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内容梗概

近年，社会におけるソフトウェアの重要性が高まっており，社会基盤を支える大規
模なソフトウェアを保守し，長期間にわたって品質を保つことが求められている．ソ
フトウェア保守において，潜在的な障害を未然に検出・対処することは重要な課題の 1

つである．しかし，限られた時間と工数の中でソフトウェアの潜在的な障害をすべて
取り除くことは困難である．そのため，潜在的な障害を未然に防ぐための支援開発技
術が必要とされている．
リファクタリングやバグ修正を行う際には，修正箇所に類似するコード片にも同様

の問題が残っている可能性が高く，同様に修正を適用する必要がある．既存コードの
コピーアンドペーストによる再利用等で発生する，一致または類似した部分を持つ
コード片であるコードクローンはソフトウェア保守を困難にさせる要因の 1つである
と指摘されており，コードクローンを管理する手法が盛んに研究されている．
コードクローンを保守するために，ソースコード中からコードクローンを識別して

管理する必要がある．しかし，ソースコードの規模が大きくなるとソースコード中に
含まれるコードクローンも膨大な量となり，手作業でコードクローンを管理すること
が困難となる．そこで，ソフトウェアの保守作業を効率化させるために，ソースコード
から自動的に検出し，コードクローンの存在を把握する手法が研究されている．さら
に，ソフトウェアの保守性を向上させるために，コードクローンを 1つの関数やクラ
スに集約して除去する手法が研究されている．しかし，一部の処理が変更されたコー
ドクローンや継承関係にあるクラスなど，集約が困難なコードクローンは潜在的な障
害としてソースコード中に残存するため，コードクローンを追跡して管理する手法が
提案されている．
本論文では，ソフトウェア保守の品質を低下させる要因の 1つであるコードクロー

ンに着目し，その検出・追跡・集約という管理手法に関する 3つの研究を実施した．

1. Cross-Polytope LSH を用いたコードクローン検出のためのパラメータ決定
手法

2. コードクローン変更管理システムの開発と改善
3. コードクローン集約によるファジングの実行効率調査

1については，局所性鋭敏型ハッシュ（Locality-Sensitive Hashing，以降 LSH）を
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用いたコードクローン検出器のパラメータ値を自動的に決定する手法を提案した．
Cross-Polytope LSH は，高速かつ低メモリ消費を実現する LSHアルゴリズムの 1つ
である．ただし，検出精度や実行時間に大きな影響を与えるパラメータの数が多く，
適切なパラメータ選択にはアルゴリズムに対する深い知見が必要となる問題がある．
本手法では，類似度を用いたコードクローン検出が，利用者が与えた再現率の目標値
を満たしつつ可能な限り短時間で実行できることを目的として，プロジェクトの規模
から適切なパラメータ値を求める線形回帰モデルを構築し，コードクローン検出対象
に適した Cross-Polytope LSH に与えるパラメータ値の組を決定する．これにより，
CCVoltiの利用者は，高速なパラメータを選択することで，大規模なプロジェクトに
対して頻繁にコードクローン検出し，修正の即時対応やコードクローンの早期発見，
追跡手法への応用を可能とする．
2については，コードクローンの変更情報を開発者に通知するツールであるコードク
ローン変更管理システムに，一貫性のない変更を識別する機能を追加した．コードク
ローンに対する一貫性のない変更は数多く確認されており，その中にはバグ修正の変
更が含まれることが指摘されている．既存システムでは，開発者が一貫性のない変更
を手作業で識別する必要があり，特に大規模なソフトウェアの検出結果を人手で確認
するのは困難である．本手法では，この課題を解決するため，意味的に一致するコー
ドクローン検出器の導入，追跡方法の改善，一貫性のない変更の分類の追加など，4点
の改善を施した．これにより，一貫性のない変更を含むクローンセットの検出と通知
を実現し，大規模ソフトウェアの検出結果の確認コストを軽減した．
3 については，テスト対象のソースコード内のコードクローンを集約することによ
る，ファジングのパス探索の実行効率について調査した．ファジングとは，実行パス
に基づいて大量の入力を自動生成し，対象プログラムの潜在的な障害を検出する，ソ
フトウェア保守における手法の 1つである．大規模なソフトウェアでは，長時間ファ
ジングを実行してもより深い階層にある未知のパスや潜在的な障害箇所へ到達するこ
とが難しい．この課題に対処するため，基本ブロックを含むコードクローンを集約す
ることで，そのコードクローンを含むパスが集約され，未発見のパスに到達しやすく
なるという仮説のもと，コードクローン集約前後のプログラムに対する AFLの比較評
価を実施した．結果として，コードクローン集約はファジングの挙動を変化させ，大
規模ソフトウェアの潜在的な障害の早期発見に寄与する可能性があることを示した．
これらの研究により，大規模ソフトウェア保守における，潜在的な障害の検出を効
率よく行うことができる．
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第 1章

はじめに

1.1 ソフトウェア保守とその課題
ソフトウェアシステムの社会依存度が年々高まる中，開発後のソフトウェア保守の
重要度が高まっている．ソフトウェア保守は，欠陥の修正にとどまらず，環境変化へ
の適応，機能拡張，性能向上，信頼性や安全性の確保といった多様な側面を含み，継
続的かつ戦略的な活動である [2–4]．ソフトウェアを長く保守するためには，一定の人
的コストが必要であり，特に，障害発生時には追加コストがかかることがあり，緊急
対応が遅れた際には甚大なビジネス的損失を発生させるおそれがある．ソフトウェア
を低コストで高品質に維持するために，ソフトウェア工学分野ではソフトウェア保守
の支援が重要となっている．ソフトウェア保守は以下の 4つに分類される [5–7]．

是正保守 ソフトウェア製品の引渡し後に発見された問題を訂正するために行う受身
の修正

予防保守 引渡し後のソフトウェア製品の潜在的な障害が運用障害になる前に発見し，
是正を行うための修正

適応保守 引渡し後，変化した又は変化している環境において，ソフトウェア製品を
使用できるように保ち続けるために実施するソフトウェア製品の修正

完全化保守 引渡し後のソフトウェア製品の潜在的な障害が，故障として現れる前に，
検出し訂正するための修正

リリース後に発見された欠陥の修正作業にあたる是正保守と予防保守，環境変化に
合わせたソフトウェアの改良作業にあたる適応保守と完全化保守に分けられる．是正
保守や適応保守は，問題や環境変化が発生した際の対応作業であるが，予防保守や完
全化保守は潜在的な障害を未然に防ぐための活動が定義されている．
予防保守や完全化保守において潜在的な障害を検出することは非常に困難である．
障害の原因となる要素は，要求・要件の考慮不足，設計不足やミス，ソースコードの
バグや記述ミス，ライブラリに含まれる脆弱性の見落とし，ハードウェアの障害，外
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部システムとの連携など無数に挙げられる．しかし，時間と工数が制限されている中
で，すべての障害の原因となる要素についてテストし修正することは現実的に困難で
ある [8–11]．そこで，ソフトウェア工学分野では，各開発工程の実情の調査研究，潜
在的な障害を未然に防ぐための開発者支援ツールについて盛んに研究されている．

1.2 コードクローン管理手法
ソフトウェアの保守を困難にする大きな要因の 1つとして，コードクローンが指摘
されている [12]．コードクローンとは，ソースコード中に存在する互いに一致または
類似した部分を持つコード片のことであり，既存コードのコピーアンドペーストによ
る再利用等が原因で生じる．コードクローンを保守するために，ソースコード中から
コードクローンを識別して管理する必要がある．しかし，ソースコードの規模が大き
くなるとソースコード中に含まれるコードクローンも膨大な量となり，手作業でコー
ドクローンを管理することが困難となる．
この問題を解決するために，コードクローンをソースコードから自動的に検出する
手法 [12–14]，コードクローンをリファクタリングして除去する手法 [15, 16]，コード
クローンを追跡して管理する手法 [17]が提案されている．コードクローンに対するリ
ファクタリングでは，コードクローンの集約が実施されるが，一部の処理が変更され
たコードクローンやクラスの継承関係にあるクラスなど，リファクタリングできない
コードクローンが存在する．そのようなコードクローンは潜在的な障害になる可能性
があるため，追跡して管理することが求められる．

1.2.1 コードクローン検出
ソースコードの規模が大きくなるにつれ，手作業でコードクローンを管理すること
が困難となる．Royらは，コードクローン間の違いの度合いに基づき，コードクロー
ンを以下の 4つの定義に分類している [12]．

タイプ 1 空白やタブの有無，コーディングスタイル，コメントの有無などの違いを
除き完全に一致するクローン

タイプ 2 タイプ 1の違いに加えて，変数名などのユーザー定義名，変数の型などが
異なるコードクローン

タイプ 3 タイプ２の違いに加えて，文の挿入や削除，変更などが行われているコー
ドクローン

タイプ 4 類似した処理を実行するが，構文上の実装が異なるコードクローン

これらのコードクローンをソースコードから自動的に検出するための手法が多く提
案されている [13]．コードクローン検出手法は，その手法で用いる検出単位によって，
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行単位の検出，字句単位の検出，抽象構文木を用いた検出，プログラム依存グラフを
用いた検出，メトリクスなどその他の技術を用いた検出に分類することができる [18]．

行単位の検出 行単位の検出では，言語に依存せず検出できるが，タイプ 1のコード
クローンのみ検出可能である．Bakerらは，プログラミング言語に依存せず線
形時間でコードクローンを検出できる手法を提案した [19]．

字句単位の検出 字句単位の検出では，比較的高速に，タイプ 1からタイプ 2のコー
ドクローンを検出可能である．神谷らが提案した字句単位の検出手法は，ユー
ザ定義名を特殊文字に置き換えるという言語依存の処理をするにもかかわらず，
C/C++，Java，COBOLなど広く用いられている複数のプログラミング言語
に対応している [20]．

抽象構文木を用いた検出 抽象構文木を用いた検出では，検出の前処理としてソース
コードに対して構文解析を行うことで抽象構文木を構築し，抽象構文木上の同
形あるいは類似した部分木をコードクローンとして検出する．また，各部分木
を特徴ベクトルに変換し，特徴ベクトル間の類似度を求めることによって，あ
る程度特徴ベクトルに違いがあっても検出可能であり，タイプ 1からタイプ 3

までのコードクローンを検出できる．横井らは，情報検索技術を利用すること
により，コードブロック単位のコードクローンを検出する手法を提案した [21]．

プログラム依存グラフを用いた検出 プログラム依存グラフを用いた検出では，プログ
ラムの意味的な処理の類似性に着目しているため，文の並び替えが発生したコー
ドクローンなど，タイプ 4 のコードクローンを検出可能である．Komondoor

らは，ソースコード中の文をプログラム依存グラフのノードとすることで，同
一のグラフ構造となるコード片をコードクローンとして検出する手法を提案し
た [22]．

メトリクスなどその他の技術を用いた検出 メトリクスなどその他の技術を用いた検
出では，プログラムのモジュールに対してメトリクスを計測し，それらの類似
度を計算することによって，タイプ 1 からタイプ 3 のコードクローンを検出
できる．Mayrandらは，関数に対して 21種類のメトリクスを計測することに
よってコードクローンを検出する手法を提案した [23]．

横井らが提案したブロッククローン（コードブロック単位のコードクローン）検
出ツール CCVolti [21] は情報検索技術の 1つであるベクトル化手法 TF-IDF (Term

Frequency-Inverse Document Frequency) 法 [24]を利用して，コサイン類似度を計算
してコードクローンを検出する．これにより，従来の手法では困難であった意味的に
処理が類似したコードクローンを検出可能になり，従来のコードクローン検出手法よ
り精度を向上することに成功した．また，局所性鋭敏型ハッシュ (Locality-Sensitive

Hashing，以降 LSH)の 1つである Cross-Polytope LSH [25] を利用することによっ
て，CCVoltiは大規模ソフトウェアに対しても現実的な計算時間でのコードクローン
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検出を可能にした．実際，15MLOCの LinuxKernelに対して CCVoltiを用いてコー
ドクローン検出した場合，20分程度で検出が完了し，100MLOCにおいても 4時間程
度でコードクローンを検出した．

局所性鋭敏型ハッシュ（LSH）
CCVolti [21] や Deckard [26] など一部のコードクローン検出手法は，コード片を
ベクトル化し，類似度が閾値以上のすべてのベクトル対を求めてコードクローン対を
検出する．しかし，すべてのコード片の組の類似度を計算するためには，コード片の
数の 2 乗のオーダーの計算量で類似度計算の時間が増加し，大規模ソフトウェアの
コードクローン検出では類似度計算に非常に長い時間を要する．例えば，15MLOC の
LinuxKernel に対して CCVoltiは約 36万個のベクトルを生成し，ベクトル対の組合
せ総数 6.5× 1010 回の類似度計算を必要とする．さらに，ベクトルの次元数はソース
コード中の語彙数に比例して増加するため，1回あたりの類似度計算に要する時間や
メモリ量も増加し，大規模ソフトウェアのコードクローン検出が現実的に不可能とい
う問題が発生する．そこで，ベクトル化手法を用いたコードクローン検出手法では，
LSHを利用して類似度計算の高速化を図っている [27,28]．
LSHとは，ハッシュを用いた確率的な処理により，高次元ベクトルデータをクラス
タリングする手法であり，近似最近傍探索問題を解くアルゴリズムである．近似最近
傍探索問題とは，入力ベクトルに対してベクトル集合であるデータセットの中から一
定の類似度以上のベクトルを近似的に高速に見つける問題である．LSHは，類似度が
高いベクトルが高確率で同じハッシュ値になるように設計されたハッシュ関数を利用
し，ハッシュ値が衝突したベクトルを近傍ベクトル候補とする．LSHを用いたコード
クローン検出手法では，膨大なベクトル対の類似度を計算する前に，LSHを用いて近
傍に存在するベクトル対をフィルタリングする．そして，近傍に存在するベクトル対
のみ類似度計算を行うことで，大規模ソフトウェアのコードクローン検出を現実的な
計算時間で可能とした．
CCVolti は，ベクトル化手法として TF-IDF 法を用いており，疎な多次元ベクトル
を生成しやすいベクトル化手法と相性が良い Cross-Polytope LSH を採用した [25]．
Cross-Polytope LSHは，単位球面上に正規化されたベクトルに対してユークリッド距
離またはコサイン類似度に基づいた探索精度の有効性が数学的に保証された，高次元
空間上における近似最近傍探索を高速かつ高精度に実現するための LSH アルゴリズ
ムである．Cross-Polytope LSH のアルゴリズムにおけるハッシュ関数では，事前に
正規化した入力ベクトルに対して，ランダム回転を施し，最も類似度が高い基底ベク
トルを識別し，その基底ベクトルに対応するハッシュ値を割り当てる．ベクトルにラ
ンダム行列を乗算することにより，類似度が高いベクトル同士が一定の確率で衝突を
起こすようになる．
Cross-Polytope LSH ライブラリ FALCONN では，前処理にて次元圧縮をしたり，
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ランダム回転の処理に高速アダマール変換を用いたりするなど，メモリ削減や高速化
を行っている [29, 30]．それにより，FALCONN は従来の LSH が抱えるメモリ使用
量の問題点を改善した．しかし，FALCONNには 10種類のパラメータが存在し，次
元圧縮後の次元数などの検出結果に影響を与えるパラメータと，メモリ上のデータ保
持方法などメモリや計算速度に影響を与えるパラメータがある [31]．しかし，これら
のパラメータは手法に対する深い知見がなければ適切な値を設定できず，本来の高速
性や精度が発揮されないことが課題である．

1.2.2 コードクローンに対するリファクタリング
ソースコードの品質を向上させるために，ソフトウェアのふるまいを保ちつつ内部
構造を改善することをリファクタリングと呼ぶ [32]．リファクタリングすべきコード
として，巨大なクラスや長大メソッド，コードクローンなどが挙げられる．コードク
ローンに対するリファクタリングとして以下のパターンがある [15]．

メソッドの抽出 既存メソッドの一部のコードクローンを新たなメソッドとして抽出
する．

クラスの抽出 既存クラスのコードクローンを新たなクラスとして抽出すること．抽
出したクラスを親クラスとして抽出することも可能である．ただし，既存クラ
スがすでに親クラスを所有している場合，複数の親クラスを継承できない言語
では親クラスへの抽出はできない．その場合，新規クラスに抽出する機能を既
存クラスから委譲するようにリファクタリングを実施する．

メソッドの引き上げ 共通の親クラスを持つ複数の子クラスに含まれる既存メソッド
を親クラスに引き上げる．

テンプレートメソッドの形成 詳細な処理が異なるためにメソッドの引き上げができ
ない場合は，親クラスにテンプレートメソッドを形成して共通処理を定義する．

メソッドの移動 メソッドを他のクラスに移動すること．親クラスへの移動ではなく，
機能ごと別のクラスに移動する．

メソッドのパラメータ化 メソッド内で定義された変数やリテラルをメソッドの引数
に変更する．

コードクローンリファクタリングの研究分野では，自動または半自動でリファクタ
リングする手法が多く提案されている [16]．Mazinanian らは，コードクローン検出
の結果を解析し，リファクタリング可能なコードクローンを特定して自動でリファク
タリングする手法 JDeodorant を提案した [33]．Jdeodorant は以下の 7つの条件の
うちすべてを満たすとき，リファクタリング可能と判断する [34]．

• 変数のパラメータ化の際に制御依存，データ依存，反復操作や出力のふるまい
に変更がないこと．
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• それぞれ異なる子クラス型を持つ変数は，共通の親クラスで宣言されているか，
あるいはオーバライドされたメソッド内でのみ呼び出されていること．

• フィールド変数のパラメータ化は，そのフィールド変数が変更不可であるとき
のみ可能．

• メソッド呼び出しのパラメータ化は，void型を返さないときのみ可能．
• 抽出されたメソッドが 2つ以上の返り値を必要としないこと．
• 条件付き return 文がコードクローンのコード片に含まれないこと．
• 分岐処理を意味する命令文（BREAK，CONTINUE）があれば，それに対応す
る反復命令文がコードクローンのコード片に含まれないこと．

