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Fig. 1.1. Schematic view of warpage occurrence.
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Fig. 1.2. Classification of view of warpage causes.
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JEFE(X, ETFTWRO—FHFABBIL, MhGxIEMEIE 35, &b HMARRERELEED D
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AR, FZTARBTIE, REERELESMG T CE T IVEMLEERI L OMI A RZERIE
W XD EEMANT 24TV, A IEREEAE (3T D EIER U FEIZ OV THAEL, KD
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ML IZF6OSKEEIToRBICINE—XOEEG 2L, WHhiEDT-,

Table 2.1 Experimental conditions.

Rolled material Aluminum (A1050-H24)

Material dimensions [mm] 3.0t X 50" X 1250L

Work roll: 80
Roll diameters [mm]
Backup roll: 160

1. Top driven / Bottom idle
Drive mode
2. Top idle / Bottom driven

Reduction in thickness [%] 2,5,7,10, 15, 20, 30, 40
Rotation speed of WR [rpm] 4.0
Lubrication Dry

Rotary
encoder

Fig. 2.1. Schematic view of the single roll driven rolling experiment.
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Fig. 2.2. Warped strip shapes after single roll driven rolling.



Fig. 2.312, AEBRBERICBI2EERRL E X iR OBKREZ RS, JEERIR LI
B EMINELERBN D EHRE D THY, X (2.1) TEHLE, 22T, LIEX
(2.2) T, halT X (23) TEREN RSN D, RIZ~AEWRNERE, H, hidZh £ AH
WE, HRRETH D, ~AFWREERIIANJE TlIHitchcockd ~A Fr — LA (2.4)
S0 HWTHMH L,

r=14/hy (2.1)
lg =/R'(H-h) (2.2)
h, = (H+2h)/3 (2.3)
R' = (1 + CyP/AR)R, Cy = 16(1 —v?2)/(nE) (2.4)

£ 72, plEFig. 24P R T 25 X HICELEZORBRM K Y BRZ MM El LR
b5, Fig. 23T, KV WRFZEpZ WRFEERTHKILL TW5D,
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Fig. 2.3. Strip curvature change with the shape factor.

Fig. 2.4. Approximated radius of warped strip shape.
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DOHEHBAIZOWTHEZIT- =,

(1) WRJE®E

Fig. 2.5, m—# V —x=a—% CHI&E L7z ETWRESEREF ZR3, 7— &
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R L 7o TV D, i, WA 0A 7 B I I BRENA O T WRE 3 B A3 %90.3 sfHl o L T %
BN, THIEIWELEMOMAARIZL > TIAE—FOAN ML 7 BNEAKICHEINL, WRD
FIEEERNE T T2, Whwwd A X7 FRry7BETHoTLEEXLILD, Fig. 2.2%°
Fig. 2.3 CREli L 72 0 FERIZ 2 O WRJE 3R BE 23 JEE 4 72 R E CIEAE S 7= o &2 & o 3,
Z O DR S X5 mmAK TH Y, Fig. 220 5 C& 5 K HI24 EIK Y i3 2 51 L 72
JEIERICHRIEFICH N &, BIOYRHPICHERX Y BROEZRPBE IR -
ol L EBEL, RWETIEZ O AGALE R OIEE R RWELEL 5 O BITE|E L TH

2T

3 1.2
Q
o 1
@E 0.8
fag O'Z ——  Top:idle
5= O = Bottom : driven
Qc: 0.2 | —— Bottom WR target
B 0 1 ol 1 1 | | | | |
o 1 2 3 4 5 6 7 8 9 10

Time [sec.]

Fig. 2.5. Evolutions of WR peripheral speed.

