

Title	Studies on Enantioselective Catalysis and Chiral Recognition Induced by C3-Symmetric Chiral Cage-Shaped Phosphorus Compounds
Author(s)	Liu, Xiao
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103206
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (LIU XIAO)

Title

Studies on Enantioselective Catalysis and Chiral Recognition Induced by C_3 -Symmetric Chiral Cage-Shaped Phosphorus Compounds
(C_3 対称キラルカゴ型リン化合物によるエナンチオ選択的触媒およびそのキラル認識能に関する研究)

Abstract of Thesis

Since the landmark introduction of BINAP-type chiral phosphine ligands for asymmetric hydrogenation, chiral organophosphorus species have become fundamental in the realm of asymmetric synthesis, enabling high enantioselectivity in catalytic transformations. Phosphorus(III) species, such as chiral phosphines and phosphites, predominantly act as chiral ligands coordinating to transition metals. In contrast, phosphorus(V) compounds—such as phosphates and chiral phosphoric acids—typically operate as Lewis bases or Brønsted acids, functioning as organocatalysts. However, it can be observed that a large number of chiral phosphorus compounds possess C_2 -symmetric frameworks, and they are still widely employed in recent studies on asymmetric catalysis. The well-established research strategies still have concentrated on modifying existing C_2 -symmetric frameworks, whereas investigations into chiral phosphorus compounds with higher symmetry such as C_3 -symmetric remain insufficient. In the research group I belong to, a variety of cage-shaped Lewis acid compounds featuring C_3 -symmetric have been developed. With the controllable C_3 -symmetric cage-shaped skeleton, cage-shaped borate and aluminum complexes exhibit diverse functionalities on fields of chemoselectivity reaction and tuning the Lewis acidity. Driven by the desire to overcome the structural in chiral phosphorus compounds, and inspired by the promising progress of C_3 -symmetric Lewis acid compounds for catalytic applications, this study seeks to explore phosphorus-centered Lewis base that incorporate C_3 -symmetric chiral cage-shaped frameworks.

In Chapter 1, synthetic methods for constructing two types of C_3 -symmetric chiral cage-shaped phosphites bearing three homochiral binaphthyl units were established. Experimental and theoretical studies demonstrated that the Lewis basicity and C_3 -symmetric chiral environment could be modulated by the tethered groups (C–H or Si–Me) within the cage-shaped framework. Variations in the chiral environment of each phosphite led to differences in reactivity and enantioselectivity in asymmetric Rh-catalyzed conjugate addition reactions. These C_3 -symmetric phosphite ligands effectively promoted the reaction, achieving excellent enantioselectivity and enabling the synthesis of valuable chiral pharmaceutical intermediates.

In Chapter 2, two C_3 -symmetric chiral cage-shaped phosphates were synthesized and employed as Lewis basic organocatalysts in asymmetric iodolactonization reactions. These catalysts exhibited complementary reactivity and enantioselectivity: the C–H tethered phosphate was more effective for the formation of five-membered lactones, whereas the Si–Me tethered analogue was better suited for six-membered lactones. This structural tuning enabled control over the chiral environment and contributed to broadening the substrate scope of asymmetric iodolactonization.

In Chapter 3, the development of a new chiral shift reagent for measuring the enantiopurity of chiral amino acids and carboxylic acids was accomplished using C_3 -symmetric chiral cage-shaped phosphates. The NMR experimental results of acid substrates suggest the importance of π – π interactions and hydrogen bonding interactions with C–H tethered chiral cage-shaped phosphates. Further examination of other chiral phosphorus compounds as chiral shift reagents revealed that the ring current effect from the homochiral binaphthyl-containing cage-shaped molecule plays an important role in this system.

As mentioned above, this study demonstrates that C_3 -symmetric chiral cage-shaped phosphorus compounds serve as effective catalysts or reagents for both asymmetric catalysis and chiral recognition. It highlights the promising utility C_3 -symmetric of in developing highly enantioselective catalytic systems and precise chiral recognition technologies, owing to their controllable chiral environments, and structural rigidity derived from C_3 -symmetric cage-shaped framework.

論文審査の結果の要旨及び担当者

氏名 (LIU XIAO)		
論文審査担当者	(職)	氏名
	主査 教授	安田 誠
	副査 教授	森 直
	副査 教授	剣 隼人
	副査 教授	鳶巣 守
	副査 教授	木田 敏之
	副査 教授	松崎 典弥
	副査 教授	正岡 重行
	副査 教授	平野 康次
	副査 教授	菊地 和也
	副査 教授	家 裕隆
	副査 教授	藤塚 守

論文審査の結果の要旨

本論文において学位申請者は、 C_3 対称性を有するキラルカゴ型構造を特徴とした有機リン化合物の設計・合成を行い、それらを不斉触媒やキラル認識試薬として展開することにより、高選択的な結合形成反応および分子認識手法の開発に取り組んでいる。

第一章では、三つの同一キラルビナフチル骨格を持つ C_3 対称キラルカゴ型亜リン酸エステル2種の合成法を確立し、理論計算および不斉反応への応用を通じて、そのルイス塩基性およびキラル環境の調整可能性を明らかにしている。特に、カゴ構造内のC-HまたはSi-Me架橋基の違いが電子的・立体的環境に大きな影響を与えることを示し、ロジウム触媒による不斉共役付加反応において、それぞれ異なる反応性・選択性を示すことを見出している。得られた亜リン酸エステル配位子は、高いエナンチオ選択性を達成し、有用なキラル医薬中間体である(3*S,4R*)-パロキセチンの合成に成功している。

第二章では、同様に C_3 対称性を有するキラルカゴ型リン酸エステル2種を新たに設計・合成し、それらをルイス塩基性分子触媒として不斉ヨードラクトン化反応に応用している。C-H架橋型およびSi-Me架橋型触媒の構造差により、五員環と六員環ラクトンにおける反応選択性に顕著な違いが見られ、それぞれに適した触媒構造を用いることで高い収率およびエナンチオ選択性を実現している。これにより、分子設計による立体環境の精密制御が不斉反応の基質適用範囲の拡大に寄与することを明確に示している。

第三章では、 C_3 対称カゴ型リン酸エステルをキラルシフト試薬として応用し、カルボン酸およびアミノ酸のエナンチオマー比のNMRによる簡便かつ高精度な評価法を確立している。実験結果からは、 π - π 相互作用および水素結合の寄与が分離能に重要であることが示されており、特にC-H架橋型リン酸エステルにおいて顕著なキラル識別能が得られている。また、他の亜リン酸エステル・リン酸エステル化合物との比較により、ビナフチル基由来の環電流効果も分離能に寄与していることを示唆している。

以上のように、本論文では C_3 対称性を有するカゴ型有機リン化合物の設計・合成法の確立と、それらを用いた不斉反応およびキラル認識系の開発において優れた成果を挙げている。特に、カゴ型構造がもたらす剛直な骨格と制御可能なキラル環境を活用することで、多様な分子設計と機能拡張が可能であることを実証している点は、新たな不斉触媒設計および高精度キラル分析法の確立に大きく貢献するものである。

よって本論文は博士論文として価値あるものと認める。