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General Introduction 

 

i. Semiconductor industry and challenges in feature size 

shrinking 

There is a famous principle in the semiconductor industry that predicts the 

pace of technological advancement. It was proposed by Gordon Moore, a co-

founder of Intel, and is known as Moore’s Law. According to this empirical 

observation, the number of transistors on a chip doubles approximately every two 

years. It’s not a scientific law like Newton’s laws, but an empirical rule that has 

been pushing industry forward. This prediction has been realized in practice for 

decades, which is considered an industrial miracle, made possible by the hard work 

and intelligence of all the people involved in the industry. 

A chip with more transistors gives faster response in calculations, making 

computation quicker and smoother. One example that can easily relate to is the 

improvement of smartphones. Apple has continued designing their own chips for 

mobile products, and the number of transistors is shown by the orange line in Fig. 

1. The increasing trend of the orange line shows that the number of transistors used 

in a phone chip is growing in an exponential way, as shown in Fig. 1. At the same 

time, as plotted in blue line in Fig. 1, the half-pitch (HP), which represents the 

feature size (also called critical dimension, CD), is shrinking during this process.1 

As these features shrink, more transistors can be packed onto a single chip. In other 

words, reducing feature sizes enhances the performance and energy efficiency of 

electronic devices. 

The feature size continues to shrink today. Line-and-space (L/S) patterns 

and contact holes (CH) are the standard resist structures used to assess the current 

level of manufacturing capability. Several factors contribute to the continued 

shrinking of feature sizes, including advances in lithography technologies, 

materials science, manufacturing processes, design and computational tools, as 

well as massive investment and the momentum driven by Moore’s Law. 
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Figure 1 Trends in feature size and Apple’s microprocessor products: decreasing feature 

size (blue) and increasing number of transistors (orange). 

 

The evolution of technologies enables the shrink of the feature sizes. The 

Rayleigh criterion is a formula used to describe the key parameters involved: 

Minimum feature size =
𝑘1⋅𝜆

𝑁𝐴
,     (1) 

where k1, NA and λ are process coefficient, numerical aperture of the optics, and 

the wavelength of light used, respectively. These three parameters can be roughly 

grouped into two categories: optical factors and non-optical factors.  

On the optical side, progress has been significant. The lithography light 

source evolved from krypton fluoride (KrF, λ = 248 nm) in the 1990s to extreme 

ultraviolet (EUV, λ = 13.5 nm), which was first adopted in high-volume 

manufacturing in 2019. The numerical aperture (NA) has also improved, with 

high-NA EUV (NA = 0.55) moving towards hyper-NA EUV (NA = 0.75) as of 

last year.  
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Figure 2 The procedures in a chemically amplified resist pattern fabrication. (a) Spin-

coating of resist solution; (b) Prebake/Softbake; (c) EB exposure; (d) Exposed to 

light source with mask; (e) Post-exposure baking; (f) Development; (g) Line-and-

space pattern. 

 

Not only the optical image plays a critical role in lithographic performance, 

but also the ability of materials and processes to preserve and accurately transfer 

this information is equally important. On the non-optical side, the process factor 

k1 incorporates a range of process innovations, with photoresist systems—

comprising resists, developers, and related materials—being a major contributor. 

For instance, in chemically amplified resist (CAR) systems, pattern formation 

requires several tightly controlled steps, including spin-coating, prebake, exposure, 

post-exposure baking (PEB) and development as shown in Fig. 2. Each of these 

steps is important to the successful transfer of the aerial image into a qualified 

resist pattern. Moreover, the introduction of EUV lithography presents new 

challenges.2,3,4 Even though EUV enables further pattern scaling due to its shorter 

wavelength, the significantly less photon numbers compared to vacuum ultraviolet 

(VUV) sources such as ArF excimer lasers introduces additional difficulties in 

maintaining pattern fidelity. 
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Figure 3 Defects in line/space (L/S) patterns with varying HPs. Red regions highlight 

defect locations. 

 

In this context, it is important to define what constitutes a "qualified" resist 

pattern. Patterning performance is primarily evaluated based on three key metrics: 

resolution, line edge roughness (LER), and sensitivity—collectively referred to as 

the RLS trade-off.5 Especially when the feature size decreases, LER becomes 

more prominent, as illustrated in Fig. 3. The LER observed in a larger HP, shown 

in Fig. 3(a), can lead to bridging in a smaller HP, as shown in Fig. 3(c), which may 

further result in circuit disconnection. Ultimately, this can lead to defective 

products. Previous studies on the resist pattern metrology have reported many 

factors that can cause LER.6,7 

To make smaller feature size than possible today, new resists that meet the 

new need of the EUV light source and the compatible developers are required to 

meet these three requirements at the same time. It is difficult to satisfy all three 

RLS at the same time, which opens up space for further discussion and exploration 

of new resist materials. The fabrication of a resist pattern involves several 

processes, such as exposure and development, each of which includes many 

parameters. However, the effects of these steps are often neither directly 

observable nor easily converted into quantifiable data. Consequently, the 

traditional process control has relied heavily on empirical methods rather than 

statistical or data-driven approaches, making the development of new resists time-

consuming. To reduce the time and cost of resist exploration, it is essential to 

analyze the correlation between process parameters and the resulting pattern 

quality. This involves two key components: (1) the datafication of process 
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parameters and results, and (2) the development of mathematical models capable 

of interpreting these correlations.  

Emerging artificial intelligence (AI) technologies offer powerful tools for 

such correlation analysis. Machine learning (ML) techniques—including 

regression analysis, classification, and deep learning (DL)—have recently been 

applied successfully in various fields, such as image recognition. This doctoral 

dissertation aims to establish a framework that applies machine learning methods 

to the exploration of resist materials and lithography processes, enabling a more 

efficient and data-driven approach to lithographic process development.  

This doctoral dissertation also focuses on the materials and processes 

involved in resist patterning, with each chapter organized according to specific 

steps in the lithography process. The machine learning model, and the practical 

application will be presented in the final chapter. It is worth noting that further 

parameters might be extracted beyond the scope of this dissertation, as deeper 

insights into the materials and processes are being discussed. More robust machine 

learning models are currently being tested to enhance correlation analysis and 

predictive accuracy. 

 

ii. Chemically amplified resist 

Chemically amplified resists (CARs) have been widely used as resists for 

both EUV and electron beam (EB) lithography. CARs were originally developed 

for use with KrF excimer lasers, which emit deep ultraviolet (DUV) light at 248 

nm, and continue to be utilized with current EUV systems that operate at a 

wavelength of 13.5 nm. In CARs, insufficient photon energy is compensated for 

with heat energy.8 A typical CAR is composed of a photoacid generator (PAG), a 

base (quencher)9, and a polymer with side chains partially protected by nonpolar 

protecting groups such as tert-butyloxycarbonyl (t-Boc).8 Upon exposure to a 

radiation, the acids are generated through the decomposition of a PAG, followed 

by reaction with the hydrophobic protecting units on the side chain of the polymer. 

This process is further amplified by post-exposure bake (PEB). Owing to the 

polarity increase of the polymer, the polymer becomes hydrophilic and thus 
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dissolvable in an aqueous developer.10 The resin polymer used in this study was 

poly(4-hydroxystyrene) (PHS). 

 

 

Scheme 1  An electron is ejected from polymer 1 by exposing it to EB radiation. As a 

product, cation radical 2 is generated. 

 

After spin-coating the resist onto a silicon (Si) substrate and performing 

pre-exposure baking, the sample is exposed to an EB or other light sources using 

designed patterns such as L/S patterns with varying HP and exposure doses. As 

illustrated in Scheme 1, when the resist is exposed to an EB or EUV, primary 

electrons or EUV photons interact with the polymer, causing the ejection of 

secondary electrons. These secondary electrons are subsequently thermalized and 

begin to diffuse within the resist material, triggering further chemical reactions. 

Additionally, Coulomb forces between the electrons influence their diffusion 

behavior, which can impact the spatial distribution of the reactions. 
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Scheme 2  Decomposition of PAG and generation of acid. 

 

Following electron ejection, the photoacid generator (PAG, substance 3) 

undergoes decomposition, generating acid species, as illustrated in Scheme 2. 

During PEB process, the generated acid diffuses in the resist film and catalyzes the 

deprotection reaction of the polymer side chains.  

Patterns are fabricated using CARs, determined by the concentration of 

protecting units on the side chain of polymer (Cp). The accumulation of the 

stochastic effects11 in the formation of patterns finally cause the protected unit 

fluctuation.12,13 This is the main factors for the generation of defects such as line 

edge roughness (LER), on the line-and-space (L/S) pattern which is a typical resist 

pattern to evaluate the pattern fidelity. On the other hand, the solubility of a 

polymer in this study was determined by the dissolution threshold (Cth). Cp 

determines whether a polymer is dissolvable (when Cp is smaller than Cth) in a 

hydrophilic developer. One of the critical parameters to suppress LER investigated 

in the previous study was the effective reaction radius for deprotection reaction 

(Rp).14 However, Rp cannot be directly measured by experiments. In chapter 1, the 

chemical parameters Rp and Cth were investigated by utilizing both the simulation 

and experimental results using a machine learning approach—Bayesian 

Optimization (BO).15,16 
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iii. Dissolution kinetics 

The kinetics of polymer dissolution are more complex than a single 

parameter like Cth can fully describe. In practice, before the polymer film 

completely dissolves into the developer, it typically undergoes a transition from a 

rigid layer to a gel-like layer, in which the developer is partially absorbed. 17 

Although this transition can occur rapidly, understanding its dynamics is still 

valuable for gaining insight into the mechanisms behind defect formation. There 

are problems such as the swelling of the resist, which can lead to defects like the 

formation of bridges on the resist pattern. It is critical to understand the dissolution 

kinetics.  

 

  

Figure 4 QCM substrate and the illustration of measuring. 

 

Quartz crystal microbalance (QCM) method is an essential technique to 

understand the dissolution kinetics.18 It measures the dissolution rate of the resist, 

a critical aspect of lithographic processing. QCM also tracks changes in impedance 

(ΔZ), which indicates energy loss during development.19,20 The QCM substrate 

and the measuring illustration are shown in Fig. 4. Although QCM provides 

valuable measurements, the full potential of the impedance data which QCM 

produces is not fully utilized yet. In chapter 2, I introduce a stratified polymer 
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dissolution model (SPDM) that simulates the dynamic changes in frequency (Δf) 

and impedance during the development process, focusing on their relationship with 

the diffusion of polymer molecules in developers. Reproducing QCM charts have 

shown that impedance not only offers insights into the rate at which the resist 

dissolves but also provides information on the viscosity at the interface between 

the developer and the top layer of the resist. Based on impedance data, which 

allows for the extraction of key parameters such as the diffusion constant (D) and 

hydrodynamic radius (RH) 21  from QCM measurements. Previously reported 

experimental QCM data for t-Boc protected poly(4-hydroxystyrene) (PHS) in an 

alkaline developer, aqueous tetramethylammonium hydroxide (TMAH) at 

different resist film thicknesses were analyzed.  

 

iv. Image recognition 

The line-and-space (L/S) pattern, as shown in Fig. 5(a), is a typical resist 

pattern used to evaluate the performance of the lithography process. A pair of line 

and space forms what is called a pitch, and half of the pitch corresponds to the 

feature size, also referred to HP. The minimum line width that can be fabricated 

reflects the industry's patterning capability. It is important to note that this is a 

periodic pattern used for process evaluation and should not be confused with the 

so-called technology node commonly referred to today. 

 

 

Figure 5 White regions are the polymers, while black regions are the silicon substrate. (a) 

A fine L/S pattern with clear straight edges. Edges that have (b) roughness (c) 

bridging defects, that connect two lines, and (d) A pinching defect on the line. 
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As pattern dimensions shrink, LER, as shown in Fig. 5, becomes more 

prominent due to the reduced line and space widths. This increases the likelihood 

of LER-induced bridging defects, as illustrated in Fig. 5(c). These defects occur 

stochastically, making them difficult to quantify and compare across different 

instances. 

During the materials discovery process, pattern data with failures are 

obtained more than fine ones. This challenge motivated me to investigate and 

evaluate defective patterns. In chapter 3, a new method for evaluating L/S resist 

pattern defects based on an image recognition technology for evaluating massive 

patterns were demonstrated. L/S patterns with different HPs and exposure doses 

were printed by an EB writer. Approximately 2500 experimental scanning electron 

microscopy (SEM) images were automatically evaluated after image 

preprocessing with a Laplacian of Gaussian (LoG) image filter. This method 

measures the resist pattern as a whole and evaluates the pattern with integral 

indexes, especially targeting patterns with severe defects such as the patterns 

deformed by over dissolution or incomplete dissolving. The SEM images were 

analyzed using a method based on Hough transform which can detect fundamental 

geometric shapes such as lines. In the aspect of simulation model, Monte Carlo 

simulation was used to simulate the distribution of polymers that form resist 

patterns. As one of the applications of this method, a comparison between 

experimental and simulation results based on the indexes provided by the 

developed method and chemical parameters was conducted. 

 

v. Machine learning 

Machine learning has recently garnered significant attention in the field of 

lithography. Deep learning techniques, particularly neural networks, have been 

applied not only for prediction but also for image classification in optical 

lithography. Additionally, deep learning has been utilized to analyze defects in 

SEM images.22 

Regression analysis offers several key advantages, particularly in 

understanding and modeling relationships between variables. It provides strong 

predictive capabilities by establishing mathematical relationships between inputs 
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and outputs. Unlike some complex machine learning models, regression models 

are relatively easy to interpret, allowing researchers to clearly understand how each 

independent variable affects the dependent variable. The method is also flexible, 

accommodating both linear and nonlinear relationships, and serves as a 

foundational tool for many advanced analytical techniques. These qualities make 

regression analysis a valuable approach for both exploratory and predictive data 

analysis. 

Based on the estimated chemical parameters, simulation models to 

reproduce QCM data and the SEM evaluation results, a regression analysis model 

based on polynomial kernel was constructed. Polynomial regression extends linear 

regression by allowing for the modeling of nonlinear relationships between 

independent and dependent variables. This approach is particularly advantageous 

when the data exhibits curvature or more complex patterns that cannot be captured 

by a straight line. It provides greater flexibility in fitting a wide range of data trends 

while maintaining interpretability. Additionally, polynomial regression is 

relatively simple to implement and computationally efficient compared to more 

complex nonlinear models or black-box machine learning methods. 

A practical application will demonstrate how these parameters provide 

valuable guidance for selecting or designing developer formulations that are better 

suited for next-generation photoresists. 

