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Abstract 

Maintaining road infrastructure under financial and environmental constraints is a 

significant challenge in developing countries such as the Lao People’s Democratic 

Republic (Lao PDR or Laos). This dissertation explores the application of the Multi-Stage 

Exponential Markov (MUSTEM) model, a stochastic model, as a predictive tool for road 

deterioration and resource allocation optimization, specifically in Lao PDR's road 

management system. The study aims to develop and provide a robust framework for 

forecasting road conditions under uncertainty and determining optimal maintenance 

strategies, particularly under various budget constraints. The research is composed of six 

chapters. Chapter 1 outlines the background, objectives, and significance of research on 

enhancing road asset management in Lao PDR. It highlights the crucial role of road 

infrastructure in socio-economic development in Laos, where transportation networks 

influence connectivity, trade, and productivity. The chapter examines the Laos Road 

Management System (RMS), its reliance on deterministic models like the Highway 

Development and Management model version four (HDM-4), and challenges such as 

funding limitations, reactive maintenance, and the lack of predictive modeling. It defines 

key research problems, focusing on the limitations of current asset management in 

forecasting deterioration and planning maintenance. Research objectives include 

evaluating the current Laos RMS, developing a stochastic deterioration model, optimizing 

resource allocation, and comparing HDM-4 with MUSTEM. The chapter concludes with 

anticipated contributions to academic research and practical road management, along 

with a brief dissertation overview. Chapter 2 presents the theoretical foundations and 

reviews existing research on road asset management, deterioration models, maintenance 

strategies, and pavement optimization methods. The chapter discusses RMS and their role 

in national road maintenance planning, particularly in developing countries like Lao PDR. 

The chapter reviews and examines deterministic models, HDM-4, with stochastic 

approaches such as the MUSTEM, discussing their advantages, data requirements, 

applications, and limitations. Additionally, it highlights international practices and case 

studies in a global context. Chapter 3 outlines the development and application of the 

Markov hazard model to Lao PDR's road networks. It details the modeling development 

process, factors influencing road deterioration, and the utilization of Laos’s RMS data. 

Additionally, a detailed analysis of the Markov model is conducted using two core road 
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networks, the ASIAN Highway and the National Road Network, to evaluate the 

differences between the two standards of roads. This comparative analysis aims to 

highlight how road deterioration varies between these networks and provides insights into 

optimizing maintenance strategies tailored to each road classification. Chapter 4 

develops and evaluates a stochastic Markov Decision Process (MDP) framework to 

optimize road network maintenance strategies, especially in Lao PDR. The existing road 

maintenance practices, limitations, and inefficiencies, particularly the significant use of 

reactive maintenance under various budget constraints, have been reviewed. Through a 

comprehensive empirical study utilizing historical inspection data, the study validates the 

effectiveness and practicality of the proposed optimization model. The results 

demonstrate how optimal road management requires simultaneous consideration of 

pavement condition deterioration, life-cycle costs (LCC), and financial limitations. 

Proposed maintenance strategies, including proactive and reactive approaches, are 

thoroughly analyzed across various budget scenarios. Furthermore, the study identifies a 

cost-effective target condition that balances acceptable road conditions and budget 

allocation ability. Finally, recommendations are provided for policymakers on effective 

budget allocation, emphasizing the significance of proactive maintenance to improve Lao 

PDR's road asset management system. Chapter 5 compares the HDM-4 model, the Laos 

RMS, and the proposed MUSTEM model. The study examines each model's strengths 

and limitations. It presents a side-by-side comparison based on various criteria, such as 

data requirement, road performance estimation, LCC estimation, and ease of 

implementation, using empirical data from the Laos RMS. This research demonstrates 

how MUSTEM and HDM-4 effectively forecast road deterioration under varying 

conditions, such as traffic volumes, pavement types, and environmental factors. Particular 

emphasis is placed on the advantages of the MUSTEM model, which, through its 

stochastic structure, demonstrated superior performance in predicting pavement 

conditions and minimizing LCC, especially under unconstrained budget scenarios. The 

estimation provided by the MUSTEM model predicted a higher percentage of road 

conditions to be in fair to good condition throughout the analysis period in the context of 

a budget unconstraint scenario. In contrast, the HDM-4 excels in economic evaluation by 

incorporating road user and social benefits but demands extensive data inputs. Finally, 

the policy recommendations on integrating these models to support data-informed 

decision-making in road maintenance planning are provided for Laos and similar 
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resource-constrained nations. Finally, Chapter 6 synthesizes key findings from all 

previous chapters, emphasizing the research's contributions to road asset management, 

particularly in Lao PDR. It discusses research findings, policy and practical 

recommendations, knowledge contribution, limitations, and future research directions. 

This chapter evaluates the benefits of the integration of the MUSTEM model with HDM-

4 in Laos's RMS to enhance predictive accuracy and cost-effectiveness in road 

maintenance. Key recommendations include adopting a hybrid RMS, improving data 

collection using Geographic Information Systems (GIS) and remote sensing, 

strengthening funding through Public-Private Partnerships (PPP), and incorporating AI 

and machine learning. Capacity building and climate change adaptation are also 

emphasized. The contributions to knowledge identified limitations and directions for 

future research, including model validation in other contexts and exploration of 

innovative maintenance strategies, are also discussed. 
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1. Introduction 

1.1. Research Background 

1.1.1. Road Asset Management  

Road networks are not just part of a country's infrastructure; they are integral to its social 

and economic development and essential for societal advancement and generating income 

throughout the country. "The road network and sub-sector should substantially contribute 

to the Gross National Product (GDP)" [1]. The economic and social significance of road 

networks is pivotal to national progress. The economy of the Lao People’s Democratic 

Republic (Lao PDR or Laos), encompassing agriculture, industry, service, and tax, is 

sustained by the transportation sector's direct and indirect revenues. Investing in transport 

infrastructure not only lowers the cost of production but also indirectly lowers the overall 

value of raw materials and labor by improving accessibility. Such investments also foster 

regional and international trade, promote economic diversification, and increase the 

economy's resilience to external shocks [2]. As a result, ensuring a well-managed road 

network is critical to sustaining these economic benefits and requires strategic planning, 

regular maintenance, and efficient resource allocation to optimize performance and 

longevity. 

Road asset management is not merely a globalized systematic approach; it 

represents a strategic framework designed to ensure the efficient utilization and 

sustainability of road infrastructure. This system involves creating detailed road network 

inventories, monitoring their conditions over time, and developing cost-effective 

strategies to maintain desired service levels [3].  

The primary objectives of road asset management are to ensure the defined level 

of service in the most cost-effective way while optimizing road user. The key objectives 

are [1, 4]: 

• Delivering a defined level of service while monitoring network performance; 

• Managing network growth through demand assessment and investment 

planning; 

• Employing a life cycle approach to develop cost-effective management 

strategies for the medium and long term; 
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• Identifying, assessing, and effectively managing risks; 

• Developing financial plans that align resource requirements with affordability 

and funding strategies. 

1.1.2. Road Infrastructure in Lao PDR 

In developing countries such as Lao PDR, road networks play a vital role in supporting 

socio-economic growth, ensuring connectivity, and enhancing transportation efficiency. 

Acknowledging this significance, the government of Lao PDR is committed to 

implementing comprehensive strategies in its 5-year National Socio-Economic 

Development Plan (NSEDP) [5] to enhance the effective management and sustainable 

development of national infrastructure and road networks. Through systematic asset 

management approaches, such as regular monitoring, prioritizing maintenance, and 

investing in infrastructure corresponding to developing and maintaining public 

infrastructure, the responsible authorities, particularly the Ministry of Public Works and 

Transport (MPWT), aim to optimize the condition, performance, and resilience of its road 

networks by adopting innovative technologies and best practices to improve road asset 

management, address infrastructure challenges, and meet evolving transportation needs 

across the country. Additionally, by fostering partnerships, promoting capacity-building 

initiatives, and leveraging international expertise, the government is committed to 

ensuring the long-term viability and sustainability of its road infrastructure. These efforts 

not only support socio-economic advancement but also contribute to enhancing the 

quality of life for its citizens. 

In 1975, following its independence, Lao PDR had a road network spanning 

11,462 kilometers. Of this total, 1,427 kilometers were paved roads, while the remaining 

roads were constructed with stone and soil (unpaved). The annual freight transport 

capacity on the road network was approximately 229.7 tons per year. Since 2003, the 

government of Lao PDR has established the Road Management System (RMS) as a tool 

for planning, operation, management, and monitoring under the Ministry of Public Works 

and Transport of Lao PDR (MPWT). The MPWT is represented as the chair of the 

Steering Committee, according to the Prime Minister Decree no.130/GoL, including the 

Ministry of Planning and Investment (MPI), the Ministry of Industry and Commerce 

(MOIC), the Ministry of Finance (MOF), the Ministry of Public Security (MOPS), the 
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Lao National Chamber of Commerce and Industry, the Lao Fuel and Gas Association, 

and various stakeholders. As of 2022, the Lao road network has experienced significant 

growth, reaching a total length of 59,646 km, according to the MPWT Statistic Year 

Book. This expansion includes 7,842 km of national roads, 45,737 km of provincial and 

local roads, and 6,066 km of special-purpose roads. Table 1.1 provides a detailed 

breakdown of road categories and surface types, highlighting the promising future of 

transportation in Lao PDR [6]. 

 

Table 1.1 Lao PDR Road Networks Length by Category in 2022 (km) [7] 

Surface National Provincial District Urban Rural Special 

Cement 

Concrete 
165.53 133.15 87.83 304.86 106.18 58.40 

Asphalt 

Concrete 
1,092.56 63.60   - 151.03 4.00 11.53 

Surface 

Treatment 
4,975.72 2,466.84 1,009.87 1,514.73 1,019.55 357.39 

Gravel 1,301.07 4,982.58 4,552.86 1,473.59 11,600.57 1,332.67 

Earth 306.69 1,004.66 1,783.41 762.37 12,715.64 4,306.92 

 

 

Figure 1.1 illustrates the distribution of the road network in Lao PDR in 2022 [7]. 

The rural road network accounts for approximately 43% of the total road network length, 

while the national road network occupies only about 13%, and the provincial road 

network constitutes only 15% of the total road network in Lao PDR. Although national 

roads cover a smaller proportion of the total network, they play a critical role in economic 

development and regional connectivity. Recent efforts to improve the national road 

network have focused on enhancing road quality, expanding paved road coverage, and 

upgrading key corridors that facilitate trade and mobility. 
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Figure 1.1 The Distribution of Lao PDR Road Network in 2022 

 

In addition, the hierarchy of the Lao Road network is identified as the road 

classification and used as a key for the management committee to determine the 

inspection frequencies, maintenance regime, and standard of the maintenance 

methodology for each segment (road section) in the short-term and long-term plans. 

Within the National Road Network, the concept of "Core Network Level" is used to 

classify the road hierarchy, which consists of 3 levels of the core network [8]:  

• Core-1, "Level 1", is the key national road section, including the ASIAN 

highway road (AH) and the national economic corridor road network; 

•  Core-2, "Level 2", is represents the national road connecting the capital with the 

provinces, provinces to provinces;  

• Core-3, "Level 3", is the national road with low traffic volume that connects 

urban and district.  

In addition, Core Network 1 connects Lao PDR with other ASEAN countries, this 

road network is commonly referred to as the ASIAN roads. Further, the ASIAN roads are 

designed with uniform standards to ensure traffic loads and interoperability, promoting 

smooth cross-border travel within the ASEAN region [9]. In contrast, Core Network 2 is 

built according to local standards that differ based on terrain and traffic needs. These 

roads connect provinces within the country, improving transportation for local 

communities, while Core Network 3 focuses on local communities and sub-communities.  

 

13%

15%

12%
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Table 1.2 presents the number of national road core networks in Lao PDR, while 

Figure 1.2 illustrates the locations and differences of the Core Networks throughout the 

country. 

 

Table 1.2 National Road Core Network in 2022 

No. 
Core 

Network  
Road number 

Length of 

Network (Km) 

1 Core 1 NR13N, NR13S, NR2E, 

NR2W, NR03, NR08, 

NR09, NR12, NR18A, 

NR18B 

2.421 

2 Core 2 NR1A, NR1B, NR1C, 

NR1D, NR1E, NR1I, 

NR3A, NR3B, NR04, 

NR4A, NR4B, NR4C, 

NR5B, NR06, NR6A, 

NR6B, NR07, NR9B, 

NR10, NR11, NR15, NR16, 

NR16A, NR16B, NR3206, 

NR20, NR5101(21)  

4.716 

3 Core 3 NR1F, NR1H, NR1J, 

NR11A, NR11B, 

NR11SVK, NR14A 

681 

 Total  7.818 

 

 

 

 

 

 

 

 



 
CHAPTER 1. INTRODUCTION 

9 

 

 

 

 

 
Figure 1.2 National Core Road Networks in Lao PDR 
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1.1.3. HDM-4 for Road Asset Management in Laos 

Lao PDR has diverse environmental and landscape conditions, ranging from highlands to 

tropical plains. Similar to other developing countries in the region, Lao PDR faces the 

challenge of resource constraints, which necessitates a more efficient and cost-effective 

Road Management System (RMS).  

Since 2003, the Government of Lao PDR has approved and implemented the RMS 

as a tool for management, planning, operating, and monitoring, which is the responsibility 

of the MPWT of Lao PDR. The Laos RMS utilizes the Highway Development and 

Management version 4 (HDM-4) software, a deterministic model, for long-term planning, 

maintenance funding allocation, and priority determination [10, 11]. The HDM-4 

incorporates Lao road network characteristics to estimate surface deterioration by 

generating a matrix of work selection for all road sections with alternatives corresponding 

with the economic reward, including road user costs (RUC), net present value (NPV), and 

net present benefit (NPB) [12]. However, the system requires regular updates on lots of 

information, including conditions of the roads, traffic data, work unit costs, and social 

and environmental parameters, in order to generate a precise estimation. 

 

1.1.4. Maintenance Strategy and Treatment Selection Practice in the Laos RMS 

1.1.4.1. Maintenance Strategy 

Road maintenance strategies in Lao PDR can be categorized into the following [13]: 

• Routine Maintenance (RM): Performed continuous maintenance to preserve 

road and roadside conditions and other road facilities as close to their original 

state as possible. The routine maintenance activities include surface patching, 

roadside drainage repair and cleaning, road shoulder and edge repair (reshaping), 

and repair of culverts.  

• Periodic Maintenance (PM): Conducted at regular intervals over several years 

to restore roads to their original conditions and prevent further deterioration. The 

activities include reshaping the carriageway and ditching by machine, re-

graveling, and resealing. 
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• Rehabilitation and improvement (RI): Applied to roads near the point of failure 

and almost unable to be used. The activities include the restoration of the road 

pavement, installing new culverts, and constructing a new roadside drain. 

• Emergency maintenance (EM): Addresses urgent situations such as landslides, 

flooding, or fallen debris. EM includes temporary road repair to restore road 

structure and accessibility by clearing blockages. 

1.1.4.2. Treatment Selection Criteria 

The treatment selection criteria allow for an efficient system for road treatment, providing 

an equilibrium between the needs for the treatment and the minimization of resources. 

Treatments are chosen according to the intensity of the defect, in the order of decreasing 

intensities, and triggered when the threshold intervention is reached. Inefficient selection 

may increase road deterioration, while unnecessary high-level treatment may waste 

resources [13].  

The maintenance treatment selection criteria are intended to maximize resource 

use and maintain road infrastructure's long-term viability. The process consists of 

evaluating road conditions, applying the appropriate intervention based on set thresholds, 

and using cost-effective, labor-saving methods for road network efficiency. 

The Surface Integrity Index (SII) in Lao RMS is important in the treatment 

selection process. It is primarily responsible for the selection of treatment for addressing 

road condition deficiencies. Although several parameters are also considered for 

treatment selection, SII is the most important, in combination with the availability of 

labor, accessibility of equipment, and cost.  

 

The key factors influencing treatment selection in Lao RMS are as follows [13]: 

 

1) Traffic Volume: The number of heavy vehicles using the road significantly 

impacts the need for maintenance and the selection of appropriate treatments. 

Higher traffic volumes typically lead to increased wear and tear, necessitating 

more robust maintenance solutions. 
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2) Road Condition: The features and existing road surface condition determine the 

type of treatment. Major defects need to be assessed in order to determine whether 

there should be a higher or lower level of treatment. 

3) Combination of Defects: Multiple defects on the road surface may complicate 

the selection process. The interrelation among the defects must be analyzed in 

order for the selected treatment to be able to solve all the problems. 

4) Resources Availability: Labor and equipment availability are practical initial 

considerations that may impact the types of treatment. Available resources may 

limit the kind of treatment that can be carried out. 

5) Economic Factors: The cost-effectiveness of different treatment modalities 

should be weighed in the decision-making process. Cost-effectiveness should be 

evaluated for optimal utilization of resources. 

6) Engineering Judgment: Engineering expertise plays an important role in 

intervention level setting and in making the decision about when maintenance 

should be performed. However, the decision-making depends on functional, 

serviceability, and whole-life cost principles. 

7) Maintenance Standards: In order to ensure the proper treatment for varying road 

conditions. Following the Standards can specify when and how treatment 

interventions must be applied, ensuring roadways remain safe, operational, and 

affordable throughout their lifespan. 

 

1.1.5. Road Maintenance Funding and Challenges in Lao PDR 

The Road Maintenance Fund or Road Fund (RF) in Lao PDR, established in 2001, was 

designed to secure financing for road maintenance. However, as of 2021, the fund faces 

a debt burden of approximately 2,433 billion Kips (USD 200 million) [8]. This growing 

debt raises concerns about the RF's ability to finance road maintenance effectively, 

leading to worsening road conditions, rising repair costs, and compromised road safety. 

The RF's growing debt also limits its capacity to invest in necessary infrastructure 

improvements and road network expansions, hindering the country's economic growth. 
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To address these challenges, prudent financial management and strategic maintenance 

planning are essential. 

 

Figure. 1.3 shows the Road Fund's requirements and capabilities from 2017 to 

2021. This situation highlights the urgent need for innovative and cost-effective 

maintenance strategies to maximize the utility of limited resources. To ensure financial 

ability, it is essential to explore alternative funding sources, such as public-private 

partnerships, and implementing improved revenue collection mechanisms, including 

efficient toll systems or fuel taxes. Addressing these challenges is critical for ensuring the 

long-term sustainability of road maintenance, enhancing transportation efficiency, and 

supporting Lao PDR's broader socio-economic development goals. 

 

 

 

Figure 1.3 Lao PDR Road Maintenance Fund from 2017-2021 

 

 

 

 

2017 2018 2019 2020 2021

Amount Paid 731.40 942.25 1,237.25 1,624.34 1,888.42
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Cumulative Debt 5,054.65 4,183.01 5,735.81 3,831.66 3,410.21
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1.2. Problem Statement 

The road network in Lao PDR is essential to the country’s socio-economic development 

by facilitating the movement of people and goods while supporting key industries such 

as agriculture and tourism. It also enhances regional connectivity, and integrates Lao PDR 

into global markets. However, the road infrastructure faces significant challenges that 

impact its performance and long-term sustainability. 

 

1) Reactive Maintenance System 

 

The existing Laos RMS mostly relies on reactive interventions. This strategy often 

results to higher long-term costs and frequent road failures, because small defects 

become major issues before being addressed. Research by Obunguta, F. and K. 

Matsushima (2020) [14] revealed that proactive maintenance strategies could 

significantly increase road network condition in good condition and reduce LCC 

at the end of analysis period. 

 

2) Financial Constraints 

 

The Lao PDR's road maintenance fund has inadequate funding, which results in 

high debt levels of approximately 200 million US dollars in 2021 [8] and restricts 

its capacity to organize and carry out efficient maintenance programs.  Road 

deterioration is accelerated, and these budgetary limitations raise future 

maintenance costs.  Furthermore, the government's debt load limits funding for 

necessary infrastructure maintenance and upgrades. 

 

3) Inadequate Predictive Models 

 

The existing Laos RMS needs more sophisticated predictive models to accurately 

forecast road deterioration and maintenance needs. This limitation lowers 

effective planning and resource allocation. While tools like HDM-4 are 

applicable, they find it challenging to adapt to the specific conditions of Lao PDR, 
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which include varying traffic volumes, diverse pavement types, and uncertainties 

caused by environmental factors. 

 

4) Data Limitations 

Incomplete and inconsistent data on road conditions, traffic volumes, and 

maintenance history, primarily due to budget constraints and limited inspection 

resources, pose a challenge to effective road asset management, as outlined in the 

Road Asset Management Plan report [4]. Consequently, robust data collection and 

integration with advanced analytical tools are crucial for developing accurate 

deterioration models and maintenance schedules. 