コードクローンを自動でリファクタリングするためには強い制約が必要であり，多
くのコードクローンはリファクタリングできずに残存する．さらに，タイプ 3やタイ
プ 4のコードクローンは，詳細な処理内容が異なることが多く，本節で説明したリファ
クタリング手法を適用することが難しい．そこで，リファクタリングが困難なコード
クローンについては，継続的な管理が必要であり，コードクローンへの変更や進化を
追跡する手法が研究されている．

1.2.3 コードクローン追跡
ソフトウェア進化に伴い，コピーアンドペーストによるコードクローンの増加や，
リファクタリングやバグ修正などのコード変更に起因するコードクローンの変更・削
除は頻繁に発生する．しかし，コードクローンが他にも存在することに気付かずに，
一部のコードクローンに対してのみ変更を加えた場合，本来同様に変更すべきコード
片が潜在的な障害として残存する可能性がある．実際に，コードクローンに対する一
貫性のない変更は数多く確認されており，その中にはバグ修正の変更が含まれること
が指摘されている [35–37]．このような課題に対処するために，ソフトウェアの進化過
程において，コードクローンを追跡し，コードクローンに対する変更の検知および同
期を行うことで，コードクローンに対する一貫した変更を支援する手法が提案されて
いる [16]．

コードクローン同期 主にタイプ 1のコードクローンを対象に，エディタ上で同時編
集を支援ツール [38, 39] や，履歴マイニングを用いたクローン同期を支援する
ツールが提案されている [40, 41]．ASTベースでコードクローンを検出して同
期を支援する手法 [42, 43]が提案されている．

コードクローン追跡 ソフトウェアの進化におけるクローンの系譜を追跡することを
目的として，既存のコードクローン検出器の検出結果を利用してクローン系譜
を抽出する手法 [44, 45] が提案されている．また，ソースコード中のクローン
領域をテキストや位置ではなく構文や構造といった構成情報として管理するこ
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とで追跡する手法 [46]が提案されている．

山中らは，コードクローンを追跡して，コードクローンの変更情報を開発者に通知
するシステムを提案した [47, 48]．開発者は，変更内容によって分類されたコードク
ローン情報を確認して変更されたコードクローンが含まれていた場合など，詳細な情
報を確認すべきときは 1つずつ詳細にコードクローンを確認する作業を実施する．し
かし，検出されるコードクローンが膨大で，すべてのコードクローンを手動で確認す
るのは手間がかかることが課題である．

1.3 ファジング
実際の障害や攻撃が発生する前に潜在的な障害を検出し，未然に防ぐための保守作
業が予防保守である．その 1つの手法であるファジングは，未発見の障害や脆弱性を
自動的に検出する技術として，近年注目されている．ファジングとは，大量の入力を
自動生成し，それらを対象プログラムに対して実行することで，異常な動作やクラッ
シュなどを検出することを目的とした研究分野である [49]．
当初，ファジングは主にセキュリティにおける脆弱性を検査する目的で研究されて
きた．しかし近年では，セキュリティ分野にとどまらず，ソフトウェアテスト自動生
成手法の 1つとしても注目されている．通常のソフトウェアテストは，手動でテスト
データが作成され，時間的コストがかけられているにも関わらず，作成したテストケー
スでは検出困難な障害が存在する可能性がある．ファジングに用いられるランダム生
成やミューテーション生成によるテストデータ大量生成は，ソフトウェアの堅牢性や
信頼性を向上させ，ソフトウェアの品質保証に効果的である．
ソフトウェアが入力として受け取り得るすべてのデータをテストすることが理論的
な理想であるが，実際には入力空間が極めて広大であるため現実的なコストや時間の
制約の下で全探索を行うことは不可能である．そこで，限られた時間内にできるだけ
多くの潜在的な障害を検出するために，高いコードカバレッジを達成するような大量
の入力データを戦略的に生成するファジング手法が盛んに研究されている．ファジン
グは，入力生成の方法に基づいて，以下の 3つに分類される [50,51]．

ホワイトボックスファジング 対象プログラムの内部構造および実行時に収集された
情報を解析してファジングする．ホワイトボックスファジングはコンコリック
テストを指すことが多い．コンコリックテストは具体的な値の実行とシンボ
リック実行を組み合わせた手法である [52,53]．シンボリック実行とは，シンボ
リックを入力として実行パスを解析し，入力データの制約を特定する手法であ
る．ホワイトボックスファジングは，対象プログラムの静的解析が必要である
ため制約が多く適用対象が限られる場合があり，実行時間が長いことが課題で
ある．
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ブラックボックスファジング 対象プログラムの内部構造を静的解析せず，プログラ
ムの入出力の挙動のみを観察してファジングする．ブラックボックスファジン
グはランダム生成やミューテーションを用いて大量の入力データを生成する．
効率的な障害発見のために，特定のプロトコルに特化したファザーや，ランダ
ム生成を改善する手法が提案されている [54–56]．ブラックボックスファジン
グは簡易性や汎用性に優れる一方で，コードカバレッジに偏りが出やすく，深
いバグに到達する入力を生成することが難しい．

グレイボックスファジング 対象プログラムの内部構造を静的解析せず，実行中の内
部情報を動的に観測してファジングする．グレイボックスファジングは，プロ
グラム解析を用いて静的にテストケース生成するホワイトボックスファジング
に比べ，プログラミング言語依存などの制約が少なく，入出力のみでテストケー
スを生成するブラックボックスファジングよりも効率的にテストケースを探索
する．

ホワイトボックスファジングは，ブランチカバレッジを網羅するようなテストケー
ス生成に有効である．一方で，静的解析やソースコードの取得が必要となるため，適
用には多くの制約を伴う．ブラックボックスファジングは，プログラムの逆解析がで
きないなどプログラムの内部情報が読み取れない場合に有効であり，簡易性や汎用性
に優れる．ただし，内部構造を活用しないため，深いバグを発見することが難しい．
グレイボックスファジングは，実行中に内部情報を動的に観測してファジングを行う．
ホワイトボックスファジングと異なり静的解析を行わないため，対象ソフトウェアの
規模に対する制限は小さく，ブラックボックスファジングより効率的にテストケース
の探索が可能である．
グレイボックスファジングの代表的なツールとして American Fuzzy Lop (AFL)

が挙げられる．AFLは，プログラム実行中の内部情報を利用して実行パスを探索し，
可能な限り高いコードカバレッジを達成するテストを生成する [1]．AFLは，多くの
未知の障害を発見した実績があり，AFLに基づいた派生ツールや特定の用途に特化し
た派生ツールなどが数多く提案されている [51]．
都築らは，AFLの派生ツール群を比較評価するためのベンチマークを作成し，評価
を行った [57]．その結果，後発のファジングツールほどファジング結果が向上し，障
害を多く検出することを確認した．しかし，ブランチカバレッジの向上への貢献は小
さく，ソフトウェア品質保証への寄与が小さいことを確認した．さらに，AFLでは，
初期入力データの選択がパス探索の向上に貢献することを明らかにした．有効なテス
ト対象プログラムに対応する有効な形式の入力データと，無効な入力データの両方を
初期入力データとして与えることが，ファジングのパス探索の効率を向上させること
に貢献する．このように，ファジングは，アルゴリズム，評価指標，初期入力データ
選定，ユーザビリティなど，さまざまな観点から研究されている [57,58]．
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1.4 本研究の概要
本研究では，潜在的な障害に対処するために実施される予防保守や完全化保守の支
援を目的として，ソフトウェア保守を困難にする要因の 1つであるコードクローンに
着目し，以下の研究を実施した．

• Cross-Polytope LSH を用いたコードクローン検出のためのパラメータ決定
手法

• コードクローン変更管理システムの開発と改善
• コードクローン集約によるファジングの実行効率調査

■Cross-Polytope LSH を用いたコードクローン検出のためのパラメータ決定手法 2

章では，Cross-Polytope LSHを用いたコードクローン検出ツール CCVoltiに対し，検
出精度を維持しつつ高速化するパラメータの値を決定する手法を提案する．CCVolti

は，従来の手法では困難であった意味的に類似するコードクローンを高速に検出
可能とした．しかし，CCVolti は検出時間が Cross-Polytope LSH に大きく依存し，
Cross-Polytope LSH によるコードクローンの検出漏れが発生するという問題点があ
る．これは，Cross-Polytope LSHのパラメータ設定により精度と実行時間が大きく変
化することが原因である．そこで，本手法では，クローン検出の利用者が与えた再現
率の目標値を満たしつつ，できるだけ時間を短縮することを目的として，プロジェク
トの規模から適切なパラメータ値を求める線形回帰モデルを構築し，コードクローン
検出対象に適した Cross-Polytope LSH に与えるパラメータ値の組を決定する．これ
により，CCVoltiの利用者は，目標再現率を下げて高速なパラメータを選択すること
で，大規模なプロジェクトに対して頻繁にコードクローン検出し，修正の即時対応や
コードクローンの早期発見，追跡手法への応用を可能とする．評価実験では，20個の
プロジェクトに対して本手法で決定されたパラメータ値を CCVoltiに適用し，本手法
の有効性を示す．

■コードクローン変更管理システムの開発と改善 3 章では，コードクローンの変更
情報を開発者に通知するツールであるコードクローン変更管理システムを，一貫性の
ない変更を識別し，開発者に提示できるように改善する．既存システム [48]では，構
文的に一致するコードクローンの集合（クローンセット）を追跡し，クローンセット
の変更情報を開発者に通知する．既存システムは，検出された多くのコードクローン
変更情報から，開発者が手作業で一貫性のない変更を識別する必要があり，特に大規
模なソフトウェアでの結果を人手で確認するのは困難である．そこで，この課題を解
決するため，(1)意味的に一致するコードクローン検出器の導入，(2)クローンセット
の再定義，(3)クローン追跡方法の見直し，(4)クローンセットの詳細分類の追加，の

9



4 点を改善する．これにより，一貫性のない変更を含むクローンセットの検出と通知
が可能となり，大規模ソフトウェアに対する検出結果の確認コストを軽減する．最後
に，PostgreSQLのリポジトリの 1年分のコミット履歴を分析し，実際の一貫性のな
い変更が行われたクローンセットを示す．

■コードクローン集約によるファジングの実行効率調査 4 章では，ファジング対象
のソースコードに含まれるコードクローンが，AFLのパス探索効率に与える影響につ
いて調査する．AFLは，プログラムの基本ブロックレベルの実行パスを観測し，それ
に基づいて未発見のパスを通過するような入力データを効率的に探索するグレイボッ
クスファジングツールである．大規模なソフトウェアに対しては，探索範囲を十分に
広げることは難しく，長時間ファジングを実行してもより深い階層にある未知のパス
や潜在的な障害箇所へ到達できない可能性がある．その原因として，コードクローン
がプログラム中に複数存在する場合，実行時の挙動はほぼ同一であるにもかかわらず，
それぞれのコードクローンに対して別々の実行パスとして探索を繰り返すことになる
からだと考えた．このような冗長な探索が続くと，より深い階層にある未知のパスや
潜在的な障害箇所への到達が遅れ，ファジングの効率が低下する可能性がある．そこ
で，基本ブロックを含むコードクローンを集約することで，AFLが観測するパスの総
数を削減し，未発見のパスに到達しやすくなるという仮説のもと，コードクローン集
約前後のプログラムに対する AFLの比較評価を実施する．

1.5 各章の構成
以降，第 2章では Cross-Polytope LSH を用いたコードクローン検出のためのパラ
メータ決定手法について述べる．第 3章ではコードクローン変更管理システムの開発
と改善について述べる．第 4章ではコードクローン集約によるファジングの実行効率
調査について述べる．最後に，第 5章では本論文のまとめと将来の研究方針について
述べる．
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第 2章

Cross-Polytope LSH を用いたコー
ドクローン検出のためのパラメー
タ決定手法

2.1 まえがき
ソフトウェア開発において，コピーアンドペーストによる再利用等が原因で，コード
クローンが頻繁に発生する．コードクローンを保守するために，ソースコード中から
コードクローンを識別して管理する必要がある．しかし，ソースコードの規模が大き
くなるとソースコード中に含まれるコードクローンも膨大な量となる．手作業でコー
ドクローンを管理することが困難となるため，コードクローンをソースコードから自
動的に検出するための手法が提案されている [13, 18]．
横井らが提案したブロッククローン（コードブロック単位のコードクローン）検出
ツール CCVolti*1は情報検索技術 [24] と局所性鋭敏型ハッシュ (LSH) [25] を利用す
ることによって，従来の手法では困難であった意味的に処理が類似したコードクロー
ンを検出できる [21]．CCVolti におけるコードブロックは，関数と，関数内部の if，
for文等の波括弧で囲まれた部分である．CCVoltiは，入力ソースコードに対して構文
解析を行い，コードブロックの抽出を行う．その後，抽出した各コードブロックを情
報検索技術の 1 つである TF-IDF (Term Frequency-Inverse Document Frequency)

法 [24]に基づいて特徴ベクトルに変換する．最後に，特徴ベクトル間の類似度が閾値
以上の対をコードクローン対として検出する．CCVoltiは高速にコードクローン対を
検出するために，近似最近傍探索アルゴリズム Cross-Polytope LSH [25] を用いてい
る．Cross-Polytope LSHとは，高次元なベクトル集合を確率的にハッシュ化して最近
点を求める近似最近傍探索アルゴリズムである局所性鋭敏型ハッシュ (LSH)の一種で

*1 https://github.com/k-yokoi/CCVolti
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ある．Cross-Polytope LSHはパラメータ値の与え方によって，精度や実行速度を変化
させることができる．CCVoltiは，Cross-Polytope LSHを利用するために，LSHラ
イブラリ FALCONN*2を使用した．
CCVoltiは，既存のコードクローン検出法と比べて高い精度でコードクローンを検
出できる [21]．また，大規模なプロジェクトに対して現実的な計算時間でコードク
ローン検出可能である．実際，15MLOCの LinuxKernelに対して CCVoltiを用いて
コードクローン検出した場合，20分程度で検出が完了し，100MLOCにおいても 4時
間程度でコードクローンを検出した．
一方，CCVolti には次の 2 つの問題点が挙げられる [31]．1 つ目は，Cross-

Polytope LSHを用いて類似度が閾値以上のベクトル対を探索する処理で，約 10%の
検出漏れが発生する場合がある点である．2 つ目は，大規模ソフトウェアの検出に多
大な計算時間を必要とし，頻繁なコードクローン検出ができない点であり，検出時間
の約 90%を類似度が閾値以上のベクトル対を探索する時間が占めている．頻繁なコー
ドクローン検出は，修正の即時対応やコードクローンの早期発見のために必要である．
これらの問題は，CCVoltiが Cross-Polytope LSH のパラメータをクローン検出対象
プロジェクトに対して調整していないことが原因である．特徴ベクトルの数や次元の
大きさはプロジェクトごとに異なるため，ベクトル対の探索の精度と実行速度のト
レードオフとなるパラメータはプロジェクトごとに異なる．しかし，FALCONNには
10を超えるパラメータが存在するため，CCVoltiの利用者が Cross-Polytope LSHの
アルゴリズムを理解し，クローン検出するたびにクローン検出対象プロジェクトに適
したパラメータを調整することは困難である．
この問題を解決するために，本研究では，類似探索の検出漏れを最小限に抑えつつ，
処理時間の削減を両立するため，Cross-Polytope LSHに与えるパラメータを自動的に
決定する手法を提案する．本手法では，類似度が閾値以上のベクトル対のうち，検出
されたベクトル対の割合を再現率と定義し，クローン検出の利用者が与える再現率の
目標値を目標再現率と定義する．本手法では，学習用プロジェクトに対して複数のパ
ラメータ値の組で実行して計測したデータを学習データとして線形回帰モデルを作成
し，コードクローン検出対象プロジェクトの規模を表すメトリクスを入力とし，目標
再現率を満たしつつ実行時間が最小となるパラメータ値の組を決定する．これにより，
CCVoltiの利用者は，目標再現率を下げて高速なパラメータを選択することで，大規
模なプロジェクトに対して頻繁なコードクローン検出が可能となる．
評価実験では，10個の C言語プロジェクトと 10個の Javaプロジェクトを学習用
プロジェクトとして，本手法で決定されたパラメータを使用する CCVolti を用いて
コードクローン検出を実施した．実験結果では，多くの場合で再現率が目標再現率を
上回ることを確認できた．また，本手法で決定されたパラメータは FALCONN のデ

*2 https://falconn-lib.org/
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フォルトのパラメータ値より多くの場合で高速であることを確認した．デフォルトの
パラメータ値での再現率と同等の再現率が得られるように目標再現率 0.99としたとき
の探索時間と比較して，目標再現率 0.8での探索時間はおよそ半減できていた．
以降，2.2節では，コードクローン検出法 CCVolti，Cross-Polytope LSHとその関
連技術について述べる．2.3 節では，CCVolti の利用者が与えた再現率の目標値を満
たしつつ，高速な Cross-Polytope LSHのパラメータ決定手法を示す．2.4節では，本
手法の有効性の評価を行う．2.5節では，実験結果をふまえた本手法の有効性の範囲と
妥当性について考察する．最後に，2.6節では，まとめと今後の課題について述べる．

2.2 コードクローン検出とその関連技術
本節では，局所性鋭敏型ハッシュ (LSH)，近似最近傍探索アルゴリズム Cross-

Polytope LSH，コードクローン検出ツール CCVoltiについて述べる．

2.2.1 局所性鋭敏型ハッシュ (LSH)

