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Abstract

Advances in deep learning and computational power have increased the value of
data analysis, particularly when leveraging personal information in domains such
as healthcare, finance, and recommendation systems. To enable data sharing while
preserving privacy, anonymization techniques have been explored. However, conven-
tional methods like k-anonymity suffer from severe utility loss in high-dimensional
settings due to the curse of dimensionality, making it difficult to simultaneously
ensure privacy and maintain data utility. As an alternative, synthetic data gener-
ation has gained traction. These methods extract generative parameters from real
datasets to produce new, statistically similar data. To formally guarantee privacy,
differentially private synthetic data generation has been proposed, where noise is
added to the parameter extraction process. However, this often leads to reduced
practical utility, and successful societal implementation remains limited due to the
ongoing challenge of achieving a viable privacy-utility trade-off in high-dimensional
data.

This thesis seeks to promote the societal implementation of synthetic data gen-
eration by addressing its core challenges. Synthetic data generation methods are
categorized into two types: (i) non-differentially private (non-DP) approaches, and
(ii) differentially private (DP) approaches. In this thesis, we aim to advance the so-
cietal implementation of synthetic data generation by analyzing challenges for each

type respectively.

In Chapter 3, we propose a privacy evaluation framework to overcome limitations
of existing evaluation frameworks; (1) they cannot evaluate the worst-case because
a target sample is chosen randomly; and (2) the decision criterion of an adversary’s
inference is black box since the adversary conducts membership inference by using
machine learning models. To cope with limitation (1), we introduce a statistical
distance and propose the way to choose a vulnerable target sample with respect to
the distance. To cope with limitation (2), we propose two interpretable and simple

inference methods. One is a method with typical statistics scores, and the other



vi

is a method with the number of samples close to the target sample with respect
to Euclidean distance. We conduct extensive experiments on two datasets and five
synthesis algorithms to confirm the effectiveness of our framework. The experiments
show that our framework enables us to evaluate privacy in synthetic data generation
techniques more tightly from the perspective of the statistical distance.

In Chapter 4, we address the challenge of evaluating the utility of differentially
private synthetic data generation methods. We conduct experiments with a Di-
agnosis Procedure Combination (DPC) dataset to evaluate the quality of synthetic
data generated by statistics-based, graphical model-based, and deep neural network-
based methods. Further, we implement differential privacy for theoretical privacy
protection and assess the resultant degradation of data quality. The findings indicate
that a statistics-based method called Gaussian Copula and a graphical-model-based
method called AIM yield high-quality synthetic data regarding statistical similarity
and machine learning model performance. The chapter also summarizes issues per-
tinent to the practical application of synthetic data derived from the experimental
results.

In Chapter 5, we aim to improve utility, and theoretically evaluate Rényi differ-
ential privacy, which is a kind of relaxations of differential privacy, of the random-
ness in data generation of a synthetic data generation method that uses the mean
vector and the covariance matrix of an original dataset. Specifically, for a fixed
privacy parameter o > 1, we show the condition of the privacy parameter ¢ such
that the synthetic data generation satisfies («,¢)-Rényi differential privacy under
a bounded neighboring condition and an unbounded neighboring condition, respec-
tively. In particular, under the unbounded condition, when the size of the original
dataset and synthetic dataset is 10 million, the mechanism satisfies (4, 0.576)-Rényi
differential privacy. We also show that when we translate it into the traditional
(g, 6)-differential privacy, the mechanism satisfies (4.46, 107*)-differential privacy.

Finally, Chapter 6 summarizes this thesis, gives several concluding remarks, and

discusses our future work.
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Chapter 1

Introduction

1.1 Background

Driven by breakthroughs in deep neural networks and continuous improvements in
computational capabilities, the value derived from data analysis has been steadily
increasing in recent years. KEspecially, personal information constitutes a highly
valuable asset for data analysis and is used in various domains, including health-
care [9, 52, 64, 96, 97|, finance [20, 38, 93], and marketing [61, 70]. Although
unstructured data types such as images and text are actively utilized, the majority
of personal data is often curated and employed in the form of structured tabular
datasets [12].

The use of such data necessitates careful consideration of the privacy of individ-
uals included in the dataset. Despite the application of ostensibly safe processing,
such as removing names or identification numbers and performing random sampling,
there have been reported cases in which individual privacy was still compromised
through publicly available datasets. In 2008, Netflix published a dataset for a movie
recommendation algorithm competition, in which certain user attributes were re-
moved prior to its release. Narayanan et al. subsequently showed that, despite the
removal of explicit identifiers, the released dataset still contained sufficient informa-
tion to enable the re-identification of users, thereby highlighting the inherent risks
of insufficient anonymization [91]. In addition, Nissim et al. have reported that a
substantial amount of personal information can be reconstructed from the results of
official statistics [21, 26].

To mitigate the aforementioned privacy risks while releasing data that preserves
similar statistical properties to the original dataset, various techniques such as

anonymization have been proposed. One of the distinctive challenges inherent to
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these technologies lies in the setting where it is not possible to differentiate be-
tween data users and potential adversaries. In other words, it is necessary to release
data that simultaneously ensures privacy protection and retains utility. Traditional
anonymization techniques based on approaches such as k-anonymity [110] are known
to suffer significant utility loss due to the curse of dimensionality when the infor-
mation pertaining to an individual becomes high-dimensional [3, 122]. Due to the
curse of dimensionality, it becomes challenging to achieve an appropriate trade-off
between privacy protection and data utility.

To address such privacy-utility trade-offs, privacy protection through synthetic
data has garnered increasing attention [56, 112]. A synthetic data generation tech-
nique extracts generative parameters, such as statistical values and machine learning
model parameters, from the original dataset and generates new data of the same
format based on these parameters. Furthermore, in order to provide formal pri-
vacy guarantees, differentially private synthetic data generation—where the data
synthesis process is designed to satisfy differential privacy [31]—has also been ac-
tively studied. Differential privacy is a widely used privacy-preserving criterion that
quantifies the extent to which input data can be inferred from the output of a ran-
domized algorithm (See Section 2.3). In general, differentially private synthetic data
generation is achieved by applying a differentially private mechanism to the function
that extracts the generative parameters. However, the addition of noise to satisfy
differential privacy often results in a trade-off that falls short of practical utility, and

the extent to which utility can theoretically be achieved remains unclear.

1.2 Goal and Contributions of Thesis

In this thesis, we aim to advance the societal implementation of synthetic data
generation in the real world. Successful social implementation necessitates numer-
ous real-world trials. To promote real-world trials, the relationship between utility
and privacy must be thoroughly analyzed from a theoretical perspective. This ne-
cessitates a two-step research approach. The first step (a) involves the privacy
evaluation. The second step (b) consists of validating the utility of the system us-
ing real-world data under privacy guarantees. Given that public data may already
incorporate certain privacy measures, evaluating the system on real-world data is es-
sential for a reliable and accurate evaluation. Synthetic data can also be categorized
into two types: (i) data that is not generated under differential privacy (non-DP),
and (i) data that is generated with differential privacy (DP). The current limita-
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Table 1.1: The levels of maturity and remaining challenges associated with the
two types of synthetic data generation methods. (a) Privacy represents the extent
to which a method has been theoretically analyzed with respect to formal privacy
guarantees, such as differential privacy. (b) Real Data Utility refers to the evaluation
of data utility conducted using real-world datasets. The check mark vexpresses
that the problem is resolved, and the hyphen - expresses that the problem cannot

be solved yet because the preceding stage has not been resolved.
Method (a) Privacy | (b) Real Data Utility

Chall
(i) Data Synthesis ' i -
in Chapter 3

Challenge

ii) DP Data Synthesis | v/
(ii) ata Synthesis n Chapter 4

tions of each method are indicated in the corresponding positions in Table 1.1, and

are discussed in detail in the following sections.
1.2.1 Privacy Evaluation Framework for Synthetic Data Gen-

eration

In Chapter 3, we address the limitation of privacy evaluation of the approach
(i) [88, 130, 131]. Synthetic data is often considered privacy-preserving even with-
out the application of differential privacy, as it appears to be disconnected from the
original data [12, 116]. However, in the absence of differential privacy protection,
synthetic data has been shown to be vulnerable to privacy attacks, such as mem-
bership inference attacks [109, 63, 58]. A membership inference attack is a type of
privacy attack in which an adversary attempts to infer whether a particular data
point was included in the training dataset based on the output of a machine learning
model or synthetic data generator [107]. The success of such an attack may result
in several critical consequences, and a membership inference attack is also used as
a standard auditing tool for evaluating privacy protection [68, 120].

The existing evaluation frameworks has limitations from two perspectives:

(1) it cannot evaluate the worst-case because a target sample is chosen randomly;

and

(2) the decision criterion of an adversary’s inference is black box since the adver-

sary conducts membership inference by using machine learning models.
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In this chapter, we propose a framework to overcome the above limitations in a
simple and clear fashion. To cope with limitation (1), we introduce a statistical
distance and propose the way to choose a vulnerable target sample with respect to
the distance. To cope with limitation (2), we propose two interpretable and simple
inference methods. One is a method with typical statistics scores, and the other
is a method with the number of samples close to the target sample with respect
to Euclidean distance. We conduct extensive experiments on two datasets and five
synthesis algorithms to confirm the effectiveness of our framework. The experiments
show that our framework enables us to evaluate privacy in synthetic data generation
techniques more tightly.

As a result, it was found that, when using non-DP synthetic data, it is neces-
sary, at a minimum, to remove outliers. Alternatively, given that the theoretical
relationship between differential privacy and membership inference attacks is well
established [121, 66], it is advisable to use DP synthetic data to ensure a certain

level of privacy protection.

1.2.2 Utility Evaluation of Synthetic Data Generation with
Real Medical Dataset

Based on the results presented in Chapter 3, it was concluded that differential pri-
vacy is required when outliers in the dataset cannot be identified or addressed in
advance. In Chapter 4, we address the limitation of the approach (ii) [89, 133, 132].
Differentially private synthetic data generation, a variety of methods have been pro-
posed [74, 82, 83, 123]. The privacy protection of these methods is theoretically
guaranteed under the formal definition of differential privacy, which checks (ii)-(a).
However, there remain challenges in evaluating the quality of the generated syn-
thetic data. In most cases, widely proposed differentially private synthetic data
generation methods are evaluated using publicly available datasets. Without com-
prehensive studies comparing these methods using real-world data, it is difficult to
conduct a rigorous evaluation of their practical viability. Nonetheless, such empirical
evaluations on actual datasets remain insufficient.

Given that privacy is of paramount importance and data analysis is highly active
in this domain, the this study focuses on the medical field. Anticipation surrounds
the use of real-world data for data analysis in medicine and healthcare, yet handling
sensitive data demands ethical review and safety management, presenting bottle-
necks in the swift progression of research. Consequently, numerous techniques have

emerged for generating synthetic data, which preserves the features of the original
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data. Nonetheless, the quality of such synthetic data, particularly in the context
of real-world data, has yet to be sufficiently examined. In this chapter, we conduct
experiments with a real Diagnosis Procedure Combination (DPC) dataset provided
by Ehime University Hospital to evaluate the quality of synthetic data generated
by statistics-based, graphical model-based, and deep neural network-based meth-
ods. Further, we implement differential privacy for theoretical privacy protection
and evaluate the resultant degradation of data quality. The findings indicate that
a statistics-based method called Gaussian Copula [74] and a graphical-model-based
method called AIM [82] yield high-quality synthetic data regarding statistical simi-
larity and machine learning model performance. The chapter also summarizes issues
pertinent to the practical application of synthetic data derived from the experimen-

tal results.

1.2.3 Evaluating Differential Privacy of Synthetic Data Gen-

eration without Adding Intentional Noise

In Chapter 5, we discuss methods for ensuring differential privacy without the ad-
dition of noise, with the aim of improving utility [90, 134, 135]. Privacy protection
with synthetic data generation often uses differentially private statistics and model
parameters to quantitatively express theoretical security. However, these methods
do not take into account privacy protection due to the inherent randomness of data
generation. Such approaches have rarely been proposed, and the only existing prior
work remains at a theoretical level, lacking the capability for concrete numerical
evaluation [77]. In practical applications, it is essential that security metrics be
expressed in concrete numerical terms. Therefore, it is necessary to quantitatively
evaluate the differential privacy guarantees derived from the inherent randomness
in the synthetic data generation process.

In this chapter, we theoretically evaluate Rényi differential privacy [87], which
is a kind of relaxation of differential privacy, of the randomness in data generation
part in a synthetic data generation method that uses the mean vector and the
covariance matrix of an original dataset. Specifically, for a fixed o > 1, we show
the condition of £ such that the synthetic data generation satisfies («,e)-Rényi
differential privacy under a bounded neighboring condition (Definition 2.3.1) and an
unbounded neighboring condition, respectively. In particular, under the unbounded
condition, when the size of the original dataset and synthetic dataset is 10 million,
the mechanism satisfies (4, 0.576)-Rényi differential privacy. We also show that when

we translate it into the traditional (g, d)-differential privacy, the mechanism satisfies
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(4.46,10~1*)-differential privacy.

1.2.4 Organization of Thesis

This thesis aims to facilitate the societal implementation of synthetic data generation
technologies by addressing the challenges outlined in the previous section. The
structure of the remainder of this thesis is as follows. Chapter 2 is the preliminary
of this thesis. We first introduce the notations, and formulate tabular datasets. We
also introduce differential privacy and synthetic data generation. In Chapter 3, we
point out the limitations of the existing privacy evaluation framework [109], and
propose the way to improve the limitations. As a result, we observe that outliers
with respect to the Mahalanobis distance poses a higher risk of privacy leakage from
the perspective of membership inference. Next, in Chapter 4, to enable a realistic
evaluation of synthetic data utility and privacy protection, we evaluated five different
synthetic data generation techniques using actual patient data provided by Ehime
University Hospital. In Chapter 5, in order to improve data utility, we propose a
novel approach that achieves differential privacy without relying on explicit noise
injection. Finally, in Chapter 6, we summarize the obtained results, conclude this

thesis, and discuss directions for future work.



Chapter 2
Preliminary

In this chapter, we introduce the fundamental notations, definitions, and concepts
that underpin the remainder of this thesis. These preliminaries provide the theoret-
ical and technical groundwork necessary to understand our proposed methods and
analyses.

We begin by clarifying the mathematical symbols and notations used throughout
the thesis. Then, we formalize the structure of tabular datasets, which are the
primary data modality studied in this work. Next, we present the definitions and
properties of differential privacy, including its relaxations such as Rényi differential
privacy and zero-concentrated differential privacy, along with the key mechanisms
and theorems that support privacy-preserving data analysis. Finally, we define the
concept of synthetic data generation and introduce the main algorithmic frameworks
considered in this thesis, setting the stage for the methodological developments in

the subsequent chapters.

2.1 Mathematical Notations

This thesis uses R to denote the set of real numbers, Z to denote the set of integers,
and Zso to denote the set of natural numbers. For a natural number n € Z>, a set
[n] is defined as

n] :=={r €Zso| 1<z <n}.

We also denote the closed interval from a € R to b € R as [a, b]. Namely, we denote
[a,b] :={z € R|a<xz<b}.