 

5) Inefficiencies in Maintenance Practices 

Current RMS maintenance practices are not cost-effective due to reactive 

maintenance, which leads to increasing RF debt and challenging contractor 

payment conditions [4]. A systematic approach is needed to prioritize 

maintenance activities based on road conditions, traffic levels, and budget 

constraints. Adopting modern practices and leveraging technology-driven 

solutions can significantly enhance efficiency and optimize resource allocation. 

6) Research Gaps 

• Proactive Maintenance Models 

There is a critical need for developing proactive maintenance models that can 

predict road deterioration and optimize maintenance planning to prevent road 

failures while minimizing costs. Stochastic models, such as Markov models, offer 

a structured approach to model uncertainties and assess long-term outcomes. 

However, despite their potential, these models remain underexplored in Lao PDR, 

presenting an opportunity to develop tailored solutions that address the country's 

unique environmental and operational challenges. Incorporating these models 

could enhance decision-making, improve resource allocation, and extend the 

lifespan of critical infrastructure. 
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• Comparative Analysis 

A comprehensive comparison between existing models, such as HDM-4, and 

proposed stochastic models is essential to determine which approach best fits Lao 

PDR’s specific needs. By evaluating their strengths and limitations, decision-

makers can assess how each model addresses challenges like traffic variability, 

diverse environmental conditions, and budget constraints. This analysis will 

provide practical recommendations for selecting the most effective strategy to 

optimize maintenance planning and improve road network performance in Lao 

PDR. 

• Resource Allocation Optimization 

Developing efficient maintenance resource allocation models is essential to 

ensure maximum maintenance impact, particularly under budget constraints. 

These models should incorporate life-cycle cost analysis to help planners evaluate 

the long-term economic benefits of maintenance decisions. By aligning 

maintenance planning with resource availability, these models can ensure 

sustainable road improvements, minimize resource wastage, prolong road 

network functionality, and enhance overall infrastructure reliability. Additionally, 

implementing tailored optimization strategies will enable Lao PDR to manage its 

road networks despite financial and operational resource limitations. 

1.3. Research Objectives 

The primary objectives of this research are as follows: 

• Evaluate the suitability of the current Laos RMS: Evaluate the effectiveness 

of Laos Road Management System and long-term maintenance planning, with 

focus on identifying its strengths, limitations, and areas for enhancing in relation 

to data availability, model capacities, and decision-making support functions. 

• Develop a stochastic road surface prediction model: Address data availability 

and variability limitations to improve forecasting accuracy for road deterioration 

and maintenance needs. This model is particularly relevant for resource-

constrained regions like Lao PDR and other developing countries. 
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• Optimize Resource Allocation Strategies: Develop efficient maintenance plans 

that maximize sustainability and road network performance using a stochastic 

model framework. 

 

• Conduct a Comparative Analysis: Evaluate the effectiveness of HDM-4, the 

current RMS, and the proposed stochastic model (MUSTEM) in road asset 

management. This analysis will highlight strengths, limitations, and provide 

practical recommendations, particularly for Laos RMS. 

• Provide Strategic Recommendations: Offer guidance for project managers, road 

agencies, and policymakers on efficient road maintenance practices. These 

recommendations will enhance decision-making, encourage innovative 

methodologies, and support sustainable road infrastructure development in Lao 

PDR and similar developing countries. 

1.4. Research Contributions  

This research aims to make significant contributions to the field of road asset 

management, specifically tailored to the context of Lao PDR. The expected contributions 

are as follows: 

 

1. Develop and provide a robust framework for predicting road deterioration, 

particularly beneficial for data-limited and constraint-prone countries like Lao 

PDR. This model and framework support proactive maintenance planning and 

efficient infrastructure management. 

2. Enhanced Decision-Making for Resource Allocation: This research will propose 

optimized strategies for allocating maintenance resources, integrating life-cycle 

cost analysis to ensure budget optimization. These strategies will empower 

policymakers and road agencies to make data-driven decisions that balance 

economic and road network performance priorities. 

3. A comprehensive comparative analysis of the Laos RMS model and proposed 

framework, highlighting the strengths and limitations of each model. This analysis 
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will guide policymakers in selecting the most effective maintenance strategies. 

This study will also offer application guidelines, particularly for Laos RMS.  

4. This research will provide practical guidelines for policymakers, infrastructure 

planners, and project managers to implement more effective road maintenance 

practices by adopting innovative and sustainable road maintenance practices. 

5. Supporting the development of sustainable road infrastructure in Lao PDR. 

Enhance the efficiency and sustainability of Lao PDR’s Road network, supporting 

economic growth, reducing transportation costs, and improving regional 

connectivity. These outcomes align with national and international development 

goals. 

• The findings in this research will serve as a knowledge base for training programs, 

fostering local expertise in road asset management and maintenance planning. 

This effort will provide long-term benefits for Lao PDR’s infrastructure sector, 

particularly the Ministry of Public Works and Transport. 

1.5. Structure of the Dissertation 

The dissertation comprises six chapters dedicated to enhancing road asset management in 

Lao PDR through stochastic predictive modeling and optimal resource allocation. Figure 

1.4 presents the dissertation diagram showing the consistency of each chapter. Chapter 

1 offers background information on the significance of road infrastructure in socio-

economic development, research problems, objectives, and contributions. Chapter 2 

presents existing methods for road asset management, including stochastic Markov 

models and deterministic methods such as HDM-4, in order to identify gaps in the 

literature. Chapter 3 develops and applies the MUSTEM model, including uncertainty, 

for the national road in Lao PDR. Chapter 4 develops an optimization framework for 

resources in different budget conditions for the ASIAN and the National road network. 

Chapter 5 compares the MUSTEM and HDM-4 performance utilizing empirical Laos 

RMS data, assessing results in terms of cost-effectiveness, as well as prediction in the 

shortest route condition. Chapter 6 presents the findings, provides policy implications, 

and recommends future research and implementation in the road management system. 
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Figure 1.4 Dissertation’s Structure  
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2. Literature Review 

2.1. Road Management Systems 

2.1.1.  Definition  

A road management system (RMS) involves the planning, development, maintenance, 

and optimization of road networks to ensure safe, efficient, and cost-effective 

transportation. The asset management system for roads is “a systematic process of 

maintaining, upgrading, and operating assets, combining engineering principles with 

sound business practice and economic rationale, and providing tools to facilitate a more 

organized and flexible approach to making the decisions necessary to achieve the public’s 

expectations” [1]. This process encompasses a broader range of activities, including 

assessing road conditions, prioritizing maintenance works and rehabilitation projects or 

activities, allocating resources, and implementing technologies to monitor and improve 

the network's performance [2, 3].  

The primary objectives of an RMS are to manage road infrastructure assets 

efficiently and effectively by ensuring safe, reliable, and sustainable transportation.  

These objectives aim to achieve a service level or performance of the roads at the lowest 

cost, deploying long-term maintenance planning that considers the future impact of 

current budget allocations [4]. 

Key processes of an RMS include [5, 6]: 

1. Asset Inventory: Establishing a comprehensive inventory of the entire road 

network and its elements (road facilities). 

2. Condition Assessment: Providing a clear picture of the current condition and 

performance of the road network. 

3. Asset Valuation: Estimating the value of the assets to understand their economic 

significance. 

4. Demand Forecasting: Predicting future traffic demands and service needs to plan 

accordingly. 

5. Maintenance Planning: Estimating maintenance needs and costs to develop 

effective maintenance strategies. 
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6. Prioritization: Setting priorities related to the desired quality and performance of 

the road network. 

7. Funding Scenarios: Developing funding scenarios for regular and timely 

maintenance and upgrades. 

8. Strategy Development: Defining appropriate strategy to tackle different 

scenario. 

9. Implement the RAM plan: implementing a Road Asset Management Plan (RAM 

Plan). 

This process is continuous and demand regular updates to monitoring and 

reporting of changing and demands of road maintenance. As illustrated in Figure 2.1, the 

RMS structure in Lao PDR includes processes for data collection, planning, and 

implementation [7]. 
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Figure 2.1 Structure of the Road Management System in Lao PDR [7] 
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A well-organized and implemented RMS plays a vital role in various aspects of 

national development; the key advantages of RMS and infrastructure contribution, 

including [8]: 

1. Economic Growth: The development of efficient road networks plays a crucial 

role in driving economic progress by facilitating the smooth movement of goods 

and people. These functions can reduce transportation expenses and travel time, 

promote trade, expand market access, and stimulate economic activities across 

various sectors. 

2. Safety Measures: Ensuring the safety of road users involves effective management 

practices that identify and address potential risks of accidents, such as potholes, 

structural weaknesses, and inadequate signage. Implementing proper maintenance 

procedures can minimize the occurrence of accidents and enhance overall road 

safety. 

3. Cost Optimization: Proactive maintenance strategies implemented in road 

network management optimize resource utilization, leading to extended road asset 

lifespans and reduced long-term expenses. Preventive maintenance is generally 

more financially efficient compared to reactive maintenance. 

4. Environmental Responsibility: Sustainable road management practices aim to 

minimize environmental impact by using eco-friendly materials, improving road 

conditions, reducing vehicle emissions, and preserving surrounding ecosystems. 

Effective road design and maintenance also mitigate issues like erosion and water 

runoff. 

5. Inclusive Accessibility: Well-managed road networks improve accessibility for 

all members of society, including those residing in rural and remote areas. This 

enhanced accessibility contributes to social equity and inclusion by providing 

better access to essential services such as education, healthcare, and employment 

opportunities. 

6. Infrastructure Durability: Regular maintenance and timely upgrades ensure the 

longevity and resilience of the road network against natural wear and tear and 

extreme weather conditions. This approach reduces the need for frequent, large-

scale rehabilitations, resulting in cost savings and minimized disruptions to traffic 

flow. 
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7. Technological Advancements: Modern RMS incorporates advanced technologies 

such as Geographic Information Systems (GIS), remote sensing, and data 

analytics to improve decision-making. These tools enable real-time monitoring, 

predictive maintenance, and optimized resource allocation.  

An RMS is not merely a tool for maintaining road infrastructure but a crucial 

driver of socio-economic progress. By embracing robust management practices and 

modern technologies, Lao PDR can build a road network that meets today’s needs and 

builds a solid foundation for future growth and connectivity. 

2.1.2.  Previous studies on road maintenance strategies 

Extensive research on road maintenance strategies has been conducted globally, focusing 

on enhancing road infrastructure's resilience, efficiency, and cost-effectiveness. These 

studies have delved into various maintenance approaches, including preventive inspection 

and maintenance, routine maintenance, and repair actions, all strategies aimed to extend 

road lifespan and minimize the costs of maintenance as well as traffic disruptions.  

A key theme in prior studies is the comparison between preventive (proactive) 

and reactive maintenance strategies. Preventive maintenance involves regular inspection 

and scheduled intervention to address potential defects before they worsen, whereas 

reactive maintenance addresses damages after they arise. Eventually, most research 

consistently highlights that preventive strategies are more cost-effective in the long run, 

as they reduce the frequency and severity of significant repairs. 

Furthermore, several innovative approaches, particularly in developed countries, 

have emerged, leveraging advanced predictive models and data analytics, like the 

stochastic method. Data analytics and predictive models have been employed to optimize 

maintenance decision-making and resource allocation. For instance, Obunguta, F., and 

Matsushima [9] developed an optimal pavement management strategy using a stochastic 

model. This study focused on creating a pavement management system (PMS) for 

countries such as Uganda. The PMS had limited data requirements and enhanced road 

maintenance planning. The maintenance strategies were developed based on time-

dependent and condition-dependent policies related to pavement deterioration rates. The 

findings indicated that implementing preventive maintenance policies increased the 
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percentage of roads in good condition and reduced the percentage of roads in poor 

condition, substantially reducing life cycle costs. 

Another study by Van Hiep, D., and Tsunokawa, K. [10] created and investigated 

maintenance strategies for roads in sub-humid tropical environments in Vietnam, 

considering factors like IRI, aging, and cracking progression. This study employed the 

HDM-4 model to determine optimal maintenance options based on pavement conditions 

and traffic levels. Subsequently, different strategies were recommended based on those 

factors. The results of this study highlighted the effectiveness of maintenance actions like 

thick overlay, routine maintenance, and reconstruction based on pavement conditions and 

traffic volumes to improve road longevity and performance. 

Further study by Kobayashi et al. [11] proposed a methodology to determine the 

optimal inspection policy for road pavement, considering the uncertain deterioration 

process using a stochastic approach. The Markov deterioration prediction model has been 

used to express the pavement deterioration process and then formulate an optimal 

inspection-repair model to minimize life-cycle costs at the specified risk control level. 

This study also compared the economic benefits of regular road condition inspections and 

proposed methods to gauge the benefits of two methods with empirical analysis of actual 

expressways in Japan. The finding highlighted the shift from a time-dependent to a 

condition-dependent repair policy and the importance of inspection for road asset 

management. 

Recent studies offer valuable lessons for the road maintenance strategy in Lao 

PDR. The key takeaways include: 

1. Adopting Preventive Maintenance: Prioritizing preventive over reactive 

maintenance can help reduce long-term costs and extend the lifespan of road 

assets. 

2. Utilizing Predictive Models: Implementing predictive models, such as the 

Markov or HDM-4 models, can enhance decision-making by providing data-

driven insights into maintenance needs. 
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3. Applying Strategies to Local Conditions: Maintenance strategies should be 

adapted to the specific environmental and traffic conditions in Lao PDR to ensure 

effectiveness. 

4. Leveraging International Best Practices: By learning from successful case 

studies in similar developing countries, Lao PDR can adopt proven strategies and 

avoid common pitfalls in road management. 

2.2. Markov Models 

2.2.1. Fundamentals and Application of Markov Models 

While RMS focuses on structured maintenance planning, predictive modeling techniques 

such as Markov models provide a probabilistic approach to forecasting road deterioration 

and optimizing maintenance strategies. The Markov model has emerged as a prominent 

tool in road asset management due to its ability to capture dynamic transitions between 

different states of infrastructure conditions. Over the past few decades, various statistical 

methods based on Markov models have been developed to model road pavement 

deterioration using inspection data. 

Markov models operate under the assumption that the probability of transitioning 

from one condition state to another depends solely on the current state, not on the 

sequence of previous states. This memoryless property makes Markov models 

particularly suited for predicting the future condition of road assets based on present data 

[12]. Markov models are used to estimate the likelihood of pavement transitioning 

between different condition states over time. Transition probabilities are determined 

based on historical data and inspection records, enabling planners to predict future 

deterioration and schedule maintenance activities accordingly. Numerous studies have 

shown how Markov models can improve road asset management: 

1. Multi-Stage Exponential Markov (MUSTEM) Model: This advanced model 

was developed to address common issues such as incomplete inspection data and 

varying deterioration rates. The studyies from Kobayashi et al. [13] and Tsuda et 

al. [12] have demonstrated its effectiveness in providing accurate predictions of 

road conditions, highlight the model’s capacity to enhance road maintenance 

decision-making, leading to better maintenance planning and resource allocation.  
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Another study from Han et al. [14] investigated the behavior of advanced 

pavement materials using a Mixed Markov Hazard model based on Bayesian 

updating. The study concluded that the use of probabilistic methods significantly 

enhanced the precision of pavement condition predictions, which in turn 

facilitated more effective maintenance strategies and optimized resource 

allocation. While Angelo et al. [15] developed a safety-integrated pavement 

maintenance decision support framework for road networks in developing 

countries, using Addis Ababa, Ethiopia, as a case study. By incorporating safety 

considerations into Markov models, the researchers demonstrated that prioritizing 

road sections with high traffic volumes and poor safety conditions could improve 

both safety outcomes and pavement performance, highlighted the importance of 

combining safety and condition data for more effective maintenance planning. 

The model has been modified and extended to account for specific 

challenges prevalent with inspection data, such as a small sample size, 

measurement errors, different deterioration modes, and composite deterioration 

structures such as Kobayashi et al. [13, 16];  Kaito et al. [17]; Han et al. [18]. 

2. Markov Decision Processes (MDPs): Building on Markov models, MDPs 

incorporate decision-making into the prediction framework. A study from Gao 

and Zhang [19] proposed a Markov-based Road maintenance optimization model 

considering user costs. The key outcome was that incorporating user costs in the 

decision-making process leads to more user-friendly maintenance schedules. 

Another study by Obunguta and Matsushima [9] in Uganda highlighted how 

MDPs can help balance preventive maintenance with long-term benefits, ensuring 

optimal use of limited resources.  

Markov models have been widely used to predict infrastructure deterioration. In 

order to generate highly accurate deterioration forecasts, the key challenges in developing 

the deterioration model were related to uncertainty, particularly traffic volume, road 

structures, environmental, and pavement thickness [20]. Powerful stochastic techniques 

of Markov models are used to predict degradation in numerous infrastructures. 

Particularly, consider the following: road surface pavement [14, 21, 22], bridges [12, 23], 

pipe networks [24, 25], and airports [26, 27]. 
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2.2.2.  Markov Model Application Challenges  

While Markov models offer significant benefits, they require reliable and comprehensive 

historical data to generate accurate predictions. The absence of such data can limit their 

effectiveness, especially in developing countries like Lao PDR, where data collection 

may be sporadic or incomplete. Previous studies by Han et al. [14]; Obunguta and 

Matsushima [9] have emphasized the importance of sufficient and high-quality data for 

improving the precision of model predictions. Calibration of these models using locally 

available data is critical to enhancing their accuracy and applicability, as demonstrated in 

research by Gao and Zhang [19]. Additionally, integrating external factors such as climate 

variability, traffic, and construction quality can further refine the predictions, as 

highlighted by Angelo et al. [15]. Despite these challenges, with proper adjustments and 

consistent monitoring, Markov models can serve as powerful tools for long-term 

infrastructure planning and maintenance, as shown in multiple case studies such as Tran 

et al. [24]; Sempewo and Kyokaali [25]. 

Given the challenges in data collection and the variability of road conditions in 

Lao PDR, a hybrid approach that combines the probabilistic strength of MUSTEM with 

the detailed analytical capabilities of HDM-4 (current RMS analysis tool) may offer the 

best results. Such a hybrid model would enable more flexible decision-making under 

uncertainty while taking advantage of localized data where available. This integrated 

approach could significantly improve the planning, budgeting, and execution of road 

maintenance strategies in Lao PDR, ultimately ensuring more efficient use of resources 

and better infrastructure outcomes. This research aims to bridge the gap by comparing 

these models in the context of Lao PDR, providing actionable recommendations for 

policymakers and road authorities. 

Meanwhile, Markov models present a robust framework for proactive road asset 

management. By adopting these models, Lao PDR can enhance its ability to maintain a 

reliable and sustainable road network, ultimately supporting economic growth and social 

development.  
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2.3. Overview of Markov decision processes 

Markov Decision Processes (MDPs) are an extension of Markov models that incorporate 

decision-making elements, making them particularly useful in the field of road asset 

management. Introduced by Bellman in 1957 [28], MDPs provide a structured framework 

for modeling decision-making in situations where outcomes are partly random and partly 

under the control of a decision-maker. An MDP framework consists of several key 

components [29]: 

1. Decision Epochs: These are discrete points in time at which decisions are made. 

2. States: Each state represents a specific condition of the road network at a given 

time. 

3. Actions: Actions refer to maintenance strategies or interventions available to the 

decision-maker. 

4. Transition Probabilities: These probabilities define the likelihood of moving 

from one state to another, given a specific action. 

5. Rewards: A reward function quantifies the immediate benefit or cost associated 

with a particular action in a given state. 

The objective of an MDP is to determine an optimal policy. In Road asset 

management, the objective is to optimize the decision-making process concerning the 

maintenance and improvement of road infrastructure by maximizing the benefits to road 

agencies and users. The system aids in making informed decisions regarding repairs, 

upgrades, and maintenance to achieve the maximum overall outcomes for the road 

network [30].  

2.3.1.  Application of MDPs in Road Asset Management 

MDPs have been used to develop dynamic pavement management system (PMS) for road 

networks and enable decision-makers to balance competing objectives (Safety, social 

impact, economic costs) by offering options for maintenance, rehabilitation, or 

reconstruction based on long-term benefits and costs. For instance, Obunguta and 

Matsushima [9] demonstrated that using MDPs for Ugandan national roads led to more 
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cost-effective maintenance schedules by balancing short-term expenses with long-term 

benefits; Angelo et al. [15] highlighted the integration of safety considerations in MDP-

based models, showing that combining safety and pavement condition data can improve 

both safety outcomes and pavement performance. 

Finding an optimal policy is significant for solving the MDP, which can be 

achieved using various algorithms [29, 31], including: 

1. Dynamic Programming: Methods such as value iteration and policy iteration are 

commonly used to solve MDPs. 