 

vi. Overview 

This thesis presents a comprehensive study of the pattern fabrication 

process, encompassing electron beam (EB) exposure, post-exposure baking (PEB), 

development, and final pattern inspection, as illustrated in Fig. 2. From a machine 

learning perspective, each stage is modeled to extract key chemical parameters as 

explanatory variables, using simulated data to represent the physical and chemical 

behavior of the resist material. The initial extraction of chemical parameters such 

as effective reaction radius was presented in Chapter 1. In Chapter 2, the 

development process is further analyzed through models calibrated against 

experimental results obtained via QCM measurements. Chapter 3 introduces a 

novel evaluation method that quantifies defective patterns, enabling even severely 
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defective outputs to be digitalized and used as target variables in supervised 

learning. Collectively, these efforts bridge the gap between physical process 

modeling and data-driven prediction. In Chapter 4, as a practical application, the 

relationship between the extracted explanatory variables and the final pattern 

quality is demonstrated, highlighting the potential of this integrated approach for 

predictive modeling and optimization in resist patterning. 
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Chapter 1: Estimating the effective reaction radius in 

polymer matrix 

 

Chapter Overview 

This chapter covers the pattern fabrication procedures of electron beam (EB) 

exposure, post-exposure baking (PEB), and development, as illustrated in Fig. 2(c), 

(e), and (f) of the General Introduction chapter. From a machine learning 

perspective, this chapter also presents simulated models designed to extract 

chemical parameters from these processes as explanatory variables. 

 

1.1  Introduction 

The fabrication of photomasks by electron beam (EB) lithography is the 

starting point of lithography used for the high-volume production of integrated 

circuits. There is a strict requirement on the pattern fidelity of photomasks, 

especially after the emergence of extreme ultraviolet (EUV) lithography in 

industry. On the other hand, the exposure dose required for the 13.5 nm wavelength 

of EUV is currently high, which makes the cost of chip manufacturing high in 

high-volume production lines as well. Hence, the improvement of resist sensitivity 

is the decisive factor in reducing the exposure dose, and thus, the cost of chip 

manufacturing.  

 Chemically amplified resists (CARs) decrease the exposure dose for the 

patterning by compensating for photon energy with heat energy.1) On the other 

hand, the sensitivity of CARs was found to be strongly related to the chemical 

gradient, which indicates the defect severity in both EUV2) and EB3) resists. CARs 

are generally composed of a photoacid generator (PAG), a quencher4), and a 

polymer with side chains partially protected by nonpolar protecting groups.1) The 

acids generated by photons or EB catalyze deprotection on a side chain of a 

polymer during postexposure baking (PEB). Owing to the low polarity of the 

protecting group, the polarity of deprotected polymers changes from low to high. 

Therefore, the polymer becomes hydrophilic and can be dissolved in an aqueous 
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developer. 5,6) CARs can meet the desired sensitivity by taking advantage of acid 

catalyzed deprotection. Thus, CARs are thought to be promising for high-

resolution lithography.7) In particular, the acid reaction–diffusion process during 

PEB is critical in controlling the feature size of a latent pattern. On the other hand, 

the processes in latent pattern formation such as the interactions between electrons 

and materials, secondary electron emission, and chemical reactions are 

stochastic.8) The distribution of protected units is directly affected by the 

accumulation of these stochastic effects. Consequently, the protected unit 

concentration (Cp) after PEB is uncertain (protected unit fluctuation). Furthermore, 

Cp determines the solubility of resist films in developers. In other words, Cp 

determines the dissolution threshold of resist films. Thus, the development process 

ultimately manifests the protected unit fluctuation as defects, such as line edge 

roughness (LER), on the resist pattern.  

 Previously, investigations of stochastic defects suggested that LER can be 

suppressed by increasing the effective reaction radius for deprotection (Rp),1,9) 

which is an essential parameter indicating the efficiency of chemical reactions per 

unit diffusion length of acids. Thus, Rp is related to both sensitivity and resolution. 

However, Rp cannot be directly measured by experiments. In this study, by 

comparing the simulation results with the experimental results Rp was investigated. 

Line-and-space patterns with different half pitches (HPs) were fabricated at 

different exposure doses and were utilized as the subject of analysis. An HP 

denotes the designed line widths in this study. The line width of fabricated resist 

patterns was measured by scanning electron microscopy (SEM). On the other hand, 

because the line width of a simulation model depends on the dissolution threshold 

Cth, was also investigated at the same time. In the optimization of Rp and Cth, 

Bayesian optimization (BO) was conducted. BO is a widely used tool for finding 

solutions in both scientific research and social studies.10) As a predictive model, 

BO can capture the underlying relationships among parameters obtained from 

previous experimental results. Furthermore, because BO is different from the other 

optimization algorithms based on gradient descent, it provides a global view of 

optimization and is suitable for multimodal frameworks.10,11) Hence, as the 

optimization algorithm, Gaussian process (GP) regression was selected for 

parameter tests in this study. 
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1.2  Experimental procedure 

A chemically amplified resist was used in this experiment.1) The polymer 

film of the resist was composed of a synthesized copolymers of poly(4-

hydroxystyrene) (PHS) and poly[4-(tert-butoxycarbonyl)oxy-styrene] (PTBS) 

(Mw 12700). The tert-butoxycarbonyl (t-BOC) protecting group (54.6 mol%) was 

introduced to protect the hydroxyl groups of PHS. That is, the protected unit 

concentration was 2.26 (units) nm-3. Approximately 3 wt% polymer powder was 

dissolved in propylene glycol monomethyl ether acetate (PGMEA), to which PAG, 

triphenylsulfonium nonaflate (TPS-nf), and a quencher, trioctylamine (TOA), 

were subsequently added. The concentrations of TPS-nf and TOA were adjusted 

to 0.2 and 0.1 molecules nm-3 in a film for spin coating, respectively. Spin coating 

was then carried out on a Si substrate for 4000 rounds per minute for 30 s, which 

was followed by prebaking at 90 °C for 90 s. The resist thickness was measured to 

be 50 nm using an ellipsometer (Meiwafosis FS-1). The spin-coated resist was 

stored in vacuum at room temperature before EB exposure. It was then exposed to 

a 125 keV EB (Elionix ELS-100T) at 192, 208, 224, 240, 256, 272, 288, 304, and 

320 μC cm-2. The EB current was 100 pA. The pitches of line-and-space patterns 

were 70, 80, 90, 100, 110, and 120 nm. After exposure of the resist to EB, the resist 

was subjected to PEB at 110 °C for 1.5 min. Development was carried out by 

soaking the resist in a 2.38 wt% tetramethylammonium hydroxide (TMAH) 

aqueous developer (Tokyo Ohka Kogyou NMD-3) at 23 °C for 30 s and rinsed 

with pure water for 15 s. SEM images of the resist were taken at an acceleration 

voltage of 4 kV using Hitachi High-Tec. S-5500. The emission currents for the 

observation of resist patterns ranged from 2700 to 7100 nA. The size of SEM 

images was 1280 × 960 pixels. The SEM images were captured in the fast-scan 

mode with 64 frame integration and the scale was 0.98 nm/pixel. The 

magnification was 100,000. Note that observation by SEM could cause damage, 

specifically, shrinkage of the resist patterns.12,13) The damage can be reduced by 

decreasing the acceleration voltage and the number of electrons.12) The emission 

current, the frame integration, and acceleration voltage were decreased to the 

extent in which the images were still observable.  
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1.3  Simulation model 

The simulation model was divided into two parts. The first part simulated 

the reactions in the resist during EB exposure. As a result, the concentration and 

distribution of acids after exposure were generated. Note that before PEB, the 

preneutralization of acids was taken into account.14,15) The second part simulated 

the acid diffusion and the deprotection of protected units during PEB. Finally, the 

distribution of protected units after PEB was obtained.  

 

Table 1-I. Parameters used in simulation. 

Acceleration voltage of electron beam (kV) 

Beam blur (σb) (nm) 

Resist thickness (nm) 

Stopping power (eV nm-1) 16) 

Resist film density (g cm-3)17) 

Thermalization distance (nm) 18) 

PAG concentration (nm-3) 

TOA concentration (nm-3) 

Reaction radius of PAG (nm) 18) 

Effective reaction radius for neutralization (nm) 

Effective reaction radius for deprotection (nm) 

Protection ratio (mol%) 

Deprotonation efficiency of proton source19) 

Deprotonation efficiency of nonproton source20) 

Acid generation efficiency20) 

Diffusion constant of acids (nm2 s-1) 

125 

2.0 

20 

0.418 

1.2 

3.2 

0.2 

0.1 

0.70 

0.5 

0.02–0.15 

54.6 

1.0 

0.59 

0.87 

1.0 
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Diffusion constant of quenchers (nm2 s-1) 

Diffusion constant of protected units (nm2 s-1) 

PEB time (s) 

HP (nm) 

Dose (μC cm-2) 

1.0 

0.0 

90 

35–60 

192–320 

 

 In the EB exposure simulation part, the formation of acid images of line-

and-space patterns was calculated on the basis of the sensitization mechanism of 

chemically amplified EB resists. The beam profile Ib (x: perpendicular to a line 

pattern) and the exposure pattern width w were defined as  

𝐼𝑏(𝑥) =
𝐼𝑏0

√2𝜋𝜎𝑏
∫ 𝑎exp[−

(𝑥−𝑥′)
2

2𝜎𝑏
2

]𝑑𝑥′ ,      

 𝑎 = 1 (−
𝑤

2
+ n𝑝 < x′ <

w

2
+ n𝑝),     

 𝑎 = 0 [−
𝑤

2
+ n𝑝 < x′ <

w

2
+ (n + 1)𝑝],   (1-1) 

where Ib0, b, p, and n are the exposure dose (C cm–2), the beam blur, the pitch of 

the line-and-space pattern, and an integer, respectively. The parameters and their 

corresponding values used in the first part are summarized in Table 1-I.16–20) The 

exposure pattern widths were set to be HP. The beam blur was approximated using 

the Gaussian function. The beam blur (1b) was set to 2.0 nm. The acceleration 

voltage of the electron beam was 125 kV. The calculated area was p × 200 nm2. 

The calculated length in the depth direction was set to be 20 nm to save 

computational time. The thermalization distance of secondary electrons in PHS 

has been reported to be 3.2 nm.18) The deprotonation efficiency of protected unit 

radical cations was set to 0.59, which was obtained by titration using the acid-

sensitive dye Coumarin 6.20) The acid generation efficiency in 54.6% protected 

PHS was 0.87.20) The trajectories of secondary electrons and the reaction of 

thermalized electrons with PAG were calculated by a Monte Carlo method. The 

details of the calculation procedure have been reported in a previous paper.16)  
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 The acids generated after EB exposure were first neutralized by the 

quencher before PEB. The preneutralized concentration distribution was the initial 

acid state of PEB. In the PEB process simulation part, the reaction–diffusion 

equations describing the dynamics of acids and quenchers are as follows5, 6, 21-23) 

𝜕𝐶acid

𝜕𝑡
=  ∇(𝐷acid∇𝐶acid) − 4𝜋𝑅n(𝐷acid + 𝐷q)𝐶acid𝐶q,    (1-2) 

 
𝜕𝐶q

𝜕𝑡
=  ∇(𝐷q∇𝐶q) − 4𝜋𝑅n(𝐷acid + 𝐷q)𝐶acid𝐶q,     (1-3) 

where 𝐶acid , 𝐶q , 𝑅n , 𝑡 , 𝐷acid , and  𝐷q  are the concentration of acids and 

quenchers, the effective reaction radius for neutralization, the time, and the 

diffusion constants of acids and quenchers, respectively. The acid and quencher 

dynamics during PEB at a time interval of 0.001 s were calculated by solving Eqs. 

(1-2) and (1-3). On the other hand, the protected unit concentration was calculated 

as 

𝜕𝐶p

𝜕𝑡
=  −4𝜋𝑅p𝐷acid𝐶acid𝐶p,     (1-4) 

where 𝐶p and 𝑅p represent the concentration of protected units and the effective 

reaction radius for deprotection, respectively.  
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1.4  Analytical methods 

 

Figure 1-1 SEM image of experimental results. All lines were exposed to EB at 

224 μC cm–2. The designed HP was 60 nm. (b) Edges extracted from SEM image 

using Otsu binarization. The yellow pixels represent the edge of the line. (c) Cp 

obtained from the simulation under the corresponding experimental condition. The 

color bar illustrates the protected unit concentration. Rp was 0.06 nm. 

 

The line width was used as a reference in the comparison between 

experimental results and simulation results. The SEM image shown in Fig. 1-1(a) 

is a representative example of experimental results. In Fig. 1-1(a), there were 10 

lines drawn under the same condition, which means that these 10 lines were 

designed to have the same HP and irradiated at the same dose. In the case of Fig. 

1-1(a), the lines were exposed to EB radiation at 224 μC cm–2 dose and the 

designed HP was 60 nm (Note that the exposed section was defined as the line). 

Figure 1-1(b) shows the result of edge extraction of a line on the right side of Fig. 

1-1(a), by Otsu binarization (Fig. 1-2).24) 
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Figure 1-2 Preprocessing of SEM image before measuring HP one by one line. The 

SEM image demonstrated in this figure is a representative example. The pattern was 

exposed to EB at 224 μC/cm2 dose and the HP was 60 nm for one line (Note that the 

exposed section was defined as line). The SEM image was first filtered with median 

method to denoise, followed by sigmoid adjustment to increase the contrast. The 

section including patterns was then cropped out and binarized with Otsu method. 

Finally, lines were cut out one by one to measure its HP. 

 

 The yellow pixels in the SEM image were classified as the edge owing to 

the high intensity of pixels before classification. After classification, the pixels 

classified into the edge were set to be 1 and the others were set to be 0. For the 

resist patterns, HPs were changed from 35 to 60 nm. The lengths of patterns were 

designed to be 600 nm under all conditions. The line width was measured from 

two sides. In determining the line width, the integration of the pixel values of four 

adjacent lines was calculated from the outer side (far from the line pattern) to the 

inner side (near the line pattern). When the sum of the pixel values of four lines 

first exceeded three times the designed pattern length (600 nm × 3 = 1800 nm), the 

line on the most inner side among four lines was seen as the end of the line pattern. 
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When the line width was smaller than a quarter of the corresponding HP, the line 

was seen as a severely defective line and discarded. 

 Figure 1-1(c) shows the Cp distribution before development. The 

horizontal lengths are the pitches (the double of designed HPs) and the vertical 

lengths are 700 nm under all conditions. For the pattern, the line widths were 

designed to be the corresponding HPs, and the lengths of patterns were designed 

to be 600 nm under all conditions. It was assumed that only at Cp below a certain 

concentration the deprotected polymers can be dissolved in 2.38 wt% TMAH, 

namely, the dissolution threshold Cth. Hence, the regions whose Cp is below Cth 

were classified as line regions after development. Other regions were classified as 

space regions. The pixel values in line regions were set to be 1 and those in other 

regions were set to be 0. The methods of finding edges and evaluating line widths 

were the same as those used for the experimental results. 

