|

) <

The University of Osaka
Institutional Knowledge Archive

Developing Quantum-Classical Hybrid Interfaces
Title for Solving Realistic Atomic Scale Chemical
Problems

Author(s) |1EH, HI&R

Citation | KPrKZ, 2025 1Et:m

Version Type|VoR

URL https://doi.org/10.18910/103163

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Developing Quantum-Classical Hybrid Interfaces
for Solving Realistic Atomic Scale Chemical
Problems

Tomoya Shiota

September, 2025






Developing Quantum-Classical Hybrid Interfaces
for Solving Realistic Atomic Scale Chemical
Problems

A dissertation submitted to
THE GRADUATE SCHOOL OF ENGINEERING SCIENCE
THE UNIVERSITY OF OSAKA
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY IN SCIENCE
BY
TOMOYA SHIOTA

SEPTEMBER, 2025






Abstract

Quantum computers are expected to offer a new computational paradigm that
accelerates and enhances quantum-chemical calculations and machine learning
(ML), thereby enabling the understanding and prediction of chemical phenomena
at atomic and electronic scales. However, today’s quantum computers remain
limited by their small number of physical qubits. Even as early fault-tolerant
quantum computing (FTQC) or FTQC emerges, classical computing will remain
crucial for tasks that do not require quantum resources because of its high
clock speeds. Accordingly, applying quantum algorithms to practical chemical
problems requires complementary classical algorithms. The quantum-—classical
hybrid interfaces that bridge quantum and classical computing will play a pivotal
role in fully leveraging the potential of quantum computing.

This dissertation builds such a framework. It links high-accuracy results from
quantum algorithms to classical methods, such as molecular dynamics simulations
and materials informatics. For example, it connects highly-parallelized classical
quantum chemistry software with quantum computing. By integrating quantum
and state-of-the-art classical computing, it becomes possible to combine more
accurate results from quantum computing with existing large-scale classical
simulations. This framework enables quantum computing to be applied across a
wide range of systems—from single molecules to catalyst surfaces and biological
systems. Furthermore, this dissertation introduces methodologies to incorporate
quantum-chemical data from quantum computing into materials informatics.
We develop a technique for merging datasets obtained from different protocols
and demonstrate that quantum-chemical data generated at different levels of
theory can be integrated seamlessly. Using the unified quantum chemical dataset,
we constructed a single universal ML interatomic potential (MLIP) capable of
handling both molecular and crystalline systems. Furthermore, we show that
by using the internal representations of the MLIP as novel descriptors, superior
quantum ML models can be constructed for properties such as nuclear magnetic
resonance chemical shifts and catalytic activity—even when the available qubit
count is limited. The developed quantum-classical hybrid interfaces open a way
for applying quantum computing to real-world atomic-scale problems without
compromising its potential.
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Chapter 1

Introduction

Quantum computers are computing devices that operate according to quantum
mechanical principles. They hold the potential to outperform classical machines
in certain tasks, including factoring large integers via Shor’s algorithm [1, 2],
calculating the ground-state energies of molecules and crystals through quantum
phase estimation (QPE) [3, 4, 5, 6, 7], and leveraging the exponentially large
Hilbert space of qubits for quantum machine learning (ML) [8, 9, 10, 11]. Driven
by these expectations, recent years have witnessed notable progress in both
quantum hardware [12, 13, 14, 15, 16] and quantum software [17, 18, 19].
Nevertheless, current quantum devices suffer from limited qubit counts and
noise, encouraging many researchers to explore quantum-classical hybrid
strategies [20, 21, 22]. Even in the era of early fault-tolerant quantum computing
(FTQC) or FTQC, classical computing will remain crucial for tasks where
quantum computation is not essential, due to its high clock speed [23]. For these
reasons, quantum—classical hybrid approaches are indispensable for applying
quantum computers to practical problems. In these strategies, the inherently
quantum components—those that truly require quantum resources—run on
quantum computers, while classical computers handle the remaining tasks.
One of the key motivations for quantum computing has long been addressing
the challenges of quantum many-body problems in chemistry and physics [24,
25, 4, 5, 26]. In quantum chemistry, accurately solving the Schrodinger
equation is vital for understanding molecular and materials properties. Full
configuration interaction (Full-CI), also known as exact diagonalization in
physics, solves the Schrodinger equation exactly for a given Hamiltonian.
However, its computational cost scales exponentially with system size on
classical hardware [27, 28]. In principle, FTQC devices can execute Full-
CI in polynomial time [4, 5], thereby enabling the accurate calculation of
properties for systems that classical computers have been unable to solve so
far. For instance, it is estimated that the ground-state energy of molecules
such as FeMo cofactor (FeMoco)—found in the reaction center of a nitrogen-
fixing enzyme—and a cytochrome P450 enzyme active site can be computed
using QPE within a few days on a superconducting quantum computer with
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several million qubits [6, 29]. Despite the constraints of today’s noisy quantum
processors [18, 30], variational quantum algorithms (VQAs) [17] and other
quantum-assisted classical-computing techniques are being actively developed
for chemical applications [31, 32, 33, 34, 35].

Although concurrent advances in both quantum hardware and algorithms have
made it increasingly feasible to tackle quantum-chemistry problems, significant
challenges remain for realistic atomic-scale chemical applications. First, preparing
the Hamiltonian to be solved by a quantum algorithm still relies on classical
computing, which can become a bottleneck for large-scale or periodic systems [36].
Exploring potential energy surfaces and simulating real-time chemical reactions
require many energy and force evaluations [37, 36, 38]. Running all of these
evaluations purely through quantum chemistry calculations on a quantum
computer is not practical, making it essential to minimize the computational
load on quantum processing as much as possible. Second, designing molecules or
materials with desired chemical properties requires not only the prediction of
energies and forces but also other chemical properties such as nuclear magnetic
resonance (NMR) chemical shifts [39] and catalytic activities [40]. Furthermore,
the discovery of molecules and materials necessitates efficiently exploring
vast chemical spaces [41]. To address the challenges of predicting various
chemical properties and efficiently exploring vast chemical spaces, materials
informatics—integrating computational chemistry with ML—has emerged as
a powerful approach [42]. Research aimed at solving chemical problems with
quantum ML is beginning to emerge [43, 44]. However, constructing practical
quantum ML models on today’s quantum computers requires the development
of input descriptors that are both accurate and compact.

In this dissertation, we attempt to develop quantum-—classical hybrid
interfaces that seamlessly bridge state-of-the-art classical computing with
quantum computing, thereby opening a practical route to solving realistic
atomic-scale chemical problems. One key technological component toward this
goal is a framework that interfaces a highly parallelized low scaling classical
quantum chemistry software with quantum computing. Another essential element
involves leveraging ML interatomic potentials (MLIPs) [45, 46, 47, 48, 49]—an
interdisciplinary advance between computational chemistry and ML—as a
platform for making productive use of quantum calculations and as an interface
to quantum ML for materials informatics. By learning the large amount of
energies from the Schrédinger equation, MLIPs can effectively avoid solving the
Schrédinger equation directly. As a result, they can provide near-quantum-
chemical accuracy for energies and forces at speeds orders of magnitude
faster than traditional quantum chemistry calculations. To incorporate the
high-accuracy quantum-chemical data produced on quantum computers into
MLIPs alongside existing large quantum-chemical datasets [50], we propose a
protocol that integrates quantum-chemical data obtained from different electronic-
structure methods. Moreover, to enable MLIPs to serve as inputs for quantum
ML on today’s limited-qubit quantum computers, we explore repurposing their
intermediate information as compact descriptors. By combining these interfaces,
we aim to seamlessly integrate quantum computing for quantum chemistry



and materials informatics—both of which have evolved at the intersection of
computational chemistry, quantum information, and ML.

Dissertation Overview
Chapter 2: Preliminaries

We offer a unified perspective on computational chemistry, quantum computing,
and ML, laying the quantum-—classical hybrid interfaces developed in this
dissertation. First, we introduce the fundamentals of quantum computing
(Section 2.1). We then briefly review the basis of quantum chemical calculations,
contrasting classical and quantum algorithms while highlighting their respective
limitations (Section 2.2). Finally, we explore how ML techniques, including both
classical and quantum methodologies, are employed to predict molecular and
materials properties, and we outline the current challenges and opportunities in
these areas (Section 2.3).

Chapter 3: Integrating Classical and Quantum Software for Enhanced
Quantum Chemical Simulation of Realistic Chemical Systems

We develop practical implementations that link a classical high-peformance-
computing quantum chemistry software with quantum circuit emulators,
enabling efficient evaluation of chemical systems ranging from water clusters
and semiconductor surfaces to biological enzymes. This approach combines
large-scale force computation and Hamiltonian preparation in a parallelized
classical computing with quantum subroutines for quantum classical hybrid
algorithms. We demonstrate that the classical computations required for running
quantum—classical hybrid algorithms have low scaling in this framework.

Chapter 4: Taming Multi-Domain,-Fidelity Data: Towards Foundation
Models for Atomistic Scale Simulations

We develop a method to combine quantum chemical calculation data from various
sources in preparation for the future era of quantum computing. When FTQC
becomes available, it will likely produce small but highly accurate energy datasets
due to its high computational costs. It will, therefore, be essential to develop
methods that effectively integrate such high-quality data with existing classical
calculations. To this end, we develop an integration method by proposing a
total energy alignment (TEA) approach that can combine data from various
computational sources (e.g., density functional theory (DFT), coupled cluster
(CC) methods, Full-CI and so on). We discuss new dataset integration techniques
and universal MLIPs, with examples involving molecular and crystalline systems.
This chapter covers integration of multiple data sources, MLIP training, and the
resulting performance in energy evaluations.
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Chapter 5: Universal Neural Network Potentials as Descriptors:
Towards Scalable Chemical Property Prediction Using Quantum and
Classical Computers

To build practical quantum ML models that can predict diverse chemical
properties on today’s small-qubit quantum computers, we propose a new
compact descriptor—the graph neural network (GNN) transfer learning (GNN-
TL) descriptor—derived from pre-trained GNN-based MLIPs. Conventional high-
accuracy descriptors that capture the local environments of atoms in molecular
and crystalline systems typically scale quadratically with the number of chemical
elements, so descriptors that cover most of the periodic table. We show that
GNN-TL descriptors, extracted from a variety of pre-trained MLIPs, match
the predictive power of state-of-the-art descriptors for NMR chemical shift
prediction while remaining compact. Furthermore, a quantum kernel model
implemented with only ten qubits achieves performance on par with its classical
kernel counterpart, demonstrating that accurate, descriptor-based quantum ML
is feasible even on current limited qubit quantum computer.

Chapter 6: Lowering the Exponential Wall: Accelerating High-Entropy
Alloy Catalysts Screening using Local Surface Energy Descriptors from
Neural Network Potentials

To demonstrate how MLIPs combined with quantum computing can accelerate
materials discovery, we develop local surface energy (LSE) descriptors to screen
high-entropy alloy (HEA) catalysts—one of today’s most challenging material
classes because of their vast compositional space. We illustrate that LSE-based
predictions can drastically reduce computational costs, enabling large-scale
screening of adsorption energies. Then, we demonstrate that quantum ML with
a small number of qubits can improve prediction accuracy with a small amount
of the training data. Furthermore, we compare conventional descriptor-based
models in terms of accuracy.

Chapter 7: Conclusions

We conclude this dissertation with a discussion of future directions.



Chapter 2

Preliminaries

This chapter introduces preliminary concepts that span computational chem-
istry [36], quantum computing [51], and machine learning (ML) [52], laying the
foundation for the quantum-—classical hybrid interfaces developed in this disserta-
tion. Although each field has historically advanced through largely independent
trajectories, recent studies highlight that their integration fosters new approaches
to overcoming computational limitations.

Quantum computing opens the possibility of polynomial-time solutions to
electronic structure problems in quantum chemistry that are otherwise intractable
on classical computers [53, 28, 27]. The synergy between computational chemistry
and ML has led to materials informatics to accelerate atomistic simulations
[54, 55, 46, 56, 48] and the digital screening of candidates for new materials
[41, 57, 58] without using quantum chemical calculations. Quantum ML uses
superposition and entanglement to enhance ML algorithms [8, 59, 11].

In Section 2.1, the fundamentals of quantum computing are introduced. In
Section 2.2, the basics of quantum chemical calculations using classical and
quantum algorithms are explained. Then, we explain the current limitations
of both classical and quantum algorithms. In Section 2.3, we present ML
approaches for predicting atomic- and molecular-scale phenomena as well as
associated chemical properties. The section also provides an overview of classical
and quantum ML and examines their respective challenges.

2.1 Fundamentals of Quantum Computing

2.1.1 Qubit and Quantum Gates

Quantum computing exploits quantum mechanical phenomena, such as superpo-
sition and entanglement, aiming to solve certain computational problems that
are intractable for classical computers. In contrast to the classical bit, which
can only take values in {0,1}, quantum computers employ the quantum bit,
commonly called a qubit, as their fundamental units of computation. A qubit
is a two-level quantum system. Mathematically, the state of a qubit |¢) is

5
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represented as a normalized state vector in a two-dimensional complex Hilbert
space. Typically, |0) and |1) form an orthonormal basis, so that

[¥) = w|0) + v[1), where |u*+|v]*=1. (2.1)

Here, p,v € C are the complex probability amplitudes, and the squared
magnitudes |p|? and |v|? can be interpreted as measurement probabilities in the
respective basis states. In a two-dimensional complex Hilbert space, the basis
vectors |0) and |1) can be written explicitly as:

0=(o). =(3) (22)

When multiple qubits are considered together, they can exist in general
superpositions of tensor products of single-qubit basis states. For example, the
state of an n-qubit system all initialized to |0) is expressed as |0)®™. Moreover,
multiple qubits can become entangled, meaning that the global state cannot be
expressed as a product of individual qubit states.

A quantum computer performs computations by applying quantum gates on
qubits. The operations allowed in a quantum computer are linear transformations
of the state vector. Quantum gate operations on qubits are all described by
unitary operators. Single-qubit gates such as the Pauli operators X, Y and Z
are among the most basic and commonly used:

X = ((1) (1)> Y = (2 _OZ> Z = (é _01). (2.3)

Each of these matrices is both unitary and Hermitian, with eigenvalues +1. For
instance, the X gate swaps the states |0) and |1), analogous to the classical
NOT gate operation, while the Z gate imparts a phase of —1 to the state
|1). The Y gate applies a bit flip combined with a phase i. By combining
these gates, one can perform arbitrary rotations on the Bloch sphere, effectively
navigating the entire space of single-qubit states. Another fundamental single-
qubit gate is the Hadamard gate which transforms |0) into %(|0) + 1)) and |1)
into %(|O> —|1)). Furthermore, phase shift gates such as S gate and T gate
introduce specific complex phases to |1), playing a crucial role in universal gate
sets [60, 61]. To operate on multiple qubits, it is necessary to use controlled

gates. A representative example is the CNOT (Controlled-NOT) gate, defined
by the 4 x 4 matrix

CNOT =

100 0
0100
000 1| (24)
10

0 0
which applies the X gate to the target qubit if and only if the control qubit is in
the state |1). By employing controlled gates, one can generate and manipulate

entanglement, which is essential for quantum computing. It is known that any
desired unitary operation can be composed from only a small set of one-qubit and
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two-qubit gates [62, 63]. The minimal collections that allow such approximations
to arbitrary precision are called universal gate sets. A canonical example is
the three-element gate set {Hadamard, T, CNOT}, which is a universal gate
set capable of approximating any quantum operation with arbitrary accuracy
[60, 61].

As seen above, quantum computing can be performed by applying quantum
gate operations to qubits. Quantum algorithms are described as sequences of
quantum gates, i.e., quantum circuits. Some of them can accelerate tasks that
are intractable for classical computers.

2.1.2 Variational Quantum Algorithms

Variational quantum algorithms (VQAs) [17] combine quantum and classical
computing in a hybrid optimization loop. Despite the severe limitations on
circuit depth and qubit count, they can still operate to some extent on today’s
noisy quantum devices. A VQA optimizes an n-qubit parameterized quantum
circuit (PQC), U(0), which has variational parameters 8. A PQC (whose circuit
structure is often referred to as the ansatz) generates an n-qubit parameterized
quantum state |U(0)):

w(0)) = U(0)[0)°". (2.5)

One typical definition of a cost function C'(0) in a VQA is the expectation value
of an observable O related to the problem, which is measured on the quantum
processor:

C(8) = (0/°"U' (6) OU(0)[0)°" = (¥(6) | O | ¥(B)). (2.6)

A classical optimizer then updates € to minimize C'(€). The updated parameters
are subsequently fed back into the PQC, and this cycle is repeated until
convergence. Repeating this cycle converges to 8*, which optimizes the cost
function. In this dissertation, two VQA-based methods are applied. The first is
variational quantum eigensolver (VQE) [64], widely used in quantum chemistry
for estimating ground state energies of molecules and materials. The second is
quantum circuit learning (QCL) [9], which employs VQAs for ML tasks.

2.1.3 Quantum Phase Estimation Algorithm

Quantum phase estimation (QPE) is an algorithm that estimates the phases of
the eigenvalues of a given unitary matrix U as binary fractions. [3] If |¥) is an
eigenstate of unitary matrix U, we have the eigenvalue equation

U ) = ™ ), (2.7)

with a phase v in the range 0 < v < 1. The goal of QPE is to estimate the
phase v with high precision using finite number of qubits. In Kitaev’s original
QPE algorithm [3], n-qubit phase register and an m-qubit system register are
required. One initializes the phase register in |0)®" and the system register in
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the eigenstate |¥). After all operations in QPE, the state of the phase register
encodes the phase of the eigenvalue of a given unitary U:

0)°" ® [¥) = 17) ® ). (2.8)

If v has an exact n-bit representation, then the phase-register state |¥) encodes
the n-bit exact binary fraction of the phase . Otherwise, the phase-register state
|7) encodes an approximation using the n-bit binary fraction of . Finally, one
measures the phase register |¥), obtaining an n-bit string which represents
an estimate of v. QPE is especially important for addressing large-scale
eigenvalue problems that cannot be efficiently solved on classical computers
alone. Consequently, QPE serves as a fundamental subroutine in various
quantum algorithms, including Shor’s factoring algorithm [1] and quantum
chemical calculations [4, 5].

2.2 Quantum Chemical Calculations

2.2.1 Electronic Structure Theory

In the chemistry of molecules and materials, one can understand various
properties by solving fundamental equations of quantum mechanics. At the
atomic level, where interactions among electrons and nuclei are crucial, one
typically solves the basic equations of quantum mechanics—specifically, the
non-relativistic, time-independent Schrédinger equation—to obtain the system’s
wave function and its corresponding eigenenergy. The Schrodinger equation for
an N-atom, n-electron system can be written in compact form as:

HY(r,R) = E¥(r,R), (2.9)

where H is the Hamiltonian operator of the system, ¥(r R) is the eigenfunction
(eigen wave function) depending on the electronic coordinates (including spin
coordinates) r = {r;}?; and the nuclear coordinates R = {R;}}_; and E is the
eigenenergy.

For a non-relativistic system, the Hamiltonian is commonly expressed in
the following form, using the atomic units introduced below (with T, as
nuclear kinetic energy operator, T, as electronic kinetic energy operator, Vi,
as nuclear—nuclear interaction, Ve as electron—electron interaction, and V, as
electron-—nuclear interaction),

H:722M R Z 3Vn

Tn

Te
Z]ZJ 1 ZI
PR R SR
1<J J i1

1<J

(2.10)

Van Vee Ven
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where M7 is the nuclear mass in units of the electron mass, and Z; is the nuclear
charge. By atomic units, we mean that the following fundamental constants are
set to unity:

A= me = e = 4dmeg = 1. (2.11)

Here, h is the reduced Planck constant, m, is the electron mass, e is the
elementary charge, and ¢g is the permittivity of free space. In these units,
factors of h, me, e, and 4mey do not appear explicitly, leading to the simplified
Hamiltonian shown above.

Because electrons and nuclei differ greatly in mass, it is standard to separate
their motions via the Born-Oppenheimer approximation. In this approach, the
nuclei are assumed to be fixed, with their coordinates R treated as constants.
Consequently, the nuclear kinetic-energy operator T, is neglected, and the
nuclear—nuclear repulsion V,, is treated as a constant that depends only on
the fixed nuclear coordinates R. By common convention, Vi, is omitted when
formulating the electronic Hamiltonian, so one solves:

H Y. (r;R) = (Te + Ve + Ven) U.(r;R) = E.(R)P.(r;R), (2.12)

where U, (r;R) is the electronic wave function for fixed nuclear coordinates
R, and E.(R) is the resulting electronic energy excluding the nuclear—nuclear
repulsion. To obtain the total energy of the system at a given R (still ignoring
nuclear motion), one then adds the nuclear—nuclear repulsion:

Eiot(R) = Eo(R) + Van(R). (2.13)

This function Eio(R) is referred to as the potential energy surface (PES).
Analysis of PES enables the discussion of molecular structure, stability, and
reaction pathways. For example, by examining the PES using quantum chemical
calculations, one can predict whether a chemical reaction will occur via transition
state theory (TST). [65, 66]. According to the Eyring equation of TST, the
reaction rate at temperature 7' is proportional to exp(—AE/(kgT)), where AFE is
the activation-energy barrier and kg is the Boltzmann constant [65]. For example,
at 300 K, the reaction rate for AE = 20 kcal/mol differs appreciably—by roughly
a factor of five—from that for AE = 21 kcal/mol. In contrast, when AFE
increases from 20 kcal/mol to 30 kcal/mol, the reaction rate can drop by seven
orders of magnitude. Because the reaction rate is highly sensitive to AFE, an
accuracy of about 1 kcal/mol is required for quantitatively reliable predictions of
chemical reactivity. This level of accuracy is commonly referred to as “chemical
accuracy” [67].

2.2.2 Classical Algorithms
2.2.2.1 Wave Function Methods

The principal goal in quantum chemistry is to solve Equation (2.12) numerically,
to predict properties such as the total energy and the related properties. Since
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exact solutions are only feasible for very simple systems (e.g., the hydrogen atom),
any general many-electron system inevitably requires approximate methods.
Approximate computational methods in quantum chemistry can be broadly
classified into perturbation theory and variational methods. In perturbation
theory, one begins with a Hamiltonian that can be solved easily and then treats
the electron—electron correlation as a small perturbation, typically using Rayleigh-
Schrodinger perturbation theory (e.g., Mgller-Plesset perturbation theory (MPn)
methods). By contrast, the variational method defines a trial wave function
U.({0;}) that depends on parameters {6;} and seeks to minimize the energy
functional
(We | He | We)
(We | Vo)

Because of the variational principle, the resulting energy can never be lower than
the true ground-state energy. The better the trial wave function, the closer one
approaches the exact solution.

One of the most fundamental wave function methods in electronic structure
theory is the Hartree-Fock (HF) method, which approximates the many-electron
wave function by a single Slater determinant |®yp):

1/’1(1‘1) e Z/Jn,(rl)

1
|Pur) = —(—=| : i (i | by) = by, (2.15)
\/a 1/)1 (rn) e ¢n(rn)

where n is the number of electrons of the system, and ;(r;) is the i-th spin-
orbital (referred to as a molecular orbital for molecular systems) evaluated at
the electronic coordinate (including spin coordinates) r; of the j-th electron.
Electrons are fermions and therefore obey antisymmetry; the Slater determinant—
an antisymmetrized product—is constructed to satisfy this property. The HF
scheme treats electron-electron repulsion by assuming each electron experiences
the mean-field of the others. In the HF method, the wave function expressed by a
single Slater determinant is variationally optimized by solving the Hartree-Fock
equation:

E[V.] = (2.14)

F(r)¢i(r) = & i(r), (2.16)

where F'(r) is the Fock operator, ¢; is the i-th orbital energy corresponding to
the i-th spin-orbital ;(r). For practical calculations, spin-orbitals corresponding
to either a or /3 spin are expressed in terms of one-electron (spatial) basis
functions so that each spatial part of spin-orbital ;(r) can be written as
Pi(r) = ZKN; Cri®w(r), where Np,s is the number of basis functions {¢.(r)},
and c,; is the orbital coefficients. The number of spin-orbitals m is 2Npas. In
a finite basis, the Fock operator becomes a matrix F' whose diagonalization
yields the orbital energies ¢;. Constructing F typically scales as O(m?*), while
its diagonalization scales as O(m?), making the latter step the main bottleneck
in self-consistent field (SCF) HF calculations. HF solution is a mean-field
approximation that neglects electron correlation beyond the exchange term.
Although HF typically recovers more than 99% of a molecule’s total energy, the
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remaining 1% can significantly affect energy differences relevant for chemical
reactions [36]. Consequently, electron correlation must be taken into account
for quantitative predictions at chemical accuracy. Many post-HF methods (e.g.,
perturbation theory, coupled cluster (CC) theory [68, 69, 70], and configuration
interaction (CI) methods) build upon the HF solution.

In the CI method, the many-electron wave function |U¢r) is written as a
linear combination of Slater determinants (configurations) built from a single
reference determinant using the same set of spin-orbitals:

[Wer) = Col®o) + Y CP®f) + Y CI9F) +... = Y Crl®x), (2.17)
k

i,a 1<j,a<b

where |®g) denotes the reference configuration, typically taken to be the HF
Slater determinant [71, 72]. The singly excited determinant |®¢) is constructed
by promoting one electron from an occupied spin-orbital ¢ to an unoccupied spin-
orbital a. The doubly excited determinant |®$f) similarly involves promoting
electrons from occupied spin-orbitals 7, j to unoccupied spin-orbitals a, b. Higher
excitations (triples, quadruples, etc.) follow the same pattern. The CI coefficients
{Cy,C¢, C;‘jb ,. ..}, collectively denoted {C%}, are determined variationally by
diagonalizing the electronic Hamiltonian in this configuration space. The
resulting wave function corresponds to the solution of the variational principle
in Equation (2.14) for the given basis set. The notation {|®j)} represents the
complete set of Slater determinants and {C}} the corresponding CI coefficients.
In the Full-CI limit, all possible Slater determinants formed by distributing n
electrons among m spin-orbitals are included, so the number of configurations
scales as (ZL) As a result, the dimension of the Hamiltonian matrix is on the
order of (') x (™). Because (") grows combinatorially with both n and m, this
leads to an exponential increase in computational cost, making Full-CI unfeasible
for large systems. A straightforward approximation to avoid the exponential
cost is the truncated CI method, where the expansion is cut off at a certain
excitation level. Truncating the expansion at double excitations is known as
CI with singles and doubles (CISD), which scales as O(mS%). However, because
truncated CI is not size-consistent, it becomes unsuitable for large systems.
In the CC method, the many-electron wave function |¥cc) is expressed as

|Tec) = el |@g) = T T2 Tst ), (2.18)

where T is the cluster (excitation) operator that can, in principle, include single
T3, double Ty, triple T3, and higher excitations [68, 68, 70]. |®q) is the reference
wave function, typically taken to be the HF solution. By incorporating all
excitation levels, CC becomes equivalent to the Full-CI limit, but suffers from
exponential scaling in computational cost [70]. Hence, practical implementations
rely on truncated CC methods such as CC with singles and doubles (CCSD)
and CCSD with perturbative triples method CCSD(T), where CCSD scales
as O(m®) with respect to the number of spin-orbitals m and typically offers
greater accuracy than CISD due to its exponential ansatz, while remaining
size-consistent and thus applicable to larger systems. CCSD(T) augments CCSD
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with a perturbative treatment of triple excitations, raising the computational
cost to O(m"); nevertheless, for weakly correlated systems it is known to reach
chemical accuracy and is therefore often called the gold standard in quantum
chemistry [73]. In this dissertation, CCSD(T) is employed as the reference for
the torsional PES of an organic molecule in Chapter 4. Although truncated
CC is not variational—meaning the computed energy may lie below the exact
ground state if the reference is poor—it retains size-consistency and efficiently
captures electron correlation.

2.2.2.2 Active Space Approximation

Despite the formal exactness of the Full-CI approach, its computational cost
grows exponentially with the system size, rendering it impractical for most
applications. A widely adopted method to mitigate this is the active space
approximation, wherein one selects a subset of orbitals, termed the active space,
that are most critical for describing strong correlation effects and performs a
high-level (near-exact) calculation only in this subset. The remaining orbitals
are treated at a simpler level (e.g., kept doubly occupied or unoccupied),
thereby dramatically reducing the combinatorial explosion of configurations
in Equation (2.17). A prominent example of this strategy is the complete
active space configuration interaction (CASCI) method, which performs Full-
CI within the chosen active space. By confining the combinatorial expansion
to orbitals directly involved in near-degeneracies, bond-breaking processes, or
other strong correlation phenomena, CASCI captures the static (strong) electron
correlation that arises from multiple, nearly degenerate determinants. However,
to achieve quantitative predictions at chemical accuracy, the dynamic correlation
outside the active space must also be recovered [74, 75]. For example, many-body
perturbation theory (e.g., complete active space second-order perturbation theory
(CASPT?2) [76]) is widely used to recover the electronic correlation lost through
the active space approximation. One should note, however, that CASPT?2 is
only a second-order perturbative method and does not achieve the quantitative
accuracy of CCSD(T).

2.2.2.3 Density Functional Theory

In this section, we introduce density functional theory (DFT), a quantum-
mechanical framework that employs the electron density—rather than the
many-body wave function—as its fundamental variable. Because DFT strikes
a favorable balance between computational accuracy and computational cost,
it has become the de facto standard for quantum chemical (first-principles)
calculations of molecules and materials. The theoretical foundation of DFT was
established by the Hohenberg—Kohn theorem [77], and most modern, practical
DFT calculations are based on the Kohn—-Sham formulation [78].

The Hohenberg-Kohn theorem [77] states that for a non-degenerate ground
state, the external potential v(r) (up to an additive constant) is uniquely
determined by the ground-state n-electron density p(r). Consequently, every
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physical quantity, including the ground-state energy, can be expressed as a
functional of p(r). For a given external potential v(r), the ground-state energy
of the system E,[p(r)] is written as a functional of the ground-state electron
density p(r):

E.[p(r)] = / o(r) plr) dr + Flo(r)]. (2.19)

The term F[p(r)] is called the universal functional because it does not depend
on the specific form of v(r); rather, it reflects the internal contributions to the
ground-state energy. More specifically, it is commonly decomposed as

Flp(r)] = Tlp(r)] + Eeelp(r)]; (2.20)

where T[p(r)] is the kinetic-energy functional of the electrons and Fee[p(r)]
accounts for electron-electron interaction. Because F[p(r)] does not explicitly
depend on the external potential, it is considered universal in the sense that
its form remains the same for any choice of v(r). However, while the exact
forms of both T'[p(r)] and Fe[p(r)] are in principle uniquely determined by the
ground-state electron density, neither is generally known in closed form.

The Kohn-Sham method is a practical formulation of Hohenberg-Kohn DFT,
in which one introduces a set of m one-electron spin-orbitals (so-called Kohn-
Sham orbitals) {¢;(r)}7, from a fictitious non-interacting system as auxiliary
variables. This approach, commonly referred to as Kohn-Sham DFT, allows
for tractable calculations on real materials and molecules. Specifically, the
ground-state electron density p(r) is reconstructed from the {¢;(r)} via

o) = D fwi(r)l* (221)

These orbitals are obtained by solving a set of self-consistent equations that have
the same mathematical form as the HF method of Equation (2.16) (often called
the Kohn-Sham equations). Because orbital orthogonalization scales similarly to
the HF method, the computational cost is typically on the order of O(m?). Using
this electron density, the Hohenberg-Kohn universal functional is conventionally
written in the form

Flp(r)] = Tilp(r)] + Eulp(r)] + Exclp(r)], (2.22)

where Ty[p(r)] is the kinetic energy of the non-interacting reference system,
Ey[p(r)] is the classical Hartree energy, and Exc[p(r)] is the electron-electron
exchange-correlation functional. In practice, Ty[p(r)] is computed from the
Kohn-Sham orbitals as

L) = ~3 3 [ i) Vi) ar (223)

and the Hartree energy is given by

Eulp(r)] = % / / Wdrdr’. (2.24)
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The exchange-correlation functional Exc[p(r)] accounts for all remaining many-
body effects beyond the v(r), Fy|p], and Ty[p(r)]. In principle, if Exc[p(r)] were
known exactly, Kohn-Sham DFT would yield the exact ground-state energy for
any system.