2. Monte Carlo Methods: These methods use random sampling to estimate the 

expected rewards and transition probabilities. 

3. Reinforcement Learning: Techniques such as Q-learning and deep 

reinforcement learning have gained popularity for solving complex MDPs in 

environments with large state and action spaces. 

Markov processes assume that the probability of transitioning to a new state 

depends only on the current state and action, not on any previous states or actions. This 

property allows for the creation of Markov models using states, actions, transition 

probabilities, and rewards. In this research, the MDP incorporates multiple condition 

states with a designated terminal state, discrete time periods, defined maintenance 

strategies, periodic inspection intervals, and corresponding maintenance actions. The 

analysis is conducted over a finite planning horizon from the initial to the designate year. 

2.3.2.  Challenges in Implementing MDPs 

Despite their advantages, implementing MDPs in real-world road asset management faces 

several challenges: 

• Data Requirements: MDPs require detailed and accurate data on road conditions, 

transition probabilities, and maintenance costs. 

• Computational Complexity: Solving MDPs for large-scale road networks can be 

computationally intensive, especially when the state and action spaces are large. 
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• Transition Probabilities Estimation: Estimating transition probabilities accurately 

can be difficult due to variability in traffic loads, weather conditions, and other 

external factors. 

2.3.3.  Adaptation of MDP 

Given the unique challenges faced by Lao PDR, including limited data availability and 

diverse environmental conditions, adopting an MDP-based approach could enhance the 

country’s road asset management system. By incorporating economic and safety 

considerations regarding road conditions, MDPs can help decision-makers prioritize 

maintenance actions that offer the highest long-term value. Therefore, MDPs provide a 

robust framework for optimizing road maintenance strategies under uncertainty. Proper 

calibration and data integration can support more informed decision-making, ultimately 

leading to a more sustainable and cost-effective road network in Lao PDR. 

2.4. Highway Development and Management Model 

Highway Development and Management version 4 (HDM-4) is a well-established tool 

for infrastructure asset management, widely used for analyzing the life-cycle performance 

of road networks [32]. Unlike Markov models, which employ probabilistic decision-

making, HDM-4 employs a deterministic approach, relying on known relationships and 

data-driven equations to predict road deterioration and guide maintenance planning. 

However, for better analysis and prediction, these models require an extensive database 

with various factors [33]. The standard PMS tools, such as Highway Development and 

Management and the Australian Road Research Board (ARRB) model, are categorized 

into mechanistic-empirical models [21, 34]. 

HDM-4 is acknowledged for its deterministic nature, which allows it to provide 

precise values of pavement performance metrics based on given input data. The model 

assesses road deterioration based on five key distress modes, including cracking, raveling, 

potholing, rutting, and roughness  [35, 36]: 

The general computational logic for estimating the deterioration of the HDM-4 is 

summarized as follows [36-39]: 

• Initialize input data at the start point of the analysis year. This input data can be 
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the first year of analysis or the previous year's condition after maintenance. 

• Calculate the amount of change in each distress mode (majority 5): cracking, 

raveling, potholing, rutting, and roughness. 

• The pavement strength, condition, and age of the infrastructure are considered, 

and the traffic volume per lane is computed. 

• Estimate the distress of cracking, raveling, and pothole using progression criteria 

(regressive function) specific to each distress mode, and then adapt (calibrate) the 

estimation using the deterioration factor of the local condition. 

• Lastly, the roughness increment based on traffic, surface distress, age, and 

environmental factors has been computed. 

Notable, each distress mode is evaluated using calibrated progression criteria 

(calibration factor) specific to the local environment, including traffic loads and climate 

conditions [37, 38], which are tailored to the unique characteristics of the region where it 

is applied. 

2.4.1.  Application of HDM-4 in Road Asset Management 

The HDM-4 model has been applied in practical asset management across various 

countries, particularly developing regions. The HDM-4 supports three main levels of 

analysis [40]: 

1. Project-Level Analysis: Detailed evaluation of individual road projects, 

including cost-benefit analysis and selection of optimal maintenance strategies. 

2. Program-Level Analysis: Medium-term planning that prioritizes maintenance 

and rehabilitation activities across a network under budget constraints. 

3. Strategic-Level Analysis: Long-term policy development and resource allocation 

for sustaining the entire road network. 

In Lao PDR, the Ministry of Public Works and Transport (MPWT) has adopted 

HDM-4 for pavement condition assessment and maintenance planning. This adoption has 

enabled more systematic and data-driven decision-making, resulting in better allocation 

of limited resources [41, 42]. Therefore, this software allows the MPWT decision-makers 
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to accurately analyze road infrastructure performance and develop effective maintenance 

and investment strategies. 

2.4.2.  Calibration and Data Requirements 

The HDM-4 depends on field data and independent variables, including road conditions, 

traffic, vehicle characteristics, and maintenance costs, in order to provide detailed insights 

into asset management [21]. The accuracy of HDM-4 predictions depends heavily on 

proper calibration. Calibration involves adjusting the model parameters to reflect local 

conditions, such as traffic composition, climate, and construction quality. Key data inputs 

required for HDM-4 include: 

1. Road Inventory: Information on pavement type, age, and construction history. 

2. Traffic Data: Vehicle counts, classification, and axle load distributions. 

3. Pavement Condition: Periodic surveys measuring distress levels, roughness, and 

rutting. 

4. Economic Data: Costs of maintenance activities, vehicle operating costs, and 

discount rates. 

However, the HDM-4 calibration is necessary before utilizing the software to 

ensure accurate pavement performance prediction by reflecting observed deterioration 

rates through desk studies, verification with measured data, and long-term monitoring 

[37, 38, 42]. 

Advantages of Using HDM-4: HDM-4 provides performance metrics based on input 

data, making them particularly valuable for road asset management [32, 40]: 

• Detailed Cost-Benefit Analysis: By evaluating multiple scenarios, HDM-4 helps 

decision-makers choose the most cost-effective maintenance strategies. 

• Long-Term Planning: The model supports strategic planning by simulating 

future road network conditions and funding needs. 

• User-Friendly Interface: HDM-4 comes with a well-documented interface that 

facilitates its use by practitioners and researchers alike. 
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• Customizable Framework: The ability to calibrate HDM-4 for local conditions 

makes it adaptable to diverse environments. 

2.4.3.  Challenges and Limitations 

Despite its benefits and widespread used, in order to use HDM-4, some challenges need 

to be considered such as [37, 38, 40, 42] :  

• Intensive Data Requirement: HDM-4 requires various types of data, such as 

road network information (including pavement inventory, condition, and type), 

vehicle fleet details (including classification), traffic patterns, environmental 

factors, and cost data (comprising operating costs and maintenance history), 

which can be difficult to obtain in developing countries.  

• Calibration complexity: Proper calibration requires technical expertise and 

significant time investment. 

• Budget Constraints: Implementing HDM-4 often requires substantial financial 

budget, which is challenging in low-income or developing countries. 

2.4.4.  HDM-4 Application in Lao PDR 

In the context of Lao PDR, where budget constraints and data limitations are a challenge, 

HDM-4 offers significant advantages. Its ability to provide detailed cost-benefit analyses 

and supporting long-term planning enables decision-makers to prioritize interventions 

with the highest impact. HDM-4’s framework also facilitates systematic data collection 

and management, which are crucial for improving infrastructure resilience. However, its 

application in Laos is not without limitations. The high data requirements and complexity 

of calibration processes pose challenges, particularly in regions with limited technical 

expertise and financial resources. Additionally, while HDM-4 provides deterministic 

outputs, it may not fully capture the uncertainty inherent in road deterioration, making it 

less adaptable to rapidly changing conditions. Integrating HDM-4 with stochastic models 

like MUSTEM could address these gaps by introducing probabilistic elements that 

enhance decision-making, particularly under uncertain and resource-constrained 

scenarios. 
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2.5. Pavement Optimization Methods 

Many recent studies have shown the advantages and importance of integrating stochastic 

deterioration modeling and proactive maintenance strategies to optimize road network 

management, particularly under budget constraints. Obunguta et al. [43] examined 

optimal repair policies using Monte Carlo simulations to minimize LCCs while 

improving infrastructure reliability. These authors showed the improvement in optimal 

intervention solution using Monte Carlo methods compared to the greedy algorithm. 

Similarly, Nakazato et al. [44] proposed repair policies focusing on LCC minimization 

and cost-leveling strategies across infrastructure systems, highlighting significant 

advancements in proactive infrastructure maintenance approaches. Another study, 

Nakazato and Mizutani. [45], developed an optimization approach for sectional work 

zone scheduling considering economies of scale and user cost. These authors particularly 

addressed user disruption over extended planning horizons by prioritizing user cost 

reduction through optimized scheduling over a 365-day cycle. Additionally, Zhang et al. 

[46] discussed the uncertainties and heterogeneities in pavement management systems 

and suggested a “belief update” process to improve maintenance decisions under 

uncertainty. Other studies such as Obunguta et al. [47] and Harvey et al. [48] also 

underscored the importance of optimizing pavement maintenance decisions by 

minimizing social costs using a greedy algorithm and employing bottom-up approaches 

to address rehabilitation planning under constrained budgets, respectively. Zeng et al. [49] 

refined these approaches by enhancing a two-stage optimization framework, first at 

pavement segment level and secondly at network level, for pavement rehabilitation 

planning decisions. 

Despite advancements in optimizing road network management systems using 

stochastic modeling, a significant gap remains in applying such integrated frameworks, 

specifically in developing countries, where resource constraints and limited data 

availability pose challenges. Building on work including Obunguta and Matsushima [9] 

in Uganda, this study aims to further bridge this gap by developing a stochastic MDP 

framework tailored explicitly for Lao PDR, integrating probabilistic pavement 

deterioration forecasting, proactive maintenance strategies, and LCC analysis under 

realistic budget constraints by using historical data from the 2014–2015 Lao RMS 

database. 
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2.6. International Practices and Case Studies  

2.6.1. International Standards and Guidelines 

International practices in road asset management provide valuable insights into how 

various countries have successfully developed and implemented efficient road network 

systems. These practices highlight the importance of adopting standardized frameworks, 

innovative strategies, and advanced technologies to enhance road networks' overall 

efficiency and sustainability. 

There are many international standards and guidelines set by leading 

organizations, which form the backbone of modern road management systems, such as 

the International Road Federation (IRF), the World Bank, the Federal Highway 

Administration (FWHA), The American Association of State Highway and 

Transportation Officials (AASHTO), and the International Organization for Standard 

(ISO). These standards emphasize best practices for road design, construction, 

maintenance, and sustainability. 

Key international standards in practice include: 

• International Road Federation (IRF): The IRF provides guidelines and best 

practices for road asset management, emphasizing the importance of maintaining 

road infrastructure to ensure safety, efficiency, and sustainability. The IRF 

promotes the use of advanced technologies and innovative practices to enhance 

road maintenance and management [50]. 

• The World Bank: The World Bank has developed several frameworks and tools, 

such as the Highway Development and Management Model (HDM-4), which is a 

globally applicable model that assists countries in planning and managing their 

road networks. Nonetheless, HDM-4 is widely used for evaluating road 

investment projects, assessing maintenance strategies, and predicting road 

performance under different budget scenarios [51]. 

• ISO Standards: The ISO 55000 series for asset management are designed to be 

practical and comprehensive guidelines for managing physical assets, including 

road networks. These standards focus on optimizing asset performance, reducing 

costs, and ensuring sustainability through effective management practices. They 
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offer specific requirements for organizing and implementing an effective asset 

management system and guidance on implementing the requirements outlined in 

ISO 55001 [52]. 

• American Association of State Highway and Transportation Officials 

(AASHTO): AASHTO offers technical standards for highway design, 

construction, and maintenance, ensuring consistency and safety across road 

projects [53]. 

• Federal Highway Administration (FHWA): The FHWA emphasizes 

integrating advanced tools, such as Geographic Information Systems (GIS) and 

pavement management systems, to improve decision-making and enhance the 

efficiency of maintenance strategies [54]. 

2.6.2.  Review of Global Practices and Case Studies 

Adopting successful strategies from developed countries has significantly improved road 

management systems in various regions. Key lessons from these practices include: 

• Proactive Maintenance Strategies: Developed countries such as the United 

States of America (USA) and the United Kingdom (UK) prioritize early 

intervention through routine inspections and preventive maintenance. This 

proactive approach reduces long-term costs, minimizes disruptions, and extends 

the lifespan of road assets, leading to optimal road quality and safety [55]. 

• Data-Driven Decision Making: In the Australian expressway, GIS is used to 

enhance data management, planning, resource allocation, and long-term 

maintenance activities in decision-making. This practical suggests that applying 

advanced tools like Geographic Information Systems (GIS) and automated road 

condition assessment systems has led to measurable improvements in resource 

allocation and cost efficiency [56]. 

▪ Integration of Advanced Technologies: Developed countries like Japan and 

Germany employ technologies such as remote sensing and intelligent 

transportation systems (ITS) to enhance road monitoring, improving traffic 

efficiency and maintenance panning. These technologies improve the accuracy 

and efficiency of road condition assessments [57, 58]. 
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2.6.3. Conclusions 

The global practices and case studies have shown several lessons for improving road 

network management. By embracing advanced technologies, proactive strategies, and 

sustainability-focused approaches, the country, particularly developing countries, can 

significantly improve road asset management, contributing to national development and 

connectivity. 

The key takeaway lessons included, but were not limited to: 

1. Early intervention and proactive strategy: Regular monitoring involves early 

intervention with a proactive strategy that can prevent road deterioration and 

extend the longevity of the road and transportation infrastructure. 

2. Technologies Integration: Advanced technology such as GIS, online data 

inspection, remote sensing, and ITS can enhance the efficiency and accuracy of 

data analytics and predictions, enabling real-time monitoring and data-driven 

decision-making. 

3. Sustainable Development: Incorporating sustainability into road management to 

ensure the road network is climate change resilient and environmentally friendly. 

4. Adaptability and Innovation: Adapting other countries' best practices and 

innovation solutions into existing road management systems. 

5. Stakeholder Engagement: In addition, collaboration and engagement with 

various stakeholders, including the public sector, private sector, education sector, 

and relevant stakeholders, to improve the existing road management system. 
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3. Estimation of Lao Road Network Deterioration Using 

the Markov Hazard Model 

3.1. Introduction 

The Highway Development Management Application (HDM-4) [1] is used by the Lao 

PDR's road maintenance management system to set priorities and allocate maintenance 

funds. The Laos national road network used the concept of core network level to classify 

the road hierarchy by different pavement structures, traffic, and environmental 

conditions. Three levels of the core network were introduced in order to classify the 

hierarchy of the national roads. The level of the core network is the key to determining 

inspection and maintenance frequencies. The total length of the road network in 2021 is 

58,875 km and was categorized into six types: 1) National Roads, 2) Provincial Roads, 3) 

District Roads, 4) Urban Roads, 5) Rural Roads, and 6) Special Roads [2]. The lengths of 

the road network by category are shown in Figure 3.1. 

HDM-4, which is a mechanistic model, is a tool to predict road network 

maintenance needs [3] . Besides, the Pavement Management System (PMS) is the Road 

Management System’s module for optimal road maintenance in Lao PDR. However, the 

main objections to implementing road management system are budget constraints and 

limited technical resources. Furthermore, PMS is used to calculate road network 

deterioration and estimate maintenance needs by relating roughness to many explanatory 

variables such as pavement aging, surface distress, and the environment where the road 

is located for precise estimation, evaluate road damages based on current condition 

inspection data, and then allocate funding [4]. However, the number of data records is 

small and inspection intervals are uneven because data collection is time-consuming, 

 
Figure 3.1 Lao PDR road network length by category in year 2021 
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resource-intensive, and costly, which are the major challenges for the Department of 

Roads (DoR) and the Ministry of Public Works and Transport (MPWT) in implementing 

the PMS.  

The international roughness index (IRI) was introduced by researchers from the 

United States, Brazil, Belgium, France, and England [5]. IRI has been used globally as 

an indicator for evaluating the pavement quality of the road network. This research 

intends to construct a road deterioration forecasting model to estimate the life expectancy 

based on the IRI by using Markov transition probability [6]. The empirical analysis was 

conducted using historical inspection data from the Lao road database and covered two 

core networks (core networks 1, which are the ASIAN Highway network, and core 

network 2, which represents the National Road network) composed of 22 road sections 

totaling 2,769 km in length. The findings of this study will enable the road authorities 

(DoR, MPWT) to understand the service life expectancy of each different level of the 

core network and determine the best maintenance management plan, particularly for the 

approval of performance-based contracts for road maintenance projects. 

3.2. Model Development 

The Markov models have been adapted to meet the needs of various study fields and are 

now extensively used as a probabilistic estimation model for infrastructure performance. 

To estimate the Markov deterioration hazard model [7, 8] , the explanatory variables that 

are anticipated to be related to the rate of deterioration together with the pair of two 

conditions from a single point and their interval time of inspection have been acquired 

and collected. Therefore, past inspection data of the road network have been gathered and 

analyzed, and the road database has been acquired from the DoR and MPWT of Lao PDR 

in order to develop a road deterioration prediction model utilizing the Markov 

deterioration hazard model. According to a time series, the condition state of each road 

section is designated in a rank order. In order to compare the lifespan of each type of 

pavement, the 2,769 km road section condition data has been collected and categorized. 

3.2.1.  Markov Deterioration Hazard Model Estimation  

The following presumptions are required in order to satisfy the Markov deterioration 

hazard model [9]:  
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1. No maintenance or restoration projects were required throughout the 

inspection period. 

2. The deterioration of the road surface begins as soon as it is made available to 

the public at time 𝜏0.    

 

The deterioration of road sections is accumulated in time series. It is expressed in 

terms of calendar time by 𝜏1, 𝜏2, 𝜏3, … . 𝜏𝑖 and the condition state is increased in unitary 

unit, the condition state at each point in the time axis is restricted by the time the 

inspection was carried out as shown in Figure 2, 𝜏 represent a calendar time and condition 

state expressed by a rank represents a state variable 𝑖(𝑖 = 1, 2, … . , 𝑗)  where 𝑖 = 1 

represents a section that has not deteriorated at all (in good condition), and the state 

variable value 𝑗 is assumed to increase as deterioration progresses. Where 𝑖 = 𝑗 indicates 

that a section has reached its service life (absorbing state of the Markov chain which 

requires maintenance activities) 

The information on the periodic deterioration process of the road section is derived 

at the time of inspections. However, data on condition state based on continuous 

inspection is difficult to obtain due to the high cost, time, and resources required. 

Therefore, the Markov chain concept, it is assumed that the pavement conditions are 

discrete condition states. This model considers two periodical inspections at time 

𝜏𝐴 𝑎𝑛𝑑 𝜏𝐵  on the time axis which its interval is denoted by 𝑍(𝑍 = 𝜏𝐵 − 𝜏𝐴) and the 

duration from 𝑖 = 1 𝑡𝑜 𝑖 = 𝑗 is called the life expectancy of the road sections. Based on 

these definitions, we can determine the Markov transition probability matrix (MTP) [10] 

or ∏  which composed of probability 𝜋𝑖𝑗  with the preconditions that 𝜋𝑖𝑗 ≥ 0 and 

∑ 𝜋𝑖𝑗 = 1𝐽
𝑗=1  are required to satisfy the axioms of probability, since the model does not 

consider repairs, 𝜋𝑖𝑗 = 0(𝑖 > 𝑗) and 𝜋𝑖𝑗 = 1 become additional preconditions.    

 

                         Prob[ℎ(𝜏𝐵) = 𝑗|ℎ(𝜏𝐴) = 𝑖] = 𝜋𝑖𝑗                                (3.1) 

 

 

                                ∏ = [

𝜋11 ⋯ 𝜋12

⋮ ⋱ ⋮
0 ⋯ 𝜋𝑗𝑗

]                      (3.2) 
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Figure 3.2 Deterioration process and inspection times [7, 8].  

 

In Figure 3.2, it is supposed that at time 𝜏𝐴 , the condition state observed by 

inspection is 𝑖  (𝑖=1, 2, ..J-1). The deterioration process in future times is uncertain. 

Among the infinite set of possible scenarios describing the deterioration path, only one 

path is finally realized.  

 

 

Figure 3.3 Condition states and possible paths [7, 8]. 

 

 

For simplicity, there are four possible sample paths described in Figure 3.3, as follows 

[8] :   
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• Path 1 indicates no transition in the condition state i during the periodic 

inspection interval.  

• Path 2 indicates the transition of the pavement from condition state 𝑖 to 𝑖 + 1 

at time τi
2. 

