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General Introduction

1.  Semiconductor industry and challenges in feature size
shrinking

There is a famous principle in the semiconductor industry that predicts the
pace of technological advancement. It was proposed by Gordon Moore, a co-
founder of Intel, and is known as Moore’s Law. According to this empirical
observation, the number of transistors on a chip doubles approximately every two
years. It’s not a scientific law like Newton’s laws, but an empirical rule that has
been pushing industry forward. This prediction has been realized in practice for
decades, which is considered an industrial miracle, made possible by the hard work

and intelligence of all the people involved in the industry.

A chip with more transistors gives faster response in calculations, making
computation quicker and smoother. One example that can easily relate to is the
improvement of smartphones. Apple has continued designing their own chips for
mobile products, and the number of transistors is shown by the orange line in Fig.
1. The increasing trend of the orange line shows that the number of transistors used
in a phone chip is growing in an exponential way, as shown in Fig. 1. At the same
time, as plotted in blue line in Fig. 1, the half-pitch (HP), which represents the
feature size (also called critical dimension, CD), is shrinking during this process.!
As these features shrink, more transistors can be packed onto a single chip. In other
words, reducing feature sizes enhances the performance and energy efficiency of

electronic devices.

The feature size continues to shrink today. Line-and-space (L/S) patterns
and contact holes (CH) are the standard resist structures used to assess the current
level of manufacturing capability. Several factors contribute to the continued
shrinking of feature sizes, including advances in lithography technologies,
materials science, manufacturing processes, design and computational tools, as

well as massive investment and the momentum driven by Moore’s Law.
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Figure I Trends in feature size and Apple’s microprocessor products: decreasing feature

size (blue) and increasing number of transistors (orange).

The evolution of technologies enables the shrink of the feature sizes. The

Rayleigh criterion is a formula used to describe the key parameters involved:
. . kq-A
Minimum feature size = i (1)

where k1, NA and 4 are process coefficient, numerical aperture of the optics, and
the wavelength of light used, respectively. These three parameters can be roughly
grouped into two categories: optical factors and non-optical factors.

On the optical side, progress has been significant. The lithography light
source evolved from krypton fluoride (KrF, A = 248 nm) in the 1990s to extreme
ultraviolet (EUV, A = 13.5 nm), which was first adopted in high-volume
manufacturing in 2019. The numerical aperture (NA) has also improved, with
high-NA EUV (NA = 0.55) moving towards hyper-NA EUV (NA = 0.75) as of

last year.



Resist solution
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Figure 2 The procedures in a chemically amplified resist pattern fabrication. (a) Spin-
coating of resist solution; (b) Prebake/Softbake; (c) EB exposure; (d) Exposed to
light source with mask; (e) Post-exposure baking; (f) Development; (g) Line-and-

space pattern.

Not only the optical image plays a critical role in lithographic performance,
but also the ability of materials and processes to preserve and accurately transfer
this information is equally important. On the non-optical side, the process factor
ki incorporates a range of process innovations, with photoresist systems—
comprising resists, developers, and related materials—being a major contributor.
For instance, in chemically amplified resist (CAR) systems, pattern formation
requires several tightly controlled steps, including spin-coating, prebake, exposure,
post-exposure baking (PEB) and development as shown in Fig. 2. Each of these
steps is important to the successful transfer of the aerial image into a qualified
resist pattern. Moreover, the introduction of EUV lithography presents new
challenges.?** Even though EUV enables further pattern scaling due to its shorter
wavelength, the significantly less photon numbers compared to vacuum ultraviolet
(VUV) sources such as ArF excimer lasers introduces additional difficulties in

maintaining pattern fidelity.
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Figure 3 Defects in line/space (L/S) patterns with varying HPs. Red regions highlight

defect locations.

In this context, it is important to define what constitutes a "qualified" resist
pattern. Patterning performance is primarily evaluated based on three key metrics:
resolution, line edge roughness (LER), and sensitivity—collectively referred to as
the RLS trade-off.> Especially when the feature size decreases, LER becomes
more prominent, as illustrated in Fig. 3. The LER observed in a larger HP, shown
in Fig. 3(a), can lead to bridging in a smaller HP, as shown in Fig. 3(c), which may
further result in circuit disconnection. Ultimately, this can lead to defective
products. Previous studies on the resist pattern metrology have reported many
factors that can cause LER.%’

To make smaller feature size than possible today, new resists that meet the
new need of the EUV light source and the compatible developers are required to
meet these three requirements at the same time. It is difficult to satisfy all three
RLS at the same time, which opens up space for further discussion and exploration
of new resist materials. The fabrication of a resist pattern involves several
processes, such as exposure and development, each of which includes many
parameters. However, the effects of these steps are often neither directly
observable nor easily converted into quantifiable data. Consequently, the
traditional process control has relied heavily on empirical methods rather than
statistical or data-driven approaches, making the development of new resists time-
consuming. To reduce the time and cost of resist exploration, it is essential to
analyze the correlation between process parameters and the resulting pattern

quality. This involves two key components: (1) the datafication of process



parameters and results, and (2) the development of mathematical models capable

of interpreting these correlations.

Emerging artificial intelligence (Al) technologies offer powerful tools for
such correlation analysis. Machine learning (ML) techniques—including
regression analysis, classification, and deep learning (DL)—have recently been
applied successfully in various fields, such as image recognition. This doctoral
dissertation aims to establish a framework that applies machine learning methods
to the exploration of resist materials and lithography processes, enabling a more

efficient and data-driven approach to lithographic process development.

This doctoral dissertation also focuses on the materials and processes
involved in resist patterning, with each chapter organized according to specific
steps in the lithography process. The machine learning model, and the practical
application will be presented in the final chapter. It is worth noting that further
parameters might be extracted beyond the scope of this dissertation, as deeper
insights into the materials and processes are being discussed. More robust machine
learning models are currently being tested to enhance correlation analysis and

predictive accuracy.

ii.  Chemically amplified resist

Chemically amplified resists (CARs) have been widely used as resists for
both EUV and electron beam (EB) lithography. CARs were originally developed
for use with KrF excimer lasers, which emit deep ultraviolet (DUV) light at 248
nm, and continue to be utilized with current EUV systems that operate at a
wavelength of 13.5 nm. In CARs, insufficient photon energy is compensated for
with heat energy.® A typical CAR is composed of a photoacid generator (PAG), a
base (quencher)’, and a polymer with side chains partially protected by nonpolar
protecting groups such as fert-butyloxycarbonyl (z-Boc).® Upon exposure to a
radiation, the acids are generated through the decomposition of a PAG, followed
by reaction with the hydrophobic protecting units on the side chain of the polymer.
This process is further amplified by post-exposure bake (PEB). Owing to the

polarity increase of the polymer, the polymer becomes hydrophilic and thus



dissolvable in an aqueous developer.!? The resin polymer used in this study was

poly(4-hydroxystyrene) (PHS).

p— — .+
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y
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Scheme 1 An electron is ejected from polymer 1 by exposing it to EB radiation. As a

product, cation radical 2 is generated.

After spin-coating the resist onto a silicon (Si) substrate and performing
pre-exposure baking, the sample is exposed to an EB or other light sources using
designed patterns such as L/S patterns with varying HP and exposure doses. As
illustrated in Scheme 1, when the resist is exposed to an EB or EUV, primary
electrons or EUV photons interact with the polymer, causing the ejection of
secondary electrons. These secondary electrons are subsequently thermalized and
begin to diffuse within the resist material, triggering further chemical reactions.
Additionally, Coulomb forces between the electrons influence their diffusion
behavior, which can impact the spatial distribution of the reactions.
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Scheme 2 Decomposition of PAG and generation of acid.

Following electron ejection, the photoacid generator (PAG, substance 3)
undergoes decomposition, generating acid species, as illustrated in Scheme 2.
During PEB process, the generated acid diffuses in the resist film and catalyzes the

deprotection reaction of the polymer side chains.

Patterns are fabricated using CARs, determined by the concentration of
protecting units on the side chain of polymer (Cp). The accumulation of the
stochastic effects!'! in the formation of patterns finally cause the protected unit
fluctuation.'>!* This is the main factors for the generation of defects such as line
edge roughness (LER), on the line-and-space (L/S) pattern which is a typical resist
pattern to evaluate the pattern fidelity. On the other hand, the solubility of a
polymer in this study was determined by the dissolution threshold (Cw). Cp
determines whether a polymer is dissolvable (when C, is smaller than Cy) in a
hydrophilic developer. One of the critical parameters to suppress LER investigated
in the previous study was the effective reaction radius for deprotection reaction
(Rp)."* However, R, cannot be directly measured by experiments. In chapter 1, the
chemical parameters R, and Cin were investigated by utilizing both the simulation
and experimental results using a machine learning approach—Bayesian
Optimization (BO).!>1¢
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iii.  Dissolution kinetics

The kinetics of polymer dissolution are more complex than a single
parameter like Cwn can fully describe. In practice, before the polymer film
completely dissolves into the developer, it typically undergoes a transition from a
rigid layer to a gel-like layer, in which the developer is partially absorbed.!’
Although this transition can occur rapidly, understanding its dynamics is still
valuable for gaining insight into the mechanisms behind defect formation. There
are problems such as the swelling of the resist, which can lead to defects like the
formation of bridges on the resist pattern. It is critical to understand the dissolution

kinetics.

QCM substrate

Front Back
/ Gold \ +<§!
_ |

Quartz Development

Figure 4 QCM substrate and the illustration of measuring.

Quartz crystal microbalance (QCM) method is an essential technique to
understand the dissolution kinetics.'® It measures the dissolution rate of the resist,
a critical aspect of lithographic processing. QCM also tracks changes in impedance
(AZ), which indicates energy loss during development.'®?° The QCM substrate
and the measuring illustration are shown in Fig. 4. Although QCM provides
valuable measurements, the full potential of the impedance data which QCM

produces is not fully utilized yet. In chapter 2, I introduce a stratified polymer
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dissolution model (SPDM) that simulates the dynamic changes in frequency (Af)
and impedance during the development process, focusing on their relationship with
the diffusion of polymer molecules in developers. Reproducing QCM charts have
shown that impedance not only offers insights into the rate at which the resist
dissolves but also provides information on the viscosity at the interface between
the developer and the top layer of the resist. Based on impedance data, which
allows for the extraction of key parameters such as the diffusion constant (D) and
hydrodynamic radius (Ru)2! from QCM measurements. Previously reported
experimental QCM data for #-Boc protected poly(4-hydroxystyrene) (PHS) in an
alkaline developer, aqueous tetramethylammonium hydroxide (TMAH) at

different resist film thicknesses were analyzed.

iv.  Image recognition

The line-and-space (L/S) pattern, as shown in Fig. 5(a), is a typical resist
pattern used to evaluate the performance of the lithography process. A pair of line
and space forms what is called a pitch, and half of the pitch corresponds to the
feature size, also referred to HP. The minimum line width that can be fabricated
reflects the industry's patterning capability. It is important to note that this is a
periodic pattern used for process evaluation and should not be confused with the
so-called technology node commonly referred to today.

(a) L/S Pattern (b) Roughness (c) Bridging (d) Pinching

Figure 5 White regions are the polymers, while black regions are the silicon substrate. (a)
A fine L/S pattern with clear straight edges. Edges that have (b) roughness (c)
bridging defects, that connect two lines, and (d) A pinching defect on the line.
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As pattern dimensions shrink, LER, as shown in Fig. 5, becomes more
prominent due to the reduced line and space widths. This increases the likelihood
of LER-induced bridging defects, as illustrated in Fig. 5(c). These defects occur
stochastically, making them difficult to quantify and compare across different

instances.

During the materials discovery process, pattern data with failures are
obtained more than fine ones. This challenge motivated me to investigate and
evaluate defective patterns. In chapter 3, a new method for evaluating L/S resist
pattern defects based on an image recognition technology for evaluating massive
patterns were demonstrated. L/S patterns with different HPs and exposure doses
were printed by an EB writer. Approximately 2500 experimental scanning electron
microscopy (SEM) images were automatically evaluated after image
preprocessing with a Laplacian of Gaussian (LoG) image filter. This method
measures the resist pattern as a whole and evaluates the pattern with integral
indexes, especially targeting patterns with severe defects such as the patterns
deformed by over dissolution or incomplete dissolving. The SEM images were
analyzed using a method based on Hough transform which can detect fundamental
geometric shapes such as lines. In the aspect of simulation model, Monte Carlo
simulation was used to simulate the distribution of polymers that form resist
patterns. As one of the applications of this method, a comparison between
experimental and simulation results based on the indexes provided by the
developed method and chemical parameters was conducted.

v.  Machine learning

Machine learning has recently garnered significant attention in the field of
lithography. Deep learning techniques, particularly neural networks, have been
applied not only for prediction but also for image classification in optical
lithography. Additionally, deep learning has been utilized to analyze defects in
SEM images.*?

Regression analysis offers several key advantages, particularly in
understanding and modeling relationships between variables. It provides strong

predictive capabilities by establishing mathematical relationships between inputs
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and outputs. Unlike some complex machine learning models, regression models
are relatively easy to interpret, allowing researchers to clearly understand how each
independent variable affects the dependent variable. The method is also flexible,
accommodating both linear and nonlinear relationships, and serves as a
foundational tool for many advanced analytical techniques. These qualities make
regression analysis a valuable approach for both exploratory and predictive data

analysis.

Based on the estimated chemical parameters, simulation models to
reproduce QCM data and the SEM evaluation results, a regression analysis model
based on polynomial kernel was constructed. Polynomial regression extends linear
regression by allowing for the modeling of nonlinear relationships between
independent and dependent variables. This approach is particularly advantageous
when the data exhibits curvature or more complex patterns that cannot be captured
by a straight line. It provides greater flexibility in fitting a wide range of data trends
while maintaining interpretability. Additionally, polynomial regression is
relatively simple to implement and computationally efficient compared to more

complex nonlinear models or black-box machine learning methods.