In order to apply Kohn-Sham DFT for practical studies, the exchange-
correlation functional FExc[p(r)] must be approximated. In practice, a
variety of approximations have been proposed, such as the local density
approximation (LDA), which applies the properties of a uniform electron gas
locally, the generalized gradient approximation (GGA), which incorporates
gradient information of the electron density, and the meta-generalized gradient
approximation (meta-GGA), which uses second-order derivative information [79].
Moreover, hybrid functionals that include a portion of the exact exchange from
HF theory have been introduced to improve accuracy, although these often come
with higher computational costs [79]. The choice of which functional to employ
depends on the target system and the objectives of the calculation, and there is
frequently no single best approximation for all cases. Furthermore, systematically
improving the accuracy of exchange-correlation functionals remains challenging:
progressing from LDA to GGA, meta-GGA, or hybrid functionals does not
guarantee uniform improvements in precision across all systems [79, 80]. This
is due to the interplay of complex quantum many-body effects and specific
structural or material properties, forcing researchers to balance computational
cost and reproducibility in selecting the most suitable exchange-correlation
approximation.

2.2.2.4 Limitations of Classical Algorithms

Quantum chemistry methods such as Full-CI or CC that include all electronic
excitations can, in principle, provide exact solutions within a given basis
set. However, their computational cost grows exponentially with system size,
rendering them impractical for many chemically relevant systems. DFT could
theoretically offer exact ground-state energies if the exact form of the exchange-
correlation functional were known. In practice, because the exact functional
remains unknown, numerous approximate functionals have been proposed [79].
For example, GGA-based exchange-correlation functionals have demonstrated
predictive capability for certain solid-surface reactions [81]. Striking a balance
between accuracy and computational expense, DFT has become one of the
most widely employed methodologies in quantum chemistry. Despite these
successes, DF'T struggles to provide reliable predictions for strongly correlated
systems such as the FeMo cofactor (FeMoco) cluster in nitrogenase [82]. For
example, on the PES of the chromium dimer (Cry)—a prototypical transition-
metal molecule—the hybrid functional BSLYP overestimates the binding energy
by more than 1 eV (= 23 kcal/mol) in the binding energy at the experimental
bond length of about 1.68 A, and it even predicts an artificial minimum near
A [83, 84]. CCSD(T) is often called the “gold standard” in quantum chemistry
because it reliably achieves chemical accuracy across a wide range of chemical
systems. However, as a single-reference method, CCSD(T) is unreliable for
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strongly correlated systems where a single Slater determinant does not offer
a satisfactory reference state. Furthermore, CCSD(T) does not satisfy the
variational principle, sometimes yielding unphysical results such as total energies
lower than those predicted by Full-CI in stretched bond regions of diatomic
molecules. CASCI can provide a qualitatively correct description of systems if the
active space is chosen appropriately. Nonetheless, for strongly correlated systems
like FeMoco, a very large active space (e.g., 113 electrons in 152 spin-orbitals)
may be required [85]. In contrast, the largest Full-CI calculation performed
on a classical computer to date is limited to propane, involving 26 electrons
in 46 spin-orbitals [86]. Given these constraints in computational resources
and execution time, achieving even a qualitative description of systems such as
FeMoco remains prohibitively challenging on classical hardware.

In summary, classical algorithms can provide semi-quantitative accuracy
with DFT and even quantitative accuracy with CCSD(T) for weakly correlated
systems, yet for large, strongly correlated complexes such as FeMoco they are
unable to capture even qualitative features.

2.2.3 Quantum Algorithms
2.2.3.1 Pre-processing for Quantum Algorithms

The electronic Hamiltonian H, given by Equation (2.12) cannot be handled
directly on a quantum computer. In this subsection, we first express the electronic
Hamiltonian in terms of creation and annihilation operators through second
quantization, then explain how to convert these fermionic operators into Pauli
operators for implementation on quantum hardware.

In second quantization, a set of spin-orbitals, {¢,,(r)};L;, is required. These
spin-orbitals are typically obtained by solving the Hartree-Fock equation of
Equation (2.16). The index p labels spin-orbitals, and the corresponding creation
and annihilation operators c;; and ¢, satisfy the anticommutation relations

{ei, é;f} = 0;; and {c¢;,¢;} = {cz,c}} = 0. These relations ensure that the sign
change arising from the exchange of fermions (reflecting the Pauli exclusion
principle) is correctly incorporated. To write down the Hamiltonian using these
operators, it is necessary to pre-compute the one- and two-electron integrals, hpq

and hpgrs, respectively. The one-electron integral is defined as

Bpg = /¢;(r) (—;VE - ; |1~ZIR,> Y, (r) dr. (2.25)

The two-electron integral,

ipgrs = / / ) Bg(r)) e G(ra) Ga(ra) dry drs, (226

|ty — 1o

accounts for the Coulomb repulsion between electrons, and its specific value
depends on the choice of spin-orbitals and the basis functions used. The indices p,
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q, v, and s denote spin-orbitals. Employing these integrals, the second-quantized
electronic (fermionic) Hamiltonian H, typically takes the form

1
H, = Z hpq cI,cq + 3 Z hpgrs c;;c;[cscq. (2.27)

p.q p,q,7,s

This operator is physically equivalent to the (first-quantized) electronic
Hamiltonian expressed in the same spin-orbital basis and therefore denoted
by the same symbol H,, as in Equation (2.12).

Because the hardware of a quantum computer naturally implements spin-1/2
operators (Pauli matrices), these fermionic operators cannot be used directly.
Consequently, a procedure called fermion-to-qubit mapping is needed to convert
the fermionic operators into products of Pauli matrices. The Jordan-Wigner
transformation [87] is one of the most straightforward techniques for mapping
the fermionic operators c}; and ¢, into Pauli operators X,Y, and Z. It preserves
the necessary anticommutation relations by introducing additional phase factors
(strings of Z operators).

Under the Jordan-Wigner transformation, each fermionic operator is

represented as
p—1 .
X, — 1Y,
ol = (H Zt> =2, (2.28)

q—1 .
X, +1Y,
g = (H Zt> % (2.29)

Here, X;, Y;, and Z; act on the i-th qubit, and the product (string) of Z operators
is crucial for maintaining the fermionic anticommutation relations. When two
fermionic operators are exchanged, they gain a factor of —1. The string of
Z operators enforces this sign change within the qubit representation. Then,
the second-quantized fermionic Hamiltonian H, is transformed into a linear
combination of Pauli operators—commonly called the qubit Hamiltonian HJUPit.
In the Jordan-Wigner transformation, the creation—annihilation-operator terms
in the second-quantized Hamiltonian are transformed as follows:

qg—1

h ) .
hpqaCheqg = % (X, —iYy) [] 2 (X +iYy), (2.30)
t=p+1
T _hpqrs .
pgrsCpCrcsCq = 16 (Xp —iYp)
r—1 g-1 (2.31)
< I 2 (Xe—iv,) (Xo+iVa) [ Zu(X,+iYy),
t=p+1 u=s+1

where (p < r < s < q), though the precise details depend on the chosen basis and
indexing. Once written as Pauli operators, the Hamiltonian can be simulated on

a quantum computer via its time evolution or by variational methods such as
VQE.
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While the Jordan-Wigner transformation is conceptually simple and direct,
it may introduce long strings of Z operators of length O(m) when acting on m
qubits (one qubit per spin-orbital). This can increase circuit depth, making the
simulation more difficult on near-term quantum devices. Alternative methods,
such as the Bravyi-Kitaev transformation [88], reduce the length of these strings
to O(logm) by distributing the phase factors more efficiently at the cost of a
slightly more complicated construction.

2.2.3.2 Variational Quantum Eigensolver for Quantum Chemistry

VQE [64] is a VQA that uses the variational principle to compute the ground-
state energy E, of the electronic Hamiltonian H,. Concretely, one uses ansatz
(PQC) to prepare a parametrized wave function |¥.(0)), where 0 represents the
variational parameters. According to the previous section, the second-quantized
Hamiltonian H, after a fermion-to-qubit mapping, which is so called qubit
Hamiltonian H3"it  is expressed as

HI™ =N "h; Pj, (2.32)
J

where each P; is a tensor product of Pauli operators and h; € R are the
corresponding coefficients. The goal is to minimize the energy expectation value

Ee(0) = (We(6) | HI™™ | We(8)) = > _hy (We(6) | Py | We(0)).  (2:33)

In other words, VQE solves

0* = argmin F.(0), (2.34)
0

by iteratively updating 0 via a classical optimizer.

In VQE, the choice of ansatz crucially affects both computational accuracy
and circuit depth, as it must capture electron correlation efficiently. A prominent
chemically motivated ansatz is the unitary coupled cluster (UCC), derived
from conventional CC theory [89, 90, 91, 92, 93, 94, 95]. In UCC, a reference
state—typically the Hartree-Fock wave function |®yp)—is transformed by
the exponential of an anti-Hermitian operator composed of excitation and de-
excitation operators. Specifically, the excitation operator 7= >""" | T; includes
up to n-fold electron excitations, where each T; represents an i-body excitation
operator. The overall transformation is then given by exp(T — TT), where T
denotes the de-excitation operator, which is the Hermitian conjugate of T'. In
theory, including triple, quadruple, or higher-order excitations systematically
improves accuracy, eventually converging to the exact ground state. However,
circuit depth and parameter counts grow quickly, making these higher-order
expansions challenging for current hardware. For instance, when truncated to
single and double excitations (denoted as unitary coupled cluster singles and
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doubles, UCCSD), the excitation operators are

T = Zef clei, Th= Z O?jb clczcicj, (2.35)

1<j,a<b

where i,j label occupied spin-orbitals, a,b label unoccupied spin-orbitals,
cl and cz are creation operators, ¢; and c¢; are annihilation operators, and
0 = {07 (all i,a), 677 (all i < j, a < b)} are variational parameters.

2.2.3.3 Quantum Phase Estimation for Quantum Chemistry

Full-CI provides the exact solution to the Schrédinger equation for the
electronic Hamiltonian of Equation (2.12) within a basis set expansion, but
its computational cost grows exponentially with system size, as explained in
Section 2.2.2. QPE offers a way to address this issue in polynomial time [4, 5],
if an initial wave function that closely matches the target eigenstates (i.e. the
ground-state wave function) can be efficiently prepared [96]. In this section,
we explain how QPE can be applied to solve the Schrodinger equation for the
electronic Hamiltonian and present runtime estimates for implementations on
superconducting quantum computers.

Although QPE, as introduced in Section 2.1.3, is designed for unitary
operators, most Hamiltonians in quantum chemistry are Hermitian but generally
not unitary. Therefore, an additional procedure is necessary to map a Hermitian
operator to a form suitable for QPE. A widely adopted strategy is to use the
time-evolution operator, which connects the phase to an eigenenergy E, of the
electronic Hamiltonian H.:

e_iHet‘\I/e> _ e—iEet|\I/e>7 (2.36)

where ¢ is the evolution time and |¥,) is the prepared target eigenstate [4, 5, 82].
In general, the electronic Hamiltonian is written as a sum of Pauli operators
as shown in Equation (2.32), which often do not commute. Because of this, it
cannot be implemented directly in a quantum circuit. To accurately determine
ground-state energies via QPE, the time-evolution operator e~*#* must be
implemented with high precision. One common approach is the Suzuki-Trotter
decomposition [97], which splits the Hamiltonian into multiple parts and
approximates the time evolution in small increments. Reducing the step size
7 controls the simulation error e, but this increases the number of steps in
proportion to % In many scenarios, this leads to a polynomial increase in
complexity with respect to % The growing circuit depth and gate count make it
hard to use Trotter-based Hamiltonian simulation.

An alternative approach called qubitization avoids decomposition errors by
applying a walk operator,

62’ arccos(%) ‘\I]e> _ 62’ arccos(%) |\I/e>a (237)

instead of the time evolution operator [98]. Performing phase estimation on
this walk operator provides the same information as the time-evolution operator
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because the spectra of these operators are isomorphic. In this approach, A is
the L' norm of the electronic Hamiltonian [98]. The computational cost of QPE
through Qubitization is proportional to A, which motivates ongoing efforts to
reduce this norm [99, 100, 6].

We now turn to runtime estimates for QPE-based simulations of the FeMoco
system. In 2017, Reiher and coauthors estimated that time-evolution-based QPE
could be used to calculate the ground-state energy of FeMoco with an active
space of 54 electrons and 108 spin-orbitals in about 15 days on a superconducting
quantum computer, assuming a 10 ns T-gate cycle [82]. Since then, researchers
have deemed that estimate far too optimistic. Updated resource analyses indicate
that, even with one million physical qubits, the same calculation would take
on the order of 40 years [6]. In 2021, Lee and colleagues applied the low-rank
approximation method named the tensor hypercontraction [101, 102, 103] to
reduce the L' norm of the Hamiltonian, indicating that a larger FeMoco system
with an active space of 113 electrons and 152 spin-orbitals could be simulated in
roughly four days on a superconducting device [6]. Although progress in quantum
computing hardware continues, improvements in algorithms and Hamiltonian
representations also play an essential role in making large-scale quantum chemical
calculations more tractable and in overcoming the prohibitive cost of Full-CI on
classical computers.

2.2.3.4 Limitations of Current Quantum Algorithms

Quantum algorithms, particularly those based on the VQE and QPE for quantum
chemical calculations, have been the subject of intensive research but still face
significant limitations. Noise in current quantum hardware critically constrains
the size of the active space that can be handled by VQE, rendering large-
scale calculations impractical at this stage. Although quantum error-correction
techniques are expected to mitigate noise problems in the future, they will do so
at the expense of substantial resource overhead.

Although theoretical runtime estimates for QPE-based methods have im-
proved, they remain prohibitive in practice. For example, Lee et al. demonstrated
that a single energy evaluation for the FeMoco Hamiltonian—incorporating 113
electrons and 152 spin-orbitals active space—could still take several days, making
routine simulations time-consuming [6]. Indeed, quantum computing has the
potential to address problems that are intractable for classical hardware. How-
ever, its computational cost is far from negligible. To make quantum algorithms
practically useful, effective strategies must be devised to manage this high cost.

Furthermore, simulating realistic systems—including liquids, solids, and
large molecular complexes—requires constructing the relevant Hamiltonian from
the HF solution. Even with active-space approximations, constructing the
Hamiltonian on classical hardware typically scales as O(m?*) with the number
of spin-orbitals m, and thus constitutes a major bottleneck. To enable truly
atomistic simulations via quantum algorithms, an efficient quantum-—classical
hybrid interface for pre- and post-processing is indispensable. This challenge is
addressed in Chapter 3.
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2.2.4 Potential Energy Surface

As explained in Section 2.2.1, exploring the PES given by Equation (2.13) enables
us to predict chemical reactions at the atomic-scale. In this section, we consider
a system consisting of IV atoms. The PES is a 3N-dimensional hypersurface that,
due to translational and rotational invariance, has 3N —6 degrees of freedom
(3N—5 in the case of a linear molecule). For example, the FeMoco molecule,
which consists of 39 atoms, has a 111-dimensional PES [82]. As N increases, the
dimension of the PES increases, making a manual exhaustive search impractical.
To analyze finite-temperature, finite-time reactions at the atomic level, one
can track the motion of the nuclei by solving Newton’s equations of motion on
the PES. This technique is known as molecular dynamics (MD) simulations.
Evaluating the negative gradient of the potential energy surface Eiot(R) with
respect to the atomic coordinates R = {Rl}ﬁvzl, that is, the forces acting on
each of the N atoms, {F;}¥_,, is crucial for both of these PES exploration
methods. In this section, we will describe the fundamental PES exploration
methods, geometry optimization and MD. Furthermore, we will discuss how to
evaluate the forces using quantum chemical calculations.

2.2.4.1 Geometry Optimization

In quantum chemical calculations, geometry optimization is a fundamental
procedure. This is because the geometries that actually occur correspond to
near minima on the PES. The goal of geometry optimization is to find the
configuration R* that satisfies

_ aE/‘tot
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F, = -0 VI (2.38)

Geometry optimization in quantum chemistry typically employs numerical op-
timizers that utilize the gradient (i.e., force) information. Concretely, one
iteratively updates the geometry based on gradients calculated in various coor-
dinate representations—whether internal, redundant internal, or Cartesian—in
order to systematically reduce the total energy of the system. In practice, geom-
etry optimization is often deemed converged when the magnitude of the force on
each atom falls below a specified threshold. In this dissertation, the convergence
criterion is similarly defined by requiring

IFzll, < Fr:

max

VI, (2.39)

where [|-||, is the Euclidean norm and F\_ is a user-defined threshold.

max

2.2.4.2 Molecular Dynamics

In MD simulations, the time evolution of the atomic coordinates can be described
by numerically integrating Newton’s equations of motion. In standard MD,
the PES is typically given by empirical interatomic potentials—referred to
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as molecular mechanics (MM). By replacing these empirical potentials with
quantum-mechanical (QM) calculations (i.e., quantum chemistry methods), it is
called ab initio molecular dynamics (AIMD) [104].

The equations of motion solved in MD simulation are written as

d*R; (1)

- aEj‘cot
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In MD simulation, atomic positions R(¢) and velocities v(t) are updated at
each time step At. In the MD calculations employed in Chapters 3 and 4 of
this dissertation, the method used for the time evolution is the Velocity Verlet
method [105]. The Velocity Verlet method, derivable via a second-order Taylor
expansion of the classical equations of motion, provides second-order accuracy
in At. To set up the update, one begins by assuming that the force at time ¢,
F(t), has already been computed. The velocity at t is then obtained from the
velocity and force at the previous time (¢ — At) according to

vi(t) = vi(t—At) + ﬁ [Fi(t — At) + F;(t)] At. (2.41)

Once vy (t) has been established, the positions at ¢ + At are updated by

Rr(t+ At) = Rr(t) + vi(t) At + 271\141]‘?1(0 At?. (2.42)

2.2.4.3 Force Evaluation

To perform geometry optimization or MD simulations with quantum chemical
methods, one must evaluate the atomic forces, i.e., the derivatives of the total
energy with respect to atomic positions. A straightforward approach is to
use finite-difference numerical derivatives, but this requires multiple energy
calculations for each atomic coordinate and can become prohibitively expensive
as system size grows. An alternative to finite-difference numerical derivatives
is to compute atomic forces analytically. When the wave function |¥,) is fully
variational with respect to all parameters, the Hellmann-Feynman theorem [106]
ensures that the force F; on the I-th nucleus can be obtained as follows:
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where Eio is the total energy of the system, Vi, is the nuclear-nuclear repulsion,
|¥,) is the many-electron wave function, H, is the electronic Hamiltonian, and
R is the position of I-th atom. In this ideal variational scenario, no additional
derivative terms appear because all variational parameters have already been
optimized. In practice, however, many approximate wave functions are not
obtained from a single global variational principle. Specifically, it becomes
necessary to evaluate the orbital response term with respect to the atomic
coordinates [107, 108, 109, 110].
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2.2.5 Handling Condensed-Phase Systems
2.2.5.1 Periodic Boundary Conditions

In real condensed phases—crystalline solids, solid surfaces, liquids, and
biomolecular assemblies—the number of constituent atoms is on the order
of Avogadro’s number (=~ 6.02 x 10?*). Direct quantum-chemical treatment
of such enormous systems is impractical. Even if a calculation involving 10°
atoms were technically feasible, the simulation cell would terminate in vacuum,
creating artificial surfaces that disrupt bulk properties; finite-size effects would
therefore remain significant. Periodic boundary conditions (PBC) provide a
robust solution: By tiling a finite simulation cell (unit cell) infinitely in space,
PBCs suppress finite-size artifacts while keeping the computational workload
tractable. When periodicity is applied only in two directions and a sufficiently
thick vacuum layer is introduced along the third, a slab model is obtained,
enabling realistic simulation of solid surfaces—an approach indispensable for
studies of heterogeneous catalysis and other surface phenomena. PBCs are equally
valuable in MD simulations performed at controlled volume or pressure, where
they allow reliable evaluation of finite-temperature statistical properties—such
as the radial distribution function and diffusion coefficient of liquid water.
Thus, PBCs are an essential technique for modeling condensed-phase systems
in quantum-chemical and atomistic simulations within finite computational
resources.

2.2.5.2 Quantum Mechanics/Molecular Mechanics

When dealing with large condensed-phase systems with the nuclear coordinates
R such as biomolecules, fully applying quantum chemical calculations is
typically infeasible due to excessive computational costs. To overcome this
limitation, quantum mechanics/molecular mechanics (QM/MM) methods have
been developed, enabling quantum chemical treatment of electronic effects in
selected regions (QM region, Rqm) (e.g., reactive sites) while describing the
remaining parts of the system (MM region, Rywy) (e.g., protein backbones or
solvent) using a classical force field [111, 112, 113]. A common way to represent
QM/MM methods is through a partitioned total energy (PES) of the system
Etot (R)7

Eit(R) = Equ(Raqm) + Exov (Ram) + Equ/vm (Roa, R ) s (2.44)

where FEqum handle the QM region, and Eyv deal with the MM region, and
Eqwm/ym describe interactions between these two subsystems.
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2.3 Machine Learning for Atomic-Scale Simula-
tions and Property Predictions in Chemistry

2.3.1 Machine Learning for Atomic-Scale Simulations

The intersection of computational chemistry and ML is actively studied under
the field of materials informatics. In particular, ML has been applied to tasks
such as energy prediction, molecular design, and materials property prediction,
where models constructed from experimental or quantum chemistry data offer
high approximation accuracy at relatively low cost. Among these approaches,
ML interatomic potentials (MLIPs) are becoming a standard computational
chemistry tool, as they can act as surrogates for quantum chemical calculations
while maintaining much lower computational costs, thereby striking a balance
between accuracy and efficiency. In this dissertation, MLIPs are treated as an
interface that bridges quantum chemical calculations using quantum computing
and quantum ML applications to chemical problems.

2.3.1.1 Universal Machine Learning Interatomic Potentials

Quantum chemical methods incur large computational costs, posing significant
challenges for large-scale or long-time simulations—such as AIMD and for
exhaustive screening of material candidates. In recent years, MLIPs have
attracted considerable attention as a means to alleviate these bottlenecks. Instead
of solving the Schrédinger equation directly, MLIPs learn the relationship between
atomic coordinates (element types and positions) and the total energy (as well
as its derivatives) from first-principles reference data. This enables energies and
forces to be predicted at speeds orders of magnitude faster than conventional
quantum chemical calculations, while retaining first-principles level accuracy.
Among MLIPs, universal MLIPs that cover a broad region of the periodic table
have advanced rapidly in recent years.

Most of today’s advanced MLIPs are based on the Behler-Parrinello neural
network (BPNN) framework [45] and graph neural network (GNN) [114]. In the
BPNN approach, the total energy of the system is expressed as a sum of atomic
energies {E[}_,, each of which depends on the local environment around a
single atom. Formally, if {Z;, R;}¥_, denotes the elemental type Z; and position
R; of each I-th atom in the system, then the total energy FEi.; is written as

Eiot({Z1,R1}) = Z EI(GI({ZJ7 RJ}JeN(I))) ; (2.45)

where G represents a set of atomic descriptors (typically vectors) that encode
the local environment of I-th atom, considering the neighbor set A/(I) of atoms
lying within a certain cutoff radius. In other words, G; transforms the raw
coordinates and elemental identities of all atoms into features that reflect how
I-th atom is bonded to or neighbored by others—while preserving essential
symmetries such as translational, rotational, and permutational invariances.
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These features G; then serve as inputs to multi-layer perceptron (e.g. feed
forward neural network), which outputs an atomic energy E;. Summing over
all atomic energies yields the total energy. One of the advantages of the BPNN
framework is that, by evaluating the total energy as a sum of atomic energies
using a high-dimensional neural network architecture, the number of parameters
does not increase with the size of the system or the amount of training data.

In GNN-based MLIPs, atoms are treated as nodes, and interatomic
connections are treated as edges in a graph. It allows to learn (update) atomic
feature vectors {G;}_, via message passing [114]. Although many GNN-based
MLIPs incorporate strategies to maintain a certain degree of invariance or
equivariance to E(3), i.e. the group of rotations, reflections, and translations
in 3-dimentional space, they may not strictly preserve E(3) equivariance. E(3)-
equivariant GNNs, however, are explicitly designed to be equivariant under E(3)
ensuring that if the atomic positions are transformed, the corresponding output
vectors (features) transform in the same manner [115]. This design ensures
that the predicted energies and forces remain physically consistent under spatial
transformations, leading to an accurate and data efficient MLIP [115].

2.3.1.2 Quantum Chemical Datasets for Machine Learning Inter-
atomic Potentials

The performance of a universal MLIP depends heavily on the quality and quantity
of training data, typically energies and forces obtained from quantum chemical
calculations [50]. Recent MLIP architectures often employ hundreds of thousands
to millions of parameters, necessitating large-scale datasets to fully exploit their
capacity. In practice, many state-of-the-art MLIPs are trained on hundreds of
thousands or even millions of data points, and datasets comprising hundreds of
millions of data points have also been introduced. Performance improvements
have generally been observed when the dataset size is increased, highlighting
that dataset augmentation—alongside architectural advances—plays a pivotal
role in building more universally applicable MLIPs [49].

Quantum chemical datasets are available for a variety of systems (domains).
For crystalline materials under PBCs at the GGA level of DFT, prominent
examples include MPtrj (1.6 million data points) [116] and OMat24 (110 million
data points) [117]. In the surface domain, OC20 (265 million data points) is a
large-scale dataset of adsorption systems, also generated under PBC and at the
GGA level of DFT [118]. For molecular systems, where calculations are typically
performed on isolated structures at the hybrid GGA level of DFT, key datasets
include SPICE [119] (larger than 1 million data points) aimed at training MLIPs,
as well as Transitionlx [120] (9.6 million data points) encompassing a range of
organic reaction pathways.
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2.3.1.3 Limitations of Universal Machine Learning Interatomic
Potentials

In practice, DFT calculations for organic systems commonly employ hybrid
GGA functionals as a standard computational level (e.g. SPICE [119],
Transitonlx [120]), whereas GGA functionals are typically used for inorganic
systems (e.g. OC20 [118], MPtrj [116]). Ome limitation arising from this
difference in computational protocols—particularly in the choice of functional
and the treatment of core electrons—is the lack of a consistent PES across
both domains. These inconsistencies can manifest as discontinuities in the PES,
making direct comparisons of absolute energies meaningless.

As a consequence, universal MLIPs are typically trained on data confined
to either organic (e.g. ANI-1 [121], AIMNet2 [122], GEMS [123]) or inorganic
systems (e.g. M3GNet [124], MACE-MP-0 [47], GemNet-OC [125]), with limited
interoperability. This separation has impeded the development of a truly universal
MLIP framework. Moreover, in future applications where quantum-chemistry
data generated by quantum algorithms may become available, the problem of
aligning absolute energy values remains unresolved. In particular, combining
quantum chemical data derived under heterogeneous computational conditions
demands robust techniques to unify these datasets and integrate them effectively.

To address these challenges, new models and workflows are required to
harmonize quantum chemical data from various sources—ranging from different
exchange—correlation functionals to quantum algorithm outputs. Such a platform
would function as a quantum-—classical hybrid interface, facilitating the pre-
processing, post-processing, and integration of diverse data into a single, universal
MLIP framework that can handle both organic and inorganic systems at a reliable
accuracy.

2.3.2 Machine Learning for Atomic-Scale Property Predic-
tions

2.3.2.1 Atomic-Scale Chemical Properties

Atomic- and molecular-level chemical properties can often be derived from energy
or its derivatives [126]. For instance, adsorption energy is defined based on energy
differences and serves as an important metric for assessing the stability and
reactivity of atoms or molecules adsorbed onto catalyst surfaces [127, 128, 129].
In contrast, nuclear magnetic resonance (NMR) chemical shifts are derivative
properties, obtained as the mixed second derivative of the total energy with
respect to an external magnetic field and a nuclear magnetic dipole moment.
NMR chemical shifts provide a key spectroscopic fingerprint of the local chemical
environment [130].

In recent years, large-scale datasets have been proposed to facilitate ML
predictions of these atomic-scale properties. A well-known example is the QM9
dataset, which contains molecular structures and corresponding energies alongside
other chemical attributes for a variety of small molecules (primarily composed
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of C, O, N, F, and H) [131]. QM9 includes molecular orbital energies, dipole
moments, and numerous other chemical quantities. Moreover, extended datasets
such as QMINMR, incorporate NMR, chemical shift information, enabling more
detailed learning and analysis of atomic-scale properties [132].

Accurately predicting and analyzing atomic-scale properties—such as
adsorption energy and NMR chemical shifts—is crucial in a wide range of
fields, from materials science to drug discovery. Although large-scale, high-
precision quantum chemical calculations remain challenging, advances in ML
methods and the increasing availability of relevant datasets have opened up
opportunities for more efficient exploration of broader chemical spaces.

2.3.2.2 Atomic Descriptors for Chemical Property Predictions

Atomic descriptors convert local chemical environments into numerical features
for predicting various properties, including NMR chemical shifts, partial charges,
and molecular spectra [133, 134, 135]. They often incorporate physical symme-
tries (translation, rotation, permutation) and can be constructed from explicit
physical principles. Descriptor families like smooth overlap of atomic posi-
tions (SOAP) [134, 136, 137, 138, 139] and Faber—Christensen—Huang—Lilienfeld
(FCHL) [132, 140, 141, 142] rely on carefully designed functions of distances,
angles, or density projections to ensure rotational and translational invariance.
They have been widely used to predict NMR, chemical shifts [143, 144, 136, 145]
as well as other properties such as energetics and partial charges [146, 138, 58].
When additional elements or complex bonding motifs are introduced, the dimen-
sionality of these descriptors can grow rapidly, often scaling at least quadratically
with the number of distinct element types [147, 148, 149]. This growth can
lead to computational overhead and may reduce transferability across diverse
chemical domains. Consequently, balancing efficiency and accuracy in descriptor
design remains an open challenge. Such complex classical descriptors impose a
high embedding cost on quantum hardware, rendering them unsuitable for the
quantum ML methods introduced later. Ongoing efforts focus on refining existing
descriptors or combining them with complementary techniques to capture a
broad range of chemical spaces without incurring prohibitive computational
costs.

2.3.3 Quantum Machine Learning
2.3.3.1 Quantum Circuit Learning

QCL is a VQA designed for ML tasks [9]. It can be regarded as a VQA analogous
to neural networks. This section describes QCL in the context of supervised ML.
Let the training dataset be {x;,y;}2¥,, where x; is the input (descriptor) vector
for sample 4, y; is its corresponding target value, and A is the total number of
training data; let n denote the number of qubits. First, each input «; is encoded
into a quantum state via the data encoding circuit £(x;). Embedding data into
the qubit Hilbert space holds the potential to realize feature maps unattainable
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by classical computers, thereby heightening expectations for quantum ML. A
subsequent PQC U(6) then transforms the encoded data into the quantum state
[t(x;,8)) so as to yield the desired output:

[P (xi,0)) = U(6) E(x:) 0)°". (2.46)

The parameters 0 of this PQC correspond to those of a neural network. The
prediction of QCL is given by the expectation value of an observable measured
on the resulting quantum state |1(x;, 0)), denoted f(x;,8). During training, the
parameters 6 of the PQC are iteratively updated according to a cost function,
ensuring that the output matches the ta}r\%et value. A common choice for the
cost function is the mean square error > ;" || f(x;,0) — v;||*/N. The predictive
model is given by f(x,0*), where @ is a new input vector and 6* is the set of
optimized parameters that minimize the cost function. Quantum ML models in
which the quantum circuit itself serves as the predictive model such as a QCL are
referred to as “explicit models.” In Chapter 6, QCL is applied to the prediction
of catalytic properties of metallic nanoparticle systems.