(Top: idle/Bottom: driven)
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Fig. 2.6 (a) \cu—X U —x v a—& 2K 25 WRJEBHEONEME B EEEE TR LIZME
EJEIERR I & OBfR %, F£7-Fig 2.6 (b) & E TFTWRDRFEHERE L EEFIKLL & OBIR %
AT, 22T, BEEEIAX (2.5 oY, EWREEEVE TWREEEV;E D X% 5

HO(BEE)) MOWRBEHEV, TBRLIEZbDEERT D,

x=0Vr-Vs)/ Vi (2.5)

IRLDOMEY, FEEBRLEOHEMICHEY, ETWROEEE G KT S L 0NH5D
Frlo, BRI 228B T 2505 FMEBWROEEMEL TABEETHY, KERIC
BW TR N3 2BE (JE T H40%) TRBERNIL L Z18% L, HFEFHICKESRMEL R
S TW5D,

PLEORER I, FABRENEIE (XFEBRBWRN K & 7o 2 RHHERETH - T, Ok
THROEMIEVERBEERNERT L2 EBARERLVBEINT,
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(a) WR peripheral speed ratio
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(b) Differential speed ratio

Fig. 2.6 Relationship between WR peripheral speeds and the shape factor.

14



(2) et
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DFEHEREN DT IR END, EEBREN1.0% EH D & ETFAENTEE L, FEBE WRA
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Relative forward slip ratio
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(a) Forward slip ratio

30 -
20 r ,,EI’/
|| ,D’
§ 10 ¢ A
S [1 |-e= Top:driven
iy 0 r -0~ Bottom:driven
o
2 40 |
2
20 r
_30 | | |
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(b) Difference in forward slip ratio between top and bottom WRs

Fig. 2.7. Variation of forward slip ratio with the shape factor.
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WRBICL DM EEZ4T, FMBEBIELE IR T Z2RBADIS S - OTHREEZH S 2
L, KVBEDA D= ALIZTHONWTELZLITH,
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FEEITILE S NHE LTV DRI FEME 7 8% v, Table 221878 5 T kot
T O A B HJEIEFEAT A AT o 7o, RITSRMIZRTE CRBREIT o ET LV EMLEHEZHE L
TWb, a— ViR E Uiz, JERECTH D EWROJE X, EWRIELE N L2 23 BEE
TdHDH FTWRER MV 7 OE2%LL FIZEEST 5 F T, EFELEMT 7 v —8DIT k1T 5 # il
R LB (BB AR S OB E) L BRI R OEEQAR) 2MA T REE L, ®ELE,
B I T 1) D BE 56 43 FI 360, JEE 5 1) O %32 53 BIBUTERE SR 12 K - THEZR 5 2RBH T30
~120CH 5 BERGFHERITFIERBRTHUE LIS — O T Ao R FHEMXNE LT
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L L7,

Table 2.2 Analysis conditions.

Material thickness [mm] 3.0

Roll diameter [mm] Work roll: 80

Drive mode Top idle / Bottom driven

Reduction in thickness [%] 2,5,7,10, 15, 20, 30, 40
Rotation speed of driven WR [rpm] 4.0 [Bottom]
158.9 g 0%

Yield stress [MPa]
(& :Equivalent strain)

Friction coefficient 0.2,0.3,0.4
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Fig. 2.8. Comparison of curvature between experiments and calculations.

(Top: idle/Bottom: driven)
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Fig. 2.9. Comparison between experiments and calculations.
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(c) I'=2.50

Fig. 2.11. Equivalent strain rate distributions around the roll-bite. (symmetric conditions)
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(c) I'=2.50

Fig. 2.12. Equivalent strain rate distributions around the roll-bite.

(asymmetric conditions; Top: idle/Bottom: driven)
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(c) I'=2.50

Fig. 2.13. Principal shear strain rate distributions around the roll-bite. (symmetric conditions)
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(c) I'=2.50

Fig. 14. Principal shear strain rate distributions around the roll-bite.

(asymmetric conditions; Top: idle/Bottom: driven)
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Fig. 2.15. Evolution of material velocity along rolling direction at both surfaces.
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Fig. 2.17. Material velocity distributions along rolling direction around the roll-bite. ("= 2.50)
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— Contour of principal shear strain rate

(c) I'=12.50

Fig. 2.19. Shear stress 7y, distributions around the roll-bite. (symmetric conditions)
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— Contour of principal shear strain rate

(¢) I'=2.50

Fig. 2.20. Shear stress 7, distributions around the roll-bite.