For a set S, we denote the number of elements as |S| € Z>( and the power set of S

as 2°. The natural number |S| is also called the cardinality of the set. Namely, we
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denote
29 :={A| AcC S}

The probabilistic simplex is denoted by
d
A= {z € R | le =12, > 0}.
i=1

Although the simplex is (d—1)-dimensional as a manifold and should thus be denoted
as A1 we use the notation A? in this thesis to emphasize the correspondence with

the number of attribute values, which is more important in this thesis context.

2.2 Tabular Dataset

In this section, we explain tabular datasets in research of synthetic data generation.
A tabular dataset refers to a structured form of data organized in a two-dimensional
table consisting of rows and columns. Tabular datasets are essential because they
provide a clear, structured way to organize data, making it easy to analyze, visualize,
and share. They are widely supported by data tools and are the standard input for
many machine learning and statistical methods, enabling efficient data processing
and automation. As an example of such data, in the medical domain, electronic
health records (EHRs) often consist of tables where each row corresponds to a patient
and each column represents clinical attributes such as age, blood pressure, laboratory
test results, diagnoses, and prescribed medications. This structured representation is
widely used in predictive modeling tasks, such as disease diagnosis, risk stratification,
and treatment outcome prediction.

To formalize the tabular dataset, let D denote the set of all possible datasets
under consideration. Attributes can be categorized into two types: categorical at-
tributes and numerical attributes. For categorical attributes, the attribute values
are typically drawn from a finite set {ay, ..., a,,}, where each a; represents one of the
possible discrete categories. For example, if the attribute represents gender, the set
of possible attribute values is expressed by the finite set {male, female}. Numerical
attributes take either integer (discrete) values or real (continuous) values. A typical
example is age, which can be represented as an integer indicating the number of
years.

Categorical and numerical attributes can be transformed into each other using

appropriate methods tailored to their respective data types. Numerical attributes
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can be regarded as categorical attributes by applying appropriate clustering tech-
niques that partition the continuous values into discrete groups. Conversely, cat-
egorical attributes can be treated as numerical attributes by converting them into
one-hot vectors. Depending on the method, synthetic data generation techniques
assume different formats of tabular data: some are designed for categorical at-
tributes only, others for numerical attributes only, and some are tailored to handle
mixed-type data consisting of both categorical and numerical attributes. As noted
above, such transformations between categorical and numerical attributes are fea-
sible. Therefore, in this thesis, we assume that appropriate transformations have
been applied when necessary.

Here, tabular datasets are assumed to consist of M columns corresponding to
categorical attributes, with each row representing an individual record. The dataset
is composed of N individuals, each described by a single row. Let Ay,..., Ay
denote the sets of possible values for each attribute. For each i € {1,..., M}, we
define d; := |A;| as the cardinality of the set A;. In this setting, the information

corresponding to a single individual (i.e., a row in the table) can be represented as
r €A XX Ay = A,
and the entire dataset consisting of N individuals can be expressed as
De AY =D.

Let r = {ry,...,r} C [M]. Then, we set d, :=d,, X --- X d,,. For a dataset D € D,

we define a function
pr:D —[0,1]%

that extracts the marginal joint distribution over the (1, ..., r;)-th attributes from
a dataset D. Namely, for a € A,, x -+ x A,,, the a-th component of p,(D) € [0, 1]%
is
1
pr(D)y = N\{x €D | (zy,...,z,)=a}| €]0,1].
In this manner, the frequency of tabular data is represented as a probability distri-

bution, which is then learned by synthetic data generation methods.

2.3 Differential Privacy

In this subsection, we introduce differential privacy.
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2.3.1 Overview of differential privacy

Differential privacy, proposed by Dwork in 2006 [31], is a privacy-preserving metric
that quantitatively expresses the degree of privacy protection when releasing sta-
tistical information derived from private data. The degree of privacy protection
is represented by the privacy loss parameter e, and for a given setting of e, the
randomness of the output is increased to the extent necessary to guarantee the cor-
responding level of privacy protection. Differential privacy has been employed in
services provided by companies such as Apple [5] and Google [35, 10], and was also
applied in the release of data from the 2020 United States Census to ensure privacy
protection [113].

Furthermore, two key properties—namely the Composition Theorem and the
Post-processing Theorem—are considered to be major factors contributing to the
widespread adoption of differential privacy. The Composition Theorem states that
guarantees the overall level of differential privacy when multiple differentially pri-
vate mechanisms are combined. The Post-processing Theorem states, in essence,
that once an output has been protected under differential privacy, any subsequent
processing of that output—so long as it does not access the original data—preserves
the same differential privacy guarantees. These two theorems enable the guarantee
of privacy protection at the system level, even in complex data analyses involving
the combination of multiple mechanisms or further transformations of already pro-
cessed data. This flexibility, which allows differential privacy to be applied across
a wide range of use cases, is considered to be a major factor contributing to its
widespread adoption.

Moreover, the standard composition theorem may lead to a conservative estima-
tion of security, potentially guaranteeing only a weaker level of security than what
the mechanism intrinsically satisfies. In the context of the privacy-utility trade-off,
such overly conservative estimations are highly undesirable and should be avoided
whenever possible. To address this issue and achieve tighter composition bounds,
several relaxations of differential privacy, such as Rényi differential privacy and zero-
concentrated differential Privacy, have been proposed.

These properties are, in fact, used in the context of synthetic data generation
and analysis, which forms the primary focus of this study. During the training of
the generative parameters, it is necessary to add noise into multiple output results,
which can be evaluated based on the composition theorem. Furthermore, once differ-
entially private generative parameters have been obtained, any data subsequently

sampled from them is guaranteed to satisfy differential privacy by virtue of the
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post-processing theorem.

2.3.2 Definitions

In this section, we provide the definitions of differential privacy and its relaxations.
First, we define neighboring datasets, which is an essential concept for differential

privacy.

Definition 2.3.1 (Neighboring Datasets). Datasets D, D’ € D are neighboring
datasets if D and D’ are different only in one record. When datasets have a fixed
size n, we call the neighboring condition o bounded condition [69]. In this case,
netghboring means changing the value of exactly one record. When datasets have no
such restriction, we call the neighboring condition an unbounded condition [69].

In this case, neighboring means either adding or removing one record.*
(¢, 0)-differential privacy [31, 32] is defined as follows.

Definition 2.3.2 (Differential Privacy [31]). A randomized function M : D — Y
satisfies (g,0)-differential privacy ((e,0)-DP) if for any neighboring D, D" € D
and any output range S C Y,

PrIM(D) € S] < ef PrIM(D') € S] + 6.

In particular, M satisfies e-DP if it satisfies (g,0)-differential privacy (e-DP). We
also call the values € and & the privacy loss budgets. We regard non-differentially

private algorithm as € = oco.

The value 0 represents the allowable failure probability, and it is generally rec-
ommended to set § to a value smaller than 1/N, where N denotes the number of

records in the dataset.

Remark 2.3.3. We can interpret the condition “for any neighboring D, D’ € D”
as considering, in a sense, the worst-case input. That is, the above inequality is
guaranteed to hold even for a dataset D € D in which a single individual’s change

has the greatest possible impact on the output

!This difference is important for the sensitivity of queries. For example, the sensitivity of the
mean value query under the bounded condition is twice as large as that under the unbounded

condition.
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The original definition of differential privacy is based on the ratio of probabili-
ties. However, numerous subsequent definitions and relaxations have been proposed,
many of which aim to bound the divergence of probability density functions.

The following Hockey stick divergence is helpful for describing the differential
privacy [27].

Definition 2.3.4 (Hockey Stick Divergence). Let P,Q be probability distributions

on R%. For a > 0, the a-hockey-stick divergence is given as

DA(PI|Q) = sup max{P(S) — a - Q(S).0}.

SCR4
Here, P(S) and Q(S) are [, P(x)dx and [;Q(x)dx respectively.

By using this divergence, we can interpret a mechanism M : D — R satisfying
(e, §)-differential privacy. For any neighboring datasets D, D’ € D, it holds that

Dg(M(D)||IM(D)) < 6.

As a basic type of divergences, we introduce Rényi divergence, which is necessary

to define Rényi differential privacy.

Definition 2.3.5 (Rényi Divergence). Let P,Q be probability distributions on RY.

For a > 1, the Rényi divergence of order « is

Du(PYQ) = o ([ ParQr o).

. o —

Definition 2.3.6 (Rényi Differential Privacy [87]). For a > 1 and e > 0, a random-
ized mechanism M : D — RY satisfies (o, €)-Rényi differential privacy ((«,e¢)-
RDP) if for neighboring datasets D, D" € D,

Do(M(D)||M(D')) <.

The smaller ¢ is, the stronger the protection, and the larger « is, the stronger
the protection. To satisfy (a,e)-RDP for any « is equivalent to e-DP.
The composition theorem [32, 67] holds for Rényi differential privacy as well as

(¢,0)-DP. Furthermore, Rényi differential privacy can be translated into (e, d)-DP.

Proposition 2.3.7 (Translation from («,e)-RDP to (g,0)-DP [87]). If M is an

log L

(o, €)-RDP mechanism, it also satisfies (€ + —==,6)-DP for any 0 < 0 < 1.

Next, we define zero concentrated differential privacy.
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Definition 2.3.8 (zero-Concentrated Differential Privacy [13]). Let p > 0. A ran-
domized function M : D — R? satisfies p-zero-concentrated differential pri-
vacy (p-zCDP) if for all a > 1 and neighboring datasets D, D" € D,

Da(M(D)[|M(D) < p-a.

Proposition 2.3.9 (Translation from p-zCDP to (e, §)-DP [87]). If M is a p-2CDP
mechanism, it also satisfies (¢,0)-DP for any ¢ > 0 and

(a—1)(ap—e) 1\¢
5:inf6—(1——) .

a>1 a—1 «

2.3.3 Differentially Private Mechanisms

We introduce mechanisms satisfying differential privacy. The simplest way to achieve
differential privacy is to add random noise to the result of a query or computation.

To determine the scale of the noise, the following sensitivity is important.

Definition 2.3.10 (Sensitivity). Let ¢ : D — R? be a query. We define the L,
sensitivity as

L . /
Ay = polax lg(D) — q(D)[lh

and the Lo sensitivity as

Ag:=  max |lg(D) = q(D)]2,

D,D'€D,D~D’

where D ~ D' expresses that D and D' are neighboring.

Definition 2.3.11 (Additive Noise Mechanism). Let ¢ : D — R? be a query. Let P
be a probabilistic distribution, and X be a random wvariable with P. A randomized
function M : D — RY defined as

1s called an additive noise mechanism.

Definition 2.3.12 (Laplace Mechanism). Define a probabilistic distribution on R?

as

fealx) = <i>de—illxlll‘

An additive noise mechanism using a random variable Xq, with f.a(x) is called
Laplace mechanism. This mechanism satisfies e-differential privacy. This is
equivalent to applying the Laplace mechanism with d = 1 independently to each

component. Therefore, the implementation is straightforward.
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Definition 2.3.13 (Staircase Mechanism [42, 41]). Forr > 0, set
By(r) :={z € RY| ||z||, <},

which is an open Ly-ball with radius v in RY. Let v € [0,1]. Define a probabilistic

distribution on R% as
fean(@) = Che™™ if x € By((k+7)A)\Ba((k+~ —1)A), (2.1)

where k € Zxq. Here, C, is a normalization term and described as

d!
(1 —e)2A%54(y,€)’

C, =

and we set .
= e (v + k) (2.2)
k=0
An additive noise mechanism using a random variable Xg with f. a~(z) is called
Staircase mechanism. For any v € [0,1], this mechanism satisfies e-differential

PTIVaAcY.

Definition 2.3.14 (Gaussian Mechanism). Let f(z) be a probabilistic distribution

on R? described as

B 1 d izl
1= (7m)
An additive noise mechanism using a random variable Xgq, with fo(z) is called
Gaussian mechanism. If the inequality
2Alog 12
)

02>

holds, the Gaussian mechanism satisfies (e, d)-differential privacy. If the inequality

holds, the Gaussian mechanism satisfies p-zero concentrated differential privacy [13].

The Gaussian mechanism is widely employed in various applications, including
Differentially Private Stochastic Gradient Descent (DP-SGD), which integrates dif-
ferential privacy into stochastic gradient descent [1].

Beyond additive noise mechanisms, the Exponential Mechanism is the most
widely recognized approach to achieving differential privacy without directly modi-

fying outputs via noise addition.
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Definition 2.3.15 (Exponential Mechanism [84)). Set the candidates of outputs as
C={c1,...,c;}. Let s : D x C — R be a score function. Set

A= sup |s(D,c) — s(D',c)|.
D,D'€D,D~D’ cC

Then, a randomized function M : D — C such that

J= exp(5xs(D,c))
> eec €xP(5xs(D, )

1s called exponential mechanism. This mechanism satisfies e-differential privacy.

Pr[M(D) =

According to an existing work [82], it also satisfies %—ZC’DP.

2.3.4 Properties

In this section, we introduce the important properties of differential privacy.

Composition Theorem

When multiple outputs are generated from mechanisms that each satisfy differential
privacy, the overall privacy guarantee of the system can be expressed as the sum
of the individual privacy loss parameters . This property enables formal guaran-
tees of privacy even when combining various processing steps, making it possible
to construct complex data analysis while preserving differential privacy. Such com-
posability is one of the key features that contribute to the widespread adoption of

differential privacy in practice.

Proposition 2.3.16 (Composition of Differential Privacy [67]). Let M, : D — R%
be (¢1,01)-DP and My : D x R — R% (g,,8,)-DP. Then the mechanism M : D —
R% x R% defined as

M(D) = (Mi(D), Ma(D, M1(D)))
satisfies (€1 + €2,91 + d2)-DP.

Proposition 2.3.17 (Advanced Composition of Differential Privacy [67]). Let M, :
D — R? be (¢,6)-DP for 1 <i < k. Then the k-fold adaptive mechanism M : D —
Rk defined as

M(D) = (My(D), ..., My(D))

satisfies (ke(e® — 1) +e+/2klog(1/8"),kd +0")-DP. Here, M; can look at the dataset
D and the previous outputs My (D), ..., M;_1(D).
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For Rényi differential privacy, the following composition theorem is known.

Proposition 2.3.18 (Composition of Rényi Differential Privacy [87]). Let M :
D — RY be (a,e1)-RDP and My : DxR¥ — R% (v, g9)-RDP. Then the mechanism
M D — RE x R% defined as

M(D) = (Mi(D), My(D, My(D)))
satisfies (o, €1 + €2)-RDP.

For zero concentrated differential privacy, the following composition theorem is

known.

Proposition 2.3.19 (Composition of zero-Concentrated Differential Privacy). Let
M D — R% be p-2CDP and My : DxRY — R py-2zCDP. Then the mechanism
M :D — RE x R® defined as

M(D) = (My(D), Mz(D, My(D)))
satisfies (p1 + p2)-2CDP.

As a refinement of the standard composition theorems, Gopi et al. [46] introduced
the Numerical Composition method, which enables the computation of tighter cumu-
lative privacy bounds by numerically evaluating the privacy loss rather than relying
on conservative analytical estimates.