2.3.3.2 Quantum Kernel Learning

Another important family of quantum ML algorithms is that of quantum kernel
methods [10]. One encodes classical input vectors & into quantum states |¢(x)),
and then leverages the overlap of these states as a kernel. Specifically, given two
inputs « and x’, the quantum kernel is defined by

k(z,2') = |[(¢(x) | ¢(2))|”. (2.47)

Because the dimension of the Hilbert space can grow exponentially with the
number of qubits, a simple linear model in this high-dimensional feature space
is expected to be capable of addressing problems that are computationally
challenging for classical methods. In chemistry, such quantum kernel approaches
are particularly appealing when dealing with molecular conformations, subtle
reaction pathways, or correlated electronic states, as these may carry inherently
quantum features that a suitable kernel map could exploit. Quantum kernel
methods use quantum computation exclusively for kernel evaluation, and the
resulting model is defined implicitly through these kernel values. Consequently,
the models obtained in this approach are called “implicit models”. A quantum
kernel can be integrated into any kernel-based learning algorithm, such as support
vector machines or kernel ridge regression. In Chapter 5, this approach is applied
to kernel ridge regression.

2.3.3.3 Challenges of Quantum Machine Learning for Chemical
Property Predictions

One overarching goal in quantum ML is to demonstrate quantum advantages:
a scenario in which quantum ML outperforms classical methods on specific
datasets or tasks. Recent efforts to facilitate such demonstrations include
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generating quantum datasets via VQE, as proposed by Nakayama et al. [150],
and adapting classical image benchmarks such as MNIST into a quantum circuit-
friendly dataset known as MNISQ [151]. While these advances provide intriguing
testbeds for quantum ML algorithms, relatively few large-scale or chemically
oriented datasets have been proposed. In particular, there is still a pressing need
for carefully crafted benchmarks that capitalize on the intrinsically quantum
aspects of molecular structures and properties.

At present, efforts focus on specific tasks—like small-scale classification
or chemical simulations—combining noise-robust circuit designs and efficient
parameter tuning to achieve useful results even under limited hardware conditions.
For example, Hatakeyama-Sato et al. applied QCL to predict chemical properties,
comparing it with classical kernel methods and reporting results that suggest
superior generalization performance for QCL [43]. On the other hand, because
they employed principal component analysis for dimensionality reduction, there
are concerns about accuracy. To apply QCL or quantum kernel method to
practical chemical tasks, designing low-dimensional yet accurate descriptor
remains a key challenge. This challenge is addressed in Chapter 5.



Chapter 3

Integrating Classical and
Quantum Software for
Enhanced Quantum
Chemical Simulation of
Realistic Chemical Systems

3.1 Abstract

We demonstrate the feasibility of quantum computing for large-scale, realistic
chemical systems through the development of a new interface using a quantum
circuit simulator and CP2K, a highly efficient first-principles calculation software.
Quantum chemistry calculations using quantum computers require Hamiltonians
prepared on classical computers. Moreover, to compute forces beyond just
single-point energy calculations, one- and two-electron integral derivatives and
response equations are also to be computed on classical computers. Our developed
interface allows for efficient evaluation of forces with the quantum-classical hybrid
framework for large chemical systems. We performed geometry optimizations
and first-principles molecular dynamics calculations on typical condensed-phase
systems. These included liquid water, molecular adsorption on solid surfaces,
and biological enzymes. In water benchmarks with periodic boundary conditions,
we confirmed that the cost of preparing second-quantized Hamiltonians and
evaluating forces scales almost linearly with the simulation box size. This
study marks a step towards the practical application of quantum-classical hybrid
calculations, expanding the scope of quantum computing to realistic and complex
chemical phenomena. This chapter is based on Ref. [Shiota, Gunst, Mori, Shiozaki
and Mizukami, arXiv:2506.18877 (2025)].

29
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3.2 Introduction

Computational chemistry has emerged as an indispensable tool for understanding
chemical phenomena that occur in various phases [36, 53]. Today, quantum
chemical calculations, particularly those based on first-principles, facilitate (semi-
)quantutitative simulations of nanoscale world. Recently, quantum computers
have garnered significant attention for their potential to advance quantum
chemical calculations [93, 53, 27, 17, 28, 152, 153]. Over the past decade,
especially in the last five years, a diverse array of quantum algorithms for
quantum chemistry has been developed [64, 154, 155, 156, 157, 98, 158, 100,
99, 6, 159, 160, 161, 162, 163, 161, 164, 165, 166, 167, 168, 169, 170, 7, 32, 33,
171, 172, 173, 174, 175, 176, 177], with numerous demonstrations using actual
quantum devices [64, 154, 178, 174, 34].

Despite these advancements, the scope of quantum chemical calculations
employing quantum algorithms has largely been confined to small molecules in
the gas phase or crystals with small unit cells, barring a few exceptions. While
calculations on surface chemical reactions [179], thermally activated delayed
fluorescence (TADF) systems [180], and per- and poly-fluoroalkyl substances
(PFAS) [181] have been reported, these still represent relatively small molecular
systems by today’s quantum chemistry standards [182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 81, 192, 193, 194, 195]. Moreover, the majority of these
studies have been limited to single-point energy calculations using geometries
structures pre-optimized with density functional theory (DFT).

Notably, there are few studies applying quantum algorithms to practical
materials for common quantum chemical tasks such as transition state
searches, geometry optimizations, and ab initio molecular dynamics (AIMD)
simulations [196, 179, 166]. The work of Hohenstein et al. stands as a rare
exception, yet even their results pertain to finite systems [166]. To date, no
reports exist of AIMD simulations or geometry optimizations using quantum
algorithms for condensed-phase systems under periodic boundary conditions
(PBCs).

This current state of affairs stems not from limitations in quantum
algorithms, but rather from constraints in classical computing. FElectronic
structure calculations using quantum computers, whether employing quantum
phase estimation (QPE) [5, 155] or the variational quantum eigensolver
(VQE) [64, 197, 17, 198], are inherently quantum-classical hybrid computations.
These methods virtually utilize second-quantized Hamiltonians prepared on
classical computers. Even with a limited number of qubits, quantum algorithms
can be applied to larger systems through active space approximations, provided
that an appropriate active orbital space Hamiltonian is available. The
computational cost of generating electronic Hamiltonians formally scales as
O(m®) with respect to the number of spin-orbitals m, or O(m?*) when employing
the active space approximation. Furthermore, force calculations essential for
geometry optimization and AIMD simulations necessitate the computation of
nuclear coordinate derivatives of one- and two-electron integrals and orbital
response terms [199]. The cost of these calculations for large-scale systems on
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classical computers is substantial, particularly under PBC [200, 201, 202].

Addressing the classical computational cost issue in quantum chemical
calculations using quantum algorithms is crucial for applying quantum computers
to systems of interest in materials science. Tackling this challenge requires the
use of software implementing more sophisticated algorithms on the classical side.

In this chapter, we have developed an interface between the large-scale
quantum chemistry program package CP2K version 8.2 [190] and quantum
computation. While Battaglia et al. [203] have already developed a interface
between CP2K and a quantum computing software Qiskit [204], their research
primarily focused on realizing single-point energy calculations, particularly in
the framework of a wavefunction-in-DFT embedding method [205]. Similarly,
Lukas Schreder and Sandra Luber have built an interface between CP2K
and OpenMolcas [206], implementing the wavefunction-in-DFT embedding
method [207]. In contrast, our interface emphasizes force calculations in
quantum chemical computations using quantum algorithms. Consequently,
we have achieved, for the first time using quantum algorithms in first-principles
calculations, under PBC, the exploration of molecular adsorption structures on
solid surfaces and AIMD simulations of water in the liquid phase.

The remainder of this chapter is organized as follows. In Section 3.3, we
describe the interface for the quantum-classical hybrid algorithm for quantum
chemistry integrating CP2K and quantum circuit simulators. In Section 3.4, we
demonstrate the application of our developed interface in case of representative
systems in gas, solid, and liquid phases. Further, we discuss the computational
efficiency in terms of the system size. Section 3.5 concludes with a summary of
this chapter and its implications for the advancement of quantum computing in
computational chemistry.



32 CHAPTER 3. INTEGRATING CLASSICAL AND QUANTUM ...

(a) (b)

Geometry optimization Ab-initio molecular dynamics
H.0 R(t) R(t + At) R(t + 2At)
i v(t) v(t + At) v(t + 2At)

Potential energy

e A = R REER S Eig S

1%} < ¢

H-O-H angle (deg)

O-H distance (A)

(©
Interface for hybrid algorithms

Hartree-Fock

Classical computing

Second quantized Hamiltonian construction

Compute eigenvalues and eigenvectors
using quantum algorithm

Hamiltonian 1- and 2-RDM

1- and 2-RDM measurements

Quantum emulator Analytical force evaluation

Qulacs / FQE

R(t) — R(t + At),v(t) — v(t + At)

Figure 3.1: (a) Geometry optimization for a water molecule, illustrating the
potential energy surfaces as functions of the O-H bond distance and H-O-H
bond angle. Geometry optimization follows the forces from the initial geometry,
indicated by a white circle, to the equilibrium geometry, marked via a cross.
(b) Ab initio molecular dynamics (MD) simulations, highlighting the finite-
temperature dynamical trajectories of liquid water. In MD, the evaluation
of velocity v, which is derived from the forces based on the gradient of the
total energy Fi.; with respect to atomic coordinates R at the time ¢ must be
evaluated. (c) Interface between classical computing using the CP2K package
and quantum emulators Qulacs and FQE. The interface is designed to facilitate
a two-way exchange between CP2K and quantum emulators such as FQE or
Qulacs. Specifically, it enables the transfer of second-quantized Hamiltonians
generated by CP2K to the quantum emulator. Subsequently, the reduced density
matrices computed by the quantum emulator are returned to CP2K for further
processing.(d) The workflow for the MD simulation using the interface. The colors
of the borders correspond to classical (blue) and quantum (red) components, as
shown in panel (c).
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3.3 Methods

This section outlines the interface developed in our research, whilst reviewing a
methodology for force calculations with quantum computing.

Quantum chemistry calculations on quantum computers typically begin with a
Hartree-Fock calculation performed on conventional quantum chemistry software.
Then, a second-quantized fermionic Hamiltonian H, of the following form is
computed:

p,q,7T,8

1
H, = thqc;;cq + 2 Z hpq,sc;f)ci,cscq (3.1)
P.g

Here, hpq and hpqrs represent one-electron and two-electron integrals, respectively.
The indices p, ¢, r, and s denote molecular orbitals. c;f, and cg are fermionic
creation operators, whilst ¢, and c; are annihilation operators.

Quantum computers operate on spin-1/2 systems and cannot directly
manipulate fermionic operators. A fermionic Hamiltonian, therefore, must
be transformed into a qubit-representation Hamiltonian H3"P* using a fermion-
to-spin mapping such as the Jordan-Wigner transformation [208]. A qubit

Hamiltonian H3"P* is written as

HI™ =N "h; P (3.2)
J

where P; represents the tensor product of Pauli operators and h; are the
corresponding coefficients.

Once HI"P is obtained, various quantum algorithms can be employed
to prepare the wave function. For instance, the QPE can directly yield the
eigenvalues and eigenvectors of H3"P*. Alternatively, the VQE can approximate
these values variationally.

For variationally calculated wave functions, the Hellmann-Feynman theorem
allows us to compute forces as the expectation value of the Hamiltonian
differentiated with respect to nuclear coordinates. However, when employing
active space approximations, the Hellmann-Feynman theorem no longer holds.
In such cases, orbital response terms must be calculated by solving the Coupled
Perturbed Hartree-Fock (CPHF) equations [199].

In either scenario, the calculation requires the one-particle reduced density
matrix (1-RDM) di¥!', the two-particle reduced density matrix (2-RDM) Dl
and the nuclear coordinate derivatives of one- and two-electron integrals. The
latter relies solely on classical computation, whilst RDMs are obtained by
measuring the expectation values of operators chq and c;gcicscq for the quantum-
computed state |Ue).

Our implementation, as illustrated in Figure 3.1(c), employs CP2K to generate
the second-quantized Hamiltonian for the active orbital space. This Hamiltonian
is then passed to either the Qulacs quantum circuit simulator [209] or the
fermionic quantum emulator (FQE) [210]. These tools generate the 1-RDM
and 2-RDM, which are subsequently returned to CP2K. Within CP2K, the
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second-quantized Hamiltonian is stored in the FCIDUMP format, which is then
read by Qulacs or FQE. When using Qulacs, the OpenFermion package [211] is
utilized to convert the Hamiltonian (operator) from the fermionic form to a qubit
form. Throughout this research, we exclusively employed the Jordan-Wigner
transformation [87]. For AIMD simulations, as shown in Figure 3.1(d), this force
calculation is followed by an update of atomic positions and velocities. The
process then loops back to the initial Hartree-Fock step, repeating the cycle as
necessary.

The diagonalization of the second-quantized Hamiltonian was performed
using both the VQE implemented in Qulacs and FQE. For the VQE ansatz, we
adopted the unitary coupled cluster with singles and doubles (UCCSD) [89, 90,
91, 92, 93, 94, 95]. For large-scale systems, an active space approximation was
employed, restricting the electronic orbital degrees of freedom to regions critical
for reactivity. The active space was selected by choosing an equal number of
occupied and unoccupied orbitals near the Fermi level. When diagonalizing a
second-quantized Hamiltonian with a 4-electron 4-orbital (eight spin-orbitals)
active space using VQE and FQE, the notations UCCSD(4e, 40) and FQE(4e,
40) are used, respectively.

3.4 Results and Discussion

This section presents the results of the simulations conducted using the developed
interface with the VQE and FQE methods under the active space approximation.
We demonstrated the application of our approach to representative condensed
matter systems, as follows. Section 3.4.1 examines water clusters, Section 3.4.2
investigates HoO on the Si(001) surface, Section 3.4.3 explores liquid water,
and Section 3.4.4 analyzes chorismate mutase. For the systems discussed in
Sections 3.4.1, 3.4.2, and 3.4.4, we performed geometry optimizations. Whereas,
for the system in Section 3.4.3, AIMD simulations were conducted to evaluate
the oxygen-oxygen (O-0O) radial distribution function (RDF), which is a key
statistical property of liquid water. Further, in Section 3.4.5, we assess the
computational efficiency of the proposed interface. This was done by examining
the system-size dependence of the VQE calculation time using the UCCSD
ansatz for liquid water simulations at a density of 1g/cm? for various sizes of
the PBC box. Computational details can be found in Appendix A.2.

3.4.1 Water Clusters

Geometry optimizations were performed for the water cluster, that is, the water
n-mer (H2O),, (n =2---30). Figure 3.2 shows the geometry optimization at the
UCCSD(2e, 20) level starting from (H30)s0, which was preoptimized using the
HF method. The energy decreased uniformly, and after approximately the 20th
optimization step, the force decreased with oscillations below 0.05 Hartree/Bohr.
In the 102nd optimization step, the force reduced to below the convergence
threshold of 0.45 x 1073 Hartree/Bohr, and convergence was achieved. The
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Figure 3.2: Geometry optimization of the water cluster (H2O)sp at the
UCCSD(2e, 20) level. The left axis and blue dots represent the total energy.
Whereas, the right axis and red dots illustrate the force as a function of the

optimization step (opt. step).
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optimized structure of (H2O)sp is shown in Figure 3.2. The binding energies
per HyO of the water cluster (H2O),, (n = 2---30) before and after geometry
optimization are shown in Figure 3.3. The binding energies of all the water
clusters increased with geometry optimization, thereby confirming the possibility
of identifying stable structures via geometry optimization. As presented in
Appendix A.2, the structures before and after optimization for n =2---30 are
very similar. However, the binding energies exhibited a change greater than 1
keal/mol, which is beyond the chemical accuracy. Thus, the equilibrium geometry
must be determined for calculating binding energies or other relative chemical
quantities with chemical accuracy.

In the case of (H30)s2, the binding energy before geometry optimization was
negative (-0.50 kcal/mol/H30). This implied that the water molecule was more
stable when it existed by itself. The binding energy in the optimized geometry
was 2.48 kcal/mol/H5O, which indicated stabilization via hydrogen bonding.
The full configuration interaction calculation for the water dimer at the complete
basis set limit yielded 5.1 kcal/mol (2.55 keal/mol/H0) [212] and experimental
measurements of 5.4 & 0.7 kcal/mol (2.7 £ 0.35 kcal/mol/H50). These values are
consistent with the present calculation. The energy difference can be attributed
to the size of the chosen basis set 6-31G(d) not sufficiently large, and the effect
of the zero-point energy.

—
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Figure 3.3: Binding energy per water molecule of water clusters (H2O),, with
(n = 2---30) before (gray) and after (blue) geometry optimization at the
UCCSD(2e, 20) level.
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Figure 3.4: Energy versus lattice constant for bulk silicon. The calculated energy
is shown as a function of the lattice constant. The minimum energy is observed
at a lattice constant of 5.4 A, which is the value adopted for subsequent modeling
of the Si surface. The inset illustrates the crystal structure of bulk silicon used
in the calculations.

3.4.2 Defect on Semiconductor Surface

Next, to apply the surface/interface systems, we calculated the adsorption
energies for the dissociative adsorption of HyO molecule on the Si(001) surface.
In particular, we calculated the adsorption energy of the adsorption structure
known as a type-C defect [213]. The Si(001) surface is stabilized by an
alternating arrangement of inclined dimers that reconstruct a ¢(4x2) periodic
structure [214, 215, 216]. Scanning tunneling microscopy measurements indicated
that residual water molecules were dissociatively adsorbed onto the Si(001)-
¢(4x2) surface. The dominant structures were H-Si and HO-Si bonds formed
on the same side Si atoms for neighboring Si dimers [213]. For modeling the
Si(001) surface, single-point calculations were performed at the FQE(4e, 40)
level by varying the diamond Si lattice constant (Figure 3.4). The most stable
lattice constant 5.4 A was consistent with the experimental value of 5.43 A.
Thus, this lattice constant was used to model the Si(001)-¢(4x2) surface in the
hydrogen-terminated five-layer slab model, as shown in the bird’s eye view in
Figure 3.5.

Figure 3.5 shows the geometry optimization of the dissociative adsorption
of HoO on the Si(001) surface at the UCCSD(4e, 40) level. Similar to the
molecular system, the periodic surface system demonstrated an appropriate
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Figure 3.5: Geometry optimization of the dissociative adsorption of a HsO
molecule on the Si(001)-¢(4x2) reconstruction surface at the UCCSD(4e, 40)
level. The red axis and points on the left indicate the adsorption energies
calculated using the energies of water molecules and Si(001)-¢(4x2) clean surfaces.

The blue axis and points on the right present the force as a function of the
optimization step.
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decrease in energy at each geometry optimization step. The force converged
below a threshold value of 0.45 x 10~2 Hartree/Bohr at the 26th step. Further,
the adsorption energy after geometry optimization was -3.11 eV. The DFT
calculation using the 6-layer slab model with plane-wave basis functions and
PBE functionals estimated the adsorption energy to be -2.12 ¢V [213]. However,
our calculations overestimated the adsorption energy by approximately -1.01 eV.
To determine the reason for this difference, the stable structure was calculated
using DF'T calculations with the PBE functional. This yielded -2.72 eV, which
was close to the value of -2.12 eV. The remaining energy difference cfould be
attributed to the difference in the basis functions, GPW basis functions (6-
31G(d), Gaussian basis sets with auxiliary plane-wave basis functions), and
plane-wave basis functions. To the best of knowledge, no experimental data
have been reported, and quantum chemical calculations of adsorption energies
are scarce. Thus numerical experiments on a wide range of surface adsorption
systems using various levels of theory are required to realize theoretical prediction
accuracy compared to the experimental measurements.

3.4.3 Liquid Water

The results of a 10 ps UCCSD(2¢e, 20) NVE AIMD simulation of liquid water
at 300 K are presented in Figure 3.6. Figure 3.6(a) shows the obtained results,
and Figure 3.6(b) shows the trajectories at 10 ps, including the periodic
boundary box. The conservation of total energy, as indicated by the black
line, confirmed the accurate evaluation of the forces through the analytical
gradient calculations. Subsequently, we examined the RDF of the oxygen atoms
in the 10 ps NVE simulations performed using the DFT, HF, and UCCSD(2e,
20) methods (Figure 3.6(c)). The RDFs obtained from the HF and UCCSD(2e,
20) simulations exhibited strikingly similar profiles with two major peaks. This
similarity may be attributed to the employment of a relatively small active space.
This similarity may be attributed to the employment of a relatively small active
space. This yielded accuracy levels comparable to the HF calculations because
the active space is tiny relative to the full system, which contains 512 electrons
distributed over 1,152 orbitals. These results were consistent with those of a
previous study that used the HF potential [217]. In contrast, the RDF derived
from the DFT simulations exhibited prominent peaks that spanned from the
first to the third hydration sphere, thereby successfully reproducing the number
of major peaks observed in the experimental measurements [218]. These findings
demonstrate that HF and UCCSD with limited active spaces do not accurately
replicate the RDF of oxygen atoms in liquid water.

3.4.4 Chorismate Mutase Enzyme

Chorismate mutase is an essential enzyme found in various organisms, including
plants and bacteria [219]. It plays a crucial role in specific physiological functions.
It functions as a catalyst in certain biochemical reactions and facilitates the
conversion of shikimic acid (chorismate) to prephenate, which is a significant
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Figure 3.6: Results of a 10 ps NVE simulation of liquid water at 300 K at the
UCCSD(2e, 20) level. (a) Plot of kinetic energy (red line) and potential energy
(blue line) and their sum (sum) with respect to their respective averages (b)
Snap-shot of the liquid water at 10 ps with PBC box. (¢) Radial distribution
function (RDF) of oxygen atoms calculated via NVE simulations of 10 ps for a
total of 20,000 trajectories using DFT (black), HF (blue), and UCCSD(2e, 20)
(red), respectively.
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Figure 3.7: Chorismate mutase. The chorismate circled in red is the QM region
and the others are the MM region. (b) Geometry optimization of chorismate
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step in the aromatic amino acid biosynthesis pathway. In this dissertation, we
took the first step towards simulating this enzyme reaction by performing a
geometry optimization of the reactant, chorismate, within the framework of
quantum mechanics/molecular mechanics (QM/MM) [113]. The QM region
comprised the substrate chorismate, whereas the MM region represents the
enzyme environment (see Figure 3.7(a)). Detailed information on the model
setup and the classical force field settings can be found in [220]. For the QM
calculations, we employed the UCCSD (4e, 40) level of theory. The progress of
geometry optimization is illustrated in Figure 3.7(b). The geometry optimization
using QM /MM proceeded stably. The energy decreased consistently throughout
the optimization process. Although the change in forces did not stabilize
until immediately before converging to 0.01 Hartree/Bohr, this behavior was
attributable to the perturbation of the QM region owing to interactions with the
MM region. However, with the progression of the optimization, the fluctuation
diminished. We anticipate that implementing more stringent convergence criteria
for the forces will result in smaller fluctuations. Thus, these results demonstrate
the feasibility of the VQE simulation within the QM /MM framework.

3.4.5 Computational Efficiency

We evaluated the performance of the VQE simulation using the interface
developed in this chapter. Specifically, we focused on the system size dependence
of the UCCSD(2¢, 20) level calculations for liquid water at 300K. Figure 3.8
illustrates the scalability of various components involved in the UCCSD(2e,
20) calculations, including the HF calculations, second-quantized Hamiltonian
construction, and the evaluation of forces using analytical differentiation as
a function of the number of water molecules. HF calculations performed
using CP2K exhibited approximately linear scaling with an increase in the
number of HoO molecules in the unit cell. This was consistent with the linear
scaling reported in the benchmarks of Kiihne et al. for AIMD calculations of
liquid water [183]. Similarly, the costs associated with the second-quantized
Hamiltonian construction and force evaluation scaled linearly with the number of
molecules. The computation time for the UCCSD calculations was significantly
shorter than that for the other processes performed on the CP2K side. This is
because the active space for execution on a quantum computer is limited to four
qubits. In the future, as the scale of accessible quantum devices increases, it is
expected that the degrees of freedom of orbitals handled in quantum calculations
will increase, which would facilitate the addressal of more meaningful tasks.
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Figure 3.8: Single-point calculation benchmarks for bulk water of 1g/cm? at
UCCSD(2¢, 20) level, modeled considering different simulation box sizes of 64,
128, 256, 512, and 1024 H50O molecules. Different stages of computations are
distinguished: total computation time (black circles), HF computation time (red
circles), analytic derivative computation time (green circles), second-quantized
Hamiltonian construction time (blue circles) and UCCSD(2e¢,20) calculations.
All calculations are performed using 4 Intel(R) Xeon(R) Platinum 9242 CPUs
with 96 CPU cores in message passing interface (MPI) parallel, for a total of
384 CPU cores.
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3.5 Conclusion

This chapter developed an interface between CP2K, a linear-scaling quantum
chemical calculation package, and Qulacs and FQE, which are state vector-based
quantum simulators, to facilitate efficient quantum-classical hybrid calculations
for realistic chemical problems. The developed interface facilitated the evaluation
of analytical gradients with respect to the atomic coordinates using the 1-RDMs
and 2-RDMs obtained from the VQE simulations. Water clusters, liquid water,
dissociative adsorption structures of water molecules on the reconstructed Si(001)-
¢(4x2) surface, a well-known defect in silicon wafers, and chorismate mutase,
an important enzymatic reaction in biological systems, were selected to conduct
simulations on realistic materials. The computational efficiency of the developed
interface was evaluated at the UCCSD(2e, 20) level for liquid water with a
density of 1g/cm?® and a PBC box containing 64-1024 molecules. The developed
interface appropriately elicited a near-linear performance from CP2K, which
facilitated the second-quantized Hamiltonian construction and analytical force
evaluation at a near-linear cost with respect to the number of molecules and
simulation box size.

However, issues regarding accuracy were observed. The RDF of water at 300K
obtained at the UCCSD(2e, 20) level was almost identical to that at the HF level.
The adsorption energy of HoO on the Si(001)-c(4x2) surface differed significantly
from that obtained using DFT. These accuracy issues suggest that the orbital
degrees of freedom for electron correlation included in quantum calculations
were insufficient for large systems involving tens to thousands of atoms. These
problems may be resolved by employing several sophisticated quantum-classical
hybrid algorithms. For example, the methods proposed by Erhart et al. [175]
and Scheurer et al. [221] efficiently solved the active space problem in quantum
algorithms, and incorporated dynamic correlations using methods such as CCSD.
Furthermore, in molecular adsorption systems, improvements can be achieved
through the application of quantum embedding methods [205, 203] that handle
only the region close to the adsorption site with quantum calculations while
treating the remaining using DFT. Using the interface we developed to implement
these quantum-classical hybrid algorithms, it is expected that the computational
burden on classical computing can be minimized, thereby enabling efficient
quantum-classical hybrid algorithms.
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Taming
Multi-Domain,-Fidelity
Data: Towards Foundation
Models for Atomistic Scale

Simulations

4.1 Abstract

Machine learning interatomic potentials (MLIPs) are changing atomistic
simulations in chemistry and materials science. Yet, building a single,
universal MLIP—capable of accurately modeling both molecular and crystalline
systems—remains challenging. A central obstacle lies in integrating the
diverse datasets generated under different computational conditions. This
difficulty creates an accessibility barrier, allowing only institutions with
substantial computational resources—those able to perform costly recalculations
to standardize data—to contribute meaningfully to the advancement of universal
MLIPs. Here, we present total energy alignment (TEA), an approach that
enables the seamless integration of heterogeneous quantum chemical datasets
almost without redundant calculations. Using TEA, we have trained MACE-
Osaka24, the first open-source neural network potential model based on a unified
dataset covering both molecular and crystalline systems, utilizing the MACE
architecture developed by Batatia et al. This universal model shows strong
performance across diverse chemical systems, exhibiting comparable or improved
accuracy in predicting organic reaction barriers compared to specialized models,
while effectively maintaining state-of-the-art accuracy for inorganic systems. Our
method democratizes the development of universal MLIPs, enabling researchers

45
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across academia and industry to contribute to and benefit from high-accuracy
potential energy surface models, regardless of their computational resources. This
advancement paves the way for accelerated discovery in chemistry and materials
science through genuinely foundation models for chemistry. This chapter is based
on Ref. [Shiota, Ishihara, Do, Mori and Mizukami, arXiv:2412.13088 (2024)].

4.2 Introduction

Recent advances in machine learning interatomic potentials (MLIPs) have opened
new opportunities in computational chemistry and materials science. Researchers
can now perform atomistic simulations with nearly first-principles accuracy at
orders of magnitude lower computational cost [48, 222, 223, 224, 225, 46, 56, 54,
226, 55, 227, 146, 45]. This paradigm shift has been propelled by increasingly
sophisticated architectures—ranging from high-order equivariant neural networks
to multi-scale graph neural representations—and an expanding wealth of large,
first-principles-based datasets [45, 228, 229, 230, 231, 232, 233, 234, 235, 115,
236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 118, 251,
252, 253, 120, 131, 254, 255, 256, 119, 257, 258, 259, 260, 261, 262]. Inorganic-
focused MLIPs now span much of the periodic table, making it easier to survey
crystal structures and discover new phenomena in catalysis, semiconductor, and
beyond [124, 263, 264, 116, 265, 47, 266, 267, 117, 268, 269, 270, 271, 272]. At
the same time, MLIPs for molecular systems have grown more versatile, achieving
near hybrid density functional theory (DFT) accuracy across a range of organic,
pharmaceutical, and biomolecular targets [121, 273, 274, 275, 276, 122, 119, 258,
257, 233, 123, 239, 277, 278, 236].

Yet despite these advances, the pursuit of a truly “universal” MLIP—one
that seamlessly unites the organic and inorganic realms—remains challenging.
Molecular and crystalline datasets often differ in their computational methods,
choice of DF'T functionals, and basis sets, making their resulting potential energy
surfaces (PESs) incompatible [279, 280, 281, 282, 283, 182, 284, 285, 189, 286,
287, 288]. For example, inorganic datasets typically use plane-wave basis sets
and generalized gradient approximations, while organic datasets rely on localized
basis sets and hybrid functionals. Merging these heterogeneous sources—without
recalculating vast portions of data—has been difficult, placing the development
of foundation models in chemistry out of reach for many research groups with
limited computational resources.

Here, we introduce a general strategy called total energy alignment (TEA)
that addresses this long-standing problem by harmonizing datasets generated
under different computational settings. TEA uses a two-step approach—first
aligning inner-core reference energies, then scaling atomization energies—to
integrate datasets that previously could not be combined. Applying TEA
to unify a large inorganic dataset (MPtrj) [116] and a broad organic set
(OFF23 [278], consisting of SPICE [119, 258], QMug [257], water clusters,
and Tripeptides datasets), we have constructed MACE-Osaka24: a single
open-source neural network potential capable of accurately modeling both
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organic molecular reactions and extended crystalline systems. Unlike previous
multi-task approaches that simply switch between domains [264, 289], MACE-
Osaka24 handles organic and inorganic PESs with a single model. It not only
outperforms specialized potentials in predicting reaction barriers for drug-like
organic molecules, but also maintains state-of-the-art accuracy for inorganic
systems.