 Except for the severely defective lines, almost all the 10 lines obtained 

from the experiment were measured and compared with the simulation results. The 

root mean square error (RMSE) between experimental and simulation results 

(RMSEHP) was used for evaluation and is defined as 

𝑅𝑀𝑆𝐸HP = √
∑ (𝐿𝑊SEM,n −𝐿𝑊Simul,n)2m

n=1

m
 ,     (1-5) 

where m, n, 𝐿𝑊SEM, and 𝐿𝑊Simul represent the number of lines, an integer, the 

line width of a line in the SEM image, and the line width of the corresponding 

simulation result, respectively. The sum of RMSEHP was used as the observation 

value, to be exact, an acquisition function that determines the sampling site. 

 GP regression is a typical method for Bayesian inference. In this study, GP 

regression was utilized in finding the probable values for Rp and Cth. The mean 

function was constant. The GP prior mean was assumed to be zero and the 

Bayesian credible interval for the posterior probability was set to be 95%. The 

Matérn covariance function 𝑘 is defined as11) 

𝑘(𝑥𝑖 , 𝑥𝑗) =
21−𝜐

Γ(𝜈)
(

√2𝜐

𝑙
 𝑑(𝑥𝑖 , 𝑥𝑗))

𝜈

𝐾𝜈 (
√2𝜐

𝑙
 𝑑(𝑥𝑖 , 𝑥𝑗)),  (1-6) 

where 𝑙 , Γ,  𝐾𝜈, and 𝜈 are the length scale, gamma function, modified Bessel 

function, and the parameter that controls the smoothness of function k, respectively. 
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The distance between 𝑥𝑖   and 𝑥𝑗 is the Euclidean distance denoted by 𝑑(𝑥𝑖 , 𝑥𝑗). 

In this study, since the expected improvement was a small RMSEHP, the subsequent 

target was simply decided by the lowest credible bound of the acquisition function. 

 

1.5  Results and discussion 

 

 

Figure 1-3 (a) Representative simulation result of EB exposure simulation part. 

Different colors represent different concentrations of PAG decomposed by EB 

irradiation. The unit is molecules nm–3. (b) Cp changes during PEB obtained by the 

simulation. The HP and dose were 35 nm and 192 μC cm–2, respectively. Rp was 0.05 

nm. 

 

A representative simulation result is shown in Fig. 1-3. The PAG 

decomposed by EB exposure leads to acid generations. The simulation result of 

PAG decomposition immediately after EB exposure is shown in Fig. 1-3(a). The 

simulation results in Fig. 1-3(b) show how Cp changes during PEB. The Cp of 

54.6% protected PHS was 2.26 nm–3. Therefore, the initial concentration was 2.26 

nm–3, which is shown in dark red.  
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Figure 1-4 Frequency change of 30 mol% protected PHS developed in 100% 

TMAH measured by QCM. 

 

 To search for the probable values of Cth and Rp, their possible ranges were 

estimated beforehand. For Cp, PHS protected by t-BOC was observed to dissolve 

in the 2.38 wt% TMAH aqueous developer when its protection ratio was below 

30%, the protected unit concentration of which is 1.44 nm–3, as shown in Fig. 1-4. 

On the other hand, the initial protected unit concentration was 2.26 nm–3. From 

these findings, the dissolution threshold was investigated between 1.1 and 2.0 nm–

3. In the case of Rp, previous studies showed that the chemically amplified resists 

including state-of-the-art resists had Rp values ranging from 0.06 to 0.16.25–31) 

Judging from these values, the possible Rp range in this study was set at 0.02– 

0.15 nm. 

 The line widths were measured using SEM images of resist patterns for 

six different HPs and nine different doses. A total of 56 SEM images were used, 

as shown in Fig. 1-5.  
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Figure 1-5  SEM images used in this study. The SEM images at different 

conditions. HP ranges from 35 to 60 nm. Doses range from 192 to 320 μC/cm2. 

 

Since different Rp and Cth values finally lead to different line widths in the 

simulation process, line widths in the simulation were measured every time when 

Rp or Cth changed. To compare between simulation and experimental results, 

𝑅𝑀𝑆𝐸HP were calculated for all the SEM images [Eq. (1-5)] and corresponding 
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simulation results that had the same doses and targeted HPs. Since one set of Rp 

and Cth must be applied to 56 SEM images with different HPs and doses, 56 

comparison results (RMSEHP) for the corresponding Rp and Cth were summed up. 

A small sum of  𝑅𝑀𝑆𝐸HP values means that the Rp and Cth used in the simulation 

were close to the correct solution. The experimental errors (the fluctuation of line 

width) at 35, 40, 45, 50 ,55, and 60 nm HP were 5.03, 2.30, 1.87, 1.72, 1.70, and 

1.67 nm, respectively. The simulation errors caused by the use of the Monte Carlo 

method for the calculation of acid generation is considered to be smaller than the 

experimental errors, because the PEB process was simulated by applying not the 

Monte Carlo method but the probability density model. 

 

Table 1-II. The initial data set used in BO. Cth and Rp were the variables, and the sum of 

RMSEHP values was the target variable. 

Rp (nm) Cth (nm–3) Sum of RMSEHP values 

0.02 1.1 1684.29 

0.02 2.0 341.77 

0.15 1.1 375.97 

0.15 2.0 771.07 

0.08 1.4 341.77 

 

 BO was conducted to find the most suitable Rp and Cth for the simulation 

model. The inference kernel used was the Matérn kernel [Eq. (1-6)]. The entire 

length scale of the Matérn kernel was examined automatically between 0.01 and 

100. 𝜈 was set to be 1.5 in this study. The resulting fitting score was more than 

99.9%. The prediction started from the five data sets shown in Table 1-II. The 

variable set of these five data included the end values of Rp and Cth and another 

datum roughly estimated (Rp: 0.08 nm; Cth: 1.4 nm–3). The method to add a data 

obeyed the probability distribution. The possibility was set at 95%. The lower 

credible bound was changed as data were added.  
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Figure 1-6 Results of BO using Gaussian regression process using 11 training data. 

(a) Fitting result of GP regression. (b) Lower credible bound distribution obtained by 

BO. (c) Overlapping contour graph of both fitting results and lower credible bound 

in a three-dimensional figure. 

 

  Figure 1-6 shows an example to illustrate the results of BO. The number 

of data used was 11. The sum of RMSEHP values is shown in different colors. The 

yellow-red region in Figs. 1-6(a) and (c) show the fitting results that indicate the 

correlation of the values and their distribution. The blue-green color region 

indicates the lower credible bound where the smallest sum of RMSEHP values may 

appear. The red circles in Fig. 1-6(b) are the lowest position, and their 

corresponding Rp and Cth were used in the following simulation. Furthermore, 

these variables and their resulting sum of RMSEHP values were added together with 
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the data set calculated before. It was used as a new data set for the next 

optimization. 

 

 

Figure 1-7 Change of calculated sum of RMSEHP values along with data addition. 

The method of selecting new data for the simulation was described in Sect. 4. The 

variables with smallest sums of RMSEHP values were labeled with actual values.  

 

 As shown in Fig. 1-7, the sum of RMSEHP values gradually became stable 

with increasing number of data added. Since the variable values predicted using 

35 data were the same as those predicted using 29 data (Rp: 0.06 nm; Cth: 1.5 nm–

3), this suggests that the optimization was coming to the end. From the sum of 

RMSEHP values determined by calculation, the most probable ranges for Rp and Cth 

are 0.05–0.08 nm and 1.3–1.6 nm–3 and, respectively. Generally, before the 

addition of the 23rd data, the prediction accuracy was not good. Two significant 

inference changes are encircled in red in Fig. 1-7. The first was observed for the 

data that increased from 14 to 15 and the second was for the data that increased 

from 22 to 23. The changes of fitting results are shown in Fig. 1-8. 
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Figure 1-8  From (a) to (b), the color of the region encircled in black changed from 

orange to yellow after adding the data in the red box shown in (b). From (c) to (d), 

the color of the region encircled in black changed from yellow to orange after adding 

the data in the red box shown in (d). 

 

From Figs. 1-8(a) and (b), the region encircled in black was inferred to be 

possible until the addition of the 14th datum. After the 23rd datum was added [from 

Figs. 1-8(c) and (d)], the sum of RMSEHP values of the predicted variables 

increased. The variables in red box in Fig. 1-8(b) were Rp=0.05 nm and Cth=1.8 

nm–3 and those in Fig. 1-8(d) were Rp=0.03 nm and Cth=2.0 nm–3. This indicates 

that, although Cth and Rp seem to have an inversely proportional correlation along 

the diagonal in the Cth–Rp plane, Rp is unlikely to be smaller than 0.03 nm.  
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Figure 1-9  Distribution of sum of RMSEHP values in Cth–Rp plane. To show the 

result clearly, the region with the sum of RMSEHP values larger than 500 was merged 

into the pink area. The area encircled in black is the region where the sum of RMSEHP 

values is smaller than those in other areas. (a) Result of BO obtained using 35 data. 

(b) Result of grid search obtained using 140 data.  

 

To verify BO, a grid search was conducted using 140 data. Four smallest 

sums of RMSEHP values were the same as the results of BO (data labeled with 

concrete in Fig. 1-7). This confirmed that BO found the best 4 results within 35 

data sets, which is far smaller than the number of entire 140 data. Figure 1-9 shows 

the distribution of the sum of RMSEHP values in the Cth–Rp plane. The distribution 

obtained by BO was similar to that obtained by the grid search. The best-fitted 

values can also be obtained using the least squares regression with gradient descent 

with a small number of iterations. However, it does not provide the state around 

the best-fitted values similarly to that shown in Fig. 1-9. BO clarified the whole 

view of fitting accuracy in the Cth–Rp plane with the small number of iterations. 

The probable values for Cth and Rp were 1.3–1.6 nm–3 and 0.05–0.08 nm, 

respectively. Cth is likely to be larger than 1.44 (30 mol% protected PHS), as shown 

in Fig. 1-9.  
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Alhough BO and grid search suggested that the combination of Rp of 0.08 

nm and Cth of 1.3 nm–3 was the best fitted values, the combination of Rp of 0.06 

nm and Cth of 1.5 nm–3, which was suggested by BO, might be closer to the correct 

solution. 

 

 

Figure 1-10 RMSEHP distribution when Rp was 0.06 nm and Cth was 1.5 nm–3.  

 

 The RMSEHP distribution is shown in Fig. 1-10. The experimental results 

well fitted in the large-HP and low-exposure-dose region. In the large-exposure 

dose and small-HP regions, the fitting accuracy degraded. This is considered to be 

due to the fact that the resist patterns were deformed during development and 

rinsing processes owing to excess chemical reactions during PEB. 

 

1.6  Conclusion 

To search for Rp, lithography experiments with line-and-space patterns 

were conducted at different exposure doses and HPs. The SEM images of resist 

patterns were used to measure the line width for experimental data. The EB 

exposure process and acid reaction–diffusion process during PEB were simulated. 

Since the line width of simulation patterns was significantly affected by the 

dissolution threshold Cth, it had to be evaluated together with Rp.  
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To find Rp and Cth, a comparison was made between experimental and 

simulation results of the line width. The probable values of Rp and Cth were 

determined by BO. GP regression using the Matérn covariance kernel was used for 

Bayesian inferrence. BO effectively reduced the number of iterations from 140 to 

35. Furthermore, the result was verified by a grid search. The probable values of 

Cth and Rp were 1.3–1.6 nm–3 and 0.05–0.08 nm for 54.6 mol% protected PHS 

resist under the PEB conditions of 110 °C and 1.5 min, respectively.  
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Chapter 2: Stratified polymer dissolution model based on 

impedance data from quartz crystal microbalance method 

 

Chapter Overview 

This chapter focuses on the pattern fabrication procedure of development, 

as illustrated in Fig. 2(f) of the General Introduction chapter. From a machine 

learning perspective, it introduces simulated models aimed at reproducing the 

experimental results obtained via quartz crystal microbalance (QCM) 

measurements. These models are used to extract chemical parameters from the 

development process as explanatory variables, providing insight into the 

underlying mechanisms and their influence on pattern formation.  

 

2.1 Introduction 

As feature sizes continue to shrink, the stochastic generation of defects in 

patterns becomes increasingly a severe problem, leading to reduced product yield 

and increased manufacturing costs.1) Swelling and insufficient dissolution during 

development are primary causes of bridging defects in patterns.2,3) In response, 

new resists and corresponding developers, such as organic developers, are being 

explored to improve the fidelity of resist patterns. Previous studies have compared 

the traditional developer, 2.38 wt% (0.26 N) tetramethylammonium hydroxide 

(TMAH) aqueous developer, with alternatives such as a tetrabutylammonium 

hydroxide (TBAH) aqueous developer.3-7) Since 1986, the quartz crystal 

microbalance (QCM) has been used to measure the dissolution rate of the resist.8) 

Changes in frequency, according to the Sauerbrey equation, can monitor resist 

mass loss due to dissolution.9-13) QCM also measures the impedance, which reflect 

the inductive reactance caused by series resonance losses, indicating energy loss 

during development.14,15) Although the impedance has been measured during 

development,16,17) the dynamic relationship between impedance change and 

dissolution kinetics, including the viscosity changes in the developer caused by 

resist polymer dissolution, was previously unclear. 
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Diffusion model has been applied to the analysis of QCM frequency charts 

to investigate the solvent diffusion in resist films during prebaking.18) Previous 

study indicated that the decrease in impedance after the resist dissolution is related 

to the polymer diffusion in the developer.19) In this study, the impedance changes 

during polymer dissolution were simulated based on the diffusion equations. This 

study demonstrated that the impedance not only provides insights into the rate of 

resist dissolution but also offers valuable information on the interaction at the 

dissolution front by reproducing QCM charts. 

