The actions of the basis §f on Pps
Qs\'PEfs inl(p —9) Xt_,l(p —9) ytil(p —9) a-lll(p —S)
Bi(s. 1) 0 X\ (P=9)  Y,(p—59) 0
X; (s, 1) 0 0 3 (p—9) 0
Y (s 1) 0 a (p—9) 0 0
Af(s, 1) 0 0 0 0
Be(p—s,u) | b(p—-9) 0 0 a (p—9)
Xp(p—s,u) | X;(p—5s) 0 0 0
Yo(p—s.u) | ya(p—9) 0 0 0
Ac(p—s,u) | a(p-9) 0 0 0
(5.16) B (P —s, u)bj(s) =0,
o o [XE(s), 1=u-1,
®.17) B (p=s wx(s) = [O, otherwise,
_ v V() 1=u—-1,
(-18) Be(p—s uy'(® = [O, otherwise,
(5.19) Bo(p—s, u)ai(s) =0,

forO<mn<s-1,0<kl <p—-s—1,1<t<sand 1<u < p-s. By (5.4)-(5.11)
and (5.12)—(5.19), we can determine the actionQafon P;". Similarly we can also
determine the action oQs on P, . The actions ofQs on P and P, g are given in
Table 1 and Table 2. We note that the actions which do not appedable 1 or 2

are zero.



SYMMETRIC LINEAR FUNCTIONS ON Uq(sh) 551

Let us expandy € Qg by the basis ofQs for 1 <s< p—1:

v= Z[Z(wnft(v)Bn*l(s, t) + ¥y (WAL (s 1)
t=1 Ln=1

+ D EGOX (s, 1) + 6L @)Y, t))]

kel

(5.20) k=

n

pP—sS{ p—
+ [ (wk_,u(v) Bk_—l(p - Sv U) + 1pk_,u(v)'AE—l(p - 31 U))
k=1

+ D Enu@X (P =5, W) + & ()Yala(P =, U))] :

n=1

By Table 1, we have

vbi_1(8) = D (@ (b1 (8) + ¥l (Va4 (5))
n=1
p—s

+ D EG X 1(9) + GV 4(9)),

k=1

p—s S
vXt(8) = D o (X1 (8) + D i (v)ai(s),
k=1 n=1

p—s s
W) = > e YL + D a1 6),
k=1

n=1

vag 4(8) = D e m(v)a ().
n=1

forl<m<sand 1<| < p—s. Set

(5.21) Ks(v) = [¢nm(v)] € Ms(C),
(5.22) Kp-s(v) = [¢1(v)] € Mp_s(C),
(5.23) Hs(v) = [V m(v)] € Ms(C),
(5.24) Ap-s,s(v) = [E (V)] € Mp_s5(C),
(5.25) Bp-ss(v) = [§(m(v)] € Mp_s5(C),
(5.26) Cs.p-s(v) = [6,1 ()] € Msp5(C),
(5.27) Ds,p-s(v) = [¢4 (V)] € Ms p-s(C),

(5.28) Hp-s(v) = [¥1 (v)] € Mp—(C).
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Let p: Qs — Ende(P) and pg: Qs — Ende (P, ) be the representations. The linear
map pg (v) can be expressed as follows with respect to the Has(s), X (s), Vi (9),
ag (s):

KS(U) 0 0 0
A ss(v)  Kps(v) 0 0
PEW=1 B ) 0 Kps) O

Hs(v) Ds, p—s(v) Cs, p—s(v) Ks(v)

By Table 2, the linear map; (v) can be expressed as follows with respect to
the basish (p—s), X7 (P —5), Yo (P—9), & (p—9):

Kps(v) 0 0 0
oy | Csp=s(v) Ks(v) 0 0
=\ 5" 0 K@) 0

|:lp—s(v) Bp—s,s(v) Ap—s,s(v) Kp—s(v)
Thus we have the following theorem, which is one of our masults in this paper.

Theorem 5.2. For 1 <s < p—1, the image ofys is given by the subalgebra of
M2,(C) @ M2p(C) as follows

Ks 0 0 0 Kp-s 0 0 0
Apss Kps O 0 Ceps Ks 0 0
Bpss 0 Kps O | |Dsps O Ks 0

Hs Ds, p-s Cs, p-s Ks H p-s Bp—s,s Ap—s,s K p-s

Where I'g, HS € Ms(c), Kpfs, Hprs € Mpfs((c), Apfsys, Bpfsys € Mpfsvs((c) and
(0 p—ss Ds, p-s € Ms, p—s((c)-

5.2. The center. To determine the space of symmetric linear functioni;]@(slz),
it is important to describe the structure of the centdﬂ@(fslz). The structure of the center

of Uq(sk) is given in [2].
Proposition 5.3 ([2]). The center qu(sIZ) is (3p — 1)-dimensional.

The subalgebras, 0 < s < p, has a central idempotert which acts onQs as
an identity and annihilateQg for s #s'. For 1<s< p—1, Qs also has two nilpotent
elementsw?. The action ofwd on Qs is given byws Bf (s,t) = Af(s,t) for 1<t <s
and 0< n < s— 1. Similarly the action ofw; on Qs is given byw; B (p—s, u) =
A (p—s,u) for1<u=<p-sand 0<k < p—s—1. For other elements of the basis
of Qs, the central elemenb? acts as zero.
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5.3. Symmetric linear functions. Since Uq(slz) is unimodular and the square
of the antipode is inner, the dimension of the space of syminktear functions on
Uq(sk) is equal to the dimension of the center Of(sk). By Proposition 2.2 and
Proposition 5.3, we have the dimension of the space of symunktear functions
on Ug(sh).