(asymmetric conditions; Top: idle/Bottom: driven)
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Fig. 2.21. Shear stress acting on entry side of roll-bite and pre-deformation area.
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Fig. 2.22. Diffusion of shear stress acting on plane surface.

Fig. 2.23. Diffusion of shear stress acting on entry side of roll-bite and pre-deformation area.
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Table 3.1 Experimental conditions for the model rolling experiment.

Rolled material Aluminum (A1050-H24)
Material dimensions [mm] 3.0tX 50" X 1250L
Work roll: 80
Roll diameters [mm]
Backup roll: 160
Reduction in thickness [%] 2,5,7,10, 15, 20, 30, 40
Inclination angle [deg.] =8
Distances between the mill center and (a) 350
two guide rollers [mm] (b) 850
Diameters of guide rollers [mm] 20
Rotation speed of WR [rpm] 4.0
Lubrication Dry

Distance between mill
center and guide roller

T~
(a) 350 mm

(b) 850 mm

Fig. 3.1. Schematic view of the rolling experiment.
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Fig. 3.2. Approximated radius of Warped strip shape.
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I'=l4/hp (3.1)
lg=R'(H—h) (3.2)
h,, = (H + 2h)/3 (3.3)
R' = (14 CyP/AR)R, Cy = 16(1—v?)/(nE) (3.4)

—&- +8°
-+ -8°

ol
04 |
02 I l;f'
1]

02 P
04 !
0.6 F Og
0.8

Curvature R/p
o

Shape factor I”

Fig. 3.3. Strip curvature change with the shape factor.
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JERF & ETF WR EDSE HFMOMERBZEEEZERE L TWD,

Table 3.2 Analysis conditions.

Material thickness [mm] 3.0
Roll diameter [mm] Work roll: 80
Reduction in thickness [%] 2,5,7,10, 15, 20, 30, 40
(Shape factor [-]) (0.5.0.8,1.0, 1.2, 1.6, 1.9, 2.5, 3.1)
Inclination angle [deg.] -8
Distance between mill the center and
entry section of analytical region [mm] 30
Rotation speed of WR [rpm] 4.0
158.9 g 0-09

Yield stress [MPa]
(£ :Equivalent strain)

Friction coefficient 0.2
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Fig. 3.4. Comparison of curvature between experiments and calculations. (6 = -8°)
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Fig. 3.5. Comparison of rolling torque between experiments and calculations. (6 = -8°)
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Fig. 3.6. Comparison of curvature between experiments and calculations. (6 = -8°)
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Fig. 3.7. Evolution of friction shear stress at both surfaces. (8 = -8°)
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. 3.8. Evolution of material velocity along streamlines at both surfaces. (6 = -8°)
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Fig. 3.9. Distributions of equivalent strain rate around the roll-bite. (6 = -8°)
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f) I =3.1

Fig. 3.10. Distributions of shear stress 7y, around the roll-bite. (8 = -8°)
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Fig. 3.11. Variation of contact arc length with the shape factor. (6 = -8°)
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Fig. 3.12. Variation of entry-guide forces with the shape factor. (6 = -8°)
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Fig. 3.13. Variations of various angles around roll-bite entry with the shape factor. (6 = -8°)
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Fig. 3.14. Variations of curvature at entry and difference in entry points with the shape factor.

(0 =-8°)
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Sl L, Ml Lz,

Table 4.1 Experimental conditions for the model rolling experiment.

Rolled material Aluminum (A1050-H24)

Material dimensions [mm] 3.0t X50% X 1250t

Work roll: 80
Roll diameters [mm]
Backup roll: 160

1. Top driven / Bottom idle
Drive mode
2. Top idle / Bottom driven

Reduction in thickness [%] 2,5,7,10, 15, 20, 30, 40
Inclination angle [deg.] 8
Distances between mill center and (a) 350
two guide rollers [mm] (b) 850
Diameters of guide rollers [mm] 20
Rotation speed of WR [rpm] 4.0
Lubrication Dry
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Inclination
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Fig. 4.1. Schematic view of the rolling experiment.