A practical application will demonstrate how these parameters provide
valuable guidance for selecting or designing developer formulations that are better
suited for next-generation photoresists.

vi. Overview

This thesis presents a comprehensive study of the pattern fabrication
process, encompassing electron beam (EB) exposure, post-exposure baking (PEB),
development, and final pattern inspection, as illustrated in Fig. 2. From a machine
learning perspective, each stage is modeled to extract key chemical parameters as
explanatory variables, using simulated data to represent the physical and chemical
behavior of the resist material. The initial extraction of chemical parameters such
as effective reaction radius was presented in Chapter 1. In Chapter 2, the
development process is further analyzed through models calibrated against
experimental results obtained via QCM measurements. Chapter 3 introduces a

novel evaluation method that quantifies defective patterns, enabling even severely
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defective outputs to be digitalized and used as target variables in supervised
learning. Collectively, these efforts bridge the gap between physical process
modeling and data-driven prediction. In Chapter 4, as a practical application, the
relationship between the extracted explanatory variables and the final pattern
quality is demonstrated, highlighting the potential of this integrated approach for

predictive modeling and optimization in resist patterning.
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Chapter 1: Estimating the effective reaction radius in
polymer matrix

Chapter Overview

This chapter covers the pattern fabrication procedures of electron beam (EB)
exposure, post-exposure baking (PEB), and development, as illustrated in Fig. 2(c),
(e), and (f) of the General Introduction chapter. From a machine learning
perspective, this chapter also presents simulated models designed to extract

chemical parameters from these processes as explanatory variables.

1.1 Introduction

The fabrication of photomasks by electron beam (EB) lithography is the
starting point of lithography used for the high-volume production of integrated
circuits. There is a strict requirement on the pattern fidelity of photomasks,
especially after the emergence of extreme ultraviolet (EUV) lithography in
industry. On the other hand, the exposure dose required for the 13.5 nm wavelength
of EUV is currently high, which makes the cost of chip manufacturing high in
high-volume production lines as well. Hence, the improvement of resist sensitivity
is the decisive factor in reducing the exposure dose, and thus, the cost of chip

manufacturing.

Chemically amplified resists (CARs) decrease the exposure dose for the
patterning by compensating for photon energy with heat energy.!” On the other
hand, the sensitivity of CARs was found to be strongly related to the chemical
gradient, which indicates the defect severity in both EUV? and EB? resists. CARs
are generally composed of a photoacid generator (PAG), a quencher?, and a
polymer with side chains partially protected by nonpolar protecting groups.” The
acids generated by photons or EB catalyze deprotection on a side chain of a
polymer during postexposure baking (PEB). Owing to the low polarity of the
protecting group, the polarity of deprotected polymers changes from low to high.
Therefore, the polymer becomes hydrophilic and can be dissolved in an aqueous
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developer. >® CARs can meet the desired sensitivity by taking advantage of acid
catalyzed deprotection. Thus, CARs are thought to be promising for high-
resolution lithography.” In particular, the acid reaction—diffusion process during
PEB is critical in controlling the feature size of a latent pattern. On the other hand,
the processes in latent pattern formation such as the interactions between electrons
and materials, secondary electron emission, and chemical reactions are

stochastic.®

The distribution of protected units is directly affected by the
accumulation of these stochastic effects. Consequently, the protected unit
concentration (Cp) after PEB is uncertain (protected unit fluctuation). Furthermore,
Cp determines the solubility of resist films in developers. In other words, Cp
determines the dissolution threshold of resist films. Thus, the development process
ultimately manifests the protected unit fluctuation as defects, such as line edge

roughness (LER), on the resist pattern.

Previously, investigations of stochastic defects suggested that LER can be
suppressed by increasing the effective reaction radius for deprotection (Rp),"?
which is an essential parameter indicating the efficiency of chemical reactions per
unit diffusion length of acids. Thus, R;, is related to both sensitivity and resolution.
However, R, cannot be directly measured by experiments. In this study, by
comparing the simulation results with the experimental results R, was investigated.
Line-and-space patterns with different half pitches (HPs) were fabricated at
different exposure doses and were utilized as the subject of analysis. An HP
denotes the designed line widths in this study. The line width of fabricated resist
patterns was measured by scanning electron microscopy (SEM). On the other hand,
because the line width of a simulation model depends on the dissolution threshold
Cm, was also investigated at the same time. In the optimization of R, and Ciu,
Bayesian optimization (BO) was conducted. BO is a widely used tool for finding
solutions in both scientific research and social studies.!” As a predictive model,
BO can capture the underlying relationships among parameters obtained from
previous experimental results. Furthermore, because BO is different from the other
optimization algorithms based on gradient descent, it provides a global view of
optimization and is suitable for multimodal frameworks.!"!"Y Hence, as the
optimization algorithm, Gaussian process (GP) regression was selected for

parameter tests in this study.
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1.2 Experimental procedure

A chemically amplified resist was used in this experiment.!) The polymer
film of the resist was composed of a synthesized copolymers of poly(4-
hydroxystyrene) (PHS) and poly[4-(tert-butoxycarbonyl)oxy-styrene] (PTBS)
(Mw 12700). The tert-butoxycarbonyl (--BOC) protecting group (54.6 mol%) was
introduced to protect the hydroxyl groups of PHS. That is, the protected unit
concentration was 2.26 (units) nm. Approximately 3 wt% polymer powder was
dissolved in propylene glycol monomethyl ether acetate (PGMEA), to which PAG,
triphenylsulfonium nonaflate (TPS-nf), and a quencher, trioctylamine (TOA),
were subsequently added. The concentrations of TPS-nf and TOA were adjusted
to 0.2 and 0.1 molecules nm in a film for spin coating, respectively. Spin coating
was then carried out on a Si substrate for 4000 rounds per minute for 30 s, which
was followed by prebaking at 90 °C for 90 s. The resist thickness was measured to
be 50 nm using an ellipsometer (Meiwafosis FS-1). The spin-coated resist was
stored in vacuum at room temperature before EB exposure. It was then exposed to
a 125 keV EB (Elionix ELS-100T) at 192, 208, 224, 240, 256, 272, 288, 304, and
320 uC cm. The EB current was 100 pA. The pitches of line-and-space patterns
were 70, 80, 90, 100, 110, and 120 nm. After exposure of the resist to EB, the resist
was subjected to PEB at 110 °C for 1.5 min. Development was carried out by
soaking the resist in a 2.38 wt% tetramethylammonium hydroxide (TMAH)
aqueous developer (Tokyo Ohka Kogyou NMD-3) at 23 °C for 30 s and rinsed
with pure water for 15 s. SEM images of the resist were taken at an acceleration
voltage of 4 kV using Hitachi High-Tec. S-5500. The emission currents for the
observation of resist patterns ranged from 2700 to 7100 nA. The size of SEM
images was 1280 x 960 pixels. The SEM images were captured in the fast-scan
mode with 64 frame integration and the scale was 0.98 nm/pixel. The
magnification was 100,000. Note that observation by SEM could cause damage,
specifically, shrinkage of the resist patterns.'>!¥ The damage can be reduced by
decreasing the acceleration voltage and the number of electrons.'? The emission
current, the frame integration, and acceleration voltage were decreased to the

extent in which the images were still observable.
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1.3 Simulation model

The simulation model was divided into two parts. The first part simulated
the reactions in the resist during EB exposure. As a result, the concentration and
distribution of acids after exposure were generated. Note that before PEB, the
preneutralization of acids was taken into account.'*!> The second part simulated
the acid diffusion and the deprotection of protected units during PEB. Finally, the
distribution of protected units after PEB was obtained.

Table 1-I. Parameters used in simulation.

Acceleration voltage of electron beam (kV) 125
Beam blur (ov) (nm) 2.0
Resist thickness (nm) 20
Stopping power (eV nm™) !¢ 0.418
Resist film density (g cm™)'” 1.2
Thermalization distance (nm) '® 3.2
PAG concentration (nm™) 0.2
TOA concentration (nm™>) 0.1
Reaction radius of PAG (nm) '® 0.70
Effective reaction radius for neutralization (nm) 0.5
Effective reaction radius for deprotection (nm) 0.02-0.15
Protection ratio (mol%) 54.6
Deprotonation efficiency of proton source'”’ 1.0
Deprotonation efficiency of nonproton source’”  0.59
Acid generation efficiency””) 0.87

Diffusion constant of acids (nm? s™) 1.0
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Diffusion constant of quenchers (nm? s™) 1.0
Diffusion constant of protected units (nm? s™) 0.0

PEB time (s) 90

HP (nm) 35-60
Dose (uC cm™) 192-320

In the EB exposure simulation part, the formation of acid images of line-
and-space patterns was calculated on the basis of the sensitization mechanism of
chemically amplified EB resists. The beam profile 7, (x: perpendicular to a line

pattern) and the exposure pattern width w were defined as

I —x")? ,
I () = 222 [ aexpl 2 ax,

a=1(—%+np<x’<¥+np),

a=0[—%+np<x’<¥+(n+1)p], (1-1)

where Ivo, ob, p, and n are the exposure dose (uC cm™2), the beam blur, the pitch of
the line-and-space pattern, and an integer, respectively. The parameters and their
corresponding values used in the first part are summarized in Table 1-1.!°2% The
exposure pattern widths were set to be HP. The beam blur was approximated using
the Gaussian function. The beam blur (1ov) was set to 2.0 nm. The acceleration
voltage of the electron beam was 125 kV. The calculated area was p x 200 nm?.
The calculated length in the depth direction was set to be 20 nm to save
computational time. The thermalization distance of secondary electrons in PHS
has been reported to be 3.2 nm.'® The deprotonation efficiency of protected unit
radical cations was set to 0.59, which was obtained by titration using the acid-
sensitive dye Coumarin 6.>* The acid generation efficiency in 54.6% protected
PHS was 0.87.2 The trajectories of secondary electrons and the reaction of
thermalized electrons with PAG were calculated by a Monte Carlo method. The

details of the calculation procedure have been reported in a previous paper.'?
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The acids generated after EB exposure were first neutralized by the
quencher before PEB. The preneutralized concentration distribution was the initial

acid state of PEB. In the PEB process simulation part, the reaction—diffusion

equations describing the dynamics of acids and quenchers are as follows> %2129
aCacid
Tt V(DacigVCacia) — 4R, (DaCid + DQ)CaCidC ’ (1-2)
ac,
%3 = Y(DyVC,) — 4Ry (Dacia + Dg) CaciaCor (1-3)

where Cyciq, Cq> Rn, t, Dacia, and Dy are the concentration of acids and
quenchers, the effective reaction radius for neutralization, the time, and the
diffusion constants of acids and quenchers, respectively. The acid and quencher
dynamics during PEB at a time interval of 0.001 s were calculated by solving Egs.
(1-2) and (1-3). On the other hand, the protected unit concentration was calculated
as

ac
a_tp = _47TRpDacidCacidC > (1-4)

where C}, and R, represent the concentration of protected units and the effective

reaction radius for deprotection, respectively.
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1.4 Analytical methods
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Figure 1-1 SEM image of experimental results. All lines were exposed to EB at

224 uC cm™. The designed HP was 60 nm. (b) Edges extracted from SEM image
using Otsu binarization. The yellow pixels represent the edge of the line. (c) Cp
obtained from the simulation under the corresponding experimental condition. The

color bar illustrates the protected unit concentration. R, was 0.06 nm.

The line width was used as a reference in the comparison between
experimental results and simulation results. The SEM image shown in Fig. 1-1(a)
is a representative example of experimental results. In Fig. 1-1(a), there were 10
lines drawn under the same condition, which means that these 10 lines were
designed to have the same HP and irradiated at the same dose. In the case of Fig.
1-1(a), the lines were exposed to EB radiation at 224 uC cm™ dose and the
designed HP was 60 nm (Note that the exposed section was defined as the line).
Figure 1-1(b) shows the result of edge extraction of a line on the right side of Fig.
1-1(a), by Otsu binarization (Fig. 1-2).2%
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Figure 1-2 Preprocessing of SEM image before measuring HP one by one line. The
SEM image demonstrated in this figure is a representative example. The pattern was
exposed to EB at 224 uC/cm? dose and the HP was 60 nm for one line (Note that the
exposed section was defined as line). The SEM image was first filtered with median
method to denoise, followed by sigmoid adjustment to increase the contrast. The
section including patterns was then cropped out and binarized with Otsu method.

Finally, lines were cut out one by one to measure its HP.

The yellow pixels in the SEM image were classified as the edge owing to
the high intensity of pixels before classification. After classification, the pixels
classified into the edge were set to be 1 and the others were set to be 0. For the
resist patterns, HPs were changed from 35 to 60 nm. The lengths of patterns were
designed to be 600 nm under all conditions. The line width was measured from
two sides. In determining the line width, the integration of the pixel values of four
adjacent lines was calculated from the outer side (far from the line pattern) to the
inner side (near the line pattern). When the sum of the pixel values of four lines
first exceeded three times the designed pattern length (600 nm x 3 = 1800 nm), the

line on the most inner side among four lines was seen as the end of the line pattern.
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When the line width was smaller than a quarter of the corresponding HP, the line

was seen as a severely defective line and discarded.

Figure 1-1(c) shows the C, distribution before development. The
horizontal lengths are the pitches (the double of designed HPs) and the vertical
lengths are 700 nm under all conditions. For the pattern, the line widths were
designed to be the corresponding HPs, and the lengths of patterns were designed
to be 600 nm under all conditions. It was assumed that only at C, below a certain
concentration the deprotected polymers can be dissolved in 2.38 wt% TMAH,
namely, the dissolution threshold Cwn. Hence, the regions whose C, is below Cu
were classified as line regions after development. Other regions were classified as
space regions. The pixel values in line regions were set to be 1 and those in other
regions were set to be 0. The methods of finding edges and evaluating line widths

were the same as those used for the experimental results.