LSHとは，近似最近傍探索問題をハッシュを用いて解くアルゴリズムである [25]．
近似最近傍探索問題とは，入力ベクトルに対してベクトル集合であるデータセットの
中から近傍ベクトルを近似的に高速に見つける問題であり，最近点問題の一種である．
近傍ベクトルとは，入力ベクトルに対して一定の類似度以上のベクトルのことである．
LSHのアルゴリズムは，類似度の閾値 θ と近似因数 c < 1に対して，ベクトル集合の
中に入力ベクトルとの類似度が θ以上のベクトルが存在するとき，類似度が cθ以上の
すべてのベクトルを返すことが数学的に保証されている [25]．
入力ベクトルに最も近いベクトルを求める最も基本的な手法は，データセット内の
すべてのベクトルと類似度を計算する方法であり，計算量は O(n2d)となる．この手
法は，ベクトル数 nやベクトルの次元数 dが大きい場合，計算時間が非常に長くなる
という問題がある．例えば，15MLOC の LinuxKernel に対して CCVoltiは約 36万
個のベクトルを生成し，ベクトル対の組合せ総数 6.5× 1010 回の類似度計算を必要と
し，ベクトルの類似度計算のみで数日を要する．一方，LSHは，ハッシュを用いて入
力ベクトルの近傍ベクトルを求め，近傍ベクトルに対してのみ類似度計算を行う．こ
の手法の計算量は O(n1+ρd), (0 ≤ ρ ≤ 1) であり，全探索に比べて高速に最も近いベ
クトルを求めることが可能となる．実際，15MLOC の LinuxKernel に対して 20分
で類似度を計算できる．
ベクトルをハッシュ値に変換するハッシュ関数に対して，2つのベクトル x, y が同
じハッシュ値を取ることをハッシュの衝突という．LSHのハッシュ関数は，類似度が
高いベクトル同士がハッシュの衝突を起こしやすくなるように定義される．ベクトル
のハッシュ値が入力ベクトルのハッシュ値と衝突するとき，そのベクトルは入力ベク
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トルの近傍ベクトルとなる．2 つのベクトル x, y に対して類似度 S(x, y) が定義され
た d次元空間上において，x, y のハッシュ値が衝突する確率を衝突確率と呼ぶ．
データセット中から，ある入力ベクトルに対する近傍ベクトルを LSHを用いて探索
する処理の時間計算量は O(dnρ)となる [25]．ここで，dはベクトルの次元数，nはベ
クトル集合のベクトル数を表し，ρは式 2.1のように表される．

ρ =
log(1/p)

log(1/q)
(2.1)

ここで，pは類似度 S(x, y)が θ以上となる 2つのベクトルの衝突確率を表し，q は類
似度 S(x, y)が cθ 以下となる 2つのベクトルの衝突確率を表す．ρが小さいほど実行
時間の計算量のオーダーが小さくなるため，ρは LSHのアルゴリズムの評価基準とし
て用いられる．

2.2.2 近似最近傍探索アルゴリズム Cross-Polytope LSH

LSHの一種である Cross-Polytope LSHは，d次元単位球上のベクトル集合に対し
て有効性が保証されており，効率的な実装も可能である [25]．コードクローン検出
ツール CCVolti が用いる LSH ライブラリ FALCONN は，大規模なベクトル集合の
近似最近傍探索問題を解くための実装として Andoniらにより開発された．本節では，
Cross-Polytope LSHのアルゴリズム，および Cross-Polytope LSHを用いた類似探索
について説明する．

Cross-Polytope LSHのアルゴリズム
Cross-Polytope LSHは，2つのベクトル x, y に対するユークリッド距離 d(x, y) =

∥x − y∥ に基づいて近傍ベクトルを探索するアルゴリズムである．コサイン類似度
C(x, y) = x·y

∥x∥∥y∥ は式 C(x, y) = 1− d(x,y)2

2 によってユークリッド距離と１対１対応
する．本節では，CCVoltiが用いるコサイン類似度に基づいて議論する．
Cross-Polytope LSH のハッシュ関数を用いた，d 次元ベクトル x に対するハッ
シュ値の計算方法について説明する．まず，ベクトル x を正規化し，ランダム行列
A ∈ Rd×d を乗算してランダム回転を行い，ベクトル y = Ax/∥Ax∥に変換する．次
に，ランダム回転後のベクトル y に対して，正規直交基底の基底ベクトルとそれらの
逆ベクトル {±ei}1≤i≤d の中から最も類似度が高いベクトルを求める．最も類似度が
高いベクトルの符号と添え字 iによって，xのハッシュ値が ±iに決定される．すなわ
ち，Cross-Polytope LSH のハッシュ関数は，行列 Aを用いて入力ベクトルをランダ
ムに回転させ，回転後のベクトルが d個に分割された単位球のどの区画に含まれるか
を，入力ベクトルのハッシュ値とする．
ベクトルにランダム行列を掛けることにより，ベクトルがランダムに回転し，類
似度が高いベクトル対が一定の確率で衝突を起こすようになる．CCVolti が用いる
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Cross-Polytope LSH ライブラリ FALCONN では，前処理で次元圧縮をしたり，ラ
ンダム回転の処理に高速アダマール変換を用いたりするなど，メモリ削減や高速化を
行っている [29, 30]．FALCONN には 10 種類のパラメータが存在し，次元圧縮後の
次元数などの検出結果に影響を与えるパラメータと，メモリ上のデータ保持方法など
メモリや計算速度に影響を与えるパラメータがある [31]．
ある類似度 δ に対して 2 つのベクトル x, y が C(x, y) = δ をみたすとき，Cross-

Polytope LSH の衝突確率 PT は式 2.2のように表される [25]．

ln
1

PT
=

1− δ

1 + δ
· lnT +Oδ(ln lnT ) (2.2)

T は区画の分割数を表す．Oδ(ln lnT )は δに依存する誤差項であり，ln lnT に比例す
る．誤差項 Oδ(ln lnT )は，区画の分割数 T が大きくなるほど 0に近づく [25]．また，
式 2.2と同様に，C(x, y) = cδ のときの衝突確率 QT を式 2.3とする．

ln
1

QT
=

1− cδ

1 + cδ
· lnT +Ocδ(ln lnT ) (2.3)

Cross-Polytope LSHによる近傍ベクトルの検出時間の時間計算量 O(dnρ)の ρは，式
2.2と式 2.3を用いて，2.2.1節の式 2.1から式 2.4に変形でき，T に依存して決まる
ことが分かる．

ρ =
1−δ
1+δ · lnT +Oδ(ln lnT )

1−cδ
1+cδ · lnT +Ocδ(ln lnT )

(2.4)

Cross-Polytope LSHを用いた類似探索
類似探索とは，ベクトル集合から類似度が閾値 θ 以上のベクトル対を探索すること
である．Cross-Polytope LSH を用いた類似探索のアルゴリズムは，以下の 3 つのス
テップで構成される [25]．

STEPA ベクトルの集合から L個のハッシュテーブルを作成
STEPB いずれかのハッシュテーブルで，ハッシュ値が衝突するベクトル対を抽出
STEPC STEPBで抽出したすべてのベクトル対の類似度を計算し，類似度が閾値

以上であるベクトル対をクローンペアとして検出する

Cross-Polytope LSHのランダム性から，異なるハッシュ関数を複数用意できる．
ハッシュテーブル 1つ当たりK 個のハッシュ関数を使用することで，最も近いベク
トルの候補を減らし，より高速に最も近いベクトルを検出することができる．K 個の
ハッシュ関数の衝突確率をそれぞれ，PT1

, ..., PTK
とすると，ハッシュテーブル 1 つ

当たりの衝突確率は式 2.5のように表される [59]．

PT,K =
K∏
i=1

PTi
(2.5)
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ただし，ライブラリ FALCONNでは，T の上限 dに対して PT1
, ..., PTK−1 = Pd と

なるように実装されているため，FALCONNでのハッシュテーブル 1つ当たりの衝突
確率は式 2.6のように表される．

PT,K = Pd
K−1 · PT (2.6)

L個のハッシュテーブルを用意し，いずれかのハッシュテーブルで衝突したベクト
ル対をクローンペアの候補として抽出する．ハッシュテーブルを増やすことで，探索
時間は増加するが，衝突確率を上げて検出漏れを減らすことができる．このとき，式
2.5で表したハッシュテーブル 1つ当たりの衝突確率 PT,K に対して，L個のハッシュ
テーブルでの衝突確率 PT,K,L は式 2.7のように表される．

PT,K,L = 1− (1− PT,K)L (2.7)

2.2.3 コードクローン検出ツール CCVoltiのアルゴリズムと問題点
本節では，コードクローン検出ツール CCVoltiのアルゴリズムと，その問題点につ
いて述べる．
大規模なソースコード中のコードクローンを手作業で管理することが困難であるた
め，1.2.1節に述べたようにコードクローンを自動で検出する手法が多数提案されてい
る．コードクローン検出手法は，その手法で用いる検出単位によって，行単位の検出，
字句単位の検出，抽象構文木を用いた検出，プログラム依存グラフを用いた検出，メ
トリクスなどその他の技術を用いた検出に分類することができる [18]．
横井らが提案した抽象構文木を用いた検出ツール CCVoltiは，情報検索技術を利用
することにより，タイプ 1からタイプ 4までのブロッククローン（コードブロック単
位のコードクローン）を検出できる [21]．コードブロックとは，if文や for文や関数な
どの波括弧で囲まれたコード片を指す．CCVoltiは，既存のコードクローン検出法と
比べて高い精度でコードクローンが検出でき，大規模なプロジェクトに対して現実的
な計算時間でコードクローン検出可能である．実際，CCVoltiを用いて 15MLOCの
LinuxKernelのコードクローン検出を行うと，20分程度で検出が完了し，100MLOC

においても 4時間程度で検出可能であった．
CCVoltiは以下のステップで入力ソースコードからコードクローンを検出する．

STEP1 ソースコードの構文解析を行い，抽象構文木を生成
STEP2 抽象構文木からワードとコードブロックを抽出
STEP3 TF-IDF法 [24]により，コードブロック単位の特徴ベクトルを計算
STEP4 Cross-Polytope LSHを用いた類似探索を行い，コサイン類似度が閾値 0.9

以上のクローンペアを検出
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STEP1 では，ソースコードの構文解析を行い，抽象構文木を生成する．STEP2

では，STEP1 で生成した抽象構文木からワードとコードブロックを抽出する．ワー
ドとは，予約語と識別子名を構成する言語とする．STEP3 では，TF-IDF 法により
コードブロック単位の特徴ベクトルを計算する．TF-IDF法とは，ワードの出現頻度
によって重み付けを行うベクトル化手法である [24]．STEP4では，2.2.2節で述べた
Cross-Polytope LSH を用いた類似探索を行い，コサイン類似度が閾値 0.9 以上のク
ローンペアを検出する．
徳井らは先行研究において，LSHを用いるコードクローン検出法に対して，以下の

2つの問題点を指摘した [31]．

• Cross-Polytope LSHを用いた類似探索において，検出漏れが発生する場合があ
ることを指摘している．同時修正箇所の検出などの目的で CCVoltiを利用する
場合，高い精度が求められるにも関わらず，類似探索において検出漏れが多く
発生することは問題である．

• CCVolti の Cross-Polytope LSH を用いた類似探索の処理時間が CCVolti の
コードクローン検出時間の約 90%を占めており，クローン検出時間が類似探索
の処理時間に大きく依存していることを指摘している．

これらの問題は，CCVoltiが Cross-Polytope LSH のパラメータをクローン検出対
象プロジェクトに対して調整していないことが原因である．類似度が閾値以上のベク
トル対の探索の精度と実行速度は Cross-Polytope LSH に与えるパラメータによって
調整できる．プロジェクトごとに特徴ベクトルの数や次元の大きさは異なるため，類
似度が閾値以上のベクトル対の探索の精度と実行速度のトレードオフとなるパラメー
タはプロジェクトごとに異なる．しかし，CCVoltiの利用者がクローン検出するたび
に対象プロジェクトに適した Cross-Polytope LSH のパラメータを調整することは困
難である．

2.3 Cross-Polytope LSHに与えるパラメータ決定手法
本節では，2.2.3 節で述べたコードクローン検出ツール CCVolti の問題点を解決す
るために，CCVolti の利用者が与えた目標再現率を超える再現率となり，かつ高速
であるための Cross-Polytope LSH に与えるパラメータ決定手法を提案する．本手法
は，学習用プロジェクトの規模に対する適切なパラメータ値の組を学習データとして，
プロジェクトの規模に対するパラメータ値の組を決定する線形回帰モデルを作成し，
コードクローン検出対象プロジェクトを入力として線形回帰モデルを適用することで，
目標再現率を超える再現率となりつつ，高速なパラメータ値の組を求める．本研究に
おける再現率は，類似度が閾値以上のベクトル対の数に対して Cross-Polytope LSH

が検出したベクトル対の数の割合を指す．
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STEP I-A パラメー
タ値の組候補を抽出 学習用プロジェクト

パラメータ値の
組み合わせ候補

STEP I-B CCVoltiで
コードクローン検出

パラメータ値ごとに計測
した再現率と検出時間

STEP I-C 
線形回帰分析

回帰モデル

再現率に影響を
与えるパラメータ

：提案手法の処理

：データ

利用者

目標再現率

目標再現率
を与える

：利用者の処理

図 2.1 提案手法 STEP Iの学習プロセス

回帰モデル群

回帰モデル

対象プロジェクト

パラメータ値の
組み合わせ

STEP II-B
パラメータ決定

利用者

STEP II-A
回帰モデルを決定

図 2.2 提案手法 STEP II の適用プ
ロセス

本手法の目的は CCVoltiの利用者が指定した目標再現率を超えつつできるだけ高速
なパラメータを決定することである．コードクローン検出の目的に応じて目標再現率
を設定し，速度を優先することや精度を優先することができる．例えば，再現率を落
とすことで比較的高速にコードクローン検出すると，コードクローンがどの程度存在
するかの予備分析を低コストで実行できる．また，精度を優先したパラメータでコー
ドクローン検出すると，より正確に同時修正すべきクローンペアを検出し，保守作業
としてコードクローンをリファクタリングできる．しかし，リファクタリングはコス
ト削減を目的としているため，リファクタリングに投入できる時間に限界がある．そ
のため，本手法は精度を優先しつつできるだけ高速にコードクローン検出を行うパラ
メータを決定する．
本手法は，利用者が決定した目標再現率に対して学習用プロジェクトを用いて線形
回帰モデルを作成する学習プロセスと，クローン検出対象プロジェクトの規模に対し
て線形回帰モデルを用いてパラメータ値を決定する適用プロセスからなる．学習プロ
セスでは，学習用プロジェクトの規模に対する適切なパラメータ値の組を学習データ
として，クローン検出対象プロジェクトの規模に対するパラメータ値の組を決定する
線形回帰モデルを作成する．適用プロセスでは，線形回帰モデルを用いて，クローン
検出対象プロジェクトを入力として，目標再現率を超える再現率となりつつ，高速な
パラメータ値を決定する．
本手法で作成する線形回帰モデルはプロジェクトの規模とパラメータ値の関係を推
論するモデルである．利用者は学習プロセスで作成した線形回帰モデルを適用プロセ
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スで再利用可能であり，さらに，未学習のプロジェクトに対して適用可能である．し
かし，Java言語と C言語のプロジェクトで学習した線形回帰モデルを，スクリプト言
語や関数型言語などの異なるドメインのプロジェクトに適用する場合，プロジェクト
の規模とパラメータ値の関係が異なると考えられる．したがって，利用者はコードク
ローン検出対象プロジェクトと同じドメインのプロジェクトを用意して学習プロセス
を実施する必要がある．
学習プロセスでは，学習データ作成と線形回帰分析に時間を要するため，利用者が

求める目標再現率に対応する線形回帰モデルを事前に作成する必要がある．一方で，
作成した線形回帰モデルは文法が類似する言語のプロジェクトに対して汎用的に利用
可能である．したがって，コードクローン検出利用者だけではなく開発現場の環境整
備の担当者や CCVoltiの開発者が学習プロセスをあらかじめ実施し，利用者に線形回
帰モデルを提供することが可能である．
図 2.1は STEP I の学習プロセスを示す．学習プロセスでは，学習用プロジェクト

を用いて線形回帰モデルを以下の 3つのステップで作成する．

STEP I-A Cross-Polytope LSH に与えるパラメータから，再現率に影響を与える
パラメータを抽出する．抽出したパラメータが再現率と探索時間に与える影響
を分析し，パラメータ値の組み合わせの候補を抽出する．

STEP I-B 抽出したパラメータ値の組み合わせの候補を与えた Cross-

Polytope LSH を用いて CCVolti で学習用プロジェクトに対してコード
クローンを検出し，パラメータごとの再現率と類似探索の探索時間を計測する．
類似探索の探索時間とは 2.2.3 節で述べた STEP4 の類似探索にかかる時間で
ある．

STEP I-C 学習用プロジェクトの実験結果を用いて，プロジェクトの規模の対して
目標再現率を超えつつ高速なパラメータ値の組み合わせを決定する線形回帰モ
デルを作成する．

図 2.2は STEP IIの適用プロセスを示す．適用プロセスでは，学習プロセスで生成
した 1つ以上の線形回帰モデルとクローン検出対象プロジェクトを入力として以下の
2つのステップでパラメータを決定する．

STEP II-A STEP Iで作成した線形回帰モデル群から利用者が目標再現率に対応す
る線形回帰モデルを選択する．

STEP II-B クローン検出対象プロジェクトを入力として，選択した線形回帰モデル
を用いてパラメータ値を決定する．

ただし，CCVolti が用いる LSH ライブラリ FALCONN は複数のパラメータを
持ち，高速化のためのパラメータなどのパラメータが存在する．そこで，Cross-

Polytope LSH を用いた類似探索の再現率に影響するパラメータを 2.3.1 節で示す．
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2.3.2節以降，提案手法の各ステップの詳細を示す．

2.3.1 類似探索の再現率に関係するパラメータ
本節では，類似探索の再現率に影響を与えるパラメータを過不足なく抽出するた
めに，本手法における再現率の定義と算出方法を示し，定義した再現率の期待値が
Cross-Polytope LSHの衝突確率 PT,K,L に一致することを示す．本節では，類似探索
の再現率を目標再現率以上の値とし，できるだけ高速となるために，提案手法では，再
現率に影響を与える 3つのパラメータ T,K,Lを決定することを示す．
最初に，本研究における再現率 r を定義する．ベクトル集合に対して，Uall を閾値

θ以上の類似度であるすべてのベクトル対の集合，Ulsh を LSHを用いた類似探索によ
り検出したベクトル対の集合として，再現率 rは式 2.8のように表される．ここで | · |
は集合の要素数を表す．

r =
|Ulsh|
|Uall|

(2.8)

