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Abstract i

Abstract

Contrastive learning, when scaled and adapted judiciously, offers a unifying objective for
training foundation models that generalize from visual signals to multi-modal domains. This
thesis shows how three complementary projects push that premise across granularity, super-
vision, and modality. In the first project, we propose a self-supervised pixel-level contrastive
learning framework, PixCon. It investigates the effective components of current dense con-
trastive learning frameworks and systematically integrates them with a novel semantic reweight-
ing mechanism, which enables simple pixel-level learning to outperform complex region-level
approaches on dense visual prediction tasks such as detection and segmentation. In the second
project, we propose a training-free zero-shot video summarizer by reformulating the classic di-
versity and representativeness video summarization heuristics as quantifiable scores based on
contrastive losses, entirely eliminating task-specific fine-tuning while outperforming supervised
baselines on TVSum and SumMe. In the third project, we investigate the potential of discrimi-
native contrastive learning on generative models such as large language models on multi-modal
video applications. Concretely, we propose the S2L framework that couples a video large lan-
guage model that can perform a query-focused summarization task with a contrastive grounding
module, transforming textual form summaries into precise timestamps and achieving new best
results on ETBench localisation tasks. Collectively, these studies demonstrate that carefully en-
gineered contrastive objectives can endow a wide spectrum of benefits on the pre-training and

the applications of foundation vision and vision-language models.
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An illustration of the common assumptions regarding the differences in pixel
and region-level learning methods. Girds’ colors roughly indicate pixels’ asso-
ciated semantic classes based on the two input views for illustration purposes.
The cross-view pixels connected by solid lines with round markers indicate
positive matches. The matching process for pixel-level learning imitates the
similarity-based matching from [1]. Region-level methods are motivated by the
shown assumptions about pixel-level learning and rely on region-mining algo-
rithms as tools to perform learning based on regional features. In this paper, we
question these assumptions about pixel-level learning and revisit it to further
exploit its potential. © [2024]IEEE. . . . . . . . ... ... ... ...
Both the online and the target encoders output two sets of outputs: global image-
level outputs (q, k) and dense outputs (U, V). The dense outputs are of size S x
S x (' before flattening the spatial dimensions. We leave out the visualization

of global features and dense features’ last dimension (C'). © [2024] IEEE. . . .
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2.4

2.5

An illustration of different PixCon variants’ matching schemes. The red bound-
ing boxes indicate the intersected area of the two views. Girds’ colors roughly
indicate pixels’ associated semantic classes for illustration purposes. We treat
view 1 as the query view and view 2 as the key view. PixCon-Sim’s
matching scheme is the similarity-based matching in Equation (2.3). PixCon-
Coord uses the matching function in Equation (2.5), and the involved inverse
augmentation includes RolAlign [2] and optional horizontal flipping depend-
ing on whether the input is flipped. PixCon-SR uses similarity-based matching
but applies the semantic reweighting in Equation (2.7). For the illustration of
PixCon-SR, solid lines indicate matches with query pixels in the red bound-
ing box, dashed lines represent the rest of the matches, and different line widths
indicate the magnitudes of semantic weights. The matches are drawn for illus-
tration purposes, and not all are drawn for clarity. © [2024] IEEE. . . . . . ..
Visualizations of self-attention maps. For each row, the first image is the origi-
nal image, with the red dot highlighting the pixel whose feature is used to cal-
culate the cosine-similarity-based self-attention maps. The subsequent images
are self-attention maps using different models’ features. See the main texts for
analyses. © [2024] IEEE. . . . . . . . . . . . .. ...
Visualizations of semantic weights. The first row shows the raw images with the
blue bounding boxes indicating the query views and the yellow bounding boxes
the key views. The second row shows the heatmap of semantic weights for the
query pixels (in the blue bounding box), where the red bounding boxes indicate
the intersection between query and key views. All images and heatmaps are

resized to the same size for visualization purposes. © [2024] IEEE. . . . . . . .
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2.6 For each query view (view 1), we calculate the cosine similarities between
its backbone features and those of the key view (view 2) at different training
epochs. We keep five in-box query pixels that have the lowest similarities with
their matched keys using similarity-based matching. The input images are ran-
domly cropped, resized to 1024 x 1024, and then go through the other default
data augmentations. The large input size is to more precisely visualize the cor-
respondences. “gk sim.” stands for the backbone feature similarities between

the query and its matched key pixels and is only visualized for the query view.
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3.1 A comparison between our method and previous work. © [2023] IEEE.

3.2 A conceptual illustration for the three metrics: local dissimilarity, global con-
sistency, and uniqueness in the semantic space. The images come from the
SumMe [3] and TVSum [4] datasets. The dots with the same color indicate
features from the same video. For a concise demonstration, we only show one
frame for “Video 2” and “Video 3” to show the idea of uniqueness. © [2023]
IEEE. . . . . e

3.3 TSNE plots for all 25 SumMe videos. As can be observed, many videos contain
features that slowly evolve and maintain an overall similarity among all the
frames. © [2023]IEEE. . . . . . . . . . . ...

3.4 The histogram (density) of £ ;... (before normalization) for TVSum and SumMe

videos. SumMe videos have distinctly higher values than those for TVSum videos.
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The qualitative analysis of two video examples. The left column contains im-
portance scores, where “GT” stands for ground truth. The green bar selects an
anchor frame with high Lyjign but 10w Lypiorm OF Hy, the red bar selects one with
non-trial magnitude for both metrics, and the black bar selects one with low
Ealign but high Luniform OF H - We show five samples from the top 10 semantic
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frame. © [2023]IEEE. . . . . . . . . . ...

The proposed S2L framework features two components: (1) the Query-Focused
Summarization task that requires the LLM to generate query-focused sum-
maries of the video based on the input user query, and (2) the Context Match-
ing module optimized by contrastive learning, designed to ground the semantic
information encoded in the query-focused summaries back to the video frames,
thus achieving temporal localization purposes. Compared to previous works
that focus on generating uninformative and semantically poor timestamps, S2L.
emphasizes the use of the powerful semantic understanding of the LLM and the
integration of generative and discriminative learning. . . . . . . . .. ... ..
The architecture of the proposed S2L framework. . . . . . . ... .. ... ..
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Main transfer results. All self-supervised models were pre-trained for 800
epochs on COCO, except that DetCon was trained for 1000 epochs. Among
all the methods, MoCo-v2 and DenseCL are based on the MoCo-v2 pipeline,
while the others are based on the BYOL pipeline. Refer to Section 2.4 for more
details on the differences between the pipelines. We also categorize the meth-
ods into different types based on their training strategies, including image level,
region level, and pixel level. Refer to Table 2.2 for more information about
region- and pixel-level methods. On all the benchmarks, our method shows
strong transfer performance. We use boldface to indicate single best results but
underline multiple best results that have the same value (f: re-impl. w/official
weights. I: full re-impl.). © [2024]IEEE. . . . . . . .. ... ... ... ...
Comparisons between region- and pixel-level methods. While most of the
region-level methods require object priors, multi-stage training, or prototype

learning, pixel-level methods need none of them. © [2024] IEEE. . . . . . ..
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We examine the influence of the tools used to formulate the semantic weights
in Equation (2.7) based on ablation studies. PixCon-SR (Spa.) means that only
matches whose query features lie in the two views’ intersected parts are ac-
cepted and the other matches have weights 0. Here, only the spatial information
is used for formulating the semantic weights. PixCon-SR (Sim.) means that only
the similarities between the matched features are used as semantic weights, re-
gardless of whether the query features exist in the two views’ intersected area.

PixCon-SR (full) utilizes both tools. The effect of the sharpening factor « in

Equation (2.7) is also investigated here. © [2024] IEEE. . . . .. ... .. .. 25
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Chapter 1

Introduction

Contrastive learning has served as the dominant self-supervised learning paradigm, yield-
ing foundation models that achieve excellent performance across a broad spectrum of tasks and
modalities [6-10]. Broadly speaking, the development and application of contrastive learning
fall into three categories: (1) self-supervised representation learning for specific downstream
tasks, (2) training-free zero-shot transfer to novel downstream tasks, and (3) auxiliary con-
trastive learning for supervised tasks.

The advent of the InfoNCE loss [11] has made contrastive learning the most effective self-
supervised image representation learning approach. The primary contrastive learning treats
images at the instance level: each image is mapped to a single feature vector; augmented views
of the same image are pulled together, and features from different images are pushed apart.
Although representations learned in this way have delivered excellent transfer performance on
image classification benchmarks, many practical vision problems (e.g., detection, segmenta-
tion) require richer, spatially aware features. To close that gap, several works have extended
instance-level contrastive learning to dense prediction tasks. Pixel- or region-level contrastive
frameworks [1, 12—-15] adapt contrastive objectives so that spatially localized features (pixels
or regions) are matched across views. In the vision-language domain, contrastive image-text
learning methods such as CLIP [10] and SigLIP [16] have shown that pulling corresponding

image and text pairs closer in a joint embedding space yields powerful, transferable features.
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Chapter 1 Introduction 2

Region-level extensions of CLIP [17, 18] further adapt those representations to dense, multi-
modal tasks. Contrastive image-representation learning has also been applied beyond the vision
domain, for example, to audio classification [19] and medical images [20].

Contrastively learned representations often exhibit surprising emergent properties [9,21-23]
that make training-free, zero-shot applications possible. For instance, DINO [9] showed that
self-attention maps of a vision transformer trained with a contrastive-style objective reveal se-
mantic segmentation patterns, even without any segmentation labels. Later work found that con-
volutional backbones trained with contrastive objectives exhibit similar localization cues [23].
Building on these observations, several methods propose training-free, zero-shot frameworks
for semantic segmentation and object detection [24-27]. In the vision-language setting, CLIP’s
contrastive embeddings have been used to derive zero-shot text-conditioned segmentation and
detection pipelines [18, 28, 29], and similar ideas have been extended to video applications
[30-32].

Although contrastive losses were originally devised for self-supervised learning, they have
also proven beneficial in (weakly) supervised learning contexts. Supervised contrastive learn-
ing [33] uses InfoNCE with positives defined by ground-truth labels. Beyond classification, In-
foNCE has been incorporated as an auxiliary loss for semantic segmentation [34—37] and object
detection [38—40]. In the video domain, contrastive losses often serve as auxiliary objectives to
bolster retrieval or localization tasks [41-45]. Even in the era of large language models (LLMs),
contrastive learning remains relevant: BLIP2 [46] uses contrastive vision-language pretraining
to initialize a "Q-Former" that bridges a visual encoder to an LLLM, and LLM2Vec [47] employs
contrastive learning to convert generative LLMs into discriminative text encoders.

Therefore, contrastive learning’s versatility, across self-supervised representation learning,
training-free zero-shot transfer, and auxiliary supervised objectives, has spurred its application
in tasks spanning multiple modalities, domains, and settings. In this thesis, we present three
projects that respectively address each of the above categories of contrastive learning.

In Chapter 2, we revisit contrastive learning adapted for pixel-level pre-training and intro-

duce PixCon, a framework that strengthens existing pixel-level baselines and rivals, or out-
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Chapter 1 Introduction 3

performs, state-of-the-art region-level methods on dense prediction benchmarks. PixCon en-
hances "dense" InfoNCE objectives by aligning its training pipeline with recent advances in
momentum-based contrastive frameworks (e.g., MoCo-v2+ or BYOL), and by carefully incor-
porating both semantic-similarity and coordinate-based matching. Through extensive experi-
ments on COCO and Pascal VOC, we show that PixCon’s pixel-level features transfer strongly
to object detection, instance segmentation, and semantic segmentation. By focusing on self-
supervised pretraining tailored to dense vision tasks, PixCon exemplifies how contrastive objec-
tives can be engineered to produce spatially discriminative features that excel when fine-tuned
on downstream tasks with limited or no labels.

Chapter 3 explores the training-free zero-shot applications of contrastive image features in
the context of video summarization. Without relying on any video-specific annotations, we
design a framework that leverages pretrained, contrastively learned features to perform zero-
shot video summarization, i.e., we generate concise summaries of uncurated videos without
any additional training on annotated summarization data. Our method formulates three com-
plementary metrics (local dissimilarity, global consistency, and feature uniqueness) in the con-
trastive embedding space to rank and select representative frames. By clustering frames via
these contrastive signals, we identify key moments that capture both per-sample distinctiveness
and overall narrative coherence. Experiments on standard benchmarks (e.g., SumMe, TVSum)
demonstrate that our zero-shot summarizer matches, or sometimes surpasses, fully supervised
methods, highlighting how pretrained contrastive embeddings can be harnessed directly for
novel, downstream tasks.

In Chapter 4, we focus on leveraging contrasitive learning to facilitate LLM-based video
temporal localization models, for which matching free-form text queries to specific video seg-
ments is essential. We introduce S2L, a framework that uses a contrastive context-matching
module as an auxiliary objective to sharpen video-text alignment. Concretely, given a user
query and a long video, a video LLM first generates a query-focused textual summary of the
video. To localize the relevant segment, we train a contrastive matcher that aligns the sum-

mary’s embedding to frame-level video features, effectively "pulling" the correct segment close
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Chapter 1 Introduction 4

to the query-focused summary while "pushing" away irrelevant segments. By incorporating
this contrastive loss alongside the conventional generative objective, S2L consistently improves
localization accuracy on standard benchmarks. This work exemplifies how contrastive learning
can serve as an auxiliary signal, complementary to the main generative modeling paradigm, to
refine multimodal grounding with video LLMs.

Taken together, these three projects illustrate the breadth of contrastive learning’s impact:
from devising new self-supervised pretraining recipes for dense vision tasks (Chapter 2), to
enabling zero-shot video analytics without any additional labels (Chapter 3), to acting as a

complementary alignment objective in supervised multimodal systems (Chapter 4).
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Chapter 2

PixCon: Pixel-Level Contrastive Learning

Revisited

2.1 Overview

Contrastive image representation learning [6-9, 21, 48-50], which pulls closer the features of
positive pairs produced by applying data augmentation to the same image while maximizing the
distance between the features of negative samples, greatly advances the transfer learning per-
formance of vision foundation models. Instance discrimination [48] methods work with global
average-pooled image feature vectors and are thus referred to as image-level learning meth-
ods [1,14,51,52]. Such methods are highly effective in improving models’ image classification
performance but often struggle to improve their performance on dense prediction tasks such as
object detection [53] and semantic segmentation [54]. Various researchers propose to generalize
image-level contrastive learning to work with dense spatial image features to facilitate transfer
learning to dense prediction tasks [1,13-15,51,52,55-57]. Therefore, such methods are usually
referred to as dense learning methods due to their focus on dense spatial features.

Though image-level learning methods are highly effective when applied on instance-centric

images, e.g., ImageNet [58], they are less promising in pre-training with scene-centric images
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Chapter 2 PixCon: Pixel-Level Contrastive Learning Revisited 6

with multiple instances and complex structures [14,15,51,59], such as MS COCO images [60].
To better utilize scene images during the contrastive pre-training of vision foundation models,
pixel-level [1,61] and region-level [13—15,51,52,55-57] methods have been proposed. Pixel-
level learning works with individual spatial feature vectors, whereas region-level learning works
with selective aggregations of them. To construct positive pairs for pixel-level learning, the se-
mantically closest spatial feature vectors [1] in the two respective views are used. Region-level
methods consider this to be insufficient for exploiting complex scene structures and leverage
various region-mining algorithms, such as unsupervised object detection [8, 50,62, 63] or seg-
mentation [9, 64], to obtain regions of interest for constructing region-level positive pairs. A

conceptual illustration of their positive matching processes is provided in Figure 2.1.

Pixel-Level Region-Level

(][] i I

%E55= Assumptions .== 5

D
e Only learns 10_c§1_s_er_n_ar_1tlcs |:|
I£|:|:||:|. Subjeet-to'false matches, [ [ 1[I ]

D [ o] Tools DIIID ’
) B[ Region-mining algorithms.
View 2 BEE
DIIID

[ 1IIID

Figure 2.1: An illustration of the common assumptions regarding the differences in pixel
and region-level learning methods. Girds’ colors roughly indicate pixels’ associated seman-
tic classes based on the two input views for illustration purposes. The cross-view pixels con-
nected by solid lines with round markers indicate positive matches. The matching process for
pixel-level learning imitates the similarity-based matching from [1]. Region-level methods are
motivated by the shown assumptions about pixel-level learning and rely on region-mining algo-
rithms as tools to perform learning based on regional features. In this paper, we question these
assumptions about pixel-level learning and revisit it to further exploit its potential. © [2024]

IEEE.
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Chapter 2 PixCon: Pixel-Level Contrastive Learning Revisited 7

Moreover, the random cropping step used to create positive pairs for performing contrastive
learning risks creating semantically inconsistent views, which causes features with different
semantic meanings, e.g., different objects or objects and backgrounds, to be correlated. An
example of such cases is provided in Figure 2.1, where the panda only appears in the first view
but will be forced to correlate with the human’s features by contrastive learning. With the
help of region-mining algorithms, region-level methods are usually considered to be better at
handling such cases, as they can rely on unsupervised region masks to evaluate the semantic
consistency between the views.

In the conference version of this paper [65], we primarily revisited pixel-level learning and
showed that (1) the potential of the pixel-level learning baseline, DenseCL [1], has not been
fully exploited; (2) regional semantics can also emerge by applying pixel-level learning; and (3)
pixel-level learning readily provides tools to successfully address the problem of semantically

inconsistent scene crops. Specifically, this paper makes the following contributions:

* We propose PixCon, A stronger pixel-level contrastive learning framework, which aug-
ments DenseCL [1] by aligning its training pipeline with that of state-of-the-art (SOTA)
region-level methods [14, 15,51,52,57,66]. We show that PixCon outperforms SOTA

region-level methods in terms of transfer learning tasks.

*  We thoroughly analyze pixel-level learning based on two positive matching schemes:
semantic similarities [1] and spatial coordinates [14, 61]. We name the corresponding
models PixCon-Sim and PixCon-Coord. We show that the similarity-based scheme in-
trinsically encourages the learning of regional semantics that region-level methods focus

on.

* Finally, we propose PixCon-SR with a semantic reweighting strategy to deal with se-
mantically inconsistent scene crops by jointly utilizing spatial and semantic information.
PixCon-SR achieves better or competitive transfer performance compared with current
SOTA methods on dense prediction tasks, including PASCAL VOC object detection [67],
COCO object detection and instance segmentation [60], PASCAL VOC semantic seg-
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Chapter 2 PixCon: Pixel-Level Contrastive Learning Revisited 8

mentation [67], and Cityscapes semantic segmentation [68].
In the journal version of this project [69], we provide further analyses of PixCon:

* We provide a detailed analysis of how each new component in PixCon’s training pipeline

contributes to improving DenseCL’s performance to match that of region-level methods.

* As pixel-level learning frameworks rely on an additional image-level loss to work well,
we add it to region-level methods for a fairer comparison. We show that the region-level

methods cannot leverage the image-level loss.

*  We show that there exist challenges to improving region-level methods with pixel-level
matching strategies, which opens new opportunities for future research toward more ro-

bust, dense contrastive learning frameworks.

2.2 Related Work

Image-level Self-Supervised Learning. Pretext tasks such as predicting colors [70], relative
positions [71], or the rotations of pixels [72] are essential to self-supervised image representa-
tion learning. Instance discrimination [48] based on contrastive learning has recently become
the most effective pretext, where augmented views of the same image are drawn closer to one
another and pushed farther from different images [6,7,50]. Though both the pulling and pushing
forces are proven to be essential in contrastive learning [21], BYOL [8] came up with techniques
to only optimize the pulling part of contrastive loss.

As the aforementioned methods invariantly treat each image as a single feature vector, they
are referred to as image-level learning methods. Though the resulting models excel at image
classification, they perform less impressively in transferring to dense prediction tasks, which
rely on sufficiently discriminative spatial features, which image-level methods do not explicitly
optimize.

Dense Self-Supervised Learning. By directly optimizing spatial image features, dense

learning methods yield better transfer performance in dense prediction tasks. Among them,
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pixel-level methods rely on crafting cross-view pixel-level positive matches utilizing either spa-
tial coordinates [61] or bootstrapping semantic similarities [1]. As such pixel-level methods are
considered insufficient for leveraging the rich semantics in complex scene images, region-level
methods rely on region-mining algorithms, such as unsupervised object region proposal meth-
ods [8,50,62,63], used by [15,51,55], or unsupervised segmentation algorithms [64, 73], used
by [57,66], to find semantically meaningful regions, which are then used to aggregate spatial
features for contrastive [50] or self-distillation learning [8]. Additionally, [14] and [52] utilize
learnable prototypes to perform unsupervised segmentation, while PixPro [13] relies on spatial
distances to select semantically related features. However, we will show that region-mining
algorithms are not as crucial to mining regional semantics as claimed for current region-level
methods, as pixel-level learning methods can also be exploited to promote region-level learning.

Learning with Scene-Centric Images. The complex structures of scene-centric images,
such as those from MS COCO [60], often cause challenges to the fundamental positive pair
creation strategy, i.e. siamese learning with two augmented image views. Specifically, ran-
dom crops of multi-object scene images may include totally different objects, and pulling their
features closer does not contribute to learning semantically meaningful features. Region-level
methods that rely on object proposals or segmentation masks can roughly evaluate the seman-
tic consistency of the positive pairs and thus largely avoid such a problem, though at the cost
of complicated pre-processing [15, 59, 66, 74], nontrivial computational burden during train-
ing [57], or less transferable features [14,52] compared with pixel-level methods. However, we
will show that tools to alleviate the negative influence of semantically inconsistent videos can

be crafted with pixel-level learning alone.