In general, methods for analyzing the privacy loss of differential privacy mecha-
nisms aim to derive upper bounds, ensuring conservative guarantees from the per-
spective of safety. However, some studies have also investigated lower bounds, which
indicate regions where privacy guarantees are empirically violated, based on the re-
sults of practical attacks [92, 106].

Post-Processing Theorem

Proposition 2.3.20 (Post-Processing Theorem). Let M : D — Y be an e-DP
mechanism and f Y — Z be a deterministic (or probabilistic) function. Then, the
composition of fo M : D — Z also satisfies e-DP.

What this proposition implies is that, once an output satisfies differential privacy,
any subsequent processing that does not depend on the underlying dataset does
not affect the overall privacy guarantee. This property ensures that post-processing
operations—so long as they are independent of the original data—do not compromise

differential privacy.
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2.4 Synthetic Data Generation

2.4.1 Overviews

In this paper, we define synthetic data generation as follows.

Definition 2.4.1 (Synthetic Data Generation). Let Foy : D — R” be a determinis-
tic function and Fgen : R” — D be a probabilistic function. We call a composition of
these function F : D — D a synthetic data generation. We also call Fegy : D — R”

an extraction function and Feen : R” — D a generation function.

Definition 2.4.2 (Differentially Private Synthetic Data Generation). If the ez-
traction F : D — D satisfies differential privacy, the synthetic data generation is
called differentially private synthetic data generation. In most cases, the extraction
Fext : D — R satisfies differential privacy, and thus, the entire function F : D — D

also satisfies differential privacy by the postprocessing theorem.

A wide range of synthetic data generation methods that can be formulated in this
manner have been extensively studied by many researchers [119]. Broadly speaking,
synthetic data generation methods can be categorized into three classes: synthesis
based on statistical summaries [48], synthesis using graphical models, and synthesis
using deep learning models [2]. In particular, recent years have seen a growing
number of synthetic data generation approaches that leverage large language models
(LLMs) as deep learning-based generators [114, 126, 47, 23]. There is also a way to
synthesize plausible tokens in the in-context learning under differential privacy [118].

In addition, the study of evaluation methods for synthetic data quality has be-
come an active area of research [36, 57, 62, 104, 117]. Although the specific evalu-
ation methodologies are detailed in Chapter 4, it is common to evaluate synthetic
data quality using two major approaches: (i) measuring the statistical similarity
between the synthetic and real datasets, and (ii) evaluating the performance of ma-
chine learning models trained on the synthetic data. Regarding utility, there exist
benchmarking studies such as [112] that systematically evaluate the performance of
synthetic data generation methods. Some of these studies also consider additional
aspects beyond utility, such as generation time [129].

In addition to tabular data, there has been active research on differentially pri-
vate data synthesis for other data modalities [125]. Notably, recent studies have
explored the generation of time-series data such as electrocardiograms (ECG) and

electroencephalograms (EEG) with differential privacy [79].
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Algorithm 1 PrivBayes

Require: D € AVN: Dataset, ¢ = (g4,¢,): privacy loss budget, N’ € N: the number
of outputs, #: utility threshold
Ensure: D € AN': synthetic dataset
1. G < str(D,V,e,,PCy, 1)
2: P« Param(D, G, ¢,)
3: Based on the learned graph structure GG and the parameter set P, generate a
synthetic dataset D consisting of N’ records.

4: return D

Furthermore, there has been research on active synthetic data generation, which

aims to generate data for labeling purposes while preserving privacy [102].

2.4.2 Synthesis Algorithms

In this section, we explain several synthesis algorithms we focus on in this thesis.
In particular, since the focus here is on methods targeting categorical attributes, it
is assumed that any numerical attributes have been appropriately transformed into

categorical ones.

PrivBayes

PrivBayes is a Bayesian network-based differentially private synthetic data gener-
ation method proposed by Zhang et al. [123]. The learning process of PrivBayes
can be devided into two stages: structure learning Str() as shown in Algorithm 2
and parameter learning Param() as shown in Algorithm 3. The overall procedure is
shown in Algorithm 1 and Figure 2.1.

In the structure learning step, the attributes Ay, ..., Ay are regarded as nodes,
and connected by edges if they have significant relationships. To facilitate efficient
data generation, the structure is learned as a directed acyclic graph (DAG). In this
graph, each directed edge points from a parent node to its child node. The strength
of the relationship between attributes is measured using metrics such as mutual

information.

Definition 2.4.3 (Mutual Information). Let X be a random variable with a proba-

bilistic distribution on [d], and 11 a random variable with a probabilistic distributions
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Directed Acyclic Graph Joint Distributions Synthetic

Original Dataset Dataset
D — -\‘/‘Z' — llll :
| |J| - =

mn I e———)
Structure Learning Parameter Learning
with Exponential mech. with Laplace mech.

Figure 2.1: The overview of PrivBayes: First, a graph structure is learned in the

structure learning phase, where each attribute is represented as a node. Next, in the
parameter learning phase, the joint distributions are estimated based on frequency
counts. Finally, new synthetic data is generated using the learned graph structure

and the estimated joint distributions.

on [ds]. Then, a real value

Pr((X,II) = (z, )]
Pr[X = 2| Pr[ll = 7]

I(X,10):= Y Pr[(X,10) = (z,7)]log
zedom(X),
medom(IT)

15 called mutual information between X and II.

For notational convenience, we denote the set of nodes by V' = [M]. In PrivBayes,
structure learning is performed by iteratively selecting parent sets for each node

through the following process:
1. All feasible combinations of parent nodes are enumerated for a given node.

2. Among these candidates, the parent set is selected based on statistical criteria,

such as maximizing mutual information.

Define a function PC : V x 2V — 22") whose inputs are a node and all possible
parents, and output is a set of candidates of parents. Namely, for a node X € V and
the candidate of parents V' C V| we obtain the candidates of parents PC(X, V') =
{Py,...,P,}. Next, among the valid candidate parent sets, one is selected in a
differentially private manner using the Exponential Mechanism, which assigns higher
selection probabilities to those with greater mutual information. Directed edges

are then added from each selected parent node to its corresponding child node,
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Algorithm 2 Structure learning: Str(D,V, e, PC, s)
Require: D: Dataset, V: Nodes, €,4: privacy loss budget for structure learning,

PC: parents candidate function, s: score function
Ensure: E: Edge
1: E=0,Vigne =0
2: Choose the first node X; € V' at random, and Vggne.append (X7 ).
3: fort=2,...,ddo

4: Cimp =0

5 for Y € V\Vjone do

6 for T' € PC(Y, Vione) do
g Comp-append((Y, T))
8 end for

9 end for

10: (X, P) < Exp-Mech(s, D, Cinp)
11: Vaone-append(X;)
12: for Y € P do

13: E.append((Y, X;))
14: end for
15: end for

16: return F

thereby constructing the directed graph. The overall procedure is summarized in
Algorithm 2. Note that, in the algorithm, mutual information is abstracted as a
scoring function s : D x V x 2V — R.

In practical implementations, including those of DataSynthesizer? [98] and Syn-
theity® [99], the candidate parent sets are determined by the function PCy, : V' x2V —
2(2V), which defines a mapping from a node and a set of previously considered nodes
to a family of candidate subsets. This function constrains the number of parent

nodes to a fixed value k € Z>( and can be formally expressed as follows.
PCL(X, V') ={V" 2" | V"] = k}.

In the parameter learning phase, the joint distribution is learned in a differentially

private manner based on the graph structure G = (V, E') obtained from the structure

’https://github.com/DataResponsibly/DataSynthesizer
Shttps://github.com/vanderschaarlab/synthcity
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Algorithm 3 Parameter learning: Param(D, G, ¢,)

Require: D: Dataset, G = (V, E): graph structure, ¢,: parameter privacy loss
budget, A: additive noise mechanism

Ensure: P: joint distribution with respect to nodes

1. P= H

2: for i €V do

3: if 7 has no parents then

4: p < pi(D)

5: else

6: Collect the candidates of parents of 7, and make a set r.
7 p < p(D)

8: end if

9 p<« Alp)
10: Set all negative entries in p to zero.

11: p<—D/ > i
12: P.append(p)
13: end for

14: return P

learning step. The learned graph is assumed to be topologically sorted. Parameter
learning begins by aggregating the frequencies from each record and normalizing
them by the number of total records. After applying the Laplace mechanism to
add noise into the estimated frequencies, negative values (if any) are rounded up
to zero to ensure validity. The resulting values are then normalized to form a valid
probability distribution, i.e., their sum is adjusted to be one. The detailed procedure

for parameter learning is presented in Algorithm 3.

AIM

The adaptive and iterative mechanism (AIM) is a graphical model based synthetic
data generation proposed by McKenna [82]. In this approach, the parameters of the
graphical model are updated so as to minimize the workload error defined below,
while carefully managing the privacy budget based on zero-Concentrated Differential

Privacy (zCDP). This method is known for generating high-quality data [18].

Definition 2.4.4 (Workload). A workload W is a list of marginal queriesry, ..., C
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[M]. We also define Wy as
Wy i={se2M|scrrewl

Thus, it holds that
W CWs,.

Definition 2.4.5 (Workload Error). Let W be a workload which consists of a list
of marginal queries ry,...,r, and c1,...,cp > 0 be associated weights. The error of

a synthetic dataset D is defined as:

k
A 1 A
E(D, D) = D] > cillpr(D) = pr (D).
i=1

Here, the numbers of attribute values of Ay, ..., Ay, are d; := |A;| < oo, respec-
tively. Set d := d; X --- x dy; and 6 € A? as a parameter, which is an initialized
total joint distribution.

The overview of algorithm of AIM is as follows.

1. Initialize 6 by Algorithm 5.

2. Choice a target query r € W by Exponential mechanism.
3. Add Gaussian noise into the contingency table.

4. The parameter 6 is optimized based on the Private-PGM framework. The
detail of Private-PGM is described in a paper [83].

5. Steps 2, 3, and 4 are repeated within the limits of the privacy budget.

6. Generate synthetic dataset with Private-PGM.



2.4 SYNTHETIC DATA GENERATION 23

Algorithm 4 AIM: An Adaptive and Iterative Mechanism
Require: D: Dataset, W: workload, p: privacy loss budget

Ensure: D: Synthetic Dataset

1: Hyper-Parameters: MAX-SIZE=80MB, 7' = 16d, a = 0.9
2: T/(2ap) > The budget of Gaussian mechanism
3: €o < /8(1 —a)p/T > The budget of Exponential mechanism
4: Pused < 0
5 t<0
6: Initialize #; using Algorithm 5
7. for r € W do
8: Wy =D ey Cs | TNS|
9: end for
10: while pyseq < p do
11: t+—t+1
12: Pused € Pused T %G? + %
13: Ot < {Tt € W+ | JT—SIZE(Tl, ce 7Tt) S Pu%d . MAX—SIZE}
14: select r, € C} using the exponential mechanism with:
0-(D) = w, (Ipe(D) = pr(O-1)lly = v/2/7 - 00 - di)
15: measure marginal on r:
9t = pr (D) + N (0,0/T)
16: estimate data distribution using Private-PGM:
6 = arg min Z - (0 — Gill3
17: anneal ;1 and 0,41 using Algorithm 6

18: end while
19: generate synthetic data D from Py using Private-PGM
20: return D
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Algorithm 5 Initialize 6; (subroutine of Algorithm 4)
1: forre {reW, ||r| =1} do

2 t«—t+1, o409, T
3 Gt = pr(D) + N(0,071)

4: Pused < Pused T QTitz
)
6

: end for
. 0, = arg minges >, U% 1pr,(0) — Tl > Private-PGM

Algorithm 6 Budget annealing (subroutine of Algorithm 4)
S 19000 — pe B 1)y < /2] -0 - dy, then

€41 < 2 6
Ot41 < O't/2
. else

: Ot41 < Ot
. end if
i (0= pue) <2 (55 + 1y, ) then
: €t+1=\/8'(1—04)'(P—Pused)

10: Ot4+1 = \/1/(2 CQ (p - pused))

11: end if

1
2
3
4
o €t4+1 < €
6
7
8
9




Chapter 3

Privacy Evaluation Framework for

Synthetic Data Generation

3.1 Introduction

The development of machine learning has led to a growing interest in the use of data
containing information about individuals. In utilizing such personal data, reducing
privacy leakage risk via anonymization techniques [110, 115] is crucial. Although
anonymization for high-dimensional tabular datasets is difficult [3], synthetic data
generation is known to generate high-quality and privacy-preserved datasets [56,
112].

There are two major approaches to achieving privacy in synthetic data gener-
ation. The first approach is to guarantee theoretical privacy as a pre-evaluation
of datasets. In the pre-evaluation, intentional noise is often added to the output
to satisfy differential privacy [31]. Differential privacy assumes the worst-case in-
put dataset (See Remark 2.3.3), and this assumption causes low-quality output
datasets [112] as a critical issue. On the other hand, the second approach is to check
vulnerabilities after the data synthesis as post-evaluation of datasets. In the post-
evaluation, synthetic data generation is evaluated regarding resistance to a specific
attack to test vulnerabilities for a given dataset. Since differential privacy as the
pre-evaluation often needs excessively strong noise to utilize data, there are several
situations where post-evaluation is superior. Indeed, in the black-box setting, mech-
anisms can achieve better robustness to privacy leakage than theoretical results from
differential privacy [65, 109]. To obtain a more accurate understanding of privacy
risks, membership inference attacks should be introduced to evaluate the privacy of

synthetic data generation [120].

25
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One attempt to remedy the above described background is to design an evalu-
ation framework for synthetic data against membership inference attacks through
game-based definition [109]. However, this framework has two limitations. First,
target samples are chosen in a random way, and the framework cannot choose vul-
nerable samples in advance. While this framework can only evaluate the average risk
of synthetic data, it should be able to evaluate worst-case vulnerability risk as well
by following the same spirit of DP. If a company utilizes synthetic data generated
from its collected personal data, then it needs to know which individuals are most at
risk. Second, since an adversary’s inference method is only based on machine learn-
ing models, the decision criteria of membership inference is a black box. Namely,
the inference results should be interpreted to understand the risk of synthetic data.
This interpretation will give us insights into the main factors of privacy leakage and

the adversary’s advantages.

In this chapter, we propose a framework for evaluation called Setsubun! which
gives simple and clear solutions to the limitations described above. To cope with
the first limitation, we define a new membership inference game with a stronger
adversary than the existing game-based definition [109], and then introduce Maha-
lanobis distance [16] to choose a target sample as a concrete approach. Compared to
the conventional Euclidean distance, the Mahalanobis distance is more suitable for
detecting outliers, as it takes into account the correlations among variables in the
dataset. This enables us to choose high-risk target samples efficiently in a statisti-
cal fashion. To cope with the second limitation, we propose interpretable inference
methods: a statistic-based inference method and a sample-distance-based inference
method. The former proposed method infers with typical statistics scores, whereas
the latter proposed method infers with samples whose distance is close to the target
samples described above. We also utilize Inference Measure (IM) as an evaluation
metric which enables us to evaluate not only binary classification but also the area-

under-curve (AUC) [51] of membership inference attacks.