 

The QCM method was used to measure the mass and energy loss with 

change in frequency and impedance, respectively.18) The mass loss, based on the 

Sauerbrey equation, has the relationship with the frequency change as follows9): 

 
𝛥𝑓

𝑓0
∝

−𝛥𝑚

𝑚
,      (2-1) 

where Δf, f0, m, and Δm are the frequency change, resonant frequency, unloaded 

resonator mass, and mass change. Although there is a clear relationship between 

frequency change and resist mass loss during the dissolution process, the change 

in impedance has not yet been successfully reproduced in a manner that provides 

physical insights. Many dissolution models of polymer films have been 

proposed.19-24) However, the dissolution model that can utilize the QCM 

impedance chart has not been reported. In previous work, the impedance change 

was found to be related with the polymer concentration and the viscosity of 

developer.25) Based on the Stokes–Einstein–Sutherland equation, the viscosity is 

further converted to the hydrodynamic radius (RH) of polymers26): 

𝑅H =
𝑘B𝑇

6𝜋𝜂s𝐷
,      (2-2) 

where kB, T, s, and D are the Boltzmann constant, the absolute temperature, the 

dynamic viscosity, and the diffusion constant of polymer, respectively. 
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2.2 Simulation 

In this study, a stratified polymer dissolution model based on the impedance 

data was proposed. Thereby, the extraction of feature values such as the D and RH 

from QCM charts becomes possible. The reported QCM charts of tert-

butoxycarbonyl (t-BOC) protected poly(4-hydroxystyrene) (PHS) films in alkaline 

aqueous developers27,28) were analyzed. Additional QCM charts were also obtained 

in accordance with the experimental procedures reported in previous work.27,28) 

The polymer film density is 1.2 g cm-3.29) The developer used were 0.26 and 0.17 

N TMAH aqueous developers and 0.26 N tetraethylammonium hydroxide (TEAH) 

aqueous developer, which are named 0.26 N TMAH, 0.17 N TMAH, and 0.26 N 

TEAH, respectively, in this study for convenience. 

 

  

                             

    

    

    

    

 

             

 
  
  

 
 

             

                

    

    

    

 

             

 
  
  

 
 

          
                    
         
                     

 

  

  

  

  

             

 
 
  
 
 

        

               

   

   

         

 
 
  
 
 
   

  
 
 
  
   

 
 
  
 
 
    

 

 
 
  

  
 
 
  
 
   
 
 
  
 

   

      

    

    

    

    

             

 
  
  

 
 

             

            

 

 

 

 

 

             

 
 
  
 
 

        

     
       

   

 

   

   

   

   

    

             

 
 
  
 
 

        

     
       

     

    

          

      

 
 
   

 
   

  
  

  
   
 

       
                   
                 

 
 
  

  
 
 
  
 
   
 
 
  
 



43 

 

 

 

Figure 2-1 (a) QCM chart of 300-nm-thick PHS film immersed in pure water. (b) 

Schemes of simulation models. (c) QCM chart of 110-nm-thick PHS film immersed 

in 0.17 N TMAH with simulation result calculated with Model 1. The Dp was 1.2×10-

10 m2 s-1. (d) QCM chart of 110-nm-thick PHS film immersed in 0.17 N TMAH with 

simulation result calculated with SPDM. In (d), the green, orange, and dark gray lines 

represent the frequency and impedance changes calculated with Dp = 7×10-11, 

1.4×10-10, and 2.2×10-10 m2 s-1, respectively. The r0, β, closs, and rfinal were 33 s-1, 3.2 

nm-3, 2×10-4 s-1, and 1 s-1, respectively. Note that ΔZ represents the impedance 

change, calculated by subtracting the developer impedance (measured after 60 s, at 

which the resist polymer is presumed to have fully dissolved) from the impedance 

measured during development. 

 

For the simulation, the dissolution of polymer was modeled on the basis 

of diffusion equations. This involves the developer diffusing into the polymer film 

and the dissolved polymer diffusing into the developer. Detailed simulation 

models added more parameters are explained in the following sections with Fig. 

2-1(b). The dynamics of three components (polymer, water, and alkali) are all 

simulated based on a diffusion equation:  

 
𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷

𝜕𝐶

𝜕𝑥
),      (2-3) 

where C and D represent the concentration and diffusion constant of each diffusion 

component (polymer, water, or alkali). Polymer concentration is expressed in 

monomer units. t and x are time and the coordinate perpendicular to the surface of 

QCM substrate. The length of cell for the calculation was set to be 5 nm. The 

impedance was calculated from the concentration of polymer in the developer, 

based on the relationship between the viscosity and impedance reported in the 

previous work in Table 2-I.25)  

 

Table 2-I. Solvent viscosity and impedance change measured by inserting QCM substrate 

to the solvent.32) 

Solvent Impedance change (ΔZ; Ω) Viscosity (mPa s) at 25 °C 
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Water 255.19 0.890 

Methanol 195.35 0.544 

Ethanol 276.21 1.074 

1-Propanol 377.74 1.945 

2-Propanol 386.1 2.04 

1-Butanol 451.19 2.54 

Ethyl acetate 191.51 0.423 

Butyl acetate 233.43 0.685 

Amyl acetate 267.9 0.8618 

Hexyl acetate 291.88 1.036 

 

The impedances of the developers were plotted, as shown in Fig. 2-2, to 

calculate the relationship between the viscosity  and impedance change Z. The 

relationship is given as follows:  

𝜂 = 0.0082 Δ𝑍 − 1.2104,   (2-4) 

The baseline of the impedance change was the impedance of the QCM substrate 

in the atmosphere. 

 

Figure 2-2 The relationship between solvent viscosity and impedance change.  
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The diffusion constant of developers in the polymer films can be 

determined by observing the rate in the frequency change at which the resist 

polymer swells. In this experiment, pure water was used to examine the swelling 

behavior in a 300-nm-thick polymer film. Figure 2-1(a) illustrates the changes in 

frequency and impedance within 3 s after the immersion of polymer film in water. 

The decrease in frequency indicates that water diffused into the polymer. The 

diffusion constant of water (Dw) was estimated to be 4×10-16 m2 s–1. Meanwhile, 

there was no significant change in impedance. This indicates that neither film 

dissolution nor viscosity increase was induced within 3 s after the immersion. The 

penetration of water only affected the resonance frequency without causing the 

significant relaxation of polymer matrix. In the following simulation, the diffusion 

constant of alkali (Dalk) in the developer was assumed to be the same as Dw. Note 

that Dw and Dalk were also adjusted from 10-16 to 10-15 m2 s–1 for each experimental 

results. Dw tended to increase in the presence of alkali.  

 

2.3 Experiment 

   Poly(4-hydroxystyrene) (PHS) powder, propylene glycol monomethyl 

ether (PGME), and tetraethylammonium hydroxide (TEAH) were purchased from 

Sigma–Aldrich. The 2.38 wt% tetramethylammonium hydroxide (TMAH) 

developer (NMD-3) was purchased from Tokyo Ohka Kogyo. An RDA-Qz3 

(Litho Tech Japan) resist evaluation system, based on the quartz crystal 

microbalance (QCM) method, was used. The dynamic light scattering (DLS)-

based particle size distribution analyzer (nanoPartica SZ-100V2 series, HORIBA) 

was used. Solutions of polymers (0.05 wt%) in developers were prepared and 

stored in a refrigerator for approximately one day before measurement using DLS.   

The polymer dissolution models are discussed, focusing on understanding 

how the polymer dissolves into the developer and how the dissolved polymer 

affects the impedance change. Two types of dissolution models were tested, as 

illustrated in the schemes shown in Fig. 2-1(b). In Model 1, the resist film was 

dissolved in accordance with Eq. (2-1). The diffusion constant of polymer in the 

film was assumed to be the same as that in the developer. The changes in frequency 

and impedance calculated by assuming Model 1 are illustrated in Fig. 2-1(c). 
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Although the frequency changes could be roughly approximated, the impedance 

changes obtained by the simulation were significantly larger than the experimental 

impedances. This disagreement suggests that the transient swelling layer is thin. 

The formation of a thick swelling layer would typically result in a sharp increase 

in impedance. Next, the dissolution model was stratified, with the rigid layer 

transitioning into the gel layer and then diffusing into the sol layer [Fig. 2-1(b), 

stratified polymer dissolution model (SPDM)]. The rigid layer represents the solid 

polymer film that does not affect viscosity change (impedance change) but affects 

mass change (frequency change). The constant proportionality between frequency 

and mass changes used in this study is -5.40×1018 Hz nm2 mg-1 (Table 2-II).  

 

Table 2-II. Relationship between frequency and mass changes. 

TMAH Thickness a (Hz nm2 mg-1) 

0.26 N 300 nm -4.46 × 1018 

100 nm -4.48 ×1018 

0.17 N 300 nm -5.22 ×1018 

100 nm -5.68 ×1018 

 

The frequency change depends on the number of polymer molecules in the 

rigid layer when the transient swelling layer is thin. The following equation is used: 

Δ𝑓 = 𝑎Δ𝑚,      (2-4) 

where Δf, a, and m denote the frequency change, coefficient, and mass change, 

respectively. The coefficient a was determined from the experimental data relating 

to the resist thickness and frequency change. To test the frequency change during 

the dissolution of 100- and 300-nm-thick PHS films, 0.26 and 0.17 N TMAH were 

used. The coefficient a depended on experimental conditions, ranging from -4.46 

× 1018 to -5.68 × 1018 Hz nm2 mg-1, as shown in Table 2-II. In this study, the 

average value of -5.40 × 1018 Hz nm2 mg-1 was used. 
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The gel layer is defined as the resist layer that has absorbed the developer 

but has not yet dissolved. When the gel layer is thick, it affects the viscosity change. 

When this layer is thin, it does not affect the viscosity change. The sol layer is the 

viscous layer that impacts the impedance change during development with thin gel 

layer. This corresponds to Type 1 dissolution model reported previously.30) To 

simulate the rigid layer transitioning into the gel layer, a gelation phase transition 

rate (r), defined by the number of polymer (monomer unit) converted from rigid 

phase to gel phase per unit time ∆Gel/∆t was introduced. The gelation phase 

transition rate is expressed as 

 𝑟 =
∆Gel

∆𝑡
=

𝑟0

𝛽∙𝐶gel+1
,     (2-5) 

where r0, Cgel, and  are the initial gelation phase transition rate, the concentration 

of polymer molecules in gel layer, and a constant. The introduction of Cgel+1 is 

based on a previous observation that the dissolution rate decreased as the polymer 

continued to dissolve into the developer, due to the increase of viscosity and the 

decrease in pH near the dissolution interface.25) With introducing the gelation 

phase transition rate, SPDM was able to prompt the reproduction of QCM charts, 

as shown in Fig. 2-1(d), which also demonstrates the effect of polymer diffusion 

constant (Dp). By fitting the simulation kinetics to the experimental impedance 

chart, Dp can be obtained. The impedance charts calculated with the best-fitted Dp, 

along with those calculated with the values larger and smaller than the best fitted 

Dp, were plotted in Fig. 2-1(d). The large Dp corresponds to a fast increase in 

frequency and a low impedance. While this difference was small in the frequency 

chart, especially when Dp was larger than the optimized one, it became clear in the 

impedance chart. 
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Figure 2-3 QCM charts and fitting results. The experimental data were plotted by 

dots and simulation data were shown by lines. The development conditions were (a) 

PHS film in 0.26 N TMAH, (b) PHS film in 0.17 N TMAH, (c) 5 mol% t-Boc 

protected PHS film in 0.26 N TMAH, and (d) PHS film in 0.26 N TEAH. 

 

To investigate how the experimental conditions influence Dp, the effects of 

polymer, film thickness, and developer were examined. The QCM charts were 

fitted with SPDM, as shown in Fig. 2-3. An example of dissolution image is shown 

in Fig. 2-4. Figure 2-4(b) shows a visualization of the simulation results obtained 

by reproducing the experimental impedance charts shown in Fig. 2-4(a). The 

dissolution images reflect the state before complete dissolution at 0.08, 0.16, and 

0.34 s, and after complete dissolution at 0.6 and 1.0 s. The color change in the sol 

layer indicates the concentration of the polymer at the dissolution surface, with 

deeper colors representing a higher polymer concentration. 
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Figure 2-4 (a) Experimental impedance chart obtained during the development of 

PHS film in 0.26 N TEAH aqueous developer using QCM. (b) Images illustrating 

the simulated dissolution of polymer molecules. The image depicts polymer 

distribution within an 800 nm region from the surface of the QCM substrate, while 

the entire simulated developer region extended to 180 m. The color bar indicates 

the concentration of polymer molecules in monomer units. 

 

The best-fitted values are listed in Fig. 2-5. Figure 2-3(a) shows the QCM 

chart obtained during the development of PHS film using 0.26 N TMAH. When 

the diluted TMAH (0.17 N) was used, Dp and the impedance reachable during the 

development significantly decreased, as shown in Figs. 2-5 and 2-3(b), 

respectively. Close examination of the experimental QCM charts, illustrated in Fig. 

2-3(c), reveals that the frequency for the 110-nm-thick film slowly increased after 

the rapid increase, indicating a decrease in mass. This suggests the existence of a 

thin layer at the bottom, which was named a near-substrate layer. This unique 

frequency pattern became remarkable for 55- and 30-nm-thick films shown in Fig. 

2-3(c). These observations suggest that after most of the resist film has dissolved, 

residual polymer molecules remain on the substrate, dissolving at slow rate. To 

better simulate these phenomena, the model was further refined by incorporating 

additional parameters: a decrease in the gelation phase transition rate (rd) that 

begins approximately 15 nm from the substrate, and a final loss rate (rfinal). With 

these adjustments, the model successfully replicated the changes in frequency and 

impedance shown in Fig. 2-3(c).  
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Entry 

(Fig.) 
Developer 

t-Boc 

(mol%) 

Thickness 

(nm) 

Dp 

(1010 m2 s–1) 

r0  

(s–1) 

β 

(nm-3) 

rd 

(103 s-1) 

rfinal 

(s-1) 

RH 

(nm) 

1 

(2a) 
0.26 N 

TMAH 
0 

110 1.93 98 1.8 1.45 2 0.97 

60 1.87 98 2.3 1.4 1 1.02 

30 1.84 85 2.6 1.35 1 1.01 

2 

(2b) 
0.17 N 

TMAH 
0 

110 1.40 33 3.3 0.2 2 1.40 

55 1.34 32.5 2.1 0.2 2.2 1.49 

25 1.29 30.4 1.5 0.22 2.2 1.56 

3 

(2c) 
0.26 N 

TMAH 
5 

110 0.65 59 1.22 8 4.75 2.70 

55 0.425 57.5 1 100 0.75 3.93 

25 0.56 60 1 175 0.5 3.02 

4 

(2d) 
0.26 N 

TEAH 
0 

110 0.605 26 1.58 2.6 4.7 3.11 

60 0.71 30.5 1.35 1.7 3.2 2.59 

30 0.593 28.5 1.05 1.05 2 2.97 

Figure 2-5 Extracted feature values. 

 

In Fig. 2-5, the extracted feature values are categorized into three ranges: 

large, middle, and small, highlighted in light green, light purple, and blue colors, 

respectively. This color coding visualizes the variations across different 

experimental conditions and their effects on the Dp and r0. From the data presented, 

the impact of developers and polymers on Dp and dissolution rates can be observed. 