Fig. 4.2. Approximated radius of Warped strip shape.
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Fig. 4.3. Strip curvature change with the shape factor.
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Fig. 4.4. Variation of differential speed ratio with the shape factor.

73



4. 3 WIBHEAREREIC L D IEXHELEHES

4. 3. 1 fRAT&MEF

MM FEM =2 — R D% HJvy, Table 4.2 (2 9 Rl i 0 EBR A 4 BT L2 b R I2 3
W, DRI O B E R IE AT 24T o 7o, WRIEHIMA S L, WR ¥-£81% 40 mm TI[H
ELl, EBRERENOX (44) THHSIREZ~AFEE — L FRIT 41.4~46.2 mm O HPH T
bV, FEEER~OZBIIREN L EZ LD, FHEHE WR O JE#HE I, FEBE) WR £ IE
My 3ERE) WR FERE bV 7 @ £2%LL FICEIET 5 £ T, ERFELEMIT 7 v —8D (T 1T
D PR FEAT AL B (BE Al BR a2 R OB B L IR R OB ELB) I x TWRERE L, RE
Lo, MENTEEIRO AL WmEICIE, | BHRE (EZLEFMAMKSS) BERICKTL2AME—F—
HA ROMNE, Tobbr—LXx vy Z7OHFLND 350 mm O EICHEINTED, Al
H—F—HA ROWME, TRLbBWELEM»SEMTHIEAR LT —A2 bOXE 2
HLTWD, rfE o nlE (m— X vy 7HL058 10 mm 7E) (213 A HE
(ZWoIr R oy & MR EIEER 77) DFFSN TR, TAMAOBLIRE—XA 2 ORI ®N
fRik S5, Z2C, WEIMOEFESERIL 60, JEIEJT A O BEHE oy HIBITEE SR X
o> Tk LR ICK3& RB AT 70~150, RB AT 30, HM<T 15 TH D, BERIG
NRNEFRRBRCTHE LB — O T RN o X EFEB Lz, HEMLM & WR H D2
— U EEREIL 0.2 2K E LT,

74



Table 4.2 Analysis conditions.

Material thickness [mm]

3.0

Roll diameter [mm]

Work roll: 80

Drive mode

1. Top driven / Bottom idle

2. Top idle / Bottom driven

Reduction in thickness [%]

(Shape factor [-])

2,5,7,10, 15, 20, 30, 40
(0.5,0.8,1.0, 1.2, 1.6, 1.9, 2.5, 3.1)

Inclination angle [deg.] -8
Distance between mill center and entry
section of analytical region [mm] 330
Rotation speed of WR [rpm] 4.0
158.9 g 0-06%

Yield stress [MPa]

(& :Equivalent strain)

Friction coefficient

0.2
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Fig. 4.5. Comparison of curvature between experiments and calculations. (6 = -8°)
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B, kb, EEFWE x Hm, WEFMEZy e LTRdd 5, IHPOAVEIELRB
A RofELY, ETFTRENTHFSIEAMEL XL TS, Fig. 4.6 83 X O Fig. 4.7 TR K
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HEEOEBITIZFEFETAMOTAEETCHDL L, T2bLHYBHEOTHEEDLEH
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78



=0.8

(a) I’

b)) I'=1.6

=2.5

(o) I

Fig. 4.6. Distributions of equivalent strain rate around the roll-bite.
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Fig. 4.7. Distributions of equivalent strain rate around the roll-bite.

(60 =-8°, Top : idle / Bottom : driven)
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Fig. 4.8. Evolution of material velocity along streamlines at both surfaces.

(60 =-8°, Top : driven / Bottom : idle)
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Fig. 4.9. Evolution of material velocity along streamlines at both surfaces.