LSHを用いた類似探索は，Uall に含まれる可能性があるベクトル対を LSHを用いて
探索し，LSHで取得した全てのベクトル対の類似度を計算し，閾値 θ 以上の類似度で
あるベクトル対を得る．そのため，Ulsh は包含関係 Ulsh ⊆ Uall を常にみたす．類似探
索の適合率を，LSHを用いて検出したベクトル対集合 Ulsh に対して閾値 θ 以上であ
るベクトル対の割合とすると，包含関係 Ulsh ⊆ Uall だから，類似探索の適合率は常に
1となる．
あるプロジェクトに対して閾値を θ として類似探索を用いたコードクローン検出を
実行したとき，類似探索の再現率は以下の手順で算出される．

STEP i LSHを利用せずすべてのベクトル対の類似度を計算して，類似度が閾値 0.9

以上のベクトル対を求め，ベクトル対の数 |Uall|を計測する．
STEP ii LSHを用いた類似探索を実行し，類似度が閾値 0.9以上のベクトル対の数

|Ulsh|を計測する．
STEP iii 2つの値を式 2.8に代入して再現率 r を算出する．

次に，Cross-Polytope LSH の衝突確率と CCVolti の類似探索の再現率の期待値
が一致することを示す．2.2.2 節で述べた Cross-Polytope LSH を用いた類似探索
において，衝突確率は式 2.7 のように表される．本研究における再現率の定義と，
Cross-Polytope LSHの衝突確率の定義から以下の定理を導くことができる．

定理 1. 閾値 θ に対して類似探索を行うとき， S(x, y) ≥ θ である 2 つのベクトル
x, y に対する LSH の衝突確率 PT,K,L と，再現率の期待値 E は 一致する．

Proof. 2.2.2 節より，確率 PT,K,L は L 個のハッシュテーブルに対する衝突確率を表
し，ある１つの類似ペアが検出できる確率といえる．すべてのベクトル対集合 Uall の
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ベクトルは，それぞれ確率 PT,K,L で衝突するから，衝突するベクトル対の数は二項分
布に従う．したがって，検出できるベクトル対の数の期待値 Elsh は，ベクトル対の数
|Uall|と 1つのベクトル対が衝突する確率を用いて Elsh = |Uall| × PT,K,L ように計算
される．また，再現率の期待値 E は，検出できるベクトル対の数の期待値 Elsh とベ
クトル対の数 |Uall|を用いて E = Elsh

|Uall| = PT,K,L と表される．
よって，再現率の期待値と衝突確率は一致する．実際に，いくつかのパラメータ値

の組み合わせにおいて 20プロジェクトに対して実験を行い再現率を計測したところ，
再現率の信頼区間に式 2.7から算出した衝突確率が含まれていた．

定理 1より，再現率の期待値は衝突確率と一致する．Cross-Polytope LSHの衝突確
率 PT,K,L は，Cross-Polytope LSHのパラメータである，区画の分割数 T，ハッシュ
関数の数K，ハッシュテーブル数 Lに依存して増減する．したがって，本手法は，再
現率が目標再現率を超えつつ，できるだけ高速となるために，類似探索の再現率に影
響を与える 3つのパラメータ T,K,Lの値を決定する．

2.3.2 STEP I-A パラメータ値の組候補を抽出
3 つのパラメータ T,K,L はそれぞれが独立に再現率と探索時間に影響を与えるた

め，再現率が目標再現率を超えつつ，できるだけ高速となるための T,K,Lのパラメー
タ値を同時に決定する必要がある．3 つのパラメータ T,K,L の値を同時に決定する
ために，本節では，線形回帰モデルの目標変数とするラベルを示す．ラベルとは，T

の上限の値を dとするとき，区画の分割数 T とハッシュ関数 K の値の組 (T,K)と 1

対 1対応する式 (K − 1) ln d+ lnT の値とする．
区画の分割数 T とハッシュ関数 K の値の組 (T,K) は，1 対 1 対応する式をハッ

シュテーブル 1個当たりの衝突確率の式 2.5から導出できる．式 2.6の両辺の逆数に
対して底 2の対数を取り，右辺の各項に式 2.2を誤差項を無視して代入し，式 2.9を
導く．

ln
1

PT,K
=

1− δ

1 + δ
((K − 1) ln d+ lnT ) (2.9)

右辺に現れた式 (K− 1) ln d+lnT について，T,K が自然数であり dは T の上限であ
ることから，任意の整数K1 > K2に対して (K1−1) ln d+lnT > (K2−1) ln d+lnT

である．したがって，T と K の値の組合わせと (K − 1) ln d + lnT の値は 1対 1に
対応している．これ以降，ハッシュ関数の数 K と区画の分割数 T の組を，ラベル
(K − 1) ln d+ lnT として表す．
ラベルと Lの性質を調査するため，LinuxKernelを対象に予備実験をした．予備実

験の内容と結果を付録 1に示す．実験結果から，K と T の組を表すラベルとハッシュ
テーブル数 Lについて，以下の性質を確認した．
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• ラベルを増加すると，再現率は減少し，探索時間は指数的に減少する．
• ハッシュテーブルの数を増加すると，再現率は増加し，探索時間は線形に増加
する．

• さらに，探索時間に与える影響は，ラベルの方がハッシュテーブル数より大
きい．

1, 2番目の性質から，ラベルが小さいと再現率は高くなり，ハッシュテーブルの数
が大きいと再現率は高くなるといえる．3番目の性質から，ラベルのほうが探索時間
に大きな影響を与えるため，ラベルの値をハッシュテーブルより先に決定することで，
探索時間をより短くできると考えられる．ラベルの値に対して，ハッシュテーブル数
Lは再現率を目標再現率以上になるために十分な値を決定する必要がある．できるだ
け高速なラベルを決定するための線形回帰モデルと，ラベルから Lを一意に決定する
方法を STEP I-Cに示す．したがって，本手法はラベルの値を決定することで，再現
率が目標再現率を超えつつ，できるだけ高速となるための 3 つのパラメータ T,K,L

を自動的に決定する．
パラメータ T,K,L が取りうる値の組の候補として，ラベルとハッシュテーブル数
に取りうる値の範囲の総当たりが考えられる．ラベル label = (K − 1) ln d+ lnT に 1

以上の整数値を 1刻みで与えるような値を区画の分割数 T とハッシュ関数の数 K に
与える．ハッシュテーブル数 Lには 1以上の整数値を 1刻みで与える．これらの総当
たりのパラメータ値の組の候補に対して学習データを生成する．

2.3.3 STEP I-B 学習データの生成
本節では，学習用プロジェクトを用いて，線形回帰モデルを作成するための学習
データを作成する．学習データは，学習用プロジェクトのコードブロック数，Cross-

Polytope LSH に与えるパラメータ値の組に対する類似探索の再現率と探索時間と
する．
STEP I で抽出したパラメータ T,K,L の組の候補を Cross-Polytope LSH に与え，

CCVoltiを用いて学習用プロジェクトに対するコードクローン検出を実行し，コード
ブロック数，類似探索の再現率，探索時間を計測する．計測結果を含めた 4つのデー
タ，Cross-Polytope LSH に与えたパラメータ値の組，コードブロック数，類似探索
の再現率，探索時間，の組を学習データとする．学習プロセスで作成した線形回帰モ
デルを適用プロセスで，再利用可能，あるいは未学習のプロジェクトに対して適用可
能とするために，コードクローン検出対象プロジェクトと同じドメインの学習用プロ
ジェクトを用意する必要がある．また，本手法が生成する線形回帰モデルはコードブ
ロック数とパラメータ値の関係を示すため，コードブロック数が異なるプロジェクト
を複数用意することが必要である．本評価実験では，コードブロック数が 2,000以上
ある OSSプロジェクトを収集し学習用データとして利用した．
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2.3.4 STEP I-C 線形回帰分析
本節では，STEP I-B で作成した学習データを用いて，コードクローン検出対象プ

ロジェクトのコードブロック数に対して，目標再現率を超えつつできるだけ探索時間
を短縮するためのパラメータ値を推論する線形回帰モデルを作成する．STEP II では
STEP I で作成した線形回帰モデルからパラメータ決定に利用するモデルを選択する．
そのため，STEP Iの実施者である利用者あるいは開発現場の環境整備の担当者や我々
は，CCVoltiの利用者が求める目標再現率に対応する線形回帰モデル群を STEP Iで
作成する．
STEP I-Cでは，STEP I-Bで取得した学習用プロジェクトに対する再現率の計測結

果から，すべてのプロジェクトの再現率が目標再現率を超えるパラメータ組 (label, L)

をすべて抽出する．抽出されたパラメータ組 (label, L) は，すべての学習用プロジェ
クトで再現率が目標再現率を超えるため，任意のプロジェクトで再現率の期待値が目
標再現率を超える．そのため，線形回帰モデルによりラベルの値を決定すると一意に
ハッシュテーブル数を決定する．
再現率に基づいて抽出したパラメータ組に対して，STEP I-B で取得した学習用プ

ロジェクトに対する探索時間の計測結果から，プロジェクトごとに探索時間が最も短
いパラメータ組を抽出する．学習用プロジェクトごとに学習データから抽出したパラ
メータ組を用いて，コードブロック数を説明変数とし，ラベルを目標変数とする線形回
帰モデルを作成する．線形回帰モデルの説明変数としてプロジェクトの規模を表すメ
トリクスにコードブロック数を用いた理由は，CCVoltiがコードブロック単位のコー
ドクローン検出手法だからである．一方，プロジェクトの規模を表すメトリクスは複
数あるのに対し，コードブロック数のみを説明変数としたのは，行数やメソッド数な
どのメトリクス同士の相関が強く，多重共線性により結果を偏らせると判断したから
である．
線形回帰モデルにコードクローン検出対象プロジェクトのコードブロック数を入

力すると，ラベルの値が決定される．ラベルの値が決定されると，ラベルを表す式
label = (K − 1) ln d+ lnT から，ラベルの値に対応する 2つのパラメータ T,K を求
めることができる．また，すべての学習用プロジェクトに対して抽出した目標再現率
を超える再現率であるパラメータ組を用いて，ラベルの値に対して探索時間が最短の
Lを決定する．Lは小さくなるほど探索時間が線形に短くなるため，目標再現率を超
える再現率であるパラメータ組に対して線形回帰モデルで決定されたラベルを含むパ
ラメータ組の内，最も小さい Lに決定する．したがって，作成した線形回帰モデルは，
コードブロック数を説明変数として，Cross-Polytope LSH に与える 3 つのパラメー
タ T,K,Lを決定することができる．
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2.3.5 STEP II 線形回帰モデルを用いたパラメータ決定
本節では，学習プロセスで作成した線形回帰モデルを用いて，本手法の利用者がパ
ラメータを決定する手順 STEP II-A, II-Bを示す，
STEP II-A では，STEP I で作成された線形回帰モデル群から，利用者が目標再現
率に対応する線形回帰モデルを選択する．線形回帰モデル群は，利用者あるいは開発
現場の環境整備の担当者や我々によって，目標再現率ごとに STEP Iにしたがって事
前に作成される．利用者は，作成された線形回帰モデル群から，速度を優先する目標
再現率に対応する線形回帰モデルや，精度を優先する目標再現率に対応する線形回帰
モデルを選択する．
STEP II-Bでは，STEP II-Aで選択した線形回帰モデルを用いて，コードクローン
検出対象プロジェクトを入力として，区画の分割数 T，ハッシュ関数の数K，ハッシュ
テーブル数 Lの値を決定する．STEP I-Aで示した通り，他のパラメータは再現率に影
響を与えないため，任意のパラメータ値を用いてよい．選択した線形回帰モデルにプロ
ジェクトのコードブロック数を入力すると，ラベルの値が決定され，自動的にパラメー
タ組 (T,K,L)が決定される．ラベルと K,T に関する式 label = (K − 1) ln d + lnT

から，ラベルの値に対してパラメータ T,K が一意に決まる．また，STEP I-Cで示し
たようにラベルの値に対して探索時間が最短の Lを一意に決定できる．線形回帰モデ
ルを用いて，コードクローン検出対象プロジェクトのコードブロック数から，目標再
現率を超えつつ，できるだけ高速なパラメータ値の組 (T,K,L)を決定する．

2.4 評価実験
本実験では，本手法の有効性を評価するために，LSH ライブラリ FALCONN の
デフォルトのパラメータ値に対して，本手法に基づいて決定されたパラメータ値を
比較する実験を行った．LSH ライブラリ FALCONN は，CCVolti が用いる Cross-

Polytope LSHの 1つの実装である．Cross-Polytope LSHの振舞いをパラメータ値に
より変更できるという利点があるため，評価実験においてもライブラリ FALCONN

を用いる．本節で実施する評価実験は，類似探索の探索時間と再現率という 2つの観
点で行う．
本手法の目的は，クローン検出の利用者が与えた目標再現率を満たし，かつ高速で
あるための Cross-Polytope LSH に与えるパラメータ値を決定することである．そこ
で本実験では，本手法で決定したパラメータ値と，表 2.3 に示した FALCONN のデ
フォルトのパラメータ値との比較実験を行い，類似探索の探索時間と再現率という 2

つの観点で有効性の評価を行う．そして，本手法の有効性を示すために，以下の 2つ
の RQに対して実験結果に基づいて考察を行う．
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表 2.1 学習用プロジェクト

プロジェクト 言語 コード
ブロック数

類似度 0.9以上の
クローンペア数

行数

Antlr 4.7.1 Java 2,787 3,566 92,976

SNNS 4.2 C 3,113 2,640 133,968

Maven 3.5.4 Java 3,468 3,448 133,238

Ant 1.10.5 Java 5,619 1,785 273,631

zfs-linux 2.19.1 C 6,806 1,119 259,771

HTTPD 2.4.35 C 7,626 1,501 255,468

ArgoUML 0.34 Java 8,696 5,038 391,837

Python 3.7.1 C 9,685 2,223 400,916

heimdal 2.19.1 C 12,083 2,335 549,880

Pig 0.17.0 Java 12,259 16,462 398,130

Tomcat 9.0.12 Java 13,488 9,043 562,549

Jackrabbit 2.16.3 Java 15,591 7,930 617,459

WildFly 14.0.1 Java 19,026 11,394 906,776

PostgreSQL 10.1 C 25,596 12,108 1,314,890

Camel 2.22.0 Java 50,515 508,298 1,953,433

gcc 8.2.0 C 93,104 847,841 4,079,924

OpenJDK 11.28 Java 110,364 53,347 4,766,529

FireFox 59.0.3 C 182,233 92,757 7,046,826

Linux Kernel 4.19 C 363,935 108,932 15,000,647

FreeBSD 11.2 C 379,014 196,714 15,694,482

RQ1 本手法で決定したパラメータ値での再現率は目標再現率を超えているか？
RQ2 FALCONNのデフォルトのパラメータ値での探索時間に対して，本手法で決定

したパラメータ値での探索時間は減少しているか？

以降，評価実験の詳細と結果，そこから得られる考察について述べる．

2.4.1 実験対象
本節では，本実験の実験対象プロジェクトと，比較対象とする FALCONNのデフォ

ルトのパラメータ値について述べる．
本実験では，実験対象のプロジェクトとして，過去にコードクローン検出器の評価

の実験対象にされたことがある 20個のプロジェクトを用意した．表 2.1は学習用プロ
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表 2.2 再現率に影響を与えるパラメータ値の入力可能範囲

パラメータ名 値の範囲
区画の分割数 T 1 ≤ T ≤ 1024

ハッシュ関数の数K K = 1, 2, 3

ハッシュテーブル数 L 1 ≤ L

表 2.3 FALCONNのデフォルトのパラメータ値

パラメータ名 値
区画分割数 T 2(r−1)

( r = d mod log2 n )

ハッシュ関数の数K (log2 n− 1)/d

ハッシュテーブル数 L 10

ジェクトの言語，コードブロック数，類似度が 0.9以上のクローンペア数，および行
数を示す．プロジェクトの順はコードブロック数によって並びかえた．クローン検出
の対象とするプロジェクトは，C言語で記述されたプロジェクトと Javaで記述された
プロジェクトがそれぞれ 10個ずつある．これらは，コードクローンに関する論文の評
価実験等で用いられたプロジェクトから収集し，類似度が 0.9以上のベクトル対集合
Uall が 1000以上あるプロジェクトを選択した [13, 21,26,60–65]．
これらの学習用プロジェクトに対して，CCVoltiを用いてプロジェクトごとにコー
ドクローンを検出し，Cross-Polytope LSHに与えるパラメータごとに再現率と類似探
索の探索時間を計測する．クローンペアの基準として類似度の閾値 θ を CCVoltiがデ
フォルトとする 0.9 を用いる．CCVolti が用いる Cross-Polytope LSH のパラメータ
の内，STEP Iで抽出したパラメータ以外のパラメータ値は，ライブラリ FALCONN

のデフォルトのパラメータ値に統一した．STEP I で抽出したパラメータには，ラベ
ルとハッシュテーブル数に取りうる値の範囲の組み合わせを総当たりを与える．ライ
ブラリ FALCONN の 3 つのパラメータ T,K,L に入力可能な値は，表 2.2 示す範囲
の整数値である．ラベル label = (K − 1) ln d+ lnT に 1 ≤ label ≤ 20の範囲で 1刻
みで値を与えるように，区画の分割数 T とハッシュ関数の数 K に値を与える．ハッ
シュテーブル数 Lには，1 ≤ L ≤ 30の範囲で 1刻みで値を与える．
FALCONNのデフォルトのパラメータ値を表 2.3に示す．FALCONNのデフォル
トのパラメータ値は，最近点を高確率で検出できる値を規模に応じて与えられる．d

はベクトル集合の各ベクトルの次元数を表し，nはベクトル集合に含まれるベクトル
の数を示す．つまり，区画の分割数 T とハッシュ関数の数K のデフォルトのパラメー
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タ値は，ベクトル集合のベクトル数とベクトルの次元数から算出している．この算出
方法の理由は開発者によって明示されていないが，ベクトル集合の密度に対して区画
の大きさを調整することによって，クエリベクトルに対して最も近いベクトルを高確
率で検出するためだと考えられる．また，ハッシュテーブル数 Lは 10に固定されて
いる．ハッシュテーブルが 10個あれば，限りなく１に近い確率で最も近いベクトルを
探索できると考えられる．