Entry 1 shows the fastest dissolution rates, indicated by the highest values of Dp 

and r0. When developers are changed while using the same polymer, varied 

reductions in Dp can be observed. The value of r0, which indicates the dissolution 

rate of the polymer, suggests that TEAH developers require more development 

time. This prolonged development time correlated with a lower impedance change, 

as evidenced by the comparisons between Figs. 2-5(a) and (d). Entry 3 

demonstrates a significant drop in Dp by the t-Boc protection, leading directly to 

the appearance of a bump at the turning point for film thicknesses of 55 and 30 nm. 
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This bump suggests that a considerable amount of residual polymer remains on the 

substrate. Moreover, to reproduce the bump at the turning point after most films 

were dissolved, high values of the loss rate (rd) were required, suggesting a strong 

interaction between the polymer and the substrate. Additionally, Entry 4 highlights 

a decrease in the dissolution rate when the developer was switched to TEAH, 

indicating the alkali chain of the developer have significant influence on the 

dissolution kinetics. This comprehensive analysis helps understanding the intricate 

relationship between polymer and developer and their collective impact on 

lithographic processing outcomes. Based on Eq. (2-2), the calculated RH in the 

TMAH and TEAH solutions was approximately 1–4 nm. RH of polymers in the 

developers was also measured using dynamic light scattering (DLS) (Table 2-III) 

for the validation. RH and Dp obtained by QCM approximately agreed with those 

obtained by DLS. According to the DLS data, the RH of the polymer was 

approximately 1.3–2.1 nm, and the corresponding Dp was approximately 2.83–

1.03 × 10-10 m2 s–1.  

 

 

 

 

Table 2-III. Hydrodynamic radius and diffusion constant of polymers measured by 

DLS. Polymer concentration was 0.05 wt%. 

 

Developer t-Boc 

Viscosity 

(mPa s) at 

23 ℃ 

Hydrodynamic radius 

(RH; nm) 

Diffusion 

constant 

(1010 m2 s-1) Average  

0.26 N TMAH 0 1.143 1.3 0.75 2.83 

0.17 N TMAH 0 1.143 1.6 0.75 1.48 

0.26 N TMAH 5 1.143 1.4 0.5 1.11 

0.26 N TEAH 0 1.159 2.1 1.0 1.03 
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2.4 Conclusion 

 The QCM method, which detects mass loss and swelling of resist polymers, 

has been extensively used to monitor the dissolution of resist films. The SPDM, 

based on the diffusion function principles, well reproduced the QCM charts. This 

layered dissolution kinetic suggests that even when the difference in mass change 

pattern during dissolution is small, the viscosity near the dissolution interface can 

differ significantly. This variability in viscosity is critical to understanding the 

dynamics in dissolution. Furthermore, the simulation model includes feature 

values that quantify the dissolution characteristics of different developers and 

polymers, providing physical insights into the dissolution process. Experimental 

data have revealed residual polymer near the substrate, highlighting the 

interactions between the polymer and the substrate. The analysis of these residuals 

helps to estimate the amount of residue and its absorption capacity of the developer. 

This study enhances the understanding of dissolution kinetics from the perspective 

of reproducing frequency and impedance charts. It also opens avenues for 

exploring new developers by providing a methodological framework to study their 

effectiveness. 
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Chapter 3: Analysis of resist images with pattern defects by 

Hough transform 

 

Chapter Overview 

This chapter focuses on the inspection of the final resist pattern, as 

illustrated in Fig. 2(g) of the General Introduction chapter. From a machine 

learning perspective, it introduces a novel evaluation method for quantifying 

defective patterns, enabling even severely defective ones to be datafied and used 

as target variables in model training. This approach addresses the challenge of 

incorporating low-quality pattern data into predictive models, thereby enhancing 

the robustness and applicability of the machine learning framework. By 

complementing the chemical parameter extraction methods presented in earlier 

chapters, this chapter completes the process chain from fabrication to performance 

assessment, providing a comprehensive foundation for end-to-end modeling of 

resist pattern formation. 

 

3.1  Introduction  

The heart of the semiconductor lies within its manufacturing process, 

where the critical components are the materials used, and the equipment employed 

to facilitate production. The introduction of extreme ultraviolet (EUV) light source 

with a wavelength of 13.5 nm has enabled the manufacturing of features with 

smaller sizes.1) However, this technology has also highlighted challenges brought 

by smaller feature sizes, namely, the stochastically generated defects on resist 

patterns.2-7) Line-and-space (L/S) patterns are important design features with 

numerous applications, including the manufacturing of microprocessors and 

memory chips. Defects can arise on L/S patterns for a variety of reasons during the 

lithography process.8) In order to minimize these defects, it is crucial to optimize 

and control the lithography process, but it is equally important to focus on the 

development of resist materials. 
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Chemically amplified resists (CARs)9) are promising for high-resolution 

lithography, with their solubility change primarily influenced by the protection 

ratio of the polymer matrix following exposure and post-exposure baking (PEB) 

process. The sensitivity (sizing dose) of CARs is strongly related to the chemical 

gradient, indicating defect severity in the resist pattern.8) Previous studies on 

electron beam (EB)10) and EUV8) printing have suggested that various factors 

during the printing process can cause defects in the CAR-type resist. Consequently, 

results obtained from patterns with defects are often more informative than those 

without defects. However, evaluating patterns with severe defects can be difficult 

due to the stochastic nature of defect generation. Furthermore, comparing different 

defected patterns is challenging due to the variability of the defects.  

On the other hand, the acid-catalyzed deprotection process that occurs 

during PEB is one of the most crucial processes in controlling the feature size of a 

resist film. The presence of stochastic effects including interactions between 

electrons and materials, secondary electron emission, and chemical reactions, that 

can have an impact on the distribution of protected units, making uniformity a 

critical factor to consider.11) When focusing on the underlying chemistry, the issue 

becomes chemical parameters, such as the effective reaction radius for the 

deprotection reaction (Rp), which is important but difficult to determine.12,13) To 

address the issues mentioned above, this study proposed a novel method for 

evaluating L/S patterns with defects based on Hough transform. The Hough 

transform is an image processing technique used for detecting fundamental 

geometric shapes such as lines and circles within an image.14) This method 

evaluates the pattern as a whole and automatically measures the average line width 

(LW) and interval distance, which is defined later. Further analysis of the 

measurement enables the description of defectivity in the resist pattern and the 

distinction between different types of defects. To further apply this method to the 

insight chemistry, the simulation results were compared with the experimental 

results by changing the Rp, in order to explore the pattern changes that could be 

brought about by varying this chemical parameter. In this study, the frequency 

dependence of line edge roughness (LER) is not discussed, because it is only 

applicable to fine patterns without defects. The ecellent works for the analysis of 

frequency dependence in fine patterns have been already reported.15,16) 
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3.2  Experiment 

In this experiment, a chemically amplified resist9) was utilized, consisting 

of a polymer film composed of a synthesized copolymer of poly(4-

hydroxystyrene) (PHS) and poly[4-(tert-butoxycarbonyl)oxy-styrene] (PTBS) 

with a molecular weight of 12700. The hydroxyl groups of PHS were protected 

with the tert-butoxycarbonyl (t-BOC) group (54.6 mol%), resulting in a protected 

unit concentration of 2.26 (units)/nm3 under the film condition. A polymer powder 

of approximately 3 wt% was dissolved in propylene glycol monomethyl ether 

acetate (PGMEA), to which triphenylsulfonium nonaflate (TPS-nf) and a quencher, 

trioctylamine (TOA), were added, with their concentrations adjusted to 0.2 and 0.1 

(molecules)/nm3 under the film condition, respectively. Spin coating was carried 

out on a 4-inch Si wafer at 1000 rounds per minute (rpm) for 3 s, followed by a 

gradual increase in speed with a slope of 20 s until reaching 4000 rpm, which was 

maintained for 30 seconds. Subsequently, the wafer was pre-baked at 90°C for 90 

s. The thickness of the resist was measured to be 55 nm using an ellipsometer 

(Meiwafosis FS-1). The sample was stored in vacuum at room temperature before 

exposure to a 125 keV EB (Elionix ELS-100T) at doses ranging from 192 to 320 

μC/cm2 with an EB current of 100 pA. L/S patterns with pitches of 70, 80, 90, 100, 

110, and 120 nm were used. To examine the reproducibility, a total of 16 chips 

with the same set of patterns were printed on the same wafer. After EB exposure, 

the resist was subjected to PEB at 110 °C for 1.5 min. Development was carried 

out by soaking the resist in a 2.38 wt% tetramethylammonium hydroxide (TMAH) 

aqueous developer (Tokyo Ohka Kogyou NMD-3) at 23 °C for 30 s, followed by 

rinsing with pure water for 15 s. 

SEM images of the resist were obtained using the Hitachi High-Tech 

Advanced CD Measurement SEM CS4800 with an acceleration voltage of 800 V 

and a probe current of 8.0 pA. The images were taken at a magnification of 20,000 

and 100,000 at the addressing point and measurement point, respectively. The 

image size is 512 × 512 pixels. To minimize potential damage to the resist patterns 

caused by SEM observation, the acceleration voltage and number of electrons were 

reduced. Specifically, the emission current, frame integration (64), and 
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acceleration voltage were lowered while still maintaining observable images. It 

should be noted that SEM observation can cause the shrinkage of the resist patterns. 

17,18) To reduce this effect, previous studies have suggested minimizing the number 

of electrons and acceleration voltage used during SEM imaging.17) The SEM 

results for one of the 16 chips were presented in supporting information (Fig. 3-1 

and Table 3-I). 
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(a) 

 

 

(b) 

Figure 3-1 Dose dependence of (a) LW and (b) interval distance. The data were 

collected from a single wafer consisting of 16 chips with identical pattern sets. 
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The LW and interval distance were plotted in different graphs for each half-pitch 

(HP). The LW and interval distance were measured from each SEM image and 

their mean values and standard deviations were calculated. The LW and interval 

distance were then plotted against dose. The LW was measured using the Hough 

transformation followed by analyzing the vote distribution method, where the 

peak of the distribution plane represents the mean LW value for each pattern from 

the 16 chips. The green dashed lines in (a) and (b) are the designed HP and interval 

distance, respectively. The blue dots in (a) represent the mean values, while the 

red error bars indicate the standard deviations for the 16 chips. Similarly, the 

interval distance was also measured using the vote distribution method, and the 

mean values and standard deviations were plotted against dose in (b). 

 

The LW and interval distances were measured using the method described 

in section 3.5. The length of the error bars indicates the variation among 16 chips 

under the experimental conditions outlined in the this section. Differences in error 

bar length between fine and defected patterns can also be observed in Fig. 3-1(b). 

Defected patterns at low doses (HPs of 70-100 nm) and high doses (HPs of 25-40 

nm) exhibit longer error bars than those of fine patterns. Thus, these figures can 

provide information about pattern stability and resolution (which is 45 nm in this 

case) based on the length of the error bars for both LW and interval distance 

measurements. Note that some patterns were not formed due to low dose and small 

feature size, and unable to be observed by SEM. 
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Table 3-I. SEM images of resist patterns in chip 1 among 16 chips on the 4-inch wafer. 

The units of HP and dose are nm and μC/cm2, respectively. 
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3.3  Simulation model 

The decomposition of TPS-nf and the subsequent deprotection of polymer 

were simulated by a Monte Carlo method to obtain the distribution of acids and 

protected units. After simulating TPS-nf decomposition during EB exposure, as 

described previously, the preneutralization of acids before PEB19,20) was calculated 

with the proton migration range of 2.4 nm.21) Using the acid distribution after the 

preneutralization as the initial condition, the catalytic chain reaction during PEB 

was calculated by a Monte Carlo method. The motion of the acid and quencher 

molecules at each time step dt is given by √6𝐷d𝑡, where D represents the diffusion 

constant of the acid or quencher molecule. The direction of motion was determined 

using uniform random variables. During PEB processes, when the acid molecule 

reached a quencher molecule within the effective reaction radius for neutralization, 

the acid molecule was regarded to be lost through neutralization. When the acid 

molecule reached a protected unit of the polymer within the effective reaction 

radius for deprotection Rp, the acid molecule was regarded to induce the 

deprotection of the polymer. The other details of simulation method have been 

described elsewhere.22,23) The simulation parameters used are listed in Table 3-

II.24-28) To denoise the result drawn from Mote Carlo simulation, a simple model 

for the polymer aggregation simulation followed by dissolution judgment was 

simulated. 

 

Table 3-II. Parameters used in simulation. 

Acceleration voltage of electron beam (kV) 

Beam blur (σb) (nm) 

Resist thickness (nm) 

Stopping power (eV/nm)24) 

Resist film density (g/cm3)25) 

Thermalization distance (nm)26) 

PAG concentration (/nm3) 

TOA concentration (/nm3) 

125 

2.0 

20 

0.418 

1.2 

3.2 

0.2 

0.1 
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Reaction radius of PAG (nm)26) 

Effective reaction radius for neutralization (nm) 

Rp (nm) 

Protection ratio (mol%) 

Deprotonation efficiency of proton source27) 

Deprotonation efficiency of nonproton source28) 

Acid generation efficiency28) 

Diffusion constant of acids (nm2/s) 

Diffusion constant of quenchers (nm2/s) 

Diffusion constant of protected units (nm2/s) 

PEB time (s) 

HP (nm) 

Dose (μC/cm2) 

0.70 

0.5 

0.06, 0.16 

54.6 

1.0 

0.59 

0.87 

1.0 

1.0 

0.0 

90 

45 

192 

 

3.4  Analytical methods 

3.4.1. Edge dectection 

As the first step toward L/S patterns in resist images, the edges of lines are 

detected using Laplacian of Gaussian (LoG) filter. The LoG is a type of image 

enhancement filter that is commonly used in computer vision and image 

processing applications. It enhances the edges of an image by convolving it with a 

kernel that is the product of a Laplacian kernel for edge detection and a Gaussian 

kernel for smoothing. In the LoG kernel, the center of the kernel is defined as the 

origin which corresponds to an interest in pixel, and then the weight of each pixel, 

represented by its coordinates x and y, is calculated based on its distance from the 

center using the following formula: 

𝐿𝑜𝐺(𝑥, 𝑦) = (
𝑥2+ 𝑦2− 2𝜎2

2𝜋𝜎6
) e

−
𝑥2+ 𝑦2

2𝜎2 ,    (3-1) 
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where σ represents the standard deviation in Gaussian kernel. The LoG kernel can 

then be used to convolve with an image. 