(60 =-8°, Top : idle / Bottom : driven)

&3



ZAVEDY, Figs.4.6~49I2KSZ, HAMMBERVBIREDBEBRICONWTEET D, =
JEFEIREE I = 0.8 D&M T, TAMTORBITEREZMFICEST, ZIERALETHDS, RB
ARICBT2EAMHEOEPE T EmM2A &N, KEAETIETMO RB AR ZEMET
LHEAWE S Bl RB H AL WICERHEL, #HELEM O EEIZTEZA2E RB H BT
CHEENEML, RBHOICE W CTHEIEEMIE T HF MK D

JERETEIRIE F=1.6 D&M, EAME OB RBIZEE SMAICE ST, M UMEmERL TW
%, HEAMIMEOMAIZLY, EEMO RB AOZEAETHEAMEN FMO RB HO )

WL TEMICRES D720, WEEM O FmMoEEAEML, XY FmiE e
K+ 5%,

JESEFEIR I T=2.5 D54 TiE, AWK ORBIIMBI &I L0 2225, E WR BEH) 5
fETix, FTMoO RBAAAZERETL2EAMES LRICEZELLZZIC TEMAICIKEL, k
mMlo RB ARZERETL2EAUMTEEGML FTEMO RBHAKET S, 22k, FTmMl
iR E L, EmElo RB HRICKEET 5, LMo RB AR ZEM LT 58 AN
LEBREIN 52, RB HOIWIZEELTWARY, ZORE, TmAmEm®EL 2R, §EE
MiZ ERFmcKs, —F, F WREEEBISGM4TIX, EHEMO RB AL ZERE T DE AW
DN FEM AR REICEZEL, KL% EE Ml RBHAIWELTEY, H%EMLHM O Ll
DOFENEIM L, WELEMITTHFAICKS, EEMO RB ADZRAETHHEARRICS
W, B WRERENRMETIXE AW OEEN RIS 2502 L, T WRBRE) & CTIX
AR BRSNS B L LT, Hill X, ¥4 AOHLIARICBWT, WIELE, T HEHm
THREDEMREI EDOHIZEY, TROVBERRELEROICERT 25840 b0IE, T

DHBENBH LN OEETIFELHFAET LI LE, TRNVHEGELZHNTHALTEY
) ZoMmAICHK S E, TOEESFHFICTE W TR, WE & BEEFEMINE & L2 B 5
RFIZBWTHERZ D, E WR BB M4 TIX EEM o RB AAZER LT 58 AW 45°77 17
CEMBICAELEES, T WR BEEILM T 45° T MICERMNICEBELLTWVWERETH -
eEEZLND,
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() =2.5

Fig. 4.10. Distributions of shear stress z,, around the roll-bite.

(60 =-8°, Top : driven / Bottom : idle)
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(c)I =2.5

Fig. 4.11. Distributions of shear stress 7., around the roll-bite.

(60 =-8°, Top : idle / Bottom : driven)
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BHONILPER T 250 F TOMRELIZBIT DK FEHTOWT, Kl 5 CHELE
FBR B L OMIBIERRERMET 21TV, UTORKRER,
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EOHE WELEMOMIBEAEEIRY ZHCRETRE

5. 1 WEERMICIDIRY ZH~DF

Fo2BE~FAECEBALEINE COHR CIEHMMUMOLEMR TIZER L TERR, M
BHUIO ZALK FIZ O T EBRAITOMEN DD, BEMLKRETIE, BEUOHRRLTH
BRI S BRARBE X R A2 5KBTICHD72D, MEHIOK Y ~HT 2 FL5EIZONTHMK
RRRETH D,

MEHIOZRR F 2B T2 Ch70, BEOREFEFICEVTIE, HELEMELTH
WHONEREMITLT LM STV, HELEMICHW SN RMEICETIHELZ S
FAL 7&K % Table 5.1 107”3, BB L OMMICB T 28ME2 W FHHARELZ VR, 7S
TAI=U L, EHOVEZEFLRESNA TS, £, MBEO - THEF T 2T 4
VUERWERE LD D, KRS, BT T AT 4 vz on TR, BARMOMO B S
BT H2HMTHERINDZ ZENZVWEITHD, L, WIEEMOEM N RLD Z &
ICE DKV EEH~DEBIZONTIE, TEMICEEINTEHREFFAITZR S0,