To verify the effectiveness of our proposed framework, we conduct an experi-
ment with two datasets and five data synthesis algorithms: Gaussian Copula [108],
Bayesian Networks [123], MWEM-PGM [83], AIM [82], and Conditional Tabular
GAN [116]. As a result, we show that the AUC scores of membership inference
attacks increase up to 0.4 points by using Mahalanobis distance to choose a target

sample, which has a significant impact on the evaluation of membership inference

!The groundhog day in the title of the paper [109] is often February 2, whereas Setsubun in
Japan is often February 3. We chose the word Setsubun as the next day of the groundhog day.
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attacks. We also demonstrate that the proposed interpretable inference methods
achieve higher AUC scores than or equal to those of the existing black-box inference
method [109]. In other words, the proposed interpretable inference method is able

to evaluate privacy more tightly.

3.2 Preliminaries and Related Work

We introduce synthetic data generation techniques and membership inference at-
tacks as related work. Basic notations are as follows. This study focuses on tabular
format datasets. In a tabular dataset, a row corresponds to a person, and a column
corresponds to an attribute. Let Ay, ..., Ay be attributes. We can express a record
as an element x € A := Ay x --- x Ay. If a dataset D contains N records, we can

regard D as an element of AV and set a universe of datasets as D = AV.

3.2.1 Synthetic Data Generation

A synthesis algorithm F : D — D is decomposed into two steps. The first step is an
extraction of generative parameters F..; : D — R". For example, the extraction is
utilized to compute statistics or train machine learning models. The second step is
generation, where we generate synthetic data from extracted generative parameters
Fygen : R = D.

In this chapter, we classify data synthesis algorithms for tabular datasets into
three types. The first method is a basic statistics or copula-based method [75, 6].
The second method is a graphical-model-based method [123, 124, 82, 83]. The third
method is a deep-neural-network-based method [116, 37, 127, 128, 19, 73, 72, 76].

3.2.2 Membership Inference Attacks against Synthetic Data

Generation

A membership inference attack is an attack against a trained machine learning
model, where an adversary infers whether a target sample is contained in the train-
ing dataset of the model by using its query results [107]. A membership inference
attack has been utilized for an evaluation metric of privacy in recent years [120].
While research on membership inference attacks originally focuses on a discrimina-
tive model [107, 14, 120], several works discuss attacks against generative models.

Specifically, many attacks have been found against generative adversarial networks
(GANSs) [17, 54, 59] and diffusion models [15, 60, 30, 80]. However, these works
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mainly discuss attacks based on model parameters instead of outputs of models.
It is important to evaluate outputs of generative models, including synthetic data
generation, as well as model parameters. A framework to evaluate membership in-
ference attacks against generative models based on outputs is discussed by Stadler
et al. [109].

To the best of our knowledge, only the work by Stadler et al. discusses a game-
based evaluation framework for synthetic data generation. However, as mentioned
in Section 4.1, it contains two limitations, and hence we aim to give their solutions.
As described in Section 3.3 in detail, an adversary in our framework is stronger than
that in the work by Stadler et al.: for instance, an adversary can arbitrarily choose
a high-risk target sample, including the worst-case, as well as knowing the entire
dataset. We also note that our framework allows us to deeply understand evaluation

results through interpretable inference methods.

3.3 Proposed Framework

In this section, we propose a privacy evaluation framework for synthetic data genera-
tion. The membership inference game by Stadler et al. [109] is elegant for evaluating
the privacy in synthetic datasets for a fixed dataset. However, it has two limitations

as described here:

1. The method of target choice is random. Although the risk should be evaluated
in the worst-case, random choice may cause evaluation far from such a worst-
case risk. For example, when a company utilizes synthetic data generated from
its collected personal data, risk management needs to know which individuals

are most at risk. It is important to be able to quantitatively select outliers.

2. The method of inference is only by machine learning models. Black-boxing
inferences may make the risk analysis unnecessarily difficult. Indeed, these are
often unable to provide the reason why data are at risk. The inference method
also indicates that how to generate samples to reduce the risk of membership

inference is unclear despite the fact that a target sample is at risk.

Our proposed framework overcomes these limitations and gives them simple and

clear solutions:

1. We modify the framework to allow an adversary to choose the most vulnerable
sample from the original dataset. We introduce Mahalanobis distance [16] to

choose empirically vulnerable samples.
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2. We propose simple and interpretable inference methods. One is a statistics-
based inference that uses the likelihood ratio of datasets. If the inference in
this method is successful, it means that membership for a target sample has
a significant impact on typical statistics scores. Another method is a sample-
distance-based inference, which uses the distance from the target sample. If
the inference in this method is successful, it means that samples whose distance

is close to a target sample are generated.

These solutions enable us to evaluate the risk of membership inference against

synthetic datasets more tightly.

3.3.1 Definition of Membership Inference Game

The proposed membership inference game is defined as follows. The game consists of
three steps between a challenger C and an adversary A as shown in Figure 4.1. The
adversary tries to infer membership of a target sample, and the challenger interacts
with the adversary during the game and checks if the adversary succeeds in the

inference.

(1) Target Choice. In this step, C sends a dataset D to A. The adversary A
chooses an arbitrary target sample ¢ from D, and sends it to C. The challenger

C makes a positive dataset D,,s = D and a negative dataset D,., = D\{t}.

(2) Synthesis. The challenger C flips a coin b <— {0,1}. For b =0, C sets Dyyjg =
D,os. Otherwise, for b = 1, C sets Dyyig = Dypeg. Then, C generates synthetic
dataset Digrger < S(Dorig), and sends it to A.

(3) Inference. The adversary A computes an inference measure (IM) from Dygyget,
Dypos, Dyeg, t. The adversary returns ' = 0 if the IM is large, and returns &' =1

otherwise.

We say that an adversary A wins the game if b = b’ holds. Otherwise, we say
that A loses the game.

Note: The main difference between our framework and Stadler et al. [109] is in
the Target Choice phase. In this phase, while the adversary A in our framework
chooses a target sample t after receiving a dataset D in the Target Choice phase,

an adversary in the framework by Stadler et al. chooses it before receiving a dataset
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Figure 3.1: (1) Target Choice. (2) Synthesis. (3) Inference.

D in the Syntheis phase?. It implies that the adversary A in our framework can
arbitrarily choose a target sample ¢ to maximize its advantages for winning the game
because of knowing D itself. Namely, if we obtain a synthesis algorithm such that C
wins the game described above, it will also win the game by Stadler et al. implicitly.
We describe how to choose ¢ with the Mahalnobis distance [16] on the Target Choice
phase and inference methods on the Inference phase in the remaining parts of this

section.

3.3.2 Target Choice

In the target choice phase, the adversary seeks the most vulnerable sample. It
is widely known that outlier records are vulnerable to membership inference at-
tacks [14]. Based on the above insight, it is considered plausible to select outliers in
a quantitative fashion. We then consider the high-risk target sample as a statistical
outlier and, hence, utilize the Mahalanobis distance, which is simple and requires

few computational costs.

Definition 3.3.1 (Mahalanobis distance [16]). For a dataset D = {z; € R}y,

we set the mean vector
n
1
HD = — § Ty
n <
=1

2 Although the original description of the framework in [109] does not contain the Target Choice

and Syntheis phases explicitly, they correspond to the phases until an adversary returns the guess

on the likability privacy game in [109)].
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and the covariance matrix
n
1
t t
Yp=— E T X — L,
n
Z:

where tx; and 'y are transposed vectors of x; and . For a point x € R,

M(D,a) = \Jt(a = po)E5! (& = 1p)

is called the Mahalanobis distance of a point x. The larger M (D, z) is, the more

we can assume that x is an outlier in the dataset D.

This distance is the same as the conventional Euclidean distance from the mean
1 when Xp = I;. Compared to the Euclidean distance, the Mahalanobis distance is
more suitable for detecting outliers, as it takes into account the correlations among
variables in the dataset.

In this study, we assume the adversary chooses the sample with the largest

Mahalanobis distance as the target sample.

3.3.3 Inference Methods

The goal of an adversary in the inference step is to infer whether Dy, = Dpos Or
Dorig = Dheq for a given synthetic dataset Dygpger. In this study, we define inference
measure (IM), which becomes large when D,,;; = D,,s and small when D,,;; = D.q.
We then propose a statistics-based method and a sample-distance-based method as
well as utilizing the existing machine-learning-based method [94].

We note that, although machine-learning-based methods are utilized for privacy
evaluation in many works [94, 121, 103, 14, 80], their inference results are often
uninterpretable. By contrast, the statistics-based method infers results based on
typical statistics scores, e.g., mean and covariance matrix. Likewise, the sample-
distance-based method infers results based on samples whose distance is close to a
target sample. The two methods described above are more interpretable than the

machine-learning-based methods for the above mentioned reasons.

Machine-learning-based Inference

In the conventional machine-learning-based inference methods, an adversary trains
a machine learning model that infers whether D,,;q = Dyos 0r Dopig = Dypey from
Diarger- The model aims to return 1 if Dygpger is obtained from D,y = Dp,s and 0

if Dyarger 1s obtained from Dy, = D,,eq. Since the synthetic dataset Dygrger itself is
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too large to be an input, we investigate two types of inputs as well as Oprisanu et
al. [94]:

(1) a chunk of several records;

(2) the histogram of the synthetic dataset.

For (1), we regard a chunk of ¢; records as an input for an inference model fyraser :

R — [0,1]. For (2), we concatenate histograms of all attributes. We also use a

logit(z) := log (1 f x)

to make it easier to see the distributions of the model’s output [14]. To sum up, we

function

define the inference measure as

IMdataset = 10git(fdataset<Dtarget))7 (31)

I1v[hist = logit(fhist(Dtarget))a (32)

where f,’s are machine learning models.

Statistics-based Inference

In the proposed statistics-based inference method, an adversary assumes that records
in F(Dpos) and F(D,.,) follow some multivariate Gaussian distributions respec-

tively, and attempts to distinguish them by the likelihood ratio at Dyq,4e. First, an

adversary generates ¢, synthetic datasets from D,,s and D,,, respectively: D;,OS, .. Dggs
F(Dpos), Dyegs - -+ Dg2,y <= F(Dheg). Next, the adversary computes
Mpos/neg *— —— Z m pos/neg

Cc2

1 %
Epos/neg = g § COU(Dpos/neg)a
=1

where m : D — R? is the mean vector function and cov : D — R%*? is the covariance
matrix function. Let fp,,s be the probabilistic density function of the multivariate
Gaussian distribution N (fipess Zpos), and fneg be that of N (fineg, Xneg). Then, the

adversary computes

IMstat = log fpos (m(Dtarget)) - log fneg (m<Dtarget)) . (33)

If the IMgat is larger, then the likelihood of Digpger in fpos is larger. If smaller, that

in freq is smaller.
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Sample-distance-based Inference

In the proposed sample-distance-based inference method, an adversary works on the
hypothesis that there are more records close to the target sample if Dyyijg = Dpos.
We define a function dist : D x R? x N = R as

dist(D,t,c3) == > |lz —t[[a

:DEDt,c:»,

where D, ., is a set of samples up to the cs-th nearest ones with respect to the
Euclidean distance, which is the most basic distance for two points. Note that we
can use another distance function in this method, but the Mahalanobis distance
may be considered inappropriate in this context, as it measures the distance from
the mean of the data while taking the covariance structure into account, rather than
quantifying the distance between two arbitrary points in the space. We define the
inference measure as

IMaist := —dist(Diarget, t, C3). (3.4)

If the IMgis is larger, more records close to ¢ exist in Dygrger, and we see that the

probability of D,.;; = D,s is higher.

3.4 Experiments

In this section, we conduct an experiment to evaluate our proposed framework. The

goal of the experiment is to confirm the effectiveness of the proposed framework.

3.4.1 Experimental Settings

The detailed experimental settings are described below. The detailed experiment

algorithm is shown in Algorithm 7.

Datasets

We make use of two datasets: (1) Adult Dataset [29], which consists of nine categor-
ical attributes and six numerical attributes, and (2) California Housing Dataset [95],
which consists of nine numerical attributes. For Adult Dataset, we removed records
with some missing values, and the number of records was reduced to 30,162. Cali-
fornia Housing Dataset consists of 20,640 rows. One row corresponds to one block,

but we regard one row as one individual.
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Algorithm 7 Experiment algorithm
Require: D,;,: original dataset, F: synthetic data generation algorithm, Ne,,:

the number of experiments, Ny.,: the number of generations

Ensure: pos_list, neg_list : values of IMs

1: pos_list = ||

2: neg_list = ||

3: fori=1,..., N,y do

4: t < Dorig

5 Dyos <= Dopig

6 Dueg — Dong\{1)

7 M < Prepare inference models(D, t).

8 Opos < Feat(Dpos)

9: Oneg < Feat(Dhneg)

10: for j =1,..., Ny, do

11 Dyos target <= Fgen(Dpos)

12: Dieg target < Fgen(Dneg)

13: pos_list.append (M (Dpos target) )
14: neg_list.append(M (Dheg target))
15: end for

16: end for

Synthesis Algorithms

We implement five synthesis algorithms: Gaussian Copula (gcopula) [108], Bayesian
Networks (bayes) [123], MWEM-PGM (mwem-pgm) [83], AIM (aim) [82], and Con-
ditional Tabular GAN (ctgan) [116]. We use gcopula as a statistics-based syn-
thesis, bayes, mwem-pgm, aim as graphical-model-based synthesis, and ctgan as a
deep-neural-network-based synthesis. Although mwem-pgm and aim are proposed as
differentially private mechanisms, we change these mechanisms to non-differentially

private ones in this study.

Target Choices

We compare the following two target choice methods for a given dataset D. In the
random case, we randomly choose a target record ¢ from D. In the mah-max
case, we choose the sample z; € D with the largest Mahalanobis distance M (D, z;)
as the target record t. The former case is identical to the previous work [109]

while the latter case is identical to our proposed framework. Through comparison
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Algorithm 8 Prepare inference models
Require: D,,;,: original dataset, ¢: target sample

Ensure: inference model M
1 Dpos < Dorig
2t Dpeg <= Dorig\{t}
3t Opos -Fext<Dpos)
4: @neg < femt(Dneg)
5

: Train an inference model M

Adult Dataset California Housing Dataset
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Figure 3.2: Distributions of the Mahalanobis distance. The vertical axis has a
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logarithmic scale for readability. We found one outlier whose Mahalanobis distance

is the largest in each dataset.

between these two target choice methods, we confirm whether a target sample in

the worst-case has a significant impact on the experimental results.