2.4.2 線形回帰モデル作成
本節では，表 2.1の実験対象プロジェクトを 20個の学習用プロジェクトとして，目

標再現率 0.9に対して生成される線形回帰モデルを示す．また，生成した線形回帰モ
デルを各実験対象プロジェクトに適用して得られるパラメータの値を示す．
表 2.1 の実験対象プロジェクトを 20 個の学習用プロジェクトとして，目標再現率

0.9に対する線形回帰モデルを作成する．STEP I-Bにしたがって，各学習用プロジェ
クトに対してコードクローン検出を行い，パラメータごとの再現率と類似探索の探索
時間を計測し，学習データを作成する．さらに，STEP I-Cにしたがって，各学習用プ
ロジェクトに対して目標再現率を超えつつ探索時間が短いパラメータ組を１つずつ抽
出し，各プロジェクトのコードブロック数を説明変数とし，抽出したラベルを目標変
数として線形回帰分析を行い，線形回帰モデルを作成する．ラベルを目標変数，プロ
ジェクトのコードブロック数を説明変数として線形回帰分析すると，回帰係数は 1%

水準で統計的に有意であった．
目標再現率 0.9に対して生成された線形回帰モデルの回帰係数は 1.87 × 10−7 であ
り，切片は 9.79である．作成した線形回帰モデルは，学習データとして 2つの言語の
異なる規模のプロジェクトを用いており，C言語や Java言語などの手続き型言語に対
して汎用的に利用可能な線形回帰モデルであると考えられる．本手法の評価実験を踏
まえた汎用性に関する考察を 2.5.2節で述べる．
生成された線形回帰モデルに対象プロジェクトのコードブロック数を入力すると，
ラベルの値が決定される．ラベルを表す式は label = (K − 1) ln d + lnT であり，表
2.2から d = 1024,1 ≤ T ≤ 1024だから，決定されたラベルの値に対して 2つのパラ
メータ T,K を算出できる．例えば，label = 14 の場合，K = 2,T = 16 となる．ラ
ベルの値に対して STEP I-Cで取り出されるパラメータ組の中で最も小さい Lを決定
し，探索時間が最短の Lを得る．したがって，作成した線形回帰モデルを用いて，対
象プロジェクトのための Cross-Polytope LSH に与える 3 つのパラメータ T,K,L を
決定できる．
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表 2.4 目標再現率 0.9に対する線形回帰モデルで決定される各プロジェクトのパラメータ値

プロジェクト T K L

Antlr 4.7.1 1024 1 3

SNNS 4.2 1024 1 3

Maven 3.5.4 1024 1 3

Ant 1.10.5 512 1 3

zfs-linux 2.19.1 1024 1 3

HTTPD 2.4.35 1024 1 3

ArgoUML 0.34 1024 1 3

Python 3.7.1 1024 1 3

heimdal 2.19.1 1024 1 3

Pig 0.17.0 1024 1 3

Tomcat 9.0.12 1024 1 3

Jackrabbit 2.16.3 1024 1 3

WildFly 14.0.1 1024 1 3

PostgreSQL 10.1 1024 1 3

Camel 2.22.0 1024 1 3

gcc 8.2.0 128 1 3

OpenJDK 11.28 1024 1 3

FireFox 59.0.3 1024 1 3

Linux Kernel 4.19 16 2 5

FreeBSD 11.2 16 2 5

2.4.3 実験方法
本実験では，本手法の有効性を示すために，0.8以上 1未満の 20個の目標再現率に
対して表 2.1の 20個のプロジェクトを用いて 10分割交差検証を実施する．20個のプ
ロジェクトを 18 個の学習用プロジェクトと 2 個のコードクローン検出対象プロジェ
クトに分割する．18個の学習用プロジェクトを用いて，0.8以上 1未満の 0.01刻みの
20個の目標再現率の各値に対して STEP Iを実行し，各目標再現率に対する線形回帰
モデルを作成する．作成した線形回帰モデル群と 2個のコードクローン検出対象プロ
ジェクトに対して STEP IIを実行しパラメータ値の組を決定する．決定したパラメー
タを与えた Cross-Polytope LSH を用いて，CCVoltiによってコードクローン検出を
行い，再現率と探索時間を計測する．類似探索の再現率の計測は，2.3.1節で述べた方
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法と同様の手順で行う．よって，適合率は常に 1となる．10分割交差検証のために，
学習用プロジェクトとコードクローン検出対象プロジェクトを入れ替え，各目標再現
率に対してすべての実験対象プロジェクトのためのパラメータ値を決定し，CCVolti

によるコードクローン検出の再現率と探索時間を計測する．
実験環境は，CPU Intel Xeon 2.80GHz，メモリ 32.0GB，OS Windows 10 64bit.

Java 仮想マシンのヒープ領域 15GB とした．クローンペアとするコサイン類似度の
閾値 θ は，コードクローン検出法 CCVolti がデフォルトとする 0.9 とした．また，
CCVolti が用いる Cross-Polytope LSH ライブラリ FALCONN に与えるパラメータ
の内，本手法の STEP I-Aで抽出したパラメータ以外のパラメータ値は，FALCONN

のデフォルトのパラメータ値に統一した．

2.4.4 実験結果
実験結果を表 2.5，図 2.3，図 2.4，図 2.5，図 2.6，付録 2に示す．表 2.5は，FALCONN

のデフォルトのパラメータ値での再現率と探索時間を計測した結果を示す．図 2.3は，
目標再現率毎に本手法で決定したパラメータ値と，FALCONN のデフォルトのパラ
メータ値に対して，再現率の比較を箱ひげ図で示した．このグラフの横軸は目標再現
率の値を表し，縦軸はその目標再現率のときの本手法で決定したパラメータ値での実
験を行ったときの再現率を表す．ただし，最も右の列は FALCONN のデフォルトの
パラメータ値での結果を表している．図 2.4は，本手法で決定したパラメータ値での
探索時間に関して，FALCONNのデフォルトのパラメータ値での探索時間と比較した
増減率を目標再現率毎に箱ひげ図で示した．この箱ひげ図の横軸は目標再現率の値を
表し，縦軸はその目標再現率に対して本手法で決定したパラメータ値で実験を行った
ときの類似探索の時間に関して FALCONN のデフォルトのパラメータ値での探索時
間と比較した増減率を表している．図 2.5, 図 2.6は，本手法で決定したパラメータ値
での探索時間に関して，目標再現率の変化に伴うプロジェクト毎の探索時間の増減率
をパラメータ毎に調査した結果である．このグラフの横軸は目標再現率の値を表し，
縦軸はその目標再現率のときの本手法で決定したパラメータ値でそのプロジェクトの
探索時間の増減率を表しており，折れ線グラフは各プロジェクトの増減率の変化を表
している．付録 2は，プロジェクトごとに各目標再現率と，FALCONNのデフォルト
のパラメータ値に対して，CCVoltiの探索時間を計測した結果を示す．
RQ1

図 2.3 から，75% 以上のプロジェクトにおいてどの目標再現率についても再現率
が目標再現率を超えていることが分かる．これにより，あるプロジェクトに対して
CCVoltiによってコードクローン検出する際，本手法は多くの場合で再現率の目標値
を満たすことができるといえる．
しかし，いくつかのプロジェクトで再現率が目標再現率を下回る場合を確認し，ま
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表 2.5 FALCONNのデフォルトのパラメータ値での実験結果

プロジェクト名 再現率 探索時間 [ms]

Antlr 1.000 1,411

SNNS 0.998 1,566

Maven 0.999 1,696

Ant 0.999 2,737

zfs-linux 0.990 3,363

HTTPD 1.000 3,806

ArgoUML 0.997 6,634

Python 0.996 7,171

heimdal 0.997 9,197

Pig 0.999 11,010

Tomcat 0.997 10,514

Jackrabbit 0.994 12,167

WildFly 0.991 15,457

PostgreSQL 0.995 20,011

Camel 0.986 2,158,552

gcc 0.996 5,755,016

OpenJDK 0.983 93,318

FireFox 0.976 183,147

Linux Kernel 0.974 480,423

FreeBSD 0.980 1,054,177

た，目標再現率 0.9以下を与えているにも関わらず，再現率が 0.95付近になる場合を
確認した．再現率にばらつきが起こる原因は，クローンセット (互いにクローンペアと
なるコードクローンの集合) 内のコード片の数の平均に差があることや，閾値に近い
類似度であるクローンペアの数が多いことだと考える．また，FALCONNのデフォル
トのパラメータ値での再現率はすべて 0.97以上である．本手法で決定したパラメータ
値が FALCONN のデフォルトのパラメータ値と同程度の再現率を得るためには，目
標再現率を 0.98以上にする必要がある．

RQ1の答え� �
多くの場合で本手法は再現率の目標値を満たしている．ただし，再現率が目標再
現率を下回るプロジェクトがいくつかあることを確認した．� �
RQ2
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図 2.4から，目標再現率が 0.96以下では，16プロジェクトが FALCONNのデフォ
ルトのパラメータ値より高速であり，目標再現率が 0.98以上の場合でも，14プロジェ
クトで FALCONN のデフォルトのパラメータ値より高速であることが分かる．さら
に，目標再現率が 0.91 以下の場合，18 プロジェクトに関して，デフォルトの探索時
間からの増減率が-0.3 を下回っている．このように，多くの場合で FALCONN のデ
フォルトのパラメータ値より高速である．これにより，あるプロジェクトに対して
CCVoltiによりコードクローン検出する際，他の OSSを学習して生成した回帰モデル
を用いて高速なパラメータを選択できるといえる．
また，図 2.5 と図 2.6 から，多くのプロジェクトに関して，目標再現率を下げるこ
とによって探索時間削減できていること分かる．特に，gccと Camelを除く 18プロ
ジェクトにおいて，目標再現率 0.8での探索時間は，目標再現率 0.99のときの探索時

31



-0.5

0.0

0.5

0.80 0.85 0.90 0.95

目標再現率

探
索
時
間
増
減
率

プロジェクト

gcc

FireFox

FreeBSD

Linux.Kernel

SNNS

zfs.linux

PostgreSQL

heimdal

Python

HTTPD

図 2.5 プロジェクト毎の検出時間（Cプロジェクト）

-0.5

0.0

0.5

0.80 0.85 0.90 0.95

目標再現率

探
索
時
間
増
減
率

プロジェクト

Camel

OpenJDK

Antlr

Maven

Ant

Pig

WildFly

Tomcat

Jackrabbit

ArgoUML
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間からおよそ半減できている．これにより，CCVoltiの利用者が速度を優先したい場
合，低めの目標再現率を設定することで，CCVoltiの利用者が許容する再現率を満た
しかつ高速化できる．
図 2.5と図 2.6，2.3.4節の表 2.1から，クローンペア数が多いプロジェクトである
ほど，FALCONNのデフォルトのパラメータ値との探索時間の増減率が変化しないこ
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とがわかる．特に，gccと Camelの 2つのプロジェクトに関しては，目標再現率 0.80

の場合に FALCONNのデフォルトのパラメータ値と比べて探索時間が増加している．
この原因について考察するために，2.2.3節で述べた CCVoltiの検出の STEP4にお
けるクローンペアの検出の手順を，クローンペアの類似探索とフィルタリングに分割
する．クローンペアのフィルタリングでは，クローンペアの重複を排除したり，被覆
関係のクローンペアを排除する．FALCONN のデフォルトのパラメータ値での，ク
ローンペアの類似探索とフィルタリングに分割してそれぞれの時間を計測した結果を
表 2.6に示す．FALCONNのデフォルトのパラメータ値の場合，クローンペア数が最
も少ない zfs-linuxでは，フィルタリング時間が類似探索の約 0.04倍であるのに対し，
gccでは 81倍，Camelでは 56倍もの時間をフィルタリングにかけている．クローン
ペアが多い場合，フィルタリングの時間が支配的になり，類似探索の高速化だけでは
検出時間全体の時間短縮ができない．今後は，クローンペアのフィルタリングの改善
が必要だと考えられる．

RQ2の答え� �
多くの場合で本手法は FALCONNのデフォルトのパラメータ値より高速である．
特に，gccと Camelを除く 18プロジェクトにおいて，目標再現率 0.8での探索
時間は，目標再現率 0.99での探索時間からおよそ半減している．� �

2.5 考察
本節では，本手法を適用した CCVoltiの有用性と，本手法における妥当性への脅威
について考察する．

2.5.1 本手法を適用した CCVoltiの有用性
本手法を適用した CCVolti の有用性について考察する．本実験では，CCVolti の
再現率，適合率，F値を計測していないが，類似探索の再現率を低く設定したときの
CCVoltiの精度について CCVoltiの評価実験の結果に基づいて，類似探索の再現率が
0.8のときの CCVoltiの検出結果を推定し議論する．CCVoltiの再現率とは，正解集
合とするコードクローンに対して実際に検出された割合を指す．適合率とは，検出結
果に対して正しかったコードクローンの割合を指す．F値とは，再現率と適合率の調
和平均によって表される値である．
類似探索の再現率に対してクローン検出の適合率が一定であると仮定するとき，ク

ローン検出の再現率と類似探索の再現率の関係を図 2.7に示す．類似探索の再現率が
r のとき，CCVoltiが検出したクローンペアの数は r 倍となる．さらに適合率が一定
である仮定から，CCVoltiが検出した正解クローンの数も r 倍となるため，クローン
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表 2.6 類似探索時間とクローンペアのフィルタリング時間の比較

プロジェクト名 類似探索 [ms] フィルタリング [ms]
フィルタリング
/ 類似探索

Antlr 1,188 223 0.188

SNNS 1,386 180 0.13

Maven 1,484 212 0.143

Ant 2,567 169 0.066

zfs-linux 3,223 141 0.044

HTTPD 3,634 172 0.047

ArgoUML 6,302 332 0.053

Python 6,992 180 0.026

heimdal 9,025 172 0.019

Pig 9,049 1,961 0.217

Tomcat 9,690 824 0.085

Jackrabbit 11,444 723 0.063

WildFly 13,836 1,622 0.117

PostgreSQL 18,604 1,407 0.076

Camel 37,529 2,121,023 56.517

gcc 69,973 5,685,043 81.246

OpenJDK 79,453 13,865 0.175

FireFox 133,360 49,787 0.373

Linux Kernel 264,757 215,666 0.815

FreeBSD 277,871 776,306 2.794

検出の再現率も r 倍となる．例えば，類似探索の再現率が 1のときクローン検出の再
現率が 0.8とすると，類似探索の再現率が 0.8のときの CCVoltiの再現率は 0.56とな
る．したがって，類似探索の再現率が r のとき CCVoltiの再現率は，類似探索の再現
率が 1の場合での再現率の r 倍となる．
表 2.7は，CCVoltiの評価実験の結果と，推定した類似探索の再現率が 0.8のときの

CCVoltiの検出結果を示す [21]．表 2.7から，クローン検出の再現率と F値に関して，
類似探索の再現率が 0.8のときの推定した結果が，関数クローン検出法，CCFinder，
粗粒度クローン検出法のいずれよりも優れていることが分かる．って，類似探索の再
現率を 0.8まで下げたとしても，既存手法である関数クローン検出法と CCFinderと
同程度の精度になる．
実際には，類似探索の再現率が低下した場合，類似度の低いクローンペアが検出さ
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図 2.7 クローン検出の適合率が一定であるときの類似探索の再現率とクローン検
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れなくなる可能性が高い．これらのクローンペアは，真のクローンペアでない場合が
多く，適合率を下げる要因である可能性が高い．そのため，類似探索の再現率の目標
値を意図的に下げることで，検出されるコードクローンの再現率は減少するものの，
適合率は向上し，F値は大きく変化しない可能性がある．
本手法の実験結果と，本手法を適用した CCVolti の精度の推定から，目標再現率
を決定するときに以下のような指標が得られる．目標再現率を 0.98 以上とすると，
FALCONN のデフォルトのパラメータ値と同程度の再現率を得られるパラメータ値
の組が決定されることが考えられる．目標再現率 0.98以上での実験結果では，70%の
プロジェクトでデフォルトのパラメータより類似探索の時間を短縮できた．目標再現
率を 0.8とすると，既存手法と同程度の再現率や F値となり，デフォルトのパラメー
タ値の半分の探索時間で検出できるパラメータ値の組が決定されることが考えられる．
本手法による高速化は，コードクローン検出の適用頻度の向上を可能にする．たと
えば，長時間の実行時間を要するために夜間に限定されていたコードクローン検出を，
目標再現率を下げて高速に実行することで，日中の作業時間中にも実行可能となる．
また，開発フローにおける日々の CI/CD パイプラインにコードクローン検出を組み
込む場合に，1分かかっていた処理を 30秒以内に短縮できる可能性があり，継続的な
開発環境との統合が現実的となる．これにより，開発者はより迅速にフィードバック
を得ることができ，修正の即時対応やコードクローンの早期発見を可能にする．

2.5.2 妥当性の脅威
本手法によって作成される線形回帰モデルの信頼性について考察する．本手法の評
価実験では，10分割交差検証を行い，目標再現率ごとに 10個の線形回帰モデルを作
成した．10個の線形回帰モデルの差異について調査した．目標再現率ごとのモデルご
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表 2.7 検出精度の比較

検出手法 クローン検出の適合率 クローン検出の再現率 F値
CCVolti 0.68 0.70 0.69

関数クローン検出法 0.67 0.47 0.55

CCFinder 0.57 0.52 0.54

粗粒度クローン検出法 0.91 0.24 0.38

CCVolti

(類似探索の再現率
0.8の場合の推定値)

0.68 0.56 0.63

とに，回帰係数の平均と分散，切片の平均と分散を計算した．目標再現率毎に，10分
割交差検証に使用した 10個の線形回帰モデルの回帰係数と切片の平均を，20個のプ
ロジェクトを学習して作成した線形回帰モデルの回帰係数と切片との差分を計算した．
すべての目標再現率に対して，回帰係数の平均の差分は 10−9 以下で，分散は 10−14