This work has two key implications. First, by removing the need for
costly recalculations, TEA helps democratize the creation of foundation models
in chemistry, enabling research groups with limited computational resources
to contribute more effectively. Second, MACE-Osaka24 shows that a single
model can achieve high accuracy across both molecular and inorganic domains,
suggesting a new level of interoperability. As data-driven discovery expands,
the ability to seamlessly handle both organic and inorganic chemical spaces will
accelerate catalyst design, functional material development, and the exploration
of complex reactions. Together, the TEA framework and MACE-Osaka24 point
the way toward truly universal MLIPs, enabling the next generation of foundation
models to go beyond traditional domain boundaries.

The remainder of this chapter is organized as follows. In Section 4.3, we review
related works on learning from datasets generated under different computational
conditions. Section 4.4 introduces our TEA method, followed by details of the
integrated datasets and the process of building multi-domain universal MLIPs.
In Section 4.5, we assess the accuracy of the constructed multi-domain universal
MLIP using a range of benchmarks: we compare predicted reaction barriers for
organic molecules, evaluate lattice constants for inorganic crystals, and perform
molecular dynamics simulations for liquid water. Section 4.6 discusses the
implications of our findings and suggests directions for future research. Finally,
we present our conclusions in Section 4.7.
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Figure 4.1: (a) Scatter plot comparing the total energies of about 143 000
QM9 geometries obtained with Method 1 (PBE/PW via VASP; “QM9VASP”)
and Method 2 (wB97M/def2-TZVPPD via Psi4; “QM9Psi4”). The very poor
correlation (R? = —103.6, root mean square error (RMSE) = 11 156 eV)
underscores the large systematic difference between the two levels of theory;
marginal histograms are shown on the axes. (b) Same data after the first stage
of Total Energy Alignment (TEA)—Inner Core Energy Alignment (ICEA)—is
applied to the total energies of the QM9Psi4. (c) Total energies after the
second stage of TEA—Atomization Energy Correction (AEC)—which brings
the datasets into close agreement (R? = 0.9965, RMSE = 0.839 eV). Insets in
(b) and (c) enlarge the boxed regions. (d) Schematic potential-energy surfaces
(PESs) for a representative molecule (benzene) calculated with Methods 1 (blue)
and 2 (red), corresponding to one data point in (a). (e) Ilustration of ICEA: for
species with identical stoichiometry, ICEA acts as a constant vertical shift of the
Method 2 PES. (f) Hlustration of AEC: after ICEA, AEC rescales the shifted
Method 2 PES by a factor a, yielding the fully aligned PES that matches the
Method 1 reference.
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4.3 Related Work

A goal of MLIPs has been to achieve first-principles accuracy in simulating
chemical and materials systems while greatly reducing computational costs.
Early methods, like Behler-Parrinello networks and Gaussian Approximation
Potentials, showed that machine learning can reproduce high-level quantum
chemistry results without directly solving the Schrodinger equation for every
geometry [45, 146]. Since then, more advanced E(3)-equivariant graph neural
networks and message-passing models have emerged, improving both accuracy
and transferability [229, 230, 232, 233, 234, 115, 236, 237]. Concurrently, large-
scale first-principles datasets—ranging from the Materials Project’s extensive
inorganic databases [244, 245, 124, 116, 47] to molecular sets such as the
QM9 [131], OFF23 [119, 257, 258, 278], and SPICE [119] datasets — have enabled
the training of increasingly universal MLIPs. As a result, models such as MACE-
MP-0 [236, 47] and CHGNet [116] now approach state-of-the-art performance for
inorganic crystals, while others, like MACE-OFF23 [278] and AIMNet2 [276, 122],
deliver high accuracy across diverse organic and biomolecular systems.

A major challenge in advancing universal MLIPs lies in the integration of
these heterogeneous datasets — each constructed under different computational
protocols, basis sets, and exchange-correlation functionals — into a single, cohesive
training set. These differences affect reference energies, force field definitions, and
whether the calculations include periodic conditions, making it hard to combine
data directly [279, 280]. To date, several strategies have been attempted to bridge
these discrepancies. For example, A-machine learning and multi-fidelity learning
approaches learn corrections from lower- to higher-level references, allowing them
to blend datasets at different accuracy levels [290, 291, 292, 293]. However, these
methods often need a reference dataset covering both fidelity /domain ranges and
still face difficulties when data come from different software or fundamentally
different computational setups. As a result, many solutions remain specialized
to a specific domain, for example, to either molecular systems or periodic solids,
but not both simultaneously.

When it comes to spanning organic and inorganic domains within a single
MLIP, only a handful of attempts exist. For instance, PFP [264] uses multi-task
learning to handle molecular and crystalline data together, but treats them as
separate ‘'modes’ rather than unifying their energy scales. Similarly, DPA-2 [289]
improves generalization by pretraining on multiple tasks—including molecules,
crystals, and surfaces—but still depends on carefully managed workflows and fine-
tuning, rather than directly merging heterogeneous datasets. These approaches
highlight the advantages of multi-domain learning, such as better transferability,
fewer data requirements, and stronger PES exploration. However, they have yet
to solve the core issue of integrating data generated under different computational
conditions into one consistent PES without extensive recalculations.

Another line of research has sought to align different datasets using physically
meaningful reference values. For inorganic materials, methods like the fitted
elemental reference energies (FERE) approach compare formation energies and
elemental reference energies across various exchange-correlation functionals
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and calculation setups [294, 295, 296, 297]. Recently, Gabellini et al. [261]
introduced a large molecular dataset by converting total energies into atomization
energies (analogous to formation energies), which helps reduce reliance on
absolute reference values that differ among computational codes. However,
atomization energies carry systematic errors depending on the computational
protocol [298, 299]. As a result, simply transforming existing datasets into
atomization energies does not guarantee more effective MLIP training. While
these strategies offer promising leads, applying them to integrate large-scale
organic and inorganic datasets—where both computational fidelity and the
nature of the systems (extended solids vs. finite molecules) differ—remains
non-trivial.

4.4 Methods

4.4.1 Total Energy Alignment

Developing a truly universal MLIP that can handle molecular and extended solid
systems requires the unified treatment of datasets generated under diverse
computational conditions. However, directly merging these heterogeneous
datasets is challenging because their total energies are often incomparable,
as shown in Fig. 4.1(a) and (d). Here, we introduce the TEA framework, which
is a two-step procedure designed to seamlessly reconcile datasets computed using
different quantum chemical approaches, as shown in Fig. 6.1(e) and (f).

TEA comprises two key steps: (I) Inner Core Energy Alignment (ICEA) and
(IT) Atomization Energy Correction (AEC). ICEA corrects for systematic energy
offsets caused by differences in the treatment of core electrons, such as the use of
effective core potentials or projector-augmented wave (PAW) methods, without
altering the relative energy differences. AEC subsequently scales the atomization
energies to account for discrepancies in the computational fidelities or basis sets
or exchange-correlation functionals used across different datasets. By initially
aligning the core-level energies and then applying a scalable correction to the
atomization energies, TEA provides a straightforward route for use in integrating
previously incompatible datasets into a single coherent training platform, as
shown schematically.

In the following explanation of TEA method, we adopt the problem setting
and assumptions that a dataset of total energies and forces has been generated
with method 2, labeled [2] in the equations, and that isolated atomic energies for
every element in the dataset are available from both method 1 ([1]) and method
2. TEA’s goal is to transform the total energy and force dataset produced
by Method 2 into the form that would be obtained with Method 1, without
recomputing the dataset with Method 1. For simplicity, we now outline the
procedure for converting the data of an N-atom system, taken from the dataset
obtained with Method 2, into the corresponding data that would be produced
with Method 1, as shown in Fig. 4.1(d)—(f).
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4.4.1.1 Inner Core Energy Alignment

Different computational methods often treat inner-core electrons differently,
leading to systematic shifts in their total energies. These differences do not
generally affect chemical reactivity, but they hamper direct comparisons or
combinations of datasets. To address this, we first assume that the relative
quantities, such as atomization energies, remain consistent between Methods 1
and 2.

For a system of N atoms, the atomization energy F,; is defined as:

N
Eat - ZE,LP7 — Et0t7 (4].)
=1

where EiP * is the energy of an isolated atom of species P;, and Ei. is the total
energy of the system.
Under the assumption that the atomization energies obtained using Methods
1 and 2 are equivalent,
1 2
Egt] = Eegt]7 (4.2)

2]

the ICEA-shifted total energy of Method 2, E’t[ot, is given as

N
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i=1
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This relation shows that we can shift the total energies from Method 2 onto the
reference scale of Method 1 using only isolated-atom energies. In practice, [CEA
sets a common baseline for both datasets, ensuring that differences arise from
meaningful chemical effects rather than arbitrary computational choices.

4.4.1.2 Atomization Energy Correction

After applying ICEA, certain residual differences in the atomization energies still
remain if the two datasets originate from different calculation protocols (e.g.,
distinct levels of theory, different basis sets, or contrasting exchange-correlation
functionals). These differences manifest as systematic offsets that must be
corrected before the datasets can be fully integrated.

We introduce a correction function f that relates the atomization energies
obtained via the two methods:

L =1 (E)). (4.4)

To maintain simplicity and ensure a robust performance, we adopt a single
scaling factor a:

7 (BS) =aBL. (4.5)
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In fact, previous studies have reported a linear relationship between the
magnitude of the atomization energy and the systematic errors present [298, 299],
making a simple scaling approach a practical choice. Using the correction function
defined by the scaling factor a, the AEC-aligned total energy Et[Q]

¢ 1s expressed
as follows:

N
EZ =SB o B (4.6)
i=1

Because forces {F;}Y, are negative gradients of the total energy Ei.; with
respect to atomic coordinates {R;}¥ , , this correction consistently adjusts

forces F?] as well:
AP 2
n 8Et[o]t 6Et[0]

. R R = aFP (4.7)

where f‘?] is AEC-aligned forces. This ensures that the entire PES is

appropriately rescaled. Together, ICEA and AEC yield a coherent PES alignment
that preserves relative energy differences and accuracies across heterogeneous
datasets.

4.4.2 Datasets

To demonstrate the effectiveness of TEA, we integrated two large-scale datasets:
the MPtrj dataset, which provides inorganic structures calculated at the
PBE [300] functional with plane-wave basis sets (PBE/PW) using Vienna
Ab initio Simulation Package (VASP) [281, 282, 283, 182], and the OFF23
dataset, an extensive organic dataset computed at the wB97M-D3(BJ)/def2-
TZVPPD [301, 302, 303, 304] level using Psi4 [189]. Prior to integration, we
remove the D3(BJ) dispersion correction from the OFF23 data to avoid double-
counting dispersion effects in the final MLIP.

To determine the scaling factor a used in the AEC step and assess
uncertainties, we also employed the QM9 dataset [131], originally computed
at B3LYP [305]/6-31G(2df,p) level using Gaussian09 [288]. We recalculated
QM9 using VASP (PBE/PW) and Psi4 (wB97M-D3(BJ)/def2-TZVPPD) to
generate QMIVASP and QMIPsi4 subsets, ensuring consistent reference points
for establishing a. Full details of dataset preparation and integration, including
corrections and final merged sets, are provided in Appendix B.1. The fully
integrated organic-inorganic dataset is publicly available at https://github.c
om/qigb-osaka/mace-osaka24.

4.4.3 Machine Learning Interatomic Potential Training

With TEA-enabled integration, we trained MLIPs using the MACE frame-
work [236, 47], specifically employing mace v0.3.6 (https://github.com/ACE
suit/mace). We leveraged the integrated MPtrj/OFF23 dataset after applying
TEA, and refer to the resulting MLIP as MACE-Osaka24. The model and the
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final training data are available at https://github.com/qigb-osaka/mace-o
saka24.

Our training followed the hyperparameters, cost functions, and optimizers of
MACE-MP-0-small and MACE-MP-0-large models described in Ref. [47], with a
few modifications. For all models, we set a cutoff radius of 4.5 A for constructing
the atomic neighborhood graph. We used isolated atomic energies computed
with spin polarization via VASP as references for the atomic species included in
OFF23. Model training was performed using 32 A100 GPUs in parallel. Details
of the MACE-Osaka24 model training procedure and hyperparameter settings
can be found in Appendix B.2.

By unifying heterogeneous datasets under the TEA framework and leveraging
advanced MLIP architectures, our approach yields a single universal potential
model that can accurately describe both molecular and crystalline systems. This
lays a critical foundation for accessible, high-fidelity PES modeling across the
chemical and materials sciences.

4.5 Results

To evaluate the performance of TEA between datasets that employed the different
fidelity functionals and differed in core electron treatments, basis sets, and
boundary conditions, we conducted TEA for QM9 datasets re-calculated using
the VASP [281, 282, 283, 182] and Psi4 [189], named QM9VASP and QM9Psi4,
respectively. Fig. 4.1(a) shows a parity plot comparing QM9IVASP and QM9Psi4.
No clear trend in the total energy between the two datasets is observed, and
the data points are scattered. This is because QM9Psi4 is calculated using an
all-electron method, where the total energy is the energy of all electrons, whereas
QMOVASP represents the total energy of the valence electrons only. As shown
in Fig. 4.1(b), by performing TEA using ICEA, we succeed in aligning the total
energies to be comparable. However, the precision is as high as the root mean
square error (RMSE) 4.2017 eV and the reliability is low. This is mainly because
of the differences in fidelity caused by the different functionals. As shown in
Fig. 4.1(c), TEA using ICEA/AEC captures the systematic differences due to
fidelity variations and significantly improves the RMSE to 0.8388 eV.

We evaluate the performance of the constructed multi-domain universal
MLIPs, MACE-Osaka24-small and MACE-Osaka24-large. For comparison, we
also performed simulations using MACE-MP-0 and MACE-OFF23, where feasible.
Furthermore, we present simulation results obtained using other universal MLIPs,
as well as DFT, and semiempirical and classical force fields, for additional
reference.

First, we present the benchmark results for organic molecular systems.
Table 4.1 shows the mean absolute errors (MAESs) of barrier heights for 78
drug-like biaryl torsions, compared against high fidelity reference energies at
the coupled cluster level of theory provided in biaryl torsion benchmark [306].
Compared with the RMSEs in the benchmark by Kovacs et al. [278], the
approximately 0.1 kcal/mol difference in the accuracy of MACE-OFF23 models
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Figure 4.2: (a) The optimized torsional potential energy surface (PES) of dihedral
torsion in a representative organic molecule in biaryl torsion dataset [306] shown
on the right side the figure, comparing results across various machine learning
interatomic potentials (MLIPs), including SO3LR, MACE-MP-0, MACE-OFF23,
and MACE-Osaka24 models, alongside reference calculations from Psi4 (wB97M-
D3(BJ)), VASP (PBE) and ORCA (CCSD(T1)*). The CCSD(T1)* values are
taken from biaryl torsion benchmark [306]. (b) A violin plot of reaction energy
errors, where the reaction energy is defined as the energy difference between the
initial state (IS) and the final state (FS). The errors are calculated based on
single-point energy calculations obtained using the MACE-MP-0, MACE-OFF23,
and MACE-Osaka24 models, compared to single-point energy at the wB97M-
D3(BJ) level with Psi4 for the 10,073 organic reactions of Transitionlx dataset.
The results for small models are shown with lighter colors, while those for large
models are shown with darker colors. (c) Violin plot of energy barrier errors,
where the energy barrier is defined as the energy difference between the IS and
transition state (TS), compared to single-point energy at the wB97M-D3(BJ)
level with Psi4 for the 10,073 organic reactions of Transitionlx dataset for the
same models as in (b), with lighter and darker colors representing small and
large models, respectively.
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Figure 4.3: (a) Crystal structures and their representative materials used in
the lattice constant benchmark shown in (b): Face centered cubic (FCC) (e.g.,
Ag, Pd), body centered cubic (BCC) (e.g., Li, Na), Halite (e.g., NaCl), Zinc
blende (e.g., GaAs), and Diamond (e.g., C, Si). (b) Violin plot showing the
lattice constant error (A) for different models, including MACE-MP-0-small,
MACE-MP-0-large, MACE-Osaka24-small, MACE-Osaka24-large, and M3GNet
trained on the MPF.2021.2.8 dataset. The errors are calculated with respect to
lattice constants optimized using VASP with the PBE functional, employing the
MPRelaxSet input provided by pymatgen from the Materials Project. (c) Relative
energy (eV/atom) as a function of the lattice constant (A) for Diamond Si crystal,
predicted using MACE models (MP-0 and Osaka24 variants) and compared
with VASP calculations. The VASP calculations at level were performed using
the MPStaticSet input provided by pymatgen. (d) Radial distribution function
(RDF, a.u.) for liquid water obtained from NVT simulations. Results are shown
for MACE-MP-0 and MACE-Osaka24 models with D3(BJ) corrections, as well
as for classical MD simulations using TIP3P and TIP4P /2005 force fields.
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is likely attributable to differences in the optimizer used for the torsional PES.
Details of the biaryl torsion benchmark, including the computational settings for
DFT and universal MLIPs, are described in Appendix B.c. The MACE-Osaka24-
small and -large models achieved predictions that are 2.69 and 1.45 kcal/mol
more accurate, respectively, compared to the predictions of MACE-MP-0-small
and -large in torsion reactions of molecules. As shown in the study by Kovécs
et al. [278], the MACE-OFF23 models and semiempirical GFN2-xTB [307]
method provide quantitative predictions within chemical accuracy (1 kcal/mol)
with respect to calculations at the level of coupled cluster theory. Similarly,
our MACE-Osaka24 models also achieve chemical accuracy, demonstrating its
effectiveness in providing precise predictions for molecular torsions. Figure 4.2(a)
shows the torsional PES of one of the molecules in the biaryl torsion benchmark.
The MACE-MP-0-large model overestimates the barrier height of the torsion
reaction by about twice. Compared to the PES calculated at the PBE level using
VASP, the difference is large. This result suggests that for MLIPs trained only on
inorganic crystal domains, quantitative prediction of organic molecular domains
is difficult. The MACE-OFF23-small model gives predictions almost equivalent
to the PBE level results. Our MACE-Osaka24-small model shows predictive
performance almost equivalent to MACE-MP-0-small. The MACE-Osaka24-large
model achieves predictive accuracy close to the high-fidelity wB97M-D3(BJ),
exceeding the predictive accuracy of the PBE level. These results suggest that
learning datasets integrated by TEA allows the single model to inherit the
accuracy of the original datasets.

Then, we evaluated the performance of universal MLIPs on the Transitionlx
dataset, focusing on their ability to predict reaction energies and energy barriers
for 10,073 organic reactions. Details of the calculations are shown in Appendix
B.d. Figure 4.2(b) shows the distribution of reaction energy prediction errors,
where MACE-Osaka24 achieved the lowest error spread compared to MACE-
MP-0 and MACE-OFF23. Similarly, Figure 4.2(c) highlights the performance
on energy barrier prediction errors, indicating that MACE-Osaka24 consistently
outperformed the other models, particularly in capturing transition state

Table 4.1: Mean absolute errors (MAESs) of barrier heights for 78 drug-like biaryl
torsions, compared against high-fidelity reference energies. The values inside the
parentheses were taken from Ref. [278].

Universal MLIP MAE (kcal/mol)
MACE-OFF23-large 0.403 (0.3)
MACE-Osaka24-large 0.457
MACE-OFF23-small 0.598 (0.5)
MACE-Osaka24-small 0.695
GFN2-xTB 0.898
MACE-MP-0-large 1.909
SO3LR 2.451

MACE-MP-0-small 3.386
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Table 4.2: Mean absolute errors (MAESs) of reaction energy and energy barrier
predictions of 10,073 reactions in Transitionlx dataset. The units are all in eV.

Universal MLIPs Reaction energy Energy barrier
MACE-Osaka24-large 0.265 0.404
MACE-Osaka24-small 0.336 0.457
MACE-OFF23-large 0.436 0.711
MACE-OFF23-small 0.544 0.672
MACE-MP-0-large 0.519 0.937
MACE-MP-0-small 0.686 1.333

(TS) regions with higher accuracy. Table 4.2 quantitatively supports these
observations. The MAEs of the reaction energies predicted using MACE-MP-
0-small, MACE-OFF23-small, and MACE-Osaka24-small are 0.686, 0.544, and
0.336 eV, respectively, and the respective MAEs of the predicted energy barriers
are 1.333, 0.672, and 0.457 eV. The larger models of each potential exhibit further
improvements, with MACE-Osaka24-large yielding the lowest MAEs of 0.265 and
0.404 eV for the reaction energies and energy barriers, respectively. These results
demonstrate that MACE-Osaka24, especially in its large model, offers superior
predictive accuracy for both reaction energy and energy barrier predictions
in the Transitionlx dataset. This highlights the importance of tailored model
architectures and training datasets that explicitly include transition state regions,
enabling MLIPs to achieve high accuracy even for reactive systems far from
equilibrium.

Next, we present the results of accuracy verification of universal MLIPs for
crystalline systems listed in Figure 4.3(a). The crystals used for the benchmark
were those adopted in Section B.4 of the Supporting Information in the paper by
Batatia et al [47]. Details of the calculation conditions for the crystal benchmarks
can be found in Appendix B.3.e. The benchmark results for each crystal and
crystal structure are discussed in detail in Appendix B.4. Figure 4.3(b) shows
the error distributions of lattice constant predictions calculated using various
universal MLIPs and VASP at the same computational level as the training data,
specifically the PBE functional. The MAEs of the MACE-Osaka24 models are

Table 4.3: Mean absolute errors (MAEs) of lattice constants predicted by
universal machine learning interatomic potentials (MLIPs) compared to PBE-
level DFT calculations for bulk crystals

Universal MLIP MAE (A)
MACE-MP-0-small 0.012
MACE-MP-0-large 0.016

MACE-Osaka24-large 0.018
MACE-Osaka24-small 0.020
M3GNet-MPF2021.2.8 0.021
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larger than those of the MACE-MP-0 models. However, as shown in Table 4.3,
the MAEs of the predictions made by both the MACE-MP-0 and MACE-Osaka24
models are lower than those of the predictions made by the pretrained M3GNet
model. The differences in predictive accuracy between MACE-MP-0 and MACE-
Osaka24 were 0.008 A and 0.002 A for small and large models, respectively.
This suggests that integrating data of organic molecules with different fidelities
and domains using TEA does not deteriorate the original predictive accuracy.
Figure 4.3(c) shows the PES for the lattice constant of diamond Si as an
example. All models accurately predict the equilibrium lattice constant at the
PBE level calculated using VASP (calculation conditions of the MPStaticSet
of the Materials Project). Furthermore, the performance of PES description
was better in MACE-Osaka24 compared to MACE-MP-0 with respect to the
VASP calculation results. This is likely coincidental but demonstrates the high
robustness of multi-domain universal MLIPs.

Finally, Figure 4.3(d) shows the radial distribution function (RDF) of O—
O atoms obtained by MD of bulk liquid water at room temperature (300 K),
which is important for both organic and inorganic materials. The MACE-MP-0
and MACE-Osaka24 models apply the D3(BJ) correction. Details of the MD
calculations using MLIPs and classical force fields are provided in Appendix
B.3.f. The MACE-OFF23 model describes the properties of liquid water at
room temperature well [278]. MACE-MP-0-D3(BJ) reproduces the RDF at
the PBE-D3(BJ) level [47]. Our MACE-Osaka24-large-D3(BJ) provides RDF
descriptions almost equivalent to MACE-MP0-D3(BJ). On the other hand,
MACE-Osaka24-small-D3(BJ) gives an RDF that is approximately intermediate
between MACE-MP-0 and MACE-OFF23. This suggests that the ability to
describe dynamic properties changes significantly depending on the complexity
of the architecture and the balance of the dataset.

4.6 Discussion

Our results show that TEA is an effective way to combine different datasets. By
aligning inner-core reference energies and adjusting atomization energies, TEA
bridges differences caused by varying computational details such as basis sets and
exchange-correlation functionals. Using TEA, we merged the MPtrj inorganic
crystal dataset with the OFF23 organic dataset to train MACE-Osaka24—a
multi-domain MLIP that achieves accuracy on par with specialized models like
MACE-MP-0 and MACE-OFF23, while covering a much wider range of chemical
systems.

The key advantage of TEA is that it simplifies data integration without
changing the MLIP’s architecture. Unlike methods such as A-machine learning
or multi-fidelity SevenNet, which often target specific domains or fidelity levels,
TEA offers a general, straightforward way to combine datasets. This approach
allows researchers to use existing data from various sources without extensive
recalculations. By showing that a single model—M ACE-Osaka24—can accurately
predict molecular reaction energies, lattice constants in inorganic crystals, and
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the properties of liquid water, we confirm that the resulting PES maintains
physical consistency and meaningful energy gradients across diverse chemical
environments.

Nonetheless, some limitations and challenges remain. The current imple-
mentation relies on the availability of suitable reference atomic energies and
reference geometries, which can be more difficult for systems with strong electron
correlations, charged species, or relativistic effects. While using a single global
scaling factor for atomization energies worked well here, certain specialized cases
may need more nuanced correction schemes. Future improvements might include
adaptive correction functions or machine learning models that predict fidelity
differences, further enhancing TEA’s generality and accuracy.

Future work could test TEA on datasets obtained from higher-level
quantum chemical methods or directly include correlation and relativistic effects.
Continued advances in neural network architectures, training methods, and
hyperparameter optimization will also likely improve the robustness and accuracy
of universal MLIPs. As research communities produce larger and more varied first-
principles datasets, the concepts demonstrated by TEA and MACE-Osaka24 can
guide the development of more fully integrated and widely accessible foundation
models. Such models, firmly based on reliable first-principles accuracy yet
adaptable to different computational approaches, will help us better explore and
understand increasingly complex chemical systems.

4.7 Conclusion

We introduced the total energy alignment (TEA) methodology as a robust and
efficient framework for unifying heterogeneous quantum chemical datasets into a
single-level potential energy surface. Using TEA, we created MACE-Osaka24, a
single universal MLIP that achieves state-of-the-art accuracy for both molecular
and crystalline systems. It matches the performance of specialized models like
MACE-MP-0 for inorganic solids and MACE-OFF23 for organic molecules, all
without expensive recalculations under a single theoretical framework.

The impact of TEA goes beyond its technical contributions. By enabling
the integration of diverse datasets without expensive recalculations, it helps
democratize the development of foundation models in chemistry. This approach
aligns with the move toward open science, where using a wide range of data
sources is increasingly essential. As the chemistry and materials science
communities continue to produce larger, more varied datasets, TEA provides a
practical route to truly universal MLIPs, accelerating the discovery of materials,
drugs, and catalysts through collaborative, data-driven research.
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Chapter 5

Universal Neural Network
Potentials as Descriptors:
Towards Scalable Chemical
Property Prediction Using
Quantum and Classical
Computers

5.1 Abstract

Accurate prediction of diverse chemical properties is crucial for advancing
molecular design and materials discovery. Here we present a versatile approach
that uses the intermediate information of a universal neural network potential as a
general-purpose descriptor for chemical property prediction. Our method is based
on the insight that by training a sophisticated neural network architecture for
universal force fields, it learns transferable representations of atomic environments.
We show that transfer learning with graph neural network potentials such as
M3GNet and MACE achieves accuracy comparable to state-of-the-art methods
for predicting the NMR chemical shifts of using quantum machine learning
as well as a standard classical regression model, despite the compactness of
its descriptors. In particular, the MACE descriptor demonstrates the highest
accuracy to date on the "*C NMR chemical shift benchmarks for drug molecules.
This work provides an efficient way to accurately predict properties, potentially
accelerating the discovery of new molecules and materials. This chapter is based
on Ref. [Shiota, Ishihara, Mizukami, Digital Discovery, 3, 1714-1728 (2024)].

61
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5.2 Introduction

As evidenced by the enumeration of 166.4 billion possible organic molecules
containing up to 17 heavy elements, such as C, N, O, S, and halogens (excluding
hydrogen), the expansion of the chemical space is astronomical with the
increase in types and numbers of elements [308, 309]. This vast landscape
has given rise to multidisciplinary approaches to combining experimental and
computational chemistry for the discovery of new chemical substances and
materials in a wide range of fields, including material, catalysis, and drug
design [308, 309, 310, 311, 312, 313]. Although quantum chemistry and first-
principles calculations offer accurate descriptions of chemical substances, their
high computational demands make an exhaustive exploration of the chemical
space impractical [314, 315, 316, 124, 39, 317, 313]. However, machine- and
deep-learning techniques are overcoming these limitations to enable a more
extensive exploration [318, 58, 143, 44, 319, 124, 139, 148, 320, 138, 311, 56, 135,
321, 266, 322, 323, 313).

With machine learning, physics-inspired descriptors that characterize the
chemical space have been developed and serve as the cornerstone for building
efficient and highly accurate models [134, 132, 324, 137, 325, 140, 141, 147,
326, 146, 138, 142, 135, 327, 133]. Smooth overlap of atomic positions
(SOAP) [134, 58, 136, 137, 325, 139, 138], Faber—Christensen—Huang-Lilienfeld
(FCHL) [132, 324, 140, 141, 142], and similar descriptors offer atom-level
descriptions within molecular or material environments based on physical insights
and are effective in regressing chemical quantities, such as interatomic potentials
(IAP) and nuclear magnetic resonance (NMR) chemical shifts [134, 58, 136,
328, 132, 324, 143, 137, 325, 140, 141, 147, 326, 39, 146, 138, 142, 135, 321,
145]. Notably, TAPs built using descriptors and Gaussian process regression
(GPR) [58] have been termed Gaussian approximation potentials (GAP) and
have found success in the exploration of the chemical space of molecules and
materials [58, 146, 138]. Both kernel ridge regression (KRR) and GPR have
been employed to improve the accuracy of NMR chemical shift prediction
[144, 136, 328, 132, 324, 145]. However, the dimensionality of the descriptors
becomes a barrier to generalization and high accuracy as the molecular or
material composition becomes more diverse owing to the addition of different
types of elements [147, 148, 149, 327].

Recently, deep-learning models based on graph neural networks (GNNs) have
been proposed to describe chemical spaces using graph representations [329,
330, 331, 332, 333, 316, 319, 139, 229, 231, 148, 232, 334, 335, 320, 149, 336,
337, 338, 321, 266, 339, 264, 124, 237, 236, 278, 47]. In most GNN-based TAPs,
atoms within a molecular or material environment are represented as nodes, and
their local connectivity as edges in a graph. The graph is then convolved to
embed atom-specific information within each node, and further processed using
multilayer perceptrons (MLP) to predict target observables. In molecular and
materials simulation and modeling, the consideration of symmetry is extremely
important. It is desirable for GNNs to be invariant or equivariant to symmetry
operations such as translation, rotation, and reflection for the models to make
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physically meaningful predictions. GNNs that possess these properties are
referred to as invariant GNNs or equivariant GNNs. The universal GNN-based
TAPs proposed thus far have been designed to satisfy these symmetries. Recently,
E(3) or SE(3) equivariant GNN-based IAPs (e.g., Allegro [237], GNoME [266],
MACE [236, 278, 47]) have demonstrated superior performance compared to
E(3) invariant GNN-based IAPs [115, 340] (e.g., MEGNet [231], M3GNet [124]).

Similarly, GNN-based models have been developed to predict NMR chemical
shifts [329, 330, 332, 333, 341, 339]. DFT-level calculations of NMR chemical
shifts for 'H and '3C have demonstrated the ability to predict within a target
accuracy range of 1-2% relative to the possible ranges of approximately 10 ppm
and 200 ppm, respectively [342, 343]. Therefore, the uncertainty in machine
learning models using DFT-level datasets is this level of precision, with the
target accuracy of 0.2 ppm for 'H and 2 ppm for 13C [324]. For example, Yanfei
Guan et al. achieved the target accuracy of 0.16 ppm for 'H and 1.26 ppm for
13C by training the SchNet architecture [229] on molecular NMR chemical shifts
(CASCADE) [329].