We measured the Mahalanobis distance for any sample x; € D. The largest
Mahalanobis distance in Adult Dataset is 173.67, and that in California Housing
Dataset is 119.52. The distributions of the Mahalanobis distance for each record
are shown in Figure 3.2. Although one might think that the number of outliers
is limited, outliers with respect to the Mahalanobis distance exist in both datasets.
Based on these outliers in the datasets, we discuss the AUC scores for the worst-case
in this thesis. Investigating a relationship between the Mahalanobis distance of the

target sample and the AUC scores still remains an open problem.
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Table 3.1: Experimental Settings.
Dataset Adult Dataset, California Housing Dataset

Target Choice | random, mah-max

Synthesis gcopula, bayes, mwem-pgm, aim, ctgan
RF _dataset, RF _hist, LR _dataset, LR_hist,
Inference MLP _dataset, MLP_hist, XGB_dataset, XGB_hist,

statistics, sample

Inference Methods

We implement ten inference methods that can be categorized into three types:
eight machine learning model-based methods, one statistics-based method, and
one sample-distance-based method. For machine learning model-based method,
we use Random Forest (RF_dataset, RF_hist), Logistic Regression (LR_dataset,
LR_hist), Multi Layer Perceptron (MLP _dataset, MLP hist), and Graident Boost-
ing (XGB_dataset, XGB_hist), which are the same models used in the previous
works [109, 94]. In the *_dataset methods, we regard concatenated ten records as
one input; that is, we set ¢; = 10. The reason for ¢; = 10 is to provide the same
setting in the previous work [109]. We also set ¢; = 10 for statistics-based inference
and set c3 = 10 for distance-based inference similarly to ¢;. When we conducted a
preliminary experiment to evaluate the impact of ¢ and c3 on experimental results,
we did not find a significant difference between the results with respect to c; and
c3. Since the computational cost for experiments is also heavy, we co = ¢3 = 10 to
reduce the computational cost. We leave to find other suitable parameters as an

open problem.

Number of Trials

For datasets (2 patterns), target choices (2 patterns), synthesis algorithms (5 pat-
terns), and inference methods (10 patterns), the combination of them has 2 x 2 x
5 x 10 = 200 patterns as shown in Table 3.1. For each pattern, we compute gen-
erative parameters three times, 6,602,605, < Feur(Dpos) and 6,602, .63 <
Fext(Dhneg). For each 0, we generate synthetic datasets that are the same size as the
original dataset and compute IMs 100 times. The detailed experiment algorithm is

described in Algorithm 7.
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Evaluation of Membership Inference Attacks

We introduce the inference measures (IMs). IMs are output scores of the computa-
tion. Using IMs, we can compute the AUC, which is a popular measure for evaluating
membership inference [55, 86, 103, 80]. We also plot frequency distributions of IMs
with Deyig = Dpos and those with Dypig = Diyeg-

Stadler et al. proposed a privacy measure, Privacy Gain [109], but two problems
have been pointed out [44]. First, Privacy Gain represents the difference between
the advantage of an adversary receiving the original data and an adversary receiving
only its synthetic data. Privacy Gain is unavailable in the proposed framework:
specifically, our adversary is stronger than that in Ref. [109] because the adversary
always knows the original dataset in the target choice phase. Second, Privacy Gain
often becomes unstable: for instance, it causes a step-like variation that differs from

the intuition of privacy evaluation.

Using AUC enables us to avoid the problems described above. AUC is a well-
established measure and it is available even to our adversary. AUC is also inter-
pretable in the context of a typical statistical method and essentially represents
the success rate of specific attacks. Consequently, we utilize AUC to evaluate the

privacy of synthetic data through IMs.

3.4.2 Experimental Results and Discussion
AUC Scores for Each Condition

The summary of the main results is shown in Figure 3.3 and all AUC scores are shown
in Figures 3.4 and 3.5. Since the AUC scores vary across datasets, we separate graphs
by datasets. We calculate the mean AUC scores of all synthesis algorithms for each
dataset. For Adult Dataset, most of AUC scores are around 0.5, which means that
the adversary cannot distinguish the membership at all. When the target choice is
random, all inference methods are around 0.5, but when it is mah-max, the results
by RF_hist, XGB_hist and sample are relatively larger AUC scores. In particular,
the AUC score of sample-distance-based inference, which is a part of our proposed
framework, is around 0.8. For California Housing Dataset, when the target choice
is random, all results are around 0.5. The results of all inference methods and

mah-max increase and are more than 0.6.
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Figure 3.3: The mean AUC scores of all synthesis methods for each inference method.
Blue bars are the results when the target choice is random, and orange bars are the

result when the target choice is mah-max.

Difference in Target Choices

The difference in target choices is significant. From Figure 3.3, we see that the

AUC scores when the target choice is mah-max highly outperform those when it
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is random. AUC scores increase up to 0.4 points with California Housing Dataset.
By choosing an outlier sample as a target sample, the risk of membership inference
increased significantly. Thus, our framework is effective in evaluating the risk of

synthetic data generation.

Difference in Inference Methods

Among inference methods, the sample-distance-based method provides high per-
formance in both datasets. When the dataset is Adult Dataset, it provides the
best AUC score. When the dataset is California Housing Dataset, the AUC scores
of most of inference methods, including our proposals, are large as shown in Fig-
ure 3.3. Despite the simplicity and interpretability of our proposed methods, they
are as accurate or better than other inference methods.

For machine learning model-based methods, we found that RF and XGB gen-
erally yielded better results. For LR and MLP, we found that retaining data as a
dataset (*_dataset) resulted in slightly better performance. In contrast, RF per-
formed slightly better when using histogram-based data retention (*_hist). For
XGB, we observed that the histogram approach (*_hist) yielded better performance
on the Adult dataset, whereas the dataset-based approach (*_dataset) performed

marginally better on the California dataset.

Difference of Synthesis Algorithms

We also show AUC scores for each synthesis algorithm in Figure 3.6. All AUC scores
are shown in Figures 3.4 and 3.5. When the dataset is Adult Dataset, the scores are
around 0.5 for each synthesis algorithm. When the dataset is California Housing
Dataset, the AUC scores except for ctgan are large. In particular, the result of

bayes is the largest.

AUC Scores and Utility

We also check the utility of each synthetic data. We generate a synthetic dataset
D, with the same size as the original dataset D,,;, and evaluate the utility by the
mean of the L, distance for each attribute, which is a function widely used in the
evaluation of synthetic data [112]. For a categorical attribute with K categorical

values, the L; distance is computed as

K

Ll (porigjpsyn) _ Z |p;)m'g . pfyn|7
i=1
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Figure 3.6: The mean AUC scores of all inference methods for each synthesis method.
Blue bars are results when the target choice is random, and orange bars are when

the target choice is mah-max.

where p° is a normalized frequency distribution of the original dataset and p*¥™ is
that of the synthetic dataset. Thus, the range of L; distance is from 0 to 2. For a

numerical attribute, we separated them into 20 groups with equal-width ranges.

The graphs shown in Figure 3.7 are the means of the L; distance for all attributes.
The result showed that the quality of synthetic data generated by the other synthesis
than ctgan is high. We found several insights from Figure 3.6 and Figure 3.7.
The high-quality synthesis methods, such as gcopula, bayes, mwem-pgm and aim
deliver high AUC scores for California Housing Dataset and around 0.5 for Adult

Dataset. Although the average AUC scores of ctgan are low, in some cases, e.g.,
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Figure 3.7: The above figures represent the means of the L, distance for all at-

tributes, where the measurement is executed for each synthesis algorithm.

[Adult, ctgan, mah-max, sample], those are high. In summary, we found cases with
high-utility-and-low-AUC-score and also cases with low-utility-and-high-AUC-score.
We believe that the above results are evidence for the hypothesis that the results
of membership inference attacks are independent of utility. Namely, evaluating

membership inference attacks is crucial regardless of utility.

Frequency Distributions

We discuss whether IMs can provide more implications about experimental results
than the AUC scores. We plot IMs and draw frequency distributions in Figure 3.8
and Figure 3.9. IMs of D,y = Dyos are red, and those of Do,y = D, are blue.
These are classified into four kinds of results. Here, each result is denoted by a tuple

of [Dataset, Target, Synthesis, Inference] below.

e The case where two distributions are completely indistinguishable from each
other: for example, [Adult, gcopula, random, RF_dataset| and [California,
mwem-pgm, random, MLP _dataset]. The AUC score is then 0.5.

e The case where two distributions are somewhat indistinguishable from each
other: for example, [Adult, gcopula, mah-max, RF _dataset] and [California,
aim, mah-max, XGB_hist]. The AUC scores are then 0.91 and 0.92.
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as it goes to the right. The more red is on the right side, the larger the AUC.

e The case where two distributions are completely distinguishable from each
other: for example, [California, bayes, mah-max, sample| and [California,
mwem-pgm, mah-max, RF_hist]. Although the AUC scores of both cases are

equal to 1, we can find that the distributions of both cases are different.

e The case where distributions are unstable: for example, [Adult, ctgan, mah-
max, statistics]. We can see that the low quality of synthetic data by ctgan

causes this result.

The above cases have two implications. The first implication is that the use of IMs

provides a chance to visualize the results, such as Figures 3.8 and 3.9. The second
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implication is that the visualization of IMs enables us to more deeply understand

why membership inference attacks are successful than AUC scores.

3.5 Conclusion

In this chapter, we propose a privacy framework to evaluate resilience against mem-
bership inference attacks for synthetic data generation techniques. We introduced
Mahalanobis distance to choose a target sample. By way of the experiment, we
showed that the performance of membership inference attacks increased when we
used the introduced method. We also propose two interpretable inference methods.
By way of the experiment, we showed that they are stronger than or equal to the
existing black-box inference method. From these results, we can conclude the pro-
posed framework enables us to evaluate the privacy of synthetic data generations
more tightly.

As a result, we found that, when using non-DP synthetic data, we must at
least remove outliers to ensure privacy. Alternatively, since the theoretical relation-
ship between differential privacy and membership inference attacks is well estab-
lished [121, 66], we recommend using DP synthetic data to achieve a certain level

of privacy protection.
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Chapter 4

Utility Evaluation of Synthetic
Data Generation with Real
Medical Dataset

4.1 Introduction

Given that privacy is of paramount importance and data analysis is highly active in
this domain, the this study focuses on the medical and healthcare field. Real-world
data collected from healthcare settings has attracted attention for propelling new
clinical research due to its non-invasive nature for patients and its potential to con-
stitute big data, thereby reducing bias. Including personal information in the data
necessitates a substantial investment of person-hours for ethical review procedures
and data protection, thereby impeding the prompt progression of medical research.
Anonymization techniques, which reduce the risk of identifying individuals, are cru-
cial in providing data to third parties without patient consent and streamlining the
research approval process. Unlike secure computation [22, 105], which facilitates
data analysis in encrypted form, these techniques afford analysts the advantages of
viewing anonymized data that possess similar properties to the original in a format
equivalent to actual data and conducting analyses in an exploratory manner. How-
ever, conventional anonymization methods, such as k-anonymity [110], encounter an
issue where the quality of the anonymized data significantly diminishes as the data
becomes high-dimensional [3].

The technology of synthetic data generation has been recognized for its abil-
ity to produce new data while preserving the original statistical properties of high-
dimensional data [56, 112, 108, 123, 82, 83, 116]. Specifically, this technology enables

47
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original dataset D,,;4 synthetic dataset D,

generative parameters

Figure 4.1: Overview of synthetic data generation. The first step is to extract
generative parameters F..; : D — RP. The second step is to generate synthetic data

from the extracted generative parameters Fg, : R — D.

the expedited analysis of synthetic data in a relatively unrestricted environment, po-
tentially abbreviating the approval process. Upon securing useful results, researchers
can directly apply them to the original data, deriving final results and potentially
mitigating research costs [33]. Nevertheless, to the best of our knowledge, few studies
have concurrently deployed various synthetic data generation techniques to authen-
tic medical data [8, 24]. Moreover, few studies have applied various synthetic data
generation techniques to real medical data, and insufficient knowledge has been ac-
cumulated on the differences among the techniques and the quality of the generated
synthetic data.

In the previous chapter, we demonstrated that non-DP synthetic data poses
privacy risks for outliers. However, these risks can be theoretically evaluated by
applying differential privacy, which provides a formal framework for privacy risk
evaluation [121, 66]. In this chapter, we generate synthetic data by using statistics-
based, graphical-model-based, and deep-neural-network-based approaches and eval-
uate the quality of the resultant synthetic data. Due to the heightened significance
of privacy-preserving data analysis in healthcare, we focus on medical data in this
work. Utilizing the Diagnosis Procedure Combination (DPC) dataset from Ehime
University Hospital as the original dataset, we evaluate generated synthetic data
from three critical perspectives:
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e distribution distances, as a metric for univariable,
e differences in correlation matrices, as a metric for bivariable,
e machine learning model performances, as a metric for multivariable.

Furthermore, we incorporate differential privacy (DP) [31] into each synthetic data
generation method, serving as a theoretical privacy framework.

Consequent to the experimental results, we obtained the following conclusions:

e The incorporation of DP enhances privacy protection while concurrently di-

minishing the quality of synthetic data

e The magnitude of quality degradation is contingent upon the synthesis method
employed. Gaussian Copula [75] and AIM [82] sustained comparatively supe-
rior quality even after applying DP.

4.2 Related Work

4.2.1 Synthetic Data Generation

Numerous methods have been proposed for generating synthetic data, especially
concerning tabular formatted data, while ensuring DP. Synthetic data generation
approaches for tabular datasets can be categorized into three types. The first type
is founded on basic statistics [75, 6]. The second type leverages graphical mod-
els [123, 124, 82, 83]. Tabular formatted data can be regarded as features extracted
by humans. Since the graphical models learn relationships among attributes, they
produce high-quality synthetic data [112]. The third is the deep-neural-network-
based method [116, 37, 128, 19, 73, 72, 76]. In this research, we evaluate one
statistics-based method, three graphical-model-based methods, and one deep-neural-

network-based method, utilizing a real medical dataset for the assessment.

4.2.2 Synthetic Data Generation for Medical Data

Researchers have directed substantial interest toward using synthetic data gener-
ation in the medical field, mainly focusing on image data [49, 111]. In these ap-
plications, practitioners employ synthetic data for data augmentation and privacy

protection. However, the predominant methods, which are image-specific, present
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difficulties when applied to tabular data and do not account for DP. Although Her-
nandez et al. investigated a tabular healthcare dataset [56], their research concen-
trates exclusively on deep neural network-based synthetic data generation without
considering DP. Our research evaluates several synthetic data generation techniques
in conjunction with DP.

4.3 Methodology

Our experiment comprises three components: datasets, synthetic data generation
algorithms, and evaluation methods. The experiment aims to evaluate the differ-
ences among synthesis algorithms and analyze DP’s influence. An overview of the

experiment is as follows:

e Apply a synthesis algorithm F : D — D to the original dataset D,,;,. The
generated synthetic dataset F(Dyyiy) = Dsyy, is the same size as the original
dataset Doyig-

e By using an evaluation method £ : D x D — R, compare Dy, with D;,.

4.3.1 Dataset

This research uses a DPC dataset from Ehime University Hospital. This dataset has
been extracted from the data warehouse, which encompasses DPC data from 2010
to 2013, to analyze the impact of 15 attributes on length of hospital stay: gender,
type of admission, emergency admission, length of stay, height, weight, smoking,
pregnancy, independent eating, independence in activities of daily living, indepen-
dent mobility, major diagnostic category, surgery, subclassification, and secondary
disease. Table 4.1 delineates the information for each category. All categorical data
are encoded into one-hot vectors. Records containing missing values were excluded

from the dataset, and the number of records became 9,666.

4.3.2 Synthesis Algorithm

In this research, we implement five synthesis algorithms, as listed in Table 4.2.
Generally, a synthesis algorithm F : D — D is decomposed into two steps, as
shown in Fig.4.1. The first step is to extract generative parameters F..; : D — RP.