Except for the severely defective lines, almost all the 10 lines obtained
from the experiment were measured and compared with the simulation results. The
root mean square error (RMSE) between experimental and simulation results

(RMSEwp) was used for evaluation and is defined as

an=1(LWSEM,n _LWSimul,n)z

RMSEHP - \/ . (1-5)

m

where m, n, LWsgy, and LWg;,,1 represent the number of lines, an integer, the
line width of a line in the SEM image, and the line width of the corresponding
simulation result, respectively. The sum of RMSEnp was used as the observation

value, to be exact, an acquisition function that determines the sampling site.

GP regression is a typical method for Bayesian inference. In this study, GP
regression was utilized in finding the probable values for R, and Ci. The mean
function was constant. The GP prior mean was assumed to be zero and the
Bayesian credible interval for the posterior probability was set to be 95%. The

Matérn covariance function k is defined as'"

1-v v
k(x;,x;) = Zr(_v)<§ d(xl-,xj)> K, (@ d(%"j))a (1-6)

where |, I', K,, and v are the length scale, gamma function, modified Bessel
function, and the parameter that controls the smoothness of function &, respectively.
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The distance between x; and x; is the Euclidean distance denoted by d(xl-, xj).
In this study, since the expected improvement was a small RMSEwp, the subsequent

target was simply decided by the lowest credible bound of the acquisition function.

1.5 Results and discussion
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(@) ®)
Figure 1-3 (a) Representative simulation result of EB exposure simulation part.

Different colors represent different concentrations of PAG decomposed by EB
irradiation. The unit is molecules nm=. (b) C, changes during PEB obtained by the

simulation. The HP and dose were 35 nm and 192 uC cm, respectively. R, was 0.05

nm.

A representative simulation result is shown in Fig. 1-3. The PAG
decomposed by EB exposure leads to acid generations. The simulation result of
PAG decomposition immediately after EB exposure is shown in Fig. 1-3(a). The
simulation results in Fig. 1-3(b) show how C, changes during PEB. The C, of
54.6% protected PHS was 2.26 nm™. Therefore, the initial concentration was 2.26
nm~, which is shown in dark red.
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Figure 1-4 Frequency change of 30 mol% protected PHS developed in 100%
TMAH measured by QCM.

To search for the probable values of Cin and Ry, their possible ranges were
estimated beforehand. For C,, PHS protected by +~-BOC was observed to dissolve
in the 2.38 wt% TMAH aqueous developer when its protection ratio was below
30%, the protected unit concentration of which is 1.44 nm=, as shown in Fig. 1-4.
On the other hand, the initial protected unit concentration was 2.26 nm=. From
these findings, the dissolution threshold was investigated between 1.1 and 2.0 nm~
3. In the case of Ry, previous studies showed that the chemically amplified resists
including state-of-the-art resists had R, values ranging from 0.06 to 0.16.%D
Judging from these values, the possible R, range in this study was set at 0.02—

0.15 nm.

The line widths were measured using SEM images of resist patterns for
six different HPs and nine different doses. A total of 56 SEM images were used,
as shown in Fig. 1-5.
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w

Figure 1-5 SEM images used in this study. The SEM images at different
conditions. HP ranges from 35 to 60 nm. Doses range from 192 to 320 pC/cm?.

Since different R, and Ci, values finally lead to different line widths in the
simulation process, line widths in the simulation were measured every time when
R, or Ci changed. To compare between simulation and experimental results,
RMSEyp were calculated for all the SEM images [Eq. (1-5)] and corresponding
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simulation results that had the same doses and targeted HPs. Since one set of R;
and Cun must be applied to 56 SEM images with different HPs and doses, 56
comparison results (RMSEwp) for the corresponding R, and Ci, were summed up.
A small sum of RMSEyp values means that the R, and Cy used in the simulation
were close to the correct solution. The experimental errors (the fluctuation of line
width) at 35, 40, 45, 50,55, and 60 nm HP were 5.03, 2.30, 1.87, 1.72, 1.70, and
1.67 nm, respectively. The simulation errors caused by the use of the Monte Carlo
method for the calculation of acid generation is considered to be smaller than the
experimental errors, because the PEB process was simulated by applying not the
Monte Carlo method but the probability density model.

Table 1-II. The initial data set used in BO. Cy and R were the variables, and the sum of

RMSEwp values was the target variable.

R, (nm) Cn (nm™) Sum of RMSEwp values
0.02 1.1 1684.29
0.02 2.0 341.77
0.15 1.1 375.97
0.15 2.0 771.07
0.08 1.4 341.77

BO was conducted to find the most suitable R, and Cy, for the simulation
model. The inference kernel used was the Matérn kernel [Eq. (1-6)]. The entire
length scale of the Matérn kernel was examined automatically between 0.01 and
100. v was set to be 1.5 in this study. The resulting fitting score was more than
99.9%. The prediction started from the five data sets shown in Table 1-1I. The
variable set of these five data included the end values of R, and Cw and another
datum roughly estimated (Rp: 0.08 nm; Cn: 1.4 nm=). The method to add a data
obeyed the probability distribution. The possibility was set at 95%. The lower
credible bound was changed as data were added.
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Figure 1-6 Results of BO using Gaussian regression process using 11 training data.
(a) Fitting result of GP regression. (b) Lower credible bound distribution obtained by
BO. (c) Overlapping contour graph of both fitting results and lower credible bound

in a three-dimensional figure.

Figure 1-6 shows an example to illustrate the results of BO. The number
of data used was 11. The sum of RMSEwp values is shown in different colors. The
yellow-red region in Figs. 1-6(a) and (c) show the fitting results that indicate the
correlation of the values and their distribution. The blue-green color region
indicates the lower credible bound where the smallest sum of RMSEwp values may
appear. The red circles in Fig. 1-6(b) are the lowest position, and their
corresponding R, and Cy were used in the following simulation. Furthermore,
these variables and their resulting sum of RMSEnp values were added together with
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the data set calculated before. It was used as a new data set for the next

optimization.
Optimization process
600
327.16 (R,: 0.08, Cy,: 1.3)
530 328.47 (R,: 0.07, Cy,: 1.4)

500 328.47 (R,: 0.06, Cyy: 1.5)

p

329.56 (R,: 0.05, Cy: 1.6)

Sum of RMSE g, (nm)
=
o
)

400
350
300
s 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Data number
Figure 1-7 Change of calculated sum of RMSEnp values along with data addition.

The method of selecting new data for the simulation was described in Sect. 4. The

variables with smallest sums of RMSEup values were labeled with actual values.

As shown in Fig. 1-7, the sum of RMSEwp values gradually became stable
with increasing number of data added. Since the variable values predicted using
35 data were the same as those predicted using 29 data (Rp: 0.06 nm; Cin: 1.5 nm™
3), this suggests that the optimization was coming to the end. From the sum of
RMSEwp values determined by calculation, the most probable ranges for R, and Ci
are 0.05-0.08 nm and 1.3-1.6 nm™ and, respectively. Generally, before the
addition of the 23rd data, the prediction accuracy was not good. Two significant
inference changes are encircled in red in Fig. 1-7. The first was observed for the
data that increased from 14 to 15 and the second was for the data that increased
from 22 to 23. The changes of fitting results are shown in Fig. 1-8.
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Figure 1-8 From (a) to (b), the color of the region encircled in black changed from

orange to yellow after adding the data in the red box shown in (b). From (c) to (d),
the color of the region encircled in black changed from yellow to orange after adding

the data in the red box shown in (d).

From Figs. 1-8(a) and (b), the region encircled in black was inferred to be
possible until the addition of the 14th datum. After the 23rd datum was added [from
Figs. 1-8(c) and (d)], the sum of RMSEnp values of the predicted variables
increased. The variables in red box in Fig. 1-8(b) were Ry,=0.05 nm and Cy=1.8
nm™ and those in Fig. 1-8(d) were Rp,=0.03 nm and C»=2.0 nm~. This indicates
that, although Cw and R, seem to have an inversely proportional correlation along
the diagonal in the Cin—R; plane, R, is unlikely to be smaller than 0.03 nm.



34

Grid search

0.05 008 0.1l

R, (nm)
(®)

Figure 1-9 Distribution of sum of RMSEyp values in Cin—R;, plane. To show the
result clearly, the region with the sum of RMSEwp values larger than 500 was merged
into the pink area. The area encircled in black is the region where the sum of RMSEwp
values is smaller than those in other areas. (a) Result of BO obtained using 35 data.

(b) Result of grid search obtained using 140 data.

To verify BO, a grid search was conducted using 140 data. Four smallest
sums of RMSEunp values were the same as the results of BO (data labeled with
concrete in Fig. 1-7). This confirmed that BO found the best 4 results within 35
data sets, which is far smaller than the number of entire 140 data. Figure 1-9 shows
the distribution of the sum of RMSEwp values in the Can—R) plane. The distribution
obtained by BO was similar to that obtained by the grid search. The best-fitted
values can also be obtained using the least squares regression with gradient descent
with a small number of iterations. However, it does not provide the state around
the best-fitted values similarly to that shown in Fig. 1-9. BO clarified the whole
view of fitting accuracy in the Cin—Rp plane with the small number of iterations.
The probable values for Cwn and R, were 1.3-1.6 nm™ and 0.05-0.08 nm,
respectively. Cu 1s likely to be larger than 1.44 (30 mol% protected PHS), as shown
in Fig. 1-9.
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Alhough BO and grid search suggested that the combination of R, of 0.08
nm and C of 1.3 nm™ was the best fitted values, the combination of R, of 0.06
nm and Cy of 1.5 nm™, which was suggested by BO, might be closer to the correct

solution.
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Figure 1-10 RMSEqwp distribution when R, was 0.06 nm and Cy, was 1.5 nm™>,

The RMSEwp distribution is shown in Fig. 1-10. The experimental results
well fitted in the large-HP and low-exposure-dose region. In the large-exposure
dose and small-HP regions, the fitting accuracy degraded. This is considered to be
due to the fact that the resist patterns were deformed during development and

rinsing processes owing to excess chemical reactions during PEB.

1.6 Conclusion

To search for Ry, lithography experiments with line-and-space patterns
were conducted at different exposure doses and HPs. The SEM images of resist
patterns were used to measure the line width for experimental data. The EB
exposure process and acid reaction—diffusion process during PEB were simulated.
Since the line width of simulation patterns was significantly affected by the
dissolution threshold Ci, it had to be evaluated together with Rp.
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To find R, and Cw, a comparison was made between experimental and
simulation results of the line width. The probable values of R, and Cin were
determined by BO. GP regression using the Matérn covariance kernel was used for
Bayesian inferrence. BO effectively reduced the number of iterations from 140 to
35. Furthermore, the result was verified by a grid search. The probable values of
Cwn and R, were 1.3-1.6 nm= and 0.05-0.08 nm for 54.6 mol% protected PHS

resist under the PEB conditions of 110 °C and 1.5 min, respectively.
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Chapter 2: Stratified polymer dissolution model based on
impedance data from quartz crystal microbalance method

Chapter Overview

This chapter focuses on the pattern fabrication procedure of development,
as illustrated in Fig. 2(f) of the General Introduction chapter. From a machine
learning perspective, it introduces simulated models aimed at reproducing the
experimental results obtained via quartz crystal microbalance (QCM)
measurements. These models are used to extract chemical parameters from the
development process as explanatory variables, providing insight into the

underlying mechanisms and their influence on pattern formation.

2.1 Introduction

As feature sizes continue to shrink, the stochastic generation of defects in
patterns becomes increasingly a severe problem, leading to reduced product yield
and increased manufacturing costs.! Swelling and insufficient dissolution during
development are primary causes of bridging defects in patterns.®) In response,
new resists and corresponding developers, such as organic developers, are being
explored to improve the fidelity of resist patterns. Previous studies have compared
the traditional developer, 2.38 wt% (0.26 N) tetramethylammonium hydroxide
(TMAH) aqueous developer, with alternatives such as a tetrabutylammonium

37D Since 1986, the quartz crystal

hydroxide (TBAH) aqueous developer.
microbalance (QCM) has been used to measure the dissolution rate of the resist.®)
Changes in frequency, according to the Sauerbrey equation, can monitor resist
mass loss due to dissolution.”'?» QCM also measures the impedance, which reflect
the inductive reactance caused by series resonance losses, indicating energy loss

t.'415 Although the impedance has been measured during

during developmen
development,'®!'? the dynamic relationship between impedance change and
dissolution kinetics, including the viscosity changes in the developer caused by

resist polymer dissolution, was previously unclear.
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Diffusion model has been applied to the analysis of QCM frequency charts
to investigate the solvent diffusion in resist films during prebaking.'® Previous
study indicated that the decrease in impedance after the resist dissolution is related
to the polymer diffusion in the developer.!” In this study, the impedance changes
during polymer dissolution were simulated based on the diffusion equations. This
study demonstrated that the impedance not only provides insights into the rate of
resist dissolution but also offers valuable information on the interaction at the

dissolution front by reproducing QCM charts.

The QCM method was used to measure the mass and energy loss with
change in frequency and impedance, respectively.'® The mass loss, based on the
Sauerbrey equation, has the relationship with the frequency change as follows”:

Af —-Am

- x—=, (2-1)
where Af, fo, m, and Am are the frequency change, resonant frequency, unloaded
resonator mass, and mass change. Although there is a clear relationship between
frequency change and resist mass loss during the dissolution process, the change
in impedance has not yet been successfully reproduced in a manner that provides
physical insights. Many dissolution models of polymer films have been
proposed.'”?* However, the dissolution model that can utilize the QCM
impedance chart has not been reported. In previous work, the impedance change
was found to be related with the polymer concentration and the viscosity of
developer.” Based on the Stokes—Einstein—Sutherland equation, the viscosity is
further converted to the hydrodynamic radius (Ru) of polymers®®:

__ ksT
6mnsD’

H (2-2)

where kg, T, 75, and D are the Boltzmann constant, the absolute temperature, the
dynamic viscosity, and the diffusion constant of polymer, respectively.
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In this study, a stratified polymer dissolution model based on the impedance

data was proposed. Thereby, the extraction of feature values such as the D and Ru
from QCM charts becomes possible. The reported QCM charts of tert-
butoxycarbonyl (~-BOC) protected poly(4-hydroxystyrene) (PHS) films in alkaline
aqueous developers?’?®) were analyzed. Additional QCM charts were also obtained

in accordance with the experimental procedures reported in previous work.