2.3 Preliminaries

This section reviews two popular image-level learning pipelines, MoCo-v2 [7] and BYOL [8],
where the latter is the default pipeline of most region-level methods. We also introduce a variant

of MoCo-v2 with a similar architecture to that of BYOL, coined MoCo-v2+ by [75].
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Common to MoCo-v2 and BYOL, each input image is augmented into two different views,
x; ~ Ti(x) and x5 ~ T3(x), which are then fed into the online encoder fy and the target en-
coder f¢, where 6 represents the learnable parameters and ¢ is the exponential moving average of
. The encoders are backbone networks, e.g., ResNet [76], appended with two-layer multilayer
perceptions (MLPs). The MLPs are usually called projection heads. The f, in BYOL has an
additional two-layer MLP called the predictor, resulting in an asymmetric structure between the
two encoders. Moreover, MoCo-v2 feeds each view into either the online or the target encoder
to compute a loss £img(x1, X3 ), while BYOL sends each view to both encoders and symmetrizes
the loss computation with respect to the two views, i.e. Limg(X1,X2) + Limg(X2,X1). Huang et
al. [75] added, to MoCo-v2, the asymmetric encoder structure, where the online encoder con-
tains a predictor, and the symmetrized loss, with

exp(q-k™/7)
> exp(qk/7)

ke{kt}UK

Eimg(Xl,Xg) = — log (2.1)

where q = fy(x1)/|| fo(x1)]|2 is the query feature and k™ = f¢(x2)/|| fe(x2)]2 is the positive
key feature. [ is the set of f outputs from other images which are q’s negative key features
stored in a fixed-length queue [7], and 7 is the temperature coefficient. Eimg(XQ, x4 ) is computed
by obtaining the query from x, and the positive key from x;. The loss in Equation (2.1) is
usually referred to as the InfoNCE loss [11]. In contrast, BYOL only aligns the positive features
by maximizing their cosine similarities [8].

Additionally, BYOL also applies a momentum ascending strategy for updating £ and syn-
chronized batch normalization [77] as opposed to shuffling batch normalization [7] in MoCo-
v2. When MoCo-v2 is equipped with these BYOL-style designs, it is called MoCo-v2+ in [75],
demonstrating similar linear probing and transfer learning performance to those of BYOL but
better than those of MoCO-v2. Moreover, SimSiamese [78] is a simplified version of BYOL,
achieving better performance under similar training settings. For simplicity, we refer to BYOL,

MoCo-v2+, and SimSiamese as BYOL pipelines if not stated otherwise.
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2.4 Proposed Method

Based on MoCo-v2+, we add another asymmetric prediction structure to the backbone that out-
puts dense spatial feature maps, or pixel-level (pixels, in this context, refers to spatial compo-
nents of dense feature maps as opposed to those of the input RGB images ) features [14,51,52].
The online encoder f, now gives two sets of feature vectors, q € R and U € RS (after flat-
tening the first two dimensions), where C' is the feature dimensionality and S denotes the length
and width of the dense feature maps, which are set as equal for simplicity. Similarly, the target
encoder f¢ givesk € R® and V € R5*%C. Figure 2.2 provides a schematic illustration of the
forward process. Based on this forward pipeline, we propose different variants of a pixel-level

contrastive learning framework, namely, PixCon, with the loss function being
L(x1,%2) = Limg(x1,X2) 4+ Lpix(X1,X2), (2.2)
where L,ix(x1, X2) is the pixel-level contrastive loss to be defined. The final loss is symmetrized

with respect to the two views, i.e. £(X1,X3) + L(X2,X1).

——————————————————————— 1 -1

| — ( Global Proj. | Global Pred. )~ EEEEE
X1 —| Backbone . ooooD s
: — (Dense Proj.)—» (Dense Pred.)b u----- EDDDDDJ
oo o] o o
(T — o) & ]
X2 —| Backbone : 3|:||:||:||:||:|
| — (Dense Proj. ) = Voo DOOEE
Lo - - . . - _____ \ DR EEE

,,,,,,,,,,,,,

Figure 2.2: Both the online and the target encoders output two sets of outputs: global image-
level outputs (q, k) and dense outputs (U, V). The dense outputs are of size S x S x C' before
flattening the spatial dimensions. We leave out the visualization of global features and dense

features’ last dimension (C'). © [2024] IEEE.
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2.4.1 PixCon-Sim

Let the backbone networks’ outputs be F € R® *xC and F/ € R5**€ for the query and the key
views, respectively; the spatial positions of the features in F are matched to those in F’ by

(i) = arg;nax sim(F(2), F'(j)), (2.3)

where i, j € [0, 52 — 1] and sim(a, b) = a'b/||a||||b]|. The similarity-based matching scheme
aims to bootstrap feature similarities, i.e. features with better semantic correlation give more
semantically meaningful matches, which are in turn used to strengthen the correlation of such
features. Similar bootstrapping strategies are also applied in region-level methods [13, 14, 52,
57].

With similarity-based matching, the pixel-level contrastive loss is then computed as follows:
exp(u;-v /7)

Z exp(u;-v/T) ’

ve{vj(i)}uv

1
ﬁéiX(X1,X2) =-% Zlog (2.4)

where u; = Uli] € R, V;Ei) = VIi(i)] € RY, and V contains image-level negative key features
from other images, in accordance with [1], for computational efficiency. The negative keys are
stored in a fixed-length queue.

However, the matching function in Equation (2.3) hardly makes sense at the beginning of
training. As demonstrated in DenseCL [1], jointly conducting image-level and pixel-level learn-
ing can help mitigate the problem, as image-level learning also encourages the emergence of
semantic relations among spatial features [23,51]. Additionally, image-level learning is also

commonly conducted along with dense learning [13, 15, 51] and brings benefits. Therefore,

by using Ei)ix(xl, X5) as the pixel-level loss in Equation (2.2) and symmetrizing the resulting
loss with respect to the two views, we obtain the final loss for PixCon-Sim, i.e. pixel-level con-
trastive learning with similarity-based matches. When using the MoCo-v2 pipeline instead of

MoCo-v2+ and not using the symmetrized loss, PixCon-Sim becomes DenseCL [1].
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2.4.2 PixCon-Coord

Though similarity-based matching gives increasingly better matches as the training proceeds
[1], it still retrieves semantically inconsistent matches, especially at the beginning of training.
To further investigate its pros and cons, we compare it with the coordinate-based matching
scheme [13, 14, 61], which matches two cross-view spatial features only if they have (approx-
imately) the same coordinates when mapped back to the input image space, thus guaranteeing
semantic consistency among the positive matches.

Therefore, we propose another variant of PixCon using coordinate-based matching based
on inverse augmentation [14], which involves RolAlign [2] and horizontal flipping if the input
image has been flipped. The schematic illustrations of both similarity-based matching and
coordinate-based matching are provided in Figure 2.3.

By slightly overloading the notations U and V as the pixel-level outputs of inverse augmen-

C

tation, we have the corresponding pixel-level loss Epix(xl, X3), which replaces the matching

function [/ in Equation (2.4) with ¢, which is defined as
c(i) =1, (2.5)

connecting the same positions in the two views’ feature maps aligned by inverse augmentation.
By using L5 (x1,X2) as the pixel-level loss in Equation (2.2) and symmetrizing the resulting

loss with respect to the two views, we obtain the final loss for PixCon-Coord, i.e. pixel-level

contrastive learning with coordinate-based matches.

2.4.3 PixCon-SR

As shown in Figure 2.3, the two augmented views of the input multi-object image are semanti-
cally inconsistent, i.e. the panda only appears in the first view. Thus, similarity-based matches
for such view-specific objects’ pixels will have different semantic classes. While coordinate-
based matching helps mitigate such false matches, it only matches cross-view pixel-level fea-

tures at (approximately) the same spatial location in the input image. As a result, it fails to relate
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PixCon-Sim PixCon-Coord PixCon-SR
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i [
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View 2

Figure 2.3: An illustration of different PixCon variants’ matching schemes. The red bound-
ing boxes indicate the intersected area of the two views. Girds’ colors roughly indicate pixels’
associated semantic classes for illustration purposes. We treat view 1 as the query view
and view 2 asthe key view. PixCon-Sim’s matching scheme is the similarity-based match-
ing in Equation (2.3). PixCon-Coord uses the matching function in Equation (2.5), and the
involved inverse augmentation includes RolAlign [2] and optional horizontal flipping depend-
ing on whether the input is flipped. PixCon-SR uses similarity-based matching but applies the
semantic reweighting in Equation (2.7). For the illustration of PixCon-SR, solid lines indicate
matches with query pixels in the red bounding box, dashed lines represent the rest of the
matches, and different line widths indicate the magnitudes of semantic weights. The matches

are drawn for illustration purposes, and not all are drawn for clarity. © [2024] IEEE.
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semantically related but spatially distant features, whereas pulling such features closer is crucial
to learning regional semantics for better transfer performance [14,15,51,66]. Therefore, it is
natural to ask the following question: how do we leverage the benefits of both similarity- and
coordinate-based matching schemes?

We start to craft a matching scheme that leverages both spatial and semantic information by
further noting the hidden problems of similarity-based matching. Firstly, some matches with
low similarities can actually be highly semantically close, constituting hard positive pairs that
are important to leverage for better feature quality [79]. Moreover, although similarity-based
positive matches share maximal similarities among cross-view samples, the similarities can
still be low, indicating that they belong to different semantic classes. To exploit hard positive
samples, we choose to fully trust positive matches whose query pixels lie in the intersection of
two views regardless of the query-key similarity. We call such queries the “in-box™ queries, as
the intersection area is always a box. The matched key for an in-box query is highly likely to
be meaningful, as the query is guaranteed to have semantic correspondences in the key view,
e.g., the same pixel itself in the key view in the worst case. To address the negative influence
of positive matches with low matching similarities, we propose to reweight such matches with
“out-of-box” queries by their query-key similarities. We illustrate such a reweighting process
in Figure 2.3.

We term the consequent reweighting strategy semantic reweighting, with which the pixel-

level loss becomes

; (ui~v+. /T)
L1 (1 %) = — w(i), CXPIMiVy ) , 26
P ) ST =0

VE{V;EZ,) 6%

where A = Z w(1) is the normalization factor. Let ) be the set of indices of the in-box query

i
features, which can be easily obtained during data augmentation; we compute w(z) as

1, if1 € ).
w(i) = 2.7)
norm(max sim(F (i), F'(j)))*, otherwise.
j
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where norm(z) = (z— IjI;élJI}l w(j))/ (%;%}x w(j)— IjIél)I}l w(j)) guarantees the continuity of weights
and enlarges their contrast and « is for further sharpening the contrast and is set to 2 by default.
Note that the formulation of Equation (2.6) is not related to inverse augmentation, which is
more computationally expensive, i.e. U and V are dense outputs from f, and f.. By using
Ei;ff (x1,X3) as the pixel-level loss in Equation (2.2) and symmetrizing the resulting loss with
respect to the two views, we obtain the final loss for PixCon-SR, i.e. pixel-level contrastive
learning with semantic reweighting.

PixPro [13] also simultaneously utilizes spatial information and feature similarities. How-
ever, they use spatial information to retrieve positive matches, whose quality highly depends
on the pre-defined size of a spatial neighborhood. We impose no spatial constraint on the pos-
itive matches at all and only bootstrap feature similarities. Due to the use of spatially close
positive matches, they need to use self-attention maps to relate spatially distant pixels, whereas

we merely rely on pixel-level features together with default random cropping and the inherent

uncertainty of similarity-based matching to achieve this purpose.

2.5 Experiments

2.5.1 Experimental Settings

Datasets. For pre-training, as we are mainly interested in pre-training on real-world scene im-
ages containing diverse and complex contents, we use the training set of MS COCO [60], which
contains ~118k images and is broadly used for scene-level pre-training. COCO is also widely
used for benchmarking dense prediction tasks such as object detection, instance segmentation,
and semantic segmentation. Moreover, a COCO image contains 7.3 objects on average, which
is in stark contrast to the meticulously curated ImageNet [58] images, for which the number of
objects per image is 1.1 [1].

Architecture. We base our architecture on that of MoCo-V2+ [75]. Following [1], we

add dense learning branches to the global learning branches. Specifically, the online encoder
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has a ResNet50 [76] backbone, which is appended with a global projection head and a dense
projection head. The former has two fully connected layers, while the latter has two 1 x 1
convolutional layers. Both heads have batch normalization followed by ReLU in between the
two layers. For both heads, the hidden dimensionality and the output dimensionality are 2048
and 128, respectively. The global and dense heads are appended with their respective predictors,
which have the same architectures as the heads with an input dimensionality of 128. The target
encoder has the same architecture as the online encoder except that it does not have predictors.

Data augmentation. Pre-training data augmentation is in accordance to [8], where each
image is randomly cropped into two views, which are then resized to 224 x 224, followed by
random horizontal flipping, color distortion, Gaussian blur, and solarization. Crops without
overlapping are skipped.

Pre-training setup. Following [1], the negative-storing queues for both global learning and
dense learning are of length 65,536. The momentum for updating the target encoder is initially
set to 0.99 and increased to 1 at the end of training [8]. Synchronized batch normalization [77]
is used for all batch normalization layers [8]. The temperature 7 is set to 0.2. We use the SGD
optimizer with an initial learning rate of 0.4 and a cosine learning rate decay schedule. We set
the weight decay to 0.0001 and the momentum for the optimizer to 0.9. We train each model
for 800 epochs on COCO with four GPUs and a total batch size of 512. Training is conducted
under the MMSelfSup framework [80].

Evaluation settings. We follow previous work [1,6,7, 14, 15] to evaluate feature transfer-
ability by fine-tuning the pre-trained models on target downstream tasks. We then evaluate the
resulting models by reporting the metrics used in the corresponding tasks, including VOC ob-
ject detection [67], COCO object detection, COCO instance segmentation [60], VOC semantic
segmentation [67], and Cityscapes semantic segmentation [68].

For VOC object detection, we fine-tune a Faster R-CNN with a C4-backbone. Training is
performed on the VOC trainval07+12 set for 24k iterations. The evaluation is performed
on the VOC test2007 set. Both training and evaluation use the Detectron2 [81] code base.

For COCO object detection and instance segmentation, we fine-tune a Mask R-CNN with
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an FPN backbone on COCO’s train2017 split with the standard 1x schedule and evaluate
the fine-tuned model on COCO’s val2017 split. Following previous work, we synchronize all
the batch normalization layers. Detectron2 is used to conduct the training and evaluation.

We strictly follow the settings in [14] for VOC and Cityscapes semantic segmentation.
Specifically, an FPN is initialized with the pre-trained model, fine-tuned onthe t rain_aug2012
set for 30 k iterations, and evaluated on the val2012 set. For Cityscapes, we conduct fine tun-
ingonthe train_fine setfor 90 k iterations and evaluate the fine-tuned model on val_fine.
The training and evaluation are conducted by using MMSegmentation [82].

The results, including ours and those of reproducible previous methods, are reported as the
average of five, three, three, and five independent runs for VOC detection, COCO detection and

instance segmentation, Cityscapes segmentation, and VOC segmentation, respectively.

2.5.2 Main Results

As discussed in Section 2.4.1, PixCon-Sim boils down to DenseCL [1] when not applying the
BYOL pipeline; this is, however, invariantly used by the region-level methods. . As per Table
2.1, PixCon-Sim outperforms DenseCL across all the benchmarks. Additionally, with a simple
pixel-level learning algorithm, PixCon-Sim is already competitive compared with region-level
methods across all the benchmarks. PixCon-Coord, with a geometric matching scheme, is also

competitive.
For all four tasks, PixCon-SR brings consistent performance boosts to its image-level base-

line MoCo-v2+ and surpasses previous region-level methods, as well as the other two PixCon
variants. Though PixCon-SR’s performance on COCO detection and instance segmentation
is similar to that of UniVIP [15] and SlotCon [14], it has better performance in terms of the
other three tasks. It achieves this without relying on any region-mining algorithms, as shown
in Table 2.2, most of which resort to complex pre-processing or computationally expensive
multi-stage training. Specifically, for prototype-based methods, i.e. DenseSiamese [52] and
SlotCon [14], their transfer performance in VOC detection is conspicuously lower than that

of the other methods. This is likely caused by the fact that the dense features are trained to
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Table 2.1: Main transfer results. All self-supervised models were pre-trained for 800 epochs
on COCO, except that DetCon was trained for 1000 epochs. Among all the methods, MoCo-
v2 and DenseCL are based on the MoCo-v2 pipeline, while the others are based on the BYOL
pipeline. Refer to Section 2.4 for more details on the differences between the pipelines. We also
categorize the methods into different types based on their training strategies, including image
level, region level, and pixel level. Refer to Table 2.2 for more information about region- and
pixel-level methods. On all the benchmarks, our method shows strong transfer performance.
We use boldface to indicate single best results but underline multiple best results that have the

same value (f: re-impl. w/official weights. I: full re-impl.). © [2024] IEEE.
VOC Detection COCO Detection  COCO Instance seg. City. Seg. VOC Seg.

Method Type
AP APso AP75 AP AP APSE AP™F APZYE APTEF mloU mloU
Random init. 1, 14] - 328 590 316 328 509 353 299 479 320 = 653 39.5
MoCo-v2 [50] 547 81.0 60.6 385 581 421 348 553 373 7338 69.2
BYOL # [8] Image 557 81.8 61.6 39.5 594 433 356 566 382 753 70.2
MoCo-v2+ * [75] 546 814 605 398 59.7 436 359 570 385 756 71.1
ORL T [51] 558 821 623 402 60.0 443 364 574 388 754 70.7
PixPro [13] - - - 405 605 440 366 578 390 752 72.0
DetCon [66] - - - 398 595 435 359 564 387 761 70.2
UniVIP [15] Region 56.5 823 62.6 408 - - 368 - - - -
Odin * [57] 56.9 824 633 404 604 446 366 575 393 757 70.8
DenseSiam [52] 55.5 81.1 61.5 - - - - - - - -
SlotCon T [14] 545 819 603 408 61.0 448 36.8 580 395  76.1 71.7
DenseCL [1] 56.7 817 63.0 39.6 593 433 357 565 384 758 71.6
PixCon-Sim (ours) 573 824 639 405 605 442 366 575 392 761 72.6

Pixel
PixCon-Coord (ours) 572 826 634 403 603 439 365 574 392 758 723
PixCon-SR (ours) 57.6 828 64.0 408 61.0 448 368 579 396  76.6 73.0

Graduate School of Information Science and Technology, The Univesity of Osaka



Chapter 2 PixCon: Pixel-Level Contrastive Learning Revisited 20

Table 2.2: Comparisons between region- and pixel-level methods. While most of the region-
level methods require object priors, multi-stage training, or prototype learning, pixel-level meth-

ods need none of them. © [2024] IEEE.

Method Scheme Obj. Prior Multi-Stage Proto.
ORL [51] v v X
PixPro [13] X X X
DetCon [57] v X X
UniVIP [15] Region level v X X
Odin [57] X v X
DenseSiam [52] X X v
SlotCon [14] X X v
DenseCL [1] X X X
Pixel level
PixCon-x X X X

cluster around a fixed number of prototypes, which may cause the features to be overfitted to
the prototypes and thus may hurt the transfer performance due to overly small intra-class vari-
ances [83]. The pre-training based on a specific number of prototypes also struggles to serve
multiple downstream tasks equally well [14]. Overall, Table 2.1 sufficiently indicates the po-

tential of pixel-level learning and the effectiveness of PixCon-SR.

2.5.3 Detailed Analysis

Similarity-based matching encourages learning regional semantics. Compared with the
similarity-based matching used for PixCon-Sim, the coordinate-based matching of PixCon-
Coord guarantees semantic consistency between the positive matches, as the matches represent
the same patch in the image, which undergoes different augmentations. However, such strict
geometric matching does not encourage relating spatially distant pixels associated with the same

object and is thus limited in learning regional semantics.
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Though similarity-based matches do not always enjoy such geometric proximity, their se-
mantic consistency becomes increasingly better as training proceeds if the query feature has
semantic correspondences in the key view [1]. For query pixels not lying in the intersection
of the two views, i.e. out-of-box queries, their matches in the key view are guaranteed to be
spatially apart from them. When such matches are semantically related, they could strengthen
the correlation of spatially distant pixels belonging to the same semantic group. A qualitative
investigation in the form of self-attention maps is provided in Figure 2.4, where semantically
related but spatially distant pixel features are more holistically correlated for PixCon-Sim than
for PixCon-Coord and MoCo-v2+. Moreover, Table 2.1 shows that PixCon-Sim delivers bet-
ter transfer performance compared with PixCon-Coord, which may be attributed to the better
regional semantics made possible by the similarity-based matching.

Semantic reweighting helps learn better regional semantics. The semantic reweighting
strategy of PixCon-SR in Section 2.4.3 aims to discount the influence of inaccurate matches
caused by semantically inconsistent views of scene images while utilizing as many semanti-
cally consistent matches as possible. Therefore, we expect the resulting features to be less
correlated when they are associated with different semantic classes and have better intra-class
coherence. Indeed, Figure 2.4 shows that PixCon-SR’s self-attention maps allow for a better lo-
calization of semantic objects compared with PixCon-Sim (less attention on features of different
semantic classes) while guaranteeing sufficient coverage of whole objects (better intra-class co-
hesion), even when compared with the region-level method SlotCon [14]. Moreover, as shown
in Table 2.1, PixCon-SR achieves better transfer performance compared with PixCon-Sim and
PixCon-Coord, as well as previous region-level methods, which further indicates the efficacy
of the semantic reweighting strategy in helping learn decent regional semantics crucial to better
transfer performance. Figure 2.5 provides visualizations of the semantic weights for the query
features, where we can observe that the semantic contents not shared by the two views are given
small weights and out-of-box query pixels with semantic correspondences in the key view are
assigned nontrivial weights.