以下だった．また切片の平均の差分は 10−2 以下，分散は 10−1 以下だった．どの目標
再現率に対しても，10分割交差検証で作成した線形回帰モデルは，20個のプロジェク
トを学習して作成した線形回帰モデルと大きな差異がないと言える．
次に，本手法の汎用性について考察する．本手法は C言語と Java言語のプロジェ
クトを用いて線形回帰モデルを作成する．評価実験では，10分割交差検証で C言語や
Java言語のプロジェクトに適したパラメータを決定し，多くの場合で目標再現率を超
え，多くの場合でデフォルトのパラメータ値より高速なパラメータ値を決定した．し
かし，HTMLや Cobolなど，C言語や Java言語と特徴が大きく異なる言語で記述さ
れたプロジェクトに対して，本手法で作成した線形回帰モデルを適用して，コードブ
ロック数から正しくラベルの値を決定できないと考えられる．したがって，本手法の
利用者は対象言語と似たプロジェクトを学習データとして本手法の STEP Iに基づい
て線形回帰モデルを作成する必要がある．
最後に，本手法の実行時間について考察する．本手法は，学習プロセスと適用プロ
セスの 2段階から構成される．学習プロセスでは，複数のプロジェクトに対して異な
るパラメータ値で類似探索を実行する必要があるため，多くの時間を要する．実際に，
本実験における学習データの作成には約 2週間を要した．しかし，作成された回帰モ
デル群は汎用性を有しており，CCVoltiの利用者は学習プロセスを再実行する必要は
なく，適用プロセスのみでパラメータ決定が可能である．適用プロセスは，回帰モデ
ルの選択とパラメータ決定を機械的に行うだけであり，処理時間は非常に小さい．さ
らに，利用者が与える目標再現率とソースコードに基づいてパラメータを自動的に決
定できることから，CCVoltiの処理フローに本手法の適用プロセスを組み込むことで，
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利用者は LSHのパラメータを意識することなく，類似探索の目標再現率をハイパーパ
ラメータとして指定するだけで，効率的なコードクローン検出が可能となる．

2.6 まとめと今後の課題
本章では，コードクローン検出ツール CCVoltiが用いる Cross-Polytope LSHに与
えるパラメータ値を，クローン検出の利用者が与えた目標再現率を満たし，かつ高
速になる値に決定する方法を提案した．そして，本手法を CCVolti が用いる Cross-

Polytope LSHに適用し，異なる規模の 20のプロジェクトに対してコードクローン検
出を行った．その結果，本手法で決定されたパラメータ値は多くの場合でデフォルト
のパラメータ値より高速であり，多くの場合で再現率が目標値を超えることを確認し
た．また，特に目標再現率が 0.91以下の場合，75%のプロジェクトに関して本手法で
決定されたパラメータ値はデフォルトのパラメータ値と比べて探索時間が 30%以上下
回っており，目標再現率を下げることによる高速化を確認した．これにより，CCVolti
の利用者は目標再現率を下げることで高速なパラメータを選択することで，大規模な
プロジェクトに対して頻繁にコードクローン検出し，修正の即時対応やコードクロー
ンの早期発見，追跡手法への応用を可能とする．
今後の課題として，gcc や camel などのクローンペアが多いプロジェクトの場合
はクローンペアのフィルタリング時間が支配的となり，LSH の高速化だけでは検出
時間全体の時間短縮ができないため，クローンペアのフィルタリングの速度改善が
挙げられる．また，本手法による検出速度を活かした応用として，本手法を適用した
Cross-Polytope LSH を用いた CCVoltiと他のコードクローン検出法に対して検出精
度や検出時間を比較することが挙げられる．さらに，限られた時間の中で CCVoltiを
用いたクローン検出を行う CCVolti利用者のために，本手法と同様に目標検出時間を
与え，検出時間が目標値を上回りつつ，できるだけ再現率が高く維持できるようなパ
ラメータ値を決定する方法への利用を考えることが挙げられる．最後に，CCVoltiを
用いて検出可能なタイプ 3のコードクローンに対するリファクタリングは，一部の行
をコードクローンの範囲外へ移動させる必要があるなど，処理が複雑な場合が多く，
タイプ 3のコードクローンに対する自動リファクタリング手法の検討が今後の課題で
あると考えられる．
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第 3章

コードクローン変更管理システム
の開発と改善

3.1 まえがき
ソフトウェア開発において，リファクタリングやバグ修正などのコード変更に伴う
コードクローンに対する変更・削除は頻繁に発生する．しかし，開発者が他のコード
クローンの存在に気付かず，コードクローンに対して一貫性のない変更を加えた場合，
同様に変更すべきコード片に潜在的な障害が残存する可能性がある．実際に，コード
クローンに対する一貫性のない変更は多く確認されており，その中にはバグ修正が含
まれる場合があると指摘されている [35–37]．
開発者は欠陥を修正する際には，修正対象のコード片だけでなく，そのコード片を
含むコードクローンの集合（クローンセット）内のコードクローンに一貫性のある修
正を同時に施す必要がある [32]．クローンセットの一貫した修正を支援するために，
1.2.3節に述べたように，コードクローン追跡やコードクローン同期に関する手法が多
数提案されている [16]．
山中らはコードクローンを追跡し，コードクローンの変更情報を開発者に通知する
システム，コードクローン変更管理システムを開発した [47,48]．山中らが提案した従
来システムは，字句ベースのコードクローン検出器 CCFinderX [20] を用いて，コー
ドクローンを検出する．次に，2つのリビジョン間のクローンセット内のコードクロー
ンの変更有無に基づいて，クローンセットを（Changed, Deleted, New, Stable）の 4

つに分類する．従来システムは，コードクローンの変更情報について定期的に検出し，
変更に関する情報を電子メールで開発者に送信する．
山中らは，一部のコードクローンが変更されたクローンセット（Changed Clone

Set）は一貫性のない変更を含む可能性があり，旧リビジョンに存在せず，新リビジョ
ンにのみ存在するクローンセット（New Clone Set）はリファクタリング対象となる
可能性があるとしている．しかし，適用実験にて検出された Changed Clone Set のう
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ち修正されたクローンセットはなく，119個の New Clone Set のうち，11個のみ集
約された [47]．開発者は，出力された多くの Changed Clone Set や New Clone Set

の中から，一貫性のない変更が含まれるクローンセットやリファクタリング対象であ
るクローンセットを手作業で識別しなければならない．ソフトウェアの規模が大きく
なるにつれて，検出されるクローンセットの数は膨大になるため，人手で結果を確認
して保守作業を行うのは困難である．
この問題を軽減するために，我々は従来のコードクローン変更管理システムを改善
した Clone Notifier を提案する．一貫性のない変更など特に確認すべき箇所を開発者
に示すために，以下の 4点を改善した．

• コードクローン検出器 CCVolti [66]と SourcererCC [67]の追加
• クローンセットの定義の変更
• コードクローンの追跡方法の改善 [17]

• クローンセットの詳細な分類

一部変更されたコードクローンを検出可能な CCVolti および SourcererCC を導入
することで，一貫性のない変更が行われたクローンセットの検出を可能とした．また，
従来のコードクローン変更管理システムとは異なり，構文的に一致しないコードク
ローンを検出するため，類似度の低いコード片がクローンセットに含まれることを防
ぐ目的で，クローンセットの定義を再検討し，追跡方法の改善を行った．さらに，変
更されたクローンセットに対して，一貫性のある変更の有無などの詳細な分類情報を
付加する機能を導入した．これらの改善により，開発者が特に注意すべき一貫性のな
い変更を効果的に通知することが可能となり，大規模ソフトウェアに対する検出結果
の確認コストを大幅に削減した．
本章では，開発者がクローンセットの不具合を一貫して修正できるように，Clone

Notifier が開発者をどのようにサポートするかを示す．オープンソースソフトウェア
PostgreSQL*1 を用いて Clone Notifier の利用シナリオを示す．PostgreSQL の 2018

年 6 月 23 日から 2019 年 6 月 22 日の 1 年間のコミット履歴に対し，コミットごと
に Clone Notifier を適用しコードクローンの変更を検出した．Clone Notifier は，全
2,152コミットのうち 160件で，クローンセットに対する一貫性のない変更を検出し
た．また，30,382個の変更されたクローンセットのうち，299個のクローンセットが
一貫性のない変更として分類された．これにより，従来のコードクローン変更管理シ
ステムと比べて，開発者の結果確認コストを大幅に削減した．一貫性のない変更のク
ローンセットの検出結果から，目視確認にて発見した客観的に明らかな変更忘れであ
ると考えられる 3つの事例を示す．
以降，3.2節では，提案システム Clone Notifier のクローンセット追跡・分類手法

*1 https://github.com/postgres/postgres
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STEP 3 検出結果を利用者へ通知

VCS
コミット

利用者

STEP 1 クローンセット検出

直前コミットのソースコード最新コミットのソースコード

STEP 1 クローンセット検出

STEP 2 クローンセット追跡と分類

直前コミットのクローンセット最新コミットのクローンセット

クローンセット分類結果

TEXT
files HTML

files

図 3.1 Clone Notifier の概要

について述べる．3.3節では，Clone Notifier の利用シナリオと，一貫性のない変更の
クローンセット検出事例を示す．3.4節では，検出された一貫性のない変更の事例をふ
まえた，本手法の有効性の範囲と妥当性について考察する．最後に 3.5節では，まと
めと今後の課題について述べる．

3.2 提案システム Clone Notifier

Clone Notifierは，2つのリビジョン間のソースコードに対してコードクローンの変
更情報を分析し，分析結果の概要を開発者に通知するシステムである．Clone Notifier

は 3ステップで実行される．

1. 各リビジョンでクローンセットを検出．
2. 2つのリビジョン間のクローン追跡と分類．
3. クローンの変更情報を HTML形式で生成し，実行結果を開発者に通知．
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クローンペアc1
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クローンセット

コードクローン

図 3.2 意味的なコードクローン検出器におけるクローンセットの例

3.2.1 クローンセット検出
クローンセットとは，すべてのコードクローンの対が互いに一致または類似してい
るコードクローンの集合である．Clone Notifier は，3 種類のコードクローン検出器
“SourcererCC [67]”, “CCFinderX [20]”, “CCVolti [66]” を用いてソースコード内の
クローンペアを検出し，クローンペアからクローンセットを構築する．Clone Notifier

がコードクローン検出可能な言語はコードクローン検出器に依存する．
Clone Notifier におけるクローンセットの定義は，すべてのコードクローンのペア
がクローンペアである集合とする．構文的コードクローン検出器である CCFinderX

が 2つのクローンペア (c1, c2), (c2, c3)を検出した場合，その関係は推移的特性を保持
するため，クローン c1 と c3 は構文的に一致する．CCFinderXを用いて検出されたク
ローンペアは，すべて連結してクローンセットを構築可能である．一方で，意味的な
コードクローン検出器である SourcererCCとCCVoltiは 2つのクローンペア (c1, c2),

(c2, c3)を検出した場合，コード片のペア (c1, c3)をクローンペアとして検出しないこ
とがある．コード片のペア (c1, c3) は，クローン検出器が検出できなかったクローン
ペアであり本来はコードクローンとして管理すべき対象である可能性や，その時点で
は類似性が低くクローンペアではない可能性など考えられる．類似性が低いコード片
の組は一貫した修正が不必要である可能性が高いと考えたため，Clone Notifier はす
べてのコードクローンのペアがクローンペアである集合をクローンセットと定義した．
Clone Notifier は，利用者が意味的なコードクローン検出器を選択する場合，クロー
ンセット内のすべてのコード片の組がクローンペアとなるように，クローンセットを
構築する．すべてのコードクローンのペアがクローンペアであるようなコードクロー
ンの集合を効率よく探索するため，これをグラフ理論における極大クリーク問題と捉
え，極大クリーク問題を解くためのライブラリ JGraphT*2 を使用した．クリークと
は，無向グラフの頂点の部分集合であり，クリーク内の 2つの異なる頂点間に辺が存
在するような部分完全グラフである．極大クリークとは，他のクリークの部分集合で

*2 https://jgrapht.org/
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表 3.1 クローンセットの分類

分類 説明
Stable Clone Set すべてのコード片が変更されていないクローンセット
New Clone Set 新リビジョンにのみ存在するクローンセット
Deleted Clone Set 旧リビジョンにのみ存在するクローンセット

Changed clone sets
編集または追加または削除されたコード片を含む
クローンセット

表 3.2 変更されたクローンセット (Changed Clone Set)のラベル

ラベル 説明
Add 追加されたコード片を含む
Subtract 削除されたコード片を含む
Shift 別のクローンセットから移動してきたコードクローンを含む
Consistent 全てのコード片が編集されている
Inconsistent 編集されたコード片と編集されていないコード片が同時に存在する

はないクリークである．
Clone Notifier におけるクローンセットの定義の例を図 3.2に示す．コードクロー
ン c1, c2, c3, c4 が存在して，クローンペア (c1, c2), (c2, c3), (c3, c1), (c3, c4) が検出
された場合，Clone Notifier は 2つのクローンセット (c1, c2, c3), (c3, c4)を構築する．
JGrapht を使ってクローンペア集合の極大クリークを構築すると，一貫した修正が必
要な可能性があるコードクローンを過不足なくクローンセットに含めることができる．

3.2.2 クローンセットの追跡と分類
Clone Notifierはクローンセットを検出した後，2つのリビジョンで取得したクロー

ンセットの位置情報を用いて，旧リビジョンのクローンセットから新リビジョンのク
ローンセットを追跡する．2つのリビジョン間のコード片を追跡するために，Miryung

Kim らの Location Overlapping関数を参考に，コードクローンにおける行の重複度
を利用した [17]．行の重複度 LO(l1, l2)は，位置情報 l1が位置情報 l2に対する重複
行の割合を示す．各リビジョンの同名ファイルの行単位の差分を取得し，追加または
削除された行を除いて各コードクローンの開始行と終了行を取得し，式 3.1を利用し
てコードクローンの行の重複度 LO(l1, l2)を計測する．

LO(l1, l2) =
min(ne, oe)−max(ns, os)

ne − ns
, (0 ≤ LO(l1, l2) ≤ 1) (3.1)
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図 3.3 Clone Notifier 設定変更を行うウィンドウ

ここで，旧リビジョンのコードクローンの位置 l1 の (開始行,終了行)は (os, oe)，新
リビジョンのコードクローンの位置 l2 の (開始行,終了行)は (ns, ne)とする．各リビ
ジョンのコードクローン (l1, l2)の行の重複度が 70%以上のとき，新旧クローンとし
て関係付ける．コードクローンの変化を定量的に計測し，追跡の精度を向上させた．
山中らが提案したコードクローン変更管理システムは，追跡したクローンセットを
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図 3.4 トップページ

図 3.1に示す分類基準で Stable, New, Deleted, Changed の 4つに分類した [48]．本
研究ではさらに，Changed Clone Set に含まれるコードクローンの編集の種類に応じ
て，add, subtract, shift, consistent, inconsistent のラベルをクローンセットに付与す
る [17]．これにより，Clone Notifier はクローンセットに関するより詳細な変更情報
を開発者に通知する．

3.2.3 通知と分析結果
Clone Notifierはクローンセットの変更情報の分析結果を HTML形式と CSV形式
で出力し，開発者に電子メールを送信する．開発者は事前に電子メール情報を設定す
ることで，Clone Notifier から分析結果の概要や分析結果へのファイルリンクが記さ
れた電子メールを受け取れる．分析結果の概要には，追加または削除されたファイル
やコードクローンを含むファイル数，クローンセットやコードクローンの数が含まれ
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図 3.5 クローンセット分類結果ページ

る．開発者は Clone Notifier を定期自動実行することで，一定の期間ごとのコードク
ローン変更情報を検出して分析することができる．
Clone Notifier の分析結果の確認方法について述べる．図 3.4 は HTML 形式の分
析結果ファイルのトップページであり，分析結果の概要を確認できる．クローンセッ
トの詳細情報は表 3.1の分類ごとに分かれており，例えば，図 3.4の ‘Changed clone

set’をクリックすると，Changed Clone Set の詳細情報が記されたページ (図 3.5)を
閲覧できる．クローンセットの詳細情報のページでは，クローンセットに含まれる
コードクローンの位置情報や，コードクローンの変更有無（Stable, Modified, Add,

Deleted）を調べることができる．特に，クローンセットは表 3.2のラベルごとにソー
トされており，inconsistent クローンセットはリストの最上位に表示される．コード
クローンの ID をクリックすると，コードクローンのソースコードを確認できる．図
3.6，図 3.7，図 3.8に示すように，ソースコードページは 2つのリビジョンの差分に
基づいて記述されており，開発者はコードクローンがどのように変更されたかを容易
に確認できる．

3.3 ユースケースシナリオ
本節では，一貫性のない変更が行われたクローンセットを検出するための Clone

Notifier の利用シナリオを示す．我々は実験対象である PostgreSQLにて，一貫性の
ない変更を検出し，修正すべきコードクローンを 3つ発見した．

3.3.1 利用シナリオ
開発者は，事前に GUI を通じて Clone Notifier の設定を行う．Clone Notifier を
ダウンロード後，setting.jar を実行して設定変更を行うウィンドウ（図 3.3）を開く．
GUIを利用して，コードクローン検出器や対象言語，対象ソースコードのディレクト
リパス，電子メール情報などの実行環境を記述し，設定ファイルを生成する．
設定ファイルを指定して Clone Notifier を実行する．実行完了後，開発者は Clone
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File: src/backend/executor/execMain.cFile: src/backend/executor/execMain.c

Stable Code Clone Modified Code Clone

図 3.6 Inconsistent change (旧コミット ID: f7ea1a4233, 新コミット ID: e8b0e6b82d)

File: src/backend/utils/cache/lsyscache.cFile: src/backend/utils/cache/lsyscache.c

Stable Code Clone Modified Code Clone

図 3.7 Inconsistent change (旧コミット ID: 82150a05be, 新コミット ID: edda32ee25)