27,28)

The polymer film density is 1.2 g cm™.>”) The developer used were 0.26 and 0.17
N TMAH aqueous developers and 0.26 N tetracthylammonium hydroxide (TEAH)
aqueous developer, which are named 0.26 N TMAH, 0.17 N TMAH, and 0.26 N
TEAH, respectively, in this study for convenience.
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Figure 2-1 (a) QCM chart of 300-nm-thick PHS film immersed in pure water. (b)
Schemes of simulation models. (c) QCM chart of 110-nm-thick PHS film immersed
in 0.17 N TMAH with simulation result calculated with Model 1. The D, was 1.2x10"
10'm? 57!, (d) QCM chart of 110-nm-thick PHS film immersed in 0.17 N TMAH with
simulation result calculated with SPDM. In (d), the green, orange, and dark gray lines
represent the frequency and impedance changes calculated with D, = 7x107!!,
1.4x1071° and 2.2x1071 m? s°!, respectively. The 7o, B, Closs, and rfinal were 33 571, 3.2
nm, 2x10* s, and 1 s7!, respectively. Note that AZ represents the impedance
change, calculated by subtracting the developer impedance (measured after 60 s, at
which the resist polymer is presumed to have fully dissolved) from the impedance

measured during development.

For the simulation, the dissolution of polymer was modeled on the basis
of diffusion equations. This involves the developer diffusing into the polymer film
and the dissolved polymer diffusing into the developer. Detailed simulation
models added more parameters are explained in the following sections with Fig.
2-1(b). The dynamics of three components (polymer, water, and alkali) are all

simulated based on a diffusion equation:

o= (050 @3

where C and D represent the concentration and diffusion constant of each diffusion
component (polymer, water, or alkali). Polymer concentration is expressed in
monomer units. ¢ and x are time and the coordinate perpendicular to the surface of
QCM substrate. The length of cell for the calculation was set to be 5 nm. The
impedance was calculated from the concentration of polymer in the developer,
based on the relationship between the viscosity and impedance reported in the
previous work in Table 2-1.%%

Table 2-1. Solvent viscosity and impedance change measured by inserting QCM substrate

to the solvent.*?

Solvent Impedance change (AZ; Q) Viscosity (mPa s) at 25 °C
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Water
Methanol
Ethanol
1-Propanol
2-Propanol
1-Butanol
Ethyl acetate
Butyl acetate
Amyl acetate

Hexyl acetate

255.19
195.35
276.21
377.74
386.1
451.19
191.51
233.43
267.9

291.88

0.890
0.544
1.074
1.945
2.04
2.54
0.423
0.685
0.8618

1.036

The impedances of the developers were plotted, as shown in Fig. 2-2, to

calculate the relationship between the viscosity 77 and impedance change AZ. The
relationship is given as follows:

n = 0.0082 AZ — 1.2104, (2-4)

The baseline of the impedance change was the impedance of the QCM substrate
in the atmosphere.

3.000

2.500 o
2.000 Pod

1.500

1.000 Se

Viscosity (mPa s)

0.500

0.000
0 100 200 300 400 500
AZ (Q)

Figure 2-2 The relationship between solvent viscosity and impedance change.
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The diffusion constant of developers in the polymer films can be
determined by observing the rate in the frequency change at which the resist
polymer swells. In this experiment, pure water was used to examine the swelling
behavior in a 300-nm-thick polymer film. Figure 2-1(a) illustrates the changes in
frequency and impedance within 3 s after the immersion of polymer film in water.
The decrease in frequency indicates that water diffused into the polymer. The
diffusion constant of water (Dv) was estimated to be 4x107'® m? s!. Meanwhile,
there was no significant change in impedance. This indicates that neither film
dissolution nor viscosity increase was induced within 3 s after the immersion. The
penetration of water only affected the resonance frequency without causing the
significant relaxation of polymer matrix. In the following simulation, the diffusion
constant of alkali (Daix) in the developer was assumed to be the same as Dy. Note
that Dy and D were also adjusted from 107'° to 101> m? s! for each experimental

results. Dy tended to increase in the presence of alkali.

2.3 Experiment

Poly(4-hydroxystyrene) (PHS) powder, propylene glycol monomethyl
ether (PGME), and tetraecthylammonium hydroxide (TEAH) were purchased from
Sigma—Aldrich. The 2.38 wt% tetramethylammonium hydroxide (TMAH)
developer (NMD-3) was purchased from Tokyo Ohka Kogyo. An RDA-Qz3
(Litho Tech Japan) resist evaluation system, based on the quartz crystal
microbalance (QCM) method, was used. The dynamic light scattering (DLS)-
based particle size distribution analyzer (nanoPartica SZ-100V2 series, HORIBA)
was used. Solutions of polymers (0.05 wt%) in developers were prepared and
stored in a refrigerator for approximately one day before measurement using DLS.

The polymer dissolution models are discussed, focusing on understanding
how the polymer dissolves into the developer and how the dissolved polymer
affects the impedance change. Two types of dissolution models were tested, as
illustrated in the schemes shown in Fig. 2-1(b). In Model 1, the resist film was
dissolved in accordance with Eq. (2-1). The diffusion constant of polymer in the
film was assumed to be the same as that in the developer. The changes in frequency

and impedance calculated by assuming Model 1 are illustrated in Fig. 2-1(c).
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Although the frequency changes could be roughly approximated, the impedance
changes obtained by the simulation were significantly larger than the experimental
impedances. This disagreement suggests that the transient swelling layer is thin.
The formation of a thick swelling layer would typically result in a sharp increase
in impedance. Next, the dissolution model was stratified, with the rigid layer
transitioning into the gel layer and then diffusing into the sol layer [Fig. 2-1(b),
stratified polymer dissolution model (SPDM)]. The rigid layer represents the solid
polymer film that does not affect viscosity change (impedance change) but affects
mass change (frequency change). The constant proportionality between frequency
and mass changes used in this study is -5.40x10'® Hz nm? mg™! (Table 2-II).

Table 2-1I. Relationship between frequency and mass changes.

TMAH Thickness a (Hz nm? mg™)

0.26 N 300 nm -4.46 x 108
100 nm -4.48 x101®

0.17N 300 nm -5.22 x10'8
100 nm -5.68 x101®

The frequency change depends on the number of polymer molecules in the
rigid layer when the transient swelling layer is thin. The following equation is used:

Af = alAm, (2-4)

where Af, a, and Am denote the frequency change, coefficient, and mass change,
respectively. The coefficient a was determined from the experimental data relating
to the resist thickness and frequency change. To test the frequency change during
the dissolution of 100- and 300-nm-thick PHS films, 0.26 and 0.17 N TMAH were
used. The coefficient a depended on experimental conditions, ranging from -4.46
x 10'8 to -5.68 x 10'® Hz nm? mg"!, as shown in Table 2-1I. In this study, the

average value of -5.40 x 10'® Hz nm? mg! was used.
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The gel layer is defined as the resist layer that has absorbed the developer
but has not yet dissolved. When the gel layer is thick, it affects the viscosity change.
When this layer is thin, it does not affect the viscosity change. The sol layer is the
viscous layer that impacts the impedance change during development with thin gel
layer. This corresponds to Type 1 dissolution model reported previously.>” To
simulate the rigid layer transitioning into the gel layer, a gelation phase transition
rate (7), defined by the number of polymer (monomer unit) converted from rigid
phase to gel phase per unit time AGel/At was introduced. The gelation phase
transition rate is expressed as

__ AGel _ To
At BeCgatl

(2-5)

where ro, Cgel, and £ are the initial gelation phase transition rate, the concentration
of polymer molecules in gel layer, and a constant. The introduction of fCgei+1 is
based on a previous observation that the dissolution rate decreased as the polymer
continued to dissolve into the developer, due to the increase of viscosity and the
decrease in pH near the dissolution interface.”” With introducing the gelation
phase transition rate, SPDM was able to prompt the reproduction of QCM charts,
as shown in Fig. 2-1(d), which also demonstrates the effect of polymer diffusion
constant (Dp). By fitting the simulation kinetics to the experimental impedance
chart, D, can be obtained. The impedance charts calculated with the best-fitted D,
along with those calculated with the values larger and smaller than the best fitted
Dy, were plotted in Fig. 2-1(d). The large D, corresponds to a fast increase in
frequency and a low impedance. While this difference was small in the frequency
chart, especially when D, was larger than the optimized one, it became clear in the
impedance chart.
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Figure 2-3 QCM charts and fitting results. The experimental data were plotted by

dots and simulation data were shown by lines. The development conditions were (a)
PHS film in 0.26 N TMAH, (b) PHS film in 0.17 N TMAH, (c) 5 mol% #Boc
protected PHS film in 0.26 N TMAH, and (d) PHS film in 0.26 N TEAH.

To investigate how the experimental conditions influence D,, the effects of
polymer, film thickness, and developer were examined. The QCM charts were
fitted with SPDM, as shown in Fig. 2-3. An example of dissolution image is shown
in Fig. 2-4. Figure 2-4(b) shows a visualization of the simulation results obtained
by reproducing the experimental impedance charts shown in Fig. 2-4(a). The
dissolution images reflect the state before complete dissolution at 0.08, 0.16, and
0.34 s, and after complete dissolution at 0.6 and 1.0 s. The color change in the sol
layer indicates the concentration of the polymer at the dissolution surface, with

deeper colors representing a higher polymer concentration.
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Figure 2-4 (a) Experimental impedance chart obtained during the development of
PHS film in 0.26 N TEAH aqueous developer using QCM. (b) Images illustrating
the simulated dissolution of polymer molecules. The image depicts polymer
distribution within an 800 nm region from the surface of the QCM substrate, while
the entire simulated developer region extended to 180 um. The color bar indicates

the concentration of polymer molecules in monomer units.

The best-fitted values are listed in Fig. 2-5. Figure 2-3(a) shows the QCM
chart obtained during the development of PHS film using 0.26 N TMAH. When
the diluted TMAH (0.17 N) was used, D, and the impedance reachable during the
development significantly decreased, as shown in Figs. 2-5 and 2-3(b),
respectively. Close examination of the experimental QCM charts, illustrated in Fig.
2-3(c), reveals that the frequency for the 110-nm-thick film slowly increased after
the rapid increase, indicating a decrease in mass. This suggests the existence of a
thin layer at the bottom, which was named a near-substrate layer. This unique
frequency pattern became remarkable for 55- and 30-nm-thick films shown in Fig.
2-3(c). These observations suggest that after most of the resist film has dissolved,
residual polymer molecules remain on the substrate, dissolving at slow rate. To
better simulate these phenomena, the model was further refined by incorporating
additional parameters: a decrease in the gelation phase transition rate (7s) that
begins approximately 15 nm from the substrate, and a final loss rate (#fina). With
these adjustments, the model successfully replicated the changes in frequency and
impedance shown in Fig. 2-3(c).
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Entry t-Boc Thickness | D, 7o B ra Final Ru
Developer (nm)
(Fig.) (mol%) (nm) (10 m?shy | (s) | (am?®) | (10°sTh) | (s
1 110 1.93 98 1.8 1.45 2 0.97
026 N
(2a) 0 60 1.87 98 2.3 1.4 1 1.02
TMAH
30 1.84 85 2.6 1.35 1 1.01
2 110 1.40 33 3.3 0.2 2 1.40
0.17N
(2b) 0 55 1.34 325 2.1 0.2 22 1.49
TMAH
25 1.29 304 1.5 0.22 22 1.56
3 110 0.65 59 1.22 8 4.75 2.70
026 N
(20) 55 0.425 575 1 100 0.75 3.93
TMAH
25 0.56 60 1 175 0.5 3.02
4 110 0.605 26 1.58 2.6 4.7 3.11
0.26 N
(2d) 60 0.71 305 1.35 1.7 32 2.59
TEAH
30 0.593 28.5 1.05 1.05 2 2.97
Figure 2-5 Extracted feature values.

In Fig. 2-5, the extracted feature values are categorized into three ranges:

large, middle, and small, highlighted in light green, light purple, and blue colors,

respectively. This color coding visualizes the variations across different

experimental conditions and their effects on the D, and . From the data presented,

the impact of developers and polymers on D, and dissolution rates can be observed.

Entry 1 shows the fastest dissolution rates, indicated by the highest values of D,

and 0. When developers are changed while using the same polymer, varied

reductions in D, can be observed. The value of o, which indicates the dissolution

rate of the polymer, suggests that TEAH developers require more development

time. This prolonged development time correlated with a lower impedance change,

as evidenced by the comparisons between Figs. 2-5(a) and (d). Entry 3

demonstrates a significant drop in D, by the #-Boc protection, leading directly to

the appearance of a bump at the turning point for film thicknesses of 55 and 30 nm.
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This bump suggests that a considerable amount of residual polymer remains on the
substrate. Moreover, to reproduce the bump at the turning point after most films
were dissolved, high values of the loss rate (rs) were required, suggesting a strong
interaction between the polymer and the substrate. Additionally, Entry 4 highlights
a decrease in the dissolution rate when the developer was switched to TEAH,
indicating the alkali chain of the developer have significant influence on the
dissolution kinetics. This comprehensive analysis helps understanding the intricate
relationship between polymer and developer and their collective impact on
lithographic processing outcomes. Based on Eq. (2-2), the calculated Ru in the
TMAH and TEAH solutions was approximately 1-4 nm. Ry of polymers in the
developers was also measured using dynamic light scattering (DLS) (Table 2-I11)
for the validation. Ry and D, obtained by QCM approximately agreed with those
obtained by DLS. According to the DLS data, the Ry of the polymer was
approximately 1.3-2.1 nm, and the corresponding D, was approximately 2.83—
1.03 x 101 m? 7L,

Table 2-III. Hydrodynamic radius and diffusion constant of polymers measured by

DLS. Polymer concentration was 0.05 wt%.