Designs of semantic reweighting. In Equation (2.7), spatial information is used to fully
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utilize matches with better guarantees for their semantic consistency regardless of their fea-
ture similarities, as their queries, i.e. in-box queries, are present in the two views’ intersected
part and thus always have semantic correspondences in the key view. Additionally, feature
similarities are used to reweight the matches with out-of-box queries to diminish the effect of
semantically inconsistent ones while exploiting those that are still informative. Table 2.3 allows
for an examination of the impact of these two tools based on ablation studies.

Interestingly, when using similarity-based matches with in-box queries alone, PixCon-SR
(Spa.) achieves slightly better performance than PixCon-Coord, which also merely utilizes
matches having in-box queries but with coordinated-based matching. This indicates that similarity-
based matching provides matches with sufficient semantic consistency. While only using either
spatial information or feature similarities does not give apparent performance gain, combin-
ing them, i.e. PixCon-SR (full), offers immediate improvements in the transfer performance,
indicating the importance of sufficiently leveraging informative positives and mitigating the
influence of false positives simultaneously.

Effect of the sharpening factor a.. As shown in Table 2.3, the sharpening factor o does not
cause drastic fluctuations in transfer performance, but a value of 2 helps strike a good balance
between detection and semantic segmentation tasks, which is then applied as the default value.

A step-by-step investigation from DenseCL to PixCon-Sim. After applying the MoCo-
v2+/BYOL training pipeline, MoCo-v2-based DenseCL becomes PixCon-Sim, which delivers
consistently better transfer performance. It is thus interesting to investigate which newly intro-

duced component in the new pipeline is contributing to better transfer performance.
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MoCo-v2+ PixCon-Sim  PixCon-Coord  PixCon-SR SlotCon

Figure 2.4: Visualizations of self-attention maps. For each row, the first image is the original
image, with the red dot highlighting the pixel whose feature is used to calculate the cosine-
similarity-based self-attention maps. The subsequent images are self-attention maps using dif-

ferent models’ features. See the main texts for analyses. © [2024] IEEE.
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Figure 2.5: Visualizations of semantic weights. The first row shows the raw images with the
blue bounding boxes indicating the query views and the yellow bounding boxes the key views.
The second row shows the heatmap of semantic weights for the query pixels (in the blue bound-
ing box), where the red bounding boxes indicate the intersection between query and key views.
All images and heatmaps are resized to the same size for visualization purposes. © [2024]

IEEE.
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Table 2.3: We examine the influence of the tools used to formulate the semantic weights in
Equation (2.7) based on ablation studies. PixCon-SR (Spa.) means that only matches whose
query features lie in the two views’ intersected parts are accepted and the other matches have
weights 0. Here, only the spatial information is used for formulating the semantic weights.
PixCon-SR (Sim.) means that only the similarities between the matched features are used as
semantic weights, regardless of whether the query features exist in the two views’ intersected
area. PixCon-SR (full) utilizes both tools. The effect of the sharpening factor v in Equation (2.7)
is also investigated here. © [2024] IEEE.

CcoCco VOC Seg.
Method (07
APpb? AP™E mloU

PixCon-Sim - 40.5 36.6 72.6
PixCon-Coord - 40.3 36.5 72.3
PixCon-SR (Spa.) 2 40.5 36.5 72.5
PixCon-SR (Sim.) 2 40.3 36.4 72.3
PixCon-SR (Full) 2 40.8 36.8 73.0
PixCon-SR (Full) 1 40.5 36.5 73.2
PixCon-SR (Full) 4 40.5 36.6 73.0
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Table 2.4: Investigating the effect of components in MoCo-v2+/BYOL on DenseCL’s transfer
performance. © [2024] IEEE.

CoCo VOC Seg.
Method
Apb? AP™k mloU

DenseCL 39.6 35.7 71.6
+ SyncBN 39.6 35.6 71.7
+ Asymmetric predictor 39.6 35.7 71.7
+ Momentum ascending 40.1 36.2 72.1
+ Symmetric loss 40.3 36.4 71.5
+ BYOL Aug. (PixCon-Sim) 40.5 36.6 72.6
— Symmetric loss 39.8 36.0 72.2

As shown in Table 2.4, SyncBN can be used to replace the ShuffleBN in MoCo-v2 without
affecting transfer performance much. Asymmetric predictors do not have an apparent contribu-
tion. Momentum ascending, symmetric loss, and BYOL augmentation all contribute to better
transfer performance, which is consistent with the observation made in the paper where MoCo-
v2+ is introduced [75]. However, we found that symmetric loss and BYOL augmentation deliver
a more consistent performance boost when applied together.

Though asymmetric predictors and SyncBN do not improve transfer performance, they have
been shown, in [75], to contribute to linear probing accuracy on the pre-training dataset. If linear
probing accuracy is not considered, it might be interesting to investigate the effect of removing
these two techniques. However, to align with previous region-level methods, which invariantly
incorporate all the BYOL components, we do so as well by default and leave the investigation
for future work.

SlotCon and PixPro do not benefit from image-level loss. DenseCL [1] and the proposed
PixCon framework both require image-level loss to work well. However, for the SOTA region-
level methods, SlotCon [14] and PixPro [13], the former does not contain an image-level loss,

while the latter does not use it by default. Therefore, we would like to investigate whether
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Table 2.5: SlotCon and PixCon with image-level losses. © [2024] IEEE.

CcoCco VOC Seg.
Method
APY AP™k mloU
SlotCon 40.8 36.8 71.7
SlotCon + image 40.5 36.6 70.2
PixPro 40.1 36.1 71.0
PixPro + image 40.5 36.6 69.8

an additional image-level loss will help these two methods. The experiments are based on the
officially released codes of SlotCon and PixPro. As shown in Table 2.5, both SlotCon and
PixPro fail to benefit from the additional image-level learning.

We can observe that all the reported methods have gained from leveraging more scene-
centric images for pre-training. It is interesting to see that SlotCon has substantially better
performance on VOC detection, COCO detection, instance segmentation, and VOC segmenta-
tion. UniVIP also witnessed an impressive performance boost on VOC detection after utilizing
COCO-+ for pre-training. PixCon-SR experienced consistent transfer performance improve-
ments across the benchmarks and remains competitive compared with region-level methods.
Interestingly, PixCon-SR falls behind SlotCon on ADE20k when pre-trained on COCO but
catches up after COCO+ pre-training. SlotCon has a smaller relative improvement on ADE20k
after pre-training on COCO+ compared with PixCon-SR.

Attempts to relax the use of prior knowledge in region-level learning. Among the
region-level learning methods, there are two that also consider pixel-level features, i.e. Pix-
Pro and SlotCon. As opposed to pure pixel-level learning applied in DenseCL and the proposed
PixCon, PixPro applies pixel-to-region matching based on self-attention to explicitly learn re-
gional semantics. On the other hand, SlotCon enforces pixel-level features to be grouped under
learnable prototypes, the number of which is tuned for them to capture region-level seman-

tics. Additionally, SlotCon also applies an attention-based region-level loss. The common first
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Table 2.6: Attempts to combine similarity-based matching with SlotCon. See text for analyses.

© [2024] IEEE.

CoCo VOC Seg.
Method
APb? APk mloU

SlotCon 40.8 36.8 71.7
SlotCon+Pix. 40.7 36.6 70.6
SlotCon-Coord.+Sim. 39.7 35.7 68.3
SlotCon-Coord.+Sim.+Img. 40.5 36.5 69.7
SlotCon+Sim. 40.5 36.6 69.5
SlotCon+Sim.+SR 40.7 36.7 70.5

step between pixel or pixel-to-region losses is to find pixel-level positive matches. DenseCL
and PixCon find such matches mainly by bootstrapping feature similarities, while PixPro and
SlotCon utilize a safer source of information based on prior knowledge, i.e. spatial coordinates.

As we have discussed in Section 2.5.3 in the main text, similarity-based matching encour-
ages learning regional semantics more than coordinate-based matching. Thus, if we desire
to learn regional semantics without explicitly applying region-level learning, similarity-based
matching is the key. PixPro and SlotCon are equipped with coordinate-based matching, but
they need to explicitly leverage region-level losses. One question that naturally comes to mind
is the following: will similarity-based matching facilitate explicit region-level learning? In
other words, we may want to know whether it helps to augment/replace the coordinate-based
matching in PixPro or SlotCon with bootstrapping-driven similarity-based matching. We made
several attempts in this direction but did not witness any improvements. The results are shown
in Table 2.6. We provide our analyses of the results below.

SlotCon+ Pix. means that we augment SlotCon with an additional pixel-level learning branch,
for which we apply the PixCon pixel-level loss (without semantic reweighting). We can ob-
serve that simply augmenting SlotCon with similarity-based pixel-level learning does not help.

SlotCon-Coord.+Sim. means that we replace coordinate-based matching with similarity-based
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matching, and this scenario leads to a significant performance drop. This is expected, as
similarity-based matching needs the image-level loss as a basis for semantically meaningful fea-
tures, whereas SlotCon’s region-level loss, similar to similarity-based matching, also relies on
bootstrapping feature similarities. Therefore, the scenario SlotCon-Coord.+Sim.+Img., where
the image-level loss is added, shows more reasonable performance, which still does not match
the original performance. Moreover, as shown in Table 2.5, SlotCon does not benefit from the
image-level loss to begin with. When we tried to augment the original coordinate-based loss
with the similarity-based loss on the same branch (SlotCon+Sim.), we observed a similar per-
formance drop. Semantic reweighting (SR) helps regain part of the original performance. We
observe similar trends for PixPro but only report SlotCon results here, as we have only managed
to verify the reproducibility of SlotCon’s code.

What could account for the failure? Compared with the straightforward pixel-level loss in
PixCon, SlotCon, as well as PixPro, takes a step forward to further bootstrap feature similari-
ties/attention for conducting region-level learning. Compared with similarity-based matching,
which is already driven by bootstrapping, coordinate-based matching is apparently a safer tool
for providing better semantically meaningful features, at least in the initial stage, to support
such region-level bootstrapping. Semantic reweighting helps avoid part of the negative effect of
bootstrapping by incorporating spatial information, but it still relies on similarity-based match-
ing.

Similar to PixPro and SlotCon, the proposed PixCon framework is another step towards
making dense representation learning less restricted by human prior knowledge via relying more
on bootstrapping. Attempting to combine PixCon and region-level bootstrapping is yet another
effort in the same direction but remains challenging for now and interesting for future work.

COCO+ results. To investigate whether PixCon-SR can further benefit from more scene-
centric training images, we conduct pre-training with the COCO+ dataset and provide the cor-
responding transfer results in Table 2.7.

Visualizations of matches with in-box queries but low matching similarities. When for-

mulating the semantic reweighting strategy, we assume that matches with in-box queries, which
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Table 2.7: Transfer results from COCO+. The results of SlotCon and PixCon-SR are reported
as the averages of 5, 3, 3, 5, and 3 independent runs for VOC detection, COCO detection and
instance segmentation, Cityscapes segmentation, VOC segmentation, and ADE20k segmenta-
tion, respectively. Except for PixCon-SR, all the methods are region-level methods. (f: re-prod.

w/official weights). © [2024] IEEE.

VOC Detection COCO City. Seg. VOC Seg. ADE20k

Method Dataset
AP AP5y AP75 APP® AP™F  mloU mloU mloU
ORL Tt [51] 558 82.1 623 402 364 75.4 70.7 -
UniVIP [15] 56.5 823 62.6 408 36.8 - - -
COCO
SlotCon T [14] 545 819 603 408 36.8 76.1 71.7 38.7
PixCon-SR (ours) 57.6 828 64.0 408 36.8 76.6 73.0 38.0
ORL [51] - - - 406 36.7 - - -
UniVIP [15] 582 833 652 41.1 37.1 - - -
COCO+
SlotCon T [14] 57.0 83.0 634 417 37.6 76.6 74.1 38.9
PixCon-SR (ours) 58.5 834 652 412 37.1 77.0 73.9 38.8

lie in the intersected area of query and key views, are highly likely to own semantically con-
sistent keys regardless of the query-key similarities, as they are guaranteed to have semantic
correspondences in the key view. In Figure 2.6, we visualize the correspondences between in-
box query pixels and their matched key pixels. We can observe that even in an early stage of
training, most of the in-box queries with low matching similarities still have semantically con-
sistent key pixels. This validates our assumption that in-box queries tend to have semantically
consistent keys regardless of their matching similarities. As training goes further, the matches

also get more accurate despite the magnitudes of similarities.
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Epoch 100 Epoch 400 Epoch 700

View 1 View 2 gk sim. View 1 View 2 gk sim. View 1 View 2 gk sim.

Figure 2.6: For each query view (view 1), we calculate the cosine similarities between its
backbone features and those of the key view (view 2) at different training epochs. We keep five
in-box query pixels that have the lowest similarities with their matched keys using similarity-
based matching. The input images are randomly cropped, resized to 1024 x 1024, and then go
through the other default data augmentations. The large input size is to more precisely visualize
the correspondences. “qk sim.” stands for the backbone feature similarities between the query

and its matched key pixels and is only visualized for the query view. © [2024] IEEE.
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2.6 Conclusion

In this paper, we exploited the potential of pixel-level learning on pre-training with scene im-
ages. We find that pixel-level learning baselines do not enjoy the same sophisticated training
pipeline as employed in region-level methods. After training pipeline alignment, pixel-level
methods can be improved to match the region-level methods’ performance. Moreover, we show
that pixel-level methods can also grasp regional semantics, where the key is the similarity-based
positive matching strategy [1]. We eventually propose a semantic reweighting strategy to lever-
age both semantic and spatial cues to equip pixel-level learning with the capability of coping
with semantically inconsistent scene image views. The semantic reweighting strategy helps
pixel-level learning outperform or rival region-level methods, but with a much simpler method-
ology. We believe there is still under-explored potential for pixel-level learning, and we will

keep exploring this direction in future work.
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Chapter 3

Exploiting Contrastive Learning for

Zero-Shot Video Summarization

3.1 Overview

In an era where video data are booming at an unprecedented pace, the importance of making
the video browsing process more efficient has never been greater. Video summarization facil-
itates efficient browsing by creating a concise synopsis of the raw video, a topic that has been
popular in research for many years. The rapid development of deep learning has significantly
promoted the efficacy of video summarization tools [84]. Supervised approaches [85-88] lever-
age the temporal modeling power of LSTM (long short-term memory) [89] or self-attention
mechanisms [90] and train them with annotated summaries. Heuristic training objectives such
as diversity and representativeness have been applied using unsupervised methods [5, 91-96]
to enforce a diverse selection of keyframes that are representative of the essential contents of
videos.

Past unsupervised approaches have trained summarization models to produce diverse and
representative summaries by optimizing feature similarity-based loss/reward functions. Many

research works on visual representation learning have revealed that vision models pre-trained on
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supervised or self-supervised tasks contain rich semantic signals, facilitating zero-shot transfer
learning in tasks such as classification [9, 97], semantic segmentation [24], and object detec-
tion [98]. In this work, we propose leveraging the rich semantics encoded in pre-trained visual
features to achieve zero-shot video summarization that outperforms previous heavily trained
approaches and self-supervised pre-training to further enhance the zero-shot performance.
Specifically, we first define local dissimilarity and global consistency as two desirable crite-
ria for localizing keyframe candidates. Inspired by the diversity objective, if a frame is distant
from its nearest neighbors in the feature space, it encodes information that rarely appears in
other frames. As a result, including such frames in the summary contributes to the diversity
of its content. Such frames are considered to be decent key frame candidates as they enjoy
high local dissimilarity, the naming of which leverages the definition of locality in the feature
space in [99]. However, merely selecting frames based on dissimilarity may wrongly incor-
porate noisy frames that are not indicative of the video storyline. Therefore, we constrain the
keyframes to be aligned with the video storyline by guaranteeing their high semantic similarity
with the global cluster of the video frames, i.e. they are representative of (or globally consistent
with) the video theme. Overall, the selected keyframes should enjoy a decent level of local
dissimilarity to increase the content diversity in the summary and reflect the global video gist.
In contrast to previous works that required training to enforce the designed criteria, we di-
rectly quantify the proposed criteria into frame-level importance scores by utilizing contrastive
losses for visual representation learning, i.e. alignment and uniformity losses [21]. The align-
ment loss calculates the distance between semantically similar samples, such as augmented
versions of an input image, and minimizes this distance to ensure similarity between these pos-
itive samples in a contrastive learning setting. In our case, we directly apply the alignment loss
to quantify the local dissimilarity metric. Uniformity loss is employed to regularize the overall
distribution of features, with higher values indicating closely clustered features. This character-
istic makes it well-suited for assessing the semantic consistency across a group of frames. To
leverage this, we adapt the uniformity loss to evaluate the consistency between an individual

frame and the entire set of video frames, which serves as a proxy for the global video storyline.
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These two losses can then be utilized for self-supervised contrastive refinement of the features,
where contrastive learning is applied to optimize feature distances, ultimately enhancing the
accuracy of the calculated frame importance scores.

Nonetheless, background frames may feature dynamic content that changes frequently, mak-
ing them distinct from even the most similar frames and resulting in local dissimilarity. At the
same time, these frames might contain background elements that are common across a majority
of the video frames, contributing to global consistency. For example, in a video of a car ac-
cident, street scenes are likely to appear consistently. Although these frames might differ due
to moving objects, they remain generally consistent with most frames, on average, due to the
shared background context. We propose mitigating the chances of selecting such frames by
exploiting the observation that such background frames tend to appear in many different videos
with diverse topics and, thus, are not unique to their associated videos, e.g., street scenes in
videos about car accidents, parades, city tours, etc. Specifically, we propose a uniqueness filter
to quantify the uniqueness of frames, formulated by leveraging cross-video contrastive learn-
ing. An illustration of the difference between the proposed method and previous methods is
provided in Figure 3.1.

Leveraging rich semantic information encoded in pre-trained visual features, we, for the
first time, propose tackling training-free zero-shot video summarization and self-supervised
pre-training to enhance the zero-shot transfer. Inspired by contrastive loss components [21],
we achieve zero-shot summarization by quantifying frame importance into three metrics: local
dissimilarity, global consistency, and uniqueness. The proposed method achieves better or com-
petitive performance compared to previous methods while being training-free. Moreover, we in-
troduce self-supervised contrastive refinement using unlabeled videos from YouTube-8M [100]
to refine the feature distribution, which aids in training the proposed uniqueness filter and fur-
ther enhances performance. This chapter is based on the conference and journal papers of this

project [101,102].
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Figure 3.1: A comparison between our method and previous work. © [2023] IEEE.

3.2 Related Work

Early applications in video summarization focus on sports videos [103—105] for event detection
and highlight video compilation. Later on, video summarization was explored in other do-
mains such as instructional videos [4,106—108], movies [109,110], and general user videos [3].
Thanks to the excellent generalization capabilities of deep neural networks/features, the focus of
video summarization research has been diverted to developing general-purpose summarization
models for a diverse range of video domains.

As an initial step toward deep learning-based supervised video summarization, Zhang et

al. [85] utilized a long short-term memory (LSTM) for modeling temporal information when
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trained with human-annotated summaries, which sparked a series of subsequent works based on
LSTM [86, 111-114]. The rise of Transformer [90] inspired a suite of methods leveraging self-
attention mechanisms for video summarization [87,88,93,115-119]. Some works have explored
spatiotemporal information by jointly using RNNs and convolutional neural networks (CNNs)
[120-122] or used graph convolution networks [123, 124]. Video summarization leveraging
multi-modal signals has also performed impressively [125-127].

Deep learning-based unsupervised methods mainly exploit two heuristics: diversity and rep-
resentativeness. For diversity, some works [91,92,94,124] have utilized a diversity loss derived
from a repelling regularizer [128], guaranteeing dissimilarities between selected keyframes. It
has also been formulated as a reward function optimized via policy gradient methods, as seen
in 5,129, 130]. Similarly, representativeness can be guaranteed by reconstruction loss [91,93—
95, 131] or reconstruction-based reward functions [5, 129, 130].

Unlike previous works, we tackle training-free zero-shot video summarization and propose
a pre-training strategy for better zero-shot transfer. Specifically, we directly calculate frame
importance by leveraging contrastive loss terms formulated in [21] to quantify diversity and
representativeness. With features from a vision backbone pre-trained on supervised image clas-
sification tasks [132] and without any further training, the proposed contrastive loss-based cri-
teria can already well-capture the frame contribution to the diversity and representativeness of
the summary. The proposed self-supervised contrastive refinement can further boost the perfor-

mance and leverage unlabeled videos for zero-shot transfer to test videos.

3.3 Preliminaries

Given the centrality of contrastive learning to our approach, we first introduce the relevant

preliminaries, with a focus on instance discrimination as outlined in [48].