• Path 3 indicates the transition of the pavement from condition state 𝑖 to 𝑖 + 1 

at time τi
3. 

• Path 4 indicates the transition of the pavement from condition state 𝑖 to 𝑖 +

1 and 𝑖 + 2 at time τi
4 and τi+1

4 respectively. The condition state observed at τB 

is 𝑖 + 2 

 

Referring to Tsuda et al (2006) [8] in Figure 3.2, the deterioration paths of the road 

pavement condition by the Markov chain concept are expressed, when deterioration status 

changes from 𝑖 to 𝑖 + 1 at 𝜏𝑖, the duration remains at status 𝑖 can be expressed by 𝜁𝑖(𝜁𝑖 =

𝜏𝑖 − 𝜏𝑖−1). The life expectancy of a condition state 𝑖 is assumed to be a stochastic variable 

with a probability density function 𝑓𝑖(𝜁𝑖)  and distribution function 𝐹𝑖(𝜁𝑖) . The 

distribution function 𝐹𝑖(𝜁𝑖) represents the cumulative probability of the transition in the 

condition state for 𝑖  to 𝑖 + 1  when 𝑖  is set at the initial point 𝑦𝑖 = 0 (time τi-1). The 

cumulative probability 𝐹𝑖(𝑦𝑖) of a transition in the condition state 𝑖 during the time points 

interval 𝑦𝑖= 0 to 𝑦𝑖   ∈ [0, ∞] is defined as:  

 

𝐹𝑖(𝑦𝑖) = ∫ 𝑓𝑖
𝑦𝑖

0
 (𝜁𝑖)𝑑𝜁𝑖                                                  (3.3) 

 

 

Accordingly, the survival function 𝑅𝑖(𝑦𝑖) becomes 𝑅𝑖(𝑦𝑖) = 𝑝𝑟𝑜𝑏{(𝜁𝑖 ≥ 𝑦𝑖} =

1 − 𝐹𝑖(𝑦𝑖) . The deteriorating process that satisfies the Markov property can be 

represented by the exponential hazard function. The probability density 𝜆𝑖(𝑦𝑖), which is 

referred to as the hazard function, is defined in the domain [0, ∞] as: 

𝜆𝑖(𝑦𝑖) =
f
i
(y

i
)

Ri(yi
)
= 

dRi(yi
)

dy
i

Ri(yi
)

 = 
e

dy
i

(-logRi(yi
))                                        (3.4) 
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By hazard function 𝜆𝑖(𝑦𝑖) = 𝜃𝑖, the probability 𝑅𝑖(𝑦𝑖) that the life expectancy of 

the condition state 𝑖 remains longer than 𝑦i and its probability density function 𝑓𝑖(𝜁𝑖) are 

expressed by the following:  

 

𝑅𝑖(𝑦𝑖) = 𝑒𝑥𝑝[− ∫ 𝜆𝑖(𝑢)𝑑𝑢
𝑦𝑖

0
] = 𝑒𝑥𝑝 (−𝜃𝑖𝑦𝑖)           (3.5) 

 

 

𝑓𝑖(𝜁𝑖) = 𝜃𝑖𝑒𝑥𝑝 (−𝜃𝑖𝜁𝑖)     (3.6) 

 

3.2.2. Determination of Markov Transition Probability  

 

Again, in Figure 3 the various deterioration paths are classified into 

𝜋𝑖𝑖 , 𝜋𝑖,𝑖+1, 𝜋𝑖,𝑖+2, 𝑎𝑛𝑑 𝜋𝑖𝑗. The Markov transition probabilities for these possible paths are 

based on the exponential hazard model can be explained for the three cases considering 

the condition state observed at periodic inspection time point as shown in Figure 3.4. 

 
Figure 3.4 Periodic inspection practice of the condition state. 

 

▪ Case 1: The condition state 𝑖 keeping the current condition until the next 

inspection time 

 

The condition state 𝑖 obtain by inspection at time point yA, the probability that 

the same state condition will be observe at the time point 𝑦𝐵 = (𝑦𝐴 + 𝑍) is expressed by 

the following: 
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𝜋𝑖𝑖 = 𝑃𝑟𝑜𝑏[ℎ(yB = 𝑖|ℎ(yA) = 1] = exp(−𝜃𝑖𝑍)                                           (3.7𝑎) 

 

Eq (7a), πii is dependent only on the hazard rate (θi) and inspection interval (Z).  

 

Moreover, without using deterministic information at the time point yA 𝑎𝑛𝑑 yB, it is still 

possible to estimate the transition probabilities.  

 

▪ Case 2: The condition state changes from 𝑖 𝑡𝑜 𝑖 + 1 during the inspection 

interval Z. 

 

For the condition state 𝑖  observed at inspection time point yA  changes to 

condition state 𝑖 + 1 at time point yB, the transition is assumed by exponential hazard 

function as: 1) the condition state 𝑖 remain constant between a time point yA to a time 

point si=yA+zi, (zi ∈ [0, Z]), 2) the condition state changes to 𝑖 + 1 at time point yA + zi, 

and 3) the condition remain constant from yA + zi 𝑎𝑛𝑑 yB. However, the exact time in 

which transition from 𝑖 𝑡𝑜 𝑖 + 1 cannot be trace by periodical inspection, and it can be 

temporally assumed that the transition occurs at the time point (yA + z̅i) ∈ [yA, yB). The 

Markovian transition probability that the condition state change from 𝑖  to 𝑖 + 1 during 

the time points yA and yB is expressed by:   

 

𝜋𝑖 𝑖+1 =  𝑃𝑟𝑜𝑏[ℎ(𝑦𝐵)  =  𝑖 + 1 | ℎ(𝑦𝐴)  =  𝑖]                                                

       

 𝜋𝑖 𝑖+1 =
𝜃𝑖

𝜃𝑖−𝜃𝑖+1
{− exp(−𝜃𝑖𝑍) + exp (−𝜃𝑖+1𝑍)}                         (3.7b) 

   

Where, πi,i+1 < 1. 

 

▪ Case 3: The condition state changes from 𝑖 𝑡𝑜 𝑗(𝑗 ≥ 𝑖 + 2) during the inspection 

interval time Z.  

The transition from the condition state from 𝑖 𝑡𝑜 𝑗 during the inspection time 

interval Z, the transition is assumed to occur as 1) the condition state 𝑖  remains constant 

between a time point yA, s̅i= yA+z̅i ∈ [yA, yB] , 2) the condition state changes to 𝑖 + 1 at 

the time point si̅= yA+zi̅, 3) the condition state 𝑖 + 1  remains constant during the time 
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interval s̅i= yA + z̅i, s̅i+1=s̅i + z̅i+1 (≤ yB), and at this time point changes to 𝑖 + 2. After 

repeating the same process 4) the condition state changes to 𝑗 at some time point s̅j−1(≤ 

yB) remains constant until the time point yB. 

 

Therefore, the Markov transition probability changes from 𝑖 𝑡𝑜 𝑗(𝑗 ≥ 𝑖 + 2) during the 

inspection time yA and yB is expressed by: 

 

𝜋𝑖𝑖 = 𝑃𝑟𝑜𝑏[ℎ(yB = 𝑗|ℎ(yA) = 𝑖]                                                                      

 

𝜋𝑖𝑗 = ∑ ∏
𝜃𝑚

𝜃𝑚−𝜃𝑘

𝑘−1
𝑚=𝑖

𝑗
𝑘=𝑖 ∏

𝜃𝑚

𝜃𝑚+1−𝜃𝑘

𝑗−1
𝑚=𝑘 𝑒𝑥𝑝(−𝜃𝑘𝑍)                                (3.7𝑐)  

 

where:        

 

∏
𝜃𝑚

𝜃𝑚−𝜃𝑘

𝑘−1
𝑚=𝑖 = 1, at (k ≤ i + 1) and  ∏

𝜃𝑚

𝜃𝑚+1−𝜃𝑘

𝑗−1
𝑚=𝑘 = 1 at (k ≥ j) 

 

In equation (7c),  πij [0 <  πij < 1 ], and πiJ is arranged using the Markov transition 

probabilities conditions as follows: 

 

𝜋𝑖𝐽 = 1 − ∑ 𝜋𝑖𝑗

𝑗−1

𝑗=1

                                                           (3.7d) 

 

From equation (7a) - (7d), the Markov transition probability depend on the inspection 

interval Z. The Markov transition probability is expressed as πiJ(𝑍) , Therefore, the 

transition probability matrix related to the inspection interval Z is expressed as follows 

 

 

∏(Z) = [

𝜋11(Z) ⋯ 𝜋12(Z)
⋮ ⋱ ⋮
0 ⋯ 𝜋𝑗𝑗(Z)

]                                                         (3.8) 
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The MTP matrices ∏(Z) and ∏(nZ) describe the same deterioration process for 

two different intervals for an integer value n two inspection intervals (Z) and (nZ). 

Therefore, the MPT ∏(nZ) is expressed as {∏(Z)}𝑛 as the time adjustment condition of 

the MTP. 

 

In equation (7), the multistage exponential hazard model has been defined. 

However, considering the explanatory variable to estimate hazard rate θi which is defined 

as the function of explanatory variables xk  and unknown parameters βi . where βi = 

(βi,1,….., βi,M), M (m=1,…..,M) is the number of explanatory variable and k(k=1,….K) 

is an individual sample of inspection data. 

 

                                     𝜃𝑖
𝑘 =  𝑓(𝑥𝑘: 𝛽𝑖)                 (3.9) 

 
 

In summary, the elements of the MTP matrix 𝜋𝑖𝐽  are estimated using 𝜋𝑖𝐽(𝑍𝑘, 𝑥𝑘: 

𝛽𝑖 ). The unknown parameter 𝛽𝑖 (𝑖=1,…..,J-1) is determined with Bayesian estimation 

method to obtain the hazard function θi
k  (𝑖  =1,…..,J-1), the life expectancy of each 

condition state 𝑖 can be defined by means of the survival function Ri(yi
k) [11]. 

 

                              𝐿𝐸𝑖
𝑘 ∫ exp (− 𝜃𝑖

𝑘𝑦𝑖
𝑘)𝑑𝑦𝑖

𝑘 =
1

𝜃𝑖
𝑘  

∞

0
                           (3.10) 

 

Life expectancy from 𝑖 to 𝐽 can be estimated using             

 

∑ 𝐿𝐸𝑖
𝑘

𝐽−1

𝑖=1

 (3.11) 

       For detailed description, it is recommended to refer to Tsuda et al (2016) [8]. 

 

3.2.3.  Application of Bayesian Estimation for the Markov Hazard Model. 

Because the classic Markov chain using the maximum likelihood estimation frequently 

fails to converge for a variety of reasons [7], the initial values of the parameters are 

frequently crucial [12]. Therefore, the Bayesian estimator is used to get around those 
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issues, the Bayesian estimation is an iterative approach to statistical inference that uses 

data and prior knowledge to estimate the model's parameters. Bayesian estimation can be 

very helpful in the setting of a Markov deterioration hazard model to estimate the 

unknown parameter 𝛽𝑖(𝑖=1, .., J-1). Bayesian estimation can be defined by 3 processes:  

 

1. define the prior probability distribution 𝜋(𝛽),  

2. define the likelihood function 𝐿(𝛽|𝜉) by applying newly obtained data ξ̅, and  

3. modify the prior distribution 𝜋(𝛽) using Bayes’ theorem and then update the 

posterior distribution 𝜋(𝛽|𝜉) for parameter (𝛽).  

 

However, the normalizing constant L(ξ̅)=∫ L(β|ξ̅) ∏ g(βi|µi, Σi
j−1
i=1  )dβ is difficult 

to calculate. Therefore, we directly extract the statistical value for the posterior 

distribution of parameters using the Metropolis-Hastings algorithm, also known as the M-

H algorithm [13, 14], in the Markov chain Monte Carlo (MCMC) simulation. The M-H 

algorithm procedure is explained below: 

 

1. Define initial value of parameter vector 𝛽(0). 

2. Calculate current probability density π(𝛽(n)) by using current 𝛽(n). 

3. Find a candidate value as 𝛽(n) = 𝛽(n) +  ε(n) ~ N(0,σ2) where ε is the step width 

of the random walks. 

4. Calculate the proposal density by using 𝛽(n) as a candidate parameter π (𝛽(n)). 

5. Apply the updating rule by comparing π(𝛽̃(n)) and π(𝛽(n)) with the following 

conditions 

      β(n + 1) = {

π (𝛽(n)) > π(𝛽(n)),                              𝛽(n + 1) = 𝛽(n)   

π (𝛽(n)) ≤ π(𝛽(n)), {
R ≤ r,                𝛽(n + 1) = 𝛽(n)  

Otherwise,       𝛽(n + 1) = 𝛽(n)

       (3.12) 

 

Where, r = π (β̃(n)) /π(β(n)), and R is a standard uniform for R~ U (0,1) 
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6. Do sufficiently large numbers of iterations from step 2 to step 5, until sequence 𝛽n 

becomes a stationary condition (that is close to convergence). 

7. Cut burn-in samples and take the average of sample parameters. 

 

The MCMC does not include any method to confirms that the initial value 𝛽(0) 

reaches stationary distribution. Therefore, the Geweke's test is utilized to determine 

whether the Markov chain reaches convergence [15]. Refer to the following reference for 

a full explanation of the M-H method and the Geweke's test to verify the Markov chain's 

convergence [7]. 

3.3. Data Processing 

The historical inspection data from the Lao RMS was inquired and examined following 

the model's estimation. Data inspection from the Lao RMS database for the years 2014–

2016 and 2020 was obtained. However, it was difficult to attain the maintenance history 

from 2016–2020 and the conditions in 2020 being almost as good as those in 2016. 

Therefore, only the dataset from 2014–2016 has been used. Pavement materials, the IRI, 

and average annual daily traffic (AADT) are the only available data that have been 

gathered and analyzed because environmental uncertainty parameters like weather, 

rainfall, etc. have not been sufficiently covered by data collection. Without taking any 

maintenance action, the aberrant condition examined under improved conditions has been 

evaluated and checked [6]. According to the DoR, MPWT Lao PDR classification, two 

core road networks (core networks 1 and 2) are evaluated. The model's basic tenet is to 

anticipate the target core networks' life expectancy, IRI degradation process, and hazard 

rate in relation to the Lao road network's deterioration process.  

 

The collected IRI data was used to calibrate the Markov model. The IRI data has 

been derived from periodic inspections since 2014–2016. In order to measure the IRI, the 

Dynamic Response Vehicle Intelligent Monitoring System equipment, which was 

supported by the Japan International Cooperation Agency (JICA) in 2012, has been used. 

The IRI was measured at a speed of around 80 km/h for each segment of 100 meters [16, 

17]. The IRI circumstances are then classified into five groups based on preset criteria for 

roughness sufficiency [18] in order to estimate the Markov transition probability based 

on the exponential hazard model, according to Table 3.1. The IRI roughness scale, which 
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ranks the conditions from excellent to failed (absorption state), indicates the need for 

maintenance or rehabilitation activities. 

 

Table 3.1 The IRI Roughness Scale (condition state)  

Pavement condition (State) Excel/Good (1) Fair (2) Poor (3) Bad (4) Failed (5) 

IRI (m/km) IRI ≤ 3 3<IRI≤5 5<IRI≤7 7<IRI≤9 9 < IRI 

 

 

After rejecting the incorrect information, the atypical condition, the data of road 

sections was divided into two core networks based on the definition and classification 

from DoR and MPWT. The total length was 2,769 km, or 35.29% of the total 7,847 km 

(national road network length), as presented in Table 3.2. 

 

Table 3.2 Summary of data observation and variables   

Core 

network 

No. of 

routes 

Total length of 

observations 

(km) 

Number of 

sample (pairs) 

Explanatory 

Variables 

Length of 

AC/ST 

(km) 

Core 1 8 1,900 18998 AADT, Road 

surface 

(AC/ST) * 

778/1,122 

Core 2 14 869 8690 AADT, Road 

surface 

(AC/ST) 

50/819 

*AC=Asphalt concrete; ST=Surface treatment 

 

Asphalt concrete pavement and surface treatment (single and double bituminous) 

are the two main types of pavements. The traffic volume is gathered from the number of 

vehicles passing the counting location in each road section. The methodology for 

counting is either automatic or manual (by the traffic count form), and the vehicles are 

classified into 14 classes in order to apply the adjustment factors [19]. A number of 

adjustment factors are related to classified traffic counts to derive the average annual daily 

traffic. To normalize the traffic volume, the AADT has been classified into 3 bands: low, 

medium (mean), and high, as shown in Table 3.3. 
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Table 3.3 Traffic band classification 

Band 
From 

(AADT) 

To 

(AADT) 

Low 0 500 

Mean 501 2000 

High 2001 99999 

 

3.4. Model Application and Results 

The transition probability matrix of Core Networks 1, 2 were determined using the 

Markov Deterioration Hazard Model. The MTP for Core Networks 1 and 2 are shown in 

Tables 3.4, and Table 3.5 respectively. 

 

Table 3.4 MTP of the Core Network 1  
 

State 1 2 3 4 5 

1 0.487 0.442 0.063 0.006 0.002 

2 0 0.761 0.203 0.026 0.010 

3 0 0 0.732 0.167 0.101 

4 0 0 0 0.378 0.622 

5 0 0 0 0 1.000 

 

 

Table 3.5 MTP of the Core Network 2  
 

State 1 2 3 4 5 

1 0.342 0.529 0.110 0.016 0.003 

2 0 0.683 0.254 0.051 0.012 

3 0 0 0.652 0.254 0.094 

4 0 0 0 0.539 0.461 

5 0 0 0 0 1.000 
 

 

 

 

As a result of Tables 3.4 and Table 3.5, the transition probability in states 1-1, 2-

2, and 3-3 shows that the core network 1 has a higher transition probability compared to 

the core network 2, meaning that the core network 1 will deteriorate more slowly than the 

core network 2, which in turn leads to a longer life expectancy. 

 

The road network's hazard rate (deterioration rate) and interval life expectancy of 

each condition state of core networks 1 and 2 are computed using equations (10) and (11), 

the results are shown in Tables 3.6 and Table 3.7: 
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Table 3.6 IRI mean hazard rate (θ𝒊) and life expectancy (LEi) of Core Network 1 
 

State 

Mean 

hazard 

rate 

(𝛉𝒊) 

Hazard 

rate 

(𝛉𝒊) 

(ST) 

Hazard 

rate 

(𝛉𝒊) 

(AC) 

LEi 

(Year) 

(AV) 

LEi 

(Year) 

(ST) 

LEi 

(Year) 

(AC) 

 

1-2 0.758 0.994 0.513 1.32 1.01 1.95  

2-3 0.273 0.303 0.234 4.99 4.31 6.21  

3-4 0.422 0.422 0.422 7.36 6.68 8.58  

4-5 1.525 1.525 1.525 8.01 7.34 9.24  
 

 

 

 
Table 3.7 IRI mean hazard rate (θ𝒊) and life expectancy (LEi) of Core Network 2 

 

State 

Mean 

hazard 

rate 

(𝛉𝒊)   

Hazard 

rate 

(𝛉𝒊) 

(ST) 

Hazard 

rate 

(𝛉𝒊) 

(AC) 

LEi 

(Year) 

(AV) 

LEi 

(Year) 

(ST) 

LEi 

(Year) 

(AC) 

 

1-2 1.682 1.774 0.700 0.59 0.56 1.43  

2-3 0.909 0.912 0.870 1.69 1.66 2.58  

3-4 0.465 0.465 0.465 3.85 3.81 4.73  

4-5 0.584 0.584 0.584 5.56 5.52 6.44  
 

                

 

The estimation results for the unknown parameters, which indicates the statistic 

properties (coefficient) of the explanatory variables of each parameters (traffic and 

surface pavement), and Geweke’s z score, which verifies the convergence (stationary 

distribution) of the parameter [15], are shown in Tables 3.8 and Table 3.9 as follows: 

 

 

Table 3.8 Unknown parameter and Geweke’s test of Core Network 1 

  

State 
(𝛃𝒊𝟎) 

Absolute 

(𝛃𝒊𝟏) 

Traffic   

(𝛃𝒊𝟐) 

Pavement  

 

1-2 -0.006 

(-0.706) 

- -0.660 

(0.918) 

 

2-3 -1.251 

(-0.699) 

0.278 

(0.864) 

-0.255 

(-0.585) 

 

3-4 -0.863 

(0.900) 

- -  

4-5 0.422 

(1.760) 

- -  

 

The Geweke diagnostic values are stated in the parentheses 
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Table 3.9 Unknown parameter and Geweke’s test of Core Network 2 

  

State (𝛃𝒊𝟎) 

Absolute 

(𝛃𝒊𝟏) 

Traffic   

(𝛃𝒊𝟐) 

Pavement  

 

1-2 0.573 

(0.863) 

- -0.930 

(-1.527) 

 

2-3 -0.092 

(0.723) 

- -0.047 

(0.507) 

 

3-4 -0.766 

(1.390) 

- -  

4-5 -0.620 

(-0.047) 

0.241 

(0.147) 

-  

 

The Geweke diagnostic values are stated in the parentheses 

 

In Table 3.8, the β𝑖1 indicate that the traffic volume had a significant impact on 

deterioration rate in condition 2-3. Higher traffic leads to faster deterioration rate. In order 

to verify the chain convergence, Geweke’s test value for all β values should fall between 

the range [-1.96,1.96], where a value of 0 denotes perfect convergence. Additionally, the 

positive 𝛽 values mean traffic strongly impacts the deterioration rate in Condition State 

2 for ASIAN network and Condition State 4 for National network (Table 3.9). 