Viscosity Hydrodynamic radius Diffusion
Developer t-Boc  (mPas) at (Ru; nm) constant
23 °C Average o (10"m? s
0.26 N TMAH 0 1.143 1.3 0.75 2.83
0.17 N TMAH 0 1.143 1.6 0.75 1.48
0.26 N TMAH 5 1.143 1.4 0.5 1.11
0.26 N TEAH 0 1.159 2.1 1.0 1.03
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2.4 Conclusion

The QCM method, which detects mass loss and swelling of resist polymers,
has been extensively used to monitor the dissolution of resist films. The SPDM,
based on the diffusion function principles, well reproduced the QCM charts. This
layered dissolution kinetic suggests that even when the difference in mass change
pattern during dissolution is small, the viscosity near the dissolution interface can
differ significantly. This variability in viscosity is critical to understanding the
dynamics in dissolution. Furthermore, the simulation model includes feature
values that quantify the dissolution characteristics of different developers and
polymers, providing physical insights into the dissolution process. Experimental
data have revealed residual polymer near the substrate, highlighting the
interactions between the polymer and the substrate. The analysis of these residuals
helps to estimate the amount of residue and its absorption capacity of the developer.
This study enhances the understanding of dissolution kinetics from the perspective
of reproducing frequency and impedance charts. It also opens avenues for
exploring new developers by providing a methodological framework to study their

effectiveness.
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Chapter 3: Analysis of resist images with pattern defects by
Hough transform

Chapter Overview

This chapter focuses on the inspection of the final resist pattern, as
illustrated in Fig. 2(g) of the General Introduction chapter. From a machine
learning perspective, it introduces a novel evaluation method for quantifying
defective patterns, enabling even severely defective ones to be datafied and used
as target variables in model training. This approach addresses the challenge of
incorporating low-quality pattern data into predictive models, thereby enhancing
the robustness and applicability of the machine learning framework. By
complementing the chemical parameter extraction methods presented in earlier
chapters, this chapter completes the process chain from fabrication to performance
assessment, providing a comprehensive foundation for end-to-end modeling of

resist pattern formation.

3.1 Introduction

The heart of the semiconductor lies within its manufacturing process,
where the critical components are the materials used, and the equipment employed
to facilitate production. The introduction of extreme ultraviolet (EUV) light source
with a wavelength of 13.5 nm has enabled the manufacturing of features with
smaller sizes.! However, this technology has also highlighted challenges brought
by smaller feature sizes, namely, the stochastically generated defects on resist
patterns.””) Line-and-space (L/S) patterns are important design features with
numerous applications, including the manufacturing of microprocessors and
memory chips. Defects can arise on L/S patterns for a variety of reasons during the
lithography process.® In order to minimize these defects, it is crucial to optimize
and control the lithography process, but it is equally important to focus on the

development of resist materials.
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Chemically amplified resists (CARs)” are promising for high-resolution
lithography, with their solubility change primarily influenced by the protection
ratio of the polymer matrix following exposure and post-exposure baking (PEB)
process. The sensitivity (sizing dose) of CARs is strongly related to the chemical
gradient, indicating defect severity in the resist pattern.®’ Previous studies on
electron beam (EB)!” and EUV® printing have suggested that various factors
during the printing process can cause defects in the CAR-type resist. Consequently,
results obtained from patterns with defects are often more informative than those
without defects. However, evaluating patterns with severe defects can be difficult
due to the stochastic nature of defect generation. Furthermore, comparing different

defected patterns is challenging due to the variability of the defects.

On the other hand, the acid-catalyzed deprotection process that occurs
during PEB is one of the most crucial processes in controlling the feature size of a
resist film. The presence of stochastic effects including interactions between
electrons and materials, secondary electron emission, and chemical reactions, that
can have an impact on the distribution of protected units, making uniformity a
critical factor to consider.!” When focusing on the underlying chemistry, the issue
becomes chemical parameters, such as the effective reaction radius for the
deprotection reaction (Rp), which is important but difficult to determine.'>'®) To
address the issues mentioned above, this study proposed a novel method for
evaluating L/S patterns with defects based on Hough transform. The Hough
transform is an image processing technique used for detecting fundamental
geometric shapes such as lines and circles within an image.'¥ This method
evaluates the pattern as a whole and automatically measures the average line width
(LW) and interval distance, which is defined later. Further analysis of the
measurement enables the description of defectivity in the resist pattern and the
distinction between different types of defects. To further apply this method to the
insight chemistry, the simulation results were compared with the experimental
results by changing the R), in order to explore the pattern changes that could be
brought about by varying this chemical parameter. In this study, the frequency
dependence of line edge roughness (LER) is not discussed, because it is only
applicable to fine patterns without defects. The ecellent works for the analysis of

frequency dependence in fine patterns have been already reported.'>'®
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3.2 Experiment

In this experiment, a chemically amplified resist” was utilized, consisting
of a polymer film composed of a synthesized copolymer of poly(4-
hydroxystyrene) (PHS) and poly[4-(tert-butoxycarbonyl)oxy-styrene] (PTBS)
with a molecular weight of 12700. The hydroxyl groups of PHS were protected
with the tert-butoxycarbonyl (t-BOC) group (54.6 mol%), resulting in a protected
unit concentration of 2.26 (units)/nm? under the film condition. A polymer powder
of approximately 3 wt% was dissolved in propylene glycol monomethyl ether
acetate (PGMEA), to which triphenylsulfonium nonaflate (TPS-nf) and a quencher,
trioctylamine (TOA), were added, with their concentrations adjusted to 0.2 and 0.1
(molecules)/nm® under the film condition, respectively. Spin coating was carried
out on a 4-inch Si wafer at 1000 rounds per minute (rpm) for 3 s, followed by a
gradual increase in speed with a slope of 20 s until reaching 4000 rpm, which was
maintained for 30 seconds. Subsequently, the wafer was pre-baked at 90°C for 90
s. The thickness of the resist was measured to be 55 nm using an ellipsometer
(Meiwafosis FS-1). The sample was stored in vacuum at room temperature before
exposure to a 125 keV EB (Elionix ELS-100T) at doses ranging from 192 to 320
uC/cm? with an EB current of 100 pA. L/S patterns with pitches of 70, 80, 90, 100,
110, and 120 nm were used. To examine the reproducibility, a total of 16 chips
with the same set of patterns were printed on the same wafer. After EB exposure,
the resist was subjected to PEB at 110 °C for 1.5 min. Development was carried
out by soaking the resist in a 2.38 wt% tetramethylammonium hydroxide (TMAH)
aqueous developer (Tokyo Ohka Kogyou NMD-3) at 23 °C for 30 s, followed by

rinsing with pure water for 15 s.

SEM images of the resist were obtained using the Hitachi High-Tech
Advanced CD Measurement SEM CS4800 with an acceleration voltage of 800 V
and a probe current of 8.0 pA. The images were taken at a magnification of 20,000
and 100,000 at the addressing point and measurement point, respectively. The
image size is 512 x 512 pixels. To minimize potential damage to the resist patterns
caused by SEM observation, the acceleration voltage and number of electrons were

reduced. Specifically, the emission current, frame integration (64), and
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acceleration voltage were lowered while still maintaining observable images. It

should be noted that SEM observation can cause the shrinkage of the resist patterns.

I7.18) To reduce this effect, previous studies have suggested minimizing the number
of electrons and acceleration voltage used during SEM imaging.!” The SEM

results for one of the 16 chips were presented in supporting information (Fig. 3-1
and Table 3-I).
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The LW and interval distance were plotted in different graphs for each half-pitch
(HP). The LW and interval distance were measured from each SEM image and
their mean values and standard deviations were calculated. The LW and interval
distance were then plotted against dose. The LW was measured using the Hough
transformation followed by analyzing the vote distribution method, where the
peak of the distribution plane represents the mean LW value for each pattern from
the 16 chips. The green dashed lines in (a) and (b) are the designed HP and interval
distance, respectively. The blue dots in (a) represent the mean values, while the
red error bars indicate the standard deviations for the 16 chips. Similarly, the
interval distance was also measured using the vote distribution method, and the

mean values and standard deviations were plotted against dose in (b).

The LW and interval distances were measured using the method described
in section 3.5. The length of the error bars indicates the variation among 16 chips
under the experimental conditions outlined in the this section. Differences in error
bar length between fine and defected patterns can also be observed in Fig. 3-1(b).
Defected patterns at low doses (HPs of 70-100 nm) and high doses (HPs of 25-40
nm) exhibit longer error bars than those of fine patterns. Thus, these figures can
provide information about pattern stability and resolution (which is 45 nm in this
case) based on the length of the error bars for both LW and interval distance
measurements. Note that some patterns were not formed due to low dose and small

feature size, and unable to be observed by SEM.
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Table 3-1. SEM images of resist patterns in chip 1 among 16 chips on the 4-inch wafer.

The units of HP and dose are nm and uC/cm?, respectively.

e I T T T T
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128
144
160
176
192
208
224
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3.3  Simulation model

The decomposition of TPS-nf and the subsequent deprotection of polymer
were simulated by a Monte Carlo method to obtain the distribution of acids and
protected units. After simulating TPS-nf decomposition during EB exposure, as
described previously, the preneutralization of acids before PEB!**?) was calculated
with the proton migration range of 2.4 nm.?" Using the acid distribution after the
preneutralization as the initial condition, the catalytic chain reaction during PEB
was calculated by a Monte Carlo method. The motion of the acid and quencher
molecules at each time step d¢ is given by vV6Ddt, where D represents the diffusion
constant of the acid or quencher molecule. The direction of motion was determined
using uniform random variables. During PEB processes, when the acid molecule
reached a quencher molecule within the effective reaction radius for neutralization,
the acid molecule was regarded to be lost through neutralization. When the acid
molecule reached a protected unit of the polymer within the effective reaction
radius for deprotection Rp, the acid molecule was regarded to induce the
deprotection of the polymer. The other details of simulation method have been
described elsewhere.?>?®) The simulation parameters used are listed in Table 3-
I1.*?® To denoise the result drawn from Mote Carlo simulation, a simple model
for the polymer aggregation simulation followed by dissolution judgment was

simulated.

Table 3-I1. Parameters used in simulation.

Acceleration voltage of electron beam (kV) 125
Beam blur (op) (hm) 2.0
Resist thickness (nm) 20
Stopping power (eV/nm)>* 0.418
Resist film density (g/cm?)* 1.2
Thermalization distance (nm)>® 3.2
PAG concentration (/nm?) 0.2

TOA concentration (/nm?) 0.1
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Reaction radius of PAG (nm)*®

Effective reaction radius for neutralization (nm)
R, (nm)

Protection ratio (mol%)

Deprotonation efficiency of proton source””
Deprotonation efficiency of nonproton source”®)
Acid generation efficiency”®

Diffusion constant of acids (nm?/s)

Diffusion constant of quenchers (nm?/s)
Diffusion constant of protected units (nm?/s)
PEB time (s)

HP (nm)

Dose (uC/cm?)

0.70
0.5
0.06, 0.16
54.6
1.0
0.59
0.87
1.0
1.0
0.0
90
45
192

3.4  Analytical methods

3.4.1. Edge dectection

As the first step toward L/S patterns in resist images, the edges of lines are

detected using Laplacian of Gaussian (LoG) filter. The LoG is a type of image

enhancement filter that is commonly used in computer vision and image

processing applications. It enhances the edges of an image by convolving it with a

kernel that is the product of a Laplacian kernel for edge detection and a Gaussian

kernel for smoothing. In the LoG kernel, the center of the kernel is defined as the

origin which corresponds to an interest in pixel, and then the weight of each pixel,

represented by its coordinates x and y, is calculated based on its distance from the

center using the following formula:

LoG(x,y) = ( 202

2ma®

2, 2
x%+ y?— 20'2) e—x tYy

(3-1)
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where o represents the standard deviation in Gaussian kernel. The LoG kernel can

then be used to convolve with an image.

In this experiment, both SEM images and simulated resist pattern images
were processed using LoG filter. However, to detect the edges of the lines,
different operations were applied to the SEM images and the simulation results by
considering the different properties between them. Because line patterns in the
SEM images are observed as thick and blurry line segments (i.e., regions) and they
are brighter than the other regions as shown in Fig. 3-3 (a), ridges of the line
segments need to be detected. The line segments in the SEM image and the LoG
kernel are convex upward and downward in intensity space, respectively, the line
segments in the convolved image get convex downward. Therefore, the ridges of
the line segments correspond to the local minimum in the convolved images, and
hence non-minimum suppression (NMS) was applied to the convolved images to
remove unnecessary edges. Specifically, the NMS filters out pixels whose intensity
is greater than neighboring pixels’ intensities and above a threshold. In order to
detect horizontal and vertical line segments, the NMS is applied horizontally and
vertically, respectively. On the other hand, line patterns in the simulation results
are observed as simple edges, i.e., boundary between bright and dark regions, a
conventional edge detection method, i.e., zero-crossing detection on the convolved
image with the LoG kernel is employed.