3.3.1 Instance Discrimination via the InfoNCE Loss

Contrastive learning [133] has become a cornerstone of self-supervised image representation

Graduate School of Information Science and Technology, The Univesity of Osaka



Chapter 3 Exploiting Contrastive Learning for Zero-Shot Video Summarization 38

learning; throughout the years, it has received more attention from researchers. This method
has been continuously refined to produce representations with exceptional transferability [6,
11,21, 48,99, 131, 134, 135]. Formally, given a set of N images D = {I,}Y_,, contrastive
representation learning aims to learn an encoder f, such that the resulting features fy(/,,) can
be readily leveraged by downstream vision tasks. A theoretically founded loss function with
favorable empirical behaviors is InfoNCE loss [11]:

fo(D-Fo(I") /7
ofo(D-fo(D)/7’

LinfoNCE = Z —log

3.1)
IeD ZJED’(I)

where [’ is a positive sample for I, usually obtained through data augmentation, and D’([)

(X3R4

includes I’ as well as all negative samples, e.g., any other images. The operator “-” is the inner
product and 7 is a temperature parameter. Therefore, the loss aims to pull the features of an
instance closer to those of its augmented views while repelling them from the features of other

instances, thus performing instance discrimination.

3.3.2 Contrastive Learning via Alignment and Uniformity

When normalized onto the unit hypersphere, the features learned through contrastive learning
that yield strong downstream performance exhibit two notable properties. First, semantically
related features tend to cluster closely on the sphere, regardless of specific details. Second,
the overall information of the features is largely preserved, resulting in a joint distribution that
approximates a uniform distribution [11,134,135]. Wang et al. [21] termed these two properties
as alignment and uniformity.

The alignment metric computes the distance between the positive pairs [21]:

Laign(0,0) = E [l fo(I) = fo(I)I5], 3.2)

(nyl)Nppos
where o« > 0, and pj is the distribution of positive pairs. The uniformity is defined as the
average pairwise Gaussian potential between the overall features, as follows:

Euniform<076) = log ( E [e—ﬁllfe(])—fe(J)§]> ) (3.3)

iid
1,J ~ pdata
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Here, pga is typically approximated by the empirical data distribution, and 3 is commonly
set to 2, as recommended by [21]. This metric promotes the overall feature distribution on the
unit hypersphere to approximate a uniform distribution and can also directly quantify the uni-
formity of feature distributions [22]. Additionally, Equation (3.3) approximates the logarithm
of the denominator in Equation (3.1) when the number of negative samples approaches infin-
ity [21]. As demonstrated in [21], jointly minimizing Equations (3.2) and (3.3) leads to better
alignment and uniformity of the features, meaning they become locally clustered and globally
uniform [22].

In this paper, we employ Equation (3.2) to calculate the distance or dissimilarity between
semantically similar video frame features, which helps measure frame importance based on lo-
cal dissimilarity. We then apply a modified version of Equation (3.3) to assess the proximity
between a specific frame and the overall information of the corresponding video, thereby es-
timating their semantic consistency. Additionally, by leveraging these two loss functions, we
learn a nonlinear projection of the pre-trained features to enhance the local alignment and global

uniformity of the projected features.

3.4 Proposed Method

We first define two metrics to quantify frame importance by leveraging rich semantic infor-
mation in pre-trained features: local dissimilarity and global consistency. To guarantee that the
metrics encode the diversity and representativeness of the summary, we conduct self-supervised
contrastive refinement of the features, where an extra metric called uniqueness is defined to fur-
ther strengthen the keyframes’ quality. We provide a conceptual illustration of our approach in

Figure 3.2.

3.4.1 Local Dissimilarity

Inspired by the diversity objective, we consider frames likely to result in a diverse summary as

those conveying diverse information, even when compared to their nearest neighbors. Formally,
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Figure 3.2: A conceptual illustration for the three metrics: local dissimilarity, global consis-
tency, and uniqueness in the semantic space. The images come from the SumMe [3] and TV-
Sum [4] datasets. The dots with the same color indicate features from the same video. For a
concise demonstration, we only show one frame for “Video 2 and “Video 3” to show the idea

of uniqueness. © [2023] IEEE.

given a video V, we first extract deep features using the ImageNet [136] pre-trained vision
backbone, e.g., GoogleNet [132], denoted as F, such that F'(V) = {x;}L_,, where x; represents
the deep feature for the ¢-th frame in V, and 7 is the total number of frames in V. Each feature
is L2-normalized such that ||x;||; = 1.

To define local dissimilarity for frames in V, we first use cosine similarity to retrieve for
each frame x; a set N; of top K = a1 neighbors, where a is a hyperparameter and K is rounded

to the nearest integer. The local dissimilarity metric for x; is an empirical approximation of
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Equation (3.2), defined as the local alignment loss:

1
£align(xt> = m Z th - XH%? (34)

Hxen,
which measures the distance/dissimilarity between x; and its semantic neighbors.

The larger the value of Eaﬁgn(xt), the more dissimilar xt is from its neighbors. Therefore,
if a frame exhibits a certain distance from even its closest neighbors in the semantic space,
the frames within its local neighborhood are likely to contain diverse information, making them
strong candidates for keyframes. Consequently, L (X;) can be directly utilized as the impor-

tance score for x; after appropriate scaling.

3.4.2 Global Consistency

N; may contain semantically irrelevant frames if x; has very few meaningful semantic neigh-
bors in the video. Therefore, merely using Equation (3.4) for frame-wise importance scores is
insufficient. Inspired by the reconstruction-based representativeness objective [91], we define
another metric,, called global consistency, to quantify how consistent a frame is with the video

gist by a modified uniformity loss based on Equation (3.3):

1
Lnitorm (%;) = log 71 e~ 2lxe—xl3 , (3.5)
XF#X¢,
xeF(V)

L uniform (X¢) measures the proximity between x; and the remaining frames, bearing similarity
to the reconstruction- and K-medoid-based objectives in [5,91]. However, it obviates the need
to train an autoencoder [91] or a policy network [5] by directly leveraging rich semantics in

pre-trained features.

3.4.3 Contrastive Refinement

Equations (3.4) and (3.5) are computed using deep features pre-trained on image classification

tasks, which may not inherently exhibit the local alignment and global uniformity described
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in Section 3.3.2. To address similar challenges, Hamilton et al. [24] proposed contrastively
refining self-supervised vision transformer features [9] for unsupervised semantic segmentation.
They achieve this by freezing the feature extractor (to improve efficiency) and training only a
lightweight projector. Following this approach, we also avoid fine-tuning the heavy feature
extractor, in our case, GoogleNet, and instead train only a lightweight projection head.

Formally, given features F'(V) from the frozen backbone for a video, we feed them to a
learnable module to obtain z, = Gy(x;), where z; is L2-normalized (we leave out the L2-
normalization operator for notation simplicity). The nearest neighbors in N, for each frame
are still determined using the pre-trained features {xt}thl. Similar to [1,99], we also observe
collapsed training when directly using the learnable features for nearest neighbor retrieval, so
we stick to using the frozen features.

With the learnable features, the alignment loss (local dissimilarity) and uniformity loss
(global consistency) become (we slightly abuse the notation of £ to represent losses both before

and after transformation by Gy):

1 2
Ealign(zt; 0) = m ;j\[t HZt - Z||27 (36)
1 e
Euniform(zt; 6) = log ﬁ Z € I (37)
zF£Z¢,
z€GH(F(V))

The joint loss function is as follows:
‘C(Zt; (9) = ﬁalign(zt; 6) + )\lﬁuniform<zt; 9)7 (38)

where )\ is a hyperparameter balancing the two loss terms.

During the contrastive refinement, Lyjign and Lypiform Will mutually resist each other for
frames that have semantically meaningful nearest neighbors and are consistent with the video
gist. Specifically, when a nontrivial number of frames beyond N; also share similar semantic
information with the anchor z;, these frames function as “hard negatives” that prevent Lyjign

to be easily minimized [22,99]. Therefore, only frames with moderate local dissimilarity and
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global consistency will have balanced values for the two losses. In contrast, the other frames

tend to have extreme values compared to those before the refinement.

3.4.4 The Uniqueness Filter

The two metrics defined above fail to account for the fact that locally dissimilar yet globally
consistent frames can often be background frames with complex content that is related to most
of the frames in the video. For example, dynamic cityscapes might frequently appear in videos
recorded in urban settings.

To address this, we propose filtering out such frames by leveraging a common characteristic:
they tend to appear in many different videos that do not necessarily share a common theme or
context. For instance, city views might be present in videos about car accidents, city tours,
or parades, while scenes featuring people moving around can appear across various contexts.
Consequently, these frames are not unique to their respective videos. This concept has been
similarly explored in weakly-supervised action localization research [137-139], where a single
class prototype vector is used to capture all background frames. However, our approach aims
to identify background frames in an unsupervised manner. Additionally, rather than relying
on a single prototype, which can be too restrictive [140], we treat each frame as a potential
background prototype. By identifying frames that are highly activated across random videos,
we develop a metric to determine the “ background-ness ~ of a frame.

To design a filter for eliminating such frames, we introduce an extra loss to Equation (3.8)
that taps into cross-video samples. For computational efficiency, we aggregate the frame fea-
tures in a video V, with T}, frames into segments of equal length m. The learnable features, z, in
each segment, are average-pooled and L.2-normalized to obtain segment features Sy, = {s;} E"f
with |Si| = T} /m. To measure the proximity of a frame with frames from a randomly sampled

batch of videos B (represented as segment features), including Sy, we again leverage Equa-
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tion (3.3) to define the uniqueness loss for z; € V, as follows:

1 .
Cunigue(z:6) =log | Y D e el ) (3.9)

SeB/S), s€S

where A = 3 o 5 /5K |S| is the normalization factor. A large value of Lyyique means that z, has
nontrivial similarity with segments from randomly gathered videos, indicating that it is likely to
be a background frame. When jointly optimized with Equations (3.8) and (3.9) the process will
be easy to minimize for unique frames, for which most elements of s are semantically irrelevant
and can be safely repelled. It is not the case for the background frames with semantically similar
s, as the local alignment loss keeps strengthening the closeness of semantically similar features.

As computing Equation (3.9) requires random videos, it is not as straightforward to convert
Equation (3.9) to importance scores after training. To address this, we train a model H; whose
last layer is a sigmoid unit to mimic 1 — E_unique(zt; 6), where Zumque(zt; 0) is Lunique(2+; 0) scaled
to [0, 1] over t. Denoting v, = 1 — sg(ﬁ_unique(zt; 6)) and r, = Hy(sg(z;)), where “sg” stands for

stop gradients, we define the loss for training the model as follows:

Leitter(Z4; é) = —ylogr, + (1 — y,) log(1 — ry). (3.10)

3.4.5 The Full Loss and Importance Scores

With all the components, the loss for each frame in a video is as follows:

ﬁ(zt; 0’ é) = ,Ca]ign(zt; 9) + Alﬁuniform(zt; 6) (31 i)

~

+)\2£unique(zt; 9) + >\3£ﬁlter(zt; 9)7
where we fix both \; and A3 as 0.1 and only tune \;.
Scaling the local dissimilarity, global consistency, and uniqueness scores to [0, 1] over t,

the frame-level importance score is defined as follows:
bt = Ealign(zt; Q)Euniform(zt; Q)Hé(zt) + €, (312)

which ensures that the importance scores are high only when all three terms have significant

magnitude. The parameter € is included to prevent zero values in the importance scores, which
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helps stabilize the knapsack algorithm used to generate the final summaries. Since these scores
are derived from three independent metrics, they may lack the temporal smoothness typically
provided by methods like RNNs [85] or attention networks [88]. To address this, we apply
Gaussian smoothing to the scores within each video, aligning our method with previous work

that emphasizes the importance of temporal smoothness in score generation.

3.5 Experiments

3.5.1 Datasets and Settings

Datasets. In line with previous studies, we evaluate our method on two benchmarks: TV-
Sum [4] and SumMe [3]. TVSum consists of 50 YouTube videos, each annotated by 20 indi-
viduals who provide importance scores for every two-second shot. SumMe includes 25 videos,
each with 15 to 18 reference binary summaries. Following the protocol established by [85],
we use the OVP (50 videos) and YouTube (39 videos) datasets [141] to augment both TVSum
and SumMe. Additionally, to assess whether our self-supervised approach can benefit from a
larger video dataset, we randomly selected approximately 10,000 videos from the YouTube-8M
dataset [100], which contains 3,862 video classes with highly diverse content.

Evaluation Setting. Following prior work, we evaluate our model’s performance using five-
fold cross-validation, where the dataset (either TV Sum or SumMe) is randomly divided into five
splits. The reported results are the average across these five splits. In the canonical setting (C),
training is performed only on the original splits of the two evaluation datasets. In the augmented
setting (A), we expand the training set in each fold with three additional datasets (e.g., SumMe,
YouTube, and OVP when evaluating on TVSum). In the transfer setting (T), all videos from
TVSum (or SumMe) are reserved for testing, while the other three datasets are used for training.
Additionally, we introduce a new transfer setting where training is exclusively conducted on the
collected YouTube-8M videos, and evaluation is performed on TVSum or SumMe. This setting

is intended to assess whether our model can benefit from a larger volume of data.
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3.5.2 Evaluation Metrics

F1 score. Denoting A as the set of frames in a ground-truth summary and B as the set of frames

in the corresponding generated summary, we can calculate precision and recall as follows:

.. |AN B |AN B
Precision = , Recall = , (3.13)
A | Bl
with which we can calculate the F1 score by the following:
Fl — 2 x Precision x Recall (3.14)

Precision + Recall
We follow [85] to deal with multiple ground-truth summaries and to convert importance scores
into summaries.

Rank correlation coefficients. Recently, Otani et al. [142] highlighted that F1 scores can
be unreliable and may yield relatively high values even for randomly generated summaries.
To address this issue, they proposed using rank correlation coefficients, specifically Kendall’s
7 [143] and Spearman’s p [144], to evaluate the correlation between predicted and ground-
truth importance scores. For each video, we first compute the coefficient value between the
predicted importance scores and the scores provided by each annotator, then average these
values across all annotators for that video. The final results are obtained by averaging the

correlation coefficients across all videos.

3.5.3 Summary Generation

We follow previous work to convert importance scores to key shots. Specifically, we use the
KTS algorithm [145] to segment videos into temporally consecutive shots and then average the
importance scores within each shot to compute the shot-level importance scores. The final key
shots are chosen to maximize the total score while guaranteeing that the summary length does
not surpass 15% of the video length. The maximization is conducted by solving the knapsack
problem based on dynamic programming [4]. Otani et al. [142] pointed out that using average
frame importance scores as shot-level scores will drastically increase the F1 score for the TV-

Sum dataset, and they recommended using the sum of scores to alleviate the problem. However,
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F1 scores reported by previous works mostly rely on averaging importance scores for shot-level
scores. We also report our F1 scores in the same way as they did but focus on analyzing the

rank correlation values for comparison and analysis.

3.5.4 Implementation Details

We follow prior studies by using GoogleNet [132] pre-trained features as the default for stan-
dard experiments. For experiments involving YouTube-8M videos, we utilize the quantized
Inception-V3 [146] features provided by the dataset [100]. Both types of features are pre-trained
on ImageNet [136]. The contrastive refinement module appended to the feature backbone is a
lightweight Transformer encoder [90], and so is the uniqueness filter.

Following [92], we standardized each video to have an equal length by using random
sub-sampling for longer videos and nearest-neighbor interpolation for shorter videos. Simi-
lar to [92], we did not observe much difference when using different lengths, and we fixed the
frame count at 200.

The model appended to the feature backbone for contrastive refinement is a stack of Trans-
former encoders with multi-head attention modules [90]. There are two training scenarios: 1)
Training with TVSum [4], SumMe [3], YouTube, and OVP [141], divided into the canonical,
augmented, and transfer settings; 2. Training with a subset of videos from the YouTube-8M
dataset [100]. We refer to the training in the first scenario as standard and the second as YT8M.
The pre-trained features are first projected into 128 dimensions for training in both scenarios us-
ing a learnable, fully connected layer. The projected features are then fed into the Transformer
encoders. The model architecture and associated optimization details are outlined in Table 3.1.
Training the 10,000 YouTube-8M videos takes approximately 6 minutes for 40 epochs on a
single NVIDIA RTX A6000.

We tune two hyperparameters: The ratio a, which determines the size of the nearest neighbor
set NV; and the coefficient \;, which controls the balance between the alignment and uniformity

losses.
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Table 3.1: Model and optimization details. © [2023] IEEE.

Layers Heads dpyodet dhead Dinner Optimizer LR Weight Decay Epoch

Standard 4 1 128 64 512 Adam 0.0001 0.0001 40
YT8M 4 8 128 64 512 Adam 0.0001 0.0005 40

3.5.5 Quantitative Results

In this section, we compare our results with previous work and conduct the ablation study for

different components of our method.

*
uniform

Training-free zero-shot performance. As shown in Tables 3.2 and 3.3, E_j“gn and £
directly computed using GoogleNet [132] pre-trained features, achieve performance superior
to most methods in terms of 7, p, and F1 score. Notably, the correlation coefficients 7 and
p surpass supervised methods, e.g., (0.1345, 0.1776) v.s. dppLSTM’s (0.0298, 0.0385) and
SumGraph’s (0.094, 0.138) for TVSum. Although DR-DSNs has slightly better performance
in terms of 7 and p for TVSum, it has to reach the performance after 2000 epochs of training,
while our results are directly obtained with simple computations using the same pre-trained
features as those also used by DR-DSN.

More training videos are needed for the contrastive refinement. For the results in
Tables 3.2 and 3.3, the maximum number of training videos is only 159, coming from the
SumMe augmented setting. For the canonical setting, the training set size is 40 videos for
TVSum and 20 for SumMe. Without experiencing many videos, the model tends to overfit
specific videos and cannot generalize well. This is similar to the observation in contrastive rep-
resentation learning, where a larger amount of data, whether from a larger dataset or obtained
through data augmentation, helps the model generalize better [6,9]. Therefore, the contrastive
refinement results in Tables 3.2 and 3.3 hardly outperform those computed using pre-trained
features.

Contrastive refinement on YouTube-8M videos and transfer to TVSum. The model

generalizes to the test videos better when sufficient training videos are given, as shown by the

Graduate School of Information Science and Technology, The Univesity of Osaka



Chapter 3 Exploiting Contrastive Learning for Zero-Shot Video Summarization 49

Table 3.2: Ablation results in terms of 7 and p, along with their comparisons to previous work
in the canonical setting. DR-DSNgq refers to the DR-DSN trained for 60 epochs; similarly,
DR-DSNyggg. Our scores with superscript * are directly computed from pre-trained features.
The results were generated with (A1,a) = (0.5,0.1). Bold scores = best among supervised;

blue = best without annotations; T = vision-language methods. © [2023] IEEE.

TVSum SumMe

Method T p T p

Human baseline [147] 0.1755 0.2019 0.1796 0.1863

Supervised

VASNet [88,147] 0.1690 0.2221 0.0224 0.0255
dppLSTM [85, 142] 0.0298 0.0385  —0.0256 —0.0311
SumGraph [124] 0.094 0.138 - -
Multi-ranker [147] 0.1758 0.2301 0.0108 0.0137
Clip-It' [126] 0.108 0.147 - -
A2Summ’ [127] 0.137 0.165 0.108 0.129

Unsupervised

DR-DSNgy [, 142] 0.0169 0.0227 0.0433 0.0501
DR-DSNa2go [5, 147] 0.1516 0.1980  —0.0159 —0.0218
SUM-FCNyyep [92,147]  0.0107 0.0142 0.0080 0.0096
SUM-GAN [91, 147] —0.0535 —0.0701 —0.0095 —0.0122

CSNet + GL + RPE [96] 0.070 0.091 - -

Training-free
O *
Lalign

E*

align

0.1055 0.1389 0.0960 0.1173

& L 0.1345 0.1776 0.0819 0.1001

uniform

Contrastively refined

Lalign 01002  0.1321 00942  0.1151
Latign & Lunitomn 0.1231  0.1625  0.0689  0.0842
Laign & H; 0.1388  0.1827 00585  0.0715

Laign & Lunitorm & Hy 0.1609  0.2118  0.0358  0.0437
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Table 3.3: Ablation results regarding F1 and their comparisons with previous unsupervised
methods. The boldfaced results are the best ones. Please refer to Table 3.2’s caption for the

notation and text for analysis. © [2023] IEEE.

TVSum SumMe

Method C A T C A T
Unsupervised

DR-DSNg [5] 57.6 584 578 414 428 424
SUM-FCNyyup [92] 52.7 - - 415 - 39.5
SUM-GAN [91] 51.7 595 - 39.1 434 -
UnpairedVSN [94] 55.6 - 55.7 475 - 41.6
CSNet [95] 588 59 592 513 521 451
CSNet + GL + RPE [96] 59.1 - - 50.2 - -

SumGraphyyeup [124] 593 612 576 498 521 47

Training-free
Liign 564 564 546 435 435 394
Coian & Linitorm 584 584 568 472 46.07 41.7

Contrastively refined

Lign 546 551 53 468 471 415
Laiign & Luniform 588 599 574 467 484 411
Latign & H; 538 56 543 452 45 453

Laign & Lunitorm & H; 595 599 59.7 468 455 439
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*
align

are improved from (0.0595, 0.0779) to (0.0911, 0.1196) for 7 and p. We can also observe

results for TVSum in Table 3.4. After the contrastive refinement, the results with only £

& Lk brought by contrastive refinement.

improvement over £ aniform

align

Contrastive refinement on YouTube-8M videos and transfer to SumMe. The reference
summaries in SumMe are binary scores, and summary lengths are constrained to be within 15%
of the video lengths. Therefore, the majority of the reference summary receives exactly zero
scores. The contrastive refinement may still enhance the confidence scores for these regions,

which receive zero scores from annotators due to the 15% constraint. This can ultimately reduce

the average correlation with the reference summaries, as seen in Table 3.4.