In this experiment, both SEM images and simulated resist pattern images 

were processed using LoG filter. However, to detect the edges of the lines, 

different operations were applied to the SEM images and the simulation results by 

considering the different properties between them. Because line patterns in the 

SEM images are observed as thick and blurry line segments (i.e., regions) and they 

are brighter than the other regions as shown in Fig. 3-3 (a), ridges of the line 

segments need to be detected. The line segments in the SEM image and the LoG 

kernel are convex upward and downward in intensity space, respectively, the line 

segments in the convolved image get convex downward. Therefore, the ridges of 

the line segments correspond to the local minimum in the convolved images, and 

hence non-minimum suppression (NMS) was applied to the convolved images to 

remove unnecessary edges. Specifically, the NMS filters out pixels whose intensity 

is greater than neighboring pixels’ intensities and above a threshold. In order to 

detect horizontal and vertical line segments, the NMS is applied horizontally and 

vertically, respectively. On the other hand, line patterns in the simulation results 

are observed as simple edges, i.e., boundary between bright and dark regions, a 

conventional edge detection method, i.e., zero-crossing detection on the convolved 

image with the LoG kernel is employed. 

 

3.4.2. Hough transform 

Hough transform is an image processing technique for detecting basic 

geometric objects, such as circles and lines.29-32) The Hough transform for straight 

line detection converts pixel coordinate (𝑥, 𝑦) of the detected edges in an image 

to a straight-line parameter space (𝜌, 𝜃) using the following equation. 

𝜌 = 𝑥 cos 𝜃 + y sin 𝜃      (3-2) 

In Eq. (3-2), ρ denotes the perpendicular distance from the origin to the straight 

line, and θ represents the angle between the x-axis and the perpendicular line that 

connects the origin to the straight line. This parameter space is commonly referred 

to as Hough space. 
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Figure 3-2 (a) Image represented in a coordinate system with its origin at the top 

left corner and (b) Hough space derived from Eq. (3-2), which corresponds to the 

white pixel in (a). The image in (a) contains a white pixel, and a yellow straight 

line passes through it. A pink arrow, starting from the origin, is drawn 

perpendicular to the yellow line. The length of the pink arrow is denoted by ρ, 

while the angle between the pink arrow and the x-axis is represented by θ. On the 

coordinate plane in (b), the horizontal axis represents θ (in degrees) while the 

vertical axis represents ρ (in pixels). The range of θ is calculated from 90° to -90°. 

 

Figure 3-2(a) illustrates an example of a straight line passing through a 

pixel in an image, which can be represented by a pair of ρ and θ. Multiple straight 

lines can pass through the same pixel, and each of these lines can be represented 

by a unique pair of ρ and θ. Therefore, based on Eq. (3-2), each pixel in the image 

can be converted into a trigonometric function curve. In this particular case, the 

white pixel in Fig. 3-2(a) was converted to the Hough space shown in Fig. 3-2(b). 
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Figure 3-3 (a) Image represented in a coordinate system with its origin at the top 

left corner and (b) Hough space derived from Eq. (2), which corresponds to the 

white pixels in (a). The image in (a) contains three white pixels. A green straight 

line passes through all the three pixels. A pink arrow, starting from the origin, is 

drawn perpendicular to the green line. The length of the pink arrow is denoted by 

ρ0, while the angle between the pink arrow and the x-axis is represented by θ0. On 

the coordinate plane in (b), the horizontal axis represents θ (in degrees), while the 

vertical axis represents ρ (in pixels). The range of θ is calculated from 90° to -90°. 

 

In Hough space, a “vote” refers to a value assigned to a pair of ρ and θ, 

which denotes a specific geometric shape. The greater the number of pixels that a 

line traverses, the more votes it can accumulate. The accumulation of votes allows 

for the detection of geometric shapes or patterns in an image. In Fig. 3-3(a), three 

pixels are converted into three curves in Fig. 3-3(b). The point where these three 

curves intersect is represented by the combination of ρ0 and θ0, which has the 

highest number of votes compared to other pairs of ρ and θ on the curves. Therefore, 

the combination of ρ0 and θ0 indicates the only line that passes through these pixels, 

corresponding to the green line in Fig. 3-3(a). By identifying the point with the 

highest number of votes in the corresponding Hough space, this approach can 

detect lines present in an image. 

 

3.4.3. Image filtering and Hough transform 
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Figure 3-4 (a) SEM image of resist L/S patterns and (b) filtered image resulting 

from the image preprocessing to image (a). The HP of the pattern was 45 nm. The 

exposure dose was 272 μC/cm2. The edges of patterns were shown in red in (b). 

These red pixels in the image have a value of 1, while the black background is 

made up of pixels with a value of 0. The line width (LW) is exemplified in (b) 

with a pair of orange dashed lines, while the interval distance is demonstrated 

using two blue dashed lines in the same image.  

 

Figure 3-4(a) depicts an SEM image of resist L/S patterns with a HP of 45 

nm, which was exposed to EB radiation at a dose of 272 μC/cm2. HP means not an 

actual line width but a designed line width (a target line width). The image was 

resized to a scale of 1 pixel for 1 nm. To extract the pattern edges, the SEM image 

was preprocessed with the method mentioned in section 3.4.1 [Eq. (3-1)] and then 

converted into a binary image. The σ in Eq. (3-1) in this filter was 10.5. It should 

be noted that the term "line" in this context refers to the region that is exposed to 

EB and subsequently dissolved by the developer. The "line width (LW)" refers to 

the average width of all the lines that are included in the SEM images. On the other 

hand, the "interval distance" refers to the distance between the right (or left) edge 

of a pattern and the corresponding right (or left) edge of the adjacent pattern. The 

LW and interval distance were shown by a pair of orange and blue dashed lines in 

Fig. 3-4(b), respectively.  

 During the Hough transform of pixels composing edges, the accumulation 

of votes in the Hough space was determined by the number of pixels that a straight 

line can pass through. While this method can effectively locate every edge in the 

vertical direction of the image, it may fail to detect edges in patterns that are 
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severely defected, deformed or lack clear edges. In contrast to the traditional 

straight line detection in the lithography field, this study adopted a different 

approach by determining LW and interval distance for the resist patterns as a whole, 

instead of evaluating patterns individually.  

 

 

Figure 3-5 (a) Input image for Hough transform, (b) Hough space of the filtered 

image of (a), and (c) the enlarged view of (b). The HP of resist patterns in (a) was 

45 nm and the exposure dose was 272 μC/cm2. (a) depicts a cropped version of 

Fig. 3-4(b), in which the residual blank area surrounding the resist patterns and 

the top and bottom edges of the resist patterns have been removed. The orange 

dashed line in (a) corresponds to the orange circle in (c). The enlarged view of the 

profiles approximately 0° [marked by the yellow box in (b)] is shown in (c). The 

orange circle in (c) represents the first overlapping point of the trigonometric 

function curves, which corresponds to the first red line in (a).  

 

Before going into the detailed determination process, to focus on the 

pattern of interest, the blank area surrounding the resist patterns and the upper and 
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lower edges were cropped out, as illustrated in Fig. 3-5(a). After detecting edges 

and applying Hough transform [Eq. (3-2)], the Hough space displayed in Fig. 3-

5(b) was obtained, where the degree θ is represented on the horizontal axis and the 

distance ρ is on the vertical axis. As the lines are mostly vertical, the number of 

votes get larger in the area near 0°, as shown in zoomed-in Fig. 3-5(c). As an 

example, the first overlapped votes circled in orange in Fig. 3-5(c) indicates a pair 

of ρ and θ that represent the line passing through the leftmost edge overlapped by 

a dash orange line in Fig. 3-5(a). Since there are a total of 20 edge lines in Fig. 3-

5(a), 20 sets of overlapped points can be observed in Fig. 3-5(c) at approximately 

0°.  

Understanding the feature of the input image is important for determining 

the detection range of degrees and distances (LW and interval distance). The 

degree of edges was initially determined for lines in the Hough space. After 

determining the common angle, the votes at the same degree with different 

distance ρ were discussed. More specifically, the line-to-space pattern of the resist 

image is represented by four parameters: LW 𝑤; interval distance 𝑑; a common 

angle for multiple parallel lines 𝜃com; and distance 𝜌0 between the image origin 

and the first line. Given the number of votes in Hough space as 𝑣(𝜌, 𝜃), the 

likelihood of the four parameters 𝐿(𝑤, 𝑑, 𝜃com, 𝜌0), i.e., the degree how well the 

four parameters describe the observed resist image, is then computed by 

summation of the votes for all the lines by the following equation 

𝐿(𝑤, 𝑑, 𝜃com, 𝜌0) = ∑ (𝑣(𝜌0 + 𝑖𝑑, 𝜃com) + 𝑣(𝜌0 + 𝑤 + 𝑖𝑑, 𝜃com))𝑁
𝑖=1 ,  (3-3) 

where 𝑁 is the number of line pairs (i.e., left and right sides of lithography). The 

optimal four parameters which describe the resist image the best are then obtained 

by 

 (𝑤∗, 𝑑∗, 𝜃com
∗ , 𝜌0

∗) = argmax
𝑤,𝑑,𝜃com,𝜌0

𝐿(𝑤, 𝑑, 𝜃com, 𝜌0).       (3-4) 

By taking into account the impact of LER, the search range of 𝑤 was set 

to be larger than LER and smaller than twofold HP. On the other hand, regarding 

the stability of 𝑑, as observed during the analysis, its search range was set to be 

±20% HP from twofold HP. For the 𝜃com, the search range was set to be from -

1.0° to 1.0°. Additionally, since the pattern interested was automatically cropped 

out from the original image, the search range of 𝜌0was set to be from 0 to 20 pixels. 
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3.5  Results and discussion 

3.5.1. LW and interval distance measurement  

 

Figure 3-6 (a) SEM image with 45 nm HP and 272 μC/cm2 exposure dose, (b) the 

preprocessed input image of (a), (c) SEM image with 45 nm HP and 160 μC/cm2 

exposure dose, and (d) SEM image with 35 nm HP and 272 μC/cm2 exposure dose. 

Straight blue lines on all the figures were plotted with the most appropriate LW 

and interval distance that obtained the highest number of votes. The angle of all 

of the aligned blue lines in these figures was -0.5°, determined on the basis of the 

LW and interval distance pair with the highest number of votes. (a) is a cropped 

original SEM image, while (b) shows the input image [the same as Fig. 3-5(a)]. 

(c) represents a severely defected pattern that barely dissolved. On the other hand, 

(d) exemplifies a deformed pattern. 
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The meaning of covering the edge pixels is further explained, using 

examples shown in Fig. 3-6. Figures 3-6(a) and (b) are the cropped patterns of Figs. 

3-4(a) and (b), respectively. The average pixel number of detected edges 

highlighted in red in Fig. 3-6(b) was 559. The blue lines, which overlay the red 

lines, represent the ideal edges with no defects. The pixel count of an ideal edge 

line was 556. In the case of a fine pattern, the pixel count for the edges is similar. 

The overlap between the ideal and real edges consisted of 115 pixels (the highest 

number of votes). The deviation of the real edges from the ideal edges was 

approximately 2.2 nm.  

Based on Eqs. (3-3) and (3-4), the optimal 𝑤, 𝑑, 𝜃com, and 𝜌0 for the 

case shown in Fig. 5(a) were 52 nm, 90 nm, -0.5°, and 9 nm, respectively. This 

indicates that, as shown by the blue lines in Fig. 3-6(b), lines aligned at -0.5° with 

the combination of 52 nm LW and 90 nm interval distance can cover the highest 

number of edge pixels in the input image. This conclusion was confirmed by 

overlapping the calculated line edges with the cropped original image, as shown 

in Fig. 3-6(a).  

The measurement of deformed patterns is difficult due to several reasons. 

Firstly, at low doses, patterns are formed sparsely, making it challenging to 

determine the edges. Secondly, at high doses, the edges of lines are detached from 

the Si substrate due to over-dissolution, causing them to move far from their 

original position and making analysis difficult. With the proposed method, it 

becomes possible to determine the average LW and interval distance of the resist 

pattern. As shown in Fig. 3-6(c), the pattern was exposed at a low dose, resulting 

in numerous bridges and broken edges. However, by measuring the pattern as a 

whole instead of pitch by pitch, the random cuts or stochastic defects on the edges 

can be compensated by other pitches. The 𝑤, 𝑑, 𝜃com, and 𝜌0 for the case shown 

in Fig. 3-6(c) were measured to be 42 nm, 90 nm, -0.5° and 7 nm, respectively. 

The average pixel count for the ideal edge was 518, while it was 568 for the real 

edge. This difference was brought by the bridging defect between the lines. The 

number of overlapped pixels was 72. In contrast, Fig. 3-6(d) shows a pattern 

exposed at a high dose, leading to a deformed pattern that is difficult to determine 

the edges and line widths. Nevertheless, the straight lines that pass through the 

highest number of pixels can still evaluate this kind of pattern, based on Eq. (3-4). 
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As a result, the 𝑤 , 𝑑 , 𝜃com , and 𝜌0  for the case shown in Fig. 3-6(d) were 

measured to be 45 nm, 70 nm, -0.5° and 5 nm, respectively. The average pixel 

count for the ideal edge was 551, whereas it was 408 for the real edge. This 

difference in count was attributed to over-dissolution, where the edges become 

stuck together and cannot be individually detected. The number of overlapped 

pixels was 50, indicating that the edges were significantly displaced from their 

intended positions. It is important to mention that the evaluation of patterns with 

unclear edges may not be as consistent as those with clear edges. Nevertheless, the 

vote distribution for such patterns exhibits unique characteristics that are worth 

discussing.  

 

 

Figure 3-7 (a) Estimated interval distance, (b) estimated LW and (c) pixel counts 

for the average number of ideal and real edges, as well as the number of 

overlapped pixels for the samples with HP of 45 nm. The LW and interval distance 

are plotted against the dose. The interval distances are denoted by green dots in 

(a), where the brown dashed line indicates the pitch (the reference for interval 

distance) which is twice the HP. In (b), the green dashed line represents HP (the 

reference for LW). In (c), the pink dashed lines in the vertical direction serve as 

references for the doses. The red, green, and orange dots correspond to the pixel 

count for the real edge, the ideal edge, and the overlapped edge, respectively. 

 

Upon analyzing hundreds of resist patterns on the wafer, it was discovered 

that the profile with -0.5° rotation had the highest votes in the most cases. This 

indicates that the wafer was tilted at -0.5°. Therefore, hereafter, the analysis was 

conducted based on the -0.5° files for all the images. As a representative results, 
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Figs. 3-7(a) and 3-7(b) demonstrate the dose dependence of interval distance and 

LW of the samples with 45 nm HP. The original SEM images for all the samples 

are provided in Table 2-I. The measured results of LW and interval distance for 

other HPs are included in Fig. 3-1. By examining the interval distance against 

changing dose, it was evident that the interval distances remain relatively stable. 