3.4.2. Hough transform

Hough transform is an image processing technique for detecting basic
geometric objects, such as circles and lines.?’~*? The Hough transform for straight
line detection converts pixel coordinate (x,y) of the detected edges in an image
to a straight-line parameter space (p, 8) using the following equation.

p=xcosf +ysinf (3-2)

In Eq. (3-2), p denotes the perpendicular distance from the origin to the straight
line, and @ represents the angle between the x-axis and the perpendicular line that
connects the origin to the straight line. This parameter space is commonly referred

to as Hough space.
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Figure 3-2  (a) Image represented in a coordinate system with its origin at the top
left corner and (b) Hough space derived from Eq. (3-2), which corresponds to the
white pixel in (a). The image in (a) contains a white pixel, and a yellow straight
line passes through it. A pink arrow, starting from the origin, is drawn
perpendicular to the yellow line. The length of the pink arrow is denoted by p,
while the angle between the pink arrow and the x-axis is represented by 6. On the
coordinate plane in (b), the horizontal axis represents € (in degrees) while the

vertical axis represents p (in pixels). The range of € is calculated from 90° to -90°.

Figure 3-2(a) illustrates an example of a straight line passing through a
pixel in an image, which can be represented by a pair of p and 6. Multiple straight
lines can pass through the same pixel, and each of these lines can be represented
by a unique pair of p and 6. Therefore, based on Eq. (3-2), each pixel in the image
can be converted into a trigonometric function curve. In this particular case, the
white pixel in Fig. 3-2(a) was converted to the Hough space shown in Fig. 3-2(b).
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Figure 3-3  (a) Image represented in a coordinate system with its origin at the top
left corner and (b) Hough space derived from Eq. (2), which corresponds to the
white pixels in (a). The image in (a) contains three white pixels. A green straight
line passes through all the three pixels. A pink arrow, starting from the origin, is
drawn perpendicular to the green line. The length of the pink arrow is denoted by
po, while the angle between the pink arrow and the x-axis is represented by Go. On
the coordinate plane in (b), the horizontal axis represents # (in degrees), while the

vertical axis represents p (in pixels). The range of € is calculated from 90° to -90°.

In Hough space, a “vote” refers to a value assigned to a pair of p and 6,
which denotes a specific geometric shape. The greater the number of pixels that a
line traverses, the more votes it can accumulate. The accumulation of votes allows
for the detection of geometric shapes or patterns in an image. In Fig. 3-3(a), three
pixels are converted into three curves in Fig. 3-3(b). The point where these three
curves intersect is represented by the combination of po and 6o, which has the
highest number of votes compared to other pairs of p and 8 on the curves. Therefore,
the combination of po and 6y indicates the only line that passes through these pixels,
corresponding to the green line in Fig. 3-3(a). By identifying the point with the
highest number of votes in the corresponding Hough space, this approach can
detect lines present in an image.

3.4.3. Image filtering and Hough transform
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Filtered image

600 800 1000 1200 0 200 400 600 800 1000: 1200
- -~
LW Interval distance
(a) (b)

Figure 3-4  (a) SEM image of resist L/S patterns and (b) filtered image resulting
from the image preprocessing to image (a). The HP of the pattern was 45 nm. The
exposure dose was 272 pC/cm?. The edges of patterns were shown in red in (b).
These red pixels in the image have a value of 1, while the black background is
made up of pixels with a value of 0. The line width (LW) is exemplified in (b)
with a pair of orange dashed lines, while the interval distance is demonstrated

using two blue dashed lines in the same image.

Figure 3-4(a) depicts an SEM image of resist /S patterns with a HP of 45
nm, which was exposed to EB radiation at a dose of 272 uC/cm?. HP means not an
actual line width but a designed line width (a target line width). The image was
resized to a scale of 1 pixel for 1 nm. To extract the pattern edges, the SEM image
was preprocessed with the method mentioned in section 3.4.1 [Eq. (3-1)] and then
converted into a binary image. The ¢ in Eq. (3-1) in this filter was 10.5. It should
be noted that the term "line" in this context refers to the region that is exposed to
EB and subsequently dissolved by the developer. The "line width (LW)" refers to
the average width of all the lines that are included in the SEM images. On the other
hand, the "interval distance" refers to the distance between the right (or left) edge
of a pattern and the corresponding right (or left) edge of the adjacent pattern. The
LW and interval distance were shown by a pair of orange and blue dashed lines in

Fig. 3-4(b), respectively.

During the Hough transform of pixels composing edges, the accumulation
of votes in the Hough space was determined by the number of pixels that a straight
line can pass through. While this method can effectively locate every edge in the
vertical direction of the image, it may fail to detect edges in patterns that are
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severely defected, deformed or lack clear edges. In contrast to the traditional
straight line detection in the lithography field, this study adopted a different

approach by determining LW and interval distance for the resist patterns as a whole,
instead of evaluating patterns individually.

Input image

Enlarged Hough space

200

400

0 200

400
(a)

Hough space

600 800

-1000

-500

p (pixel)

500

1000

0 (degree)

(b)

Figure 3-5 (a) Input image for Hough transform, (b) Hough space of the filtered
image of (a), and (c) the enlarged view of (b). The HP of resist patterns in (a) was
45 nm and the exposure dose was 272 uC/cm?. (a) depicts a cropped version of
Fig. 3-4(b), in which the residual blank area surrounding the resist patterns and
the top and bottom edges of the resist patterns have been removed. The orange
dashed line in (a) corresponds to the orange circle in (c). The enlarged view of the
profiles approximately 0° [marked by the yellow box in (b)] is shown in (¢). The
orange circle in (c) represents the first overlapping point of the trigonometric

function curves, which corresponds to the first red line in (a).

Before going into the detailed determination process, to focus on the
pattern of interest, the blank area surrounding the resist patterns and the upper and
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lower edges were cropped out, as illustrated in Fig. 3-5(a). After detecting edges
and applying Hough transform [Eq. (3-2)], the Hough space displayed in Fig. 3-
5(b) was obtained, where the degree 6 is represented on the horizontal axis and the
distance p is on the vertical axis. As the lines are mostly vertical, the number of
votes get larger in the area near 0°, as shown in zoomed-in Fig. 3-5(c). As an
example, the first overlapped votes circled in orange in Fig. 3-5(c) indicates a pair
of p and 6 that represent the line passing through the leftmost edge overlapped by
a dash orange line in Fig. 3-5(a). Since there are a total of 20 edge lines in Fig. 3-
5(a), 20 sets of overlapped points can be observed in Fig. 3-5(c) at approximately
0°.

Understanding the feature of the input image is important for determining
the detection range of degrees and distances (LW and interval distance). The
degree of edges was initially determined for lines in the Hough space. After
determining the common angle, the votes at the same degree with different
distance p were discussed. More specifically, the line-to-space pattern of the resist
image is represented by four parameters: LW w; interval distance d; a common
angle for multiple parallel lines 6.,,,; and distance p, between the image origin
and the first line. Given the number of votes in Hough space as v(p,8), the
likelihood of the four parameters L(w,d, 8.om, Po), 1.€., the degree how well the
four parameters describe the observed resist image, is then computed by
summation of the votes for all the lines by the following equation

L(w,d, Ocom, ,00) = Z?Izl(v(po + id, ecom) + V(Po +w+id, ecom)): (3-3)

where N is the number of line pairs (i.e., left and right sides of lithography). The
optimal four parameters which describe the resist image the best are then obtained
by

w*,d*, 0%m, py) = argmax L(w,d,O.om, Po)- (3-4)
w,d,0com.Po

By taking into account the impact of LER, the search range of w was set

to be larger than LER and smaller than twofold HP. On the other hand, regarding
the stability of d, as observed during the analysis, its search range was set to be
+20% HP from twofold HP. For the 6.,,,, the search range was set to be from -
1.0° to 1.0°. Additionally, since the pattern interested was automatically cropped
out from the original image, the search range of p,was set to be from 0 to 20 pixels.
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3.5.1. LW and interval distance measurement

Original image
HP: 45 nm; Dose: 272 uCl/cm?
SENEREE | {1
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Figure 3-6

Input image
HP: 45 nm; Dose: 272 uC/cm?

0
200

400

200 400 600 800
(b)

: 272 uClcm?

0 HP: 35 nm; D

ose

.‘“
i

(a) SEM image with 45 nm HP and 272 pC/cm? exposure dose, (b) the

preprocessed input image of (a), (¢) SEM image with 45 nm HP and 160 pC/cm?

exposure dose, and (d) SEM image with 35 nm HP and 272 uC/cm? exposure dose.

Straight blue lines on all the figures were plotted with the most appropriate LW

and interval distance that obtained the highest number of votes. The angle of all

of the aligned blue lines in these figures was -0.5°, determined on the basis of the

LW and interval distance pair with the highest number of votes. (a) is a cropped

original SEM image, while (b) shows the input image [the same as Fig. 3-5(a)].

(c) represents a severely defected pattern that barely dissolved. On the other hand,

(d) exemplifies a deformed pattern.
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The meaning of covering the edge pixels is further explained, using
examples shown in Fig. 3-6. Figures 3-6(a) and (b) are the cropped patterns of Figs.
3-4(a) and (b), respectively. The average pixel number of detected edges
highlighted in red in Fig. 3-6(b) was 559. The blue lines, which overlay the red
lines, represent the ideal edges with no defects. The pixel count of an ideal edge
line was 556. In the case of a fine pattern, the pixel count for the edges is similar.
The overlap between the ideal and real edges consisted of 115 pixels (the highest
number of votes). The deviation of the real edges from the ideal edges was

approximately 2.2 nm.

Based on Egs. (3-3) and (3-4), the optimal w, d, 6.,y,, and p, for the
case shown in Fig. 5(a) were 52 nm, 90 nm, -0.5°, and 9 nm, respectively. This
indicates that, as shown by the blue lines in Fig. 3-6(b), lines aligned at -0.5° with
the combination of 52 nm LW and 90 nm interval distance can cover the highest
number of edge pixels in the input image. This conclusion was confirmed by
overlapping the calculated line edges with the cropped original image, as shown
in Fig. 3-6(a).

The measurement of deformed patterns is difficult due to several reasons.
Firstly, at low doses, patterns are formed sparsely, making it challenging to
determine the edges. Secondly, at high doses, the edges of lines are detached from
the Si substrate due to over-dissolution, causing them to move far from their
original position and making analysis difficult. With the proposed method, it
becomes possible to determine the average LW and interval distance of the resist
pattern. As shown in Fig. 3-6(c), the pattern was exposed at a low dose, resulting
in numerous bridges and broken edges. However, by measuring the pattern as a
whole instead of pitch by pitch, the random cuts or stochastic defects on the edges
can be compensated by other pitches. The w, d, 6.,m,and p, forthe case shown
in Fig. 3-6(c) were measured to be 42 nm, 90 nm, -0.5° and 7 nm, respectively.
The average pixel count for the ideal edge was 518, while it was 568 for the real
edge. This difference was brought by the bridging defect between the lines. The
number of overlapped pixels was 72. In contrast, Fig. 3-6(d) shows a pattern
exposed at a high dose, leading to a deformed pattern that is difficult to determine
the edges and line widths. Nevertheless, the straight lines that pass through the
highest number of pixels can still evaluate this kind of pattern, based on Eq. (3-4).
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As a result, the w, d, O.,,, and p, for the case shown in Fig. 3-6(d) were
measured to be 45 nm, 70 nm, -0.5° and 5 nm, respectively. The average pixel
count for the ideal edge was 551, whereas it was 408 for the real edge. This
difference in count was attributed to over-dissolution, where the edges become
stuck together and cannot be individually detected. The number of overlapped
pixels was 50, indicating that the edges were significantly displaced from their
intended positions. It is important to mention that the evaluation of patterns with
unclear edges may not be as consistent as those with clear edges. Nevertheless, the

vote distribution for such patterns exhibits unique characteristics that are worth

discussing.
105 HP=45 nm 80 HP=45 nm HP=45 nm
« Interval distance . LW * | Averaga real edge
800 - Average ideal edge
= 100 HPx2 70 === HP Overlapped pixel
x —_
S g5 T 5 600
g 360- .. é ,,,,,,,,,,,,,
5 o = . 2
3 g 50/ 3 400
g 85 E a
E 40 200
80|
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759285 160 192 224 256 288 320 352 364 128 160 192 204 256 288 320 352 384 128 160 192 224 256 268 320 352 384
Dose (LC/cm?) Dose (UC/cm?) Dose (LC/cm?)
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Figure 3-7 (a) Estimated interval distance, (b) estimated LW and (c) pixel counts
for the average number of ideal and real edges, as well as the number of
overlapped pixels for the samples with HP of 45 nm. The LW and interval distance
are plotted against the dose. The interval distances are denoted by green dots in
(a), where the brown dashed line indicates the pitch (the reference for interval
distance) which is twice the HP. In (b), the green dashed line represents HP (the
reference for LW). In (c), the pink dashed lines in the vertical direction serve as
references for the doses. The red, green, and orange dots correspond to the pixel

count for the real edge, the ideal edge, and the overlapped edge, respectively.

Upon analyzing hundreds of resist patterns on the wafer, it was discovered
that the profile with -0.5° rotation had the highest votes in the most cases. This
indicates that the wafer was tilted at -0.5°. Therefore, hereafter, the analysis was
conducted based on the -0.5° files for all the images. As a representative results,
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Figs. 3-7(a) and 3-7(b) demonstrate the dose dependence of interval distance and
LW of the samples with 45 nm HP. The original SEM images for all the samples
are provided in Table 2-I. The measured results of LW and interval distance for
other HPs are included in Fig. 3-1. By examining the interval distance against
changing dose, it was evident that the interval distances remain relatively stable.
This observation suggests that patterns with interval distances significantly
deviating from twice the HP correspond to the deformed patterns. Except for the
deformed patterns, LW was found to increase with increasing dose, while the

interval distance remained stable despite the changes in LW.