However, the scalability remains an issue due to the increasing optimization
costs of GNN and MLP parameters when the size of datasets increase. Han
et al. addressed this issue by constraining the nodes in a GNN to heavy
elements only, thereby rendering the construction of scalable GNN-based NMR
chemical shift models feasible while achieving a state-of-the-art prediction
accuracy comparable to that of CASCADE [341]. Furthermore, NMR chemical
shifts of various nuclei beyond hydrogen and carbon have become crucial for
understanding systems involving a wide range of elements, such as proteins and
solids [344, 345, 346, 347, 348, 349, 350]. Consequently, efforts are being made
to develop machine learning models for NMR chemical shifts of nuclei such as
15N, 170, and PF [348, 349, 346, 347]. These elements exhibit wide chemical
shift ranges, with about 600, 2500, 500 ppm for °N, 17O, and '°F, respectively.
The target accuracy for these nuclei is set at 6 ppm for '°N, 25 ppm for 17O,
and 5 ppm for °F [344, 345, 346, 347, 348, 349, 350].

Notably, both descriptor-based and GNN-based methods face challenges. The
former faces increased learning costs as the composition becomes more complex,
and the latter faces increasing parameter optimization costs with larger training
datasets. To address these issues simultaneously, we focused on the potential
utility of the outputs from pre-trained GNN-based TAPs as descriptors. We
considered these outputs GNN transfer learning (GNN-TL) descriptors and built
machine-learning models for predicting chemical properties. Note that there are
existing studies attempting to apply pre-trained GNN potentials to other tasks,
particularly to generative modeling [351, 352, 353, 354].

The remainder of this chapter is organized as follows. Section 5.3 details the
GNN-TL descriptor and the kernel method, implemented on both classical and
quantum computers, for predicting NMR chemical shifts of 'H, 13C, 15N, 170,
and F. Section 5.4 presents the performance of our developed machine learning
models. Section 5.5 discusses the benefits and applications of the GNN-TL
descriptor. Finally, Section 5.6 concludes this chapter.
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Figure 5.1: Schematic diagram of our proposed graph neural network transfer
learning for predicting chemical properties. The black arrows depict the flow of
our transfer learning process. The gray area is a pre-trained IAP (NNP) designed
for predicting the energy of the system and composed of a GNN and an MLP.
The initial step in our learning procedure involves obtaining the pre-trained GNN
block output a set of vectors, {G;}, using the atomic coordinates of a molecule
with N atoms, {Z;, R;} as input. Subsequently, we construct a regression model
to predict the chemical properties e.g. NMR shielding constants, using this GNN
output {G;} as a descriptor.

5.3 Method: Transfer Learning Using Pre-
Trained Graph Neural Networks

In this section, we discuss the transfer learning of a pre-trained GNN-based IAP.
This approach integrates the outputs from the GNN layer of the TAP as shown in
Figure 5.1. The architecture of a GNN-based IAP can be broadly segmented into
a GNN layer and an MLP layer (gray area of Figure 5.1). For the E(3) invariant
GNN-based IAP, we opted for two backbones: a MEGNet pre-trained on the
QM9 dataset [131] and a M3GNet trained on the MPF.2021.2.8 dataset, which
encompasses compounds covering all 89 elements from the Materials Project [124].
The parameters of the GNN layer in the M3GNet TAP were optimized to predict
system energy, forces, and stress tensors. Additionally, we incorporated the E(3)
equivariant GNN-based IAPs, namely MACE [236, 47, 278], into our study. We
employed two types of pre-trained MACE IAPs: one trained on a larger dataset
named MPtrj [116] from Materials Project, referred to as the MACE-MP-0
model [47], and another trained on an organic molecule dataset covering 10 types
of elements including SPICE [119] and QMug [257], termed the MACE-OFF23
model [278]. Each model has variations in parameter size, and for this chapter,
we utilized the “small” and “large” versions [47, 278].

When fed with the atomic coordinates of a molecule with NV atoms, denoted
by {Z;,R;}, where Z; represents the atomic number indicating the type of each
atom, and R; is the three-dimensional position vector of the ith atom, the GNN
layer generates a set of vectors, {G;}, which mirrors the environment of the
tth atom in the molecule. This is referred to as the GNN-TL descriptor. The
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GNN layer for both MEGNet and M3GNet outputs GNN-TL descriptors with
dimensions of 32 and 64 per atom, respectively. On the other hand, MACE is a
GNN architecture that predicts energy in the form of atomic cluster expansion.
As in Ref.[355], only the output of the 1st layer of the GNN layer, corresponding
to the one-body term of the many-body expansion, is used as the GNN-TL
descriptor. The dimensions of this GNN-TL descriptor are 128, 256, 96, and 224
per atom for MACE-MP-0-small, MACE-MP-0-large, MACE-OFF23-small, and
MACE-OFF23-large, respectively.

Using GNN-TL descriptors as input, a regression model was constructed to
predict NMR chemical shielding constants. For the regressor, one can choose
methodologies, such as GPR, KRR, or feed-forward neural network (NNs), which
are contingent on the specific task. To ensure a maximally fair comparison with
other descriptor-based techniques, we adopted KRR.

KRR combines the merits of ridge regression, which offers regularization to
mitigate overfitting, with the kernel method, facilitating nonlinear regression. In
kernel methods, the data —in the context of this study, the GNN-TL descriptors—
are mapped into a high-dimensional feature space through a non-linear kernel
function. The Laplacian and Gaussian kernels were applied:

R(Gi, Gy) = exp (=7 1Gi — Gy1) . (5.1)

where 7 is the hyperparameter of the kernel and p is the norm parameter that
differentiates the type of kernel: p = 1 for the Laplacian kernel and p = 2 for the
Gaussian kernel. In KRR, the predicted value 4 for the target chemical property
of the target atom is derived from the GNN-TL descriptor G; as follows:

N
mmgzzpmmmm (5.2)

Here, o; represents the i*" element of the regression coefficient vector, a, of
size N. The regression coefficients are determined by solving a ridge-regularized
least-squares problem, which can be reduced to:

a=(K+\) o (5.3)

where I denotes the identity matrix, o denotes the chemical properties of each IV
training data samples, and A denotes the regularization parameter. The matrix
K, is a kernel matrix, with elements given by k (G;, G;).

All computations related to the KRR were executed using Scikit-learn
v.1.2.2 [356], and the hyperparameters of each model were tuned using Optuna
v.2.10 [357]. For dataset sizes of up to 50,000 items, we conducted hyperparameter
optimization for 100 iterations with ten-fold cross-validation, while for those at
100,000, we limited the optimization to 10 iterations.

The quantum-kernel method leverages quantum computers to compute
kernels [44, 10, 358], which is achieved by embedding feature vectors generated
by classical computers into quantum states. This method calculates the inner
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product of these quantum states to derive the desired kernels. Embedding
feature vectors into quantum states corresponds to mapping them onto a Hilbert
space with dimensions raised to the power of two quantum bits (qubits). Using
the kernel matrix constructed on a quantum computer, we performed a KRR,
denoted as quantum KRR (QKRR).

In this study, we adopted the natural parameterized quantum circuits (NPQC)
kernel, which has been demonstrated to possess performance characteristics
similar to the Gaussian kernel, both theoretically and in actual hardware
experiments [359, 360, 361]. All computations were conducted using Scikit-
qulacs [356, 362, 209]. The quantum kernel was constructed in a 10-qubit space.
Hyperparameters for the quantum kernel were determined through grid search.
The determined parameters of NPQC kernel were ¢ = 1.5 and the repetition times
of embedding 40. The regularization hyperparameter in QKRR was determined
using 10 iterations of randomized search.

5.4 Results

In Section 5.4.1, because we deal with many elements, we compared the
dimensional efficiency of our proposed GNN-TL descriptor to well-established
physics-inspired descriptors. Note that the GNN-TL descriptor can better handle
complex chemical systems by exploiting the GNN-based TAP architecture.

In Section 5.4.2, we focused on the accuracy of the GNN-TL descriptor
in predicting NMR chemical shifts, which are key to understanding molecular
details (e.g., interatomic distances and bond angles). This scenario provides an
appropriate test to determine how well the GNN-TL descriptor works.

Our analysis began by comparing quantum kernel learning, in which the
kernels are tested using a quantum computer emulator with traditional kernel
learning methods. We then checked the accuracy of the GNN-TL descriptors
across the different pre-trained GNN models.

Finally, we juxtaposed our GNN-TL descriptor using well-established physics-
inspired descriptors. This comparison demonstrates the superiority of the
proposed descriptor in terms of efficiency and accuracy. Furthermore, it highlights
its potential for accurately predicting chemical properties, which is crucial for
advancing research in the molecular and material sciences.

5.4.1 Dimensional Efficiency

At the atomic level, descriptors are tools designed to encode information about
atoms within molecules or crystalline materials into vectors. Popular descriptors,
such as SOAP and FCHL18, excel at intricately capturing the environment within
an atom’s cutoff radius. Although these descriptors have achieved significant
success in various accuracy benchmarks, they also present challenges due to
their large dimensions. Various strategies have been developed to address these
challenges [364, 365, 366, 141], including refining the descriptor itself, using
principal component analysis for dimensionality reduction, and exploring NNs
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to encode them. In particular, Christensen et al. applied Behler’s method
of the atom-centered symmetry function [228] for NN potential to discretize
FCHL18 [140] to derive a compact and accurate FCHL19 [141].

In Table 5.1, we present the scaling of the SOAP, FCHL19 and various GNN-
TL descriptors in response to an increase in the number of elemental species
considered. Additionally, for the QM9, QMugs [257], and MPF.2021.8 or MPtrj
datasets [124], the descriptor dimensions corresponding to 5, 10, and 89 elemental
species comprising each dataset are summarized, respectively. Remarkably, with
an increase in the number of element types, both SOAP and FCHL19 exhibited
quadratic scaling. As a snapshot, when representing five elements in the QM9
dataset, the SOAP and FCHL19 methods have dimensions of 5,740 and 740,
respectively. This dimensional disparity increases with the number of elemental
types. Hence, to represent the 89 elements, the dimensions increased to 1,737,120
and 162,336, respectively. These dimensions are hundreds to tens of thousands
of times larger than the compact GNN-TL descriptors, which ranges from 64
to 256 dimensions. Owing to its consistent dimensionality, irrespective of the
increase in elements, the GNN-TL descriptors are overwhelmingly compact.

5.4.2 Prediction Accuracy: Nuclear Magnetic Resonance
Chemical Shifts

The NMR chemical shifts, d, were predicted using the chemical shielding constant
of the reference substance, .., as the baseline. The NMR chemical shift was
calculated using the following equation:

0 = Oref — O. (5.4)

The reference substances selected for the various nuclei in this study are widely
recognized and commonly adopted in the literature [367, 368, 369, 370, 132].
Specifically, tetramethylsilane was selected for both 'H and '3C, nitromethane
(MeNO,) for N, water-170O (H2'7O) for 17O, and trichlorofluoromethane
(CFCl3) for 19F. We determined the chemical shielding constants for these well-
established reference substances as follows: 31.7608 ppm for 'H, 187.0521 ppm
for 13C, —147.8164 ppm for N, 325.8642 ppm for 17O, and 171.2621 ppm for
19F. These constants were evaluated by calculations at the mPW1PW91 [371]/6-
3114+G(2d,p) level using density functional theory (DFT) and gauge-including
atomic orbital (GIAO) [130] methods. Structure optimization was conducted
at the B3LYP [305]/6-31G(2df,p) level in alignment with the methodologies
employed for the QM9 NMR dataset. All calculations were performed using the
Gaussian 16 software suite [288].

In this study, we utilized the QMINMR dataset, which contains approximately
134K small organic molecules containing C, N, O, and F (excluding H), with
each molecule having no more than nine atoms [132, 131]. This dataset provides
the detailed NMR chemical shielding constants for these molecules. To analyze
how the model accuracy changes with training data size, we adopted an approach
similar to that used in the original publication of the QMINMR dataset [132].
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Specifically, for 3C, of a total of 831K data points, we randomly withheld
50,000 data points to build our test set. Subsequently, from the remaining
13C NMR chemical shifts, we randomly selected subsets containing 100, 200,
500, 1000, 2000, 5000, 10,000, 50,000 and 100,000 data points to create various
training sets. For the other isotopes (i.e., 'H, N, 170, and '°F), the test sets
were similarly established by withholding 50,000, 30,000, 50,000, and 1000 data
points, respectively. The training size for '°F was set to 2K, whereas the other
isotopes were trained on datasets of 100,000 data points. In addition to the QM9
NMR dataset, we sought to validate the performance of our model on external
datasets. Hence, we employed the two sets of molecules provided in another
study [132]; one consisting of 40 drug molecules from the GDB17 universe and
another containing 12 drugs with 17 or more heavy atoms.
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Figure 5.2: Log-log plot of the training size (N) and MAE for the 13C
NMR chemical shielding constant prediction model. The red and blue colors
represent the results of the KRR with the Laplacian kernel and QKRR with the
NPQC kernel using GNN-TL descriptors from the pre-trained M3GNet model,
respectively.

Figure 5.2 shows the relationship between the mean absolute error (MAE)
for the 13C NMR shielding constant predictions and the training data size. Both
QKRR and KRR demonstrated consistent improvements in predictive accuracy
with an increase in training size. Notably, the quantum kernel exhibited a
performance comparable to that of the Laplacian kernel. For a training size of
100,000, the MAE for the 3C predictions was 2.28 ppm when using Laplacian-
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kernel KRR, while NPQC-kernel QKRR yielded an MAE of 2.55ppm. In a
comparative study by Gupta et al., the KRR models using the Coulomb matrix
(CM) [372], SOAP, and FCHL descriptors reported MAEs of approximately 4,
2.1, and 1.88 ppm, respectively, for the same training size [132]. Compared with
the CM descriptor, our GNN-TL descriptor showed significantly better predictive
capabilities, achieving an MAE that was nearly half that of the CM descriptor.
Although our method did not exceed the accuracy levels of SOAP and FCHL,
the performance of the GNN-TL descriptor was competitive, highlighting its
potential as a robust descriptor.

Next, we compared the performance of the GNN-TL descriptors derived from
different TAP architectures. Recently, independent of our work, a predictive
model for *C NMR chemical shielding was proposed using a pre-trained IAP
known as SchNet, which is a pioneering GNN used as a descriptor [373]. This
model was trained on 400 data points of '3C NMR. chemical shielding constants
of the molecules in QM9 dataset [131], with the SchNet GNN-TL descriptor as
an input to a feed-forward NN for regression. The predictive accuracy of the
SchNet/NN was a root mean-squared error (RMSE) of 12.8 ppm. In pursuit of a
fair comparison with their model, we applied KRR using pre-trained MEGNet,
M3GNet and MACE GNN-TL descriptors, setting our training data size to
400 data points of 3C NMR chemical shielding constants. To account for
the influence of random sampling, we created 10 different training sets, each
comprising 400 data points. The effect of potential data bias was then quantified
by calculating the mean RMSE and standard deviation (STD) for each model.
Detailed verification including kernel function dependencies can be found in the
Appendix. The results of this comparative study are summarized in Table 5.2. In
Table 5.2, the results for KRR using the Gaussian kernel, which showed superior
accuracy compared to the Laplacian kernel, are presented.

In contrast to the SchNet /NN model’s RMSE of 12.8 ppm, the MEGNet /KRR
model shows significantly lower predictive accuracy with an RMSE of 20.08 +
0.55 ppm, suggesting that the MEGNet descriptor is less effective for 13C
NMR chemical shielding data. The M3GNet/KRR model demonstrates a
substantial improvement with an RMSE of 10.02 £+ 0.37 ppm. Models using
MACE descriptors show even greater accuracy: the MACE-MP-0-small/ KRR
and MACE-MP-0-large/KRR models achieve RMSEs of 9.77 &+ 0.34 ppm and
9.74 £+ 0.27 ppm, respectively. The best performance is observed with the
MACE-OFF23-small /KRR model, which has an RMSE of 8.05 + 0.19 ppm, with
the MACE-OFF23-large/KRR model close behind at 8.15 4 0.42 ppm. These
results highlight the superior performance of the MACE descriptors, particularly
MACE-OFF23-small, in enhancing the accuracy of KRR models for predicting
13C NMR chemical shielding. A more detailed discussion of the nuances of these
architectural differences is presented in Section 5.5.1.

The accuracy of KRR models incorporating the M3GNet GNN-TL descriptor
with a Laplacian kernel for NMR chemical shifts was evaluated for each test set
of the five different nuclei. Table 5.3 lists the statistical performance metrics for
predicting NMR chemical shifts. Across all elements, the MAE for the test set
remained below 5 ppm. The MAE for 'H and '°F were notably low at 0.18 ppm
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and 2.65 ppm, respectively, indicating a high degree of prediction accuracy for
these nuclei in the unseen molecular environments. The MAE for 17O, although
higher at 4.95 ppm, still reflects a reasonable predictive capability, given the
complexity of the oxygen chemical shifts. The STD and interquartile range (IQR)
values in the Table 5.3 represent the distribution of chemical shifts within the
training data, rather than the accuracy of the model itself. Thus, the higher STD
and IQR values for 170 do not indicate a lack of model precision but rather the
natural variability inherent in the 7O chemical shifts within the training data.
The MAE/STD ratio can still offer insights into model performance relative to
data variability. For example, the relatively low ratio of 17O (2.21%) suggests
that the model predictions are consistent with the diversity of the training data.
On the other hand, the higher ratios for 'H (9.09%) and °F (7.78%) indicate
that the accuracy of the models are not as high as desired, particularly when
considering the range of chemical shifts represented in the training dataset. The
maximum absolute error (MaxAE) for all nuclei is comparable to the STD of the
training data. This is attributed to random sampling and is expected to improve
with the application of more sophisticated data point sampling techniques, such
as active learning.

Subsequently, these models were employed to predict the NMR, chemical
shifts of a single molecule CsH5N;OF containing five elements that was not
included in the training data. The results are shown in Figure 5.3. The MAE
for each nucleus were found to be 0.08 ppm for 'H, 1.03 ppm for 3C, 6.45 ppm
for 1°N, 2.86 ppm for 70O, and 6.73 ppm for °F. The remarkably low MAE for
'H and '3C underscores the high accuracy of our model for these nuclei, with
predictions that closely mirror the calculated values. The model performed
well for the more challenging >N and 7O nuclei, where the chemical shifts
can be significantly affected by subtle changes in the molecular structure and
environment, as indicated by the MAE values. The '°F nucleus, while having
a higher MAE, showed excellent agreement with the DFT/GIAO calculations,
suggesting that the model predictions were robust, even for nuclei with typically
higher chemical shift ranges. These results demonstrate the strong predictive
power and potential of the model as a reliable tool for accurately predicting
NMR chemical shifts across a variety of nuclei, even in molecules beyond the
scope of the training data.

We then expanded our assessment to evaluate the predictive ability of our
model for molecules larger than those in the QM9 NMR dataset. As such,
we incorporate the test sets provided in Ref. [132], which comprised 40 drug
molecules from the GDB17 universe and another set containing 12 drugs with
17 or more heavy atoms. See Ref. [132] for the structures of these molecules.

Table 5.4 presents the benchmark results for each test set using our
M3GNet GNN-TL descriptor and MACE-OFF23-small GNN-TL descriptor.
For comparison, we used the FCHL descriptor from Gupta’s study [132]. To
ensure a fair comparison, we employed our GNN-TL descriptor models trained
on a size of 100,000 '*C chemical shielding constants. For both models, an
increased molecular size in the dataset correlated with deterioration of the MAE
value. Notably, although our M3GNet GNN-TL descriptor did not match the
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Figure 5.3: Predicted NMR chemical shifts for (a) a single molecule, randomly
selected from the QMINMR dataset and not included in the training data, for
(b) H, (c) 3C, (d) *N, (e) 170, and (f) °F. These predictions (represented
by red lines) are compared with the calculated values at the DFT/GIAO level,
which are considered as the correct values (depicted by blue lines).
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1.88 ppm value achieved by the FCHL descriptor for the QM9 50,000 test set, our
model exhibited an MAE value that was approximately 0.3 ppm lower for the
40 GDB17 dataset test. The MACE-OFF23-small GNN-TL descriptor showed
even better performance, with an MAE of 1.87 ppm for the QM9 50,000 test set,
closely matching the FCHL descriptor, and significantly outperforming it for
the 40 GDB17 dataset with an MAE of 2.83 ppm. For the set of 12 drugs with
17 or more heavy atoms, the M3GNet descriptor showed an MAE of 4.21 ppm,
while the MACE-OFF23-small descriptor showed an MAE of 3.85 ppm. Notably,
the M3GNet descriptor’s accuracy is comparable to the FCHL descriptor. The
results were nearly identical for the set of 12 drugs with 17 or more heavy
atoms, highlighting that the M3GNet GNN-TL descriptor was less affected by
increasing molecular size. On the other hand, the MACE-OFF23-small descriptor
significantly outperforms FCHL with an MAE of 3.85 ppm, highlighting its
superior predictive performance.

For a detailed comparison, Figure C11 illustrates the molecule-specific MAE
values for both drug test sets. The molecular structures are provided in Ref. [132].
Our M3GNet and MACE-OFF23-small GNN-TL descriptor-based prediction
models ensured that the highest MAE values for individual molecules across both
test sets remained below 10 ppm. Intriguingly, the desflurane molecule, which
posed the greatest challenge, showed MAE values of 53.3 ppm, 9.35 ppm and
8.31 ppm for the FCHL, M3GNet and MACE-OFF23-small GNN-TL descriptor
models, respectively. This suggests an approximately 80% reduction in the MAE
with our descriptor, which is likely attributable to differences in the encompassed
descriptor domain.

The cutoff radius for the FCHL descriptor was determined through a grid
search [132], which settled at 4.0 A. In this scenario, the two fluorine atoms in
the terminal trifluoromethyl group (CF3) of the desflurane molecule, which lie
beyond 4 A from the CFyH carbon, were neglected. In contrast, our M3GNet
descriptor had a 5 A cutoff radius during the initial graph configuration and a
4 A cutoff for three-body interactions during graph convolution, capturing the
entire CF3 group. This suggests that the descriptor adequately accounts for
the influence of the terminal trifluoromethyl group. Additionally, the intrinsic
ability of GNN-TL descriptors to account for environments beyond their cutoff
radius, owing to graph convolution, may have contributed to the substantial
improvement in MAE. Notably, the MACE-OFF23-small model, with a cutoff
value of 4.5 A, achieves the highest accuracy, even though it does not capture
the fluorine element at a distance of 4.65 A in the CF3 group. In summary, the
proposed M3GNet and MACE GNN-TL descriptors demonstrate the capability
of predicting **C NMR chemical shifts for molecules outside the training dataset
with an accuracy comparable to that of the state-of-the-art FCHL descriptor.

Lastly, to explore further practical applications of the constructed models, we
validated the NMR chemical shielding constants obtained using semi-empirical
PMT7-level geometries as inputs against the NMR, chemical shift values obtained
using DFT/GIAO-level structures from the training data. This validation
was performed on the QM9 50,000 holdout set and two drug molecule test
sets, as provided by Ref.[132]. The 3C prediction model employed was the
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M3GNet/KRR model. The MAE values for each molecule in the drug datasets
can be found in Figures 6(b) and 6(d). For the QM9 50,000 holdout set, the
result was 3.61 ppm, showing a significant deterioration of 1.33 ppm compared to
when DFT-level geometries were used as inputs. Conversely, predictions for the
40 drugs and 12 drugs test sets showed only minor deteriorations of 0.23 ppm
and 0.04 ppm, respectively. These results suggest that even when using more
readily available PM7-level geometries as inputs, the transferability of the model
remains robust for extrapolative predictions on larger molecules compared to
the training data.
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Table 5.1: Scaling of descriptor dimensions with respect to number of elemental
species Nelem. SOAP descriptors were generated using Dscribe 0.4.0 [134] and
FCHL19 descriptors using QML 0.4.0.12 [363], both with default hyperparameters
as in the QMINMR paper.

Method Nelem  Scaling Dimension
SOAP 5 O(N,flem) 5,740
10 O(NZ...) 22,680
89 O(Nezlem) 1,737,120
FCHL19 5 O(Nflem) 740
10 O(N2..) 2,440
89 O(NZ...) 162,336
SchNet GNN-TL 5 0(1) 128
10 0(1) -
89 0(1) -
MEGNet GNN-TL 5 0(1) 32
10 0(1) -
89 0(1) -
M3GNet GNN-TL 5 0(1) 64
10 0(1) 64
89 0(1) 64
MACE-MP-0-small GNN-TL 5 0(1) 128
10 0(1) 128
89 0(1) 128
MACE-MP-0-large GNN-TL 5 0(1) 256
10 0(1) 256
89 0(1) 256
MACE-OFF23-small GNN-TL 5 0(1) 96
10 0(1) 96
89 0(1) -
MACE-OFF23-large GNN-TL 5 0(1) 224
10 0(1) 224
89 0(1) -

Table 5.2: The architecture dependence of the predictive performance. For
KRR, the Gaussian kernel was applied.

GNN-TL descriptor/Regressor RMSE (ppm)

SchNet /NN [373] 12.8
MEGNet/KRR 20.08+0.55
M3GNet/KRR 10.02+0.37

MACE-MP-0-small/KRR 9.774+0.34
MACE-MP-0-large/KRR 9.7440.27

MACE-OFF23-small/KRR 8.05+0.19
MACE-OFF23-large/KRR 8.154+0.42
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Table 5.3: Predictive performance and data variability of NMR shielding
constants for 5 elements

TH 13C BN 170 o

MAE (ppm) 0.18 2.28 3.42 4.95 2.65
MaxAE (ppm) 7.50 6858 71.62 279.84 39.31
STD (ppm) 1.98 51.96 119.58 224.40 34.07
IQR (ppm) 234 59.93 211.19 354.25 36.77
MAE/STD (%) 9.09 438 286 221  7.78

Table 5.4: The MAE values for the prediction of the 50,000 QMINMR hold out
set, 40 drug molecules from GDB17 Universe and the other containing 12 drugs

with 17 or more heavy atoms. The values in parentheses indicate MaxAE. All
units are in ppm.

FCHL [132] M3GNet MACE-OFF23-small

GNN-TL GNN-TL
50,000 QM9 1.88 2.28 (68.58) 1.87 (59.76)
40 drugs 3.7 3.46 (29.86) 2.83 (16.08)

12 drugs 4.2 4.21 (20.48) 3.85 (24.70)
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5.5 Discussion

5.5.1 Influence of Architectural Choices on Graph Neural
Network Transfer Learning Descriptor Performance

In our exploration of different architectures for generating GNN-TL descriptors,
we observed several patterns. First, as shown in Table 5.1 and Table 5.2, it is
important to note that the accuracy of GNN-TL descriptors does not necessarily
improve with an increase in the dimensionality of the descriptors. With this
in mind, we discuss the architecture of each GNN-based IAP. SchNet, which
operates on GNN-based local descriptors to evaluate systems as summations of
atomic energies, accounts only for pairwise interactions. This limited inclusion
could potentially constrain expressions, leading to inadequate representational
power. The subpar performance of MEGNet during transfer learning may be
attributed to its architectural design as it integrates atomic (local) descriptors
into molecular (global) descriptors through concatenation. This means that
the final piece of information passed to the MLP is not extracted directly
from the end of the model, which might not be the optimal representation for
targeted atomic-wise property prediction; however, it is expected to be suitable
for molecule-wise property predictions. Moreover, the M3GNet architecture,
which considers three-body interactions, has the potential to capture the three-
dimensional structure of molecules with high resolution. Additionally, the MACE
model, an E(3) equivariant GNN, has demonstrated high performance as an IAP,
suggesting that the outputs of its GNN layers are highly accurate in representing
molecular structures. Furthermore, future improvements in accuracy may be
achieved by leveraging the outputs of higher-order GNN layers in the MACE
model, corresponding to the two-body and three-body terms in the atomic cluster
expansion.

5.5.2 Significance of Dataset Size and Diversity

The M3GNet training regimen incorporates data from 187,687 ionic steps
spanning 62,783 compounds, including 187,687 energies, 16,875,138 force
components, and 1,689,183 stress components. This diverse dataset covers
89 elements from the periodic table. The model is not limited to learning
only the energies associated with these elements but extends to atomic-level
forces. Moreover, M3GNet training includes not only stable structures but
also the processes of structure optimization. The ingestion of vast amounts of
data from crystalline systems may have endowed the M3GNet with enhanced
expression, potentially making it adept at interpolating molecular systems. The
pre-trained MACE-MP-0 model was trained using ten times more energy data
of crystalline systems, potentially contributing to the improved accuracy of the
13C NMR chemical shift predictions shown in Table 5.2. On the other hand, the
MACE-OFF23 model, which is specialized for molecules containing 10 elemental
species, was trained on a dataset comprising about 1M energy data points, with
structures containing up to 150 atoms. This extensive training dataset might
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make it more suitable for predicting molecular NMR, chemical shifts. Thus, the
training data for IAPs, much like their architectures, could be a crucial factor in
determining the performance of the descriptors.

5.5.3 Potential for Transfer Learning on Quantum Com-
puters

There is a potential for leveraging quantum computation approaches [17].
Specifically, our 10 qubit QKRR, facilitated by a simulator, demonstrated
a performance comparable to that of state-of-the-art KRR. This is underpinned
by the theoretical equivalence of the NPQC with the Gaussian kernel. The
quantum kernel method stands out because of its capability to compute with
fewer measurement iterations than other quantum computation methodologies,
such as quantum neural networks [9]. In particular, our proposed M3GNet GNN-
TL descriptor can be feasibly realized with a minimum of six qubits, enabling
evaluations with a quantum bit count that is more efficient than traditional
descriptors, such as SOAP. However, embedding for higher-dimensional SOAP
appears to be a challenge, possibly due to noise. From a futuristic perspective,
there is excitement about the possibility of developing kernels that traditional
computers cannot express, as well as accelerating the inversion calculations of
kernel matrices using quantum algorithms. The constant scaling property of
our proposed method concerning element number dimensions may significantly
contribute to real-time material exploration powered by quantum-classical hybrid
algorithms in the near future.

5.6 Conclusion

The dynamics of machine learning and its extensive applications across various
domains are driving cutting-edge research. Our endeavor to integrate transfer
learning with pre-trained AP GNNs for NMR chemical shift prediction offers a
paradigm shift in efficiency and scalability. The GNN-TL descriptor presents an
unparalleled advantage in terms of scalability due to its consistent dimensionality,
irrespective of the number of elements.

Comparative evaluations with other renowned descriptors, such as SOAP,
suggest that the GNN-TL descriptor can match, if not surpass, the performance
of its contemporaries while maintaining a more compact representation. This is
especially important when factoring large datasets, where dimensionality can
exponentially burgeon.

Architectural choice plays a pivotal role in the performance of GNN-TL
descriptors. Moreover, the diversity and vastness of the training dataset, which
encompasses myriad elemental types and structural configurations, augment the
robustness and versatility of the GNN.

Our proposed model has immense potential for creating a unified framework
capable of predicting various atomic and molecular properties simultaneously,
presenting profound implications for accelerated material and molecular research.
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This potential union of multiple predictions can usher in an era of comprehensive
understanding and quicker innovations, possibly revolutionizing fields, such as
catalysis, drug discovery, and material design.

The union of transfer learning with pre-trained GNNs not only augments
prediction accuracy but also drastically reduces learning costs, presenting a cost-
effective and efficient alternative to more computationally intensive methods. As
we move toward an era in which data-driven insights and models govern the pace
of innovation, the method proposed in this chapter offers a promising pathway
for future endeavors in the domain of chemical property predictions with both
classical and quantum computers.