Table 5.1 List of previous studies classified by rolled material

Rolled Steel
Lead Aluminum Copper Plasticine
material Hot Cold
Kennedy?®
Utsunomiya3!
Tanaka?¥ Jonhson?6:27)
Previous KT 00 Su’%7h Boxton??
BabaSS) [F] '% 30) J:ET, 83)
studies Nilson®* Li®? g 30
KB o8 Dewhurst*?
Yoshii’?
Knight’®

F2E~FABRCEBW TR LIEETAWMBEICESS KD BARBA B ET D &, HELEHM
DREMBPRZ2DZGHIIE, MTHEAOEERNTAMBEORKRICEELEX DL EEZLND,
TR n EE AW & ORI OWNT, %RED YSIE&ERERO 7 L ARIE % Xt
R LWBEEARERB 21T, FUMLEMHFIZBNT, n B/ S WS TIEHEM
ITHICEAWHERABRICIER SN D2, n ERAREWVERETIIHRICBE SRS 2D Z
E, FlnER/NSOVRAETITEABFEIREZBE@BT 505, n EN KRS WVRMAETEIRE
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WICHEDLDZLZBRXTWD,Li & 39NImM Y v VR Z x5 & U 7z WA BR 23R AT
BTV, nfER /NS WERMFIZ EBROT M P AL =1, nfERRKREWEFMEIZEH -2
T 5 & a7, Hwang® VI3 D 2 o — VELEA KL & L FIEERB X OHR
TR 2TV, EEWEICE N CTHEEOT AEEIAY - THY, n RN VEEFIZE,
MUHOT HAEREHVEIRIZ IV R<EFT LI L2REL TS, WELIZBNTH, ©
AT ORI 3 U, n fEO KNP EET D AR m W, KB BHZ I T, B EIE A
DR EBCCHERICIY n EN AL THZERMBNTND 929, Lz > TR T, nfl
DEILDFME LT, THAI=7 50 KO8R E B 7 7 (0 BRE) £ LE 3 X ORI M IR
BRI ATV, WEILEIC BT D0 HF I RIETHELEM O n EOREEZT L0 ET D,

5. 2 [EmEER

5. 2. 1 EBRGIE

BOFIEZ 30 2 0 Z8)IC I T HJEIEAM O TR b8 (LA TIdi /1 — O3 Al #ig
23 (5-1) R swift Al CEP L7 n @2 M TE{bOfRIEE L THWD) OB LA
T o, R A R R A L7z,

o=a(e+¢g)" (5-1)

ZIZT, o EBIRIES, & X0 THBIOWHMOT A, o F3EHTHD, L (5-1)
DOL, EE alE, BRSO ELH W BRI IR ES 205, HIELEHM RIICE T
LIS IO L TEH TCOXEBOE~ORES, TNE@E LT AWE A E~DEE X
INE WL, AENIN TR a EICER TS, FMBRENELEIC OV TIEE 2 E T
TN =0 A (A1050-H24) 2V THL, ZofRicxt L, BRAe2FME AW EE
EREFIZICEML, FREZEBETLLT, n HORBZAMT S, AT TIX, LITH
GV T ERBI O H DM 2R L7, B R TR T RN 5% 5 40%E TD 7
FfFZGRE LTz, Table 5.2 ICEMLERFM L RT, kD), H2HETEMBLEZT VI
SULARDELEFEREFMESEDETRT, SRMOELEICH W EERITE 2 E~F 4=
THWEJEEM LT8R 252, V—2ra—)L (WR) BXRRRSL, 0O, AUET
REFICBI DEEBR T 2ES3 T 5720, SWRORELBEHRO 7 LI =0 AR K0 E
WH O & Wz,

