

Title	Method for deletion of variant surface antigen genes at subtelomeric region of <i>Plasmodium Falciparum</i>
Author(s)	Ali Saeed Ali, Shymaa
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103172
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (SHYMAA ALI SAEED ALI)

Title

English title: Method for deletion of variant surface antigen genes at subtelomeric region of *Plasmodium Falciparum***Japanese title: 热帯熱マラリア原虫のサブテロメア領域の除去法の開発**

Abstract of Thesis

Plasmodium falciparum expresses variant surface antigens (VSAs), including PfEMP1, RIFIN, and STEVOR, on the surface of infected red blood cells. These antigens interact with host receptors on vascular endothelial and immune cells, contributing to both parasite pathogenicity and immune evasion. VSAs are encoded by large multigene families, comprising dozens to hundreds of genes located primarily in heterochromatic regions such as subtelomeric domains, which are notoriously refractory to genetic manipulation. In addition, because *P. falciparum* parasites undergo antigenic variation by randomly switching VSA expression, it is challenging to use parasites that stably express target VSAs for experimental purposes. As a result, functional characterization of these VSAs has been limited, despite their well-established clinical significance. Here, we present a novel method for targeted deletion of subtelomeric regions in *P. falciparum* chromosomes by combining the heterochromatin-accessible AsCas12a-UL nuclease with telomere healing. Using this approach, we successfully deleted both subtelomeric regions of chromosome 2. Furthermore, we achieved simultaneous removal of up to seven subtelomeric regions using tandemly arrayed crRNAs, with an efficiency exceeding 85%. This method provides a powerful tool for generating VSA-null parasites, facilitating precise genetic dissection of individual VSA gene families and their roles in host-parasite interactions.

論文審査の結果の要旨及び担当者

氏名 (Shymaa Ali Saeed Ali)		
	(職)	氏名
論文審査担当者	主査 大阪大学 教授	飯田 哲也
	副査 大阪大学 教授	高倉 伸幸
	副査 大阪大学 教授	岩永 史朗

論文審査の結果の要旨

Plasmodium falciparum は、感染赤血球表面にPfEMP1やRIFINなどの多様な表面抗原 (VSA) を発現し、宿主細胞との相互作用を通じて病原性や免疫回避に関与する。これらの抗原はサブテロメアなどの遺伝子操作が困難な領域に多数存在し、しかも発現がランダムに切り替わるため、機能解析が難しかった。申請者は、AsCas12a-UL酵素とテロメア修復を組み合わせることで、最大7か所のサブテロメア領域を高効率で同時削除する新手法を開発した。これによりVSAを欠損させた原虫株を作製でき、個々のVSAの役割解明や宿主との相互作用などの研究に大きく貢献することが期待され、本研究は博士の学位を授与するに値するものと認める。

なお、チェックツール “iThenticate 2.0” を使用し、剽窃、引用漏れ、二重投稿等のチェックを終えていることを申し添えます。