Chapter 6

Lowering the Exponential
Wall: Accelerating
High-Entropy Alloy
Catalysts Screening Using
Local Surface Energy
Descriptors from Neural
Network Potentials

6.1 Abstract

Computational screening is indispensable for the efficient design of high-entropy
alloys (HEAs), which hold considerable potential for catalytic applications.
However, the chemical space of HEAs is exponentially vast with respect to the
number of constituent elements, making even machine learning-based screening
calculations time-intensive. To address this challenge, we propose a rapid
method for predicting HEA properties using data from monometallic systems
(or few-component alloys). Central to our approach is the newly introduced
local surface energy (LSE) descriptor, which captures local surface reactivity at
atomic resolution. We established a correlation between LSE and adsorption
energies using monometallic systems. Using this correlation in a linear regression
model, we successfully estimated molecular adsorption energies on HEAs with
significantly higher accuracy than a conventional descriptor (i.e., generalized
coordination numbers). Furthermore, we developed high-precision models by

79
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employing both classical and quantum machine learning. Our method enabled
CO adsorption-energy calculations for 1000 quinary nanoparticles, comprising
201 atoms each, within a few days, considerably faster than density functional
theory, which would require hundreds of years or neural network potentials,
which would have taken hundreds of days. The proposed approach accelerates
the exploration of the vast HEA chemical space, facilitating the design of novel
catalysts. This chapter is based on Ref. [Shiota, Ishihara, Mizukami, Digital
Discovery, 4, 738-751 (2025)].

6.2 Introduction

High-entropy alloys (HEAs), composed of five or more elemental species at
concentrations ranging from 5 to 35 at%, have emerged as versatile materials with
promising applications in catalysis and as functional materials [374, 375, 376, 377].
Their rich compositional diversity facilitates the way for the ”cocktail effect”,
resulting in unexpected properties that often surpass those of traditional
single-element systems [376, 378]. Recent advancements have highlighted their
superior catalytic performance [379, 380, 381, 382]; however, the vast array of
potential combinations of elements poses a significant challenge for experimental
exploration.

To address this complexity, studies have focused on computational methods
for efficient screening [383, 384, 385, 382, 386]. First-principles calculations, such
as density functional theory (DFT) [127, 387, 81, 388], coupled cluster (CC)
theory [389, 129, 390] and many-body perturbation theory (MBPT) [391, 128],
describe chemical reactions on solid surfaces with high accuracy. Volcano plots,
derived from first-principles calculations, illustrate the optimal adsorption energy
range for catalytic activity, balancing between excessively strong and weak
interactions [40, 392, 386]. However, the heterogeneous surfaces of HEAs
complicate the molecular adsorption characteristics, making first-principles
approaches computationally intensive..

To circumvent these limitations, neural network potentials (NNPs) based
on the Behler-Parrinello framework [45, 228, 393, 394, 395] and graph neural
networks [114, 396, 229, 230], offer promising solutions. Universal NNPs can
encompass extensive elemental diversity and achieve high computational efficiency
while maintaining accuracy on par with that of DFT [396, 229, 231, 397, 124,
264, 236, 116, 125, 251, 278, 47, 237, 335, 266]. Recently, NNPs specializing in
HEASs have emerged, made more lightweight through knowledge distillation [398].
These advances have accelerated the prediction of catalytic properties; however,
computational challenges remain.

In contrast, descriptor-based machine learning models offer scalability by
predicting adsorption energies through generalized coordination numbers (GCNs),
d-band centers, surface microstructural features, and local atomic environments,
bypassing direct energy assessments [399, 400, 401, 402, 384, 403, 404, 405, 406,
383]. These models have been proposed for predicting the adsorption energies of
the remaining candidates by regressing the adsorption energies obtained from
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Figure 6.1: (a) Relationship between the molecular adsorption energy and the
newly introduced descriptor, i.e., the local surface energy (LSE), for monometallic
and high-entropy alloy (HEA) nanoparticle (NP) systems. The LSE descriptor
developed in this chapter effectively captures the variation in adsorption energy
across different adsorption sites and NP compositions. (b) Near-exponential
increase in the number of NPs and adsorption sites as the number of elements
in the NPs increases from monometallic to multicomponent systems. (c) The
model is constructed through linear regression between the adsorption energies
and the LSE using atomic energies from the NNP. The CO adsorption energies
are evaluated on the ontop irreducible sites of facets (circles), edges (squares),
and corners (triangles) of the monometallic NPs indicated by the blue symbols.
(d) Fast catalytic property prediction workflow using neural network potentials
(NNPs). The adsorption energy E,q is predicted from the LSE of the HEA NP
surface prior to adsorption.
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several first-principles calculations. Nonetheless, their applicability to HEAs
is hampered by the complexity of alloy compositions and their dependence on
extensive first-principles calculations.

To address these challenges, we propose a methodology for predicting the
molecular adsorption energies on multi-element surfaces, such as HEAs, without
direct adsorption-energy computations. Our approach focuses on a new descriptor
that reflects the local reactivity of solid surfaces at atomic resolution. A key
feature of the proposed method is its ability to predict the properties of multi-
element systems using models constructed from data on single-element systems.
We validated our method by comparing it with DFT for predicting the adsorption
energies of CO on IrPdPtRhRu HEA NPs.

6.3 Methods

In this section, we introduce a novel model that employs data on monometallic
surfaces to predict molecular adsorption energies on multimetallic surfaces. In
Section 6.3.1 2.1, we clarify the target systems and the problems addressed in
this chapter. In Section 6.3.2, we introduce the LSE—a scalar descriptor that
captures the atomic-level surface stability—which is the foundation of our model
construction and prediction. Section 6.3.3 outlines the methodologies employed
to develop and refine the prediction model using the newly introduced LSE
descriptor and data derived from monometallic surfaces.

6.3.1 Target Systems and Problems

Designing new HEAs comprising five elements selected from a pool of
approximately 40 different elemental candidates results in approximately
6.58 x 10° possible combinations. Moreover, even for a given set of five elements,
an exponentially large degree of freedom exists in the distribution of these
elements in the actual alloy. Furthermore, the catalysts synthesized in practice
and use are NPs, which differ from ideal surfaces in that they contain sites with
different coordination numbers, such as corners, edges, and facets (Figure 6.1(b)).
These diverse surface environments are the source of the cocktail effect, which
contributes to the variability in catalytic properties. However, considering all
these degrees of freedom when screening new catalyst candidates is not feasible.
In this chapter, our objective was to identify the distribution of molecular
adsorption energies, assuming that the elemental composition, size, and shape
of the HEA NPs were predetermined.

We made the following assumptions regarding the structure and composition
of HEA NPs: the structure is a truncated octahedron NP with 201 atoms in a face-
centered cubic (fcc) arrangement (see 6.1(d)), the elemental composition ratio
is as uniform as possible, and the atomic arrangement is randomly determined
following a uniform distribution. We also assumed that the molecule occupied
only a single top site. In HEA5y;, there are 122 sites. Even with these
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assumptions, the number of adsorption sites on HEA NPs is approximately
1.3 x 10138 (Figure 6.1(a)).

As a specific demonstration system, we measured the adsorption energies of
CO molecules on IrPdPtRhRu NPs. In 2020, Wu et al. successfully synthesized
IrPdPtRhRu NPs with nearly identical experimental composition ratios [379].
The investigation of the adsorption characteristics of CO molecules is useful for
evaluating the catalytic properties of HEAs [384, 407]. As precursor systems
for developing predictive models for HEAs, the monometallic NPs are of the
truncated octahedron type corresponding to M, n=38, 79, 116, 201. For the
on-top adsorption of the CO molecule on monometallic NPs Mgy, only the
irreducible adsorption sites are calculated as shown in Figure 6.1(c). The
adsorption energy F.q is calculated as follows:

Bua = EQYM — ESQ — My (6.1)

where ES)?/ M ECQ, and EMr denote the total energies of CO/M,,, CO, and M,,,
respectively. The adsorption energies were computed using both the pretrained
universal NNP M3GNet [124] and DFT at the Perdew-Burke-Ernzerhof (PBE)
level.

6.3.2 Local Surface Energy Descriptor
The LSE descriptor is defined as follows:

LSE = g5t phulk (6.2)

atom atom?

where ES and EPUk denote the atomic energies in the surface and bulk
environments, respectively. The LSE represents the energy loss caused by a single
atom in a single-element (or unary) bulk environment when exposed to a single-
or multi-element surface. This definition enables the quantification of the surface
stability, even for surfaces in complex environments and multicomponent systems.
The atomic energies in Equation (6.2) can be evaluated via energy density analysis
(EDA) from first-principles calculations, such as DFT [408, 409, 410, 411, 412],
which was introduced by Nakai in 2002 [408]. EDA is accurate because it is
based on first-principles calculations; however, it is not suitable for exhaustive
calculations, such as those in this chapter, because of its high computational
cost. To reduce the computational cost, all the LSE values in this chapter were
evaluated using a machine learning interatomic potential (MLIP), specifically
the universal NNP M3GNet. In the previous chapter, we demonstrated that the
intermediate information from M3GNet can efficiently and accurately represent
the local environments of atoms in molecules [268]. In the Behler-Parrinello NNP
framework, the total energy Fio of a system comprising IV atoms is calculated
as the sum of the energies of the atoms.

N
FEior = Z Ezitom (63)
I=1
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Figure 6.2: Framework for predicting Local Surface Energies (LSEs) using a
pre-trained universal neural network potential (NNP). The gray arrow indicates
the computational flow from the pre-trained universal NNP, and the blue arrow
represents the flow that generates LSEs. Atomic coordinates {Z;, R} are
processed by a graph neural network (GNN) layer to extract atomic features. A
multi-Layer perceptron (MLP) layer predicts the atomic energies EZ, . which
are reused to compute LSEs as the difference between surface atomic energies
Bt and bulk atomic energies EPUX (Zgy,¢). The resulting LSEs are visualized
with a color map, highlighting local reactivity on the surface.
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Yoo et al. demonstrated the ability to map the atomic energies obtained by
NNPs onto NP and surface systems [413]. Deringer et al. utilized the Gaussian
approximation potential model to compute the atomic energies, which were then
used to explore the configurational space and investigate the nature of defects
in crystals [414, 415]. MLIPs such as NNPs enable efficient evaluation of LSEs
because the atomic energies of all adsorption sites in one system can be obtained
in a single calculation. Figure 6.2 illustrates the workflow for evaluating the
Local Surface Energy (LSE) using a pre-trained universal NNP.

6.3.3 Prediction Model Based on Monometallic Data

We introduce a predictive model for the adsorption energy of a molecule on
a multi-element surface. This model is defined as a regression between the
molecular adsorption energy on monometallic surfaces for each constituent
element M of the multimetallic system and the LSE of the adsorption site prior
to molecular adsorption. Figure 6.1(c) illustrates the workflow for constructing
the predictive model. As the simplest model, we adopted the least-squares linear
regression model expressed as follows:

E%(Predict.) =ay X LSE + G- (6.4)

Here, ap and By denote the regression coefficients and constants, respectively,
for each element M. Simple regression makes the model explainable.
represents the magnitude of the adsorption energy response to a change in LSE.
Bum represents the adsorption energy of a molecule when the LSE is 0, that is,
when the surface atom has the same energy as that in the bulk environment. For
prediction, the adsorption energy is estimated by substituting the LSE values of
the multi-element alloy surface prior to molecular adsorption into Equation (6.4).
Figure 6.1(d) illustrates the workflow for predicting CO adsorption energies on
HEA NPs using the proposed model. Here, the prediction model using adsorption
energies from the NNP for regression is referred to as the LSE-based prediction
model, while the model using adsorption energies from DFT is referred to as the
Improved-LSE (I-LSE) prediction model. Details of the model construction can
be found in the Computational details section.
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Figure 6.3: Adsorption energies of CO calculated using the NNP for each on-top
adsorption site of monometallic NPs M,, with respect to the LSE. Solid lines
represent the linear regressions of the adsorption energies of a CO molecule at
the on-top sites of each monometallic NP according to Equation (6.4). Circles,
squares, and triangles at each datapoint represent the facet, edge, and corner
CO adsorption sites, respectively.
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Figure 6.4: Adsorption energies of CO calculated using the NNP for each on-top
adsorption site of 20 HEA5p; NPs with respect to the LSE. The inset presents a
comparison of the distribution of adsorption energies for CO between the HEA
NPs and monometallic NPs, with the x- and y-axes rescaled from Figure 6.3
for consistency. Dashed lines represent the linear regressions of the adsorption
energies of a CO molecule at the on-top sites of each monometallic NP based on
Equation (6.4). Circles, squares, and triangles at each datapoint represent the
facet, edge, and corner CO adsorption sites, respectively.
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Figure 6.5: Bar graphs in (a), (b), and (c) show the evaluated adsorption energies
of CO on the (111) plane of a randomly selected HEA5g; at each on-top site
of the facet, edge, and corner, respectively. The atoms of the selected plane
are numbered as shown in (d). For each adsorption site, from left to right, the
bar graph represents the adsorption energy obtained via direct evaluation using
NNP (NNP direct), LSE-based prediction (LSE predict.), DFT, and LSE-based
prediction parameterized by DFT data (I-LSE predict.). (d) Color mapping of
the LSE values of the atoms on the selected plane and corresponding adsorption
energies shown in (a), (b), and (c), along with the RMSE values relative to the
DFT results. The asterisk indicates that the results of the structural optimization
converge on the bridge site rather than the on-top site.
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6.4 Results

In this section, we present the results for the prediction of the adsorption
energy of HEA NPs using the proposed methods based on the LSE descriptor,
focusing on the computational efficiency and precision. In Section 6.4.1, we
demonstrate a strong correlation between the adsorption energy and the LSE
descriptor, confirming that the LSE is a reliable descriptor of the adsorption
energy between different sites in the NP. In Section 6.4.2, we verify the accuracy
of LSE-based predictions by comparing them with DFT calculations, thereby
proving the robustness of the prediction model. In Section 6.4.3, we analyze
how the diverse surface structures and elemental compositions of 1000 different
HEA NPs, comprising 122000 environments, lead to a wide range of adsorption-
energy distributions. Finally, in Section 6.4.4, we compare the computational
efficiency of our LSE-based adsorption energy predictions with that of direct
adsorption-energy predictions using the traditional NNP and DFT methods.

6.4.1 Correlation Between Adsorption Energy and Local
Surface Energy

The correlation between the LSE and the CO adsorption energy F.q(NNP) of
the monometallic NPs obtained using the NNP is shown in Figure 6.3. The solid
lines represent linear regressions of the adsorption energies of a CO molecule
at the top sites of each monometallic system. For all the metal elements, the
relationship between the adsorption energy F,q(NNP) of the CO molecule at
the top site and the LSE is linear. The LSE values of all the adsorption sites
for all elements range from approximately 0.2 to 1.2 eV. In other words, in
all cases, the atomic energies are more unstable in the surface environment
than in the bulk environment, which is reasonable given the lower coordination
number in the surface environment. The adsorption energy E,q(NNP) ranges
from approximately -1.2 to -2.0 eV. Next, we examined the adsorption sites on
the NPs. For all elements, the adsorption energy decreased in the following
order: facets, edges, and corners. In contrast, the LSE values increased in the
order of facets, edges, and corners. The LSE values and adsorption energies were
concentrated at the facets, edges, and corners, and energy gaps existed between
each group of adsorption sites. The RMSE was 0.035 eV, revealing a strong
correlation between the LSE and the adsorption energy (see Figure D12 in the
Details of the LSE-based regression models in Appendix).

Figure 6.4 presents the adsorption energies calculated directly using the
NNP and their predicted values (dashed lines). The RMSE was 0.150 eV,
which exceeded that of the unitary system. However, a strong correlation was
observed between the LSE and adsorption energy in the HEA | indicating that the
adsorption energy in a multicomponent environment can be effectively predicted
(Figures D14(a) and (b) in the Appendix). This finding suggests that the LSE
can efficiently and accurately predict the adsorption energies not only for unitary
systems but also for complex systems such as HEAs. Notably, when we used
the adsorption-energy range of -2.0 to -1.2 eV in the unitary system as the
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Figure 6.6: (a)Distributions of 122,000 LSE values of all the topmost layer atoms
of the 1000 structure-optimized HEA5p; NPs for each element and their sum,
respectively. (b) Distributions of adsorption energies of CO for all the on-top
adsorption sites predicted using the LSEs in (a) and Equation (6.4). Solid lines
represent the values for monometallic NP Moy, (M=Ir, Pd, Pt, Rh, and Ru).

interpolation region for F,q(Predict.), the predictions were more reliable than
those for other ranges. In the extrapolation region of E,q(Predict.), the difference
from FE,q(NNP) increased, and a maximum shift of approximately 0.5 eV was
observed.

Next, we explored the trends for each elemental species. Figures 6.4
and D14(a) and (b) in the Appendix show that for all elemental species, the
adsorption energies are nonlinearly estimated toward the unstable adsorption
energy side. Additionally, the nonlinear region was dominated by adsorption
at the facet sites. Pd atoms in HEA nanoparticles clearly show this non-linear
behavior; unlike Pt atoms, they show a reversed pattern of adsorption energies.
Compared to sites with low coordination numbers, such as corner and edge
sites, the atoms on the facets were coordinated with eight or nine atoms. This
increased coordination number renders them more sensitive to the surrounding
environment than unitary systems. Consequently, the complex environment of
HEASs may introduce unexpected nonlinearity into predictions. To show that
this nonlinear trend can be captured by training the adsorption energies on HEA
NPs, we applied kernel ridge regression (KRR) and quantum circuit learning
(QCL) regression [9] to construct an adsorption energy prediction model for each
elemental species at the HEA NP adsorption sites. Figures D14(c) and (d) in the
Appendix show the correlation plots between the predicted and actual adsorption
energies of CO on 14 HEA NP patterns generated by the regression model using
KRR and QCL regression, respectively. The RMSEs of the adsorption energy
predictions for all the adsorption sites provided by the KRR and QCL regression
models were 0.0580 and 0.0579 eV, respectively, indicating comparable nonlinear
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regression performance. Compared with the uncorrected predictions based on
the LSE, the RMSE values were reduced by a factor of approximately three.

6.4.2 Density Functional Theory Verification of the Local
Surface Energy Based Predictions

The accuracy of the adsorption energy predictions was verified using an NNP
and the LSE with DFT calculations while seeking to increase the prediction
accuracy. In our computing environment, the computation time for evaluating
the adsorption energy via DFT was approximately 103 times that of the NNP, as
indicated by Table 6.1. Therefore, we randomly selected one of the 20 structures
of HEA5(; discussed above and evaluated the adsorption energies for 19 sites on
the (111) plane, as shown on the right side of Figure 6.5. The selected HEA9g;
was IrygPd4oPts1 RhygRuyg. First, the prediction accuracy of the adsorption
energies between the prediction based on the LSE and direct NNP calculation
was compared with that of the DFT calculations. The RMSE of the adsorption
energy for all sites obtained via the direct NNP calculation was 0.445 eV. The
RMSE value of the prediction based on the LSE was 0.425 eV, corresponding to
a slightly higher accuracy (0.020 eV) compared with the direct evaluation via the
NNP. Thus, the accuracy of the prediction model using the LSE was close to that
of the NNP. Although the RMSE of 0.445 eV for direct NNP calculations may
appear large, the M3GNet NNP systematically overestimates CO adsorption
energies, with a mean error (ME) of 0.388 ¢V relative to DFT as shown in
Figure 6.5. A similar overestimation trend is observed for monometallic NPs,
where the RMSE and ME against DFT are 0.439 eV and 0.379 eV, respectively.
As a result, the LSE-based prediction also displays a systematic overestimation
of the CO adsorption energy in comparison with DFT. Notably, the adsorption
energy range for the 19 HEA sites spans from 1.329 eV to 1.567 eV (by DFT
and NNP, respectively), indicating a broad distribution of possible adsorption
energies. Given this wide range, a constant shift between NNP and DFT remains
comparatively tolerable for high-throughput screening of HEA catalysts.

While the M3GNet NNP has difficulty quantitatively describing CO-adsorbed
states, it effectively captures the atomic-level stability of the NPs. This
is supported by the small RMSD (0.09 A) between the DFT-relaxed and
NNP-relaxed HEA NP structures, as well as the LSE RMSE of 0.026 eV
for the 19 target sites, indicating that M3GNet—trained on diverse crystal
environments—can reliably describe complex HEA NP configurations despite
their absence from its original training set. Consequently, by combining DFT-
derived adsorption energies for monometallic NPs with M3GNet-derived LSE
(i.e., the I-LSE method), the prediction error is halved to an RMSE of 0.234 eV.
This improvement arises because the LSEs are calculated from the NPs before
adsorption, thereby avoiding the systematic overestimation of adsorption energy
found in direct NNP calculations, while retaining the efficiency of an LSE-based
framework.
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6.4.3 Distribution of the Adsorption Energy on High-
Entropy Alloy Nanoparticles

Figure 6.6(a) shows the 122000 LSE values of 1000 HEA NPs for each element
and their total distribution. This distribution becomes smoother and converges as
the number of NP patterns increases. The sum of all the elemental distributions
shown in gray in Figure 6.6(a) can be considered as an indicator of the reactivity
of the entire HEA NP surface of the given elements. In the monometallic system,
the LSE ranged from approximately 0.2 to 1.2 eV. However, in the quintic
HEA environment, these values underwent significant changes and ranged from
approximately -0.1 to 2.4 eV. The distribution of each element exhibited two
prominent peaks. For Pt and Pd, the LSE exhibited a major peak near 0 eV
(or a slightly lower energy), indicating improved stability compared with that
in the monometallic environment. Second, the smaller peak remained nearly
unchanged for Pd, whereas the LSE range expanded by approximately 0.3 eV
for Pt. For Ir and Ru, the LSE values shifted toward higher energies compared
with those in the monometallic systems. For Rh, a slight increase in the LSE
range was observed, lying between those of the stable Pt and Pd groups and the
less stable Ir and Ru groups.

Figure 6.6(b) presents the predicted adsorption energies of CO on all the
on-top sites of 1000 HEA5p; NPs obtained using Equation (6.4) with LSE values.
The range of the on-top adsorption energy F,q for CO in the monometallic
system (Figure 6.3) expanded by approximately 0.8 eV, from approximately
-2.0 to -1.2 eV to -2.5 to -0.9 eV. This serves as an example of how adsorption
characteristics diversify in a quintic HEA environment. The distribution of the
adsorption energies for each element also exhibited two prominent peaks. Next,
we examined the differences between the elemental species. For Pd and Pt, the
LSE values were very close, but the range of adsorption energies was broader on
the high-energy side by 0.2 eV for Pt. Similar trends were observed for Ir and
Ru on the low-energy side. In the case of Rh, a slight extension in the range
of both the high- and low-energy sides was observed compared with that of the
monometallic system. In particular, the adsorption energy was concentrated in
three adsorption site groups (corners, edges, and facets) in the monometallic NP
environment, but these groups exhibited a broader range of values in the HEA
NP environment. This representation as a distribution can help characterize and
visualize the potential cocktail effect for efficient screening of novel HEAs across
the periodic table.

6.4.4 Universality of the Local Surface Energy Based
Method

In this section, we discuss the universality of the LSE-based prediction model
constructed in this chapter. As described in Section 6.4.1, due to the vastness of
the chemical space for HEA NPs, we restricted both the model construction and
the target NP shape to truncated octahedra. However, the LSE-based model can
be universally applied to any HEA NP shape, provided the structure is given.
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Figure 6.7: Universality of the LSE-based prediction model for CO adsorption
energy across different HEA nanoparticle (NP) shapes. (a) Predicted adsorption
energies from the NNP for all ontop sites on a regular octahedron-shaped HEA 146,
plotted as a function of LSE. (b) Corresponding predictions for an icosahedron-
shaped HEA147. The dashed lines represent the LSE-based linear regression
model constructed for monometallic truncated octahedron NPs.

This is because the universal NNP is capable of evaluating atomic energies for
the given structure and thus computing the LSEs. The resulting LSEs can then
be fed into the LSE-based model—originally constructed using monometallic
data—to predict adsorption energies for the given HEA NP.

To verify the shape-independence of LSE-based prediction models, we
evaluated its performance on two test sets: HEA146 in the form of a regular
octahedron and HEA 47 in the form of an icosahedron, as shown in the respective
subsets in Figures 6.7(a) and (b). Figures 6.7(a) and (b) present the predicted
CO adsorption energies from the NNP for all possible ontop sites on the
regular octahedron and icosahedron, respectively. The corresponding LSE-based
predictions are represented by the dashed lines as a function of LSE.

For both NP shapes, we found clear correlations with the predictions obtained
from the LSE-based model. The RMSE were 0.156 eV for the regular octahedron
and 0.142 eV for the icosahedron, comparable to the RMSE of 0.150 eV achieved
for truncated octahedra. These results demonstrate that our predictive framework
exhibits universality with respect to NP shape.

6.4.5 Comparison with Generalized Coordination Number
Based Prediction Model

In this section, we employ a GCN descriptor—a scalar descriptor similar to
LSE—to construct a prediction model based on monometallic data and compare
its predictive accuracy. The GCN descriptor quantifies the environment of the
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Figure 6.8: (a) Adsorption energies of CO calculated using the NNP for each
on-top adsorption site of monometallic NPs M,, with respect to the GCN values.
Solid lines represent the linear regressions of the adsorption energies of a CO
molecule at the on-top sites of each monometallic NP and the GCN values. (b)
Adsorption energies of CO calculated using the NNP for each on-top adsorption
site of 20 HEA59; NPs with respect to the GCN values. The dashed lines
represent the same linear regressions as in (a). Circles, squares, and triangles
at each datapoint represent the facet, edge, and corner CO adsorption sites,
respectively.
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adsorption site by counting the coordination number of the nearest-neighbor
atoms, and it is defined in Ref. [399] Following the same approach used for
the LSE-based predictive model of Equation (6.4), we examined the correlation
between CO adsorption energies on monometallic surfaces and GCN values.
Linear regression models were then constructed for each element type. As
shown in Figure 6.8(a), similar to LSE, a linear model accurately represents the
relationship, achieving a precision of approximately 0.06 eV. The parameters of
the linear regression models are summarized in Table 4 in Appendix section.

Subsequently, we applied these linear models to predict the adsorption
energies of the 20 HEA NPs presented in the Results section to evaluate the
prediction accuracy. As depicted in Figure 6.8(b), although the GCN-based
predictions correlate with the directly computed adsorption energies, the discrete
nature of GCN leads to variations of approximately from 1 to 1.5 eV even for
identical GCN values. The resulting RMSE was 0.278 eV, approximately twice
as large as that obtained using the LSE-based predictions, indicating that GCN
alone is insufficient for capturing the environmental changes in multicomponent
systems. This trend is consistent with findings reported by Namba et al. [401].
Nonetheless, future improvements may be possible by combining GCN with other
descriptors, such as LSE, to enhance the predictive capabilities of monometallic
data-based adsorption energy prediction models.

6.4.6 Computational Efficiency

Finally, we compared the computational performance of our method with that of
conventional approaches for obtaining adsorption energy distributions. The time
required to predict the adsorption energies of CO at 122000 sites across 1000
patterns of HEAog; using LSE was compared with the time required for direct
calculations using the NNP and DFT. The use of the LSE eliminates the need
for optimization of the adsorption structure for CO molecules. The computation
times for the NNP and DFT are presented in Table 6.1. The computation time
per structural optimization step with the NNP was approximately 1000 times
shorter than that with DFT. However, as mentioned in Section 6.4.4, performing
direct structural optimizations for 122000 adsorption sites requires approximately
171 days using the NNP and 188 years using DFT. These lengthy timescales were

4 NNP calculations with M3GNet were performed using an AMD EPYC 7532 32-core
processor with 64 CPUs.

5 DFT calculations with VASP were performed using 10 Intel(R) Xeon(R) Platinum 9242
CPUs each with 96 CPUs in an MPI parallel configuration, for 960 CPUs.

Table 6.1: Computational costs for 19 geometry optimizations of CO adsorption
on the (111) planc on II‘4QPd40Pt41Rh4oRU40 HEA NP via NNP and DFT.

total time[sec.] total step[step] sec./step
NNP? 2314 10480 0.22
DFT® 925518 5008 184.81
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avoided by using the proposed method. The most time-consuming process in
our approach is obtaining the LSE values through NNP structural optimization
of 1000 HEA NPs, which was completed in just 1.4 days. The significant
reduction in the execution time for adsorption energy predictions achievable
with this method is expected to facilitate the screening of catalytic properties
for HEAs with exponentially large combinations using the entire periodic table
as candidates.

6.5 Discussion

We utilized the atomic energy obtained from the NNPs and introduced a metric
called the LSE, which represents the surface energy per atom. Using the LSE, we
determined the adsorption energy of CO molecules on the top sites of I'lPdAPtRhRu
HEA5p; NPs with a large number of atomic combinations as a distribution
(Figure 6.6(b)). This approach offers a novel means of analyzing the atomic
energies to evaluate various adsorption energies in multicomponent systems such
as HEAs. The adsorption-energy distribution obtained via LSE prediction can
help efficiently and effectively characterize and visualize unexpected cocktail
effects induced by the vast chemical space of HEA NPs.

Notably, our calculations solely considered the adsorption energies on
monometallic NPs and isolated multicomponent NPs, without the need for
a direct evaluation of the CO molecular adsorption energy on the HEA. This
approach enables the evaluation of adsorption energies approximately 10° times
faster than direct DFT calculations, facilitating the visualization of the cocktail
effect. Regarding accuracy, a comparison with DFT calculations revealed that the
predictions based on the LSE were nearly an order of magnitude larger than the
chemical accuracy, although they were not quantitatively accurate. Nonetheless,
the relative energies exhibited a similar trend, indicating that qualitative
comparisons that consider the influence of the surrounding environment on
each element are feasible. Consequently, this method can be employed as a
screening tool prior to applying DF'T calculations or high-level quantum chemical
methods such as CC theory.

The LSE-predicted adsorption energies were highly accurate, with an RMSE
of 0.150 eV relative to the correct values, despite their low cost compared with
direct evaluations. However, nonlinearity relative to the correct values was
observed, indicating nonlinear behavior with respect to the LSE. We introduced
a naive method to capture this nonlinearity: nonlinear regression between the
directly evaluated CO adsorption energy and the LSE. We modeled nonlinear
regression with KRR and the classical quantum hybrid algorithm QCL regression.
Learning the adsorption energies for only 732 sites for NPs in six patterns of
structures improved the resulting LSE predictions thrice for the remaining 14
patterns tested for 1708 sites. The constraint that the norm of the parameters in
QCL regression must equal 1 is expected to act as regularization. The results of
the KRR and QCL regression models indicated similar regularization capabilities.
Although our adsorption-energy correction model does not inherently require
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quantum computing, its utility may be extended to a wider chemical space and
the construction of models encompassing the entire periodic table. Furthermore,
the adsorption energies of quintet systems were studied; it may be possible to
systematically increase the accuracy by adding binary and ternary adsorption
energies to the model.

Finally, we discuss potential applications of the proposed method for designing
chemical reactions for catalyst and device development. Previous studies
examined the role of atomic energy in increasing the accuracy and efficiency of
NNPs and validated atomic-energy mapping results [413, 416, 417, 418, 419].
Recently, studies have attempted to gain chemical insight from atomic
energies [420]. However, to the best of our knowledge, the proposed LSE
prediction method is the first to demonstrate that atomic energy can serve as a
descriptor for the efficient evaluation of catalytic properties. Moreover, in contrast
to atomic energies, which are absolute quantities, LSEs are relative quantities and
are thus expected to be less sensitive to differences in computational methods,
such as the treatment of basis functions and inner-shell electrons. The proposed
approach enhances chemical reaction design—a crucial component of machine
learning-based material design—which has garnered significant attention in the
scientific community over the past few years due to its promise to accelerate the
discovery and development of useful materials [421, 422].

