

Title	Development of the Preparation Methods of Biopolymer-Stabilized Metal Nanoparticles and Their Properties
Author(s)	Assan, Nazgul
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103208
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (ASSAN Nazgul)	
Title	Development of the Preparation Methods of Biopolymer-Stabilized Metal Nanoparticles and Their Properties (バイオポリマーで安定化された金属ナノ粒子の調製法の開発とその機能)
<p>Metal nanoparticles (NPs), particularly gold (Au) and platinum (Pt), exhibit unique size-dependent properties that render them valuable in various fields, including catalysis, biomedicine, and materials engineering. However, conventional preparation methods often rely on harsh chemicals and reaction conditions, which limit their applicability, especially when incorporating NPs into delicate biopolymer matrices, such as chitosan, gelatin, or collagen. This doctoral research addresses these challenges by developing three environmentally friendly and mild synthetic protocols for the preparation of biopolymer-stabilized metal nanoparticles, with a focus on size control, preservation of structural integrity, and functional performance.</p> <p>Chapter 1 describes the development of a matrix-transfer method to synthesize size-controlled Au NPs [1.4–6.5 nm] stabilized on chitosan. Gold nanoparticles were initially generated within a polyvinylpyrrolidone (PVP) matrix via reduction and seed-growth techniques, followed by interfacial transfer into a chitosan matrix using a biphasic solvent system (CH_2Cl_2/2-PrOH and aqueous acetic acid). This approach effectively preserved the nanoparticle size and prevented aggregation. Catalytic evaluations for the homocoupling of phenylboronic acid demonstrated pronounced size-dependent activity and high selectivity, underscoring the importance of the biphasic solvent system, its volume ratio, and temperature control.</p> <p>Chapter 2 presents a green, surfactant-free method using pulsed laser ablation in liquid (PLAL) with the aid of a microchip laser (MCL) to generate Au NPs within gelatin and collagen matrices directly. This low-energy approach minimized thermal damage while yielding uniformly dispersed Au NPs [~2 nm in Collagen and ~4 nm in Gelatin, respectively]. Spectroscopic analysis confirmed preservation of the native secondary structure of the biopolymers, indicating excellent compatibility for biomedical applications. The process offers precise NP loading without the use of chemical reducing agents, making it suitable for drug delivery or imaging systems.</p> <p>Chapter 3 introduces a type I collagen hydrogel preloaded with metal salts (Au, Pt) that were irradiated using ^{60}Co γ-rays. Water radiolysis generated reactive species that simultaneously reduced the metal ions and enhanced crosslinking of the collagen network. The resulting metal nanocomposite gels exhibited significantly improved mechanical stiffness (up to 88 kPa) and reversible photothermal responsiveness. These materials combine structural robustness with stimulus sensitivity, making them promising candidates for sensors, actuators, or photothermal therapeutic platforms.</p> <p>In summary, this doctoral work presents three complementary and environmentally benign strategies for synthesizing metal nanoparticles within critical biopolymer matrices. Each method successfully achieved controlled nanoparticle size while preserving the complex architecture of the host biopolymer. The resulting nanocomposites demonstrated high potential in catalysis, biomedical engineering, and stimuli-responsive technologies. Overall, the research establishes sustainable and practical approaches for designing functional nanomaterials.</p>	

論文審査の結果の要旨及び担当者

氏名 (ASSAN Nazgul)		
論文審査担当者	(職)	氏名
	主査 (教授)	櫻井 英博
	副査 (教授)	藤内 謙光
	副査 (教授)	林 高史
	副査 (教授)	南方 聖司
	副査 (教授)	宇山 浩
	副査 (教授)	佐伯 昭紀
	副査 (教授)	中山 健一
	副査 (教授)	古澤 孝弘
	副査 (教授)	能木 雅也