Notifier から分析結果の概要が書かれたメールを受け取る．inconsistent クローン
セットが検出されるなど，コードクローンに欠陥が残っていないかを調査する必要が
ある場合，メールに記載された分析結果のファイルパスにアクセスして詳細な分析結
果を確認する．
最初に，トップページである図 3.4が表示される．図 3.4の ‘Changed clone set’を
クリックすると，Changed Clone Set の詳細情報が記されたページ (図 3.5) が開か
れ，コードクローンの ID をクリックすると，コードクローンのソースコードページ
を閲覧できる．ソースコードページ（図 3.6, 図 3.7, 図 3.8）では，ソースコード中の
コードクローンがある箇所を表示され，変更箇所は色分けされる．
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File: src/backend/utils/adt/pgstatfuncs.c File: src/backend/utils/adt/pgstatfuncs.c

Stable Code Clone Modified Code Clone

図 3.8 Inconsistent change (旧コミット ID: 9010156445, 新コミット ID: 252b707bc4)

3.3.2 一貫性のない変更の検出事例
本節では，Clone Notifier によって検出された inconsistent クローンセットの事例
を示す．実験対象として，PostgreSQL の 2018年 6月 23日から 2019年 6月 22日の
1年間のコミット履歴に対して，コミット単位で Clone Notifier を適用した．その結
果，全 2,152件のコミットのうち 160件において inconsistent クローンセットが検出
された．また，30,382個の変更されたクローンセットのうち 299個が，inconsistent

クローンセットとして分類された．これにより，従来のコードクローン変更管理シス
テムと比べて，開発者による結果確認コストを大幅に削減できることが示された．
検出した 299個の inconsistent クローンセットを目視で分析した結果，処理内容に
影響を及ぼす一貫性のない変更を複数確認した．また，過去に一貫性のない変更が行
われたクローンセットに対し，後のコミットで一貫性を復元するような変更が行われ
た事例も確認した．一方で，多くの inconsistent クローンセットは，コメントの追加
や削除，空白や空行の変更など，処理内容に影響しない変更に起因していた．本節で
は，処理内容にかかわる変更の漏れによって生じた inconsistent クローンセットの事
例を 3件示す．
inconsistent クローンセットの 1つ目の例は，図 3.6に示すように，2018年 12月

29 日のコミット時の 3 つのコード片からなるクローンセットである．これらのコー
ド片は同じファイル ‘src/backend/executor/execMain.c’ で検出された．このコミッ
トの開発者は，クローンセット内の 1 つのコードクローンのみリファクタリングし
た．コミットメッセージによると，開発者は 2週間前に他の開発者と電子メールでこ
のコードの可読性について議論し，該当箇所のコードが非常に複雑で保守するのが難
しいためリファクタリングを施した*3．しかし，クローンセット内の 1つのコードク

*3 https://www.postgresql.org/message-id/20181206222221.g5witbsklvqthjll@

alvherre.pgsql
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ローンが複雑であった場合，他のコードクローンも複雑であるとみなされるため，他
のコード片についてもリファクタリングすべきである．
inconsistent クローンセットの 2 つ目の例は，図 3.7 に示すように，2019 年 4 月

5日のコミット時の 3つのコード片からなるクローンセットである．これらのコード
片は同じファイル ‘src/backend/utils/cache/lsyscache.c’ で検出された．このコミッ
トの開発者は，クローンセット内の 1 つのコードクローンのみ，リファクタリング
を施した．コミットメッセージによると，開発者はコンパイラの警告を避けるために
get attgenerated() を修正した．しかし，条件文が条件否定形に変わるようにリファ
クタリングされており，タイプ 2コードクローンから，類似した処理を実行するが構
文上の実装が異なるタイプ 4コードクローンに変化した．他のコードクローンではコ
ンパイラ警告が発生せずとも，可読性や保守性の観点から他のコードクローンについ
ても条件文を修正するリファクタリングすべきである．
inconsistent クローンセットの 3 つ目の例は，図 3.8 に示すように，2019 年 4 月

17日のコミット時の 2つのコード片からなるクローンセットである．これらのコード
片は同じファイル ‘src/backend/utils/adt/pgstatfuncs.c’ で検出された．このコミッ
トの開発者は，クローンセット内の 1 つのコードクローンのみ処理を追加した．コ
ミットメッセージによると，0を返すことは問題がないことを誤って示す可能性があ
るが，NULLを返すことは潜在的な問題についての情報がないことを正しく示すため，
DataChecksumsEnabled が false の場合に NULL を返す処理が追加された．もう一
方のコードクローンも類似した処理内容であり，同様の処理を追加すべきか検討する
余地がある．

3.4 考察
本章で提案したコードクローンの変更情報を開発者に通知するシステム Clone

Notifier について，本手法の有効性と妥当性について考察する．本手法では，山中ら
が提案したコードクローン変更管理システムにおけるクローンセットの分類の 1つで
ある Changed Clone Set をさらに詳細に分類し，それぞれのクローンセットにラベ
ルを付与することで，開発者の確認作業の効率化を図った．特に，本研究では，一貫
性のない変更を含むクローンセット（inconsistent）を定義し，それを検出してラベル
付けすることで，開発者はすべての Changed Clone Set を確認することなく，重要な
変更のみを効率的に把握できるようになる．実際，Clone Notifier は，3.3.2節で示し
た通り，30,382個の Changed Clone Setのうち 299個を inconsistent として検出し
ており，開発者の検出結果の確認工数を大幅に削減することができたと考えられる．
一方で，本手法では 2つのリビジョンそれぞれに対してコードクローン検出する必

要があるため，大規模なソースコードに適用する際には処理時間が大きな課題となる．
コードクローン検出の実行時間や精度は，使用するコードクローン検出器のアルゴリ
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ズムや実装に依存するが，インクリメンタルなコードクローン検出 [68,69]など，効率
よくコードクローンを追跡する手法も研究されている．インクリメンタルなコードク
ローン検出を用いた追跡手法の検討が今後の課題である．
また，Clone Notifier では，リファクタリング候補を探すためには New Clone Set

などを手動で分析する必要がある．JDeodorant のリファクタリング可能性判定 [33]

に基づいたリファクタリング可能なクローンセットを特定することで，コピーアン
ドペーストなどによって発生したコードクローンを早期に発見・除去できると考えら
れる．

3.5 まとめと今後の課題
本章では，コードクローンの変更情報を開発者に通知するシステム Clone Notifier

について述べた．また，一貫性のない変更を検出して通知する Clone Notifier のユー
スケースを示した．我々は，Clone Notifier を用いて，PostgreSQLの 1年分のコミッ
ト履歴の 2152個のコミットから，160個のコミットで一貫性のない変更が行われたク
ローンセットを検出した．また，30,382 個の変更されたクローンセットのうち，299

個のクローンセットが一貫性のない変更として分類された．これにより，従来のコー
ドクローン変更管理システムと比べて，大規模ソフトウェアに対する検出結果の確認
コストを軽減した．本評価実験で検出した一貫性のない変更のうち，明確な実例を 3

件発見した．
今後の課題として，大規模なソースコードに対してコードクローン検出すると時間
がかかるため，インクリメンタルなコードクローン検出による追跡手法の検討が挙げ
られる．また，リファクタリング可能なクローンセットを特定する機能の追加するこ
とが挙げられる．

50



第 4章

コードクローン集約によるファジ
ングの実行効率調査

4.1 まえがき
ソフトウェア開発において，ソフトウェアが顧客の要求にしたがって動作するかを
確認するために，ソフトウェアテストが実施される．ソフトウェアテストでは漏れの
ないテストを実施するために，テスト観点の洗い出しや単体テストの追加などが行わ
れる．しかし，ソフトウェア規模の増大に伴い，開発工数におけるソフトウェアテス
トの割合は増加し，時間的コストをかけてテストケースを作成しても検出が困難な不
具合が存在する可能性がある．従来の手動テストだけでなく，自動テスト技術が多く
研究されている [50]．
自動テスト手法の 1 つであるファジングは，自動で大量のテストを生成・実行す
る [51]．ファジングの代表的なツールとして American Fuzzy Lop (AFL)*1 が挙げ
られる．AFL は未発見であった多くの不具合を発見した実績がある [1]*2．AFL は，
for文や if文，関数などの基本ブロック単位での遷移を実行パスと捉え，実行パスを観
測しながらテストケースを生成・実行する．生成したテストケースが新しいパスを実
行すると，そのテストケースを保存し，保存したテストケースをもとに新たなテスト
ケースを生成する．このように，AFLは遺伝的アルゴリズムを用いたテストケース生
成を行うため，24時間以上かけて探索することが多い [1, 51]．
ファジング対象のソースコードに含まれるコードクローンは，AFL のパス探索効
率を低下させる可能性がある．コードクローンがプログラム中に複数存在する場合，
実行時の挙動はほぼ同一であるにもかかわらず，それぞれのコードクローンに対して
別々の実行パスとして探索を繰り返すことになる．その結果，実質的に同じ処理を行
うパスが多数生成されるため，パス探索が冗長になると考えた．冗長なパス探索が続

*1 https://lcamtuf.coredump.cx/afl
*2 https://lcamtuf.coredump.cx/afl/#bugs
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くことで，より深い階層にある未知のパスや潜在的な障害箇所への到達が遅れ，特に
大規模なソフトウェアでは長時間ファジングを実行しても探索深度を十分に広げられ
ない可能性がある．この問題に対して，基本ブロックを含むコードクローンを集約す
ることで，AFLが観測するパスの総数を削減し，未発見のパスに到達しやすくなると
いう仮説のもと，コードクローン集約前後のプログラムに対する AFL の比較評価を
実施した．
本章では，GNU Binutils を対象に CCFinderXを用いてコードクローンを検出し，

AFL がコードクローン集約により短時間で多くのパスを効率的に検出するかどうか
を調査した．加えて，集約前後の比較では，ソフトウェアテストで通常用いられるブ
ランチカバレッジではなく，基本ブロックの遷移に基づく AFLカバレッジを用いた．
実験では，初期テストケース，乱数生成関数の初期値，AFLが生成するテストケース
の個数を固定し，コードクローン集約前後のプログラムを AFL の入力として実験を
行った．
実験の結果，コードクローン集約前後でパス数に統計的な有意差がないことを確認
した．コードクローン集約による AFL の実行効率の向上は難しいと考えられる．一
方で，コードクローン集約は AFL が生成するテストケースに変化を及ぼし，未発見
のクラッシュを 1 件検出した．AFLが生成したテストケースの一致率を調査し，コー
ドクローン集約により AFL の挙動が変化していることを確認した．コードクローン
集約はファジングの挙動を変化させ，大規模ソフトウェアの潜在的な障害の早期発見
に寄与する可能性がある．
以降，4.2節では，背景として CCFinderXと AFLについて述べる．4.3節では，本
実験について説明する．4.4節では，実験結果の考察と妥当性の脅威について論じる．
4.5節では，まとめと今後の課題について述べる．

4.2 背景
4.2.1 CCFinderX

CCFinderXは，プログラム中に含まれる同一または類似したコード断片であるコー
ドクローンを検出する手法の 1 つである [20]．字句単位でコードクローンを検出し，
空白や改行を除いて一致するタイプ 1のコードクローン，および，識別子（変数名，関
数名，変数の型など）のみが異なるタイプ 2のコードクローンを検出する．
コードクローンの存在は，バグの潜在要因になることがあるため，ソフトウェア保守
者や開発者はコードクローンに対するリファクタリングを実施する [15, 18, 70]．1.2.2

節に述べたように，コードクローンに対するリファクタリングは，1つの関数に集約す
るなどして，ソースコード中からコードクローンを除去することを指す．
本章では，CCFinderXで検出される，構文的に一致するタイプ 1,2のコードクロー
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図 4.1 テストケースに着目した AFLの動作フロー [1]

ンを，本章の集約対象とする．一方で，タイプ 3のコードクローンは集約の対象とし
ない．これは，タイプ 3のコードクローンを集約する際に，一部の行がコードクロー
ンの範囲外へ移動される可能性があり，その結果として，パスの削減に寄与しない場
合があるためである．

4.2.2 AFL(American Fuzzy Lop)

AFLは，ファジングの代表的なツールの１つである．AFLはプログラム実行中の
情報を利用して実行パスを効率的に探索し，可能な限り多くのコードカバレッジを網
羅するテストを生成・実行する [1, 57]．このように実行中の情報を用いてファジング
する手法は，グレイボックスファジングと呼ばれる．グレイボックスファジングは，
プログラム解析を用いて静的にテストケース生成するホワイトボックスファジングに
比べ，プログラミング言語依存などの制約が少なく，入出力のみでテストケースを生
成するブラックボックスファジングよりも効率的にテストケースを探索する．
AFLの動作フローについて説明する．図 4.1はその一連の流れを示している．AFL

はユーザが用意した初期テストケースをキューに保存する．次に，キューからテスト
ケースを 1 つ選択し，数値の加減算やビット反転などの変異戦略に基づいて新たな
テストケースを生成する．新たに生成したテストケースをテスト対象に入力し，基本
ブロックに基づく遷移などの実行中の情報を取得する．取得した情報から，これまで
のテストケースでテストしていなかったプログラムの実行パスをテストしたかを判断
する．
AFL は判断基準として AFL カバレッジ*3を用いる． AFL カバレッジは基本ブ
ロック単位での遷移をもとに実行パスを分類する．AFL実行中に発見されていない遷
移を検出した場合，新たな実行パスをテストしたと判断する．AFLカバレッジに基づ

*3 https://github.com/google/AFL/blob/master/

docs/technical details.txt
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表 4.1 実験対象

プログラム 引数 機能

nm -C
低位レベルのシンボル名をユーザー
レベルの名前にデコードして列挙する．

objdump -d
機械語命令に対応するアセンブラの
ニーモニックを表示する．

readelf -a すべてのファイルの情報を表示する．

いて判断した結果，生成したテストケースが新たなパスをテストした場合，そのテス
トケースをキューに保存する．そうでないテストケースは，同じパスをテストする他
のテストケースが既に存在することを意味するため，破棄する．一方で，クラッシュ
を発生させたテストケースは，クラッシュ情報とともに報告する．ファジングの比較
指標として，一定時間内に発見したパス数やクラッシュ数が用いられることが多い．
AFL は遺伝的アルゴリズムを用いたテストケース生成を行うため，24時間以上か
けて探索することが多い．短時間でより多くの欠陥を検出することが求められてお
り，効率的に探索する手法が多く研究されている．本研究では，コードクローン集約
によって AFLの実行効率を向上できるという仮説をもとに実験調査を行った．

4.3 実験
本節では，コードクローンを集約することで AFL の実行効率を向上させられるか
を調査するための実験方法や実験結果について述べる．

4.3.1 研究課題
4.2.2 節で述べたように，AFL は AFL カバレッジに基づき，短時間で多くのパス
を検出するようにテストケースを生成し実行する．大規模なソフトウェアでは，長時
間ファジングを実行してもより深い階層にある未知のパスや潜在的な障害箇所へ到達
することが難しい．コードクローンがプログラム中に複数存在する場合，実行時の挙
動はほぼ同一であるにもかかわらず，それぞれのコードクローンに対して別々の実行
パスとして探索を繰り返すことが冗長であることが原因であると考えた．基本ブロッ
クを含むコードクローンを集約することで，そのコードクローンに含まれるパスが 1

度しか検出されなくなり，新たなパスを発見したときに保存されるテストケースのユ
ニーク性が増し，未発見のパスに到達しやすくなると考えられる．
本実験では，ファジングがより効率的に行われるために，コードクローン集約が有
効かどうかを調査する．ファジングには終了条件がないため，一定時間で探索したパ
スやクラッシュの数を用いて評価することが多い [57]．本研究では，同じ回数のテス
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トケース生成によって探索できたパスやクラッシュの数が，コードクローン集約に
よって増加するかどうかが重要であると考え，テストケース生成数を固定して実験を
実施した．結果として，コードクローン集約前後のパス数に統計的な有意差は認めら
れなかった．生成したテストケースの一致率やクラッシュについての調査結果と考察
は 4.3.4節で述べる．

4.3.2 実験対象
本実験の対象プログラムおよび初期テストケースについて述べる．本実験では，

ファジングの評価方法に関する論文 [57]を参考に選択した．
本実験では，GNU Binutils の 2 バージョン v2.26, v2.32 において，3 プログラム

nm, objdump, readelf を実験対象とした．ただし，これらの機能をすべて対象とする
のではなく，表 4.1に示すオプションで実行した場合を対象とした．これらのプログ
ラムはコードクローンを一定数保有しており，本研究の対象として適切であると考
えた．
また，初期テストケースの形式の違いを考慮するため，実行可能な入力 (valid) と
して 10行程度の簡易なプログラムと，無効な入力 (invalid)として空行を初期テスト
ケースとした．nmのバージョン v2.26に対して invalidな初期テストケースを入力と
した実験結果を nm 26 invalidと表す．

4.3.3 実験方法
本実験では，以下の手順でコードクローンを集約し，AFLを実行した．

1. CCFinderXを用いてコードクローンを検出
2. 集約可能なコードクローンを集約
3. 各プログラムに一定回数で停止する AFLを実行
4. 出力結果のパス数とクラッシュ数を比較

CCFinderX を用いて実験対象プログラムのコードクローンを検出した．CCFind-

erXはトークン単位で一致するコードクローンを検出する．本実験では，トークン単
位から行単位のコードクローンに変換した．
次に，集約可能なコードクローンを集約した．本実験の実験対象は１つのファイル
内でプログラムがほとんど完結しているため，ファイル内コードクローンのみ集約
対象とした．コードクローンは，関数名や変数の型が不一致である場合１つの関数に
集約できない．そのため，関数名や変数の型が一致するコードクローンを集約可能な
コードクローンとして１つの関数に集約した．
最後に，各プログラムに対して AFLを実行し，コードクローン集約前後で検出され
たパス数とクラッシュ数を比較した．本実験では，AFLの乱数生成関数の初期値を固
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表 4.2 実験結果: 1千万回テストケース生成を実行する AFL実行により検出されたパス数

プログラム nm objdump readelf

refactoring origin refactored origin refactored origin refactored

26 invalid 2,446 2,571 2,219 2,102 17 18

26 valid 831 835 1,560 1,562 1,671 1,984

32 invalid 1,925 825 912 841 17 17

32 valid 709 701 1,664 1,645 1,878 1,984
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図 4.2 AFL 実行により検出されたパス数 (破線: コードクローン集約前, 実線:

コードクローン集約後)

定し，一度の AFL実行におけるテストケース生成回数を一千万回に固定した．
本研究では，同一回数のテストケース生成での探索でより多くのパスが検出できる
かどうかが重要であると考え，パスとクラッシュの検出数をコードクローン集約前後
で比較した．コードクローン集約前後で検出したパス数の差について，統計的な有意
差を確認するため，t検定を用いて比較した．

4.3.4 実験結果
本実験では，各プログラムに対してコードクローン集約を行い，AFLを実行してパ
ス数とクラッシュ数を計測し，コードクローン集約前後でパス数やクラッシュ数が増
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表 4.3 AFLが保存したキューの一致率

program nm objdump readelf

26 invalid 0.00% 0.05% 0.00%

32 invalid 0.11% 0.00% 0.00%

26 valid 79.64% 76.71% 41.63%

32 valid 71.26% 81.96% 46.93%

加したかどうかを調査した．また，ユニークなパスを発見したテストケースの一致率
を調べることで，AFLの挙動が変化したかどうかを調査した．本節では，実験結果に
ついて述べる．
検出されたパスの総数を表 4.2に示し，AFLで検出されたパス数の推移を図 4.2に

示した．ほとんどのプログラムでコードクローン集約前後で異なるグラフが形成され
ており，コードクローン集約により AFL の挙動が変化していることが分かった．し
かし，そのグラフの差異は大きくなく，パス数の推移は nm 32 invalidの場合を除き，
検出されたパス数の推移に大きな違いは見られなかった．
コードクローン集約によるパス数の変化について統計的な分析を行った．実験対象

ごとに，1時間間隔で新たに検出されたパス数を計測し，各時間においてコードクロー
ン集約前後のパス数の差分を取得した．この差分をもとに各時間ごとに，帰無仮説を
コードクローン集約前後のパス数に差がないとして，有意水準 5%の t検定を実施し
た．その結果，ある 1時間を除いて帰無仮説が棄却されなかった．実験開始から 22時
間後から 23時間後の区間では p = 0.03となり，コードクローン集約前の方が新たに
検出したパス数が統計的に多いことが示された．しかし，それ以外の 47区間では帰無
仮説が棄却されず，ほとんどの場合でコードクローン集約前後のパス数に統計的な有
意差がみられなかった．
クラッシュ検出数のグラフを図 4.3に示した．本実験でクラッシュを検出したプロ

グラムは 2 つの実験対象のみであり，ほとんどのクラッシュは Segmentation Fault
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であることを確認した．AFL が検出したクラッシュは複数のテストケースが同一の
欠陥を検出しているケースが多い．しかし，コードクローン集約後の nm 26 invalid

でメモリエラーを発生するクラッシュを検出した．メモリエラーはコードクローン
集約前では検出されておらず，このクラッシュを発生させたテストケースをコード
クローン集約前の nm 26 invalid に入力した場合でもメモリエラーが発生したことか
ら，nm 26 invalidではコードクローン集約によって未知のクラッシュを発見したと言
える．
表 4.3は，ユニークなパスを発見したテストケースとして保存されたキューのコード
クローン集約前後の一致率を示す．無効な初期テストケースにおいて，コードクロー
ン集約前後で一致したキューの割合は 0.1% 以下であり，有効な初期テストケースに
おける一致率は 41%以上 82%以下だった．さらに，一致したキューのテストケース
を入力として実験対象プログラムを直接実行した結果，すべての一致したテストケー
スが集約したコードクローンを実行していないことが確認された．一方で，集約した
コードクローンを実行したテストケースは，コードクローン集約前後で一致しないテ
ストケースであることが確認された．このことから集約したコードクローンを実行し
た際に，AFLの挙動に変化を及ぼすと考えられる．すべての実験対象において，無効
な初期テストケースを入力としたとき，集約したコードクローンを実行することを確
認した．

4.4 考察
本実験では，コードクローン集約によって AFL の実行効率を向上できるかどうか
を調査するため，コードクローン集約前後で検出されたパスやクラッシュの数を比較
した．結果として，パス数に統計的有意差が見られなかった．一方で，nm 26 invalid

でコードクローン集約によってメモリエラーを 1件新たに検出した．しかし，実験対
象全体としてはクラッシュ数に変化はほとんどなく，コードクローンの集約によって
クラッシュ数が増加するとは言えないことが示された．
AFL は遺伝的アルゴリズムを用いてテストケースを生成するため，生成元のテス
トケースが異なると異なるテストケースが生成される．コードクローン集約前後の
キューの一致率の実験において，集約したコードクローンを実行したテストケースか
ら，異なるテストケースが生成されたことが確認された．表 4.3の結果から，すべて
の実験対象において，一部のテストケースがコードクローン集約前後で一致しなかっ
た．このことからコードクローン集約は AFLの挙動に変化を及ぼすことが示された．
開発者はコードクローンのリファクタリングを実施することによって，プログラムの
挙動を変化させずに AFL の挙動を変化させることができ，本評価実験のように未発
見のクラッシュを検出できる可能性がある．
本評価実験では，コードクローン集約の有無による影響を同一条件下で公平に比
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較するため，AFLのテストケース実行を一千万回で停止する設定とした．一般的に，
ファジングの評価実験では，6 時間以上の一定時間実施する場合が多いが，本実験で
は，最短でも 9 時間以上実施しており，実行回数としては十分であると考えられる．
実行回数をさらに増加させると，ファジングの探索範囲が広がり，集約後にのみ検出
されたクラッシュが集約前でも検出される可能性がある．一方で，より多様な入力の
生成により，集約前後のテストケースの一致率はさらに低下する可能性がある．
本研究では，C言語形式のファイルを入力とする GNU Binutils のプログラムのみ

を実験対象とした．入力形式が異なるプログラムや，コードクローンを多く含むプロ
グラムを対象とした場合，本実験と同様の結果が得られるとは限らない．

4.5 まとめと今後の課題
本章では，コードクローン集約による AFLの実行効率の調査を実施した．結果とし
て，AFLが検出したパス数に有意な差は見られず，コードクローン集約による AFL

の実行効率が向上するとは言い難いことが示された．一方で，集約したコードクロー
ンを実行したテストケースから，異なるテストケースが生成されることを確認した．
これは，コードクローン集約が AFL の入力生成の挙動に一定の影響を及ぼすことを
示しており，大規模ソフトウェアの潜在的な障害の早期発見に寄与する可能性がある．
今後の課題として，異なるプログラムに対する実験や AFL 以外のファジング

ツールでの実験の拡張が挙げられる．また，コードクローン集約の手法として，
JDeodorant [33] などのコードクローン自動集約ツールなどを用いた場合の実験評価
を行うことで，より実用的な適用可能性の検証が求められると考えられる．さらに，
コードクローンを含むパスの検出数や，クラッシュが発生したコード片がコードク
ローンかどうかを分析することで，ファジング実行時のコードクローンの影響調査を
さらに進めることができると考える．最後に，リファクタリング困難なコードクロー
ンに対して重点的にファジングする手法の提案が今後の課題として挙げられる．
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第 5章

おわりに

5.1 まとめ
本論文では，ソフトウェア保守の品質を低下させる要因の 1 つである，コードク

ローンの管理手法である検出・追跡・集約に着目して 3つの研究を実施した．

1. Cross-Polytope LSH を用いたコードクローン検出のためのパラメータ決定
手法

2. コードクローン変更管理システムの開発と改善
3. コードクローン集約によるファジングの実行効率調査

1 については，LSH を用いたコードクローン検出において，利用者が与えた再現
率の目標値を満たしつつ可能な限り検出時間を短縮することを目的として，プロジェ
クトの規模に応じた Cross-Polytope LSH の適切なパラメータを線形回帰モデルによ
り自動決定する手法を提案した．これにより，CCVoltiの利用者は，再現率の目標値
を下げて高速なパラメータを選択することで，大規模なプロジェクトに対して頻繁に
コードクローン検出し，修正の即時対応やコードクローンの早期発見，追跡手法への
応用を可能とする．さらに，既存のデフォルトのパラメータ値よりも高速にコードク
ローンを検出可能であることを示した．
2については，コードクローンに対する一貫性のない変更を検出し，開発者に通知す
るシステムを提案した．これにより，大規模ソフトウェアの開発者は，膨大なコード
クローン変更情報から保守作業が必要なコードクローンを手作業で識別するコストを
大幅に削減した．本評価実験では，変更されたクローンセットのうち一貫性のない変
更が行われたクローンセットは 1%であることを確認し，処理内容に影響を及ぼす修
正すべき一貫性のない変更の実例を 3件発見した．
3 については，テスト対象のソースコード内のコードクローンを集約することによ
る，ファジングのパス探索の実行効率について調査した．調査の結果，ファジングで
発見したパス数に統計的な有意差は見られなかったが，未発見のクラッシュを 1件検
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出し，コードクローン集約はファジングが生成するテストケースを変化させることを
確認した．この結果は，コードクローン集約が AFL の入力生成挙動に一定の影響を
及ぼすことを示しており，大規模ソフトウェアの潜在的な障害の早期発見に寄与する
可能性がある．
これらの研究により，大規模ソフトウェア保守における，潜在的な障害の早期発見
を支援することが可能となる．

5.2 今後の研究方針
今後の研究方針として，本論文で述べた研究を応用し，ソフトウェア保守の品質や
効率をより向上させる支援をしていきたいと考えている．本論文で提案した Clone

Notifier にインクリメンタルなコードクローン検出手法 [68, 69] を応用して効率的な
追跡手法を検討し，大規模言語モデル（Large Language Model，以下 LLM）を利用
して一貫した修正方法を提示する手法を検討したいと考えている．さらに，本論文で
提案した LSH のパラメータ決定手法やコードクローン変更管理手法，コードクロー
ン集約によるファジングの実行効率について得られた知見を実プロジェクトに適用し，
手法の有用性を評価を進めたいと考えている．
コードクローン検出の分野では，タイプ 4のコードクローン検出が課題として残さ
れている [71]．本論文では，任意の目標再現率に対して LSHのパラメータを自動的に
決定することで，LSHを利用するコードクローン検出器の検出精度を保ちつつ実行速
度を短縮する手法を提案した．近年では，深層学習や LLMを用いたコードクローン
検出手法が提案されており，タイプ 4のコードクローンを高い精度で検出できたこと
が報告されている [72, 73]．一方で，LLMのモデルやプロンプトの違いによって検出
精度が大きく変化する点は重大な課題の 1つであると考えている [74–76]．LLMのプ
ロンプト開発には一定の知識と経験が必要であり，LLMを用いたコードクローン検出
をより安定させるためのプロンプトの調査研究を進めたいと考えている．
コードクローン管理の分野では，追跡の精度向上が課題として残されている [16]．
本論文では，既存手法のコードクローン変更管理システム Clone Notifierの追跡と分
類を改善し，一貫性のない変更が行われたコードクローンの特定を行った．近年では，
テストコードにコードクローンが多く含まれることが示されており [77–79]，テスト
コードのコードクローンを追跡し，一貫した変更を支援することが求められている．
テストコードはプロダクトの対応する関数などが変更された場合，関数名や引数の修
正が必要になり，テストコード内のコードクローンだけでなくプロダクトとの依存関
係も追跡する必要がある．そこで，Clone Notifier の変更管理手法に，テストコード
のテスト対象の依存関係追跡と LLMを用いた同期案の提示を加えることで，プロダ
クト変更時に関連するテストコードの一貫した変更を支援する手法を提案したいと考
えている．
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また，多言語のコードクローン追跡や大規模ソフトウェアのコードクローン追跡も
課題として残されており [16]，Git ログを調査した結果からクローンペアの約半数が
潜在的に一貫性のない変更であると懸念されるという報告があった [80]．近年では，
多言語コードクローン検出手法 [81,82]や，DNNを用いて効率よく一貫性のない変更
を検出する手法 [83]が提案されている．しかし，多言語のコードクローンを DNNに
学習させることは，学習データを用意する観点や精度の保証について困難が伴う．そ
こで，多言語コードクローン検出を Clone Notifier に組み込み，コミットログを用い
てコードクローンに対する一貫性のない変更を素早く効率的に検出する手法を提案し
たいと考えている．
ソフトウェアテストにおいて重要なソフトウェアの品質保証の観点が，ファジング
において重視されていないことはソフトウェアテスト従事者にとって課題の 1つであ
り，コードカバレッジを増加させることを目的とした AFL の拡張ツールの研究開発
が今後の課題だと考えている [58,84]．本論文では，リファクタリング可能なコードク
ローンを集約することにより，ファジングにおけるテストケース生成結果を変化させ，
これまで未発見であった障害を検出する可能性を示した．一方で，コードクローンの
多くはリファクタリング困難であり，ソースコード中のすべてのコードクローンを除
去することはできない．そこで，リファクタリング困難なコードクローンの存在を活
用し，クラッシュが発生したコードクローンを中心に探索を行ったり，コードクロー
ンを実行するテストケースを初期入力データとして用いたりすることで，コードカバ
レッジの向上を図る新たなファジング手法の提案を目指したいと考えている．
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付録

付録 1: パラメータ分析のための調査
本付録では，2.3.2節でラベルとハッシュテーブル数 Lがそれぞれ再現率と探索時間
に与える影響を調べるために実施した予備実験の内容と結果を示す．実験環境は本手
法の評価実験と同じ環境であり，約 15MLOCの LinuxKernel 4.19をコードクローン
検出対象とした．LSH ライブラリ FALCONN のパラメータの値を一定間隔で与え，
CCVoltiに適用してコードクローン検出を行い，パラメータごとの再現率と類似探索
の探索時間を計測した．
ラベル (K − 1) ln d+ lnT

2.3.1 節で説明した通り，ハッシュ関数の数 K は区画の分割数 T の組をラベル
(K − 1) ln d+ lnT として扱う．ハッシュテーブルの数は L = 1に固定し，ラベルの
値を取りうる値の範囲で 1刻みで変化させて実験を行った．ラベルが再現率と探索時
間に与える影響を表すグラフを図 1に示す．横軸はラベルの値を表す．再現率のグラ
フより，ラベルを増加させると再現率が減少していることがわかる．これは，Lを固
定しているとき，ラベルを増加すると式 2.7 より Cross-Polytope LSH の衝突確率が
単調に減少し，それによって定理 1 から再現率の期待値が減少することと一致する．
また，探索時間のグラフより，ラベルの値が 10以下のとき探索時間が大幅に減少して
おり，10以上のラベルでは探索時間の大きな変化がない．これは，区画の分割数が少
ないとき，類似するベクトル対の候補が多く探索され，類似度を計算するベクトル対
の数が大幅に増えるからだと考えられる．つまり，探索時間はラベルの値に依存して
大幅に変化すると考えられる．
ハッシュテーブル数 L

ベクトル対が L 個のハッシュテーブルの内，いずれかのハッシュテーブルで衝
突するとき，類似するベクトル対の候補となる．ラベルの値が 10 となるように
K = 1, T = 1024とし，ハッシュテーブルの数 Lには 30以下の自然数を与えて実験
を行った．
ハッシュテーブル数 L が再現率と探索時間に与える影響を表すグラフを図 2 に示

す．横軸はハッシュテーブルの個数を表す．再現率のグラフより，ハッシュテーブル
の増加に従って，再現率が増加していることがわかる．これは，ラベルを固定してい
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図 2 ハッシュテーブル数 Lと再現率や探索時間 [s]の関係

るとき，ハッシュテーブルを増加すると式 2.7 より Cross-Polytope LSH の衝突確率
が単調に増加し，それによって定理 1から再現率の期待値が増加することと一致する．
また，探索時間のグラフより，ハッシュテーブルの数を増加すると探索時間は線形に
増加する．これは，ハッシュテーブルごとに，ハッシュ値の計算と衝突の判定処理を
それぞれ実行しているからだと考えられる．どのハッシュテーブルにも同じ T と K

の値が与えられるため，式 2.5 より同じ衝突確率 PT,K での類似探索が実行される．
つまり，Lは他のパラメータに依存せず，探索時間を線形に増加させると言える．

付録 2: 本手法によるクローン検出時間の削減
本付録では，本手法を用いて決定したパラメータを用いた場合，実際の CColtiでの
コードクローン検出時間について調査するために，表 2.1に示した実験対象である各
プロジェクトごとに，各目標再現率に対してコードクローン検出時間を計測したグラ
フをそれぞれ図 3から図 22に示す．実験環境は 2.4.3節に示した環境である．
グラフの横軸は 0.8以上 0.99以下の 0.01刻みで与えた目標再現率の値を表し，縦軸
は CCVoltiのクローン検出時間 [s]を表す．棒グラフは目標再現率に対する CCVolti

のクローン検出時間を示し，直線は，デフォルトのパラメータで CCVoltiを実行した
場合のクローン検出時間を示す．

74



0

2

4

6

0.80 0.85 0.90 0.95 0.99
目標再現率

C
C
V
o
l
t
i
検
出
時
間
[
s
]

図 3 Antlr

0

1

2

3

0.80 0.85 0.90 0.95 0.99
目標再現率

C
C
V
o
l
t
i
検
出
時
間
[
s
]

図 4 SNNs

0

2

4

6

0.80 0.85 0.90 0.95 0.99
目標再現率

C
C
V
o
l
t
i
検
出
時
間
[
s
]

図 5 Maven

0.0

2.5

5.0

7.5

10.0

0.80 0.85 0.90 0.95 0.99
目標再現率

C
C
V
o
l
t
i
検
出
時
間
[
s
]

図 6 Ant

0

2

4

6

0.80 0.85 0.90 0.95 0.99
目標再現率

C
C
V
o
l
t
i
検
出
時
間
[
s
]

図 7 zfs-linux
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図 8 HTTPD
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図 9 ArgoUML
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図 10 Python
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図 11 heimdal
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図 12 Pig
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図 13 Tomcat
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図 14 Jackrabbit
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図 15 WildFly
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図 16 PostgreSQL
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図 17 Camel
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図 18 gcc
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図 19 FireFox
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図 20 Jackrabbit
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図 21 Linux Kernel
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図 22 FreeBSD
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