Table 3.4: The transfer evaluation setting with the YouTube-8M dataset, where the training
is solely conducted on the collected YouTube-8M videos and then evaluated on TVSum and

SumMe. The results from DR-DSN [5] are also provided for comparison. © [2023] IEEE.

TVSum SumMe
Method F1 T p F1 T p
Unsupervised
DR-DSN [5] 51.6 0.0594 0.0788 39.8 —0.0142 —0.0176
Training-free
7:lign 559 0.0595 0.0779 455 0.1000 0.1237
E_;‘hgn & Lt iorm 56.7 0.0680 0.0899 429 0.0531 0.0649
Contrastively refined
Lyign 56.2 0.0911 0.1196 46.6 0.0776 0.0960
Latign & Luniform 57.3 0.1130 0.1490 40.9 0.0153 0.0190
Latign & H'é 58.1 0.1230 0.1612 48.7 0.0780 0.0964

Latign & Lunitorm & Hy 594 01563  0.2048 432 0.0449  0.0553

Suppose that the predicted scores are refined to have sufficiently high confidence for re-
gions with nonzero annotated scores; in this case, they are likely to be selected by the knapsack

algorithm used to compute the F1 scores. Therefore, we consider scores that achieve both
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high F1 and high correlations to be of high quality, as the former tends to overlook the over-
all correlations between the predicted and annotated scores [142], while the latter focuses on
their overall ranked correlations but places less emphasis on prediction confidence. This anal-

ysis may explain why the contrastive refinement for £, improves the F1 score but decreases

align
the correlations.

The effect of C_align. As can be observed in Tables 3.2-3.4, solely using ﬁ_angn can already
well-quantify the frame importance. This indicates that Ealign successfully selects frames with
diverse semantic information, which are indeed essential for a desirable summary. Moreover,
we assume that diverse frames form the foundation of a good summary, consistently using E_align
for further ablations.

The effect of Cunitorme Luniform Measures how consistent a frame is with the context of the
whole video, thus helping remove frames with diverse contents that are hardly related to the
video theme. It is shown in Tables 3.2 and 3.4 that incorporating Luniform helps improve the
quality of the frame importance for TVSum. We now discuss why Lunitorm hurts SumMe perfor-
mance.

Compared to TVSum videos, many SumMe videos already contain consistent frames due
to their slowly evolving properties. Such slowly evolving features can be visualized by T-SNE
plots in Figure 3.3. For videos with such consistent content, the Lpitorm tends to be high for
most of the frames. We show the normalized histogram of £} .. . for both TVSum and SumMe

videos in Figure 3.4. As can be observed, SumMe videos have distinctly higher £; ... than
those of TVSum videos. Consequently, for videos possessing monotonous content, most of the
frames share a similar visual cue, such as the background, and the frames that are most likely to
be keyframes are those with abrupt or novel content. Therefore, the global consistency metric,

nsiforme 18 DOt discriminative enough to be sufficiently helpful and may alleviate the importance

of frames with novel content. As a result, the other two metrics, local dissimilarity and unique-

ness, are the main roles that determine keyframes in such videos, as shown in Table 3.2-3.4.
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Figure 3.3: TSNE plots for all 25 SumMe videos. As can be observed, many videos contain
features that slowly evolve and maintain an overall similarity among all the frames. © [2023]

IEEE.
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Figure 3.4: The histogram (density) of £ (before normalization) for TVSum and SumMe
videos. SumMe videos have distinctly higher values than those for TVSum videos. © [2023]

IEEE.

The effect of the uniqueness filter /7;. As shown in Tables 3.2 and 3.3, although H; works
well for TVSum videos, it hardly brings any benefits to the SumMe videos. Thus, the good
performance of the uniqueness filter for TVSum may be due to the relatively straightforward
nature of the background frames in TVSum, which are easily identified by the uniqueness filter
even with training on only a few videos. Therefore, we suppose that [ ¢ needs to be trained on
more videos to filter out more challenging background frames such that it can generalize to a
wider range of videos. This is validated by the E_ahgn & H ; Tesults in Table 3.4, which indicate
both decent F1 scores and correlation coefficients for both TVSum and SumMe. The TVSum
performance can be further boosted when Luniform 1S incorporated.

Comparison with DR-DSN [5] on YouTube-8M. As per Table 3.2, DR-DSN is the only
unsupervised method that matches our performance in terms of 7 and p and has an official
implementation available. We trained DR-DSN on our dataset of YouTube-8M videos to com-

pare it against our method. As shown in Table 3.4, DR-DSN has difficulty generalizing to the
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evaluation videos.

Ablations over \; and a. As shown in Figure 3.5, when E_align & H ¢ 1s used to produce
importance scores, a larger a will make the TVSum performance unstable in terms of both F1
and correlation coefficients, although the SumMe performance is relatively more stable with
respect to a. We hypothesize that when a becomes larger, the nearest neighbor set becomes
noisier, diminishing the effectiveness of both the alignment loss during training and the local
dissimilarity metric (post-training alignment loss) used for generating importance scores, due
to the inclusion of semantically irrelevant neighbors. For \;, smaller values generally perform
better when a has a reasonable value, as larger values of \; tend to make the uniformity loss
suppress the alignment loss. Similarly, too small A; will make the alignment loss suppress the
uniformity loss, as we observed unstable training when further decreasing A\;. As shown in
Figure 3.6, the analysis of the interaction between \; and a when using Ealign & H 0 & Luniform
is used to produce importance scores, similar to that in Figure 3.5. However, we can see that

the performance was improved for TVSum but undermined for SumMe due to incorporating

Luniform-

Ablation on model sizes. Table 3.5 shows the ablation results for different sizes of the
Transformer encoder [90], where the number of layers and the number of attention heads are
varied. Meanwhile, we compare the results with those obtained from DR-DSN [5] trained on the
same collected YouTube-8M videos, as DR-DSN has the best 7 and p among past unsupervised
methods and is the only one that has a publicly available official implementation. As can be
observed, the model performance is generally stable with respect to the model sizes, and we
choose 4L8H. Moreover, the DR-DSN has difficulty generalizing well to the test videos when
trained on the YouTube-8M videos.

Comparing the effects of different pre-trained features. As our method can directly
compute importance scores using pre-trained features, it is also essential for it to be able to
work with different kinds of pre-trained features. To prove this, we computed and evaluated the
importance scores generated with 2D supervised features, 3D supervised features, and 2D self-

supervised features in Table 3.6. Different 2D features, whether supervised or self-supervised,
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Figure 3.5: Ablation results over \; and a when using ﬁ_angn & H 4 to produce importance scores.

© [2023] IEEE.
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Figure 3.6: Ablation results over \; and a when using Lyjign & Hj & Luniorm to produce impor-

tance scores. © [2023] IEEE.
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Table 3.5: Ablation results for the model size and comparison with DR-DSN [5] trained on
the same YouTube-8M videos, where 2LL.2H represents “ 2 layers 2 heads ~ and similarly for
the rest. All three components E_a]ign, I:Ié and Lupiorm are used with (a, A1) = (0.05,0.25) for
both SumMe and TVSum for fair comparison with DR-DSN’s representativeness-based training

objective. © [2023] IEEE.

TVSum SumMe

Method F1 T p F1 T p

DR-DSN [5] 51.6 0.0594 0.0788 39.8 —0.0142 —0.0176

2L2H 58.0 0.1492 0.1953 429  0.0689 0.0850
2L4H 58.1 0.1445 0.1894 42.8 0.0644 0.0794
2L8H 58.8 0.1535 0.2011 44.0 0.0584 0.0722
4L.2H 574 0.1498 0.1963 453  0.0627 0.0776
4L4H 58.3 0.1534 0.2009 43.1  0.0640 0.0790
4L8H 58.5 0.1564 0.2050 42.7 0.0618 0.0765

all delivered decent results. Differences exist but are trivial. The conclusion that £ helps
TVSum but undermines SumMe also holds for most of the features. Based on this, we conclude
that as long as the features contain decent semantic information learned from supervision or self-
supervision, they are enough to efficiently compute the importance scores. The performance of
these features transferred to different downstream image tasks does not necessarily generalize
to our method for video summarization, as the latter only requires reliable semantic information
(quantified as dot products) to calculate heuristic metrics for video frames.

Notably, our method does not perform optimally with 3D supervised video features. This
outcome is anticipated because these 3D features are trained to encode information based on
video-level labels, thus capturing less detailed semantic information in individual frames, which
is crucial for our method. Still, such 3D features contain part of the holistic information of the
associated video and may be a good vehicle for video summarization, which can benefit from

such information.
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Table 3.6: Evaluation results with different pre-trained features. The results were produced

under the transfer setting with a = 0.1. © [2023] IEEE.

TVSum SumMe
E:lign E:lign & E\tnif E:lign E:lign & Z:nif
Method F1 T p F1 T p F1 T p F1 T p
Supervised (2D)
VGG19 [148] 50.62 0.0745 0.0971 5591 0.1119 0.1473 45.16 0.0929 0.1151 4328 0.0899 0.1114

GoogleNet [132] 54.67 0.0985 0.1285 57.09 0.1296 0.1699 41.89 0.0832 0.1031 40.97 0.0750 0.0929
InceptionV3 [146] 55.02 0.1093 0.1434 55.63 0.0819 0.1082 42.71 0.0878 0.1087 4230 0.0688 0.0851

ResNet50 [76] 51.19 0.0806 0.1051 55.19 0.1073 0.1410 42.30 0.0868 0.1076 43.86 0.0737 0.0914
ResNet101 [76] 51.75 0.0829 0.1081 54.88 0.1118 0.1469 4232 0.0911 0.1130 44.39 0.0736 0.0913
ViT-S-16 [149] 5348 0.0691 0.0903 56.15 0.1017 0.1332 40.30 0.0652 0.0808 40.88 0.0566 0.0701
ViT-B-16 [149] 52.85 0.0670 0.0873 56.15 0.0876 0.1152 42.10 0.0694 0.0860 41.65 0.0582 0.0723
Swin-S [150] 52.05 0.0825 0.1082 57.58 0.1120 0.1475 41.18 0.0880 0.1090 41.63 0.0825 0.1022
Supervised (3D)

R3D50 [151] 52.09 0.0590 0.0766 53.35 0.0667 0.0869 37.40 0.0107 0.0138 41.03 0.0150 0.0190
R3D101 [151] 49.77 0.0561 0.0727 52.15 0.0644 0.0834 33.62 0.0173 0.0216 3496 0.0212 0.0264
Self-supervised (2D)

MoCo [7] 51.31 0.0797 0.1034 5597 0.1062 0.1390 42.01 0.0768 0.0953 43.19 0.0711 0.0882
DINO-S-16 [9] 52.50  0.0970 0.1268 57.57 0.1200 0.1583 42.77 0.0848 0.1050 42.67 0.0737 0.0913
DINO-B-16 [9] 5248 0.0893 0.1170 57.02 0.1147 0.1515 41.07 0.0861 0.1066 44.14 0.0679 0.0843

BEiT-B-16 [152] 49.64 0.1125 0.1468 56.34 0.1270 0.1665 3691 0.0554 0.0686 38.48 0.0507 0.0629
MAE-B-16 [153] 5040 0.0686 0.0892 54.58 0.1013 0.1327 40.32 0.0560 0.0695 39.46 0.0484 0.0601
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Figure 3.7: The qualitative analysis of two video examples. The left column contains impor-
tance scores, where “GT” stands for ground truth. The green bar selects an anchor frame with
high E_align but 1ow Lunitorm OF H, ¢» the red bar selects one with non-trial magnitude for both
metrics, and the black bar selects one with low Lyjign but high Lypitorm or H;. We show five
samples from the top 10 semantic nearest neighbors within the dashed boxes on the right for

each selected anchor frame. © [2023] IEEE.
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3.5.6 Qualitative Results

We show the effect of the local dissimilarity (Zalign)s the global consistency (Luniform), and the
uniqueness scores generated by the uniqueness filter [, ¢ In Figure 3.7. We visualize and discuss
the effects in pairs, i.e. Lyjign & Lunitorm and Laign & Hy. In the upper half of Figure 3.7, the
green bar selects a frame with high local similarity but low global consistency, which is a title
frame with a disparate appearance and hardly conveys any valuable information about the video.
While the black bar selects a frame related to the main content of the video (an interview), it has
semantic neighbors with almost the same look and is less likely to contain diverse semantics.
The red bar selects a frame with moderate local dissimilarity and global consistency. This
frame, along with its semantic neighbors, conveys diverse information; for example, the car
with or without people surrounding it. Moreover, it is highly relevant to the overall video
context: an interview at a car company.

For the lower half of Figure 3.7, the green bar selects a frame with information noticeably
different from its neighbors, e.g., the sea occupies different proportions of the scene. However,
such a frame can appear in any video with water scenes, rendering it not unique to the belonging
video. Hence, its uniqueness score is low. The black bar selects a frame with an object specifi-
cally belonging to this video in the center, but the local semantic neighborhood around it hardly
conveys diverse information. The red bar selects a frame with both high local dissimilarity and

high uniqueness, which is the frame related to the gist of the video: St. Maarten landing.

3.6 Conclusion

We make the first attempt to approach training-free, zero-shot video summarization by lever-
aging pre-trained deep features. We utilize contrastive learning to propose three metrics, local
dissimilarity, global consistency, and uniqueness, to generate frame importance scores. The
proposed metrics directly enable the creation of summaries with quality that is better or com-
petitive compared to previous supervised or unsupervised methods requiring extensive training.

Moreover, we propose contrastive pre-training on unlabeled videos to further boost the quality
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of the proposed metrics, the effectiveness of which has been verified by extensive experiments.

It would be interesting to explore multi-modal zero-hot video summarization for future work.
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Chapter 4

Video Large Language Models Can

Summarize to Localize

4.1 Overview

Video tasks that involve event-level and time-sensitive reasoning, such as temporal action lo-
calization [154-157], dense captioning [158-161], and grounded video question answering
[162-165], require models to comprehend the content of videos and precisely identify when
specific events occur by outputting event segment timestamps. While specialized models excel
at individual tasks, they often struggle to generalize across different tasks, especially those in-
volving complex reasoning. Recently, advancements in Video Large Language Models (Video
LLMs) [166-172] have opened new avenues for unifying these tasks within a single frame-
work by leveraging their powerful vision-and-language understanding and generation capabili-
ties [171-175].

However, Video LLMs face significant challenges when it comes to temporal localiza-
tion, particularly in generating precise timestamps of localized video segments. Initial ef-
forts enable these models to output timestamps by representing them with numeric language

tokens [171, 172] or augmenting the LLM’s vocabulary with specialized timestamp tokens
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[161,172,176]. Unfortunately, LLMs struggle with numerical data and often produce inconsis-
tent or inaccurate results when handling numbers [177,178]. Moreover, introducing new tokens
necessitates extensive pre-training data and computational resources to adapt the models effec-
tively [161, 172, 176]. Subsequent works have attempted various strategies to improve LLMs’
ability to handle timestamps, such as formatting numeric timestamps to the same length to alle-
viate LLM’s burden in precisely capturing them [173], designing complex fusion mechanisms
between visual and textual tokens [171, 173,179, 180], or learning specialized embeddings to
represent event boundaries [174]. Despite these efforts, accurately and efficiently generating
timestamps remains a significant challenge for video LLMs in temporal grounding tasks.

While current efforts to enable video LLMs to generate timestamps have incrementally im-
proved their temporal grounding performance, we approach the problem differently by making
the LLM’s output entirely timestamp-free. Specifically, we point out that the timestamps are
essentially a summary of the localized video segments, expressed in a format that facilitates ex-
tracting the segments from the original video. This perspective highlights another crucial pitfall
in enforcing video LLMs to output timestamps: it requires a significant leap from dense and
language-aligned visual tokens to abstract and uninformative timestamp tokens. For instance,
the LLM needs to first capture the visual tokens relevant to the input query, determine what the
boundary visual tokens are, map such visual tokens to their associated timestamp tokens, and
finally output such timestamps. Such a one-shot strategy usually poses substantial challenges
to exploiting LLMs’ semantic reasoning capability [181-183].

Inspired by the widely adopted Chain-of-Thought [181, 183] (CoT) prompting technique
that utilizes the model’s reasoning path as a bridge from the input to the final answer, we pro-
pose to let video LLLMs produce a textual summary of the query-related segment, which serves
as the bridge to the final timestamp outputs. For example, when the query is a short event tag
or an action label, the output textual summaries consist of context-rich descriptions for rele-
vant video segments. For complex temporal reasoning tasks such as grounded video question
answering, such textual summaries can also take the form of a CoT reasoning path, which an-

alytically navigates the content of relevant segments to help generate the final answer. Given
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Figure 4.1: The proposed S2L framework features two components: (1) the Query-Focused

Summarization task that requires the LLM to generate query-focused summaries of the video

based on the input user query, and (2) the Context Matching module optimized by contrastive

learning, designed to ground the semantic information encoded in the query-focused summaries

back to the video frames, thus achieving temporal localization purposes. Compared to previous

works that focus on generating uninformative and semantically poor timestamps, S2L. empha-

sizes the use of the powerful semantic understanding of the LLM and the integration of genera-

tive and discriminative learning.

Graduate School of Information Science and Technology, The Univesity of Osaka



Chapter 4 Video Large Language Models Can Summarize to Localize 66

the textual summary, we utilize a simple yet effective context matching mechanism driven by
contrastive learning to extract the timestamps from the video segments based on the contextual
information shared between the textual summaries and the visual input. The proposed pipeline
also effectively removes the timestamp generation part for tasks requiring both timestamps and
segment-wise captions, such as dense video captioning [158, 161] and step localization [184],
by directly decoding the timestamps from the segment-wise captions/summaries via the context
matching mechanism.

As a result, we unify a suite of event-level time-sensitive video tasks with a Summarize-to-
Localize framework, coined S2L, by fully exploiting the LLMs’ intrinsic semantic understand-
ing and retrieval capability and obviating the use of timestamps. An illustration of the proposed
S2L framework is shown in Figure 4.1. To facilitate such a framework, we contribute an in-
struction tuning dataset, ETSum, which focuses on equipping the model with the capability
of handling Event-level Time-sensitive reasoning by Summarization based on a timestamp-
centric dataset ETInstruct [174]. The proposed framework outperforms previous Video LLM-
based temporal localization approaches across grounding, dense video captioning, and complex

reasoning tasks.

4.2 Related Work

Video Large Language Models. Early efforts to enable LLMs to perform video-level tasks
involved using LLLMs as agents that process video clip-level captions and, through chain-of-
thought reasoning and tool use, execute corresponding tasks [185—188]. While these agents
have shown promising results, they are limited by the performance of specialist models used
as tools. The advent of end-to-end multimodal pretraining [10, 46, 189] and instruction fine-
tuning [190] has led to a suite of powerful video LLMs [166—172]. Recent studies have demon-
strated that these models excel in temporal reasoning over very long videos, benefiting from
the long-context processing abilities of LLMs [191-193] and dynamic visual token compres-

sion techniques [170, 194, 195]. However, they do not consider event-level video tasks that

Graduate School of Information Science and Technology, The Univesity of Osaka



Chapter 4 Video Large Language Models Can Summarize to Localize 67

require temporal localization. To address this, some works have proposed to fine-tune pre-
trained video LLMs with temporal grounding data to explicitly output timestamps of the lo-
calized segments [171,173,175,176,179]. Nevertheless, such timestamp-based strategies have
encountered various issues, including training difficulties, unsatisfactory performance, and in-
creased computational overhead. In this work, we show that relying solely on language outputs
is more effective for video LLMs to handle temporal localization tasks and aligns better with
video LLMs’ intrinsic multi-modal reasoning capabilities.

Event-Level and Time-Sensitive Video Tasks. Video tasks such as moment retrieval [42],
highlight detection [42, 196, 197], video synopsis generation [4, 197], action localization [154—
157], and dense video captioning [158,186], invariably involve localizing salient event segments
in a video given a user-specified query, where oftentimes the precise timestamps of such events
are needed. Tasks like dense video captioning and grounded video question answering [162—
165] also involve captioning and complex reasoning regarding localized events. Traditionally,
such tasks have been approached by specialist models with task-specific designs, trained on
data from their respective domains. Efforts have also been made to develop unified specialist
models for different localization-only tasks [198, 199].

Recently, the development of time-sensitive video LLMs has enabled the unification of both
localization and generation tasks. Models like TimeChat [171] and VTimeLLM [175] fine-tune
pre-trained video LLMs [167] to perform temporal localization by outputting numeric times-
tamp tokens. While these approaches demonstrate the models’ capabilities in such tasks, they
achieve less satisfactory performance. Some methods [161,172] augment the LLM’s vocabulary
with a set of learnable timestamp tokens, which require large-scale pre-training to be effective.
Subsequent works focus on improving the compatibility between LLMs and timestamp outputs
by unifying the lengths of numeric tokens with long padding [173] and/or fusing numeric to-
kens with input visual/textual tokens via interleaving or learnable fusion modules [176, 179],
inevitably introducing computational overhead. ETChat [174] proposed fine-tuning the model
to estimate the embeddings of event boundary frames via a single newly introduced token, but

neglected the rich contexts within the event segment itself.
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Figure 4.2: The architecture of the proposed S2L framework.