Fig. 5.1 (CJEMEEBR OB X 2 /R, FIBREYEEZ FEATT D70, YA RIA4TE
HERED EWRICOWTE BN EEED Y a4 MEAL, £ WR ZIERE) & Uiz, #EIEMN
IZEIEEAMIZCBNT A RTETFTHmMZBEL TV D, EIE TR EIE R G b O W 7 3A 7
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IZEIEEAMIZBNT A RTETFHFMZREL TV D, FERE LR E LR S b O I 7 3A 7
MOEBLZF60sBBLAEBICINE—FOREN =1L, WHIEDT-,

JESE 1% O 8% JEFEAF O Bl SR8 o (X, B ORISR TH 5 5H 2 B TIT LR 2K & 15l
BPLL7en, RECTEHEIEBIOEA4ELFERIS, 1227 bRy PEHEREEL TH
LEEBEZONDWELEMEMRNS S mmEl oy E2RE, FLAEORELZHRT 720, U
BEDOWEMER S 20mm Hin 2R e L, MIEEIL TRz, ZOMFELREOWENPKY
MECTHDL, 20D, H2ETHLNEZTAI=UAHROK Y #iIRIZONTEH, KET
ORIk THRHBELTWD,

Table 5.2 Experimental conditions for the model rolling experiment.

Rolled material Aluminum (A1050-H24) Lead (Pure lead)

Material dimensions [mm] 3.0t X 50" X 1250L 5.0t X 50V X 400"

Work roll: 80
Roll diameters [mm] Work roll: 150
Backup roll: 160

Drive mode Top idle / Bottom driven
Reduction in thickness [%] 2,5,7,10, 15, 20, 30, 40 5,7,10, 15, 20, 30, 40
Rotation speed of WR [rpm] 4.0 2.12
Lubrication Dry

Drive

Fig. 5.1. Schematic view of the single driven rolling experiment.
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5. 2. 2 EBHER

Fig. 5.2 12, #EEMIZT VI =7 ARB LMK Z AW SETo, FRIBEE)EEICE
FAEEIR &Y =R R ERdT, 2 2°C, FEEBIRE rIXE L2 A LM
BRE, B, FEREff 2> & (5.1) Z W THRE Lz, &K (5.2) & EMINE 4, K (5.3)
X FEHRE by, 2 (5.4) I Z~AF WRBERRZHMB LTS, RIZWRPEE, H hixx
NWENARE, HARE, A I ABIKE H E HAURE b & D%, PIZHMIED 20 OF
JERE, E, viEENZN WROY U ITREBIORT Y U THDH, ~AF WREERDOHE
H X A AF 28 C i Hitchcock d ~A 1 — 1320 2w/, WR O ¥ > 7 3% 206 GPa, &
TV Ul 03 & LT,

r=1,/h, (5.2)
lg=R'(H—h) (5.3)
h,, = (H + 2h)/3 (5.4)
R' = (1 + CoP/AR)R, Cy=16(1—v?)/(nE) (5.5)

KW DFEIZOWT, $IEEM OFMIC L ST, JEERIRE T2 1.2 R T IEBR
B WR CTH2D EMICKY, JEEBIRE T3 1.2 L0 REWHEMAETIEKY FnKis L, K
WIBRE) WR TH D FTHIIZK A Z &R TE S,

— 5T, KOMiROREIIWCERT DL, ELEBREL T 12 KRETX, 74rI=0UA
ORIV HENE W, £/, EEBRE M2 1.2 282 TXD Frn B4
N TFTRASKETLRMICENTS, 7AVI =T AROGPRRIRICET D2 EBBES
Wb, EIERIRE T 1.9 L EOSRETE, EHL0HFMBIZIE WR O i ICfafn L7z K
DR Lo TEBY, KERETRONR W,

INET, KFETIERELECSEP SR CEMOT7 VI =T Lk, BXOEL WR EOE
S N TR ZIT>TETEBY, EEBRIEOETIZITROLETROEHE LS > T
DAHEfLTE, 4B, BRLTENPOEM LR OWEEILM 2 HY, WR 88 8725
SR CHEMEFER Z FEH L7272y, Fig. 5.2 12”3 TH@Y, RRDELESFMETH > TH ELERRK L
ERHWDZETROVEHZEHAETHDL Z LN ED THER SN,
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Fig. 5.2. Strip curvature change with the shape factor. (Top : driven / Bottom : idle)
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5.