6.6 Conclusion

We developed a computational methodology for predicting the molecular
adsorption energies on HEAs using the LSE descriptor derived from the NNPs
calculated atomic energies. This method addresses the challenge of evaluating
the vast chemical space of HEAs due to their compositional diversity and the
computational expense associated with direct DFT and NNP calculations. The
LSE descriptor efficiently captures the local reactivity of surface atoms, enabling
rapid and accurate prediction of adsorption energies across a wide range of HEA
configurations.

Our approach significantly accelerates the computational process, reducing
the computation time from hundreds of years with DFT and hundreds of days
with the NNP to only a few hours, which makes it a practical tool for materials
discovery and catalyst design. The adoption of nonlinear regression techniques
combined with advanced machine learning models, such as KRR and QCL
regression, has increased the accuracy of adsorption-energy predictions, even in
the face of the nonlinearity inherent in multicomponent systems.

Building upon this work, future research can extend the application of the
LSE descriptor to other molecular species and reaction systems, validating and
enhancing its predictive accuracy across a broader spectrum of catalytic processes.
Integrating the LSE descriptor with advanced machine learning algorithms could
facilitate large-scale screening of HEA compositions, accelerating the discovery of
optimal catalysts for specific reactions. Moreover, combining the LSE descriptor
with additional descriptors, such as surface microstructural features or GCN,
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offers the potential to further refine predictive accuracy by accounting for local
atomic environments in more detail [399, 400, 401, 402, 384, 403, 404, 405, 406,
383].

In this chapter, we assumed that the HEA NPs have random elemental
configurations following a uniform distribution. However, short-range order is also
important in high-entropy alloys [423, 424, 425]. By combining our method with
techniques for quantifying short-range order using E(3)-equivariant graph neural
networks [426], we can potentially obtain more accurate distributions of reactivity.
This integration would allow us to capture the effects of atomic arrangements
more precisely, leading to improved predictions of catalytic properties.

Moreover, this approach holds the potential to consider more realistic
environmental conditions, including the behavior of catalysts in solution or under
operational settings. Incorporating factors such as solvent effects, temperature,
and pressure into the screening process would enhance the relevance and
applicability of the predictions, leading to more effective and practical catalyst
designs. Furthermore, applying the LSE framework to other material systems,
such as high-entropy nitrides, oxides, and carbides, could further expand its
impact on materials design.

In conclusion, the method proposed in this chapter not only paves the way for
rapid and accurate computational screening of catalytic materials but also sets
the stage for developing computational tools capable of handling the complexities
of modern materials science—particularly in the realm of high-entropy materials.



Chapter 7

Conclusions

In this dissertation, we argue that extending quantum computation beyond toy
models to real chemical problems requires sophisticated integration with state-
of-the-art classical computing. Accordingly, we developed a suite of quantum-
classical interfaces to achieve this integration. Whereas most quantum-classical
hybrid algorithm research has focused on exploiting quantum speed-ups, the
classical side—responsible for tasks such as Hamiltonian preparation and post-
processing of quantum-computation outputs—has often been overlooked. For
instance, constructing the second-quantized Hamiltonian scales as O(m?®),
where m is the number of spin-orbitals, and developing practical generation
schemes for condensed-phase systems has long been an overlooked challenge.
Likewise, the classical post-processing required to evaluate energy derivatives
after a quantum computation can become a significant bottleneck. Our first
contribution integrated a highly parallelized, high-performance-computing-ready
quantum-chemistry package with quantum processors, thereby mitigating both
Hamiltonian construction and force evaluation costs. Second, anticipating an
era in which fault-tolerant quantum computing (FTQC) will deliver small but
high-accuracy datasets, we proposed a total energy alignment (TEA) protocol
that reconciles heterogeneous data from multiple electronic structure methods.
This protocol enabled the training of a universal machine learning interatomic
potential (MLIP) capable of learning seamlessly across molecular and crystalline
domains. Finally, we showed that the intermediate information of the pre-
trained MLIPs can be repurposed as compact descriptors for materials-oriented
quantum ML models, achieving rapid and accurate property predictions—even
on present-day, qubit-limited hardware or quantum circuit emulators.

Collectively, these advances closed critical gaps on the classical side of hybrid
workflows and charted a practical path toward deploying quantum computing for
practical atomic-scale chemical problems. The remainder of this chapter revisits
the specific contributions presented in each preceding chapter, offering a more
in-depth discussion of their outstanding challenges and future prospects than
was provided in the individual chapter conclusions.

Chapter 3 introduced a quantum-classical hybrid interface that combines

99
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the massively parallel, low-scaling quantum-chemistry package CP2K with a
quantum-circuit emulator. Classical hardware constructs large second-quantized
Hamiltonians and evaluates analytic nuclear forces, while the quantum back-end
efficiently diagonalizes those Hamiltonians with quantum algorithms such as
variational quantum eigensolver and quantum phase estimation. Calculations on
liquid water, semiconductor surfaces and an enzymatic active site showed that
this approach already permits geometry optimization and ab-initio molecular
dynamics for realistic condensed-phase systems using quantum computers. In
particular, benchmark calculations on liquid-water cells containing 64-1,024
H>0 molecules revealed that Hartree-Fock (HF) calculations, Hamiltonian
construction and analytic force evaluation scale almost linearly with system size
and still finished within about 30 minutes even for the periodic cell containing
1,024 water. Conversely, the present study employed a minimal active space of 2
electrons in 4 spin-orbitals, which is too small to recover the second O-O peak
observed in the 300 K radial distribution function; the overall accuracy therefore
remained close to that of plain HF theory. This limitation can be alleviated
by designing larger, chemistry-driven active spaces—e.g. via quantum-selected
configuration interaction [32, 33]—or by combining the quantum region with an
efficient density functional theory (DFT) embedding scheme [205, 203]. Taken
together, these results showed that controlling the classical overhead makes
it realistic to apply forthcoming quantum processors to chemically relevant
condensed-phase problems.

Chapter 4 presented TEA, an efficient protocol that integrates heterogeneous
quantum-chemical datasets with almost no redundant calculations. Constructing
a universal MLIP that spans a broad range of the periodic table demands a
large, high-accuracy quantum-chemical dataset covering an extensive domain.
Applying TEA to merge a hybrid generalized gradient approximation (GGA)
organic set with a large inorganic GGA set enabled the training of MACE-
Osaka24—the first open-source universal MLIP spanning both molecular and
crystalline systems—which matched or outperformed specialized models while
lowered the computational barrier to universal MLIP development and use. Yet
TEA still relies on suitable reference atomic energies and geometries—harder
to secure for strongly correlated, charged, or relativistic systems—and on
a single global scaling factor that may prove insufficient in niche cases,
motivating adaptive corrections or ML surrogates that predict fidelity gaps.
Future testing on higher-level quantum-chemical datasets, explicit inclusion of
correlation and relativistic effects, and continued advances in neural-network
architectures, training strategies, and hyperparameter optimization should bolster
the robustness and accuracy of universal MLIPs. As ever-larger, more diverse
quantum-chemical datasets emerge, TEA and models like MACE-Osaka24 can
steer the creation of integrated, widely accessible foundation models that remain
faithful to quantum chemical calculations yet flexibly interface with varied
computational approaches, accelerating our exploration of increasingly complex
chemical systems. Furthermore, once high-accuracy quantum-chemical data
generated on quantum computers become widely available, we believe that our
methodology will efficiently scale those quantum chemical calculations up to
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atomistic simulations.

Chapter 5 demonstrated that the intermediate information at the graph neural
network (GNN) layer of the pre-trained universal GNN-based MLIPs can be
reused as general-purpose atomic descriptors named GNN transfer learning (GNN-
TL) descriptors for chemical property predictions. Whereas traditional high-
accuracy descriptors scale roughly with the square of the number of element types,
GNN-TL descriptors keep their dimensionality constant. For a chemical space
containing 89 elements, the M3GNet and MACE-MP-0 GNN-TL descriptors
require only 64 to 256 dimensions, respectively, yet state-of-the-art SOAP and
FCHL19 descriptors balloon to 10°-10° dimensions. In the accuracy evaluation
of M3GNet GNN-TL descriptor, for a training size of 100,000, the mean absolute
error (MAE) for the 'C nuclear magnetic resonance (NMR) chemical shift
predictions was 2.28 ppm with Laplacian-kernel KRR, while natural parametrized
quantum circuit (NPQC)-kernel QKRR achieved a comparable MAE of 2.55 ppm.
The molecule-specific MLIP, MACE-OFF23-small GNN-TL descriptor, attained
an MAE of 1.78 ppm, thereby meeting the experimental accuracy target of
2.00 ppm. For nuclei beyond carbon, the M3GNet GNN-TL descriptor-based
KRR model kept the MAE for molecules in the test set below 5 ppm, thus met
the target accuracy of remaining within 1 % of each nucleus’s experimentally
accessible NMR chemical-shift range. On an external set of forty drug molecules
the MACE descriptor delivered the highest 13C accuracy reported to date at 2.83
ppm, beating the state-of-the-art FCHL by nearly 1 ppm. The present QKRR
model is capped at ten qubits, the study showed that intermediate representations
learned by universal MLIPs already rival established descriptors while being
dramatically lighter. Because the NPQC kernel largely mirrors a Gaussian kernel,
quantum and classical ML models are limited to similar levels of performance.
We believe that future advances in quantum kernel methods—such as designing
kernels tailored specifically to NMR chemical-shift prediction—could surpass the
performance of classical kernel approaches as larger quantum hardware becomes
available.

Chapter 6 demonstrated that the atomic energies produced by the universal
M3GNet MLIP could be repurposed as a local surface energy (LSE) descriptor
for catalyst screening of high-entropy alloy (HEA) nanoparticles. Trained only on
monometallic data, a linear LSE model predicted CO on-top adsorption energies
for 1000 distinct IrPdPtRhRu HEA5p; nanoparticles in a matter of days—an
effort that exhaustive DFT would stretch to centuries—and a six-qubit quantum-
circuit-learning (QCL) correction halved the residual error. The long-standing
generalized coordination number (GCN) descriptor gave root-mean-square errors
(RMSEs) of 0.06 eV for monometallic particles and 0.28 €V for these HEAs,
whereas the linear LSE model tightened the errors to 0.035 eV and 0.150 eV,
and the QCL-corrected model lowered the HEA error further to 0.058 eV. These
results highlighted LSE’s suitability for accelerated catalyst screening on today’s
quantum hardware. However, the model developed in this study was restricted
to HEAs composed of five platinum-group metals—Ir, Pd, Pt, Rh, and Ru—and
it was validated only for CO adsorption. Future work should broaden the model
to include a much larger set of candidate elements across the periodic table and
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to account for additional probe molecules, thereby providing a more rigorous
test of the method’s generality. We believe that such future studies, combined
with screening based on the LSE descriptor, will facilitate the discovery of new
HEA candidates.

In summary, we developed interfaces between quantum and classical
computation that are indispensable for applying quantum computing to practical
chemical problem solving. Specifically, the principal achievements can be
summarized in the following three points. First, we successfully interfaced
the quantum chemistry package CP2K with quantum computing. Using this
interface, we demonstrated that a quantum-—classical hybrid algorithm can run
even on a periodic cell containing 1,024 water molecules. Second, we developed
a TEA protocol that integrates quantum-chemical data obtained from different
computational methods. Building on this protocol, we constructed MACE-
Osaka24, a universal MLIP capable of treating both molecular and crystalline
systems. Third, by introducing a compact descriptor, we achieved experimental-
level accuracy in NMR chemical shift prediction using a quantum ML model
that employs only ten qubits. On the other hand, the TEA protocol was
limited to integrating results from different DFT calculations, and its application
to quantum-chemical data generated by quantum computers remains to be
validated in future work. This will be a critical first step towards constructing
MLIPs capable of accurately describing strongly correlated systems. Moreover,
the present work was validated entirely on emulators rather than on physical
quantum hardware. However, real quantum processors have now surpassed
the 100-qubit scale, making classical emulation impractical. Using this utility-
scale hardware and, in the near future, early FTQC to validate and deploy the
interfaces developed in this dissertation on actual quantum devices is therefore
a key direction for future work.

Meanwhile, the advances reported here are already benefiting classical
computational chemistry. For example, Nomura et al. demonstrated an MLIP
that scales to systems comprising billions of atoms by employing the TEA
protocol [427]. Increasingly, the MLIP descriptors proposed here are being applied
in materials informatics via transfer-learning techniques [428]. Furthermore, the
interface with CP2K is valuable not only for deploying quantum algorithms but
also for utilizing classical methods such as the density matrix renormalization
group (DMRG). Thus, although the series of studies presented in this dissertation
began with the aim of applying quantum computing to chemistry, the resulting
interfaces generated benefits that extend well beyond quantum computing itself.
These results demonstrated that classical computing not only accelerates quantum
computing but also benefits from valuable feedback in return. Driven by this
mutually reinforcing cycle, the ongoing synergy between classical and quantum
computing is expected to build a robust foundation for further advances in
computational chemistry.
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Appendix

Appendix A: Supporting Information for Chapter
3

1 Theoretical Implementation

The following has been written considering the spin-restricted case, although
the code also applies to the spin-unrestricted case: All codes were implemented
in a modified CP2K version 8.2 [190].

a Energy Evaluation

The subspace Hamiltonian within the active space is computed using the closed-
shell Fock operator:

;,y = hgy + G(dc)my» (A1)
Vay,zw = (zy|zw) (A2)

where z,y, z, and w run over the active orbitals. h;, represents the one-electron
Hamiltonian matrix elements in the basis of active orbitals. G(d€),, denotes
the Coulomb and exchange contributions from the density matrix of the closed
(inactive) orbitals, d°. oy 18 the Fock matrix within the active space, accounting
for the interactions with the closed-shell electrons. V,y .., = (zy|2w) are the two-
electron repulsion integrals between active orbitals. The two-electron integrals
Vay,zw are computed by expanding each product of active orbital pairs ¢, ¢,
into plane waves (PWs), which is efficient for periodic systems.

An external active-space solver is used to obtain the correlation energy and
the correlation contribution to one-particle reduced density matrix (1-RDM) and
two-particle reduced density matrix (2-RDM) within the active space. We have
implemented interfaces for both the fermionic quantum emulator (FQE) [210]
and Qulacs [209], which compute

EC — Efull _ EHF7 (A3)
oy = ) — (A1)
DI%ZUJ = Di‘;/l,lzw - D;—I;,zw7 (A5)
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where Ef!! is the total energy obtained from the full configuration interaction
(FCI) calculation within the active space. EMF is the Hartree-Fock (HF) energy
recomputed within the active space using the active-space solver. df““ and
Di‘glw are the 1-RDM and 2-RDM from the FCI calculation. dHF and DE; 2w
are the corresponding HF 1-RDM and 2-RDM within the active space E° is the
correlation energy within the active space.d,, and D, .., are the correlation
contributions to the 1-RDM and 2-RDM, respectively. The integrals are passed
to this solver using so-called FCIDUMP format and the resulting energy, 1-RDM,
and 2-RDM are passed back in the same format. The total energy is expressed
as follows:

E= Eref +5 Z fa?y Ty + = Z Va:y zZw :ry Zw (A6)

xy,zw

E™f is the reference HF energy, which should not be confused with EHF. In
periodic cases, the plane-wave expansion involves reciprocal lattice vectors g.
The correlation contributions are computed under the approximation that the
contributions from the g = 0 reciprocal lattice vector are neglected. This is a
common approximation in plane-wave-based calculations to avoid singularities
associated with the long-range Coulomb interaction at g = 0.

b Lagrangian and Multipliers

To discuss nuclear gradient formulation, it is worth noting that the total
Lagrangian is expressed as

aEref 1 t
L = E+ZZM-WM + §ZXTS(C SC —1),,

+ Z Z Zigo fizo + Z Z Zazv fazv- (A7)

where r and s are the general molecular orbital (MO) indices and C is the MO
coefficient matrix, S is the atomic orbital (AO) overlap integral. Hereafter, i, j, k,
and [ denote the closed (inactive) orbitals, i.e., occupied orbitals that are outside
of the active space. a,b,c, and d denote virtual orbitals outside of the active
space. This is performed on an AO basis. x° and x” denote the occupied and
virtual parts of the active orbitals, respectively. In addition, k,; represents the
orbital rotation parameters between occupied orbitals i and virtual orbitals a.
The derivative OFyef/Okq; denotes the self-consistent field (SCF) condition.

The Z-vector equation is derived by taking the derivative of the Lagrangian
with respect to the orbital rotation between virtual and occupied orbitals and
make it stationary:

8 Escf

Yy; + (fz + fz1) oj + Z A p— D, =0 (A8)
ailbj

where Y,; = OF/0kKq;. The term with X does not appear here because it is
symmetric (as opposed to anti-symmetric, such as Z). Because the SCF solution
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is a minimum, the second derivatives in the third term are positive definite;
therefore, this equation is well-conditioned.

Once the RDMs are read from the file, they are used to compute Y. In
CP2K, we do not store virtual MOs explicitly. Therefore, the input to the Z
vector equation is in the format of occupied MO coefficients where the first index
is an AO index:

_ ) t
Yoi = Z 2P 5 f5i
B

- Z Caac” |:Z f;idx”y + Z Vyi,zwDacvy,zw:| (AQ)
x? Yy

y,zw

Yoze = Z ng,@ |:Z féydw"y + Z Vﬁy,zwa°y7zw:| (Al())
8 y Y,2W
with
1
P’ =871 idSCF (A11)
Pe - S_l - Coccclcc (A12)

where Cocc is the extended MO coefficients (including both inactive and active)
and « and 8 are the AOs. We also introduce the so-called total Fock operator,

b= hys + G(d™ 4+ d),,. (A13)

In CP2K the linear equation is multiplied from the left by the overlap matrix
S—1. Therefore, it is not necessary to compute the inverse of the overlap matrix.
Because we do not want to construct the two electron integrals with a virtual
index, we use the following algorithm for the last term. First, we back-transform
the two electron density to AOs for each ¥ and y, that is

Doy, = (d") 20 = (") ap- (A14)

This density matrix is used to obtain the Coulomb operator using the code in
the SCF, which is subsequently transformed into MOs. For each x and y, we
compute

Z Vyi,ztz“,zw = Z J(dluy)g(by (g)(bz (g) (A15)

zZw

where J, is the Hartree potential at grid g. The following quantities are
introduced in the code:

Jow = D Foydys + > > T(d™)y0a(9)y(9) (A16)

Using this quantity, Equations (A9) and (A10) can be simplified to

Yoi = 2P%fhi =Y CoxvGiav (A17)
B

v

Yawo - Pgﬁq,@xo (A18)
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The multipliers z associated with the active orbital selection using canonical
orbitals are computed as follows:
Yij — Yii
U A19
Y fii = fij (A19)
Because CP2K implementation does not explicitly compute the virtual orbitals,
this is solved iteratively for the virtual part of z. After obtaining z, Equation
(A8) is solved iteratively to obtain Z.

¢ Relaxed Dipole Moment

Once the Z vector is obtained, the total relaxed density matrix can be computed
as

drs = i + dys + d2, (A20)
where we introduced d? = Z + z, with Z and z being the Lagrange multipliers
associated with the constraints in the Lagrangian. The relaxed density matrix is
defined as the derivative of the Lagrangian

~ oL
dys = .
" ahTS
The dipole moment is calculated using this quantity. Under an external electric

field, E, the Hamiltonian becomes H — H+) " tirsEy, (i.e., the dipole operator
appears whenever h appears), therefore,

oL ~
"= == = Maﬁda[g (A22>
OE |5, Zaﬁ

(A21)

where we implicitly back-transform the density matrix into AO, and M,z are
the dipole moment integrals between atomic orbitals. This dipole moment agrees
exactly with the finite difference obtained using the finite E.

d Evaluation of Nuclear Gradients

Once the relaxed density matrices are computed, the nuclear gradients are
evaluated as follows.

e Relaxed One-Particle Reduced Density Matrix

Using the total density matrix defined in Equation (A21), the contribution to the
nuclear gradients from the one-body part of the Hamiltonian can be expressed as

dE 0L

—— = 2= ¢+ 2hpfaq, A2
dRa  ORa = lrs Ors (A23)

where hfia = ghTfj represents the derivative of the one-electron Hamiltonian
matrix elements with respect to the displacement of atom A in the Cartesian
direction R. In practice, however, because nuclear attraction is handled together
with the Hartree potential in CP2K, special care must be taken (see below).
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f Non-separable Part of Two-Particle Reduced Density Matrix

The 2-RDM from the active-space solver is contracted to the two-electron gradient
integrals and contributes to the nuclear gradient as follows:

oL .

oR. 2(iapd | k) Tijm (A24)
where R is the Cartesian direction, and A labels the atoms. i 4, is the derivative
of MO ¢ with respect to the nuclear displacement (computed using the derivative
basis functions and the same MO coefficients). T';;x is the 2-RDM element
in the MO basis. This contribution is evaluated using the Hartree potential
J(d™¥), used to compute the intermediate quantities in Equation (A17) for each
x and y pair:

oL
ap — Dz zZw

_ zy 0¢:(g)
=37 @, G

=Y, e gy (a2)

g af g

where ¢, (g) is the value of the active molecular orbital x at grid point g, and ¢, (g)
is the atomic orbital (AO) basis function at grid point g. T, 5 = CarCpy, Where
Coz and Cpg, are the MO coefficients relating AOs to MOs, i.e., ¢ = > Coazda-
Note that the last equation can be evaluated by the standard SCF nuclear
gradient code.

g Separable Part of Two-Particle Reduced Density Matrix
The separable part of the 2-RDM is given by

D, =d(2d7 +d™),,
1 re z re
fidmf (2d° 4+ d™"),
ey — Ll (A26)

21”’(1,

where d*¢f is the 1-RDM from the reference Hartree-Fock calculation, d* = Z + z
(with Z and z being the Lagrange multipliers from the Z-vector equations).
The indices 7, s,t,u run over molecular orbitals. The density matrices are back-
transformed into AOs before entering the gradient integral contraction. Using a
short hand notation for the gradient contribution, we obtain

fAR (da7db) = Z (xARy | Zw)

TYZW
1 1
a b a b a b a b
X (dxydzw +d,,dyy — §dzwdzy - 2dzyd1y> . (A27)
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where z,y, z, w are AO indices, = 4, denotes the derivative of AO x with respect
to the displacement of atom A in Cartesian direction R, and (x4,y | zw) are
the derivative two-electron integrals involving the derivative of AO x. The above
expressions are further expressed as follows:

oL
@ — fAR (dref’ 2d* + dref) + fAR (dc,d) ) (A28)

In CP2K, the code for evaluating the separable contribution is complicated
because the Hartree potentials are handled in a complex manner (particularly
in the Gaussian Augmented Plane Wave (GAPW) code). Therefore, we

implemented these terms by taking advantage of the following relationship:
dropping the subscript of f for simplicity we obtain

f(d*d") + f(d",a%)

=f(d*+d°,d*+d") — f(d*,d*) — f(d*,d"). (A29)
In the actual code, this idea is generalized such that the nuclear attraction
potential which is handled together with the two-electron part, is appropriately

handled. The working equation for the mixed term between d**f and d* is
expressed as

f (=o' 4 od®, —p '™ + od”) — (14 @) f (d7,d%)
— f (= '@, —p 1 d™) + (1 + ¢) £(0,0) (A30)

where ¢ is the so-called golden ratio, (14 v/5)/2.

h Overlap Derivatives

The contribution, which depends on the derivative of the overlap integrals is
expressed as

oL
ar XTSS’I‘R s
OR < A

(A31)
where X, is calculated from the symmetric part of the Y matrix, and .S, Aps
denotes the derivative of the overlap matrix elements with respect to the
displacement of atom A in Cartesian direction R.

2 Computational Details

The calculations were performed using a customized CP2K version 8.2 in
conjunction with the quantum computer emulator Qulacs. The computational
conditions employed for each of the systems analyzed are as follows:
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a Water Cluster

The initial geometries of the water clusters (H2O), (n = 2-30), comprising of n
water molecules were obtained from n = 2-20 [429] and n = 21-30 [430]. The
periodic boundary condition (PBC) box size was chosen to ensure a vacuum
layer between clusters of less than 8 A, specifically 20 x 20 x 204%. The HF
calculations were performed using the Gaussian and PW (GPW) basis set
under PBC. Further, the core electrons were treated with the corresponding
Goedecker—Teter—Hutter (GTH) pseudopotential [431]. The Gaussian-type basis
function employed was 6-31G(d). The cutoff energy for the auxiliary plane-
wave and Gaussian-type basis functions were set to 240 and 40 Ry, respectively.
Four multigrid levels were utilized for efficient integral calculations. Wave
function optimization employed the conjugate gradient method (CG), with an
SCF threshold of 1.0 x 10~® Hartree. Further, orbital transformation (OT) was
applied with an energy gap and step size of 0.08 Hartree. To enhance SCF
convergence, the maximum number of loops for the outer SCF, which involved
preconditioning at each step, was set to 10. In addition, the maximum number
of loops for the inner SCF with a fixed preconditioner was set to 40. Moreover,
to facilitate computational efficiency, two-electron integral (ERI) calculations
were screened using the Schwarz inequality with a threshold below 1.0 x 10719,

Geometry optimization was performed using CG as the optimizer until the
maximum force on an atom was less than 0.45 x 10~ Hartree/Bohr. The binding
energy per water molecule in the water cluster Eyinq is defined as

nE(H,0) — E(H,0),,

Eyina = (A32)
where F(Hy0) and F(H20), represent the total energies of a water molecule
and water cluster, respectively.

b Diamond Si Crystal

The diamond Si crystal was represented by a PBC box containing 64 atoms. HF
calculations were performed employing the GPW basis set with core electrons
treated using GTH pseudopotentials. The Gaussian-type basis function employed
was 6-31G(d). The cutoff energy for the auxiliary plane-wave and Gaussian-
type basis functions were set to 320 and 40 Ry, respectively. Four multigrid
levels were utilized for efficient integral calculations. Wave function optimization
employed the direct inversion in the iterative subspace (DIIS) method, with an
SCF threshold of 1.0 x 10~7 Hartree. Further, OT with a full single inverse
was applied utilizing an energy gap and a step size of 0.08 Hartree. To enhance
the SCF convergence, the maximum number of loops for the outer SCF, which
involved preconditioning at each step, was set to 10. The maximum number
of loops for the inner SCF with a fixed preconditioner was set to 40. For ERI
calculations, the Schwarz inequality was utilized to screen values below 1.0 x 1078,
In addition, a Truncated Coulomb operator was employed with a cutoff radius

of 5 A.
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¢ H,0 on Si(001) Surface

The Si(001)-c(4x2) reconstruction surface was modeled with a 4x4 size hydrogen-
terminated 5-layer slab, where the vacuum layer was approximately 13 A.
The HF calculations were performed using the GPW basis set under PBC.
The core electrons were treated with appropriate GTH pseudopotentials. The
Gaussian-type basis function utilized was 6-31G(d). The cutoff energy for the
auxiliary plane-wave and Gaussian-type basis functions were set to 400 and 60 Ry,
respectively. To enhance the computational efficiency, four multigrid levels were
employed for efficient integral calculations. Wave function optimization employed
the DIIS method, with an SCF threshold of 1.0 x 107 Hartree. Further, OT
with a full single inverse was applied utilizing an energy gap and a step size of
0.08 Hartree. To improve the SCF convergence, the maximum number of loops
for the outer SCF, which involved preconditioning at each step, was set to 10.
The maximum number of loops for the inner SCF with a fixed preconditioner
was set to 40. For two-electron integral calculations, the Schwarz inequality was
utilized to screen values below 1.0 x 10~8. In addition, a Truncated Coulomb
operator was applied with a cutoff radius of 6 A. Further, geometry optimization
was performed using the conjugate gradient (CG) method as the optimizer until
the maximum force on the adsorbed molecules and atoms up to the second layer
on the surface was less than 0.45 x 10~ Hartree/Bohr. The adsorption energy
of H2O on the Si(001) surface E,q was calculated using the following equation:

Eaq = E(H,0/8i(001)) — E(H,0) — E(Si(001)) (A33)

where E(H>0/Si(001)), E(H20), and E(Si(001)) are the total energies of the
H»0/Si(001), H2O, and Si(001), respectively.

d Liquid Water

Liquid water with a density of 1g/cm® was modeled in simulation boxes
containing 64, 128, 256, 512, and 1024 H,O. NVT equilibration at 300 K was
performed for each liquid water model using a Nose-Hoover thermostat at 10 ps.
The NVT equilibration to 300 K at 1 ns was performed using AmberTools22 [432]
with the classical force field g-SPC/Fw [433]. Final snapshots of each NVT
equilibration are shown in Figure A1l. NVT equilibration at 300 K at 10 ps was
performed using density functional theory (DFT) and HF. The step times were
all set to 0.5 fs in this dissertation. Subsequently, the 10 ps AIMD simulation in
the NVE ensemble was performed based on the DFT and HF NVT equilibration
results. Further, the UCCSD(2¢,20) NVE simulation was continued from the
HF-level NVT equilibration.

The HF calculations were performed on a GPW basis under PBC, and
the core electrons were treated with the corresponding GTH pseudopotential.
The Gaussian-type basis function was 6-31G(d). The cutoff energy of the
auxiliary plane-wave and Gaussian-type basis functions were set to 300 and 40
Ry, respectively. The number of multigrids was set to four for efficient integral
calculations. Further, DIIS was adopted as the optimizer of the wave function,
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(a) 64 H,0 (b) 128 H,0
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Figure Al: Liquid water unit cells with a density of 1g/cm® used for
benchmarking, as described in Section 3.4.5. The unit cells contain (a) 64
H>0, (b) 128 H>0, (c) 256 H50, (d) 512 H20, and (e) 1024 HyO molecules.
Each snapshot represents the final configuration obtained after 1 ns of NVT
equilibration at 300 K using the classical force field g-SPC/Fw.

and the threshold of the SCF was set to 1.0 x 10~7 Hartree. OT with a full
single inverse preconditioner was applied with an energy gap and step size of
0.08 Hartree to improve the efficiency of the SCF calculation. To improve the
convergence of the SCF, we set the maximum number of loops of the outer SCF,
wherein the preconditioner was applied at each step, to 10. In addition, the
maximum number of loops of the inner SCF, in which the preconditioner was fixed,
was set as 40. Further, we screened two-electron integrals below 1.0 x 10719 using
Schwarz’s inequality to accelerate the computation. In the DFT calculations, the
PBE functional [300] was selected as the exchange-correlation functional. The
other calculation conditions were the same as those used for the HF calculation.

3 Geometries of Water Clusters

Figure A2 shows the water clusters before and after the geometry optimization.
No convergence to non-physical structures was observed. Thus, the geometry
optimization based on the analytical gradients via CP2K, utilizing the quantum
calculation results obtained through our developed interface, was confirmed to
operate correctly.