In contrast, we consider that the timestamps are merely summaries of the localized segments
that are expressed in a highly abstract but convenient format for retrieving the segments. Past
works have shown that LLMs have difficulties dealing with highly abstract outputs in both
text-only [181-183] and multi-modal scenarios [200,201]. Therefore, we propose to replace
the uninformative and highly abstract timestamps with LLM-friendly and context-rich textual
summaries as the VideoLLM’s output. Producing the timestamps of the localized segments
then becomes a by-product of matching the shared contextual information encoded in visual
and textual embeddings. We show that this unified, semantically rich output format is more

effective and generalizable than previous timestamp-based approaches.
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4.3 Method

In this section, we first present the definition of event-level and time-sensitive video tasks and
then introduce our S2L framework by describing the architecture of the Video LLM and the
proposed context matching module. We then present the training and inference procedures
of the framework and conclude by explaining the creation process of the instruction fine-tuning
dataset, which is used to train the VideoLLM to perform temporal localization by query-focused

summarization.

4.3.1 Task Definition

Event-level and time-sensitive (ET) video tasks require understanding and explicitly identify-
ing the temporal locations of the events of interest. Previous studies tend to conduct evaluations
on different sub-tasks and datasets, which causes difficulties in comparing their pros and cons.
Recently, the ETBench benchmark [174] has been proposed to unify a suite of ET video tasks
for comprehensive evaluation. It consists of four major tasks: referring, grounding, dense cap-
tioning, and complex understanding. Each of which contains a set of sub-tasks with different
fine-grained requirements.

Given a video and an ET video task instruction, the outputs required from the model can
be text-only X (referring), timestamp-only Xgme = {(¢5,,15,)}Y_, (grounding), where 3,
and ¢ are the start and end timestamps of the m-th localized segment and ) is the total
number of the localized segments. Tasks involving captioning or reasoning, such as dense video
captioning and grounded question answering, require both X and Xiye. Specialist models
usually consist of two separate modules for X, and Xiine, respectively. Recent time-sensitive
video LLMs utilize the numeric tokens or learnable time tokens to represent timestamps in the
LLMs’ input and output space such that the same LLM can output both X s, and Xijpe.-

Due to the LLMs’ limitations in dealing with tokenized timestamps [174], the proposed S2L

framework lets the LLM focus on outputting X and uses a separate lightweight module to

decode the timestamps X, from the LLM’s output. We introduce the different components of
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S2L in the following sections.

4.3.2 Model Architecture

The overall architecture of S2L is presented in Figure 4.2. Given a video V € RT*HxWx3,

a pre-trained visual encoder extracts for each of the 7' frames a set of patch features P &
RE*C where K is the number of patches and C' is the feature dimension. Following [174], the
frame-level patch features are sent into a frame compressor, which uses a Q-Former [46] as a
resampler, an attention-based adaptive pooling module and a linear projection layer to compress
the patch features into a single feature vector e/ € R'*“. The frame compressor is applied to
all frames to generate a set of frame-level features E, = {ef }._,. The instructions that contain
task queries are tokenized and encoded into E, = {e}}/,, where €, € R'"*“ and L is the
number of instruction tokens. Finally, the frame and text features are concatenated and sent into
the LLM for response generation.

Previous methods usually add a timestamp injection step when preparing the LLLM inputs,
fusing the timestamp tokens with the visual and/or textual inputs to build the connection be-
tween each frame and its associated timestamp for the LLM to more effectively generate Xije.
However, as it has been shown that LLMs struggle to handle different forms of timestamp
representations [173,174,176] and have intrinsic limitations in coping with highly abstract out-
puts [181,201], we propose to obviate the use of timestamps with the LLM and directly instruct
the model to localize the segments related to the query by summarizing all the relevant contex-
tual cues into language outputs. Therefore, the output will be the textual summary Xy, alone.
For referring tasks where the referred timestamps are needed in the input, we follow [174] to
use a <vid> token in the input to represent them. The model is then trained to generate the

summary with the language modeling loss:

N
Livy=— Z log P(x,|Ey, Eq, Xiext,<n ) 4.1)

n=1
where N is the number of tokens in the output summary, Xy = {x,}\_;, and Xiexi, < =

{Xn’}g/:r
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Though ETChat proposes to fine-tune the LLM to approximate the event boundary frame
embedding encoded in a newly added <vid> token, it only focuses on boundary information
while overlooking the holistic context in each event. In contrast, the output summary from S2L

is context-rich and can facilitate more accurate localization of the event.

4.3.3 Context Matching Module

To obtain the precise timestamps of interested video segments without requiring the LLM to
output them, we propose a context matching module that produces a set of context matching
scores between the output summary tokens and the video frames based on the shared contex-
tual semantics encoded in their LLLM hidden states. However, LLM hidden states are learned
to facilitate generation tasks and may not exist in a space where the semantic information is
discriminative enough for the localization task [174]. Therefore, we project the hidden states
of the visual input and the output summary into another space using two learnable projection
modules F*' and F*"™ to obtain the visual projection features H'® € R7*¢ and the summary
projection features for the m-th localized segment H ™ € RYV*C respectively.

To better capture from the output summary the contexts essential for localization, we choose
to introduce a <1 oc> token into the LLM’s vocabulary, and force the LLM to end the summary
of each segment with it. The <1oc> token thus functions as a separator between the summaries
of different segments, and its hidden features are a compact attention-based aggregation of the
previous summary tokens’ hidden features. As aresult, the last element in H,™ can be extracted
as h 1°c> € RY. The context matching scores are computed as the cosine similarities between

h:loc” and HYS:

S,, = cos_sim(H"® h:°¢") ¢ R (4.2)

To obtain more discriminative context matching scores, we optimize a contrastive context

matching loss. Given the ground-truth temporal intervals { (5, )}M_,

m? - m

the context matching
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loss is formulated as:

1
— E 4.
ECM M —~ lma ( 3)

te

1 m
ot 2 S0 exp(S,/7)

™ t=ts,

(4.4)

Lcm essentially encourages the context matching scores to be high between the summary
projection features and those of the query-related frames, from which the LLM is supposed to
collect the contextual cues for summary generation. Different from previous specialist temporal
localization models, the context matching module does not involve intricate designs and many
training parameters, as it is built upon a Video LLM that provides rich multi-modal features. We

will show that this simple design can achieve competitive performance on the ET video tasks.

4.3.4 Training and Inference

To adapt a VideoLLM to the S2L framework, we use LoRA [202] to fine-tune the LLLM along
with other trainable modules shown in Figure 4.2. The final loss is the combination of the

language modeling loss and the context matching loss:
L= Lim~+ Lewm. 4.5)

During inference, we extract the visual tokens and all the generated <1oc> tokens, input
their hidden states through F"® and F*"™, respectively, calculate their cosine similarities and
scale them to [0, 1]. The start and end timestamps of the localized interval can be obtained in
several ways. The simplest way is to threshold the scores with a fixed threshold and group the
consecutive points whose scores are above the threshold into segments. When there are multiple
segments after thresholding, a non-maximum suppression algorithm [41] can be applied to filter
out overlapping predictions. We also experimented with other alternatives for extracting the
segments, such as using more complex thresholding methods by capturing the critical points
or appending to the LLM a learnable coordinate regression module [41]. We compare these

strategies in the experiment section.
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Figure 4.3: The pipeline of generating the ETSum instruction tuning dataset.

4.3.5 Instruction Fine-tuning Dataset: ETSum

Though current video LL.Ms have already shown powerful video temporal reasoning capability,
it has been revealed in [174] that they still lack precise event-level temporal reasoning ability.
To enable current video LLMs to decently handle ET video tasks purely by query-focused video
summarization, we contribute an automatically created instruction fine-tuning dataset, ETSum,
based on the ETInstruct dataset [174] that contains 164K videos and is collected for training
video LLMs to perform ET video tasks via timestamp prediction.

The ETSum dataset inherits all the videos from ETInstruct but converts all the timestamp
annotations into context-rich segment-level summaries. Specifically, we extract the ground-
truth segments for each video and prompt a pre-trained VideoLLM to generate a summary for
each segment conditioned on the associated query. After that, we prompt an LLM to distill long
and detailed segment summaries into more concise ones while ensuring essential query-relevant

contexts and coherent transitions between different ground-truth segments in the same video.
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For tasks where the ground-truth segment-level captions/summaries are already available, we
keep them as they are. An illustration of the data creation process is shown in Figure 4.3. The

detailed statistics of the ETSum dataset are provided in the supplementary material.

4.4 Experiments

4.4.1 Dataset, Tasks, and Evaluation Metrics

We evaluate the proposed S2L on the recently proposed ETBench [174], which supports a com-
prehensive evaluation of video LLLMs’ capabilities in handling ET video tasks in four domains:
referring, grounding, dense captioning, and complex temporal reasoning. Each domain involves
several different fine-grained tasks. We briefly introduce each domain, its included tasks, and
the associated evaluation metrics. For more detailed information, we recommend the readers
refer to the original ETBench paper [174].

Referring involves referred action recognition ([RAR]), referred video question-answering
([RVQ]), and event-caption alignment (ECA). [RAR] and [RVQ] refer to a specific timestamp
in the video and perform question answering regarding the referred place. [ECA] requires the
model to select from a given list of time intervals the one that best matches a short query, usually
an event caption. Accuracy is adopted as the evaluation metric for all three tasks. Note that as
[ECA] requires the model to be sensitive to a list of timestamps that the proposed S2L does
not support, we prompt the model to provide a context-rich summary of the clip referred by the
event caption, use the context matching module to get the most confident predicted interval, and
choose the one from the answer list that has the highest IoU with predicted interval as the final
answer.

Grounding tasks require the model to return the temporal intervals related to a given query,
usually a short event description for temporal video grounding ([ TVG]), an ego-centric ques-
tion for episodic memory ([EPM] ), an action label for temporal action localization ([ TAL]),

a summarization instruction for extractive video summarization ([EVS]), and a keyword for
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highlight moments for video highlight detection ([VHD] ). The F1 score averaged at four levels
of IoU thresholds (0.1, 0.3, 0.5, and 0.7) is used as the evaluation metric for all tasks.

Dense Captioning includes dense video captioning ([DVC]) and step localization ([ SLC]).
[DVC] requires the model to capture a series of major events in a video, while [ SLC] requires
the model to localize the steps of how-to videos. Each event or step’s associated time interval
needs to be returned. F1 score averaged over four IoU thresholds is adopted as the metric for
the localization part, and sentence similarity is used as the metric for the captioning part. For
S2L, we first parse the output into several sentences and find one or multiple predicted tempo-
ral windows for each sentence. We repeat the caption to match the number of its associated
windows for evaluation.

Complex Temporal Reasoning includes temporal event matching ([ TEM]) and grounded
video question-answering ([GVQ]). [TEM] refers to a temporal segment in a video and requires
the model to output another interval that best matches the referred one. Instead of outputting
timestamps, S2L outputs a summary for the predicted segment, from which the timestamps are
obtained via the context matching module. [GVQ] requires the model to answer a question and
retrieve the segment that contains the answer. Recall@1 at the same IoU thresholds as those
of grounding and dense captioning tasks is used as the metric for both tasks. For [GVQ], a

prediction is counted as valid only if the answer is correct.

4.4.2 Implementation Details

We adopt ETChat as the backbone model, where the visual encoder is the ViT-G/14 from the
pre-trained EVA-CLIP [203], and the LLM is Phi-3-Mini-3.8B [204]. Two stages of multi-
modal pre-training are conducted based on the recipe from [168]. In the first stage, the frame
compressor, excluding the Q-Former [46], is trained while all other components are frozen. In
the second stage, the whole frame compressor is trainable, and the LLM is fine-tuned using
LoRA adaptors [202]. We then use the proposed ETSum dataset to conduct instruction fine-

tuning, with the context matching module with randomly initialized parameters added to the
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model. During fine-tuning, the trainable modules include the attention layer, the projector in
the frame compressor, the context matching module, and the newly introduced LoRA adapters
to the LLM. The model is trained with FP16 mixed precision for one epoch, which takes around
10 hours on a machine with 4 x NVIDIA A100 (80G) GPUs. All the training hyperparameters
follow those applied in ETChat and are presented in the supplementary material. During the
creation of ETSum, we utilized MiniCPM-V-2.6 [205] to generate segment-level summaries

and GPT-4o0-mini [206] to generate the ground-truth summaries.

4.4.3 ETBench Results

In this section, we will discuss the results in Table 4.1 per domain.

Referring. As the videos in the referring tasks are relatively short, the ImageLLLMs only tak-
ing eight frames as input already achieve promising performance. Therefore, the video LLMs
do not have an obvious advantage over the ImageLLMs on [RAR] and [RVQ] that conduct
general video question and answering evaluations. However, the video LLMs significantly im-
prove on [ECA] compared to the ImageLLMs, as video LLMs are capable of more precise
temporal reasoning. Notably, S2L significantly outperforms all other models on [ECA] due to
its ability to collect fine-grained contextual information in the query-related segments and the
context matching module that accurately captures the shared information between the generated
summary and the relevant frames.

Grounding. S2L has achieved the best results in all grounding tasks except for [ TAL], which
requires recognition of fine-grained human actions that could be difficult to capture by rely-
ing on purely semantic cues. For [TVG], S2L has a significant advantage over other models,
e.g., 24.7% improvement over the second best, as the [TVG] task requires precise understand-
ing of event-level semantics, for which collecting more relevant context-cues could be crucial.
S2L also has prominently more promising performance for [EPM], [EVS], and [VHD], all
of which require a comprehensive understanding of the queried events that the semantic-based

S2L well supports. The timestamp-based models, such as TimeChat [171], VTimeLLM [175],
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and LITA [172], have noticeably limited performance on such tasks, where the disadvantages
of using explicit timestamps play the major role, as the embedding-based boundary predic-
tion method, ETChat [174], has prominently better performance compared to them. However,
ETChat only focuses on the boundary information while neglecting the overall event semantics,
so it falls short of S2L for grounding tasks.

Dense Captioning. Though S2L has not outperformed other models as significantly on dense
captioning tasks, it still holds competitive and consistent performance. We hypothesize that
the reason could be that around 50% of the data in ETSum has only one segment per query,
which could bias the model’s ability to localize multiple segments as required by the dense
captioning video. Moreover, the query-focused summaries in ETSum do not follow the concise
and imperative formats of the ground-truth captions, e.g., add an onion to the pan. Balancing
single-segment and multi-segment data in the training set and mitigating the interference of
query-focused summaries over the dense captions could be promising directions for future work.
Complex. Thanks to the context-rich output summaries, S2L can collect more evidence for
handling such complex understanding tasks. As a result, S2L achieves significantly better per-
formance than other open-source image and video LLMs and commercial MLLMS. Especially
for [GVQ], which requires both the correct answer and the correct localization, S2L has a 6.3%
improvement over the second best. However, the absolute performance still remains unsatisfac-

tory, leaving room for future exploration.

4.4.4 Analysis

The effect of query-focused summarization (QFS). ETChat [174] proposes to let the LLM
generate special tokens (<vid>) whose hidden states are optimized to approximate those of the
event boundary frames. In contrast to the boundary-centric approach in ETChat, we propose to
guide the LLM in focusing on the semantic content of the queried event segments by requiring
it to produce query-focused summaries composed of the event semantics. Thereafter, we op-

timize the attention-pooled hidden states of the query-focused summaries to be close to those
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Table 4.1: Performance of representative MLLMs on ETBench. The best and second-best

results are highlighted in green and blue , respectively.

Referring Grounding Dense Captioning Complex
Method RAR4.c EVCaee RVQuee TVGr; EPMg; TALp; EVSp; VHDE; DVCr; DVCsy,  SLCr; o SLCsiy TEMgee  GVQgee
Random 25.0 25.0 20.0 - - - - - - - - - - —

Open-source ImageLLMs: 8 frames; prompts include timestamp hints.

LLaVA-1.5 [207] 342 27.4 26.2 6.1 1.9 7.8 2.4 30.9 14.5 11.5 0.9 9.5 7.1 0.0
LLaVA-InternLM2 [208] 34.0 34.8 37.0 2.7 0.1 0.3 0.2 323 16.9 8.5 0.1 4.7 72 1.5
mPLUG-OwI2 [209] 37.8 26.4 34.6 1.1 0.2 3.0 4.1 36.8 0.1 8.1 0.1 7.7 6.2 0.0
XComposer [210] 33.0 19.6 40.2 49 1.5 9.9 2.8 28.9 54 59 2.7 9.0 10.5 0.0
Bunny-Llama3-V [211] 332 27.4 26.6 7.0 0.1 5.1 0.4 30.6 13.5 8.8 0.1 7.6 72 0.0
MiniCPM-V-2.5 [205] 37.6 28.0 37.6 2.0 0.1 4.4 13.4 18.7 6.2 11.8 1.4 9.7 0.7 0.0
Qwen-VL-Chat [212] 334 322 33.6 16.2 4.0 10.7 16.3 34.4 17.4 13.8 6.2 13.1 32 1.5

Open-source video LLMs: default frame counts.

Video-ChatGPT [166] 22.6 24.2 23.0 7.0 1.3 15.1 8.4 28.8 8.8 11.3 5.7 10.2 15.9 0.0
Video-LLaVA [167] 33.6 33.0 22.6 7.0 1.9 15.0 0.3 28.9 28.0 15.0 0.9 8.3 75 0.1
LLaMA-VID [168] 304 38.4 28.8 5.5 1.2 8.0 1.4 30.0 27.1 12.6 52 11.1 7.0 0.9
Video-LLaMA-2 [169] 28.8 27.4 28.0 0.1 0.0 0.0 0.0 1.5 0.6 14.5 0.0 15.2 0.0 0.1
PLLaVA [213] 33.8 22.6 31.8 6.9 1.1 5.7 0.3 28.9 13.3 10.6 9.7 11.8 4.1 1.2
VTimeLLM [175] 284 31.0 292 7.6 1.9 18.2 15.9 28.9 12.4 13.1 8.7 6.4 6.8 1.9
VTG-LLM [173] 6.6 12.0 7.8 15.9 3.7 14.4 26.8 48.2 40.2 18.6 20.8 14.4 8.9 1.4
TimeChat [171] 30.8 27.6 24.6 26.2 39 10.1 29.1 40.5 16.6 12.5 5.6 9.2 18.0 1.5
LITA [172] 33.0 40.8 27.2 222 4.6 18.0 29.7 23.9 39.7 17.2 21.0 12.2 16.0 22
E.T.Chat' [174] 44.2 34.8 31.6 38.6 10.8 30.7 23.6 64.2 37.7 18.8 20.5 13.7 132 4.1
S2L (Ours) 364 54.2 36.2 64.3 14.8 26.9 31.1 64.9 394 16.0 23.3 13.9 21.9 7.8

Evaluated on 470-sample subset.

GPT-4V [214] 333 40.9 46.2 27.0 1.8 18.0 28.6 55.1 16.1 19.4 21.9 13.5 239 0.0
GPT-40 [206] 27.8 27.3 57.7 40.4 4.5 20.0 17.6 56.9 46.9 22.3 23.1 14.9 13.6 0.0
Gemini-1.5-Flash [215] 38.9 50.0 61.5 43.9 54 27.0 54 60.8 31.6 14.9 16.5 13.3 20.8 1.0
Gemini-1.5-Pro [215] 61.1 27.3 57.7 43.1 6.2 33.8 79 47.0 24.0 17.5 5.8 9.8 32.1 1.0
E.T.Chat 55.6 45.5 19.2 29.7 12.5 29.0 12.6 68.7 349 18.2 23.1 14.7 10.5 2.1
S2L (Ours) 38.9 50.0 269 66.8 54 26.4 18.2 64.8 345 15.8 21.4 15.4 24.6 10.4

Graduate School of Information Science and Technology, The Univesity of Osaka



Chapter 4 Video Large Language Models Can Summarize to Localize 79

Table 4.2: Ablation on the effect of the query-focused summarization (QFS) task, where the

metrics are reported as the average values of those from each domain’s subtasks.

Method Flgq Flep Sime,  Receon

ETChat 335 291 16.3 8.7
ETChat w/QFs 30.5 269 18.9 7.9
S2L w/o QFS 26.7 15.0 14.2 9.4
S2L (Ours) 404 320 19.9 14.9

of the query-relevant frames instead of only boundaries. As shown in Table 4.2, optimizing the
hidden states alone does not yield benefits compared to ETChat, and including the QFS task as
a premise significantly boosts S2L’s performance. However, as a boundary-centric approach,
ETChat does not benefit from QFS. This conveys both the superiority of a semantic-based ap-
proach and the necessity of the integration of both the generative and the discriminative power
of the LLLM’s hidden states [216] for video temporal localization.

Is the LLLM necessary for a semantic-based approach? As generative models, LLMs’ seman-
tic understanding power has been mainly exploited for generative tasks, with little effort devoted
to utilizing it for discriminative tasks such as video temporal localization. As contrastive vision
and language models (VLMs) have been shown to excel in discriminative video tasks [41] as
well, we evaluate their zero-shot performance on the grounding tasks of ETBench in Table 4.3.
Indeed, such contrastive VLMS have delivered excellent performance that sometimes even sur-
passes those of the fine-tuned LLM-based approaches. This reinforces the conclusion that a
semantic-based approach is more promising for video temporal localization. Moreover, S2L.
exploits the discriminative power of LLMs’ hidden states via contrastive learning and achieves
more consistent performance over the grounding tasks, indicating the necessity of exploiting
LLM’s semantic power with contrastive learning for discriminative tasks such as video tempo-
ral localization.