5.
Wl ¥4 FEM == — K 8DZ vy, Table 5.3 ISR THIE O EBRS A2 I LIS itics

W,

3 WIEMEFRERIEIC K D IEXHRELTMFENT

3. 1 RS

MEH & M ERER & L7 “Roe il O T B E W R 21T o 72, O,
BETHEMLEZT VI =0 LMROFEERITRMAE S GO TORY, Mg RERIS %, 7

vl

S AREFRBRICHERBRCHIE LZIS N —O0THdlE»s5 NxFEEM Lz, Table 5.3
W LB IRIS Do RNk, IR n EHIZT7 VI =7 4208 0.063 IZ%F LN

0.157 THY, $hOHF MW 25 FRERX W, IELEHM & WREOZ —a VEBERITI I E

TT NI =T ARG THWTEZ 0.2 &, BIEE WR BRE) S CTHUSH AR O T 4L F B & 52

feL, SO EERE & LHERNS Orowan DY —E

AN

2ODFRMERERE LT,

Table 5.3 Analysis conditions.

2A
A

302 HWTHEL 0.28 &

Rolled material

Aluminum

Lead

Material thickness [mm]

3.0

5.0

Roll diameter [mm]

Work roll: 80

Work roll: 150

Drive mode

Top idle / Bottom driven

Reduction in thickness [%]

(Shape factor [-])

2,5,7,10, 15, 20, 30, 40
(0.5,0.8,1.0,1.2, 1.6, 1.9,

2,5,7,10, 15, 20, 30, 40
(0.6,0.9,1.1,1.3,1.7, 2.0,

2.5,3.1) 2.7,3.3)
Rotation speed of WR [rpm] 4.0 2.12
Yield stress [MPa] )
158.9 £ °-06° 39.0 g %-1o7
(& :Equivalent strain)
Friction coefficient 0.2 0.2, 0.28
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5. 3. 2 EBRMHELMIRREOLE

ATET D FEBRTH O N BIEALS D d == &, | A BR 2 H MR RS R & O ik % Fig. 5.3
WZaRT, FEBRTHMBINTJEIERIRE ¢ A 1.2 R CIEARILIERET WR Th 25 ERIIZK S
B, HMERRE T2 1.2 RV REWEETIEIKY S, BEE WR Th 2 Tl
R D2BGERMTRRTOLHIAIA TS, KVhFEoEbHMRREN—HE "L TWD,
ARIRHTARERIZBNT, BESEK 02 OFKMF L 028 DEM L TIEK Y #FIZKE 2 EITA
By, UBOBZLTE, MLEAHERn BORBIIERT L720, MRELERMEICE
TOEBEBRBIIT VI =T ARIELEDORMELFE LT 0.2 Z5HT 2,

1
08 | -@-Experiment
0.6 -+ FEM (n = 0.20)
04 =X-FEM (n=0.28)

Curvature R/p

Shape factor I’

Fig. 5.3. Comparison of curvature between experiments and calculations.

(Rolled material is lead, Top : driven / Bottom : idle)
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5. 4 HEEMONMILEABEESEAFFICRETEER

Table 5.3 O fEMNT LI B VT, Fig. 541X 7V =7 AWRJEFES MO, Fig. 5.5 (2136
WIEIE GO EARER PO/ ON Y EHEOT HEE S 2, REWHR 3 OOEER IR
e (=08, 1.2, 2.5) Z2WVWTmxRT, 22T, ARIZO W TIEERTE OELESLFICH N T
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Fig. 5.4. Distributions of equivalent strain rate around the roll-bite.

(Rolled material is aluminum, Top : idle / Bottom : driven)
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Fig. 5.5. Distributions of equivalent strain rate around the roll-bite.

(Rolled material is lead, Top : idle / Bottom : driven)
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Fig. 5.6. Evolution of material velocity along streamlines at both surfaces.
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