This observation suggests that patterns with interval distances significantly 

deviating from twice the HP correspond to the deformed patterns. Except for the 

deformed patterns, LW was found to increase with increasing dose, while the 

interval distance remained stable despite the changes in LW.  

In terms of pixel count, as depicted in Fig. 3-7(c), it is evident that when 

the ideal and real edges are in close proximity, their pixel counts are also similar. 

In cases where the pattern contains bridges within the lines, the pixel count tends 

to exceed the ideal number [doses of 192 and 208 μC/cm2 in Fig. 3-7(c)]. 

Conversely, when the pattern is distorted due to over-dissolution or incomplete 

dissolution, resulting in incomplete formation of the pattern, the pixel count tends 

to be lower than the ideal count [doses of 160 and 176 μC/cm2 in Fig. 3-7(c)]. 

Additionally, the number of overlapped pixels reflects the deviation between the 

real edges and the ideal edges. As a result, a closer match between the overlapped 

pixel count, ideal pixel count, and real pixel count indicates a lower LER. This can 

also be viewed from the magnified Hough space shown in Fig. 3-5(c) that the 

overlapping points were often not a single point. Therefore, LWs and interval 

distances that are close to the most appropriate ones tend to have similar vote 

numbers. This has motivated me to explore further the votes obtained from 

different assumed LWs and interval distances. The vote results for Fig. 3-5(b) at -

0.5° were plotted into contour maps and three-dimensional figures shown in the 

following section.  

 

3.5.2. Evaluation by vote distribution 

Upon analyzing the measurement results of approximately 200 patterns, 

no single index could fully reflect the overall characteristics of the patterns was 

observed. However, several indexes that captured the specific aspects of the 

pattern's features were identified. The following discussion presents a selection of 

analysis results that provide insights into the pattern's characteristics. 
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Figure 3-8 (a) Contour plot illustrates the distribution of votes for different 

assumed LW and interval distances with a yellow-red color bar shown on the right. 

(b) Fitting result for the vote distribution (a) with a green-blue color bar on the 

right. (c) 3D plot of (a). (d) 3D plot of (b) overlapped with (c). The original SEM 

image is shown in Fig. 3-6(a). 

 

The accumulated vote distribution is presented in Fig. 3-8(a) for various 

combinations of LW and interval distance with interval distance on the horizontal 

axis and LW on the vertical axis with the optimal 𝜃com
∗  and 𝜌0

∗ , i.e., two-

dimensional vote distribution 𝐿2(𝑤, 𝑑) = 𝐿(𝑤, 𝑑, 𝜃com
∗ , 𝜌0

∗). The peak coordinates 

of the vote distribution correspond to the measured LW and interval distance 

obtained from the SEM image. The LW and interval distance of the SEM image 
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in Fig. 3-4(a) were determined to be 52 nm and 90 nm, respectively, based on the 

combination that received the highest number of votes [the peak in Fig. 3-8(a)]. 

This vote distribution map is an example indicating the stability of the interval 

distance. More specifically, the interval distance was found to be consistent at a 

value of twice the HP, independently of LW. From the perspective of the 

accumulation process of votes, when the interval distance is set to the most suitable 

width, the pixels on the left edge of all line patterns can consistently be 

accumulated. Consequently, the votes at the interval distance of twice the HP 

experience a significant increase. On the other hand, while an appropriate LW 

ensures the accumulation of edge pixels for the first line pattern, it may not 

guarantee the same for subsequent lines. Thus, in comparison to LW, variations in 

the interval distance provide information about the outline of the pattern's 

characteristics. Based on the stability of the interval distance, it was considered as 

a feature in the evaluation of the vote distribution. The distribution was fitted using 

a specific distribution, which is defined as 

𝑓(𝑥) = 𝐴 (exp (−
(𝑥−𝑥0)2

2𝜎𝑥
2 )) (exp (−

(𝑦−𝑦0)2

2𝜎𝑦
2 ) + 𝑏) + 𝑐, 

∫ ∫ 𝑓(𝑥)𝑑𝑥𝑑𝑦 = 1
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑦𝑚𝑎𝑥

𝑦𝑚𝑖𝑛
   (3-5) 

where A represents the amplitude, x and y denote the pixel coordinates, x0 and y0 

denote the coordinates of the peak that has the highest number of votes in the vote 

distribution plane, and b and c are constants. The measured range of interval 

distance and LW are denoted by xmax, xmin, ymax, and ymin, respectively. The standard 

deviations of the vote distribution of interval distance and LW were represented 

by σx and σy. The constant c contributes to the whole distribution. Constant b 

contributes to the interval distance distribution. The integral of the Gaussian 

function was normalized to 1. Therefore, the constant c was normalized by 

dividing it by the sum of the total votes. The fitting results are depicted in Figs. 3-

8(b) and (d). Another index is defined as below. 

𝜎𝑣𝑜𝑡𝑒 = √𝜎𝑥
2 + 𝜎𝑦

2    (3-6) 

The value of σvote was derived based on σx and σy. The evaluation of the 

vote distribution was based on σx, σy, σvote, and normalized constant c which is 

denoted by Cvote. The original distribution was well fitted by Eq. (3-5) as shown in 
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Fig. 3-8(d). By employing this approach, σx and σy were measured to be 0.84 and 

1.47 nm, respectively. The σvote of the whole distribution was 1.70 nm. To further 

analyze the characteristics of the vote distribution and describe the defects in terms 

of interval distance stability, the vote distribution map was horizontally divided 

into two halves at the peak and then concatenated with its mirror image. This 

process is illustrated in Figs. 3-9(a) and (c). 

 

 

Figure 3-9 Counter plots of vote distributions. The upper half of (a) above the 

dashed line displays the vote distribution above the peak of Fig. 3-8(a). The lower 

half is the mirror image of the upper half. The fitting result to (a) was presented in 

(b). The lower half of (c) below the dashed line is the vote distribution below the 

peak of Fig. 3-8(a). The lower half is the mirror image of the upper half. The fitting 

result to (c) was presented in (d). Note that the coordinates of mirror images were 

negative. 
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The vote distribution above the peak of Fig. 3-8(a) was reflected across 

the horizontal dashed line and combined with the original distribution to generate 

Fig. 3-9(a). Similarly, the vote distribution below the peak was reflected across the 

dashed line and combined with the original to create Fig. 3-9(c). The above and 

below distributions were separately fitted by Eq. (3-5). The fitting results for the 

distributions in Figs. 3-9(a) and (c) are shown in Figs. 3-9(b) and (d), respectively. 

Since the image was divided in half based on the LW, the standard deviation in the 

LW direction (y-axis) could not accurately represent the above and below vote 

distribution. The distribution above corresponds to the range of LW larger than HP. 

It reflects variations in defects outside the line, which are typically caused by over-

dissolution. On the other hand, the distribution below corresponds to the range of 

LW smaller than HP. It reflects variations in defects within the line, which are 

typically caused by incomplete dissolution. 

The standard deviation on the interval distance direction (x-axis) was 

denoted as σabove_x and σbelow_x for the distributions above and below the peak, 

respectively. Similarly to σx, a small value of σabove_x or σbelow_x indicates a pattern 

with few defects. According to the fitting results, σabove_x and σbelow_x were 0.82 and 

0.88 nm for the pattern with 45 nm HP, exposed to 272 μC/cm2 EB, respectively. 

The constant c of the above and below distributions, denoted as Cabove and Cbelow 

were 1.76 and 1.81, respectively. The result of subtraction Cabove from Cbelow was 

0.06. 

Similarly, the vote distribution was also divided into left and right halves. 

The standard deviations in the LW direction (y-axis) were denoted as σleft_y and 

σright_y for the distributions on the left and right of the peak, respectively. The 

variation along LW direction was computed in the same manner as the interval 

distance directions. For the pattern with a 45 nm HP, exposed with a dose of 272 

μC/cm2, the fitting results for σleft_y and σright_y were 1.67 and 1.04 nm, respectively.  
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Figure 3-10 Standard deviations and Cbelow-Cabove of L/S patterns with 45 nm HP. (a) 

σvote, σx, and σy for the full vote distribution. (b) σabove_x for the above half and 

σbelow_x for the below half on the interval distance direction. (c) σleft_y for the left 

half and σright_y for the right half on the LW direction. (d) Cbelow-Cabove. 

Figure 3-10 displays the evaluation indexes, which reveal features of the 

patterns. In this study, the defected or deformed patterns typically have σvote larger 

than 2.5 nm. The σvote is mainly affected by σy that indicates the variation of LW. 

The variation in the interval distance is represented by σx shown in Fig. 3-10(a) by 

green dots. σx for all samples with 45 nm HP was approximately 1 nm, which 

corresponds to the findings in Fig. 3-7(a) where the interval distance remained 

stable even though the LW increased. The patterns having σx larger than 1 nm are 

considered to be deformed. Following σx, σabove_x and σbelow_x for fine patterns were 

also found to be approximately 1 nm as shown in Fig. 3-10(b). It was observed that 

patterns with a difference between σabove_x and σbelow_x are larger than 1 nm indicate 
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a deformed pattern without a clear interval distance. The variation of LW is 

represented by σy shown in Fig. 3-10(a) by dark purple dots. Poor patterns 

generally lead to high σy value. Similarly to σy, the σright_y and σleft_y tend to be small 

in fine patterns. However, some deformed patterns were found to have small σvote 

values. This is because the constant c in Eq. (3-5) is related to the disordered vote 

distribution. To be exact, due to the expansion of the lines, the edges are far from 

their original position. The pixels composed of such edges are also counted as a 

vote in Hough space. Consequently, the accumulated votes are spread out rather 

than concentrated within a specific interval distance and LW. The spread vote 

distribution increases Cvote to account for this wide distribution. Hence, further 

investigation was conducted on the constant c. It was discovered that the difference 

between Cabove and Cbelow shows a significant correlation with pattern defectiveness. 

Figure 3-10(d) illustrates that fine patterns generally exhibit similar values for 

Cabove and Cbelow. In summary, this method allows for the assessment of resist 

pattern defects based on several effective indexes. It should be noted that the 

threshold used to differentiate between fine and defective patterns in this case is 

specific to the patterns in this study and may differ for other patterns. First, in this 

case, when the difference in edge pixel count between the real pattern and the ideal 

pattern is greater than 50, the pattern is considered to be defective. Second, when 

the measured interval distances deviate larger than 1 nm from twice HP, the pattern 

is considered deformed. Third, when the σvote is larger than 2.5 nm, the pattern is 

defected, especially by bridges between lines. Fourth, when σx, σabove_x and σbelow_x 

are greater than 1 nm, the pattern is regarded as having significant defects that 

cause the pattern deformation. Finally, the closer the values of Cabove and Cbelow are 

to each other, the better the pattern quality. 

 

3.5.3. Application for chemical parameter estimation 

One of the applications of this method and evaluation criteria is to compare 

defected patterns with simulation results. This allows for the evaluation method to 

be used for the discussion of chemical parameters included in the simulation model 

with the criteria. 
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Figure 3-11 (a) SEM image of L/S pattern with multiple bridges in the lines. (b) 

Preprocessed SEM image of (a). (c) Enlarged Hough space of (b). HP was 45 nm. 

The exposure dose was 192 μC/cm2. In (c), the labeled spaces correspond to the 

labeled spaces in (b). 

 

Figure 3-11(a) depicts an SEM image of a resist L/S pattern with 45 nm 

HP that was exposed to EB radiation at a dose of 192 μC/cm2. The filtered image 

is shown in Fig. 3-11(b). The pattern contains 10 pitches, which results in 20 edge 

lines after cropping. Figure 3-11(c) displays an enlarged version of the Hough 

space, which was calculated based on Fig. 3-11(b) and is presented in Fig. 3-11(b). 

There are 19 spaces within 20 edges, including both the lines and spaces in the L/S 

pattern. The 1st, 2nd, and 3rd spaces, as well as the 17th, 18th, and 19th, are labeled 

as examples. These spaces in Fig. 3-11(b) correspond to the intervals between 

overlapped points that are labeled in the same manner in Fig. 3-11(c). Bridges are 

clearly visible at the 3rd, 17th, and 19th spaces, and the corresponding intervals in 

the Hough space show the same votes. In contrast, since there are no bridges in the 

1st, 2nd, and 18th spaces, there are no votes in the corresponding intervals. As a 

result, the vote distribution for the pattern with defects is different from the ones 
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without defects. The vote distribution [Fig. 3-13(a)] was calculated and compared 

with the simulation results. All the measured results were summarized in Table 3-

II. 

 

 

Figure 3-12 (a) SEM image of a resist L/S pattern with 45 nm HP and 160 μC/cm2 

exposure dose. (b) The filtered image resulting from the application of a LoG filter 

to image (a), in which the edges of pitches were shown in red. (c) A cropped 

version of (b), in which the residual blank area surrounding the image and the top 

and bottom edges of the pitches have been removed. (d) Hough space of the 

filtered image in (a). The Hough transformation maps the pixel coordinates of an 

image to a parameter space with the left-top as the origin, where the degree θ is 

represented on the horizontal axis and the distance ρ is on the vertical axis. 

 

In a similar way, the pattern in Fig.3-12 was measured, which is the same 

image as the picture in Fig. 3-6(c). The LW and interval distance for Fig. 3-12(c) 

were measured to be 43 and 90 nm, respectively. 
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Figure 3-13 (a) Preprocessed image of Fig. 10(a). (b) Vote distribution 

corresponding to (a). (c) Prepocessed image of the latent image simulated with the 

effective reaction radius of 0.06 nm. (d) Vote distribution corresponding to (c). (e) 

Prepocessed image of the latent image simulated with the effective reaction radius 

of 0.16 nm. (f) Vote distribution corresponding to (e).  

 

The resist patterns were simulated by a resist model, into which various 

chemical parameters described in Simulation section were incorporated. This 

approach made it possible to examine how the changes in these parameters affected 

the shape of the patterns, by comparing the simulation and experimental results. In 

this study, the effect of Rp on the resist pattern by simulating resist patterns with 

different values of Rp was investigated. Figures 3-13(c) and (e) show the simulation 

results of resist pattern edges in white pixels when the values of Rp were 0.06 and 

0.16 nm, respectively. The resist patterns were calculated based on the distribution 

of the concentration of the protected units of the polymer. In order to analyze the 

LW, interval distance, and defectivities of these two patterns, they were subjected 

to Hough transform followed by the vote distribution analysis. The vote 

distributions of the simulated resist patterns are shown in Figs. 3-13(d) and (f).  
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Table 3-III. Evaluation results of SEM and simulated images. 