In terms of pixel count, as depicted in Fig. 3-7(c), it is evident that when
the ideal and real edges are in close proximity, their pixel counts are also similar.
In cases where the pattern contains bridges within the lines, the pixel count tends
to exceed the ideal number [doses of 192 and 208 uC/cm? in Fig. 3-7(c)].
Conversely, when the pattern is distorted due to over-dissolution or incomplete
dissolution, resulting in incomplete formation of the pattern, the pixel count tends
to be lower than the ideal count [doses of 160 and 176 puC/cm? in Fig. 3-7(c)].
Additionally, the number of overlapped pixels reflects the deviation between the
real edges and the ideal edges. As a result, a closer match between the overlapped
pixel count, ideal pixel count, and real pixel count indicates a lower LER. This can
also be viewed from the magnified Hough space shown in Fig. 3-5(c) that the
overlapping points were often not a single point. Therefore, LWs and interval
distances that are close to the most appropriate ones tend to have similar vote
numbers. This has motivated me to explore further the votes obtained from
different assumed LWs and interval distances. The vote results for Fig. 3-5(b) at -
0.5° were plotted into contour maps and three-dimensional figures shown in the
following section.

3.5.2. Evaluation by vote distribution

Upon analyzing the measurement results of approximately 200 patterns,
no single index could fully reflect the overall characteristics of the patterns was
observed. However, several indexes that captured the specific aspects of the
pattern's features were identified. The following discussion presents a selection of
analysis results that provide insights into the pattern's characteristics.
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Figure 3-8  (a) Contour plot illustrates the distribution of votes for different
assumed LW and interval distances with a yellow-red color bar shown on the right.
(b) Fitting result for the vote distribution (a) with a green-blue color bar on the
right. (¢) 3D plot of (a). (d) 3D plot of (b) overlapped with (c). The original SEM

image is shown in Fig. 3-6(a).

The accumulated vote distribution is presented in Fig. 3-8(a) for various
combinations of LW and interval distance with interval distance on the horizontal
axis and LW on the vertical axis with the optimal 67,, and p;, i.e., two-
dimensional vote distribution L,(w,d) = L(w, d, 8%,m, pg). The peak coordinates
of the vote distribution correspond to the measured LW and interval distance

obtained from the SEM image. The LW and interval distance of the SEM image
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in Fig. 3-4(a) were determined to be 52 nm and 90 nm, respectively, based on the
combination that received the highest number of votes [the peak in Fig. 3-8(a)].
This vote distribution map is an example indicating the stability of the interval
distance. More specifically, the interval distance was found to be consistent at a
value of twice the HP, independently of LW. From the perspective of the
accumulation process of votes, when the interval distance is set to the most suitable
width, the pixels on the left edge of all line patterns can consistently be
accumulated. Consequently, the votes at the interval distance of twice the HP
experience a significant increase. On the other hand, while an appropriate LW
ensures the accumulation of edge pixels for the first line pattern, it may not
guarantee the same for subsequent lines. Thus, in comparison to LW, variations in
the interval distance provide information about the outline of the pattern's
characteristics. Based on the stability of the interval distance, it was considered as
a feature in the evaluation of the vote distribution. The distribution was fitted using
a specific distribution, which is defined as

fix)=A (exp (— (x;:£)2)> (exp (— %) + b) +c,

y

[y fomer f (o dxdy = 1 (3-5)
where A4 represents the amplitude, x and y denote the pixel coordinates, xo and yo
denote the coordinates of the peak that has the highest number of votes in the vote
distribution plane, and b and ¢ are constants. The measured range of interval
distance and LW are denoted by Xmax, Xmin, Ymax, and ymin, respectively. The standard
deviations of the vote distribution of interval distance and LW were represented
by ox and gy. The constant ¢ contributes to the whole distribution. Constant b
contributes to the interval distance distribution. The integral of the Gaussian
function was normalized to 1. Therefore, the constant ¢ was normalized by
dividing it by the sum of the total votes. The fitting results are depicted in Figs. 3-
8(b) and (d). Another index is defined as below.

Opote = 4/ of + 0_3% (3-6)

The value of ovote Was derived based on ox and ay. The evaluation of the
vote distribution was based on ox, gy, gvote, and normalized constant ¢ which is

denoted by Cyote. The original distribution was well fitted by Eq. (3-5) as shown in
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Fig. 3-8(d). By employing this approach, ox and oy were measured to be 0.84 and
1.47 nm, respectively. The ayoe of the whole distribution was 1.70 nm. To further
analyze the characteristics of the vote distribution and describe the defects in terms
of interval distance stability, the vote distribution map was horizontally divided
into two halves at the peak and then concatenated with its mirror image. This
process is illustrated in Figs. 3-9(a) and (c).

Distribution above 120 Fitting of above 120
20 105 20 106
; 90
10 %0 10
75 75
. 60 0 60
45 45
-10 -10
30 30
-20 15 -0 15
0 85 90 95 0

85 90 95
Interval distance (pixel) Interval dlstance (pixel)

(a)

Distance from peak (pixel)
o
Votes
Distance from peak (pixel)
Votes

Distribution below

120 Fitting of below 120
_ -20 105 - 105
2 2
2 4 90 a 90
4 4
3 + 75 s 75
8 + 45 3 45
g 10 5
2 30 2 30
a a
20 15 15
85 % % 0 0
Interval distance (pixel) Interval dlstance (plxel
(c) (d)

Figure 3-9  Counter plots of vote distributions. The upper half of (a) above the
dashed line displays the vote distribution above the peak of Fig. 3-8(a). The lower
half is the mirror image of the upper half. The fitting result to (a) was presented in
(b). The lower half of (c) below the dashed line is the vote distribution below the
peak of Fig. 3-8(a). The lower half'is the mirror image of the upper half. The fitting
result to (c) was presented in (d). Note that the coordinates of mirror images were

negative.
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The vote distribution above the peak of Fig. 3-8(a) was reflected across
the horizontal dashed line and combined with the original distribution to generate
Fig. 3-9(a). Similarly, the vote distribution below the peak was reflected across the
dashed line and combined with the original to create Fig. 3-9(c). The above and
below distributions were separately fitted by Eq. (3-5). The fitting results for the
distributions in Figs. 3-9(a) and (¢) are shown in Figs. 3-9(b) and (d), respectively.
Since the image was divided in half based on the LW, the standard deviation in the
LW direction (y-axis) could not accurately represent the above and below vote
distribution. The distribution above corresponds to the range of LW larger than HP.
It reflects variations in defects outside the line, which are typically caused by over-
dissolution. On the other hand, the distribution below corresponds to the range of
LW smaller than HP. It reflects variations in defects within the line, which are

typically caused by incomplete dissolution.

The standard deviation on the interval distance direction (x-axis) was
denoted as davove x and owelow x for the distributions above and below the peak,
respectively. Similarly to ox, a small value of gabove x O Obelow x indicates a pattern
with few defects. According to the fitting results, gabove x and ovelow x were 0.82 and
0.88 nm for the pattern with 45 nm HP, exposed to 272 pC/cm? EB, respectively.
The constant ¢ of the above and below distributions, denoted as Cabove and Chelow
were 1.76 and 1.81, respectively. The result of subtraction Capove from Coelow Was
0.06.

Similarly, the vote distribution was also divided into left and right halves.
The standard deviations in the LW direction (y-axis) were denoted as aier. y and
oright y for the distributions on the left and right of the peak, respectively. The
variation along LW direction was computed in the same manner as the interval
distance directions. For the pattern with a 45 nm HP, exposed with a dose of 272
uC/cm?, the fitting results for oien_y and ovighe y were 1.67 and 1.04 nm, respectively.
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Figure 3-10  Standard deviations and Chelow-Cabove 0f L/S patterns with 45 nm HP. (a)
Ovote, Ox, and oy for the full vote distribution. (b) gavove x for the above half and
Obelow x for the below half on the interval distance direction. (¢) ot y for the left

half and aiignt y for the right half on the LW direction. (d) Coetow-Cabove-

Figure 3-10 displays the evaluation indexes, which reveal features of the
patterns. In this study, the defected or deformed patterns typically have gyore larger
than 2.5 nm. The ovore 1s mainly affected by oy that indicates the variation of LW.
The variation in the interval distance is represented by ox shown in Fig. 3-10(a) by
green dots. ox for all samples with 45 nm HP was approximately 1 nm, which
corresponds to the findings in Fig. 3-7(a) where the interval distance remained
stable even though the LW increased. The patterns having ox larger than 1 nm are
considered to be deformed. Following ox, dabove x and ovelow x for fine patterns were
also found to be approximately 1 nm as shown in Fig. 3-10(b). It was observed that

patterns with a difference between cabove x and ovelow x are larger than 1 nm indicate
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a deformed pattern without a clear interval distance. The variation of LW is
represented by oy shown in Fig. 3-10(a) by dark purple dots. Poor patterns
generally lead to high gy value. Similarly to gy, the oright y and aier: y tend to be small
in fine patterns. However, some deformed patterns were found to have small ovote
values. This is because the constant ¢ in Eq. (3-5) is related to the disordered vote
distribution. To be exact, due to the expansion of the lines, the edges are far from
their original position. The pixels composed of such edges are also counted as a
vote in Hough space. Consequently, the accumulated votes are spread out rather
than concentrated within a specific interval distance and LW. The spread vote
distribution increases Cyote to account for this wide distribution. Hence, further
investigation was conducted on the constant c. It was discovered that the difference
between Cavove and Chelow Shows a significant correlation with pattern defectiveness.
Figure 3-10(d) illustrates that fine patterns generally exhibit similar values for
Cavove and Coelow. In summary, this method allows for the assessment of resist
pattern defects based on several effective indexes. It should be noted that the
threshold used to differentiate between fine and defective patterns in this case is
specific to the patterns in this study and may differ for other patterns. First, in this
case, when the difference in edge pixel count between the real pattern and the ideal
pattern is greater than 50, the pattern is considered to be defective. Second, when
the measured interval distances deviate larger than 1 nm from twice HP, the pattern
is considered deformed. Third, when the ovore 1s larger than 2.5 nm, the pattern is
defected, especially by bridges between lines. Fourth, when ox, Gabove x and gvelow x
are greater than 1 nm, the pattern is regarded as having significant defects that
cause the pattern deformation. Finally, the closer the values of Cabove and Coelow are
to each other, the better the pattern quality.

3.5.3. Application for chemical parameter estimation

One of the applications of this method and evaluation criteria is to compare
defected patterns with simulation results. This allows for the evaluation method to
be used for the discussion of chemical parameters included in the simulation model

with the criteria.
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Figure 3-11 (a) SEM image of L/S pattern with multiple bridges in the lines. (b)
Preprocessed SEM image of (a). (c) Enlarged Hough space of (b). HP was 45 nm.
The exposure dose was 192 nC/cm?. In (c), the labeled spaces correspond to the

labeled spaces in (b).

Figure 3-11(a) depicts an SEM image of a resist L/S pattern with 45 nm
HP that was exposed to EB radiation at a dose of 192 uC/cm?. The filtered image
is shown in Fig. 3-11(b). The pattern contains 10 pitches, which results in 20 edge
lines after cropping. Figure 3-11(c) displays an enlarged version of the Hough
space, which was calculated based on Fig. 3-11(b) and is presented in Fig. 3-11(b).
There are 19 spaces within 20 edges, including both the lines and spaces in the L/S
pattern. The Ist, 2nd, and 3rd spaces, as well as the 17th, 18th, and 19th, are labeled
as examples. These spaces in Fig. 3-11(b) correspond to the intervals between
overlapped points that are labeled in the same manner in Fig. 3-11(c). Bridges are
clearly visible at the 3rd, 17th, and 19th spaces, and the corresponding intervals in
the Hough space show the same votes. In contrast, since there are no bridges in the
Ist, 2nd, and 18th spaces, there are no votes in the corresponding intervals. As a
result, the vote distribution for the pattern with defects is different from the ones



without defects. The vote distribution [Fig. 3-13(a)] was calculated and compared

with the simulation results. All the measured results were summarized in Table 3-
I1.

HP: 45 nm; Dose: 160 uC/cm? Filtered image

200 400 600 800 1000 1200 200 400 600 800 1000 1200
(a) (b)

Hough space

_ -1000
Input image

-500

p (pixel)

500

1000

(c) (d)

Figure 3-12  (a) SEM image of a resist L/S pattern with 45 nm HP and 160 uC/cm?
exposure dose. (b) The filtered image resulting from the application of a LoG filter
to image (a), in which the edges of pitches were shown in red. (c) A cropped
version of (b), in which the residual blank area surrounding the image and the top
and bottom edges of the pitches have been removed. (d) Hough space of the
filtered image in (a). The Hough transformation maps the pixel coordinates of an
image to a parameter space with the left-top as the origin, where the degree 6 is

represented on the horizontal axis and the distance p is on the vertical axis.

In a similar way, the pattern in Fig.3-12 was measured, which is the same
image as the picture in Fig. 3-6(c). The LW and interval distance for Fig. 3-12(c)
were measured to be 43 and 90 nm, respectively.
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Figure 3-13 (a) Preprocessed image of Fig. 10(a). (b) Vote distribution
corresponding to (a). (c) Prepocessed image of the latent image simulated with the
effective reaction radius of 0.06 nm. (d) Vote distribution corresponding to (c). (e)
Prepocessed image of the latent image simulated with the effective reaction radius

of 0.16 nm. (f) Vote distribution corresponding to ().

The resist patterns were simulated by a resist model, into which various
chemical parameters described in Simulation section were incorporated. This
approach made it possible to examine how the changes in these parameters affected
the shape of the patterns, by comparing the simulation and experimental results. In
this study, the effect of R, on the resist pattern by simulating resist patterns with
different values of R, was investigated. Figures 3-13(c) and (e) show the simulation
results of resist pattern edges in white pixels when the values of R, were 0.06 and
0.16 nm, respectively. The resist patterns were calculated based on the distribution
of the concentration of the protected units of the polymer. In order to analyze the
LW, interval distance, and defectivities of these two patterns, they were subjected
to Hough transform followed by the vote distribution analysis. The vote
distributions of the simulated resist patterns are shown in Figs. 3-13(d) and ().
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Table 3-III. Evaluation results of SEM and simulated images.