4 NVT Ensemble of Liquid Water

Figure A3 shows the results of the NVT simulations used to determine the
initial structure and velocities for the 10 ps NVE simulation of water at 300 K,
as shown in Figure 3.6. The simulation procedures are detailed in Appendix
B.d. In each case, the system equilibrated at approximately 300 K within 10 ps.
The equilibration behavior at the UCCSD(2¢,20) level shown in Figure A2(c)
resembled that of the HF method shown in Figure A2(b). This similarity was
consistent with the radial distribution functions (RDFs) for O-O obtained from
the NVE ensemble, which were similar for both HF and UCCSD(2e,20), as shown
in Figure 3.6(c).
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Figure A2: Optimized geometries of water clusters (n-mers) for n = 2---30.
Each subfigure displays the optimized geometry (with clear bonds and atoms)

and the initial geometry used for the optimization (shown as shadows) using the
UCCSD(2e, 20) calculations.
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Figure A3: Temperature distribution changes during 10 ps NVT equilibration.
The distributions are presented for every 1 ps interval. Each subplot represents
a different computational method: (a) DFT, (b) HF, and (¢) UCCSD(2e,20).
The x-and y-axes represent the temperature and probability density, respectively.
The color gradient indicates the progression of time intervals, with each color
corresponding to a specific 1 ps interval, as indicated in the legend.
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Figure A4: (a) Bird’s eye view of the slab model of the Si(001)-c(4x2)
reconstructed surface optimized at the UCCSD(4e,40) level. The red box
highlights the hydrogen termination for the fifth Si layer. (b) Top view and (c)
side view of the Si(001)-c(4x2) reconstructed surface. In the top view, only the
Si dimers of the reconstructed surface are shown for clarity. The black dashed
box indicates the second layer of backbonding atoms (shown faintly) that bond
with the Si dimers. In the side view, the red box indicates the fourth and fifth
layers, where atomic positions are fixed during structural optimization, along
with the hydrogen atoms in (a). (d) and (e) provide detailed views of the dashed
box region in (c), with (e) presenting the Si dimer bond length and buckling
angle.

5 Si(001)-c(4x2) Reconstructed Surface

Figure A4 shows the unit cell of the Si(001)-c(4x2) surface slab model optimized
at the UCCSD(4e,40) level. Shirasawa et al. studied this surface using low-energy
electron diffraction experiments. They reported an Si dimer bond length of 2.4
4+ 0.1 A and a tilt angle of 18 4 1° [216]. In this dissertation, the optimized Si
dimer bond length and tilt angle were 2.33 A and 15.1°, respectively, as shown
in Figure A4(e). These values were slightly smaller than the experimental values.
This discrepancy may have resulted from the limited degrees of freedom of the
orbitals used in the quantum calculations. Healy et al. applied quantum Monte
Carlo methods to cluster models of a Si(001) surface and concluded that both
static and dynamic correlations were essential for Si dimer buckling [434]. We
expect that simulations that can more efficiently and accurately incorporate
electronic correlations, such as those using quantum embedding methods [205]
or large active spaces accessible with actual quantum devices, will achieve better
consistency with experimental measurements.
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Figure B5: The total energy alignment (TEA) results for different datasets. (a)
Parity plot of atomization energies between QMIVASP and QMIADF datasets
using the same PBE functional. (b) Parity plot of the total energies after applying
Inner Core Energy Alignment (ICEA) and Atomization Energy Correction (AEC)
to the QM9IADF dataset.

Appendix B: Supporting Information for Chapter
4

1 Total Energy Alignment for QM9 Dataset
a Verification of Total Energy Alignment Method

To evaluate the performance of the TEA method between datasets that, despite
employing the same fidelity functionals, differ in core electron treatments,
basis sets, and periodic boundary conditions, we conducted TEA between the
quantum chemistry software packages VASP [281, 282, 283, 182] and Amsterdam
Density Functional (ADF) [285]. We utilized the QM9 dataset, which comprises
approximately 134,000 molecules optimized at the B3LYP/6-31G(d) level using
Gaussian09 [131]. By performing single-point energy calculations at the PBE/PW
level with VASP on the Gaussian09-optimized geometries, we generated a new
dataset referred to as QMIVASP. For the TEA target, we adopted the PBE/TZP
level dataset from MultiXC-QM9 [254]—calculated using ADF with various
functionals—which excludes molecules involving charge separation [435]; we will
hereafter refer to this dataset as QM9IADF.

Figure B5(a) shows the parity plot of the atomization energies of QM9VASP
and QMI9ADEF. Although QM9VASP and QM9ADF are calculated using the
same function, systematic differences are observed, with a root mean square
error (RMSE) of 0.3258 eV. As shown in Figure B5(b), by performing TEA using
Inner-Core Energy Alignment (ICEA), the total energies of both are consistent,



116 APPENDIX

a (b)
(@ 0. 100
“ MACE-Osaka24-small
—-100 1 . /g 901 —e— MACE-Osaka24-large
— _5004 ks
3 2001 . $
%, ~300+ £ 807
W m
5 -400+ 2]
“5’) Z 701
2 _500+ =
= g
—600 w601
~700+ )
, , , , 501+ . . . .
-600000 —400000 —200000 0 0 50 E1°0h 150 200
EG (o) poe
(c) (d)
300 275
MACE-Osaka24-small MACE-Osaka24-small
2751 —e— MACE-Osaka24-large | £ 2501 —e— MACE-Osaka24-large
—_ o
<L 2507 © 0251
3 <
£ 2257 = 2.001
w £
2 w 1.751
o wn
3 Z 1.50
S %)
i 3 1.25-
&
1.00 1
100 50 100 150 200 0 50 100 150 200
Epoch Epoch

Figure B6: (a) Parity plot of total energies from the original OFF23 dataset and
after application of total energy alignment (TEA). (b) Energy root mean square
error (RMSE) during training of MACE-Osaka24-small and MACE-Osaka24-
large models over 200 epochs. (c¢) Force RMSE during training of the same
models. (d) Stress RMSE during training of the same models.
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Figure B7: (a) Lattice constants of bulk crystals predicted by universal MLIPs
and by DFT calculations using the PBE functional with VASP, which is at the
same theoretical level as the training data of the universal MLIPs presented in
Section 4.5 in Chapter 4. (b) Prediction errors of the universal MLIPs relative
to the lattice constants predicted by DFT.

with an RMSE of 0.3258 eV. Therefore, TEA without correction is viable for
functionals calculated at the same level. Furthermore, by performing TEA

(ICEA/Atomization Energy Correction (AEC)), the RMSE of the total energy
between the two improves to 0.0992 eV.

2 Training Multi-Domain Universal Machine Learning
Interatomic Potentials

We demonstrate that stable training of universal MLIPs is possible by integrating
datasets of the organic domain, to which TEA has been applied, into datasets
of the inorganic domain. In this dissertation, as shown in Figure B6(a), we
constructed a TEA-MPtrj/OFF23 dataset by integrating the TEA-OFF23
dataset, which uses the scaling factor of AEC to QM9, into MPtrj of the
Materials Project. For the MLIP architecture, we adopted the MACE small
and large architectures proposed by Batatia et al. [47]. The constructed multi-
domain universal MLIPs are referred to as MACE-Osaka24-small and MACE-
Osaka24-large, respectively. Figure B6(b)—(d) shows the learning curves of the
MACE-Osaka24 models for energy, force, and stress. It was confirmed that the
RMSES tend to be smaller for the large model with a larger model size compared
to the small model. This is in good agreement with the trend of learning curves
shown in the paper by Batatia et al. [47].
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3 Computational Details
a QMIVASP Dataset Generation

QMOIVASP dataset was generated using the Vienna Ab initio Simulation Package
(VASP) version 5.4.4. For the exchange-correlation functional, we adopted the
PBE functional used in generating MPtrj dataset. A plane-wave energy cutoff
of 400 eV was employed for the expansion of the electronic wave functions
(ENCUT = 400). The geometries were taken from the original QM9 dataset.
To prevent interactions between adjacent unit cells, a vacuum layer of 10 Awas
introduced in each unit cell. The electronic self-consistency loop was considered
converged when the total energy change between successive iterations was less
than 1 x 107° eV (EDIFF = 1e-05). Symmetry operations were disabled (ISYM
= 0). High-precision settings were applied throughout the calculations (PREC
= Accurate) to ensure reliable results. The Brillouin zone integrations were
performed using the Gaussian smearing method with a smearing width of 0.1
eV (ISMEAR = 0, SIGMA = 0.1).

b QM9Psi4 Dataset Generation

The QM9Psi4 dataset was generated using Psi4 version 1.9. To ensure that
the computational conditions are equivalent to those employed in generating
the OFF23 dataset, we adopted the wB97M-D3(BJ) functional, which adds the
D3 dispersion correction with the Becke-Johnson (BJ) damping function to the
exchange-correlation functional wB97M. The def2-TZVPPD basis set was used
in all calculations.

c Biaryl Torsion Benchmark

First, we introduce the method for generating the biaryl torsion dataset by
Lahey et al. [306], which provides the reference energies at the coupled cluster
level as shown in Table 4.1. The torsional PES were computed using density-
fitting Mgller-Plesset perturbation theory at second order (DF-MP2) with the
def2-TZVP basis set (DF-MP2/def2-TZVP). CCSD(T1)*/CBS energies were
obtained by combining the domain-based local pair natural orbital (DLPNO)-
CCSD(T) (denoted as CCSD(T)*) [436], the complete basis set (CBS) correction
scheme proposed by Smith et al. [274, 306], and iterative triples CCSD(T1)
methods [436]. These torsional PES values serve as reference data for this
dissertation.

We performed torsional PES optimizations using GFN2-xTB [307], MACE-
MP-0, SO3LR [277], MACE-OFF23, MACE-Osaka24, VASP, and Psi4 on the
dihedral torsions of 78 molecules presented in the biaryl torsion benchmark [306].
In calculations with GFN2-xTB and all MLIPs, the dihedral angles were varied
in 5° increments, and structure relaxations were performed under the constraint
that each dihedral angle remained fixed at its set value. For VASP and Psi4, the
dihedral angle increments were set to 10°. In all methods, geometry relaxations
were carried out until the force acting on each atom was less than 0.01 eV/A. All
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constrained geometry optimization calculations were implemented using Atomic
Simulation Environment (ASE) version 3.23.0 [437]. It should be noted that in
the work by Kovécs et al. [278], the torsional PES optimization was performed
using TorsionDrive [438] algorithm.

d Benchmark on Transitionlx

The original Transitionlx dataset was generated using ORCA version 5.0.2
with the exchange functional wB97x and the basis set 6-31G(d). Since our
constructed MACE-Osaka24 models are based on the OFF23 dataset computed
with Psi4, we performed single-point calculations on the initial state, transition
state, and final state geometries of the 10,073 reactions provided in Transitionlx
dataset using Psi4 under the computational conditions specified in Appendix b
to ensure compatibility. Similarly, all validations using MLIPs and GFN2-xTB
were carried out by performing single-point calculations on the IS, TS, and FS
geometries provided in Transitionlx.

e Bulk Crystal Lattice Constant

The crystals used for the benchmark were those adopted in Section B.4 of the
Supporting Information in the paper by Batatia et al [47]. For the BCC materials
K, Rb, and Cs, it was not possible to represent them using the 4.5 A cutoff radius
employed in the graph construction for the MACE-Osaka24 models, and therefore
they were excluded for benchmark in Section 4.5. Further details can be found
in Appendix B.4. The optimization of lattice constants through first-principles
calculations was performed using VASP at PBE level. To ensure compatibility
with the MPtrj dataset used for training the MACE-MP-0 and MACE-Osaka24
models, input parameters from the MPRelaxSet in the pymatgen [439] library of
the Materials Project were utilized. For the MACE-MP-0 and MACE-Osaka24
models, the convergence criterion for unit cell optimization was set to 0.01 eV/ A.
First-principle PES calculations for Si as a function of lattice constants, shown
in Figure 4.3(c), were performed using single-point calculations with inputs from
the MPStaticSet in pymatgen. The lattice constants were varied from 5 A to 6
A in increments of 0.01 A.

f Molecular Dynamics of Liquid Water

Classical MD simulations were performed using GROMACS version 2023.3 [440].
The TIP3P [441] and TTP4P /2005 [442] water models were employed as the
force fields. The TTP4P /2005 model was chosen as a reference for evaluating
the accuracy of MLIPs because it reproduces the thermodynamic properties of
water with high accuracy over a wide temperature range [443]. For ML-driven
MD simulations, the interface with MACE was implemented using a modified
version of OpenMM-ML [444], enabling the incorporation of D3(BJ) dispersion
force corrections. Simulations were conducted in a PBC box containing 64
H,0 molecules with a density of 1 g/cm?. For ML-driven MD, NVT ensemble
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Table B1: Mean absolute errors (MAEs) of lattice constants (in A) predicted by universal MLIPs compared to DFT with
PBE using VASP, categorized by crystal structure type. The predictions from M3GNet-MPF2021.2.8, MACE-MP-0-small,
MACE-MP-0-large, MACE-Osaka24-small, and MACE-Osaka24-large models are evaluated across various structures including

4H, BCC, Diamond, FCC, Halite, and Zinc blende. The errors correspond to the deviations shown in Figure B7(b).

Crystal structure

M3GNet-MPF2021.2.8 MACE-MP-0-small

MACE-MP-0-large

MACE-Osaka24-small

MACE-Osaka24-large

4H

BCC
Diamond
FCC

Halite

Zinc blende

0.0143
0.0701
0.0100
0.0200
0.0111
0.0017

0.0036
0.3453
0.0047
0.0096
0.0036
0.0153

0.0042
0.2153
0.0031
0.0179
0.0108
0.0205

0.0002
0.1536
0.0020
0.0118
0.0113
0.0049

0.0033
0.1423
0.0029
0.0156
0.0100
0.0031
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Figure B8: Absolute errors in lattice constant predictions as a function of DFT-
predicted lattice constants for body centered cubic (BCC)-type crystals using
various universal MLIPs. The models compared are M3GNet-MPF2021.2.8,
MACE-MP-0 (small and large), and MACE-Osaka24 (small and large). The
graph construction cutoff radii for the MACE-MP-0 and M3GNet models are
6.0 A, with the range of lattice constants these models can consider indicated by
the red dashed line. For the MACE-Osaka24 model, the cutoff radius is 4.5 A,
and the corresponding range of lattice constants is shown by the blue dashed
line. Specific elements (Li, Na, K, Rb, Cs, Ba) are labeled for clarity.

simulations were performed for 100 ps, with the final 50 ps used for analysis.
For classical MD, simulations were carried out in an NVT ensemble with 1,000
H50 molecules for 1,000 ps, with the last 500 ps utilized for analysis.

4 Material-Specific Lattice Constants

In this section, we discuss the results of lattice constant predictions for
representative bulk crystals presented in Section 4.5, as well as the predictive
performance for each crystal structure. Figure B7 shows the predicted lattice
constants obtained from DFT and universal MLIPs. As shown in Figure B7(b),
the predictions by M3GNet-MPF2021.2.8 exhibit the fewest outliers among the
models. As indicated in Table B1, the M3GNet-MPF2021.2.8, MACE-MP-0,
and MACE-Osaka24 MLIPs achieve prediction accuracies with mean absolute
errors (MAEs) below 0.02 Afor crystal structures other than body-centered cubic
(BCC). However, in predicting BCC-type crystal structures, they exhibit larger
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prediction errors compared to other crystal structures. The poor predictive
performance for BCC crystals may be related to the cutoff radius used in graph
construction. Figure B8 shows the DFT-predicted lattice constants of BCC
crystals and the absolute errors of the lattice constant predictions. As the lattice
constant increases, the prediction errors of all models also increase. MACE-
Osaka?24 is constructed with a cutoff radius of 4.5 A, while M3GNet-MPF2021.2.8
and MACE-MP-0 are constructed with a cutoff radius of 6.0 A. Therefore, the
maximum lattice constants of BCC crystals that each model can capture are
5.196 Afor MACE-Osaka24 and 6.928 Afor M3GNet-MPF2021.2.8 and MACE-
MP-0. Predictions for larger lattice constants result in a superposition of isolated
atoms and simple cubic lattice crystals, failing to properly capture the BCC
crystal structure. Thus, MACE-Osaka24 cannot be applied to predict the
lattice constants of K, Rb, and Cs. On the other hand, although M3GNet
and MACE-MP-0 have cutoff radii exceeding the lattice constants of the target
BCC crystals, their predictions tend to approach lattice constants near the
cutoff radius, suggesting that using larger cutoff radii may be necessary for
improvement.

Appendix C: Supporting Information for Chapter
5

1 Distribution of Datasets for Each Nuclear Magnetic
Resonance Chemical Shift Prediction Model

The distributions of the training and test sets sampled from the QMINMR dataset
are shown in Figure C9. Figure C9(a) shows that above 5K, the distribution
is in good agreement with the overall distribution of the '*C NMR shielding
constants. For the other elemental species, the distributions of the training and
test sets were in good agreement with the overall distribution.

2 Kernel Function Dependency for Various Graph Neural
Network Transfer Learning Descriptors

The accuracy of KRR models using Gaussian and Laplacian kernels was evaluated.
Table C2 presents the mean RMSE and its standard deviation for predictions
on the 50,000 holdout set by models trained on 400 data points of 13C using
Gaussian and Laplacian kernels. For all models using GNN-TL descriptors, the
mean RMSE of models with Gaussian kernel was found to be more accurate than
those with Laplacian kernel. However, the variation in accuracy due to dataset
sampling (standard deviation) was found to have a greater impact than kernel
choice in models with MEGNet and M3GNet GNN-TL descriptors. On the other
hand, in models with MACE GNN-TL descriptors, the impact of kernel choice
was more significant than the variation due to dataset sampling.

Next, Table C3 shows the accuracy of KRR models using M3GNet and
MACE-OFF23-small GNN-TL descriptors trained on a 100,000 '3C training set.
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Unlike models trained on the 400 '3C training set, the KRR models with M3GNet
GNN-TL descriptors consistently showed higher accuracy with the Laplacian
kernel compared to the Gaussian kernel. Conversely, the results for MACE-
OFF23-small GNN-TL descriptors were similar to those for models trained on
the 400 '3C training set, with the Gaussian kernel models demonstrating higher
accuracy. This suggests that the appropriate kernel function may vary depending
on the size of the training data.

Finally, these results indicate the choice of kernel functions for KRR models
as presented in Section 5.4 of Chapter 5. For models trained on 400 '3C data
points, all KRR models using GNN-TL descriptors employed the Gaussian kernel.
In contrast, for models trained on 100,000 3C data points, the Laplacian kernel
was used for KRR models with M3GNet GNN-TL descriptors, whereas the
Gaussian kernel was employed for models with MACE-OFF23-small GNN-TL
descriptors.

3 Validation of Learning Accuracy of Nuclear Magnetic
Resonance Chemical Shift Prediction

Figure C10 illustrates the accuracy of the KRR models trained using the M3GNet
GNN-TL descriptor for five elemental species. The MAE values for the NMR,
shielding constant, for train/test, are as follows: for 'H, 0.0344/0.1767; 13C,
0.1420/2.2798 ppm; *°N, 0.3910/3.4157 ppm; 17O 0.8881/4.9509 ppm; and °F
0.0864/2.6518 ppm.

The accuracy of the GNN-TL descriptors was also validated using the
molecular structures of two drug molecule data sets reported in Ref 29. The
predicted *C NMR shielding constants for each drug molecule using the M3GNet
and MACE-OFF23 GNN-TL/KRR models are shown in Figure C11(a) and (c).
These predictions are accompanied by the values predicted by the FCHL/KRR
model [132]. The prediction results of the M3GNet/KRR model using PM7-
level optimized geometries, along with the prediction results using DFT-level
geometries, are shown in Figure C11(b) and (d).

Table C2: Accuracy (measured by RMSE) of GNN-TL/KRR models trained on
400 13C NMR chemical shift values for different kernel functions. All units are
in ppm.

GNN-TL descriptor ~ Gaussian kernel Laplacian kernel

MEGNet 20.08+0.55 21.12+0.56
M3GNet 10.02+0.37 10.31+0.38
MACE-MP-0-small 9.7740.34 10.78£0.31
MACE-MP-0-large 9.7440.27 10.17£0.30
MACE-OFF23-small 8.05+0.19 8.64+0.13

MACE-OFF23-large 8.1540.42 8.77+0.21
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Table C3: The kernel function dependency of accuracy (MAE) for the prediction
of the 50,000 QMINMR hold out set, 40 drug molecules from GDB17 Universe
and the other containing 12 drugs with 17 or more heavy atoms. All units are
in ppm.

M3GNet MACE-OFF23-small

Gaussian Laplacian Gaussian Laplacian
50,000 QM9 2.35 2.28 1.87 2.10
40 drugs 3.98 3.46 2.83 3.21
12 drugs 5.14 4.21 3.85 3.93

4 Data Availability

Data and code required to reproduce the figures and tables related to the
GNN-TL descriptors and the NMR shielding constants prediction models
presented in the manuscript is publicly accessible on GitHub at https:
//github.com/TShiotaSS/gnn-tl. The dataset utilized for the prediction
of NMR chemical shifts, specifically the QMINMR dataset, is available at DOI:
https://doi.org/10.17172/N0OMAD/2021.10.16-1 and GitHub at https:
//moldis-group.github.io/qm9nmr/. Results of the DFT/GIAO calculations
for isolated atoms, used for NMR chemical shift computations, are included within
the manuscript. The GNN-TL descriptor vectors for the QMINMR, datasets
are available at DOI: https://doi.org/10.6084/m9.figshare.25484068.v2.
We have modified the code to extract GNN-TL descriptors from the pretrained
M3GNet model on Github at https://github.com/materialsvirtuallab/m3gnet,
and this adapted version can be found at https://github.com/TShiotaSS
/gnn-tl/tree/main/scripts/m3gnet. The code used to extract GNN-TL
descriptors from the pretrained MEGNet model can be found on GitHub at
https://github.com/materialsvirtuallab/megnet/blob/master/megn
et/utils/descriptor.py. The code used to generate descriptors from the
pretrained MACE models can be found on GitHub at https://github.com/A
CEsuit/mace/blob/main/mace/calculators/mace.py. The implementation
for quantum kernel ridge regression used in this chapter is available at https:
//github.com/Qulacs-0saka/scikit-qulacs/tree/main/skqulacs/qgkrr.
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Figure C9: Distributions of the NMR shielding constants of the training subsets
and test set sampled from the of the QMINMR dataset for the five elemental
species: (a) 13C (for dataset size dependency), (b) 13C (for potential data bias),
(c) H, (d) N, (e) 170, and (f) °F, respectively.
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Figure C10: Scatterplots for the training set (red) and test set (blue) showing
NMR chemical shifts from the QMINMR dataset, using the M3GNet GNN-
TL/KRR model constructed with QMINMR data for the five elemental species:
(a) 'H, (b) 13C, (c) 15N, (d) 7O, and (e) '°F, respectively.
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Figure C11: Comparison of '*C NMR shielding constant predictions using
different descriptors for (a) 40 drug molecules from the GDB17 universe and (d)
12 drugs with 17 or more heavy atoms. The predictions were made using the
KRR model with the FCHL descriptor (red), the M3GNet GNN-TL descriptor
(blue), and the MACE-OFF23-small GNN-TL descriptor (green). The FCHL
results were taken from Ref. [132]. The results for the M3GNet/KRR model
using DFT-level geometries and PM7-level geometries are shown in (b) and (d),

respectively.
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Appendix D: Supporting Information for Chapter
6

1 Computational Details
a Modeling

We modeled CO adsorption on the NPs; i.e., CO/M,,, using an atomic simulation
environment (ASE) [445, 437]. The initial lattice constants (LCs) of M,, were
determined via bulk calculations. For HEAsq, the largest bulk was used as the
initial LC. A 15-A vacuum region was inserted in all supercells to minimize cell-to-
cell interactions. The initial structures of CO/M, and CO/HEA,,, were derived
by placing CO on the on-top sites of the optimized structures of M,, and HEA5q,
respectively, with the distance between the C atom and the adsorption-site metal
atom M set as 2 A.

b Neural Network Potential Calculations

The NNP used was M3GNet, a universal NNP proposed by Chen and Ong [124].
This M3GNet NNP was trained on approximately 180,000 crystal environments
at the PBE or PBE+U levels of theory from the Materials Project [244], covering
89 elements. The crystal structures of the bulk M = Ir, Pd, Pt, Rh, Ru were
assumed to be fcc. Although Ru exhibits a hexagonal close-packed form at
room temperature, Ru with an fcc structure can be created using NPs [446].
The atomic energy of the bulk fcc metal M was determined using the energy
corresponding to the minimum value obtained when varying the LC of the
material at intervals of approximately 0.01 A. The resulting atomic-energy
values and corresponding LCs are presented in Table D5. The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm was used for structural optimizations, with
a maximum step of 0.005 A. In the CO/M and CO/HEA structural optimization
calculations, the M and HEA structures were fixed as stable isolated systems.
Only the CO and adsorption-site atoms were relaxed, with the constraint that the
adsorbed molecules occupy the top site. Structural optimizations were performed
until the force acting on each atom was 0.001 eV /A.

¢ Density Functional Theory Calculations

The DFT calculations were performed using the Vienna Ab initio Simulation
Package (VASP), version 5.4.4 [447, 282, 182]. We employed the PBE
generalized gradient approximation functional as the exchange-correlation
functional [300]. The core electrons were treated using the projector-augmented
wave method [448, 449]. Electronic structures were optimized using the blocked
Davidson iteration scheme within a spin-restricted approximation. The cutoff
energy for the plane-wave functions was set as 400 eV. Atomic coordinates were
optimized using a conjugate-gradient algorithm with a convergence threshold of
0.01 eV/A.
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Table D4: Parameters o and 3 of the regression lines between the CO adsorption
energy and the generalized coordination number (GCN) for monometallic systems.
The values correspond to the lines in Figures 6.8(a) and (b)

Ir Pd Pt Rh Ru
«(NNP) 0.185 0.139 0.173 0.078 0.121
B(NNP) -2.766 -2.403 -1.073 -1.946 -2.371

d Generalized Coordination Number Evaluations

The GCN descriptor is evaluated according to the following equation, which is
identical to the one defined in Ref. [399].

GoNG) = S ) (D34)

Here, i represents the index of the surface atom of the NPs. n; is the coordination
number of the i-th atom, and c¢n,ay is the coordination number of the i-th atom
in its bulk environment, which is 12 for FCC metals considered in this chapter.
en(j) represents the coordination number of each of the n; atoms coordinated to
the ¢-th atom. In this chapter, GCN was evaluated for structures optimized using
the universal NNP M3GNet, following the same procedure as for the evaluation
of the LSE.

e Nonlinear Regression

To capture the nonlinearity between LSE and CO adsorption energy, we trained a
nonlinear regression model using all possible ontop adsorption sites (732 in total)
from six randomly selected HEA nanoparticles out of the 20 used for validating
the linear LSE-based model. For validation, all possible ontop adsorption sites
on the remaining 14 HEA nanoparticles were utilized. KRRs were executed using
scikit-learn version 1.2.2 [356]. A Gaussian kernel was selected as the kernel
function of the KRR. The hyperparameters for each model were optimized over
100 iterations using a randomized search. QCL regressions were implemented
using scikit-qulacs version 0.5.0 [362]. Qulacs version 0.5.6 was used as the
quantum-circuit simulator [209]. The number of qubits in the QCL regression
model was 4. The number of iterations of the parameterized variational quantum
circuit of the model corresponding to the weights of the neural network was
6. The timestep for the time evolution operator in parameterized variational
quantum circuits was set as 0.5. The BFGS algorithm was used to update the
parameters of the QCL model.
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Table D5: Atomic energies EPUX and lattice constants (LC) of face-centered
cubic (fec) bulk metals M (M = Ir, Pd, Pt, Rh, Ru), obtained from M3GNet
calculations and used for computing the local Surface Energy (LSE). The atomic
energies are the minimum values determined by varying the lattice constant in

intervals of approximately 0.01 A.

fec bulk M Ir Pd Pt Rh Ru
EPTE(cV) -8.941 -5.185 -6.069 -7.394 -9.305

LC (A) 3.875  3.957 3977 3.850 3.815
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Figure D12: Correlation between the adsorption energies of a CO molecule
on monometallic NPs calculated directly using the NNP and those predicted
through regression. Circles, squares, and triangles at each datapoint represent
the facet, edge, and corner CO adsorption sites, respectively.
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Figure D13: Correlation between adsorption energies of a CO molecule on
monometallic NPs calculated directly via DFT and the LSEs corresponding
to each adsorption site. The CO adsorption energies for the 38- and 79-atom
NPs, as well as the datapoints corresponding to the hollow sites that converged
on the Pd NPs, are shown as open markers, as they were not included in the
linear regression data points. Circles, squares, and triangles at each datapoint
represent the facet, edge, and corner CO adsorption sites, respectively.
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Figure D14: (a) Comparison and (b) correlation between the adsorption energy
predicted via LSE and the adsorption energy of CO/HEA,,, directly calculated
using the NNP. We limit the comparison to 2440 sites, encompassing all on-top
sites across the 20 structures. For each element (Ir, Pd, Pt, Rh, Ru) for 14
patterns of IrPAPtRhRu HEA5g; NPs, the energies are corrected using non-linear
regression models based on (¢) KRR and (d) QCL regression. These values
are plotted against values directly obtained using the NNP, which serve as the
standard for accuracy.
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Table D6: Parameters « and 3 of the regression lines between the CO adsorption
energy and the local surface energy (LSE) for monometallic systems, obtained
using NNP and DFT methods. The values correspond to Figures 6.3 and D13,
respectively, where NNP and DFT in parentheses indicate the method used to
obtain these parameters.

Ir Pd Pt Rh Ru
a(DFT) -0.639 -0.446 -1.073 -0.345 -0.041
a(NNP) -0.617 -0.692 -1.131 -0.441 -0.515
B(DFT) -1.782 -1.305 -1.521 -1.755 -2.012
B(NNP) -1.289 -1.165 -0.983 -1.234 -1.240

2 Details of Models Based on Local Surface Energy and
Generalized Coordination Number

Here, we summarize the parameters of the regression model for adsorption-energy
prediction using the LSE descriptor as well as the results of the model accuracy
validation. Figure D12 shows the parity plot of the training data and prediction
results for the LSE linear regression model presented in Figure 2. The RMSE for
predicting the training data was 0.035 eV. Figure D13 presents the regression
results for the linear regression model between the CO adsorption energies on
monometallic NPs obtained via DFT calculations and the LSE. Two datapoints
corresponding to the hollow sites that converged on the facets of Pd in 38-
and 79-atom monometallic NPs were excluded from the regression model. For
small NPs, the entire system tended to exhibit molecular characteristics upon
adsorption, making it difficult for a simple regression model to capture these
effects. However, for larger NPs, a linear relationship with the LSE, similar to
that observed for the NNP, was confirmed. The parameters of the regression
models constructed using the adsorption energies from both the NNP and DFT
are presented in Table D6. Figure D14 presents a parity plot of the prediction
results for the data not included in the training data for the non-linear regression
model of HEA NP adsorption energies evaluated directly using the NNP. The
prediction accuracies were 0.0580 and 0.0579 eV, respectively, indicating that,
as demonstrated in this chapter, the regression models using KRR and QCL
had comparable accuracy. Finally, the regression parameters of the GCN-based
prediction model are summarized in Table D4.

3 Data Availability

The data and code required to reproduce the figures and tables are publicly
accessible on GitHub https://github.com/TShiotaSS/1lse. NP datasets
are available at DOI: https://figshare.com/articles/dataset/Nano
_particle_structures/26973409. We modified the code to extract the
atomic energies from the pretrained M3GNet model on Github at https:
//github.com/materialsvirtuallab/m3gnet, which can be found at


https://github.com/TShiotaSS/lse
https://figshare.com/articles/dataset/Nano_particle_structures/26973409
https://figshare.com/articles/dataset/Nano_particle_structures/26973409
https://github.com/materialsvirtuallab/m3gnet
https://github.com/materialsvirtuallab/m3gnet
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https://github.com/TShiotaSS/lse/tree/main/scripts/m3gnet_each
_atom_energy. The implementation for QCL regression used in this chapter is
available at https://github.com/Qulacs-0saka/scikit-qulacs/tree/main.


https://github.com/TShiotaSS/lse/tree/main/scripts/m3gnet_each_atom_energy
https://github.com/TShiotaSS/lse/tree/main/scripts/m3gnet_each_atom_energy
https://github.com/Qulacs-Osaka/scikit-qulacs/tree/main
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