Consequently, higher traffic on ASIAN network significantly contributes to faster 

deterioration. However, thicker and stronger AC road sections exhibit a longer lifespan, 

hence the negative 𝛽 values. Other 𝛽 values were excluded due to sign restrictions. 

The expected degradation path (deterioration processes) for 2 core networks is 

illustrated in Figures 3.5 (a, b) and Figure 3.6 (a, b) as a graph, describing the typical 

deterioration process over the duration of the core networks' life expectancy condition 

states from the starting state (excellent condition) to the absorption stage by time order in 

years. 

 
Figure 3.5a Life expectancy of pavement types (AC, ST) for Core Network 1 
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 Figure 3.5b Life expectancy of pavement types (AC, ST) for Core Network 2 

 

 
Figure 3.6a Life expectancy considering traffic volume (Min AADT, Max AADT) for Core 

Network 1 

 

 
Figure 3.6b Life expectancy considering traffic volume (Min AADT, Max AADT) for Core 

Network 2 
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3.5. Discussion 

While an extensive and high-quality Lao RMS database is necessary for validating the 

results, the life expectancies of the two networks were shorter than the expected design 

life, which is about 10-20 years from the design life manual [20]. This implication was 

probably due to the explanatory variables or the quality of the dataset. However, other 

researchers performed validation of the model [7-9, 21], which may point to the model 

being robust enough to generate acceptable estimates, Han et al., (2014) [7] validated the 

model by comparing its predictions with an accumulated dataset spanning eight years and 

confirmed its reliability. The results of the empirical study were based on historical 

inspection data gathered by the Lao RMS from 2014 to 2016. In other words, this study 

examined only three years deterioration trend of the Lao road network by using IRI data 

from Lao RMS. Due to financial and technical limitations of the Department of Road, 

MPWT, part of the Lao Road Authority aims to collect data on the condition state of the 

road network in 2024, the final year of the current long-term maintenance financial plan 

2016–2025. They were unable to conduct the inspection every year; hence, some years' 

data were omitted. Due to incomplete data, the traffic volume sample data led to a 

convergence issue due to the number of observations and the difficulty in identifying the 

precise location of the traffic on specific road sections. However, the outcomes indicated 

that the two significant core road networks had different life expectancies considering 

traffic volume and pavement parameters; the deterioration process of network 1 was 

estimated to take 8.01 years on average, whereas network 2 was estimated to last for only 

5.56 years.  

When the life expectancy was analyzed based on traffic volume (AADT), 

differences in life expectancies in AADT were revealed (Figure 3.6a and Figure 3.6b). 

The sections with low AADT showed a much higher life expectancy of 8.23 and 5.67 

years for Core Network 1 and 2, respectively. On the other hand, the maximum AADT 

sections deteriorated faster and brought down the life expectancy to around 7.28 and 5.27 

years, respectively. Furthermore, the life expectancy of the AC pavement road section in 

network 1 was 9.24 years, while that in network 2 was 6.44 years (Figure 3.5a and Figure 

3.5b). Due to the ST pavement road section being the majority portion of the road 

network, both networks 1 and 2. Therefore, the predicted life expectancy of the ST 

pavement road section was nearly the same as the life expectancy of the whole networks 

1 and 2 (average), which were 7.34 and 5.52 years, respectively. However, the life 
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expectancies of two core road networks in this research were evaluated using only the 

traffic and pavement type parameters, which may not be the only factors that affect the 

deterioration process of the two road networks in Lao PDR. The results, which indicate 

the transition year, can be used to evaluate the maintenance plans of each network in order 

to restore their condition. Moreover, it gives the road decision-maker time for intervention 

in terms of the maintenance plan.  

3.6. Conclusions 

 

Understanding the lifespan of infrastructure is essential for asset management planning 

and prioritizing maintenance activities. The Markov deterioration hazard model was used 

to forecast the deterioration of the road network in Lao PDR because this is an essential 

step before carrying out infrastructure planning. The estimated life expectancy of the core 

network 1 and core network 2 in the Lao road network shown in Tables 3.6 and Table 

3.7, respectively, using the IRI data in the historical inspection dataset from RMS, is an 

essential prerequisite to maintenance planning for the two road groups. The decision 

maker could use this information to determine the maintenance frequency and 

prioritization at the network level. However, this study has only taken into account the 

traffic volume AADT and pavement type variables to predict the deterioration process 

because of the incomplete Lao RMS data sets. Nonetheless, some critical parameters, 

such as the commercial vehicle weight, the Pavement Structure Number (pavement 

strength), and other uncertain environmental variables, such as rainfall, temperature, and 

terrain, should be taken into account for better prediction. Therefore, in future studies, 

these significant parameters should be collected and included in the model in order to 

generate more precise information that can be used for prioritization and allocation of the 

maintenance fund.  

Furthermore, in the interest of developing the unpaved road network, other key 

performance measures, such as the Surface Integrity Index (SII), which is used to evaluate 

the condition of unpaved roads, should be considered in the future. However, the results 

from this study will assist in improving the PMS, which will be utilized to determine the 

performance-based contract for upcoming road maintenance projects in Lao PDR. 
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4. Asian and National Road Network Optimization 

4.1. Introduction 

According to the Ministry of Public Works and Transport’s (MPWT) statistics in 2021 [1], 

the road network in the Lao People’s Democratic Republic (hereinafter referred to as Lao 

PDR or Laos) consists of six main categories: national, provincial, district, urban, rural, 

and special roads, with a total length of 59,645 km. National roads are classified into three 

core network levels. Core Network 1, which includes high-priority roads linking Laos to 

other ASEAN (Association of Southeast Asia Nations) road networks, Core Network 2 

connecting major intranational towns, and Core Network 3 linking provincial to secondary 

municipalities with low traffic volume. Core Network 1 is referred to as the ASIAN 

network since it connects Laos with other ASEAN nations. ASIAN roads are constructed 

following uniform and high technical standards to ensure interoperability and facilitate 

smooth cross-border travel within the ASEAN region [2]. In contrast, Core Network 2, 

referred to as National roads, connects provinces within Laos, designed based on localized 

standards that vary according to geographic and traffic conditions. Figure 4.1 shows the 

location of the target study roads, including ASIAN highways and National roads. The 

classifications provide essential context for assessing road infrastructure needs, 

highlighting the importance of management strategies, and resource allocation challenges 

specific to Lao PDR. 

4.2. Road Asset Management Challenges in Lao PDR 

The socioeconomic development of developing countries often depends on efficient road 

network management.  The Highway Development and Management Four (HDM-4) 

model, currently used by the road maintenance system (RMS) in Lao PDR, enables long-

term planning to set priorities and allocate maintenance funds [3, 4]. However, HDM-4 

needs extensive inputs, including pavement type, conditions, traffic patterns, 

environmental factors, and maintenance history. These data are challenging to collect and 

often used for specific projects. Additionally, provincial administrations independently 

develop road intervention strategies as they carry out inspections and submit reports to the 

MPWT for maintenance budget decisions. These reports, based on condition surveys, use 

one-time data for reactive planning. Given that decisions only depend on route importance, 

maintenance work and corresponding budget allocations are suboptimal [1, 5]. 
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Figure 4.1 ASIAN highways and National roads in Lao PDR 
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Traditional systems such as the Laos RMS base on route importance and 

professional engineering knowledge to determine decisions without capitalizing on their 

rich databases more objectively [6, 7]. This knowledge should be integrated with other 

information to support more efficient decision-making processes related to road network 

maintenance management and investment planning [8]. The Road Fund (RF) in Lao PDR, 

established in 2001, faces significant challenges due to escalating debt, approximately 

2,433 billion Kips (USD 200 million) as of 2021  [5]. This situation highlights concerns 

about the fund's ability to sustain road maintenance, which may worsen road conditions. 

Subsequently, to addresses these issues, the government, particularly the MPWT, has to 

consider measures such as adopting cost-effective intervention strategies, finding 

alternative funding sources, improving revenue collection from road users, and optimizing 

resource allocation 

4.3. Study Objectives 

The main objective of this research is to customize the stochastic Markov decision process 

(MDP) framework to improve road management in developing countries such as Laos. 

The specific objectives are: 

⚫ Develop a stochastic MDP framework for Laos RMS, particularly ASIAN 

highways and national roads. 

⚫ Prioritize road intervention by evaluating long-term impact on road network 

performance within budget constraints. 

⚫ Enhance the decision-making process; explore effective strategies to address the 

practical challenges in road network management in developing countries, 

particularly in Lao PDR. 

This study integrated a proactive maintenance strategy with stochastic 

deterioration forecasting and life cycle costs (LCC) analysis, creating a framework for 

optimizing road network asset management under different financial constraints and 

minimum road performance targets in Laos that faces data and resource constraints.  
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4.4. Model Framework Development 

4.4.1. Markov Decision Process 

MDP is a model used to represent decision-making in environments where outcomes are 

influenced by both probabilistic events and the choices of a decision-maker. It consists of 

states, actions, transitions, rewards, and policies. The goal of the MDP in road 

maintenance decisions is to choose actions that minimize long-term costs while 

considering the tradeoff between budget constraints and road performance [9, 10]. In this 

process, a road agency makes decisions based on the condition of a road at each time step 

and selects an action to implement. The road's condition then transitions to a new state, 

and the agency or road user receives a reward for improved road performance. From the 

perspective of rewards, the objective is to maximize the cumulative benefits over time. 

The stochastic Markov model processes assume that the probability of 

transitioning to a new state depends only on the current state and action, not on any 

previous states or actions [9]. This property allows for creating Markov models using 

states, actions, transition probabilities, and rewards. MDP can be solved using algorithms 

such as dynamic programming, Monte Carlo methods, and reinforcement learning. These 

algorithms find optimal policies by mapping states to actions to maximize the expected 

cumulative reward [9, 11]. 

The developed model incorporates condition states 𝑖(𝑖 = 1, 2, 3, … , 𝐽)  with 𝐽 as 

the absorbing state, discrete time periods 𝑡(𝑡 =  0, 1, 2, … ), intervention strategies (𝑚𝑝), 

inspection intervals 𝑍 (𝑍 = 1, 2, 3, … ), and repair actions (R). The analysis considers a 

finite period from 𝑡 = 0 to 𝑡 = 𝑇. 

Figure 2 illustrates the general diagram of the model framework, which includes 

defining the network, estimating Markov Transition Probability (MTP), proposing policies 

and strategies, estimating LCCs, and determining the optimal strategy that minimizes 

LCCs. This framework guides the development of the stochastic MDP model for road asset 

management in Lao PDR 
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Figure 4.2 Stochastic optimizing framework for Laos RMS 
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4.4.2. MTP and Performance Estimation 

The MTP models the transition of road conditions from ℎ(𝑡) = 𝑖 to ℎ(𝑡 + 𝑍) = 𝑗 after an 

interval Z, with periodic inspections at time t and 𝑡 + 𝑍 [12, 13]. The probability of this 

transition is: 

                  Prob [ℎ(𝑡) = 𝑗|ℎ(𝑡 + 𝑍) = 𝑖] = 𝜋𝑖𝑗  (4.1) 

 

As a function of hazard rates, the MTP is estimated by: 

𝜋𝑖𝑗 = ∑∏
𝜃𝑚̃

𝜃𝑚̃ − 𝜃𝑘̃

𝑘̃−1

𝑚̃=𝑖

𝑗

𝑘̃=𝑖

∏
𝜃𝑚̃

𝜃𝑚̃+1 − 𝜃𝑘̃

𝑗−1

𝑚̃=𝑘̃

exp(−𝜃𝑘̃𝑍)  (4.2) 

                      

where 𝜃 is the hazard rate and, 𝑘̃ and 𝑚̃ are indices. The MTP matrix (∏) can be defined 

using transition probabilities between each pair of condition states (i, j) 

 

∏ = [

𝜋11 ⋯ 𝜋12

⋮ ⋱ ⋮
0 ⋯ 𝜋𝐽𝐽

]  (4.3) 

 

To satisfy the Markov chain property, the following assumptions are required: 

⚫ No maintenance or reconstruction projects were undertaken during the inspection 

period. 

⚫ The road surface starts deteriorating as soon as it becomes accessible to the public. 

Therefore, the preconditions 𝜋𝑖𝑗 ≥ 0 and ∑ 𝜋𝑖𝑗 = 1𝐽
𝑗=1  are defined to satisfy the 

axioms of probability. Since the model does not consider repairs, 𝜋𝑖𝑗 = 0 for (𝑖 > 𝑗) and 

𝜋𝐽𝐽 = 1. 

The hazard rate 𝜃𝑖 expressed as a function of explanatory variables 𝑥𝑘 and unknown 

parameters 𝜷𝑖  where 𝜷𝑖 = (𝜷𝑖,1, … , 𝜷𝑖,𝑀 ), 𝑚 (𝑚 = 1, . . . , 𝑀)  is the number of 

explanatory variables and 𝑘(𝑘 = 1,… . 𝐾) is the number of inspected element groups. 

𝜃𝑖
𝑘 =  𝑓(𝑥𝑘: 𝛽𝑖) = exp(𝑥𝑘𝛽𝑖

′) 

(𝑖 = 1,… , 𝐽 − 1) 
(4.4) 
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  The unknown parameters 𝛽𝑖(𝑖 = 1,… , 𝐽 − 1) can be determined using an iterative 

method like Newton’s method or through Bayesian estimation [14, 15]. 

The life expectancy 𝐿𝐸𝑖
𝑘 in each condition state 𝑖 can be defined by means of a survival 

function [16]. 

𝐿𝐸𝑖
𝑘 =

1

𝜃𝑖
𝑘 

     (4.5) 

The life expectancy from 𝑖 to 𝐽 can be estimated as ∑ 𝐿𝐸𝑖
𝑘𝐽−1

𝑖=1 , and the deterioration 

curve is attained by the relation of life expectancies. For a detailed description of MTP 

derivation, it is recommended to refer to Tsuda et.al [12]. 

4.4.3. Pavement Maintenance Model 

Road agencies need to implement optimal maintenance plans that provide the highest 

value. The optimal policy is the policy that keeps more roads in good condition while 

minimizing the overall LCCs. This study focuses on road agency costs, excluding user 

and social costs. The term "intervention strategy" can be used to refer to a combination 

of road repair activities, including pothole patching, resurfacing, reconstruction, and 

inspection. 

Pavement repair activities denoted by 𝑅(𝑅0, 𝑅1, 𝑅2, 𝑅3, … ,𝑅𝐽−1) are carried out in 

correspondence with the condition after inspection (time-dependent rule) or deterioration 

rate (condition-dependent rule) following Kobayashi et al. and Obunguta and Matsushima 

[17, 18]. At the end of the planning period, time T, reconstruction 𝑅𝐽−1 is considered for 

all sections. Figure. 4.3 illustrates the correspondence between intervention and 

uncertainty. Once action is taken, pavement condition state 𝑖 is assumed to improve to 𝑖̂. 

This improvement is denoted by 𝑖𝑟𝑒𝑝. 

 

𝑖𝑟𝑒𝑝 = {
𝑖                   if 𝑅0 (no action)        

  𝑖̂ otherwise (𝑅1, 𝑅2, 𝑅3, … , 𝑅𝐽−1)
 

(𝑖 = 1,… , 𝐽) 

  

(4.6) 
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Figure 4.3 Correspondence between interventions and uncertainty 

 

Preventive repair actions can be performed on pavements before they reach the 

terminal state. The expected expenditure necessary for planning purposes is estimated 

from the maintenance plans. Inspected roads are grouped based on condition state into 

groups 𝑘(𝑘 = 1,……𝐾)  with pavement sections 𝑠𝑘(𝑠𝑘 = 1,… 𝑆𝑘) . The intervention 

strategy 𝒎𝒑
𝒔𝒌

(𝒎𝑹↔𝒊
𝒔𝒌

,  𝑍𝑠𝑘
) is a set of repair actions done in correspondence to condition 

𝒎𝑹↔𝒊
𝒔𝒌

= (𝑅0
𝑠𝑘

↔ 1,… . . 𝑅𝑖−1
𝑠𝑘

↔ 𝑖) and inspection intervals  𝑍𝑠𝑘
= (𝑍1

𝑠𝑘
, … . . 𝑍𝑇

𝑠𝑘
) [18]. 

Table 4.1 Repair actions, correspondence costs, and condition after intervention. 

Condition state, 𝒊 
Repair actions 

consideration 

Correspondence 

Costs 

Condition state after 

repair, 𝒊̂ 

1 𝑅1 (routine) 𝐶𝑅1 1 

2 𝑅1 (routine) 𝐶𝑅1 2 

𝑅2 (patching + sealing) 𝐶𝑅2 1 

𝑅3 (overlay) 𝐶𝑅3 1 

3 𝑅1 (routine) 𝐶𝑅1 3 

𝑅2 (patching + sealing) 𝐶𝑅2 2 

𝑅3 (overlay) 𝐶𝑅3 1 

… … … … 

𝑱 𝑅0 𝐶𝑅1 𝐽 
 

𝑅2 (patching + sealing) 𝐶𝑅2 𝐽 − 1 

 𝑅 (overlay) 𝐶𝑅3 𝐽 − 2 

… … … 

𝑅𝐽−1 𝐶𝑅𝐽−1
 1 
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Table 4.1 displays the attained conditions after actions. The interventions are set 

by balancing the cost and frequency of repairs. It was assumed that patching and crack 

sealing improved condition by one step while overlay improved condition by two steps. 

Routine maintenance maintains the road in its current condition. Reconstruction (𝑅𝐽−1) 

is done at the end of pavement service life (terminal state). The intervention cost 𝐶𝑅𝑖−1
 is 

an increasing monotone function with action. 

𝐶𝑅0
≤ 𝐶𝑅1

≤ 𝐶𝑅2
≤ ⋯ ≤ 𝐶𝑅𝐽−1

   (4.7) 
 

4.4.4. Repair Transition Probability 

The transition probability will be modified when a road section is maintained because the 

pavement system has become newer. The MTP matrix will be multiplied with an 

intervention matrix 𝑃𝑟𝑒𝑝 . The elements of the 𝐽 x 𝐽  matrix is denoted as 𝜋𝑖𝑗
𝑟𝑒𝑝 = (𝑖 =

1, … 𝐽), (𝑗 = 1,… 𝐽). In case of no repair or intervention, the matrix will be an identity 

matrix  𝑃𝑟𝑒𝑝 = 𝐼. This is the default state of the repair matrix with all values in the major 

diagonal being 1 and all other matrix elements being 0. 

                                              𝑃𝑟𝑒𝑝 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

  (4.8) 

 

For all repair matrices, the values of 𝜋𝑖𝑗
𝑟𝑒𝑝

 above the major diagonal must be 0 because it 

is not expected that any repair action will worsen pavement condition. The values on the 

major diagonal or below it can take the value of either 1 or 0. The condition 

∑ 𝜋𝑖𝑗
𝑟𝑒𝑝 = 1

𝑗
𝑗=1  must be met within 𝑃𝑟𝑒𝑝. The repair probability 

𝜋𝑖𝑗
𝑟𝑒𝑝

= {
1    𝑖𝑓 𝑖𝑟𝑒𝑝 = 𝑖̂

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

              (𝑖 = 1,… 𝐽) 
 (4.9) 

The transition probability matrix 𝑃𝑡𝑟𝑎𝑛𝑠  is a matrix with elements 𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠(𝑖 =

1, … , 𝐽), (𝑗 = 1,… , 𝐽) 

 

𝑃𝑡𝑟𝑎𝑛𝑠 = ∏(𝑍) ∗ 𝑃𝑟𝑒𝑝  (4.10) 
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4.4.5. Intervention Strategy 

The intervention strategy 𝒎𝒑
𝒔𝒌

 is proposed by road managers within a finite planning 

horizon (𝑡 = 𝑇). It is assumed that there is no salvage value at the end of 𝑇 [19]. MDPs 

can be solved with a diversity of algorithms such as value iteration, policy iteration, and 

Monte Carlo methods [20]. This study optimizes the agency costs estimated from 

exogenously set strategies.  The intervention costs referred to Obunguta, F. and K. 