Generative parameters are compressed information needed for the generation, such
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Figure 4.2: Overview of the experiment. In the experiments, we brought the DPC
dataset provided by Ehime University, along with the programs for data synthesis
and evaluation, into a secure room. Only the results of the experiments were taken

out of the secure environment.

as basic statistics or trained machine learning model parameters. The second step is

to generate synthetic data from the extracted generative parameters Fy, : RP — D.

Moreover, we use DP, which is known as the gold standard of the privacy pro-
tection framework [31, 32| (See Definition 2.3.2). We add intentional noise to the
generative parameter § = F,,;(D) to satisfy DP. This research investigates the case
£=00,8,4,2,1 and § = 107°.

Statistics-based Methods

We evaluate the Gaussian Copula-based synthetic data generation as a statistics-
based method [108, 75]. The Gaussian Copula’s generative parameters are the origi-
nal dataset’s mean vector u, the correlation matrix S, and the marginal distribution
Hy,...,H,. For the DP version, we use the implementation by Li et al. [75]. We
denote this method by GCopula.
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Table 4.1: Names and types of attributes of DPC dataset.

CHAPTER 4. UTILITY EVALUATION

number of the attribute values is n.

Name Type
1 | Gender categorical (2)
2 | Type of admission categorical (7)
3 | Emergency admission categorical (2)
4 | Length of Stay numerical
5 | Height numerical
6 | Weight numerical
7 | Smoking categorical (2)
8 | Pregnancy categorical (2)
9 | Independent eating categorical (4)
Independence in Activities .
10 _ o categorical (4)
of Daily Living
11 | Independent Mobility categorical (5)
12 | Major diagnostic category | categorical (18)
13 | Surgery categorical (9)
14 | Subclassification categorical (10)
15 | Secondary disease categorical (3)

Graphical-Model-based Methods

(n) means that the

We evaluate PrivBayes [123], MWEM-PGM [83], and AIM [82] as graphical-model-
based methods. PrivBayes trains important relations between attributes and ex-
presses the relation as a directed acyclic graph. When generating data, attribute
values are sampled in accordance with the graph. AIM and MWEM-PGM are simi-
lar methods that learn conditional probability tables to satisfy DP and sample data
from them. These methods are denoted by Bayes, MWEM, and AIM.

Deep-Neural-Network-based Methods

We evaluate Conditional Tabular Gan, CTGAN [116], as a deep-neural-network-
based method. The differentially private version of CTGAN is implemented by
smart-noise’. In this method, we train deep neural networks with DP-SGD [1].
This method is denoted by CTGAN.

https://docs.smartnoise.org/synth/index.html
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Table 4.2: Synthesis algorithms in our experiment.

Synthesis algorithm | Description | Generative parameter

Gaussian Copula [75] | GCopula Statistics

PrivBayes [123] Bayes Directed acyclic graph, conditional probability
MWEM-PGM [83] MWEM Total joint distribution

AIM [82] AIM Total joint distribution

CTGAN [116] CTGAN Model parameter of deep neural network

Algorithm 9 Experiment algorithm
Require: D, : original dataset, F": synthesis algorithm, E: evaluation function,

Negzp: number of experiments
Ensure: v,,c0n, Ustd
ans = ||
fori=1,..., Nep, do
Dy < F(Doyig)
v 4= E(Dorig, Dsyn)
ans.append(v)
end for
Umean — Mmean of ans

vgq < standard deviation of ans

return Umean, Ustd

4.3.3 Evaluation Methods (Quality of Synthetic Data)

In this research, we evaluate the quality of the synthetic dataset Dy, which is
the same size as the original dataset D,,;,, from three perspectives: distribution
distances, machine learning model performances, and differences in correlations.
Distribution distance is a broad measure, and machine learning model performance
is a narrow measure [28, 25]. We also evaluate the absolute difference in correlations

to compare relations explicitly. Let £ : D x D — R be an evaluation function.

Evaluation by Distribution Distances

The first evaluation is by statistical distribution distances FEgg : D X D — R
between D,,;, and D,,,. For each attribute, we evaluate the statistical distance
of 1-way marginals. For the statistical distances, we use L1 distance, L2 distance,

Hellinger distance, and Wasserstein distance. The definitions are as follows.
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Definition 4.3.1 (L, norm). For z,y € A%, the L, norm is defined as

d v
|z —yllp == (Z |z — Z/z‘|p)
=1

We use the case when p =1 or p = 2.

In a previous work, Hellinger distance was regarded as the best utility metric to

rank synthetic data generation algorithms [34].

Definition 4.3.2 (Hellinger distance). For x,y € A%, the Hellinger distance is
defined as

Hel(z,y) : (Z:\/:L'_Z \/_>

Definition 4.3.3 (Wasserstein distance). For z,y € A, the Wasserstein dis-

tance or the Earth-Mover distance s defined as

Was(z,y) .= inf Eqpylla — 0],
I (2y)
where T'(z,y) is the set of all couplings of x and y. A coupling v is a joint probability
measure on R? x R whose marginals are x and y on the first and second factors,

respectively.

Evaluation by the Difference of Machine Learning Model Performances

The second evaluation is the differences in machine learning model performances.
Since DPC datasets are often used to predict the length of hospital stays, we train
a regression model to predict length of stay (fourth attribute in Table 4.1) with
Light GBM, which is a simple but high-performing machine learning model. We
compare machine learning models trained by Dy, with Dg.;4.

The accuracy of models is evaluated by using the root-mean-square error (RMSE).

For a trained model f, the error is defined by

n

1
RMSE D - — i i 2,
(£.D) =]~ ;w f (i)
where D = {(x;, ;) biz1,..., We evaluate RMSE of a trained model with a syn-
thetic dataset Dgy,,. Thus, the evaluation function F,,; : D x D — R is defined as

Eii(Dorigy Dsyn) = RMSE(fsyn, Dorig), where fg,, is a trained model with Dy,
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Evaluation by the Difference of Correlation Matrices

The third evaluation is the difference in correlation matrices. The correlation matrix

is defined as follows:

Definition 4.3.4 (Correlation matrix). For data samples z*,..., 2™ € R?, set its

mean vector as i € RY. Then, a matriv R € R whose (i, j)-th component is

S (e — ) (2 — )

Vi ah — )2y (e — )2

1s called the correlation matrix.

Rij =

We calculate the correlation matrices of D, and Dg,,. We evaluate only nu-
merical attributes and compute the absolute error of each component. Thus, the

evaluation function E., : D x D — R™*" is defined as
(Ecor(Dorig’ Dsyn))i,j = |ng;~ig - Rf;m|:

where n is the number of numerical attributes.

4.4 Experimental Results

We generated synthetic data five times under the same conditions and calculated

the average of the evaluation values. In this section, we report the results.

4.4.1 Distribution Distance Results

Figures 4.3 and 4.4 display the evaluation results by distribution distances, separat-
ing the graphs of categorical and numerical attributes due to differing scales. The
results of all attributes are shown in Figure 4.5, 4.6, 4.7, and 4.8. Values repre-
sent the means of all categorical or numerical attributes, respectively. Notably, the
distance is regarded as a loss.

First, the losses for ¢ = oo, representing a non-differentially private case, are
small. Also, the losses significantly increase as the values of € decrease, enhancing
the robustness of the protection by DP.

CTGAN and differentially private Bayes exhibit more substantial losses when syn-
thesizing algorithms are compared, while GCopula, MWEM, and AIM demonstrate lesser

losses.
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Figure 4.3: Result of categorical attributes distance. L1 distance, L2 distance,

Hellinger distance, and Wasserstein distance from the top.

4.4.2 Machine Learning Model Performance Results

Fig. 4.9 illustrates the results of machine learning model performances, with the red
line expressing RMSE for the original dataset. Non-differentially private results for
each synthesis algorithm (¢ = oo) align closely with the original. The quality of
the synthetic data discernibly declines as ¢ increases. Specifically, the results from
differentially private Bayes and CTGAN are inferior, while those of GCopula and AIM
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Figure 4.4: Result of numerical attributes distance. L1 distance, L2 distance,

Hellinger distance, and Wasserstein distance from the top.

remain proximate to the original results, even when differentially private.

The results of distribution distances for each attribute are shown in Fig. 4.5, 4.6,
4.7 and 4.8.
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Figure 4.5: The values of L1 distance of each attribute.

4.4.3 Difference in Correlations Results

Fig. 4.10 presents the results in cases where € = 0o, the absolute losses of GCopula
and Bayes are small. Additionally, losses become more significant as € increases,

resulting in differentially private CTGAN being the worst.

4.5 Discussion

4.5.1 Quality of Synthetic Data

The three evaluation methods reveal that the losses associated with non-differentially

private synthesis remain sufficiently small, while DP diminishes the quality of syn-
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Figure 4.6: The values of L2 distance of each attribute.

thetic data. In differentially private cases, the magnitude of the losses varies among
synthesis methods. This indicates the potential for enhancing the quality of syn-
thetic data by strategically devising DP. Notably, the recently proposed AIM achieves
noteworthy experimental results consistently. AIM manifests negligible deterioration

in the quality of the synthetic data when implementing DP.

4.5.2 Evaluation Methods

This study employs L1 distance, L2 distance, Hellinger distance, and Wasserstein
distance as evaluative metrics, which are widely utilized in studies measuring the

quality of synthetic data and prove highly useful when assessing the "relative” qual-
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Figure 4.7: The values of Hellinger distance of each attribute.

ity thereof. These metrics indicate that AIM exhibits notably superior results to
other methods.

Conversely, to facilitate absolute evaluations with qualitative significance, it is
necessary to assume realistic use cases for evaluations by machine learning perfor-

mance and ascribe meaning to the magnitude of errors.

4.5.3 Towards Practical Use

Discussion has yet to emerge regarding whether using synthetic data for personal
data is subject to the agenda of Ethics Review Committees. Conversely, Guo et

al. have reported that they did not require an ethical review because the synthetic
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Figure 4.8: The values of Wasserstein distance of each attribute.

data contained no information that could lead to the identification of individual
patients [50]. It has been posited that, should synthetic data gain recognition as a
viable option for privacy considerations, obtaining approval from ethics committees
may become unnecessary [7]. In a case wherein an organization inadvertently dis-
closed the personal information of numerous individuals online while testing a cloud
solution, the Norwegian Data Protection Authority (Datatilsynet) highlighted that
testing could have been conducted by processing synthetic data or using less per-
sonal data 2. This ruling also implies that synthetic data may be recognized as
having the potential to exclude information that leads to personal identification.

Furthermore, DP can potentially enhance the security of such synthetic data.

’https://www.dataguidance.com/news/norway-datatilsynet-fines-nif-nok-12m-disclosing
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Figure 4.10: Results of differences in correlations.
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Therefore, DP is anticipated to minimize discussions concerning anonymous pro-
cessing and expedite the progression of research. Nonetheless, studies have exam-
ined attacks that deduce the original data from synthetic data [109], necessitating

further research to ensure its security.

4.6 Conclusion

In this research, employing the a Diagnosis Procedure Combination (DPC) dataset,
we experimentally evaluated synthetic data generation techniques’ effectiveness us-
ing statistic-based, machine-learning model-based, and deep neural network-based
methods. The investigation clarified the differences in performance among the meth-
ods, attributing them to variations in the amount of source data and the degree of
accuracy degradation when implementing differential privacy. In particular, we
found that the methods using Gaussian copula and AIM produced high-quality re-
sults even under differential privacy settings. However, we also observed a slight
degradation in data quality due to the application of differential privacy.  Fur-
ther, we discussed issues that must be addressed to apply synthetic data generation

techniques more effectively.

Ethical Considerations

The Ethics Review Committee of Ehime University Hospital approved this study
(“Quality evaluation of synthetic data generation methods preserving statistical
characteristics,” Permission number 2012001), and we conducted it in accordance

with the committee’s guidelines.






Chapter 5

Evaluating Differential Privacy of
Synthetic Data (Generation
without Adding Intentional Noise

5.1 Introduction

Personal data is expected to be utilized in various fields such as finance, healthcare,
and medicine, but sharing personal data collected by one organization with an-
other organization requires attention to individual privacy. Traditional anonymiza-
tion techniques such as k-anonymization [110] and randomized response [115] have
struggled to find a good trade-off between utility and privacy for high-dimensional
data [3]. In contrast, a synthetic data generation technique has emerged as a privacy
protection method that preserves data utility even for high-dimensional data such
as images and tabular data with multi-attributes [11]. In synthetic data genera-
tion, generative parameters are extracted from the original raw dataset, and then
synthetic data are generated randomly as shown in Figure 5.1(a). The synthetic
data are in the same format as the original data and should be statistically similar
to them. Typical generative parameters are statistics of original data or trained
parameters of deep neural networks [108, 75, 6, 40, 123, 124, 82, 45, 116, 71, 100].
After synthetic data are generated, they are shared with other organizations, but
the generative parameters are typically discarded without being disclosed.

To guarantee privacy protection theoretically, differential privacy [31] is used as a
standard framework. By adding randomness in generative parameter calculation, the
generative parameters become differentially private [1, 81, 123]. The post-processing

property of differential privacy guarantees that synthetic data generated with dif-

65
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computing,
training

generation
with randomness

——
— & —

— generative parameters
original dataset

computing, .
training with JIIIL % E (b)

intentional

randomness dlfferenjclally private differentially private
generative parameters synthetic dataset

synthetic dataset

= Areas where data is considered protected

Figure 5.1: (a) Output = Only synthetic data: The generative parameters are dis-
carded after data are generated. We evaluate privacy protection by the randomness
in generation.

(b) Output = Generative parameters: By computing or training generative pa-
rameters with intentional randomness, we obtain differentially private generative

parameters that also generate differentially private synthetic data.

ferentially private generative parameters also satisfy differential privacy as shown in
Figure 5.1(b). Although the synthetic data generated with non-differentially private
generative parameters have high utility, those with differentially private parameters
are known to have lower utility [112].

We address this problem by evaluating differential privacy of randomness in
data generation when using non-differentially private generative parameters. As
mentioned above, in the context of anonymization, the generative parameters are
discarded without disclosing them to the public. When the output does not include
generative parameters but only consists of synthetic data, it can be regarded that
the synthetic data has already been protected due to the inherent randomness, even
if the generative parameters are not protected with differential privacy, as shown in

Figure 5.1(a). By evaluating privacy protection in data generation quantitatively,
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theoretically guaranteed synthetic data can be obtained without degrading the util-
ity. Moreover, by incorporating this evaluation into traditional methods, we can

decrease the amount of random noise while ensuring the same level of privacy.

In this chapter, we regard a record as a d-dimensional vector and focus on a syn-
thetic data generation mechanism with the mean vector and the covariance matrix
of the original dataset shown in Figure 5.2. We theoretically evaluate Rényi differ-
ential privacy [87], which is a relaxed concept of differential privacy, by randomness
in generation for the method. We explicitly derive the condition of ¢ such that
the synthetic data generation mechanism satisfies (a, £)-Rényi differential privacy
for a fixed @ > 1 under the unbounded neighboring condition (Theorem 5.3.1) and
the bounded neighboring condition (Corollary 5.3.2). Furthermore, we conduct a
numerical evaluation with reference to the Adult dataset [29] and compute € con-
cretely. We demonstrate that when the size of the original dataset is 10 million and
the mechanism outputs data the same size as the input dataset, it satisfies (4,0.576)-
Rényi differential privacy under the unbounded condition and (4,2.307)-Rényi dif-
ferential privacy under the bounded condition (Table 5.1). If they are translated
into the traditional (e,d)-differential privacy, the mechanism satisfies (4.46,10714)
and (9.21,107!4) differential privacy under the unbounded and bounded condition,
respectively (Figure 7?7). These values are mostly similar to ones used by US Cen-
sus [113].