論文審査の結果の要旨

金属ナノ粒子 (NPs)、特に金 (Au) や白金 (Pt) は、サイズ依存的な特性を有し、触媒、バイオ医療、材料工学などの幅広い分野で、それぞれのサイズに応じた様々な応用が展開されている。しかし、従来の調製法はしばしば強い化学薬品や過酷な反応条件に依存しており、キトサン、ゼラチン、コラーゲンといった繊細なバイオポリマーマトリックス用いる場合、バイオポリマーの変性を生じるなど、その調製法は限定しており、とりわけ、1nm 単位での精緻なサイズ制御方法はほぼ未開拓の分野である。ASSAN Nazgul 氏によって執筆されたこの博士論文では、金属ナノ粒子のサイズ制御、構造保持、および機能特性を両立させるため、環境に優しく穏やかな条件でのバイオポリマー安定化金属ナノ粒子合成法を、計 3 種類開発した報告であり、緒言、総括の他、本論 3 章で構成されている。

第 1 章では、高分子マトリックスから異なる高分子マトリックスへと金ナノ粒子を 2 相系溶媒で移送するという、新規な手法の開発について述べている。この新手法を “matrix transfer method” と命名し、本手法を用いて、キトサン上に安定化した金ナノ粒子を 1 nm サイズで (1.4-6.5 nm) 制御して調製することに初めて成功している。まず、ポリビニルピロリドン (PVP) マトリックス中で還元・種成長法によりサイズ選択的に金ナノ粒子を調製し、その後、二相系溶媒 (ジクロロメタン/2-プロパノールと酢酸水溶液) を介してキトサンマトリックスへ界面移送するが、このプロセスにおいて金ナノ粒子はサイズを保持し、凝集は見られない。本手法の開発により、キトサン保護金ナノ粒子を用いた触媒反応におけるサイズ依存性の研究が可能となり、フェニルボロン酸のホモカップリング反応による触媒評価では顕著なサイズ依存性と高選択性が確認されている。

第 2 章では、界面活性剤を用いず、パルスレーザー液中アブレーション (PLAL) とマイクロチップレーザー (MCL) を組み合わせて、ゼラチンおよびコラーゲンマトリックス中に直接金ナノ粒子を生成する環境調和型手法の開発について述べている。所属研究室によって開発されている MCL-PLAL 法により、低エネルギー照射により熱損傷を最小限に抑えつつ、均一分散した金ナノ粒子 (コラーゲン中約 2 nm、ゼラチン中約 4 nm) を得ることに成功している。円二色性スペクトル解析により、バイオポリマーの天然二次構造が保持されていることが確認され、生体医療応用への高い適合性が示唆されている。

第 3 章では、金属塩 (Au、Pt) を含浸させた I 型コラーゲンハイドロゲルを、 ^{60}Co γ 線で照射することにより、金属の還元とポリマーネットワークの架橋反応を同時に進行する手法について述べている。水の放射線分解により生成した反応種が金属イオンを還元すると同時にコラーゲンネットワークの架橋を促進し、その結果得られた金属ナノコンポジットゲルは、機械的剛性が最大 88 kPa まで向上し、可逆的な光熱応答性を示した。これらの材料は構造的な強靭さと刺激応答性を併せ持ち、センサー、アクチュエーター、光熱治療プラットフォームなどへの応用が期待される。

以上のように、本博士研究は、重要なバイオポリマーマトリックス中で金属ナノ粒子を合成するための、3 つの補

完的かつ環境調和型の戦略を提示している。いずれの手法も、用いるバイオポリマーの複雑な構造を保持しつつ、ナノ粒子サイズの制御に成功している。得られたナノコンポジットは、触媒、バイオメディカルエンジニアリング、刺激応答性材料分野で高い応用可能性を示している。本研究は、機能性ナノ材料の設計における持続可能で実用的なアプローチを確立するものである。これらの内容は、査読付きの国際的な論文誌に3報発表されている。

よって本論文は博士論文として価値あるものと認める。