Matsushima [18], for each pavement section can be expressed as 

𝑉𝑖
𝑡,𝑠𝑘

= (1 + 𝜌𝑟)−𝑡 ∗ 𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠 ∗ 𝐶𝑅↔𝑖

𝑡,𝑠𝑘

    (4.11) 

where 𝑉𝑖
𝑡,𝑠𝑘

is total agency costs at time 𝑡 for section 𝑠𝑘, 𝐶𝑅↔𝑖
𝑡,𝑠𝑘

 is intervention cost 

at time 𝑡 and condition 𝑖 for section 𝑠𝑘, 𝜌𝑟 is the discount rate and 𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠 is the transition 

probability 

4.4.6. Optimization Process 

The LCCs of each intervention strategy are the summation of all agency costs for all 

sections 𝑠𝑘(𝑠𝑘 = 1,… . , 𝑆𝑘) assuming the salvage value at 𝑇, 𝐶𝑣
𝑠𝑘

= 0 [17, 18]. 

𝐿𝐶𝐶 = ∑ ∑ ∑𝑉𝑖
𝑡,𝑠𝑘

𝐽

𝑖=1

𝑠𝑘

𝑠𝑘=1

𝑇

𝑡=0

    (4.12) 

The optimization problem to find the optimum strategy 𝒎𝒑
𝒔𝒌∗ is expressed as 

𝑚𝑖𝑛
𝐿𝐶𝐶

𝒎𝒑↔𝒊
𝒕,𝒔𝒌

 , 𝒁𝒔𝒌  (𝑖 = 1,… , 𝐽)   (4.13) 

subject to 

∑ ∑ 𝐶𝑅↔𝑖
𝑡,𝑠𝑘

∈ Ω𝑡

𝑆𝑘

𝑠𝑘=1

𝐾

𝑘=1

           ∀𝑡   (4.14) 

Where 𝒎𝒑
𝒕,𝒔𝒌

 is the intervention strategy and Ω𝑡 is the budget limit at 𝑡. 

The optimization problem was solved using the greedy algorithm [21, 22]. The 

priority was given to the sections in worse condition. 
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4.4.7. Road Network Condition Estimation 

The condition of the network in each state is estimated using: 

𝐶𝑆𝑡+𝑍 = 𝑝(𝑍) ∗ 𝐶𝑆𝑡   (4.15) 

Where 𝐶𝑆𝑡 is a 1 × 𝐽 vector of the number of road sections per condition state at time 𝑡, 

and 𝑝(𝑍)  is the 𝐽 × 𝐽  MTP matrix. Understanding the condition distribution of road 

networks will inform the decision-making process for selecting the most appropriate 

intervention strategy, especially when faced with budget constraints. 

𝑉𝑖
∗𝑡,𝑠𝑘

= 𝐶𝑆𝑡+𝑍
∗ ∗ 𝐶𝑅↔𝑖

𝑡,𝑠𝑘

   (4.16) 

subject to 

𝐶𝑆𝑡+𝑍
∗ = 𝑝(𝑍)−1 ∗ 𝐶𝑆𝑡   (4.17) 

where 𝑉𝑖
∗𝑡,𝑠𝑘

is total agency costs at time 𝑡 for the desired condition for section 𝑠𝑘, 

𝐶𝑆𝑡+𝑍
∗  is a vector 1 × 𝐽 of the desired condition, 𝐶𝑅↔𝑖

𝑡,𝑠𝑘

 is intervention cost. and (𝑝(𝑍))−1 

is the inverse 𝐽 × 𝐽 MTP matrix transition probability. The demanded budgets can be 

derived from the estimated undiscounted agency costs, which were assumed to be only 

intervention costs. 

4.5. Empirical Study 

4.5.1. Data Processing 

The empirical model application used Laos RMS historical inspection data and 

intervention works unit costs for deterioration and LCC estimation.  The 2014–2015 and 

2020 inspection data were obtained from the Lao RMS database. It was challenging to 

determine maintenance history for 2015–2020, and pavement condition in 2020 was 

almost as good as in 2015. Thus, only datasets from 2014–2015 were used excluding data 

records between 2015-2020 due to possible repair following the Markov property that 

does not consider repair between inspection intervals. The 2014-2015 dataset with about 

30,000 data records was robust enough to capture the deterioration trends of Laos road 

infrastructure. The dataset contained pavement materials, the International Roughness 

Index (IRI), and average annual daily traffic (AADT) for 22 paved national roads.  
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The road routes were grouped based on the Laos road classification into Core 

Network 1 and Core Network 2 with lengths of 1,900 km and 869 km, respectively. This 

road information, approximately 47.26% of the total national road network, is presented 

in Table 4.2. 

The two primary types of pavements constructed in Laos are asphalt concrete 

pavement and surface treatment (single and double bituminous). The traffic volume was 

obtained by counting the vehicles passing at a specific location on each road section. This 

count was done either automatically or manually using a traffic count form. The vehicles 

were classified into 14 classes to generate adjustment factors for deriving AADT [23]. 

Table 4.2 Dataset and explanations 

Description 
Core Network 1 

(ASIAN) 

Core Network 2 

(National) 

No. of routes 8 14 

Total length (km) 1,900 869 

Number of datasets 18998 8690 

Explanatory Variables AADT, Road surface (AC/ST) * 

Length of AC/ST (km) 778/1,122 50/819 

*AC=Asphalt concrete; ST=Surface treatment 

4.5.2. Classification of Condition States 

The road conditions were quantified using IRI data. The dynamic response Vehicle 

Intelligent Monitoring System (VIMS) equipment, supported by the Japan International 

Cooperation Agency (JICA) in 2012, was used to measure IRI. The IRI was measured at 

around 80 km/h for each 100-meter segment [24, 25]. 

To estimate MTP, the IRI was classified into five condition states [26]. This 

thorough classification process ensures the accuracy of the results. Table 3 shows the 

number of sections per condition state for each network in the datasets. 

Table 4.3 IRI condition classification and datasets. 

IRI (m/km) 

Condition state 

Core Network 1 

(ASIAN) 

Core Network 2 

(National) 

 2014 2015 2014 2015 

≤ 3 1.Good 9612 4950 2648 1007 

3<IRI≤5 2.Fair 8182 10177 4323 4178 

5<IRI≤7 3.Poor 1086 3119 1340 2309 
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7<IRI≤9 4.Bad 85 478 267 771 

>9 5.Failed 33 274 112 425 

4.5.3. Transition Probability and Deterioration Estimation. 

The estimation for deterioration rate was done for the two networks using traffic volume, 

and road surface type as explanatory variables (Equation 4). The estimation of the 

unknown parameters were carried out with the Markov Chain Monte Caro (MCMC) 

method using the Metropolis-Hastings (MH) algorithm [27, 28]. The unknown 𝛽 

parameters converged and life expectancy of two networks are shown in Table 4. To 

satisfy the convergence, the Geweke diagnostic value should fall within [-1.96, 1.96] 

limits with 0 denoting perfect convergence. 

Table 4.4 Markov Estimated β parameters and life expectancy in year. 

 Core Network 1 (ASIAN) Core Network 2 (National) 

State 𝜷𝟎𝒊 

Absolut

e 

𝜷𝟏𝒊  

Traffic 

𝜷𝟐𝒊 

Pavemen

t 

𝑳𝑬𝒊
𝒌 

Life  

𝜷𝟎𝒊  

Absolute 

𝜷𝟏𝒊  

Traffic 

𝜷𝟐𝒊 

Paveme

nt 

𝑳𝑬𝒊
𝒌 

Life 

1-2 -0.006 

(-0.706) 

* 

- -0.660 

(0.918) 

1.319 0.573 

(0.863) * 

- -0.930 

(-1.527) 

0.595 

2-3 -1.251 

(-0.699) 

0.278 

(0.864) 

-0.255 

(-0.585) 

3.669 -0.092 

(0.723) 

- -0.047 

(0.507) 

1.100 

3-4 -0.863 

(0.900) 

- - 2.370 -0.766 

(1.390) 

- - 2.151 

4-5 0.422 

(1.760) 

- - 0.656 -0.620 

(-0.047) 

0.241 

(0.147) 

- 1.773 

*The values in parentheses are the Geweke diagnostic for β.  

The hazard rate 𝜽𝒊
𝒌 can be estimated as the inverse of 𝑳𝑬𝒊

𝒌 according to Equation 

(4.5). 

The positive 𝛽  values mean traffic strongly impacts the deterioration rate in 

Condition State 2 for ASIAN network and Condition State 4 for National network. 

Consequently, higher traffic on ASIAN network significantly contributes to faster 

deterioration. However, thicker and stronger AC road sections exhibit a longer lifespan, 

hence the negative 𝛽 values. Other 𝛽 values were excluded due to sign restrictions. The 

estimated condition performance curves show a higher life expectancy of 8.01 years for 

Core Network 1 (ASIAN roads) compared to 5.56 years for National network (Figure 

4.4). This better life performance for ASIAN network is due to their stronger pavement 

materials, about 40.9% is constructed using AC. In contrast, only 5.8% of the National 

network is constructed with AC (Table 4.2) 



 

CHAPTER 4 ASIAN AND NATIONAL ROAD NETWORK OPTIMIZATION 

78 

 

 

 

Figure 4.4. Performance curves for ASIAN and National Road network 

The MTPs for Core Networks 1 and 2 are shown in Equations (18) and (19). The 

MTPs show that National network undergoes faster deterioration with a higher 

probability of transitioning to a worse state. 

MTP𝐶1 =

[
 
 
 
 
0.487 0.442 0.063 0.006 0.002

 0 0.761 0.203 0.026 0.010
0 0 0.732 0.167 0.101
0 0 0 0.378 0.622
0 0 0 0 1 ]

 
 
 
 

 
  (4.18) 

MTP𝐶2 =

[
 
 
 
 
0.342 0.529 0.110 0.016 0.003

0 0.683 0.254 0.051 0.012
0 0 0.652 0.254 0.094
0 0 0 0.539 0.461
0 0 0 0 1 ]

 
 
 
 

 (4.19) 

 

4.5.4. Policy and Strategy Setting for Laos RMS. 

The study examined different intervention strategies (𝒎𝒑
𝒔𝒌

) for the two core networks, 

considering budget and road network performance targets. The aim was to regulate the 

optimal strategy by comparing each strategy's LCCs and condition performance. The 

inspection interval for all strategies was set at 1 year. Hence, three target policies were 

considered: 

⚫ Policy 1: Reactive Maintenance (Rt) - This approach involves road intervention 

when a road network reaches condition 4 or 5. Reactive works were conducted in 

response to the deterioration of the roads to the worst states. 
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⚫ Policy 2: Proactive Maintenance (Pr) - In addition to the works performed in Policy 

1, this policy included preventive maintenance works from conditions 2 to 3. The 

goal was to prevent further deterioration and maintain the roads in better condition. 

⚫ Policy 3: Do Nothing - This policy allows road conditions to deteriorate naturally 

over time based on the transition probabilities of the road network. These 

probabilities are influenced by explanatory variables such as traffic volume, 

pavement type, and environmental factors.  

A greedy algorithm was used to solve intervention actions, focusing on sections 

in the worst condition. According to Laos RMS practice [29], various intervention actions 

were applied, each associated with a specific cost, as shown in Table 4.5. 

Table 4.5 Laos RMS maintenance, costs, and conditions after repair. 

Condition state 𝒊 Repair actions 
Costs (Mil. 

Kips/m2) 

Condition state 

after action, 𝒊̂ 

1 R1 RM 0.0008 1 

2 

 
 

R1 RM 0.0008 2 

(R2 patching+ crack sealing) 0.065 1 

(R3 overlay) 0.072 1 

3 

 
 

R1 RM 
 

3 

(R2 patching+ crack sealing) 0.065 2 

(R3 overlay) 0.072 1 

4 

 

 
 

R1 RM 0.0008 4 

(R2 patching+ crack sealing) 0.065 3 

(R3 overlay) 0.072 2 

(R4 reconstruction) 0.221 1 

5 (R4 reconstruction) 0.221 1 

The study also investigated the effect of prioritizing one network over another. Four 

intervention strategies in an intervention matrix were defined (Equations 20 to 23), with 

two strategies for each policy (preventive or reactive). An optimal intervention strategy 

was selected initially in a limitless budget scenario. The default strategy of "do nothing," 

where the repair matrix is an identity matrix, was also investigated. Following the 

selection of the optimal strategy in the context of a limitless budget scenario, a budget 

limit scenario was introduced, with priority given to ASIAN roads that connect nations. 



 

CHAPTER 4 ASIAN AND NATIONAL ROAD NETWORK OPTIMIZATION 

80 

 

𝑷𝒓𝟏 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0]

 
 
 
 

 (4.20) 

𝑷𝒓𝟐 =

[
 
 
 
 
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0]

 
 
 
 

 (4.21) 

𝑹𝒕𝟏 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0]

 
 
 
 

 (4.22) 

𝑹𝒕𝟐 =

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
1 0 0 0 0]

 
 
 
 

 (4.23) 

 

4.6. Results 

4.6.1. Limitless Budget Scenario 

Both policies, i.e., preventive and reactive, were evaluated considering a limitless budget 

scenario for both core networks. The condition of the network at the end of the analysis 

period considering different intervention strategies was determined. The empirical dataset 

from the Laos road network (ASIAN and National network) was about 47.26% of the 

total national road network. The final condition and LCC estimates were converted to the 

total road network in order to compare with the current Laos RMS predictions.  

The evaluation of various strategies showed notable differences in road condition 

performance at the end of the analysis period. Strategy 𝑷𝒓𝟐 was found to maintain a larger 

proportion of the network in fair to good condition. Specifically, it resulted in 92.88% of 

ASIAN network and 87.10% of National network being in fair to good condition at the 

end of the analysis period (Figure 4.5). Strategy 𝑷𝒓𝟏 was second best in maintaining a 

larger proportion of fair to good condition at the end of the analysis period, with 82.01% 
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and 75.36% for ASIAN network and National network, respectively. Notably, the LCC 

associated with this strategy was relatively lower than the total budget needs of the Lao 

RMS estimation (see Table 4.6), demonstrating its cost-effectiveness. The results 

underscore the significance of preventive maintenance works that are generally low-cost. 

These activities include routine inspections, minor repairs, and timely maintenance that 

address minor defects before they escalate into significant damage, leading to fewer 

significant and intensive road interventions and lower long-term maintenance costs. 

On the other hand, the reactive strategies, particularly strategy 𝑹𝒕𝟏, had the lowest 

LCC estimate compared to other strategies, with 46.50% of ASIAN network and 38.23% 

of National network deteriorating to poor, bad, and failed conditions. While strategy 𝑹𝒕𝟐 

retained 52.02% of ASIAN network and 47.82% of National network in fair to good 

condition. This comparison revealed that simply minimizing LCC may not lead to the 

optimal strategy choice. It is important to consider maintaining better network condition 

while keeping the LCC reasonably low through preventive rather than reactive policies. 

In summary, strategy 𝑷𝒓𝟏 was optimal, considering network conditions and cost-

effectiveness. This strategy effectively slowed down the degradation of the network, 

resulting in a greater proportion of the network being in fair to good condition, 82.01% 

of the ASIAN network and 75.36% of the National network, at a reasonably low LCC at 

4,909,934.60 Mkips. The LCCs for ASIAN and National networks under various 

intervention strategies highlight the cost-effectiveness of proactive policy 𝑷𝒓𝟏 (see Table 

4.6, Figure 4.6a and 4.6b). This scenario emphasizes the importance of considering 

network conditions and cost-effectiveness in the decision-making process 

Table 4.6 LCCs for Laos roads considering a limitless budget scenario (Mkips) 

Strategy 𝒎𝒑
𝒔𝒌

 
Surveyed network (47.26%) 

Whole network 

(100%) 

ASIAN Network National Network  Total 

𝑷𝒓𝟏 1,341,903.17 978,759.38 4,909,934.60 

𝑷𝒓𝟐 2,680,382.03 1,651,018.12 9,164,146.41 

𝑹𝒕𝟏 1,264,847.74 802,409.57 4,373,793.24 

𝑹𝒕𝟐 1,554,660.95 1,118,096.58 5,654,878.45 

Laos RMS - - 6,426,029 
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Strategy 

𝒎𝒑
𝒔𝒌

 
ASIAN Network National Network 

𝑷𝒓𝟏 

  

𝑷𝒓𝟐 

  

𝑹𝒕𝟏 

  

𝑹𝒕𝟐 

  

Do 

nothing 

  

Figure 4.5. Comparison of road condition for different maintenance policies considering a 

limitless budget 
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Figure 4.6a Comparison of three Maintenance Policies in ASIAN network  

 

Figure 4.6b Comparison of three Maintenance Policies in National network 

4.6.2. Limited Budget Scenario 

In this scenario, we assumed that the limited budget could only cover 50% of the total 

budget needs for Laos' roads, so prioritization was necessary. Accordingly, 70% of the 

budget was spent on improving Core Network 1, consisting of international ASIAN roads, 

and the remaining 30% of the budget was allocated to the National roads network. This 

prioritization was based on the fact that many foreign loans are dedicated to improving 

international roads, ASIAN network. The optimal strategy 𝑷𝒓𝟏, previously determined, 

was applied. 
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When selecting candidate sections for intervention, it was determined that all sections in 

the worst state would be repaired. Additionally, 1,718,477.11 Mkips were allocated to 

improve the ASIAN sections in other improvable states, while 736,490.19 Mkips were 

designated for improvements in the National network. The results showed that the 

proportion of sections in fair to good condition for both networks, were 47.63% for 

ASIAN network and 55.02% for National network (Figure 4.7). This scenario maintains 

about half of roads in higher functional state for either network, maintaining both inter 

and intra national travel. This result highlights the importance of budget allocation based 

on each network's priority level and minimum condition performance requirements. 

Strategy ASIAN Network National Network 

𝑷𝒓𝟏 

 

  

Figure 4.7 Condition of network considering 50% budget constraint 

4.6.3. Target Road Performance  

Road agencies are also faced with decisions on determining required budgets for target 

road performance thresholds, minimum acceptable road conditions. We set the target 

conditions in fair to good condition for both networks at 80%, 70%, 60%, and 50%. The 

optimal proactive strategy 𝑷𝒓𝟏 from the limitless budget scenario was applied. Budget 

requirements for desired road network conditions were estimated using Equation 16. 

Figure 4.8 shows the budget requirements to maintain road conditions above the 

specific performance targets. The lowest cumulative 10-year budget corresponded to the 

70% performance target. The 70% performance target enabled more preventive 

maintenance while repairing worst condition sections, resulting in better network 

conditions at a lower cost compared to the 60% and 50% targets. The 60% and 50% 

targets left more pavements to deteriorate faster to worse state requiring more extensive 

and costly maintenance. However, achieving the 80% performance target incurred 
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significantly higher costs, as this target requires more expensive works for the more roads 

in worse condition. Achieving high targets, such as 80%, results in diminishing returns 

from overly ambitious targets due to the increase in maintenance frequency and intensity 

 

Figure 4.8 The cumulative 10-year budget for different road performance targets 

4.7. Conclusions 

The study provided valuable insights into the decision-making process regarding network 

maintenance and intervention strategies when considering different scenarios. In the first 

scenario, a limitless budget was assumed resulting in proactive strategy 𝑷𝒓𝟏 emerging as 

the optimal choice. This strategy maintained a larger proportion of both networks in fair 

to good condition and incurred relatively lower LCCs. These findings show the superior 

performance of strategy 𝑷𝒓𝟏 underscoring the critical role of preventive interventions. 

By performing preventive routine maintenance and minor repairs, road deterioration 

slows significantly, leading to fewer costly interventions in later stages. This result 

highlights how timely and preventive actions not only maintain higher road network 

quality but are also economically beneficial, particularly for developing countries, such 

as Laos, facing budget shortfalls 

The study then looked at the scenario of limited budgets requiring a prioritization 

strategy. In this scenario, applying the optimal strategy, greedy algorithm and allocating 

a bigger proportion of the budget to the more important roads, ASIAN in this case, 

achieved at par performance ensuring continued higher functionality of networks for both 

inter and intra national travel.   

After that, the research determined different budgets required to achieve target 

performance levels. The results showed that at a not so high/ low target, 70% in good to 

fair condition, lowest 10-year cumulative budget could be achieved at acceptable 
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performance levels. This target enabled a good balance between extensive and preventive 

interventions compared to other targets, i.e., 50%, 60%, 80%. Fewer extensive works 

ensure lower costs and preventive maintenance reduced the speed of deterioration to 

worse state. 