5.2 Preliminaries

In this section, I introduce basic notations and concepts for later discussion.

5.2.1 Notations

In this chapter, we denote the determinant of a square matrix A € R4 by |A] :=
det A. The transposes of a vector x € R? and a matrix A € R%*% are denoted by
tr € R and A € R%*9% . We assume that datasets are tabular but all discussions
can be applied to other datasets such as images since we consider records as vectors.
In a tabular dataset, a record is expressed as a combination of several attribution
values. Each attribution value is a numerical value and normalized into a range
[—1,1]. Thus, a record is regarded as a vector x € [—1,1]¢, and a dataset with n
records is regarded as D = {x;}i=1. ., € [-1,1]¥*" =: D.
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5.2.2 Synthetic Data Generation with Mean Vector and Co-

variance Matrix

In this chapter, we focus on a simple synthetic data generation with the mean
vector and the covariance matrix of the original dataset Mg : D — [—1,1]¢ as
shown in Figure 5.2. This method is identical to the Gaussian copula [108] with the
assumption that the marginal distributions are all normal distributions.

The mechanism M generates synthetic data as follows. First, for dataset D =
{x;}iz1,..n € D, the mean vector ; € R? and the covariance matrix ¥ € R¥™? are

computed:

1 n
M= ﬁ;iﬂz,

1TL
E::—g to — ptp.
ni:lxm iy

Next, a sample is drawn from a multivariate normal distribution A (u, ), and its
values are cut into the range [—1,1]%.

We denote by MZ% : D — [—1,1]%*" the mechanism that simultaneously outputs
n records by M¢. By Proposition 2.3.18, we see that if M satisfies («,€)-RDP,
then M7, also satisfies («, ne)-RDP.

5.2.3 Properties of Symmetric Matrices
We explain the properties of symmetric matrices for the proof of the main theorem.

Definition 5.2.1 (symmetric matrix). A square matriz A is called symmetric if
A ="A holds.

Definition 5.2.2 (eigenvalue, eigenvector). Let A € R4 be a matriz. A complex
number A € C is an eigenvalue of A, if there exists a non-zero vector x € C? such

that Ax = Ax holds. The vector x is also called an eigenvector of A.

Definition 5.2.3 (positive-definite, semi-positive definite). For a d-dimensional
symmetric matrix A, the following two conditions are equivalent:

(1) For all x € RN\{0}, it holds 'z Az > 0 (> 0);

(2) All eigenvalues of A are positive real numbers (non-negative).

If A satisfies these conditions, then A is called positive-definite (positive semi-
definite).

The following two lemmas are well-known facts [53].
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Figure 5.2: Synthetic data generation algorithms M and M

Lemma 5.2.4. Let A, B be positive-definite symmetric matrices. If AB is symmet-

ric, then AB 1is also positive-definite.
Proof. Since AB is symmetric, we have
AB ="(AB) ='B'A = BA.

Thus, there exists an orthogonal matrix P € R%? such that *PAP = D4 and
!PBP = Dp, where D, and Dp are diagonal and positive-definite. Let x € R?\{0}.

Then we have
'2ABx = '("Pz)'PA'PPBP('Pz) = "(*Pz)DsDg(*Px) > 0.
Thus, we see that AB is also positive-definite. O

Lemma 5.2.5. Let A be a positive-definite symmetric matriz. For an invertible

matriz S that is the same size as A, 'SAS is also positive-definite.

Proof. Let x € R¥N\{0}. Since S is invertible, we see that Sz # 0. Since A is

positive-definite, we have
tz('SAS)x = (Sx)A(Sz) > 0.

Thus, !SAS is also positive-definite. n
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Proposition 5.2.6. Let A, B,C be positive-definite symmetric real matrices. If
ABC' is symmetric, then ABC' is also positive-definite.

Proof. Set D := ABC = CBA. Since C is positive-definite, we can obtain the

spectral decomposition
d
C = Z Aﬂf@z,
i=1

where \; > 0 for all t = 1,...,d. Then we set S := Zle VAi0;t0;. We see that S is
symmetric and C' = S? holds. We have

ST'DS'=81AS'SBS = SBSS'AS!.

By applying S71AS™! and SBS to Lemma 5.2.4 and Lemma 5.2.5, we see that
S~1DS~! is positive-definite. Thus, D is also positive-definite. O

5.3 Main Theorem

In this chapter, we prove the upper bound of € such that the mechanism Mg satisfies
(av, e)-Rényi differential privacy for a fixed a. We assume that all datasets have a
limitation for the minimum eigenvalue of their covariance matrices. Specifically, for

a fixed o > 0, we define the set of datasets as

Dy :={D € [-1,1]""| 2 € S 122pz > o}.

We also set 7 := %d.
First, the result under the unbounded condition is the following theorem. We
assume that the number of records in an original dataset is n and that in its neigh-

boring dataset is n + 1.

Theorem 5.3.1. Under the unbounded condition, let « > 1. We assume that

n
n+1

<T,
2 (5.1)
1.

n

< mi 1,
o < min{n + T(n+1)—n

Then, the synthetic data generation mechanism Mg satisfies (o, eyp(ao,n))-RDP
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for eyp(a,n) == max{e,1,ca2}. Here,

Lo @ T
T2 m+D)n+1-a)
ad n @
1 — log(l — ——
e s e Tt
1 L+ v
————logmin{1, ( H)T( o)y
2(0[—1) (1+n_+1)a
and
a T
a2 = T
2 nn+a)—aln+1)r
ad n+1 d o
1 — log(1 + —
+2(a—1) R 2(a—1) o8 +n)
1 _a(nt+h)T
. (n+a)n
——1 1, ———=1}.
2o 1) osmintl, (1— o) !

Next, under the bounded condition, we obtain the following statement as a

corollary of Theorem 5.3.1.
Corollary 5.3.2. Under the bounded condition, let « > 1. We set

}

n2

= mi 1, ——
¢ :=min{n + "T(n+1)—n

and assume that
2

2c—1
Then, the synthetic data generation mechanism Mg satisfies (a, eg(a,n))-RDP for

a <

(5.2)

the following

1
@ — pa —1
ié‘UB(pOé,n) + EUB(

<p<t O — p—1

ep(a,n) = _inf ,n+1). (5.3)

c—a

Proof. For any neighboring datasets D;, D, under the bounded condition, there
exists a dataset D3 such that D; and Djs are neighboring and D, and Dj are neigh-
boring under the unbounded condition. Then, to obtain Equation (5.3), we use the
following Lemma 5.3.3. Here, the weak triangle inequality holds for all p > 1, and
the following condition is necessary:

v

p
max{pa,

-1
<c.
<

This is equivalent to

C C
—<p< —.
C— (6%

The existence of p is equivalent to Equation (5.2). ]
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By the following lemma, the result with the unbounded condition can be reduced

to the bounded condition.

Lemma 5.3.3 (Weak triangle inequality [87]). Let P,Q, R be probability distribu-
tions on RY. Let o > 1. If it holds

then we have

o
Da(PlIQ) £ —2Dyu(PIIR) + Dyo1)(RIIQ).

5.4 Proof of Theorem 5.3.1

In this section, we prove Theorem 5.3.1. The following proposition is essential.

Proposition 5.4.1 (Gil et al. [43]). Let o > 1 and N (u1,%1), N (uz2, Xa) be multi-

variate normal distributions. If a matriz
T, :=aX' + (1 —a)x;?
1s positive-definite, then it holds

Do (N (1, 21) ||V (p2, X2))

a 1 | Xl

TV —1, _
=5 (1 = 12) 257 (ur — ) 2o — 1) log |54 [ g

where X = (1 — @)X + adls.

For neighboring datasets Dy, Dy € D,, we set the mean vectors as pq, p2 and
the covariance matrices as X1, Xo. If Dy (N (1, X1) ||V (12, X2)) < &, the mechanism
M satisfies (a, £)-RDP. Here we set

Ly ="y — p2) S (1 — o),
X4/
Ly = —————.
ST
Then we see

1

Do i, SN (a2, ) = S L = 5

Thus, an upper bound ¢ is described by the maximum of L; and the minimum of L,.

The outline of proof is as follows. First, by using the different record, we represent
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the difference between mean vectors and the difference between covariance matrices
(Lemma 5.4.2). Next, we determine the positive-definiteness of T, (Lemma 5.4.3).
Finally, we compute the upper bound of L; (Lemma 5.4.4) and the lower bound of
Ly (Lemma 5.4.5).

Set #D1 = n and #Dy = n+s, where s = 1 when we “add” a record and s = —1
when we “remove” a record. The common records are denoted by xy,...,z, €
[—1,1]¢ and the different record by x € [—1,1]%. We set each mean vector as jiy, ta
and covariance matrix as X1, >s. We also denote by 0,,;, the minimum eigenvalue

of ¥;. Note that o,,;, > ¢ by the assumption.

Lemma 5.4.2 (Representations of difference). The following equations hold:

5 5 -
ud'_m_m_n—l—sm_n(n+s);$i’

n ns
X =%, — S = (@ — )t — ).
2 ntsTt T (n+ 3)2@ ) (= )

Proof. By calculation, we see that

Ha = o — M1
n—+s

1 1 &
- n—l—s;xi_ﬁ;xi

1 1 < 1 &
= n+ssm+n+s;xi_ﬁ;xi

s s &
B n—l—sx_n(n—i-s)izlxi'

]

The rank of X is one. X is semi-positive definite when s = 1 and semi-negative
definite when s = —1.

By the following lemma, we can confirm the positive-definiteness of 7.

Lemma 5.4.3 (Positive-definiteness of T,). If the following two inequalities hold,
T, is positive-definite:

n—1

— <
(n—1)2 (5.5)
™ — (n —1)

}.

a < min{n + 1,
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Proof. Since T, = X723, = %513, !, by Lemma 5.2.6, the positive-definiteness

of T, is reduced to the positive-definiteness of ¥,. By Lemma 5.4.2, we have

2a=(1—a)21+@< o 21+X>:(1— > )21+ax.
n+s n+s

When s = 1, since 3J; is positive-definite and X is semi-positive definite, it is enough
to be o < n+ 1. We consider the case when s = —1. For an arbitrary vector z € R¢
whose norm is one, we seek a condition where the minimum of ‘23,z is positive.
Here we can consider that the vector z — pu1 is contained in a ball with a radius 2v/d.

Thus, we obtain the minimum when the following two conditions hold:
e 2 is parallel to the eigenvector of the minimum eigenvalue o,,;, of 3;
e 1 — jiy is parallel to z.

Hence we see that Y, is positive-definite if

n—1 n—1)2
4ddn — (n — 1)0min
(n—1)
4dn — (n —1)o
(1)

LYz = (1 + ) Omin — a(Léld

Omin — O *

> o—«

> 0.
When the inequalities in Equation (5.5) hold, this inequality also holds. Il

To compute the upper bound of Equation (5.4), we prove Lemma 5.4.4 and
Lemma 5.4.5.

Lemma 5.4.4 (Upper bound of L;). If s =1, then we have

Ll S . )
m+1)(n+1-a)
and if s = —1, then we have
Ly < ’

(n—1)(n—1+a)—ant

Proof. Now pg4 is contained in a ball with a radius %Z by Lemma 5.4.2 and X, is

positive-definite by Lemma 5.4.3. By multiplying the reciprocal of the minimum of
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t2342 for a unit vector z € R? by we can obtain the maximum of *u3 - g

it
Here, we see
Ly = ta(] S (s san B 2
2802 ="2( n—i—s) 1Z+—<n+8)2(3($ f11))

Hence when s = 1, the minimum is

(1— a )Umin-
n+1

When s = —1, since 2 — j; is contained in a ball with a radius 2v/d, the minimum
is
an
1 min — ————— - 4d.
( +n—1>a (n—1)2
Thus, we obtain the inequality. O

Lemma 5.4.5 (Lower bound of Ly). It holds

oz USE g, 1 T
n+s nts
Proof. We see that
L (1= 7)1 + aX]|
X[t + X
(1— 251 + g ax X

(n+s)ad|]+ n+sz 1X|a

Since the rank of X is one and X} ! is invertible, the rank of ;"X is also one. Thus,

there is only one non-zero eigenvalue, and it is set as \. We also set

S n

n+s—sa

(14 2E2))e

A= (1- d ad,
( n+ 5> /(n + 3)
Since the other eigenvalues are all zero, we see
1+ 15 g\

Ly =

By differentiating this equation with respect to A\, we obtain

0L, (a—1)- n+s s—(n+s)A
o N n(n+s—sa) (1+ "T*"“‘)\)O‘“

We see that <32
of Ly is obtained at the edges of the range of A.
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Next, we will find the range of A, which is the only one non-zero eigenvalue of

Y71X. Since ¥ is positive-definite, we can obtain the spectral decomposition of 3;:
1

d
Y = ZUz'pz'tpi;
i—1

where o1, ..., 04 are the eigenvalues of ¥ and pq, ..., pg are their eigenvectors whose
norms are one. Since pi,...,pq is a basis of R?, there exist r1,...,rs € R such that
d

r— 1= Zripi~

=1

Squaring both sides, we obtain a condition

d
4d>> "r?>0.
=1

Set

Il
i~
E
=

Then we have

d
Y1 Xe, = It Zﬁpz T — ) - er)

Thus, we have

Therefore, we have

0< )< 4dn < 4dn
~ (n+1)20mm — (n+1)2%0
when s = 1, and
4dn 4dn
— < — <A<
(n—120 = (n—1)20min —

when s = —1. O
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5.5 Numerical Evaluations

In Theorem 5.3.1 and Corollary 5.3.2, we obtain the concrete upper bounds. Thus,
in this section, we compute the value € concretely and observe the results. For
the sake of clarity, the number of records in the original dataset is n;, (i.e., n in
Section 5.3-5.4) and the number of records in the output dataset is n,,;. Moreover,
when n;, = nyy holds, we denote them by n,/04. Note that we used 1 for ng, in
Section 5.3-5.4. In this section, based on the composition theorem, we compute e

by multiplying ones in Theorem 3.1 and Corollary 3.2 by n..

5.5.1 Setting of Numerical Parameters

We set d = 6, 0 = 0.01 since the number of numerical attributions in Adult
Dataset [29] is six and the minimum eigenvalue for the data normalized into [—1, 1]
is omin = 0.01. We also consider the case of d = 9 with reference to California
Housing dataset [95]. Note that we compute € without creating a concrete dataset
and use only the number of records in dataset n;,, the number of attributions d and

the minimal eigenvalue ,,;,.

5.5.2 Relation between a and ¢

The relations between « and € are shown in Figure 5.3 (a-¢ curves). For all curves, €
is monotonically increasing with respect to a. We also see that as n;, increases expo-
nentially, € becomes smaller at equal intervals on a logarithmic scale. In particular,
if ng, = 10 and d = 6, the condition in Equation (5.1) is

2

in ~ 4.1679

n

a < ¢ :=min{n;, + 1,

and the condition in Equation (5.2) is

2

c
2c—1

o< ~ 2.3680.