Proposition 5.4. The space of symmetric linear functions Gg(sh) is (3p — 1)-
dimensional.

We define linear functiond, on Qo and T, on Q, by

p p p
To(v) = D (), for v=>" >y ()A; 1(p, 1) € Qo,
t=1 t=1 n=1
p p p
To(w) = DY), for w=>" >y (w)Ai(p.1) € Qp,
t=1 t=1 n=1

respectively. By Theorem 5.1, we may regdigland T, as the traces oM (C).
Let us define linear functions ofs for 1 <s<p-1

T.H(v) = tr(Ks(v)),

To (v) = tr(Kp_s(v)),
Gs(v) = tr(Hs(v)) + tr(Hp-s(v)),

for v € Qs. By (5.20)—(5.28), we note that

T ) = D o),
n=1
p—s
Tsi(v) = Z (ple(v)y
k=1
5 p-s
Gs(v) = D U n(®) + D Yk (v).
n=1 k=1

Then we have the main theorem in this paper.
Theorem 5.5. The linear functions
TO! Tp, TS:ty GSI

for 1 <s < p-—1form a basis ofSLF(Uq(slz)).
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Proof. It is sufficient to prove that the linear functio$" and Gs form a basis
of SLF(Qs) for 1 <s<p-1.

We can easily see that linear functiolg are symmetric by Theorem 5.2.

By Theorem 5.2, we can see

Hs(vw) = Hs(v)Ks(w) + Ds p—s(v) Ap_s,s(w)
+ Cs,p-s(v) Bp-s,s(w) + Ks(v)Hs(w),
HNp,S(vw) = I:lp,s(v)Kp,S(w) + Bp_ss(v)Cs p—s(w)
+ Aps,s(v)Ds p-s(w) + Kp s(v)Hp s(w),

for v, w € Qs. Thus we haveGg € SLF(Qs).
Suppose

(5.29) aT," + bTy +¢Gs =0,

for a, b, c € C. By applying (5.29) toB;" ;(s, t), By ;(p—s, u) or A’ (s, t), we have
a=b=c=0. O

5.4. Integrals and symmetric linear functions. The linear functionsg™ — A
and < g on Ug(sh) are in SLFU4(sk)) by Proposition 2.1. Note that

(5.30) gt = AE™F"K") = — g(EMF"K") = 8m p_18n p_181.0-

Recall that the mag — u < gc gives an isomorphism from the center lag(slz) to
the space of symmetric linear functions u_la(slz). For the left integraly, the map
c— glc — A is also isomorphism. Sincg™* — A = u < g, the linear function
g~lc — A coincides withu — gc for any central element. Thus we only consider
the linear functionu < gc.

Proposition 5.6. For s = 0, p, the following relations hold
w— 06 = asTs,
whereao = 1/(2p [T (~[illp—i]) and ap = 1/(2p [T (1 P —i1)).-

Proof. Recall that the central elemesyt acts onQ, as an identity and annihilates
Qs for s # p. Thereforen — ge, is a linear function onQs. Recall that

Fn
2p [1P1 (@ p —il)

Ar(p,t) = EPLEPtyt(p, 1).
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Then, by Lemma 4.2, we see that the teBEf~*FP-! appears inA",(p, t) only. Thus

we have
1

= ge(A(p ) = { 2p [1 1 illp—i])
0,

otherwise.

Proposition 5.7. For 1 <s < p— 1, the following relations hold

n— g6 = as(T; + Ts_) + BsGs,
I’L “— gu)s+ = .BSTS+I /'L “— gwg = ﬂST575

whereas = —38s/(ys)* and s = 1/ys.

Proof. Recall

Fr'l
Af(s, t) = —EPIFPyT(s, 1),

S

Fres 8
Bi(s,t) = —| D i (9EPTFP - Z2EPIRP ht(s, ).
s \\I1 Vs
By Lemma 4.2, we see that the tef&P~*F P! appears inA (s, t) and B/ (s, 1)
only. Therefore we obtain

1
—, n=t-1,

w— ge(Al(s 1) = [ vs'
0, otherwise,

)
——=, n=t-1,
n—gaBiE) =1
0, otherwise.
Similarly we have
1
k=u-1,

w— ges(Ac(p—s,u) = [ vs'
0, otherwise,

ds

w +— g&(B (p—s,u)) = '_(ys)z’
0, otherwise.

u=k-1,

Thus we have the first relation.
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Recall thatw B (s, t) = Af (s, t) andws annihilates other elements of the basis
of Uq(sk). Hence we have

1

w—guws (By (s, 1) = '%’
0, otherwise.

n=t-1,

Similarly we have
1
o —, u=k-1,
u/—ng(Bk(p—S, U))= Vs
0, otherwise.

So we obtain the second and the third relations. O

Now we can see that
p
u;gzu;(gzes)-
s=0

By Proposition 5.6 and Proposition 5.7, we have

p—1
w—g=uaolo+ (Z as(Th +T5) + IBSGS) + asTp.
s=1
We can see that
_ 1
2p [T 1lills — i1 [T (=illp—s—i])
I i O

Bs

~2p([p—1]1)?
_ (=1)p—s-t S\ 2D
= 2—p3[s]2(2 smB> ,

since o — 1]! = [[™; sin(z/p)/sinP(z/p) and [} sinlz/p) = p/2°L. In the
same way, we have
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By (4.22), we see

af—— g i pil
ST T P\ & s o Mp— s—l]

=1
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