Dose   192 μC/cm2  

HP      45 nm 

SEM Rp = 0.06 nm Rp = 0.16 nm 

Interval distance (nm) 90 90 90 

LW (nm) 47 27 44 

σvote (nm) 2.81 2.76 0.98 

σabove_x (nm) 0.61 0.60 0.43 

σbelow_x (nm) 0.63 0.68 0.44 

σleft_y (nm) 2.80 2.72 1.12 

σright_y (nm) 2.51 2.56 0.68 

Cbelow - Cabove -0.52 -4.15 -1.15 

 

Table 3-III shows that the interval distance remains geometrically stable 

regardless of changes in LW or . Simulation results demonstrated that when Rp 

was 0.16 nm, the simulated LW value approximately agrred with the actual LW 

(SEM image), which was measured to be 47 nm. When Rp was 0.06 nm, the LW 

of the pattern was smaller than the HP. This means the pattern was under-

development. Conversely, when Rp was 0.06 nm, the simulated σvote, σabove_x, 

σbelow_x, σleft_y and σright_y were closer to the SEM image. For Cbelow-Cabove, the value 

calculated with low Rp was far from the SEM result, while a higher Rp has a closer 

value. These results indicated that the defects inside of the lines [Fig. 3-13(a)] were 

reproduced by lower Rp and the defectivity of SEM lay between Rp values of 0.06 

nm and 0.16 nm. Although the defectivity was partially reproduced through the 

simulation of sensitization and PEB processes, the LW was not able to be 

reproduced by this mechanism.  

Based on experimental SEM data, it was observed that bridging can occur 

even when LW was larger than HP. On the other hand, the simulations based on 

the reaction machanism of CARs were not able to reproduce simultaneously LW 
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and defects. These observations indicate that factors beyond the concentration of 

protection units on the polymer's side chain have a significant impact on the 

fidelity of the latent pattern and cannot be ignored. Since the development kinetics 

parameters are not fully incorporated into the simulation system, the development 

process is considered to have a significant impact on the defect formation. The 

modeling of dissolution kinetics is necessary for a more accurate estimation of 

chemical information that can reproduce the defect formation. 

 

3.6  Conclusion 

An image recognition technique was utilized to establish a new 

measurement method for patterns with defects. Unlike the traditional methods that 

evaluate patterns pitch by pitch, by converting the filtered image into Hough space, 

the LW and the interval distance of the whole resist pattern can be determined. It 

was found that the number of votes was high when the interval distance was twice 

the HP, even when the LW changed. This approach allowed for the quantitative 

assessment of severely defected pattern, and is applicable to the deformed pattern 

with further analyzation towards their vote distribution.  

To utilize the defectivity information, this method was employed to 

estimate the Rp of 54.6 mol% t-Boc-protected PHS, which ranged from 0.06 to 

0.16 nm. However, the distribution of protecting unit concentration alone could 

not precisely reproduce the resist patterns, including both LW and the formation 

of defects simultaneously. Specifically, when the LW was consistent, the defects 

did not match, and vice versa. As a result, the study concluded that a dissolution 

mechanism was necessary to achieve more accurate simulation that closely aligned 

with the experimental findings for patterns with defects. 
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Chapter 4. Practical application 

 

4.1 Introduction 

New resists, such as metal-containing resists and negative-tone 

development (NTD) resists, are being developed to meet the demands for lower 

dose consumption and reduced pattern defects in EUV lithography. Organic 

developers are primarily used for these resists. On the other hand, standard aqueous 

developers have reached their limitations as the chemical properties of the resists 

evolved. These requirements make the exploration of new developer possibilities 

necessary, making the evaluation of developers critical to ensure optimal 

performance of the resist patterns. In Chapter 2, a simulation model was built to 

reproduce QCM charts, including frequency changes and impedance changes, to 

extract the features of developers. The impedance change, in particular, offers 

insights into the viscosity changes during the development process. To further 

understand the relationships among these feature values and how they affect the 

actual resist patterns, L/S patterns were drawn with electron beams (EB) at 

different doses and developed using various developers. This study utilized 

tetramethylammonium hydroxide (TMAH), butyltrimethylammonium hydroxide 

(BTMAH), ethyltrimethylammonium hydroxide (ETMAH), and 

propyltrimethylammonium hydroxide (PTMAH) as developers. In Chapter 3, an 

automatic evaluation method based on Hough transform was developed to analyze 

L/S pattern images captured by scanning electron microscope (SEM). This method 

was employed in the current study to extract the SEM image feature values. A 

machine learning method, clustering was used to classify the SEM images based 

on the SEM features. By comparing these feature values with the reproduced QCM 

chart data, which highlights the developers' properties, these analyses provided 

valuable insights into the effectiveness of different developers in processing the 

resists. 
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4.2 Methods 

The primary method used in this chapter is regression analysis to investigate 

the correlation between developers and pattern defects. To establish the model, 

both features and targets are required. For the features, the electron beam (EB) 

dose and designed pattern pitches were included. Additionally, features of the 

developers were also incorporated. The developer features were derived from the 

parameters of the stratified polymer dissolution model, a simulation framework 

developed to reproduce the frequency and impedance change charts measured by 

QCM. For the target in the regression analysis, SEM images were analyzed using 

the Hough transform method, as also described in Chapter 3. 

SEM images of L/S patterns were used in this chapter [Fig. 4-1(a)]. The L/S 

ratio was 1:3, and the patterns were drawn using electron beams with an 

accelerating voltage of 150 kV and a probe current of 8.0 pA. The exposure doses 

ranged from 310 to 427 μC/cm².The SEM images were first processed using a 

Laplacian of Gaussian (LoG) filter to enhance edge detection [Fig. 4-1(b)]. Pixels 

corresponding to line edges were extracted to measure pattern defects and 

roughness. The filtered images were then analyzed using the Hough transform 

method established in Chapter 3. Each pixel of the line edges was transformed into 

a vote in Hough space. By accumulating these votes and fitting their distribution 

[Fig. 4-1(d)] with Gaussian-based function, the stochastically generated defects or 

roughness on the line patterns were quantified into a single value, which is the 

standard deviation of the Gaussian function fitting plane denoted as σvote [Fig. 4-

1(e)]. This quantified value was subsequently used as the target variable in 

regression analysis to investigate the relationship between developer features and 

pattern defects. 
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Figure 4-1  (a) SEM image of the L/S pattern. (b) Filtered SEM image obtained 

using a LoG filter. (c) Hough transform applied to (b) as input. (d) The orange-red 

plane illustrates the accumulation of votes in Hough space at θ = 0, corresponding 

to the vertical direction of the filtered image. (e) The blue-green plane represents 

the fitting result. 

 

For the simulation, polymer dissolution was modeled using SPDM 

established in chapter 2. The dynamics of the three components—polymer, water, 

and alkali—were simulated using the diffusion equation and the coordinate 

perpendicular to the QCM substrate surface. The calculation used a cell length of 

5 nm. 

The features and target variables described above were analyzed by the least 

squares and lasso regressions. 80% of the data was used for training and 20% of 

the data was used for testing. The error functions of least squares regression (Els), 

and lasso regression (Elasso) are expressed in Eqs. (4-1) and (4-2), respectively 

𝐸ls = ∑ {𝑦train,𝑛 − 𝑓(𝑥train,𝑛)}
2

  
𝑁train
𝑛=1    (4-1) 

𝐸lasso = ∑ {𝑦train,𝑛 − 𝑓(𝑥train,𝑛)}
2

+ 𝛼 ∑ |𝑤i|
𝑚
i=1   

𝑁train
𝑛=1 , (4-2) 

where Ntrain, ytrain, xtrain,n, and f(xtrain,n)  are the number of training data, the n-th 

value of σvote used as a training data, the n-th variable set, and the value calculated 
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using the hypothesis function at the n-th variable set. The wi are the feature weights 

included in the hypothesis function f(xtrain,n) used as coefficients of terms 

composing the variable set. To suppress overfitting, the regularization term, are 

added to Els in Eq. (4-1). The hyperparameter α is used to adjust the weight of the 

Manhattan norm (l1 norm) in Eq. (4-2). Normalization was used in this work to 

scale features. The feature values were scaled into new values using 

𝑋 =  
𝑥 − 𝑥min

𝑥max − 𝑥min 
,     (4-3) 

where 𝑋, 𝑥, 𝑥min , and 𝑥max  are the scaled feature values, the original feature 

values, and the minimum and maximum values in the original feature values, 

respectively. The root mean square error (RMSE) was used as the evaluation 

function, which describes the distance between the predicted values and the target 

variables achieved from experiments. It is defined as 

RMSE = √
∑ {𝑦test,𝑛 −𝑓(𝑥test,𝑛)}

2𝑁test
𝑛=1

𝑁test
 ,     (4-4) 

where 𝑁test , 𝑦test,𝑛 , and 𝑥test,𝑛  are respectively the number of test data 

respectively the number of test data, the nth target variable (in this context, σvote) 

used as a test datum, and the nth explanatory variable set. 

 

4.3 Results and discussion 
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Figure 4-2 Images with varying exposure doses and designed line widths are 

labeled with numbers ranging from 1 to 400. The evaluation results are classified 

using color coding. Images with lower roughness (smaller σvote) are highlighted in 

lighter colors, while those with more severe defects are represented in darker 

colors. To validate the results, images numbered 51, 91, 131, 171, and 211 are 

displayed. Note that the σvote values presented in the table have been magnified by 

a factor of 200 from their original values. 

 

The target variables (σvote) were obtained with the automatic evaluation of 

SEM images. The displayed SEM images present the capability of the evaluation. 

The magnified σvote of the images for the designed line width from 12 to 26 nm 

were used for the following regression analysis. This indicates that even SEM 

images with defects, such as image No. 91, can be utilized to provide valuable 

insights in discussions about the correlation between developers and patterns. 
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Figure 4-3 (a) RMSEs of validation set plotted against polynomial degree. (b) 

Dependences of the number of feature values and RMSE of validation set on 

hyperparameter α of lasso regression.  

 

In the least squares regression, RMSEs of the training set at the 2nd 

polynomial degree were smallest, which was 1.176. Therefore, the 2nd polynomial 

degree was the most proper for the model. Based on these results, the regularization 

term was α added, which means the lasso regression model was tested. The 

difference in RMSE decreased when α decreased. On the other hand, the number 

of feature values increased while α decreased. To maintain a low RMSE and have 

fewer features at the same time, 10-2 was selected to be the best α value and the 

number of polynomial features was 13. 
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Figure 4-4 The fitting results of the lasso model. The experimental results and the 

predicted values are plotted in dots and dash lines, respectively. (a) σvote was 

plotted against the exposure dose. Different colors represent different designed 

line widths.  (b) σvote was plotted against the designed line widths. Different 

colors represent different exposure dose.   
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The lasso regression model, demonstrated in Fig. 4-4, highlights the 

model's ability to account for defects. Further analysis revealed that the most 

influential features in the model were line width and dose. In terms of developer 

characteristics, the most significant factors were the extent to which residual 

polymers affected the dissolution rate and the speed at which the resist near the 

substrate. 

 

4.4 Conclusion 

This practical application introduces a novel quantitative method to explore 

the correlation between developers and resist patterns. The simulation of 

dissolution kinetics generates the feature variables, describing developers not 

through traditional chemical properties but by capturing the mutual interaction 

between the solute resist and the solvent developer. 

Additionally, the evaluation of SEM images using the Hough transform 

method allows the inclusion of severely defected resist patterns in the analysis. To 

investigate the relationship between the feature and target variables, regression 

analysis was employed. This approach identified key parameters that could 

significantly influence the generation of defects. 
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Concluding Remarks 

This doctoral dissertation presents a data-driven approach to investigate 

chemically amplified resists (CARs) and their compatible developers used in the 

lithography process. Machine learning serves as a powerful tool to analyze the 

correlations between material/process parameters and performance metrics. 

Accordingly, key variables related to materials and processes were systematically 

extracted and analyzed. 

The lithographic process involving CARs includes spin coating, post-

applied baking (PAB), exposure, post-exposure baking (PEB), and development. 

The resulting resist patterns were inspected using scanning electron microscopy 

(SEM). This study focused on analyzing PEB and development process parameters, 

as well as employing image recognition techniques on SEM inspection results. 

Chapter 1 explores the effective reaction radius (Rp) of the deprotection 

reaction, a critical material descriptor that influences PEB time and line-edge 

roughness (LER) formation. A methodology was developed to estimate material 

parameters for CARs. The Rp of poly(4-hydroxystyrene) (PHS) with 54.6 mol% 

tert-butoxycarbonyl (t-Boc) protection was estimated using both experimental and 

simulation data. In addition, the dissolution threshold (Cth) for 2.38 wt% 

tetramethylammonium hydroxide (TMAH) developer was determined. Electron 

beam (EB) resist patterns under different HPs and doses conditions were fabricated 

and analyzed using image processing techniques. The acid reaction-diffusion 

model was employed to correlate the simulation results with experimental results, 

yielding an estimated Rp of 0.05–0.08 nm and an Cth of approximately 1.3–1.6 nm⁻³. 

Bayesian optimization (BO) was conducted to decrease the iteration number. 

Chapter 2 introduces the Stratified Polymer Dissolution Model (SPDM), a 

diffusion-based model that successfully replicated quartz crystal microbalance 

(QCM) data and provided physically meaningful descriptors for machine learning. 

The model captures the layered dissolution kinetics, showing that variation in the 

mass loss profile leads to significant differences in local viscosity near the 

dissolution front. This insight is critical to understanding developer–resist 

interactions. SPDM also quantifies key dissolution characteristics of various 

polymers and developers, enhancing the physical interpretability of the process. 

Experimental observations using dynamic light scattering (DLS) further identified 
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hydrodynamic radius (RH) of the polymers at static state, offering insights into 

polymer dissolution kinetics. 

Chapter 3 proposes a novel pattern analysis method using the Hough 

transform. Unlike conventional approaches that measure individual lines, this 

method enables automatic quantification of entire line-and-space (L/S) resist 

patterns. Defectivity indices of those severe defected patterns can also be extracted 

systematically. These evaluation metrics can then be used as target outputs for 

simulation model refinement and machine learning analysis to identify chemical 

factors affecting pattern fidelity. Another ML model, hierarchical classification 

was also tried to classify the line pattern and space pattern in an L/S pattern. This 

method is applicable for clear patterns with few defects.   

Finally, the practical application demonstrated how the correlation was 

analyzed with ML method, regression analysis of correlation between different 

developers and final patterns. Note that the model is still under adjustment based 

on the new insights of the lithographic processes and materials. 
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