Thus, the curves stop at these values.

5.5.3 The Impact of n,,; and d

In this subsection, we evaluate the impact of the number of outputs n,, and the

number of attribution d. Throughout this subsection, we fix a = 4.
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Figure 5.3: a-¢ curve (d = 6,9, 0 = 0.01) : Vertical axis is logarithmic scale. The

curves are drawn for each of the four sample sizes n;,

As the most basic case, we consider the case in which 1, = Now =1 Ninjout-
The values of € for which the mechanism M ;""" satisfies (o, £)-RDP are shown in

Table 5.1. By the composition theorem in Proposition 2.3.18, the values of ¢ are
ones in Theorem 5.3.1 and Corollary 5.3.2 multiplied by 7;,/0,:. We can show that

values of € are within a practical range when 7, /o, > 10% under both conditions.
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Table 5.1: Values of € in the case that input and output are the same size 1, /ou:-
(¢ =4,d=6,0 =0.01)

Ninjout | 10* 10° 106 107 10°
UBe | 3535.17 | 62.5859 | 5.8064 | 0.5764 | 0.058
Be |- 266.7349 | 23.3577 | 2.3071 | 0.23

Table 5.2: The number of outputs n,, in the case that ¢ = 1. (a« = 4,d = 6,0 =
0.01)

Nin 10 | 10° | 106 107 108
UB nout | 3 1598 | 1.72 x 10° | 1.73 x 107 | 1.74 x 10°
Bnes: |0 375 | 4.28 x 10* | 4.33 x 10° | 4.34 x 108

In particular, under the unbounded condition, ¢ = 0.5764 when n;, /o = 107, which
is very small. We also see that ¢’s under the unbounded condition are four times
larger than those under the bounded condition.

Next, we compute the number of outputs n,,; where M satisfies (v = 4,¢ =
1)-RDP. The result is shown in Table 5.2. When n;, = 10%, we can output only
three records under the unbounded condition. For n;, > 107, we can output records
more than input records.

Lastly, we show the relation between € and d in Figure 5.4. We can confirm that
the values of € increase as d increases. The values of £ under the bounded condition

are about four times as large as those under the unbounded condition.

5.5.4 Translation into (¢,0)-DP

By Proposition 2.3.9, we see that (a,e)-RDP can be translated into (g, d)-DP. For a
fixed §, we seek a which gives the minimum of ¢ and plot them in Figures 5.5, 5.6,
and 5.7.

According to [32], the value of § should be less than ——. The values translated

in

into (g,0)-DP under the unbounded condition are shown in Figures 5.5, 5.6, and 5.7

as blue bars. When § = 1071°, we see that ¢ = 13.03 for Ninjout = 10%, ¢ = 3.79

for ninjoue = 107 and € = 1.23 for njpjone = 108, When § = -, we also see that
€ = 14.14 for nyp jour = 10%, & = 4.46 for Nin/out = 107 and € = 1.17711 for nip jour = 108,
These values are reasonable [113].

The results under the bounded condition are shown in Figures 5.5, 5.6, and 5.7

as orange bars. When § = 107!, we see that ¢ = 29.03 for n;,, /0, = 10%, € = 7.87
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a=4,n=10"7
I Unbounded 14.46
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Figure 5.4: The values of ¢ for (o« = 4,¢)-RDP for each 3 < d < 15.

for ninjou = 107 and € = 2.36 for njpjone = 105, When § = -, we also see that
£ = 31.2 for N = 10°, £ = 9.21 for nyp /o = 107 and & = 2.97 for ny, /o = 108,

The values of ¢ under the bounded condition are about twice as large as those
under the unbounded condition.
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o

Figure 5.5: Values of € in (g,0)-DP. d = 6,0 = 0.01, 0/ = 10°. Blue bars are
unbounded cases and orange bars are bounded cases.
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Figure 5.6: Values of € in (g,0)-DP. d = 6,0 = 0.01, /s = 107. Blue bars are

unbounded cases and orange bars are bounded cases.
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Figure 5.7: Values of ¢ in (g,0)-DP. d = 6,0 = 0.01, 4, /0, = 10®. Blue bars are

unbounded cases and orange bars are bounded cases.

5.5.5 Impact of ¢

Figure 5.8 shows the value of € for each value of ¢, which determines the minimum
eigenvalue of the data range. As a default setting, o was set to 0.01 with reference
to the numerical attributes of the Adult Dataset. It was found that ¢ values down

to approximately 0.005 yield practically acceptable e values; however, when o is
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reduced to 0.001, € becomes significantly larger.

This result is closely related to the observation in Chapter 3 that instances with
large Mahalanobis distances tend to pose higher risks. When the minimum eigen-
value decreases, the risk associated with data distributed along the corresponding

eigenvector direction increases.
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Figure 5.8: The values of ¢ for (o = 4,¢)-RDP for each o, where d = 6 and n = 107.

5.5.6 Summary of Results

To sum up the results of the numerical evaluations, we see the following:

e We see that ¢ is monotonically increasing with respect to a. This result is

intuitive.

e If n;, increases exponentially, the curve becomes smaller at equal intervals on

a logarithmic scale.

e When n;, = 10*, arange where « satisfies the assumption of being very narrow.

When n;, = 107,108, the value of ¢ is practical.

e When ¢ falls below 0.001, the resulting € becomes excessively large and falls

outside the range considered practical.
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5.6 Related Work

In this section, we describe the related work and mention the difference from our

result.

5.6.1 Differentially Private Synthetic Data Generation for
Tabular Data

In synthetic data generation, the post-processing property of differential privacy
guarantees that synthetic data generated from differentially private generative pa-
rameters also satisfy differential privacy as shown in Figure 5.1(b). Methods to

generate differentially private synthetic data for tabular data are classified into two
types.

The first type is also called a “select-measure-generate” scheme [81]. Statistics
and (conditional) probability distributions are used as the generative parameters.
Typical statistics are mean vectors and covariance matrices of original datasets. In
particular, synthetic data generation with copulas has been researched actively [108,
75, 6, 40]. To learn conditional distributions, graphical models such as Bayesian

networks have been applied to synthetic data generation [123, 124, 82, 83].

In the second type, generative models with deep neural networks are used to gen-
erate synthetic data. The model parameters trained with the original data are re-
garded as the generative parameters. By training deep neural networks with differen-
tially private stochastic gradient descent (DP-SGD) [1], we obtain differentially pri-
vate model parameters. Methods based on generative adversarial networks (GAN)
such as CTGAN [116], DPCTGAN [37], CtabGAN [127], and CtabGAN+ [12§],
are widely used. Methods other than GAN include variational autoencoders [19],
flow-based generative models [73] and generative models with characteristic func-
tions [76]. A method based on diffusion model such as TabDDPM [72] has also

attracted attention recently.

In both types of approaches, generative parameters are computed by various
differentially private mechanisms [1, 84] (Figure 5.1(b)). In contrast, we evaluate the
differential privacy of randomness in data generation when using non-differentially

private generative parameters.
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5.6.2 Privacy Attacks against Synthetic Data Generation

Many methods empirically evaluate the privacy protection of synthetic data genera-
tions from attack success rates of membership inference attacks [107] and attribute
inference attacks [39]. Most of them assume that an adversary has access to the
target trained model such as GAN [17, 54, 59] and diffusion models [15, 60, 30, 80].

On the other hand, there are several methods where an adversary only has access
to output synthetic data. Stadler et al. [109] discussed membership inference attacks
and attribute inference attacks for tabular data in such a setting, and Oprisanu
et al. [94] applied such attacks to genomic data. Annamalai et al. [4] conducted
attribute inference with linear reconstruction in this setting.

Although these studies and ours share a common perspective in that they focus
on the privacy protection of generated synthetic data alone, these studies differ
from ours in that they experimentally evaluate synthetic data generation from an
attack perspective. In contrast, our perspective is to prove Rényi differential privacy

theoretically.

5.6.3 Differential Privacy of Randomness in Synthetic Data

Generation

To the best of our knowledge, only Lin et al. [77] have evaluated the privacy protec-
tion by the randomness in outputs of synthetic data generations. They theoretically
evaluated probabilistic differential privacy [85] of GAN-sampled data. However, the
concretely evaluated bound is hard to compute since it needs a GAN’s generalization
error. In addition, they assume that training datasets are far larger than the number
of model parameters. Thus, their main contribution is to give the theoretical bound,
but we cannot compute the bound as a concrete numerical value.

In contrast, although we focus on only a simple synthetic data generation, we

give the concretely computable bound.

5.7 Conclusion

In this chapter, we evaluated privacy protection due to the randomness of synthetic
data generation without adding intentional randomness. We proved Rényi differen-
tial privacy of a synthetic data generation with a mean vector and covariance matrix
(Theorem 5.3.1, Corollary 5.3.2). We also conducted numerical evaluations using the

Adult dataset as a model case. Concretely, we demonstrated that the mechanism
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¢ satisfies (4,0.576)-RDP under the unbounded condition and (4,2.307)-RDP
under the bounded condition (Table 5.1). If they are translated into (e,d)-DP,
MP, satisfies (e,6)-DP for a practical € (Figures 5.5, 5.6, and 5.7). In future work,

we will apply our evaluation method to more advanced synthetic data generation

algorithms.






Chapter 6
Conclusion

This chapter provides a concise summary of the entire thesis, highlighting the main

contributions and findings, and also outlines possible directions for future research.

6.1 Summary

This thesis has explored key challenges and solutions in the domain of synthetic
data generation, with the ultimate goal of facilitating its safe and the societal im-
plementation. Through a comprehensive investigation, this work has contributed to
three main areas: the evaluation of privacy risks, the assessment of data utility, and
the enhancement of privacy-preserving mechanisms in synthetic data generation.

First, we proposed a novel privacy evaluation framework to address limitations
in prior membership inference attacks. By incorporating statistical distance-based
sample selection and interpretable inference methods, we enabled clearer and more
rigorous evaluation of worst-case privacy risks. This framework offers deeper insights
into privacy vulnerabilities, particularly for outliers, and supports more transparent
analysis without relying on black-box machine learning models.

Second, we evaluated the utility of synthetic data using a real-world medical
dataset from Ehime University Hospital. Our experiments compared multiple gener-
ation methods—including statistical, graphical, and deep learning-based approaches
—and demonstrated that Gaussian Copula and AIM generate synthetic data with
high statistical fidelity and predictive performance. This practical evaluation under-
lines the viability and challenges of using synthetic data in sensitive domains such
as healthcare.

Finally, we introduced a theoretical framework for analyzing differential privacy

guarantees in synthetic data generation without relying on artificial noise. By mod-
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eling privacy preservation through inherent randomness, we showed that Rényi dif-
ferential privacy can be achieved under both bounded and unbounded neighboring
conditions. These results offer a new perspective on achieving differential privacy
while maintaining high data utility.

Together, these contributions advance the understanding of synthetic data gen-
eration techniques, and pave the way toward secure, ethical, and useful applications

in data-driven fields.

6.2 Concluding Remarks

The key conclusions obtained through this thesis are summarized as follows.

Based on the framework proposed in Chapter 3, we identified the risks associ-
ated with synthetic data that are not protected by differential privacy. Our first
key finding is that outliers in terms of Mahalanobis distance exhibit a high risk of
membership inference attacks. As a result, we found that, when using non-DP
synthetic data, we must at least remove outliers to ensure privacy. Alternatively,
since the theoretical relationship between differential privacy and membership in-
ference attacks is well established [121, 66|, we recommend using DP synthetic data
to achieve a certain level of privacy protection.

Thus, in Chapter 4, we addressed the challenges associated with Method (ii) in
Table 1.1, that is the challenge of data utility evaluation of differentially private
synthetic data generation with real-world data. Using real-world medical datasets,

our findings are as follows:

e Adding noise for differential privacy leads to quality degradation even for real-

world data, which exhibited a trend similar to that observed in public data.

e Among the evaluated methods, Gaussian Copula and AIM demonstrated su-

perior performance.

Furthermore, this study also contributes the insight that, given the high data quality
achieved by methods such as Gaussian Copula and AIM, identifying application
scenarios where such quality is sufficient could serve as a practical pathway toward
the societal implementation of synthetic data generation.

While Chapter 4 confirmed that the addition of noise contributes to quality
degradation, Chapter 5 proposed an approach to guarantee differential privacy with-

out intentional noise addition, relying solely on inherent randomness. As a result, we
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showed that for simple methods, differential privacy can be ensured through inher-

ent randomness alone. Moreover, we verified that the achieved privacy guarantees

hold under epsilon values that are considered practical in real-world applications.
Building upon these insights, exploring real-world use cases is expected to facil-

itate the societal implementation of synthetic data generation.

6.3 Future works

This paper has pursued the goal of enabling the societal implementation of syn-
thetic data generation by addressing the limitations inherent in prior approaches.
Toward the realization of this objective, we conclude with a discussion of remaining
challenges and highlight directions for future research. In particular, Section 6.3.2

is considered a key issue that should be addressed next.

6.3.1 Implementation of Comprehensive Evaluation Frame-

work

In Chapter 3, we proposed a privacy evaluation framework that identifies high-risk
records by selecting outliers based on the Mahalanobis distance. However, this
framework does not incorporate alternative perspectives for outlier detection. For
example, it is necessary to investigate whether similar characteristics emerge when
using other outlier detection techniques, such as Isolation Forest (iForest)[78] or
Support Vector Data Description (SVDD) [101], in place of Mahalanobis distance.
Exploring the relationship between AUC scores and Mahalanobis distance is left for
future work.

In addition, although Chapter 4 employed several utility metrics, it is desirable
to evaluate utility alongside privacy risk. A meaningful direction for further re-
search is to develop an integrated framework that simultaneously assesses the safety
and utility of synthetic data generation methods, incorporating additional practical

factors such as runtime performance.

6.3.2 Consideration of the real-world trials of Synthetic Data

Based on the results presented in Chapter 4, it was found that both Gaussian Cop-
ula and AIM are capable of generating synthetic data that closely resembles the

original data, even under differential privacy constraints, when applied to real-world
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datasets. For example, even under a strict privacy setting such as € = 1, the differ-
ences in distributional error and machine learning model performance were minimal.
It is, therefore, important to develop real-world application scenarios where such a
level of privacy-utility trade-off is acceptable. Tabular formatted data requiring pri-
vacy protection are widely used in domains such as healthcare, finance, marketing,
and product recommendation. Furthermore, such application scenarios are expected

to help identify more concrete challenges toward societal implementation.

6.3.3 Differential Privacy Evaluation of More Practical Mod-
els without Adding Noise

In Chapter 5, we evaluated the inherent randomness of the data generation process
and assessed its ability to satisfy Rényi differential privacy without the addition
of explicit noise. However, the synthetic data generation model Mg : D — D
considered in the evaluation was a simple one, based solely on the mean vector and
covariance matrix of the original dataset. If similar evaluations could be applied
not only to such simple models, but also to graphical model-based methods such
as AIM and deep learning neural network—based models, it would be expected that
more useful synthetic data could be obtained. In particular, leveraging the properties
of models such as diffusion models to simultaneously ensure both privacy guarantees

and data utility remains an important direction for future research.
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