Dose 192 uC/em? SEM R, = 0.06 nm R, =0.16 nm
HP 45 nm

Interval distance (nm) 90 90 90

LW (nm) 47 27 44

Ovote (NM) 2.81 2.76 0.98

Oabove x (M) 0.61 0.60 0.43

Obelow x (M) 0.63 0.68 0.44

Olefi y (nm) 2.80 2.72 1.12

Oright y (M) 2.51 2.56 0.68

Chelow - Cabove -0.52 -4.15 -1.15

Table 3-II1 shows that the interval distance remains geometrically stable
regardless of changes in LW or o. Simulation results demonstrated that when R,
was 0.16 nm, the simulated LW value approximately agrred with the actual LW
(SEM image), which was measured to be 47 nm. When R, was 0.06 nm, the LW
of the pattern was smaller than the HP. This means the pattern was under-
development. Conversely, when R, was 0.06 nm, the simulated ovote, Gavove x,
Obelow x, Oleft y and aright y were closer to the SEM image. For Coelow-Cabove, the value
calculated with low R, was far from the SEM result, while a higher R, has a closer
value. These results indicated that the defects inside of the lines [Fig. 3-13(a)] were
reproduced by lower R, and the defectivity of SEM lay between R, values of 0.06
nm and 0.16 nm. Although the defectivity was partially reproduced through the
simulation of sensitization and PEB processes, the LW was not able to be

reproduced by this mechanism.

Based on experimental SEM data, it was observed that bridging can occur
even when LW was larger than HP. On the other hand, the simulations based on
the reaction machanism of CARs were not able to reproduce simultaneously LW
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and defects. These observations indicate that factors beyond the concentration of
protection units on the polymer's side chain have a significant impact on the
fidelity of the latent pattern and cannot be ignored. Since the development kinetics
parameters are not fully incorporated into the simulation system, the development
process is considered to have a significant impact on the defect formation. The
modeling of dissolution kinetics is necessary for a more accurate estimation of

chemical information that can reproduce the defect formation.

3.6 Conclusion

An image recognition technique was utilized to establish a new
measurement method for patterns with defects. Unlike the traditional methods that
evaluate patterns pitch by pitch, by converting the filtered image into Hough space,
the LW and the interval distance of the whole resist pattern can be determined. It
was found that the number of votes was high when the interval distance was twice
the HP, even when the LW changed. This approach allowed for the quantitative
assessment of severely defected pattern, and is applicable to the deformed pattern

with further analyzation towards their vote distribution.

To utilize the defectivity information, this method was employed to
estimate the R, of 54.6 mol% t-Boc-protected PHS, which ranged from 0.06 to
0.16 nm. However, the distribution of protecting unit concentration alone could
not precisely reproduce the resist patterns, including both LW and the formation
of defects simultaneously. Specifically, when the LW was consistent, the defects
did not match, and vice versa. As a result, the study concluded that a dissolution
mechanism was necessary to achieve more accurate simulation that closely aligned

with the experimental findings for patterns with defects.
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Chapter 4. Practical application

4.1 Introduction

New resists, such as metal-containing resists and negative-tone
development (NTD) resists, are being developed to meet the demands for lower
dose consumption and reduced pattern defects in EUV lithography. Organic
developers are primarily used for these resists. On the other hand, standard aqueous
developers have reached their limitations as the chemical properties of the resists
evolved. These requirements make the exploration of new developer possibilities
necessary, making the evaluation of developers critical to ensure optimal
performance of the resist patterns. In Chapter 2, a simulation model was built to
reproduce QCM charts, including frequency changes and impedance changes, to
extract the features of developers. The impedance change, in particular, offers
insights into the viscosity changes during the development process. To further
understand the relationships among these feature values and how they affect the
actual resist patterns, L/S patterns were drawn with electron beams (EB) at
different doses and developed using various developers. This study utilized
tetramethylammonium hydroxide (TMAH), butyltrimethylammonium hydroxide
(BTMAH), ethyltrimethylammonium hydroxide (ETMAH), and
propyltrimethylammonium hydroxide (PTMAH) as developers. In Chapter 3, an
automatic evaluation method based on Hough transform was developed to analyze
L/S pattern images captured by scanning electron microscope (SEM). This method
was employed in the current study to extract the SEM image feature values. A
machine learning method, clustering was used to classify the SEM images based
on the SEM features. By comparing these feature values with the reproduced QCM
chart data, which highlights the developers' properties, these analyses provided
valuable insights into the effectiveness of different developers in processing the

resists.
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4.2 Methods

The primary method used in this chapter is regression analysis to investigate
the correlation between developers and pattern defects. To establish the model,
both features and targets are required. For the features, the electron beam (EB)
dose and designed pattern pitches were included. Additionally, features of the
developers were also incorporated. The developer features were derived from the
parameters of the stratified polymer dissolution model, a simulation framework
developed to reproduce the frequency and impedance change charts measured by
QCM. For the target in the regression analysis, SEM images were analyzed using
the Hough transform method, as also described in Chapter 3.

SEM images of L/S patterns were used in this chapter [Fig. 4-1(a)]. The L/S
ratio was 1:3, and the patterns were drawn using electron beams with an
accelerating voltage of 150 kV and a probe current of 8.0 pA. The exposure doses
ranged from 310 to 427 uC/cm?.The SEM images were first processed using a
Laplacian of Gaussian (LoG) filter to enhance edge detection [Fig. 4-1(b)]. Pixels
corresponding to line edges were extracted to measure pattern defects and
roughness. The filtered images were then analyzed using the Hough transform
method established in Chapter 3. Each pixel of the line edges was transformed into
a vote in Hough space. By accumulating these votes and fitting their distribution
[Fig. 4-1(d)] with Gaussian-based function, the stochastically generated defects or
roughness on the line patterns were quantified into a single value, which is the
standard deviation of the Gaussian function fitting plane denoted as ovote [Fig. 4-
I(e)]. This quantified value was subsequently used as the target variable in
regression analysis to investigate the relationship between developer features and
pattern defects.
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Figure 4-1 (a) SEM image of the L/S pattern. (b) Filtered SEM image obtained
using a LoG filter. (¢) Hough transform applied to (b) as input. (d) The orange-red
plane illustrates the accumulation of votes in Hough space at 8 = 0, corresponding
to the vertical direction of the filtered image. () The blue-green plane represents

the fitting result.

For the simulation, polymer dissolution was modeled using SPDM
established in chapter 2. The dynamics of the three components—polymer, water,
and alkali—were simulated using the diffusion equation and the coordinate
perpendicular to the QCM substrate surface. The calculation used a cell length of
5 nm.

The features and target variables described above were analyzed by the least
squares and lasso regressions. 80% of the data was used for training and 20% of
the data was used for testing. The error functions of least squares regression (£is),
and lasso regression (Elasso) are expressed in Egs. (4-1) and (4-2), respectively

Els = thzriin{ytrain,n - f(xtrain,n)}2 (4'1)

Ntrain 2
Elasso = Znt=1 {ytrain,n - f(xtrain,n)} + aZ?:lllwil D (4'2)

where Niain, Virain, Xtrainn, and f{Xwain,n) are the number of training data, the n-th

value of ovore used as a training data, the n-th variable set, and the value calculated
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using the hypothesis function at the n-th variable set. The w; are the feature weights
included in the hypothesis function f{Xwainn) used as coefficients of terms
composing the variable set. To suppress overfitting, the regularization term, are
added to Eis in Eq. (4-1). The hyperparameter a is used to adjust the weight of the
Manhattan norm (/1 norm) in Eq. (4-2). Normalization was used in this work to

scale features. The feature values were scaled into new values using

X= x:a; iCTC:in ’ (4-3)
where X, x, Xnin, and x,,x are the scaled feature values, the original feature
values, and the minimum and maximum values in the original feature values,
respectively. The root mean square error (RMSE) was used as the evaluation
function, which describes the distance between the predicted values and the target

variables achieved from experiments. It is defined as

ZgielSt{Ytest,n _f(xtest,n)}2

Ntest

RMSE = : (4-4)

where Niest, Veestn» and Xeestn are respectively the number of test data
respectively the number of test data, the nth target variable (in this context, gvote)
used as a test datum, and the nth explanatory variable set.

4.3 Results and discussion
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Figure 4-2  Images with varying exposure doses and designed line widths are
labeled with numbers ranging from 1 to 400. The evaluation results are classified
using color coding. Images with lower roughness (smaller ovote) are highlighted in
lighter colors, while those with more severe defects are represented in darker
colors. To validate the results, images numbered 51, 91, 131, 171, and 211 are
displayed. Note that the ovote Values presented in the table have been magnified by

a factor of 200 from their original values.

The target variables (ovote) Were obtained with the automatic evaluation of
SEM images. The displayed SEM images present the capability of the evaluation.
The magnified ovore of the images for the designed line width from 12 to 26 nm
were used for the following regression analysis. This indicates that even SEM
images with defects, such as image No. 91, can be utilized to provide valuable
insights in discussions about the correlation between developers and patterns.
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Figure 4-3 (a) RMSEs of validation set plotted against polynomial degree. (b)
Dependences of the number of feature values and RMSE of validation set on

hyperparameter o of lasso regression.

In the least squares regression, RMSEs of the training set at the 2nd
polynomial degree were smallest, which was 1.176. Therefore, the 2nd polynomial
degree was the most proper for the model. Based on these results, the regularization
term was o added, which means the lasso regression model was tested. The
difference in RMSE decreased when a decreased. On the other hand, the number
of feature values increased while a decreased. To maintain a low RMSE and have
fewer features at the same time, 10-2 was selected to be the best a value and the
number of polynomial features was 13.
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Figure 4-4  The fitting results of the lasso model. The experimental results and the
predicted values are plotted in dots and dash lines, respectively. (a) ovore Was
plotted against the exposure dose. Different colors represent different designed
line widths. (b) ovoie Was plotted against the designed line widths. Different

colors represent different exposure dose.
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The lasso regression model, demonstrated in Fig. 4-4, highlights the
model's ability to account for defects. Further analysis revealed that the most
influential features in the model were line width and dose. In terms of developer
characteristics, the most significant factors were the extent to which residual
polymers affected the dissolution rate and the speed at which the resist near the

substrate.

4.4 Conclusion

This practical application introduces a novel quantitative method to explore
the correlation between developers and resist patterns. The simulation of
dissolution kinetics generates the feature variables, describing developers not
through traditional chemical properties but by capturing the mutual interaction

between the solute resist and the solvent developer.

Additionally, the evaluation of SEM images using the Hough transform
method allows the inclusion of severely defected resist patterns in the analysis. To
investigate the relationship between the feature and target variables, regression
analysis was employed. This approach identified key parameters that could
significantly influence the generation of defects.
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Concluding Remarks

This doctoral dissertation presents a data-driven approach to investigate
chemically amplified resists (CARs) and their compatible developers used in the
lithography process. Machine learning serves as a powerful tool to analyze the
correlations between material/process parameters and performance metrics.
Accordingly, key variables related to materials and processes were systematically
extracted and analyzed.

The lithographic process involving CARs includes spin coating, post-
applied baking (PAB), exposure, post-exposure baking (PEB), and development.
The resulting resist patterns were inspected using scanning electron microscopy
(SEM). This study focused on analyzing PEB and development process parameters,
as well as employing image recognition techniques on SEM inspection results.

Chapter 1 explores the effective reaction radius (R,) of the deprotection
reaction, a critical material descriptor that influences PEB time and line-edge
roughness (LER) formation. A methodology was developed to estimate material
parameters for CARs. The R, of poly(4-hydroxystyrene) (PHS) with 54.6 mol%
tert-butoxycarbonyl (#-Boc) protection was estimated using both experimental and
simulation data. In addition, the dissolution threshold (Cw) for 2.38 wt%
tetramethylammonium hydroxide (TMAH) developer was determined. Electron
beam (EB) resist patterns under different HPs and doses conditions were fabricated
and analyzed using image processing techniques. The acid reaction-diffusion
model was employed to correlate the simulation results with experimental results,
yielding an estimated Rp of 0.05-0.08 nm and an Cuw, of approximately 1.3—1.6 nm™.
Bayesian optimization (BO) was conducted to decrease the iteration number.

Chapter 2 introduces the Stratified Polymer Dissolution Model (SPDM), a
diffusion-based model that successfully replicated quartz crystal microbalance
(QCM) data and provided physically meaningful descriptors for machine learning.
The model captures the layered dissolution kinetics, showing that variation in the
mass loss profile leads to significant differences in local viscosity near the
dissolution front. This insight is critical to understanding developer—resist
interactions. SPDM also quantifies key dissolution characteristics of various
polymers and developers, enhancing the physical interpretability of the process.
Experimental observations using dynamic light scattering (DLS) further identified
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hydrodynamic radius (Ru) of the polymers at static state, offering insights into
polymer dissolution kinetics.

Chapter 3 proposes a novel pattern analysis method using the Hough
transform. Unlike conventional approaches that measure individual lines, this
method enables automatic quantification of entire line-and-space (L/S) resist
patterns. Defectivity indices of those severe defected patterns can also be extracted
systematically. These evaluation metrics can then be used as target outputs for
simulation model refinement and machine learning analysis to identify chemical
factors affecting pattern fidelity. Another ML model, hierarchical classification
was also tried to classify the line pattern and space pattern in an L/S pattern. This
method is applicable for clear patterns with few defects.

Finally, the practical application demonstrated how the correlation was
analyzed with ML method, regression analysis of correlation between different
developers and final patterns. Note that the model is still under adjustment based

on the new insights of the lithographic processes and materials.
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