The developed stochastic MDP framework in this study, specifically 

demonstrated for Lao PDR, is inherently adaptable to other developing countries 

encountering similar financial constraints, limited data availability, and road maintenance 

management challenges. Due to its modular and probabilistic nature, the framework can 

accommodate varying road classifications, pavement types, traffic characteristics, and 

other deterioration patterns. However, applying the framework to other contexts would 

require modifications, particularly estimating the deterioration rates and transition 

probabilities, updating repair costs and intervention policies based on local conditions, 

adjusting inspection intervals based on local practices, and incorporating local 

environmental and climatic factors. 

In conclusion, the findings explicitly suggest that policy makers and road agencies 

in Lao PDR and other developing countries should adopt a proactive approach integrated 

with stochastic deterioration forecasting. Implementing such strategic preventive 

maintenance will optimize resource allocation, extend pavement life, and sustainably 

manage road networks even under financial constraints to ensure the effective utilization 

of available resources and the provision of reliable and safe road infrastructure. 

Future research in similar decision-making processes could explore more 

alternative strategies set endogenously and allocation models that specifically address 

other resource limitations such as technical labor in road network maintenance. The MDP 

model can be adapted for broader use in developing countries with similar constraints. 

Technologies like machine learning can be integrated to enhance the accuracy of 

prediction. Additionally, a comprehensive cost-benefit analysis could be conducted to 

evaluate the long-term effects of different budget scenarios and policies on overall 

network performance and user satisfaction. 
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5. Multi-Stage Exponential Markov (MUSTEM) Model Vs. 

Highway Development and Management Model Four 

(HDM-4) for Laos Road Management.  

5.1. Introduction 

5.1.1. Road Pavement Performance Models  

Infrastructure assets, such as roads and bridges, have many impacts on countries in terms 

of social and economic development. However, maintaining and managing these assets, 

especially in developing countries facing capacity and funding constraints, presents 

significant challenges. Proper infrastructure management has a huge impact, particularly 

on safety, connectivity, and the overall well-being nationwide. There are two notable 

methodologies, i.e., stochastic and deterministic methods for infrastructure management 

[1]. Stochastic models, such as the MUSTEM model, offer a probabilistic approach to 

predicting asset condition evolution over time. These models provide a comprehensive 

framework, simpler implementation, and an advantage with limited data or resources. 

Stochastic models incorporate uncertainty which is typical of pavement degradation.  

These merits aid infrastructure preservation in good condition. However, they may 

require expertise for accurate estimation [2]. On the other hand, deterministic models like 

the HDM-4 despite providing precise performance metrics and cost-effectiveness do not 

incorporate uncertainty. These deterministic models require a lot of data to obtain detailed 

insights into asset condition and maintenance requirements. Moreover they also demand 

expertise in calibration for effective utilization [3].  

5.1.2. Road Management System in Lao PDR 

Lao PDR is a country with diverse environmental conditions and terrain ranging from 

highlands to tropical plains. Similar to other developing countries in the region, Laos 

faces with the challenge of limited resources, which necessitates a more efficient and 

cost-effective Road Management System (RMS).  

Since 2003, the Government of Lao PDR has approved and established the RMS as a tool 

for management, planning, operating, and monitoring, which is the responsibility of the 

Ministry of Public Works and Transport of Lao PDR (MPWT).  
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The Laos RMS utilizes the Highway Development and Management (HDM-4) 

software, a deterministic model, as a tool for long-term planning to allocate maintenance 

funding and determine priorities [4, 5]. On the other hand, the Road Maintenance Fund 

(RF), which is used to maintain the road network in Laos, is challenged due to its 

mounting debt of approximately 2,433 billion Kips (USD 200 million) as of 2021, this is 

because of the gap of annual budget plan and the capacity of reimbursement as well as 

the emergency maintenance from uneven disaster [6].  

5.1.3. Study Objectives 

The objective of this study is to carry out a comparative analysis of popular Markov 

models such as MUSTEM and well-known deterministic models, particularly HDM-4. 

Laos road network datasets will be utilized to compare the comprehensiveness of both 

models. The primary objectives of this research are to: 

1) Conduct a comparative analysis of the probabilistic MUSTEM model and the 

deterministic HDM-4 model for infrastructure asset management in Laos. 

2) Assess the performance and reliability of Markov models in predicting pavement 

deterioration, optimizing maintenance strategies, and minimizing life-cycle costs 

(LCCs) compared to the HDM-4 prediction in the Laos RMS. 

3) Evaluate how each modeling approach influences resource allocation decisions, 

considering factors such as data availability, environmental conditions, level of 

serviceability, and budget constraints. 

4) Provide practical guidance and recommendations to asset managers, government 

agencies, and policymakers particularly in Laos and similar nations for improved 

infrastructure management. 

 

The comparison of MUSTEM and HDM-4 in terms of road deterioration estimation 

and LCC analysis for different budget scenarios addresses an academic study gap in the 

field of road asset management systems, particularly on road performance prediction in 

developing countries. Understanding the application of these models in various 

management scenarios is limited due to lack of explicit comparative studies. This study 

aims to enhance the understanding of applications and key considerations in order to 

utilize each model and guide decision-making for better Pavement Management Systems 
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(PMSs) in developing countries, specifically Lao PDR. Additionally, the comparison 

between the proposed stochastic model, MUSTEM, with the current RMS will provide 

insights into the potential benefits and advantages of adopting the new approach. This 

comparison will ultimately improve road asset management sustainability in Lao PDR. 

5.2. Literature Review 

5.2.1. Introduction 

One of the main goals of road authorities is to slow down pavement deterioration rate, 

lower the cost of vehicle operation by enhancing driving conditions, and maintain a 

continuous flow of traffic [7]. The RMS, used by many road agencies, includes data 

collection, planning, and programming, comprises a model of road network deterioration, 

a maintenance strategy, optimization (prioritization), implementation, and assessment. 

[8]. Therefore, in order to preserve the quality and efficiency of highway and road 

networks, it is important to establish a comprehensive road management system [9]. 

The use of road deterioration modeling to forecast and enhance the performance 

of road pavements has been extensive in the field of infrastructure asset management. 

This literature review examines the existing work that has been done on deterministic 

pavement performance modeling (HDM-4) and stochastic Markov models, as well as how 

each is applied in asset management. 

5.2.2. HDM-4 in Asset Management 

Deterministic methods model pavement performance through known relationships 

between state and event. They provide exact values without consideration of 

uncertainties. Furthermore, deterministic methods apply mechanical, mechanistic-

empirical, and regression models. However, for better analysis and prediction, these 

models require a large database with a variety of factors [10]. The common PMS tools, 

such as HDM-4 and the Australian Road Research Board (ARRB), are examples of 

mechanistic-empirical models popularly applied in practice [7, 11]. 

The deterministic pavement performance model, the HDM-4 software, is a well-

known tool that has made a substantial impact on infrastructure asset management [4]. 
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HDM-4 is acknowledged for its deterministic nature, allowing it to provide precise values 

of pavement performance metrics based on given input data. 

The HDM-4 road deterioration is predicted through five separate distress modes, 

including cracking, raveling, potholing, rut depth, and roughness, with surface distress 

characterized by initiation and progression phases. Deformation distress, such as rut depth 

and roughness, is computed after the change in surfacing distress has been calculated [12, 

13].  

The general computational logic for estimating the deterioration is summarized as 

follows [13-16]: 

• Initialize input data at the start point of the analysis year. This input data can be 

the data of the first year of analysis or the previous year’s condition after 

maintenance. 

• Calculate the amount of change in each distress mode (majority 5): cracking, 

raveling, pothole, roughness, and rutting. 

• The pavement strength, condition, and age of the infrastructure are considered, 

and the traffic volume per lane is computed. 

• Estimate the distress of cracking, raveling, and pothole using progression criteria 

(regressive function), which are specific to each distress mode, and then adapt 

(calibrate) the estimation using the deterioration factor of the local condition. 

• Lastly, the roughness increment based on traffic, surface distress, age and 

environment factors are computed. 

The HDM-4 model has been applied in practical asset management across various 

nations, particularly in developing countries[17]. For example, in Lao PDR, the Lao RMS 

utilizes the HDM-4 tool for pavement condition assessment and deterioration prediction 

[18, 19]. This software allows decision-makers, MPWT, to perform accurate analysis of 

road infrastructure performance and develop effective maintenance and investment 

strategies. HDM-4 comes with three specialized application tools. One is for analyzing 

projects at a detailed level; another helps plan road work within tight budgets; and the 

third supports strategic planning for the long-term performance and expenditure needs of 

a road network. It's meant to be a decision-support tool within a road management system 

[17]. 
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HDM-4 requires field data and independent variables, including road conditions, 

traffic, vehicle characteristics, and maintenance costs, in order to provide detailed insights 

into asset management [11]. However, the HDM-4 calibration is necessary before 

utilizing the software to ensure accurate prediction of pavement performance by 

reflecting observed rates of deterioration through desk studies, verification with measured 

data, and long-term monitoring [15]. 

HDM-4 provides performance metrics based on input data, making them 

particularly valuable for detailed cost-benefit analysis. The strong framework of HDM-

4, which takes into account a wide range of economic factors, makes it stand out. This 

robust approach leads to a detailed examination of different project scenarios and 

pavement types. The users can thoroughly examine the complicated processes involved 

in planning construction projects and maintaining roads. Additionally, HDM-4 offers a 

user-friendly interface and extensive documentation, providing valuable assistance to 

practitioners and researchers as they navigate its features. This combination of 

accessibility and detail improves its usability and ensures that users can effectively utilize 

its capabilities to address a wide range of transportation challenges and optimize decision-

making processes [4, 17]. 

HDM-4 requires numerous types of data, including road network data (pavement 

inventory, condition, type), vehicle fleet (classification), traffic patterns, environmental 

factors, cost data (operating cost, maintenance history) and etc., that is difficult to collect 

at once and is often utilized for specific projects [20]. In the short term, the local 

department of public works and transport provinces in Laos carries out condition 

inspections and present reports to the MPWT for decisions on maintenance financing 

annually. The provincial reports are made based on condition surveys and provide one-

time data used for planning which is reactive. Maintenance is also based on road 

importance/hierarchy level [19]. 

In recent years, The Laos RMS utilizes various inputs, including road 

characteristics, traffic data, and pavement conditions, to assess overall road performance 

based on roughness, ride quality, and skid resistance. These indicators provide insights 

into the current road condition and facilitate the identification of areas requiring 

maintenance or improvements as well as rehabilitation. However, the RMS requires a 

large dataset and calibration of parameters to align with each country [8] [14]. It should 
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be used in conjunction with other information to support decision-making processes 

related to road network management and investment planning. Nevertheless, budgetary 

restrictions and a lack of technical resources hinder its efficiency. 

5.2.3. Markov Models in Asset Management 

Road pavement deterioration has been modeled to follow Markov theory. In the last few 

decades, there has been a rise in the number of statistical methods for modeling 

deterioration using inspection data. Among these methods, the MUSTEM, proposed by 

[21, 22], enables the estimation of transition probabilities using inspection records at two-

time points and overcomes many challenges associated with incomplete inspection data. 

The model has been modified and augmented to account for specific challenges prevalent 

with inspection data, such as a small sample size, measurement errors, uncertain 

deterioration modes, composite deterioration structures, etc. [21, 23-25]. 

Markov models, a class of probabilistic models, have become prominent in asset 

management due to their capacity to capture dynamic transitions between asset condition 

states. These models have been widely used for the prediction of infrastructure 

deterioration. In order to generate highly accurate deterioration forecasts, the key 

challenges in developing the deterioration model were related to uncertainty, particularly, 

traffic volume, road structures, and pavement thickness [5]. A study by [26] employed a 

Markov chain model to estimate the transition probabilities of road pavement condition 

moving between various condition states. Their research found that Markov models 

provide a robust framework for assessing critical road sections considering uncertainties 

in pavement deterioration. Additionally, Markov models have been used in determining 

the optimal timing for maintenance interventions. In a comprehensive study, [27] 

demonstrated how Markov Decision Processes (MDPs), an extension of Markov models, 

can be used to find the most cost-effective maintenance strategies for Uganda national 

roads. The study highlighted the capability of Markov models to address both short-term 

and long-term decision-making in asset management.  

The powerful statistical techniques employed by Markov models are used to 

predict infrastructure degradation , particularly, road surface pavement [11, 28, 29], 

bridges [22, 30] , pipe networks [31, 32], and airports [33, 34]. 
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MUSTEM, with the probabilistic structure, depicts stochastic processes and 

transitions between asset states over time, providing a holistic view of asset condition 

evolution [35]. This allows for a probabilistic prediction of how the road condition will 

evolve based on the historical data. However,  probabilistic predictions of distress, based 

on the variability observed in the data, are currently being developed to provide a more 

accurate assessment of the risks associated with managing pavement infrastructure [36]. 

Optimized maintenance strategies, adaptability to limited data, efficient LCC estimates, 

and transparent decision support, its flexibility and simplicity make MUSTEM a valuable 

tool for decision-makers in infrastructure management [27, 35, 37-39]. 

While both models, MUSTEM and HDM-4, provide valuable insights into asset 

management and decision-making, their differences lie in their basic principles, both in 

road performance and maintenance estimation, and their range of applicability. In the 

context of developing countries, e.g. Lao PDR, which may face unique infrastructure 

challenges, the choice between these modeling approaches becomes pivotal. This 

research seeks to address this gap by conducting a comparative analysis of MUSTEM 

and HDM-4, especially in the practical context of the Lao RMS, to provide insights 

relevant to similar regions facing resource constraints, and diverse environmental 

conditions. 

5.3. Methodology 

5.3.1. Model Comparison 

The MUSTEM model was extensively utilized for comparative purposes with the current 

Laos RMS system that uses HDM-4 for a comprehensive analysis of road network 

performance and maintenance costs within the context of the Road Asset Management 

Plan from 2016 to 2025. The MUSTEM model was used to evaluate road network 

conditions and total maintenance LCCs, utilizing the same survey data set recorded in 

Laos RMS database. The estimates generated by MUSTEM were compared to those of 

the existing RMS, which relies on the HDM-4 software [18].  
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Figure. 5.1 Comparison flow diagram. 

 

The PMS is the RMS’s module for optimal road maintenance in Laos [40]. Two 

budget scenarios were evaluated: unconstraint and constraint maintenance budget 

considering an intervention strategy in which road condition always improves to the best. 

The aim was to determine which model is more effective and suitable for managing Laos 

roads. Figure. 5.1 provides a detailed illustration of the comparison flow diagram used 

in this comparative analysis, giving a clearer understanding of the entire process. 
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5.3.2. MUSTEM model Description  

The road condition at each time step has been utilized to make decision and determine an 

action to execute. The primary objective of road agency decision maker is to optimize the 

total benefits obtained for agency and road user.  

The MUSTEM is a mathematical framework used for estimating the transitioning 

between multiple states over time. Presumptions are necessary before utilization the 

MUSTEM [41] 

1. No maintenance or restoration projects were implemented throughout the 

inspection period. 

2. The deterioration of the road surface begins as soon as it is made available to 

the public at time 𝜏0.    

The stochastic Markov model assumes that the probability of transitioning to a 

new state depends only on the current state and action, not on any previous states or 

actions. This property allows for the construction of Markov models using states, actions, 

transition probabilities, and rewards. Multiple algorithms can be used to solve MDP 

problems. These algorithms include dynamic programming, Monte Carlo methods, and 

reinforcement learning [42]. In this study, the MUSTEM incorporates condition states 

𝑖(𝑖 = 1, 2, 3, … , 𝐽)  with 𝐽 as the absorbing state, discrete time periods 𝑡(𝑡 =  0, 1, 2, … ), 

maintenance strategies (𝑚𝑝), inspection intervals 𝑍 (𝑍 = 1, 2, 3, … ), and maintenance 

actions (A). The analysis considers a finite period from 𝑡 = 0 to 𝑡 = 𝑇. 

The deterioration, intervention, and recovery process of the road network have 

been simply presented in Figure. 5.2.  
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Figure. 5.2 Intervention responsiveness 

 

a) Markov Transition Probability (MTP) and Deterioration Estimation 

The pavement condition transition process is uncertain, and the future states' forecasting 

is difficult to accurately estimate. Because the Markov Transition Probability (MTP) 

incorporates uncertain, it is suitable to model pavement condition transition. MTP 

requires a minimum of two-time inspection data. Notation ℎ(𝜏𝐴) = 𝑖  is the observed 

condition the road condition at time 𝜏𝐴 . MTP defines the probability that the future 

condition state at time 𝜏𝐵  will change to ℎ(𝜏𝐵) = 𝑗 after an interval Z, with periodic 

inspections at time t and 𝑡 + 𝑍 [22, 28]. The probability of this transition is: 

 

Prob [ℎ(𝜏𝐵) = 𝑗|ℎ(𝜏𝐴) = 𝑖] = 𝜋𝑖𝑗 (5.1) 

 

where, 𝜋𝑖𝑗 ≥ 0 

            𝜋𝑖𝑗 = 0 (when 𝑖 > 𝑗) 

           ∑ 𝜋𝑖𝑗 = 1𝐽
𝑗=1  
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In Figure. 5.3, it is supposed that at time 𝜏𝐴 and 𝜏𝐵 are inspection time while 𝜏𝑖 is any 

arbitrary time between two inspections, the condition state observed by inspection is 𝑖 

(𝑖=1, 2, ..J-1). The deterioration process in future times is uncertain. Among the infinite 

set of possible scenarios describing the deterioration path, only one path is finally realized 

[21]. 

 

 

Figure. 5.3 Road deterioration process and inspection interval 

 

The Markov transition probability matrix is defined by using transition 

probabilities between each pair of condition states (𝑖, 𝑗)  

 

∏ = [

𝜋11 ⋯ 𝜋1j

⋮ ⋱ ⋮
0 ⋯ 𝜋𝐽𝐽

]
 

(5.2) 

 

The deterioration process of a road section is estimated by utilizing inspection 

data. The information obtained from inspection, including visual inspection, structural 

characteristics, pavement condition and inspection intervals is used to estimate MTP. 

The hazard model is introduced to clarify the basic concept of the deterioration. 

More detailed explanations on the Markov model estimation can be found in [21, 22, 41]. 
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The hazard rate 𝜃𝑖 can be expressed as a function of explanatory variables 𝑥𝑘 and 

unknown parameters 𝛽𝑖  where 𝛽𝑖 = (𝛽𝑖,1, … , 𝛽𝑖,𝑀), 𝑚 (𝑚 = 1, . . . , 𝑀) is the number of 

explanatory variables and 𝑘(𝑘 = 1, … . 𝐾) is the number of inspected element groups. 

𝜃𝑖
𝑘 =  𝑓(𝑥𝑘: 𝛽𝑖) = exp(𝑥𝑘𝛽𝑖

′)  

    (𝑖 = 1, … , 𝐽 − 1) 

 

(5.3) 

The unknown parameters 𝛽𝑖(𝑖 = 1, … , 𝐽 − 1)can be determined using an 

iterative method like Newton’s method or through Bayesian estimation [21]. 

As a function of hazard rates, the MTP can be estimated: 

𝜋𝑖𝑗 = ∑ ∏
𝜃𝑚̃

𝜃𝑚̃ − 𝜃𝑘̃

𝑘̃−1

𝑚̃=𝑖

𝑗

𝑘̃=𝑖

∏
𝜃𝑚̃

𝜃𝑚̃+1 − 𝜃𝑘̃

𝑗−1

𝑚̃=𝑘̃

exp(−𝜃𝑘̃𝑍)
 

(5.4) 

where 𝜃𝑖 is the hazard rate and, 𝑘̃ and 𝑚̃ are indices.  

The life expectancy 𝐿𝐸𝑖
𝑘 in each condition state 𝑖 can be defined by means of a 

survival function [43]. 

𝐿𝐸𝑖
𝑘 =

1

𝜃𝑖
𝑘   (5.5) 

 

The average life expectancy from 𝑖 to 𝐽 can be estimated as: 

  

∑ 𝐿𝐸𝑖
𝑘  

𝐽−1

𝑖=1

  
 

(5.6) 

                                       

b) Determination of maintenance strategy 

 

The target of road agencies is to optimize the road condition while minimizing LCCs 

including maintenance and road user cost. The comparison in this study is focused on 

only road maintenance cost considering different budget scenario. Regarding the 

maintenance policy and strategies of Laos RMS, the general repair rule is based on level 
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of defects or road condition.  Intervention is set basing on minimum acceptable condition 

state being exceeded [44]. 