Is fine-tuning necessary? Though we observe that the pre-training video LLMs may also pos-

sess the query-focused summarization capability, they usually have a very low success rate of
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Table 4.3: Comparison of time token generation-based models, contrastive VLMs, and S2L on

grounding tasks.

Method TVGr; EPMp; TALr; EVSr  VHDg

Time token generation

TimeChat [171] 26.2 39 10.1 29.1 40.5
VTimeLLM [175] 7.6 1.9 18.2 15.9 28.9
VTG-LLM [173] 15.9 3.7 14.4 26.8 48.2
LITA [172] 222 4.6 18.0 29.7 239
ETChat [174] 38.6 10.8 30.7 23.6 64.2

Semantic-based (Contrastive VLM)

CLIP-L-14-224 [10] 35.1 10.0 19.9 30.2 62.2
EVA-G-14-224 [203] 39.7 12.7 21.7 314 61.8
SIGLIP-L-16-384 [16] 42.5 14.1 22.5 29.8 63.4

Semantic-based (LLM)

S2L (ours) 64.3 14.8 26.9 31.1 64.9
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Table 4.4: Comparisons of various pre-trained video LLMs and S2L on the grounding tasks.
The hidden states of the pre-trained video LLMs are taken from different LLM layers, where

the relative layer indices have been shown, e.g., 0 stands for the first layer and 1 for the last

layer.

Method Layer Index (relative) TVGgr; EPMp; TALp; EVSE;  VHDgy
0 9.7 3.5 9.9 14.3 35.0

MiniCPM-V-2.6 0.5 10.2 4.9 94 8.1 27.6
1 24.8 59 17.1 23.9 39.1
0 9.9 3.2 8.5 16.2 36.7

QWen2VL 0.5 12.2 4.7 4.8 3.6 33.1
1 30.2 4.2 14.6 26.8 46.9
0 12.8 3.7 12.2 16.0 33.2

InternVL2 0.5 18.6 7.5 9.5 16.6 35.7
1 26.1 7.0 13.2 23.8 37.9

S2L (Ours) - 64.3 14.8 26.9 31.1 64.9
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following the instruction and bring instability to their utilization. Moreover, without explicit
contrastive-learning-based optimization of the hidden states, the LLMs’ hidden states focus on
retaining the information optimized for generation. We prompt several pre-trained video LLMs
with the query-focused summarization instruction, average the hidden states of the response
as the localization query hidden state like that of the <loc> token in S2L, and extract the
segments with the threshold-based approach as elaborated in Section 4.3.4. As shown in Ta-
ble 4.4, the performance of the pre-trained video LLMs, which have not been fine-tuned on the
query-focused summarization and context matching tasks, lags significantly behind S2L. This
indicates the necessity of fine-tuning the LLLM to perform the query-focused summarization and

context matching tasks.

[ Foreground Regression ] [ Coordinate Regression ]
A A

— —— — — — — — — — — — — — — — — — — —

Frame Tokens <|OC>

Figure 4.4: The architecture of the localization module.

Strategies of event segment mining. So far, we use the threshold-based method described
in Section 4.3.4 as the default event segment mining strategy based on the cosine similarities

calculated by Eq. (4.2). However, there are other valid strategies that we experimented with,
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Table 4.5: Comparison of different strategies of mining the event segments given the cosine

similarities,
Method TVGF] EPMF/ TALF] EVSF] VHD Fl
Threshold 64.3 14.8 26.9 31.1 64.9
Critical Point 59.0 14.4 29.9 30.6 63.1

After adding the localization module

Threshold 56.4 11.7 23.8 30.5 61.5
Critical Point 51.2 11.2 25.6 30.1 60.7
Critical Point & Coordinates 40.9 7.6 18.9 30.6 63.6

i.e., critical point-based strategy and coordinate head-based strategy.

For the critical point-based strategy, we first apply Gaussian smoothing to the cosine simi-
larities and then extract all the timestamps at which local maxima are achieved. At each local
maximum point, we traverse to the left and the right sides to find the nearest local minima on
both sides and find the start and end timestamps of this segment anchored by the current local
maximum point.

For the coordinate-based method, we append to the LLM a localization module which has a
foreground regression module and a coordinate regression module [41] as shown in Figure 4.4.
At the output of the localization module, each frame will have a foreground score and a start and
end timestamp coordinate tuple (¢°,t°). We only utilize the timestamp coordinates here. With
the localization module, we still need to decide on which frames’ output timestamp coordinates
to use. We apply the critical point-based strategy to select such frames as an example to show
the effect of the localization module.

As shown in Table 4.5, the critical point-based strategy yields worse performance over most
of the grounding tasks, with some performance boosts only on the [TAL] task, which is the
only multi-segment task. It will be an interesting future direction to explore a strategy that can
strike a balance between single-segment and multi-segment tasks. Moreover, fine-tuning the

LLM with the localization module hurts the performance with both the threshold-based and
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Figure 4.5: Visualization of the cosine similarities and the thresholded segments.

critical point-based strategies. Combining the critical point-based strategy with the regressed
coordinates further reduces the performance. We hypothesized that the localization module
involves more training parameters and thus requires more training epochs and data; the current
efficient fine-tuning with only one epoch and the relatively small ETSum dataset might not be
enough for the module to be well trained. Though introducing the localization module incurs
computational burden, it is still interesting to explore if, given more training time and data, the
combination of LLMs and an external localization module can yield promising performance
that is worth the investment.

Qualitative analysis. As shown in Figure 4.5, the cosine similarities can be thresholded to get
accurate predicted segments (left), but the framework still has room for improvement as the

cosine similarities can be misaligned with the ground-truth event segments (right).

4.5 Conclusion

This chapter explores the potential of video LLMs for video temporal localization tasks. Dif-
ferent from previous works that focus on generating timestamps, we propose a query-focused
summarization task to leverage the generative power of LLMs for effective discriminative learn-
ing driven by contrastive learning. As a result, the proposed S2L framework can more effec-

tively exploit the semantic understanding capability of LLMs for video temporal localization
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tasks, which has been neglected by the timestamp generation-based methods. The experimen-
tal results show that S2L significantly outperformed previous methods in most of the grounding
tasks and the complex reasoning tasks, with competitive performance on dense captioning tasks.
Nonetheless, S2L still struggles with multi-segment tasks. We explore several segment-mining
strategies given the cosine similarities, with the finding that a more fine-grained treatment of
the cosine similarities based on the critical point-based strategy can improve the multi-segment
performance, though it falls short on simpler single-segment tasks. Therefore, a major future
direction of this work would be to explore a more robust but still efficient segment-mining al-
gorithm based on the current framework of integrating the generative and discriminative power

of LLMs.
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Chapter 5

Conclusion

This thesis has demonstrated the power and versatility of contrastive learning as a unifying
principle for building foundation models across a range of vision and vision-language tasks.
In Chapter 2, we introduced PixCon, a pixel-level contrastive framework to produce spatially
discriminative features that can be applied to dense visual prediction tasks. In Chapter 3, we
showed that training-free, zero-shot video summarization can be achieved by directly formu-
lating classical diversity and representativeness heuristics into contrastive-score metrics in a
frozen embedding space, demonstrating the power of contrastive features in training-free zero-
shot applications across domains. Finally, Chapter 4 presented S2L, which integrates a gener-
ative Video LLM with a lightweight contrastive grounding module to translate free-form text
summaries into precise temporal localizations, showing the potential of contrastive learning in
aiding supervised learning tasks.

Looking ahead, there are several promising directions to further extend this work. First, the
exploration of pixel-level learning has been limited to the convolutional neural networks, while
the vision Transformers have achieved great success recently in dense visual prediction tasks. It
is necessary to keep exploring the potential of contrastive learning for various downstream tasks
with new architectures. Second, our zero-shot video summarizer is no more than a keyframe
extraction that struggles to reflect the higher-level human intents during their summarization

process. It would be interesting to further explore such training-free and zero-shot video sum-
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marizers with powerful large language models. Third, though S2L leverages powerful large
language models for universally handling video temporal localization tasks, it still has major
performance gaps with the specialist models for the individual tasks. It would be interesting to
keep pushing the performance limit of such an approach, such that it can be deployed in real-life

applications.

Graduate School of Information Science and Technology, The Univesity of Osaka



Acknowledgements 88

Acknowledgements

I would like to express my deepest gratitude to Prof. Yuta Nakashima from SANKEN, the
University of Osaka, Prof. Hajime Nagahara from D3 Center, the University of Osaka, and
Dr. Mayu Otani from CyberAgent, Inc., for their unwavering support, invaluable guidance, and
continuous encouragement throughout my doctoral studies.

I am also especially thankful to Dr. Mayu Otani for her mentorship during my internship
and part-time employment at CyberAgent, Inc. I deeply appreciate her willingness to share her
expertise, provide thoughtful criticism, and patiently guide me through challenging projects.
Her support has played a crucial role in both my personal and professional growth.

I am profoundly grateful for the financial assistance provided by the 77 EFfili 4 / X—2 =3
YEARET 2 IEMAMBR 7 = v — v 7. This fellowship enabled me to focus entirely on
my research without the burden of financial concerns, and I truly appreciate their belief in my
potential and investment in my academic development.

Finally, I would like to thank my family and my friends for their unwavering support, un-
derstanding, and companionship during the often strenuous journey of the PhD course. Their
constant encouragement, patience, and care have been a tremendous source of strength and

comfort, and I am deeply appreciative of all they have done to help me reach this milestone.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 89

Reference

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive

learning for self-supervised visual pre-training. In CVPR, 2021.

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross Girshick. Mask r-cnn. In ICCV,
2017.

Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating

summaries from user videos. In ECCV, 2014.

Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejandro Jaimes. TVSum: Summa-

rizing web videos using titles. In CVPR, 2015.

Kaiyang Zhou, Yu Qiao, and Tao Xiang. Deep reinforcement learning for unsupervised

video summarization with diversity-representativeness reward. In AAAI, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple

framework for contrastive learning of visual representations. In ICML, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-

trast for unsupervised visual representation learning. In CVPR, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mo-
hammad Gheshlaghi Azar, et al. Bootstrap your own latent: A new approach to self-

supervised learning. In NeurIPS, 2020.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 90

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision transform-

ers. In ICCV, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International confer-

ence on machine learning, pp. 8748-8763. PMLR, 2021.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con-

trastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Enze Xie, Jian Ding, Wenhai Wang, Xiaohang Zhan, Hang Xu, Peize Sun, Zhenguo Li,
and Ping Luo. Detco: Unsupervised contrastive learning for object detection. In /CCV,

2021.

Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, and Han Hu. Propa-
gate yourself: Exploring pixel-level consistency for unsupervised visual representation

learning. In CVPR, 2021.

Xin Wen, Bingchen Zhao, Anlin Zheng, Xiangyu Zhang, and Xiaojuan Qi. Self-

supervised visual representation learning with semantic grouping. In NeurlPS, 2022.

Zhaowen Li, Yousong Zhu, Fan Yang, Wei Li, Chaoyang Zhao, Yingying Chen,
Zhiyang Chen, Jiahao Xie, Liwei Wu, Rui Zhao, et al. Univip: A unified framework for
self-supervised visual pre-training. In CVPR, 2022.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss

for language image pre-training, 2023.

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan

Huang, Jie Zhou, and Jiwen Lu. Denseclip: Language-guided dense prediction with

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 91

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

context-aware prompting. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 18082-18091, 2022.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liu-
nian Harold Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-
based language-image pretraining. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 16793-16803, 2022.

Shuo Liu, Adria Mallol-Ragolta, Emilia Parada-Cabaleiro, Kun Qian, Xin Jing, Alexan-

der Kathan, Bin Hu, and Bjoern W Schuller. Audio self-supervised learning: A survey.

Patterns, Vol. 3, No. 12, 2022.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Lan-
glotz. Contrastive learning of medical visual representations from paired images and

text. In Machine learning for healthcare conference, pp. 2-25. PMLR, 2022.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning

through alignment and uniformity on the hypersphere. In /CML, 2020.

Feng Wang and Huaping Liu. Understanding the behaviour of contrastive loss. In

CVPR, 2021.

Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. In

NeurlPS, 2021.

Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah Snavely, and William T

Freeman. Unsupervised semantic segmentation by distilling feature correspondences.

arXiv preprint arXiv:2203.08414, 2022.

Oriane Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc,
Patrick Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised

transformers and no labels, 2021.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 92

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Xinlong Wang, Zhiding Yu, Shalini De Mello, Jan Kautz, Anima Anandkumar, Chun-
hua Shen, and Jose M Alvarez. Freesolo: Learning to segment objects without anno-

tations. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pp. 14176-14186, 2022.

Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li, Shell Xu Hu, James L
Crowley, and Dominique Vaufreydaz. Tokencut: Segmenting objects in images and
videos with self-supervised transformer and normalized cut. /EEE transactions on pat-

tern analysis and machine intelligence, Vol. 45, No. 12, pp. 15790-15801, 2023.

Ziqin Zhou, Yinjie Lei, Bowen Zhang, Lingqiao Liu, and Yifan Liu. Zegclip: Towards
adapting clip for zero-shot semantic segmentation. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 11175-11185, 2023.

Monika Wysoczaniska, Michaél Ramamonjisoa, Tomasz Trzcinski, and Oriane Siméoni.
Clip-diy: Clip dense inference yields open-vocabulary semantic segmentation for-free.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vi-
sion, pp. 1403-1413, 2024.

Chaolei Han, Hongsong Wang, Jidong Kuang, Lei Zhang, and Jie Gui. Training-
free zero-shot temporal action detection with vision-language models. arXiv preprint

arXiv:2501.13795, 2025.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Flo-
rian Metze, Luke Zettlemoyer, and Christoph Feichtenhofer. Videoclip: Contrastive
pre-training for zero-shot video-text understanding. arXiv preprint arXiv:2109.14084,

2021.

Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, Soham Ghosh, Yonghui Wu,
and Jiahui Yu. Videococa: Video-text modeling with zero-shot transfer from contrastive

captioners. arXiv preprint arXiv:2212.04979, 2022.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 93

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning.

Advances in neural information processing systems, Vol. 33, pp. 18661-18673, 2020.

Krishna Chaitanya, Ertunc Erdil, Neerav Karani, and Ender Konukoglu. Contrastive
learning of global and local features for medical image segmentation with limited anno-
tations. Advances in neural information processing systems, Vol. 33, pp. 12546—12558,
2020.

Hanzhe Hu, Jinshi Cui, and Liwei Wang. Region-aware contrastive learning for se-
mantic segmentation. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pp. 16291-16301, 2021.

Xiangyun Zhao, Raviteja Vemulapalli, Philip Andrew Mansfield, Boqing Gong,
Bradley Green, Lior Shapira, and Ying Wu. Contrastive learning for label efficient
semantic segmentation. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pp. 10623-10633, 2021.

Hritam Basak and Zhaozheng Yin. Pseudo-label guided contrastive learning for semi-
supervised medical image segmentation. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pp. 19786-19797, 2023.

Wei Wu, Hao Chang, Yonghua Zheng, Zhu Li, Zhiwen Chen, and Ziheng Zhang. Con-
trastive learning-based robust object detection under smoky conditions. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4295—
4302, 2022.

Jinhwan Seo, Wonho Bae, Danica J Sutherland, Junhyug Noh, and Daijin Kim. Object
discovery via contrastive learning for weakly supervised object detection. In European

conference on computer vision, pp. 312-329. Springer, 2022.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 94

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Bo Sun, Banghuai Li, Shengcai Cai, Ye Yuan, and Chi Zhang. Fsce: Few-shot object
detection via contrastive proposal encoding. In Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition, pp. 7352-7362, 2021.

Ye Liu, Jixuan He, Wanhua Li, Junsik Kim, Donglai Wei, Hanspeter Pfister, and
Chang Wen Chen. r2-tuning: Efficient image-to-video transfer learning for video tem-

poral grounding, 2024.

Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos

via natural language queries. Advances in Neural Information Processing Systems,

Vol. 34, pp. 1184611858, 2021.

Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao,
Alex Jinpeng Wang, Rui Yan, and Mike Zheng Shou. Univtg: Towards unified video-
language temporal grounding. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 2794-2804, 2023.

Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip:
End-to-end multi-grained contrastive learning for video-text retrieval. In Proceedings

of the 30th ACM international conference on multimedia, pp. 638—647, 2022.

Jewook Lee, Pilhyeon Lee, Sungho Park, and Hyeran Byun. Expert-guided contrastive

learning for video-text retrieval. Neurocomputing, Vol. 536, pp. 50-58, 2023.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language models.

In International conference on machine learning, pp. 19730-19742. PMLR, 2023.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau,
Nicolas Chapados, and Siva Reddy. Llm2vec: Large language models are secretly

powerful text encoders. arXiv preprint arXiv:2404.05961, 2024.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 95

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learn-

ing via non-parametric instance discrimination. In CVPR, 2018.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster assign-

ments. In NeurIPS, 2020.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with

momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

Jiahao Xie, Xiaohang Zhan, Ziwei Liu, Yew Soon Ong, and Chen Change Loy. Unsu-

pervised object-level representation learning from scene images. In NeurIPS, 2021.

Wenwei Zhang, Jiangmiao Pang, Kai Chen, and Chen Change Loy. Dense siamese

network for dense unsupervised learning. In ECCV, 2022.

Shaoqging Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-

time object detection with region proposal networks. In NeurIPS, 2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for

semantic segmentation. In CVPR, 2015.

Ramprasaath R Selvaraju, Karan Desai, Justin Johnson, and Nikhil Naik. Casting your

model: Learning to localize improves self-supervised representations. In CVPR, 2021.

Olivier Henaff. Data-efficient image recognition with contrastive predictive coding. In

ICML. PMLR, 2020.

Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel Zoran, Andrew Jaegle, An-
drew Zisserman, Jodo Carreira, and Relja Arandjelovi¢. Object discovery and represen-

tation networks. In ECCV, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 96

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc V Gool.
Revisiting contrastive methods for unsupervised learning of visual representations. In

NeurlIPS, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dolldr, and C Lawrence Zitnick. Microsoft coco: Common objects in

context. In ECCV, 2014.

Pedro O Pinheiro, Amjad Almahairi, Ryan Y Benmaleck, Florian Golemo, and Aaron

Courville. Unsupervised learning of dense visual representations. In NeurlPS, 2020.

Tam Nguyen, Maximilian Dax, Chaithanya Kumar Mummadi, Nhung Ngo, Thi
Hoai Phuong Nguyen, Zhongyu Lou, and Thomas Brox. Deepusps: Deep robust unsu-

pervised saliency prediction via self-supervision. In NeurIPS, 2019.

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders.
Selective search for object recognition. IJCV, Vol. 104, No. 2, pp. 154-171, 2013.

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmen-

tation. IJCV, Vol. 59, pp. 167-181, 2004.

Zongshang Pang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. Revisiting

pixel-level contrastive pre-training on scene images. In WACYV, pp. 1784-1793, 2024.

Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aaron van den Oord, Oriol
Vinyals, and Jodo Carreira. Efficient visual pretraining with contrastive detection. In

ICCV, 2021.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. IJCV, Vol. 88, No. 2, pp.
303-338, 2010.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 97

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset

for semantic urban scene understanding. In CVPR, 2016.

Zongshang Pang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. Pixcon: Pixel-

level contrastive learning revisited. Electronics, Vol. 14, No. 8, p. 1623, 2025.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In
ECCV, 2016.

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation

learning by context prediction. In ICCV, 2015.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation

learning by predicting image rotations. In ICLR, 2018.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information

theory, Vol. 28, No. 2, pp. 129-137, 1982.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clus-
tering analysis. In /ICML, 2016.

Jungiang Huang, Xiangwen Kong, and Xiangyu Zhang. Revisiting the critical factors

of augmentation-invariant representation learning. In ECCV, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish
Tyagi, and Amit Agrawal. Context encoding for semantic segmentation. In CVPR,

2018.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In

CVPR, 2021.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 98

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Chun-Hsiao Yeh, Cheng-Yao Hong, Yen-Chi Hsu, Tyng-Luh Liu, Yubei Chen, and
Yann LeCun. Decoupled contrastive learning. In ECCV, 2022.

MMSelfSup Contributors. MMSelfSup: Openmmlab self-supervised learning toolbox

and benchmark. https://github.com/open-mmlab/mmsel fsup, 2021.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. De-

tectron2, 2019.

MMSegmentation Contributors.  MMSegmentation: Openmmlab semantic seg-
mentation toolbox and benchmark. https://github.com/open—-mmlab/

mmsegmentation, 2020.

Nanxuan Zhao, Zhirong Wu, Rynson WH Lau, and Stephen Lin. What makes instance

discrimination good for transfer learning? arXiv preprint arXiv:2006.06606, 2020.

Mayu Otani, Yale Song, Yang Wang, et al. Video summarization overview. Foundations

and Trends® in Computer Graphics and Vision, Vol. 13, No. 4, pp. 284-335, 2022.

Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. Video summarization with

long short-term memory. In ECCV, 2016.

Ke Zhang, Kristen Grauman, and Fei Sha. Retrospective encoders for video summa-

rization. In ECCV, 2018.

Tsu-Jui Fu, Shao-Heng Tai, and Hwann-Tzong Chen. Attentive and adversarial learning

for video summarization. In WACV, 2019.

Jiri Fajtl, Hajar Sadeghi Sokeh, Vasileios Argyriou, Dorothy Monekosso, and Paolo

Remagnino. Summarizing videos with attention. In ACCV, 2018.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computa-

tion, Vol. 9, No. 8, pp. 1735-1780, 1997.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 99

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurlPS,

2017.

Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic. Unsupervised video summa-

rization with adversarial LSTM networks. In CVPR, 2017.

Mrigank Rochan, Linwei Ye, and Yang Wang. Video summarization using fully convo-

lutional sequence networks. In ECCV, 2018.

Yen-Ting Liu, Yu-Jhe Li, Fu-En Yang, Shang-Fu Chen, and Yu-Chiang Frank Wang.
Learning hierarchical self-attention for video summarization. In ICIP, pp. 3377-338]1.

IEEE, 2019.

Mrigank Rochan and Yang Wang. Video summarization by learning from unpaired data.

In CVPR, 2019.

Yunjae Jung, Donghyeon Cho, Dahun Kim, Sanghyun Woo, and In So Kweon. Dis-

criminative feature learning for unsupervised video summarization. In AAAZ, 2019.

Yunjae Jung, Donghyeon Cho, Sanghyun Woo, and In So Kweon. Global-and-local

relative position embedding for unsupervised video summarization. In ECCV, 2020.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao

Kong. ibot: Image bert pre-training with online tokenizer. /CLR, 2022.

Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra. Cut and learn for unsu-
pervised object detection and instance segmentation. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 3124-3134, 2023.

Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsuper-

vised learning of visual embeddings. In ICCV, 2019.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 100

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Bal-
akrishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-scale

video classification benchmark. arXiv preprint arXiv:1609.08675, 2016.

Zongshang Pang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. Contrastive

losses are natural criteria for unsupervised video summarization. In WACV, 2023.

Zongshang Pang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. Unleashing the
power of contrastive learning for zero-shot video summarization. Journal of Imaging,

Vol. 10, No. 9, p. 229, 2024.

Yoshimasa Takahashi, Naoko Nitta, and Noboru Babaguchi. Video summarization for
large sports video archives. In 2005 IEEE International Conference on Multimedia and

Expo, pp. 1170-1173. IEEE, 2005.

Dian Tjondronegoro, Yi-Ping Phoebe Chen, and Binh Pham. Highlights for more com-
plete sports video summarization. /EEE multimedia, Vol. 11, No. 4, pp. 22-37, 2004.

Baoxin Li, Hao Pan, and Ibrahim Sezan. A general framework for sports video sum-
marization with its application to soccer. In 2003 IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03)., Vol. 3, pp.
I11-169. IEEE, 2003.

Chekuri Choudary and Tiecheng Liu. Summarization of visual content in instructional

videos. IEEE Transactions on Multimedia, Vol. 9, No. 7, pp. 1443-1455, 2007.

Tiecheng Liu and John R Kender. Rule-based semantic summarization of instructional
videos. In Proceedings. International Conference on Image Processing, Vol. 1, pp. I-1.

IEEE, 2002.

Tiecheng Liu and Chekuri Choudary. Content extraction and summarization of instruc-
tional videos. In 2006 International Conference on Image Processing, pp. 149—152.

IEEE, 2006.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 101

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

Jitao Sang and Changsheng Xu. Character-based movie summarization. In Proceedings

of the 18th ACM international conference on Multimedia, pp. 855-858, 2010.

Chia-Ming Tsai, Li-Wei Kang, Chia-Wen Lin, and Weisi Lin. Scene-based movie sum-
marization via role-community networks. IEEE Transactions on Circuits and Systems

Jfor Video Technology, Vol. 23, No. 11, pp. 1927-1940, 2013.

Bin Zhao, Xuelong Li, and Xiaoqiang Lu. Hierarchical recurrent neural network for

video summarization. In ACM MM, 2017.

Bin Zhao, Xuelong Li, and Xiaoqiang Lu. HSA-RNN: Hierarchical structure-adaptive
RNN for video summarization. In CVPR, 2018.

Litong Feng, Ziyin Li, Zhanghui Kuang, and Wei Zhang. Extractive video summarizer

with memory augmented neural networks. In ACM MM, 2018.

Junbo Wang, Wei Wang, Zhiyong Wang, Liang Wang, Dagan Feng, and Tieniu Tan.

Stacked memory network for video summarization. In ACM MM, 2019.

Luis Lebron Casas and Eugenia Koblents. Video summarization with LSTM and deep

attention models. In MMM, pp. 67-79. Springer, 2019.

Zhong Ji, Kailin Xiong, Yanwei Pang, and Xuelong Li. Video summarization with
attention-based encoder—decoder networks. IEEE Transactions on Circuits and Systems

for Video Technology, Vol. 30, No. 6, pp. 1709-1717, 2019.

Zhong Ji, Fang Jiao, Yanwei Pang, and Ling Shao. Deep attentive and semantic pre-

serving video summarization. Neurocomputing, Vol. 405, pp. 200-207, 2020.

Yen-Ting Liu, Yu-Jhe Li, and Yu-Chiang Frank Wang. Transforming multi-concept

attention into video summarization. In ACCV, 2020.

Jingxu Lin and Sheng-hua Zhong. Bi-directional self-attention with relative positional

encoding for video summarization. In /CTAI, 2020.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 102

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

Yuan Yuan, Haopeng Li, and Qi Wang. Spatiotemporal modeling for video summariza-

tion using convolutional recurrent neural network. /IEEE Access, 2019.

Wei-Ta Chu and Yu-Hsin Liu. Spatiotemporal modeling and label distribution learning

for video summarization. In MMSP, pp. 1-6. IEEE, 2019.

Mohamed Elfeki and Ali Borji. Video summarization via actionness ranking. In WACV,

2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks. arXiv preprint arXiv:1609.02907, 2016.

Jungin Park, Jiyoung Lee, Ig-Jae Kim, and Kwanghoon Sohn. SumGraph: Video sum-

marization via recursive graph modeling. In ECCV, 2020.

Mayu Otani, Yuta Nakashima, Esa Rahtu, Janne Heikkild, and Naokazu Yokoya. Video

summarization using deep semantic features. In ACCV, 2016.

Medhini Narasimhan, Anna Rohrbach, and Trevor Darrell. Clip-it! language-guided

video summarization. In NeurIPS, 2021.

Bo He, Jun Wang, Jielin Qiu, Trung Bui, Abhinav Shrivastava, and Zhaowen Wang.
Align and attend: Multimodal summarization with dual contrastive losses. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.

14867-14878, 2023.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial

network. arXiv preprint arXiv:1609.03126, 2016.

Yiyan Chen, Li Tao, Xueting Wang, and Toshihiko Yamasaki. Weakly supervised video

summarization by hierarchical reinforcement learning. In ACM MM Asia. 2019.

Zutong Li and Lei Yang. Weakly supervised deep reinforcement learning for video

summarization with semantically meaningful reward. In WACV, 2021.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 103

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

Xufeng He, Yang Hua, Tao Song, Zongpu Zhang, Zhengui Xue, Ruhui Ma, Neil Robert-
son, and Haibing Guan. Unsupervised video summarization with attentive conditional

generative adversarial networks. In ACM MM, 2019.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In CVPR, 2015.

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrimi-

natively, with application to face verification. In CVPR, 2005.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bach-
man, Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual

information estimation and maximization. arXiv preprint arXiv:1808.06670, 2018.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In

ECCV, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In NeurIPS, 2012.

Phuc Xuan Nguyen, Deva Ramanan, and Charless C Fowlkes. Weakly-supervised ac-

tion localization with background modeling. In ICCV, 2019.

Daochang Liu, Tingting Jiang, and Yizhou Wang. Completeness modeling and context

separation for weakly supervised temporal action localization. In CVPR, 2019.

Pilhyeon Lee, Youngjung Uh, and Hyeran Byun. Background suppression network for

weakly-supervised temporal action localization. In AAAZ, 2020.

Pilhyeon Lee, Jinglu Wang, Yan Lu, and Hyeran Byun. Weakly-supervised temporal

action localization by uncertainty modeling. In AAAI, 2021.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 104

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Sandra Eliza Fontes De Avila, Ana Paula Brandao Lopes, Antonio da Luz Jr, and Ar-
naldo de Albuquerque Aratjo. VSUMM: A mechanism designed to produce static video
summaries and a novel evaluation method. Pattern Recognition Letters, Vol. 32, No. 1,

pp. 5668, 2011.

Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkila. Rethinking the evalua-

tion of video summaries. In CVPR, 2019.

Maurice G Kendall. The treatment of ties in ranking problems. Biometrika, Vol. 33,

No. 3, pp. 239-251, 1945.

William H Beyer. Standard Probability and Statistics: Tables and Formulae. CRC
Press, 1991.

Danila Potapov, Matthijs Douze, Zaid Harchaoui, and Cordelia Schmid. Category-

specific video summarization. In ECCV, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jon Shlens, and Zbigniew Wojna.

Rethinking the inception architecture for computer vision. In CVPR, 2016.

Yassir Saquil, Da Chen, Yuan He, Chuan Li, and Yong-Liang Yang. Multiple pairwise

ranking networks for personalized video summarization. In /CCV, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition

at scale. arXiv preprint arXiv:2010.11929, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows.

In ICCV, pp. 10012-10022, 2021.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 105

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace

the history of 2d cnns and imagenet? In CVPR, pp. 6546-6555, 2018.

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers.

arXiv preprint arXiv:2106.08254, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollér, and Ross Girshick.

Masked autoencoders are scalable vision learners. In CVPR, 2022.

Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Seybold, David A Ross, Jia Deng,
and Rahul Sukthankar. Rethinking the faster r-cnn architecture for temporal action

localization. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 1130-1139, 2018.

Feng Cheng and Gedas Bertasius. Tallformer: Temporal action localization with a
long-memory transformer. In European Conference on Computer Vision, pp. 503-521.

Springer, 2022.

Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei Zhang, Song Bai, and Xiang
Bai. End-to-end temporal action detection with transformer. IEEE Transactions on

Image Processing, Vol. 31, pp. 5427-5441, 2022.

Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action localization in
untrimmed videos via multi-stage cnns. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 1049—1058, 2016.

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-
captioning events in videos. In Proceedings of the IEEE international conference on

computer vision, pp. 706-715, 2017.

Teng Wang, Ruimao Zhang, Zhichao Lu, Feng Zheng, Ran Cheng, and Ping Luo. End-
to-end dense video captioning with parallel decoding. In Proceedings of the IEEE/CVF

international conference on computer vision, pp. 6847-6857, 2021.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 106

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher, and Caiming Xiong. End-
to-end dense video captioning with masked transformer. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 8739-8748, 2018.

Antoine Yang, Arsha Nagrani, Paul Hongsuck Seo, Antoine Miech, Jordi Pont-Tuset,
Ivan Laptev, Josef Sivic, and Cordelia Schmid. Vid2seq: Large-scale pretraining of a
visual language model for dense video captioning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10714-10726, 2023.

Leonard Barmann and Alex Waibel. Where did 1 leave my keys?-episodic-memory-
based question answering on egocentric videos. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pp. 1560-1568, 2022.

Junbin Xiao, Angela Yao, Yicong Li, and Tat-Seng Chua. Can i trust your answer? visu-
ally grounded video question answering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13204-13214, 2024.

Jie Lei, Licheng Yu, Tamara L Berg, and Mohit Bansal. Tvqa+: Spatio-temporal

grounding for video question answering. arXiv preprint arXiv:1904.11574, 2019.

Shangzhe Di and Weidi Xie. Grounded question-answering in long egocentric videos. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 12934-12943, 2024.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-
chatgpt: Towards detailed video understanding via large vision and language models.

arXiv preprint arXiv:2306.05424, 2023.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava:
Learning united visual representation by alignment before projection. arXiv preprint

arXiv:2311.10122, 2023.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 107

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens
in large language models. In European Conference on Computer Vision, pp. 323-340.

Springer, 2025.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual

language model for video understanding. arXiv preprint arXiv:2306.02858, 2023.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang
Wu, Haozhe Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense
token to sparse memory for long video understanding. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 18221-18232, 2024.

Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive
multimodal large language model for long video understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14313—-14323,
2024.

De-An Huang, Shijia Liao, Subhashree Radhakrishnan, Hongxu Yin, Pavlo Molchanov,
Zhiding Yu, and Jan Kautz. Lita: Language instructed temporal-localization assistant.

In European Conference on Computer Vision, pp. 202-218. Springer, 2025.

Yongxin Guo, Jingyu Liu, Mingda Li, Xiaoying Tang, Xi Chen, and Bo Zhao. Vtg-
llm: Integrating timestamp knowledge into video llms for enhanced video temporal

grounding. arXiv preprint arXiv:2405.13382, 2024.

Ye Liu, Zongyang Ma, Zhongang Qi, Yang Wu, Ying Shan, and Chang Wen Chen. Et
bench: Towards open-ended event-level video-language understanding. arXiv preprint

arXiv:2409.18111, 2024.

Bin Huang, Xin Wang, Hong Chen, Zihan Song, and Wenwu Zhu. Vtimellm: Empower
IIm to grasp video moments. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14271-14280, 2024.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 108

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Long Qian, Juncheng Li, Yu Wu, Yaobo Ye, Hao Fei, Tat-Seng Chua, Yueting Zhuang,
and Siliang Tang. Momentor: Advancing video large language model with fine-grained

temporal reasoning. arXiv preprint arXiv:2402.11435, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen
Lin, Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith
and fate: Limits of transformers on compositionality. Advances in Neural Information

Processing Systems, Vol. 36, , 2024.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas
Lukasiewicz, Philipp Petersen, and Julius Berner. Mathematical capabilities of chat-

gpt. Advances in neural information processing systems, Vol. 36, , 2024.

Boris Meinardus, Anil Batra, Anna Rohrbach, and Marcus Rohrbach. The surprising
effectiveness of multimodal large language models for video moment retrieval. arXiv

preprint arXiv:2406.18113, 2024.

Yongxin Guo, Jingyu Liu, Mingda Li, Xiaoying Tang, Qingbin Liu, and Xi Chen.
Trace: Temporal grounding video llm via causal event modeling. arXiv preprint

arXiv:2410.05643, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language

models. Advances in neural information processing systems, Vol. 35, pp. 24824-24837,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language

models. Advances in Neural Information Processing Systems, Vol. 36, , 2024.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 109

[183]

[184]

[185]

[186]

[187]

[188]

[189]

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. Advances in neural information

processing systems, Vol. 35, pp. 22199-22213, 2022.

Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao,
Jiwen Lu, and Jie Zhou. Coin: A large-scale dataset for comprehensive instructional
video analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1207-1216, 2019.

Kevin Lin, Faisal Ahmed, Linjie Li, Chung-Ching Lin, Ehsan Azarnasab, Zhengyuan
Yang, Jianfeng Wang, Lin Liang, Zicheng Liu, Yumao Lu, et al. Mm-vid: Advancing
video understanding with gpt-4v (ision). arXiv preprint arXiv:2310.19773, 2023.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal
Ahmed, Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompt-
ing chatgpt for multimodal reasoning and action. arXiv preprint arXiv:2303.11381,
2023.

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Ste-
fan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al.
Socratic models: Composing zero-shot multimodal reasoning with language. arXiv

preprint arXiv:2204.00598, 2022.

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python
execution for reasoning. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pp. 11888—11898, 2023.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In Inter-

national conference on machine learning, pp. 12888-12900. PMLR, 2022.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 110

[190]

[191]

[192]

[193]

[194]

[195]

[196]

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning.

Advances in neural information processing systems, Vol. 36, , 2024.

Xidong Wang, Dingjie Song, Shunian Chen, Chen Zhang, and Benyou Wang.
Longllava: Scaling multi-modal llms to 1000 images efficiently via hybrid architecture.

arXiv preprint arXiv:2409.02889, 2024.

Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan
Zhang, Ziyue Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context trans-

fer from language to vision. arXiv preprint arXiv:2406.16852, 2024.

Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao
Fang, Haotian Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context

visual language models for long videos. arXiv preprint arXiv:2408.10188, 2024.

Bo He, Hengduo Li, Young Kyun Jang, Menglin Jia, Xuefei Cao, Ashish Shah, Abhinav
Shrivastava, and Ser-Nam Lim. Ma-Imm: Memory-augmented large multimodal model
for long-term video understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13504—-13514, 2024.

Xiaogian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen
Zhu, Zechun Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu:
Spatiotemporal adaptive compression for long video-language understanding. arXiv

preprint arXiv:2410.17434, 2024.

Min Sun, Ali Farhadi, and Steve Seitz. Ranking domain-specific highlights by analyzing
edited videos. In Computer Vision—-ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I 13, pp. 787-802. Springer,
2014.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 111

[197]

[198]

[199]

[200]

[201]

[202]

[203]

Jinhwan Sul, Jihoon Han, and Joonseok Lee. Mr. hisum: a large-scale dataset for video
highlight detection and summarization. Advances in Neural Information Processing

Systems, Vol. 36, , 2024.

Kevin Qinghong Lin, Pengchuan Zhang, Joya Chen, Shraman Pramanick, Difei Gao,
Alex Jinpeng Wang, Rui Yan, and Mike Zheng Shou. Univtg: Towards unified video-
language temporal grounding. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 2794-2804, October 2023.

Shen Yan, Xuehan Xiong, Arsha Nagrani, Anurag Arnab, Zhonghao Wang, Weina Ge,
David Ross, and Cordelia Schmid. Unloc: A unified framework for video localization
tasks. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 13623-13633, October 2023.

Jiannan Wu, Muyan Zhong, Sen Xing, Zeqiang Lai, Zhaoyang Liu, Wenhai Wang, Zhe
Chen, Xizhou Zhu, Lewei Lu, Tong Lu, et al. Visionllm v2: An end-to-end generalist
multimodal large language model for hundreds of vision-language tasks. arXiv preprint

arXiv:2406.08394, 2024.

Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya
Jia. Lisa: Reasoning segmentation via large language model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9579—
9589, June 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models, 2021.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun
Huang, Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual repre-
sentation learning at scale. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 19358-19369, June 2023.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 112

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan,
Nguyen Bach, Amit Bahree, and Arash Bakhtiari et.al. Phi-3 technical report: A highly
capable language model locally on your phone, 2024.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi
Cai, Haoyu Li, Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou,
Haoye Zhang, Shengding Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm-v: A gpt-4v level mllm on your
phone, 2024.

OpenAl. Hello GPT-40, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with
visual instruction tuning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 26296-26306, June 2024.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen,
Zehui Chen, Zhi Chen, and Pei Chu et.al. Internlm?2 technical report, 2024.

Qinghao Ye, Haiyang Xu, Jiabo Ye, Ming Yan, Anwen Hu, Haowei Liu, Qi Qian,
Ji Zhang, and Fei Huang. mplug-owl2: Revolutionizing multi-modal large language
model with modality collaboration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 13040-13051, June 2024.

Pan Zhang, Xiaoyi Dong, Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan
Zhao, Haodong Duan, Songyang Zhang, Shuangrui Ding, Wenwei Zhang, Hang Yan,
Xinyue Zhang, Wei Li, Jingwen Li, Kai Chen, Conghui He, Xingcheng Zhang, Yu Qiao,
Dahua Lin, and Jiaqi Wang. Internlm-xcomposer: A vision-language large model for

advanced text-image comprehension and composition, 2023.

Muyang He, Yexin Liu, Boya Wu, Jianhao Yuan, Yueze Wang, Tiejun Huang, and

Bo Zhao. Efficient multimodal learning from data-centric perspective, 2024.

Graduate School of Information Science and Technology, The Univesity of Osaka



Reference 113

[212]

[213]

[214]

[215]

[216]

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang
Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for

understanding, localization, text reading, and beyond, 2023.

Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pllava :

Parameter-free llava extension from images to videos for video dense captioning, 2024.
OpenAl. Gpt-4v(ision) System Card, 2023.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan Burnell, Libin Bai, Anmol Gulati,
Garrett Tanzer, and et.al. Damien Vincent. Gemini 1.5: Unlocking multimodal under-

standing across millions of tokens of context, 2024.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau,
Nicolas Chapados, and Siva Reddy. Llm2vec: Large language models are secretly

powerful text encoders, 2024.

Graduate School of Information Science and Technology, The Univesity of Osaka



List of Publications 114

List of Publications

Journal Publications (related to this thesis)

1. Pang, Zongshang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. "Unleashing the
Power of Contrastive Learning for Zero-Shot Video Summarization." Journal of Imaging

10, no. 9 (2024): 229.

2. Pang, Zongshang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. "PixCon: Pixel-
Level Contrastive Learning Revisited." Electronics 14, no. 8 (2025): 1623.

International Conference (related to this thesis)

1. Pang, Zongshang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. "Contrastive
losses are natural criteria for unsupervised video summarization." In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2010-2019. 2023.

2. Pang, Zongshang, Yuta Nakashima, Mayu Otani, and Hajime Nagahara. "Revisiting
pixel-level contrastive pre-training on scene images." In Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, pp. 1784-1793. 2024.

Graduate School of Information Science and Technology, The Univesity of Osaka



List of Publications 115

Domestic Conference (related to this thesis)

1. Pang, Zongshang, Mayu Otani, Yuta Nakashima. "Video Large Language Models Can
Summarize to Localize." Meeting on Image Recognition and Understanding (MIRU),

poster track, 2025.

International Conference (not related to this thesis)

1. Pang, Zongshang, Mayu Otani, and Yuta Nakashima. "Measure Twice, Cut Once: Grasp-
ing Video Structures and Event Semantics with LLLMs for Video Temporal Localization."

IEEE/CVF International Conference on Computer Vision, 2025 (submitted)

Graduate School of Information Science and Technology, The Univesity of Osaka