This study considered the same standard criteria as the Laos RMS strategy, which 

is that the estimated LCCs depends on intervention cost in correspondence to condition 

within financial constraints. The maintenance strategy is referred to a combination of 

maintenance actions, including pothole patching, crack resealing and overlay. 

    Pavement maintenance activities are denoted by 𝑀(𝑀0, 𝑀1, 𝑀2, 𝑀3, … , 𝑀𝐽−1) and 

completed in accordance with the condition state after inspection (time-dependent rule) 

or deterioration rate (condition-dependent rule) [27, 45]. At the end of the planning 

period, time 𝑇, the reconstruction 𝑀𝐽−1 is applied for all sections. Fig.  3 also indicates 

the correspondence between observed condition and maintenance action. Once action is 

taken, pavement condition state 𝑖   is assumed to improve to 𝑖̂. This improvement is 

denoted by 𝑖𝑚𝑝 

𝑖𝑚𝑝 =  {
𝑖             if        𝑀0 (no action)        

  𝑖̂  otherwise (𝑀1, 𝑀2, 𝑀3, … , 𝑀𝐽−1) 

(𝑖 = 1, … , 𝐽) 

(5.7) 

 

Table 5.1 Repair identification and related intervention costs 

Condition 

state, 𝒊 Repair actions Costs 

Condition 

state after 

action, 𝒊̂ 

1 𝑀1 (routine) 𝐶𝑀1 1 

2 𝑀1 (routine) 𝐶𝑀1 2 

 𝑀2 (patching + 

sealing) 

𝐶𝑀2 1 

𝑀3 (overlay) 𝐶𝑀3 1 

3 𝑀1 (routine) 𝐶𝑀1 3 

𝑀2 (patching + 

sealing) 

𝐶𝑀2
 2 

𝑀3 (overlay) 𝐶𝑀3 1 

… … … … 

𝑱 𝑀1 𝐶𝑀1 𝐽 
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𝑀2 (patching + 

sealing) 

𝐶𝑀2 𝐽 − 1 

𝑀3 (overlay) 𝐶𝑀3 𝐽 − 2 

… … … 

𝑀𝐽−1 𝐶𝑀𝐽−1
 1 

 

Table 5.1 displays the attained condition after maintenance. It was assumed that 

patching and crack sealing improved condition by one step while overlay improved 

condition by two steps. Routine maintenance maintains the condition in its current level. 

Reconstruction (𝑀𝐽−1) is applied at the end of pavement service life (terminal state). The 

maintenance cost 𝐶𝑀−𝑖−1
  is an increasing monotone function with action determined 

based on condition state. 

𝐶𝑀0
≤ 𝐶𝑀1

≤ 𝐶𝑀2
≤ ⋯ ≤ 𝐶𝑀𝐽−1 (5.8) 

 

c) MUSTEM Life-cycle cost estimation 

 

The transition probability will change when a road section is maintained due to pavement 

condition improvement. The MTP matrix is multiplied with a repair maintenance matrix 

𝑃𝑚𝑝 . The elements of the 𝐽 x 𝐽  repair matrix is denoted as 𝜋𝑖𝑗
𝑚𝑝 = (𝑖 = 1, … 𝐽) , (𝑗 =

1, … 𝐽). In case of do-nothing, the repair matrix will be an identify matrix when 𝑃𝑚𝑝 = 𝐼, 

with all values in the major diagonal being 1 and all other matrix members being 0. 

𝑃𝑚𝑝 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
 

(5.9) 

 

The condition ∑ 𝜋𝑖𝑗
𝑚𝑝 = 1

𝑗
𝑗=1  must be met within 𝑃𝑚𝑝. The repair probability. 

𝜋𝑖𝑗
𝑚𝑝 = {

1    𝑖𝑓 𝑖𝑚𝑝 = 𝑖̂

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

                                                      (𝑖 = 1, … 𝐽) 

(5.10) 
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The transition probability matrix 𝑃𝑡𝑟𝑎𝑛𝑠 is a matrix with elements 𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠(𝑖 =

1, … , 𝐽), (𝑗 = 1, … , 𝐽) 

𝑃𝑡𝑟𝑎𝑛𝑠 = ∏(𝑍) ∗ 𝑃𝑚𝑝 (5.11) 

 

This study focuses the maintenance costs which is estimated from exogenously 

set strategies.  The maintenance costs for each pavement section can be expressed as 

[27]  

𝑉𝑖
𝑡,𝑠𝑘

= (1 + 𝜌𝑟)−𝑡 ∗ 𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠 ∗ 𝐶𝐴↔𝑖

𝑡,𝑠𝑘

 (5.12) 

 

where 𝑉𝑖
𝑡,𝑠𝑘

is total maintenance costs at time 𝑡 for section 𝑠𝑘, 𝐶𝐴↔𝑖
𝑡,𝑠𝑘

 is intervention 

cost, 𝜌𝑟 is the discount rate and 𝜋𝑖𝑗
𝑡𝑟𝑎𝑛𝑠

 is the transition probability. 

The LCCs of each strategy are the summation for all maintenance sections in road 

network sections 𝑠𝑘(𝑠𝑘 = 1, … . , 𝑆𝑘) assuming the salvage value at 𝑇 [46], 𝐶𝑣
𝑠𝑘

= 0. 

𝐿𝐶𝐶 = ∑ ∑ ∑ 𝑉𝑖
𝑡,𝑠𝑘

𝐽

𝑖=1

𝑠𝑘

𝑠𝑘=1

𝑇

𝑡=0
 

(5.13) 

 

A greedy algorithm has been utilized to solve the optimization problem [47, 48]. 

To find the optimum strategy 𝒎𝒑
𝒔𝒌∗ is expressed as 

𝑚𝑖𝑛
𝐿𝐶𝐶

𝒎𝑨↔𝒊
𝒕,𝒔𝒌

 , 𝑍𝒔𝒌   

 

(5.14) 

 

subject to 

∑ ∑ 𝐶𝐴↔𝑖
𝑡,𝑠𝑘

∈ Ω𝑡

𝑆𝑘

𝑠𝑘=1

𝐾

𝑘=1

           ∀𝑡
 

(5.15) 

 

Where  𝒎𝒑
𝒔𝒌∗ is the maintenance strategy and Ω𝑡 is the budget constraint at 𝑡. 
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d) Road network condition estimation 

Estimating the condition of the road network in each state can support making decisions 

when selecting suitable maintenance activities, especially when faced with budget 

constraints. 

The road network condition in each state can be estimate using: 

𝑅𝐶𝑡+𝑍 = 𝑝(𝑍) ∗ 𝑅𝐶𝑡  (5.16) 

 

where 𝑅𝐶𝑡 is a 1 × 𝐽 road condition state vector at time 𝑡, and 𝑝(𝑍) is the 𝐽 × 𝐽 MTP 

matrix. 

e) Road network average IRI  

The average road network roughness is estimated using: 

𝐼𝑅𝐼𝐴𝑉𝑦 =
∑ 𝐼𝑅𝐼𝑘 ∗ 𝐿𝑒𝑛𝑘

𝑘
𝑖=1   

∑ 𝐿𝑒𝑛𝑘
𝑘
𝑖=1   

(5.17) 

                  

Where 𝐼𝑅𝐼𝐴𝑉𝑦 is the average roughness index in the year for the total network, 

𝐼𝑅𝐼𝑘 is the average roughness for each road section, and 𝐿𝑒𝑛𝑘 is the length of each road 

section. Table 5.2 indicates the average value of IRI determined in this study. MPWT, 

(2016) [18]. 

 

Table 5.2 Average Laos road roughness 

Condition 

state 

IRI 

(m/km) 

IRIk 

consideration 

Good ≤ 4 2 

Fair 4<IRI≤6 5 

Poor 6<IRI≤8 7 

Bad 8<IRI 9 
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5.3.3. HDM-4 Description 

The main functions of the HDM-4, particularly in road maintenance, are: planning, 

programming, preparation, and operation. The analytical framework is based on the 

concept of pavement life-cycle analysis, which is normally between 15 and 40 years [4, 

49]. Particularly, road deterioration prediction and maintenance sub-models are utilized 

to estimate the maintenance costs (agency costs) and road user costs [13]. 

a) Road deterioration computational  

HDM-4 enable the computation of pavement deterioration considering different defects. 

The model employs factors like traffic load, environmental influences, and maintenance 

intervention to forecast pavement deterioration and estimate road user costs based on 

pavement condition [50]. HDM-4 road deterioration models are based on functions of 

distress progression [7, 12, 13, 15]. The pavement deterioration computation model is 

characterized by two phases using different functions i.e. linear and non-linear models. 

The deterioration modeling comprises of initiation (absolute) and progression 

(incremental) model. 

Table 5.3 HDM-4 deterioration models for paved road 

1. Cracking initiation 

𝐈𝐂𝐀 =𝑲𝐜𝐢𝐚[𝐂𝐃𝐒𝟐 ∗ 𝟒. 𝟐𝟏𝐄𝐗𝐏{𝟎. 𝟏𝟒𝐒𝐍𝐏

−𝟏𝟕. 𝟏(𝐘𝐄𝟒/𝐒𝐍𝐏𝟐)} + 𝐂𝐑𝐓]
 

2. Cracking progression 

𝐝𝐀𝐂𝐀 = 𝑲cpa (𝐂𝐑𝐏/𝐂𝐃𝐒)

× [(𝟏. 𝟖𝟒 ∗ 𝟎. 𝟒𝟓 ∗ 𝜹𝐭𝐀 + 𝐒𝐂𝐀𝟎.𝟒𝟓)
𝟏/𝟎.𝟒𝟓

− 𝐒𝐂𝐀]
 

3. Raveling initiation 

𝐈𝐑𝐕 = 𝑲𝒗𝒊𝐂𝐃𝐒𝟐 ∗ 𝟏𝟎 ∗ 𝐑𝐑𝐅 ∗ 𝐄𝐗𝐏[−𝟎. 𝟏𝟓𝟔 ∗ 𝐘𝐀𝐗] 

4. Raveling progression 

𝐝𝐀𝐑𝐕 = 𝑲𝒗𝒑(𝟏/𝐑𝐑𝐅)(𝟏/𝐂𝐃𝐒𝟐)[(𝟎. 𝟔 + 𝟑. 𝟎 ∗ 𝐘𝐀𝐗)

∗ 𝟎. 𝟑𝟓𝟐 ∗ 𝜹𝐭𝐯 + 𝐒𝐑𝐕𝟎.𝟑𝟓)
𝟏/𝟎.𝟑𝟓

− 𝐒𝐑𝐕]
 

5. Pothole initiation 

𝐈𝐏𝐓 = 𝑲𝒑𝒊𝟐. 𝟎 ∗ [
(𝟏 + 𝟎. 𝟎𝟓 ∗ 𝐇𝐒)

(𝟏 + 𝟏 ∗ 𝐂𝐃𝐁)(𝟏 + 𝟎. 𝟓 ∗ 𝐘𝐀𝐗)(𝟏 + 𝟎. 𝟎𝟏 ∗ 𝐌𝐌𝐏)
]
 

6. Pothole progression 
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𝐝𝐍𝐏𝐓𝒊 = 𝐊𝐩𝐩 ∗ 𝐀𝐃𝐈𝐒𝐢 [
(𝟏 + 𝟏 ∗ 𝐂𝐃𝐁)(𝟏 + 𝟏𝟎 ∗ 𝐘𝐀𝐗)(𝟏 + 𝟎. 𝟎𝟎𝟓 ∗ 𝐌𝐌𝐏)

(𝟏 + 𝟎. 𝟎𝟖 ∗ 𝐇𝐒)
]
 

7. Roughness progression 

𝚫𝐑𝐈 = 𝑲𝒈𝒑[𝟏𝟑𝟒 ∗ 𝐄𝐗𝐏(𝐦𝑲𝒈𝒎𝐀𝐆𝐄𝟑) ∗ (𝟏 + 𝐒𝐍𝐏𝑲𝒃)−𝟓𝐘𝐄𝟒]

+[𝟎. 𝟎𝟎𝟔𝟔 ∗ 𝚫𝐀𝐂𝐑𝐀] + [𝟎. 𝟎𝟖𝟖 ∗ 𝚫𝐑𝐃𝐒] + [𝟎. 𝟎𝟎𝟎𝟏𝟗(𝟐 − 𝐅𝐌)

× {((𝐍𝐏𝐓𝒂 ∗ 𝐓𝐋𝐅) + (𝚫𝐍𝐏𝐓 ∗ 𝐓𝐋𝐅/𝟐))
𝟏.𝟓

− (𝐍𝐏𝐓𝒂)𝟏.𝟓}]

+[𝐦𝒈𝒎𝐑𝐈𝒂]

 

      Note: Jain et al., 2005 [15]. 

Table 5.3 contains the HDM-4 deterioration model formulae. In order to estimate 

roughness progression, it is required to calculate the incremental change in the area of 

cracking (dACRA), the incremental change of rut depth (dRDS), and the incremental 

change in the number of the pothole (dNPT) during the analysis year. To estimate 

pavement deterioration usingHDM-4 deterioration formula, it is important to consider 

and determine the calibration factor for the respective model (𝐾cia, 𝐾cpa, 𝐾vi) and related 

parameters, including time interval, traffic growth rate, modified structure number (SNP), 

etc., for more accurate estimations [15]. 

b) Life-cycle cost analysis in HDM-4 

The rate of pavement deterioration and distress is directly affected by the maintenance 

applied to the defects. Maintenance works such as pothole patching, crack resealing, and 

surface overlay have been considered; thus, the long-term road pavement condition 

depends on the improvement applied [49]. The HDM-4 mainly focuses on maximizing 

the Net Present Value (NPV) of the investment in terms of road maintenance and user 

costs during the analysis period with less consideration for road condition[51]. 

The LCC analysis in HDM-4 is associated with road maintenance costs, road user 

costs, and other social and environmental costs. Road user costs comprise vehicle 

operating costs, travel time costs; and road accident costs. Social and environmental costs 

comprise emissions, energy consumption, traffic noise, and other welfare factors 

impacted by roads. 

Since there are several processes and forms to compute the LCCs in the HDM-4, it 

is recommended to refer to the references [4, 12, 49] for a better understanding of the 

framework, data requirements, and LCC analysis capabilities of the HDM-4.  
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5.3.4. Empirical Data 

The empirical study used input data from the Laos RMS database in 2014–2015. For 

comparison purposes, the maintenance unit costs applied for are same as the 2016 RMS 

unit costs in the RMS Analysis report [18] using HDM-4. The collected data contained 

pavement materials, the IRI, and the average annual daily traffic (AADT) for 19 paved 

national roads. 

The Laos road network includes two categories, the ASEAN highway road and 

the National Road with a total length of 4,301.7 km, about 73.43% of the total national 

road network in 2016, as shown in Table 5.4. 

Table 5.4 Input data 

Description (ASEAN road) (National road) 

No. of rout 

(links) 

9 

(108)* 

10 

(71) 

Length (km) 2,624.3 1,677.4 

Number of pairs 26243 16774 

Uncertainty 

Variables 
AADT, Road surface (AC/ST)** 

Number of 

AC/ST 
7882/35135 

*Number of links, **AC=Asphalt concrete; ST=Surface treatment (bituminous). 

5.3.5. Road Condition States  

The road conditions were categorized using IRI data surveyed in 2014–2015 from RMS 

database. The IRI was measured using the dynamic response Vehicle Intelligent 

Monitoring System (VIMS) equipment during the Japan International Cooperation 

Agency project (JICA) starting in 2012. The roughness values were collected for each 

100-meter segment [52, 53]. 

The IRI was classified into four condition states based on the same criterion for 

roughness and recent RMS classification in the RMS report [18]. The number of sections 

per condition state in the survey year for each network is shown in Table 5.5. 
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Table 5.5 IRI classification and condition state in year 2014-2015. 

Condition state 
IRI 

(m/km) 

IRI condition  

(2014) (2015) 

1 (Good) ≤ 4 24455 22034 

2 (Fair) 4<IRI≤6 11392 12642 

3 (Poor) 6<IRI≤8 4244 5234 

4 (Bad) 8<IRI 2926 3107 

 

5.3.6. Road Network Deterioration Rate and Transition Probability 

The deterioration rate estimation for the entire Laos road network, including the 

ASEAN and National roads, was done using explanatory variables such as AADT and 

road surface type. As a function of unknown parameter and explanatory variables, the 

hazard rate in exponential form as: 

 𝜃𝑖 = exp(𝛽0,𝑖 + 𝛽1,𝑖𝑥1 + 𝛽2,𝑖𝑥2) 
(5.18) 

𝑥2 = {
1       for  𝐴𝐶

  0       for   𝑆𝑇
   (5.19) 

surface type dummy variable; AC is Asphalt Concrete, and ST is surface treatment 

(bituminous). 

The unknown parameters were estimated using the Markov Chain Monte Caro 

(MCMC) methodology using the Metropolis-Hastings (MH) algorithm [54, 55]. The 

MCMC was employed because the log-likelihood function was dependent on numerous 

unknown parameters. The unknown parameters (𝛽) converged as shown in Table 5.6. To 

test convergence, the Geweke diagnostic should ideally fall within the limits of [-1.96, 

1.96], with a value of 0 indicating perfect convergence. The traffic parameters in this 

study have an insignificant effect on the road deterioration process. The reason for 

insignificant traffic could be improper data collection and input. However, the pavement 

parameters significantly impact road deterioration, particularly when transitioning from 

condition 1 to 2. 
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Table 5.6 Estimated β parameters and life expectancy in years. 

State Absolute 

(𝜷𝒊,𝟎) 

 Traffic 

(𝜷𝒊,𝟏)  

 Pavement 

(𝜷𝒊,𝟐) 

Life (𝑳𝑬𝒊
𝒌) 

1-2 
-0.643 - -0.629 

2.13 
(0.491) * - (-0.822) 

2-3 
-0.290 - - 

1.34 
(-1.102)  - -  

3-4 
0.081 - - 

0.92 
(1.247)  - - 

* The values in bracket are the Geweke’s diagnostic for β. 

The life expectancy 𝐿𝐸𝑖
𝑘 are estimated as the inverse of hazard rate 𝜃𝑖

𝑘 according to Equation 

(5.5). 

As a result, the MTP for the national road network was estimated and shown in 

Equation (20). The MTPs indicate that the road network tends to remain in its current 

state, with the highest transition probability being for condition state 1 at the rate of 

66.7%, while the probability of remaining in condition state 2 is 63.1% and condition 

state 3 is 55.8%, respectively. 

 

MTP = [

0.667 0.262 0.057 0.012
0 0.631 0.273 0.095
0 0 0.558 0.441
0 0 0 1

]
 (5.20) 

 

The life expectancy of the road network was estimated employing Equation (5). The 

Figure. 5.4 shows the life expectancy for asphalt and surface treatment pavements, which 

were used as explanatory variables in this study. AC pavements had longer life 

expectancy of about 5.9 years compared to 4.1 years for ST because AC pavements were 

constructed with stronger materials. 
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Figure. 5.4 Life expectancy for paved Laos roads using MUSTEM 

 

5.3.7. Road Network Maintenance Strategy for Laos 

In this subsection, the study aims to estimate the road condition performance and LCCs 

considering a basic intervention strategy (𝒎𝒑𝟏) in which road sections are repaired to the 

best condition regardless of their observed condition (Equation 21). Different budget 

scenarios are considered, i.e., unconstrained, and constrained at 70%, 50%, and 30% of 

total intervention needs. These scenarios using MUSTEM’s estimation aided comparison 

with the results derived from the HDM-4 estimation report for 2016-2025 in terms of 

network performance and LCCs estimation as shown in the Road Asset Management Plan 

2016 report [18]. 

Regarding the specific maintenance policy, the maintenance matrix (strategy) was 

defined (Equation 2 1). We explored a limitless scenario assuming an unconstrained 

budget. However, we also investigated the practical strategy of the ‘constraint scenario.’ 

The criteria were set based on budget limits of 70%, 50%, and 30%. Finally, we compared 

the results of each strategy with the RMS practical approach outlined in the Road Asset 

Management Plan 2016 report [18] 

 

𝒎𝒑𝟏 =   [

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

]
 (5.21) 
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The intervention prioritization was determined using a greedy algorithm 

associated with specific costs. Table 5.7 contains the interventions and their associated 

costs. 

 

Table 5.7 Unit cost for maintenance works in RMS. 

Maintenance works Costs (Mkips/m2)* 

Routine maintenance 0.0008 

Patching and sealing 0.065 

Surface overlay 0.072 

Rehabilitation/Reconstruction 0.221 

Source: MPWT, Laos [18] , * Mkips = million Kips 

 

5.4. MUSTEM Vs HDM-4 Considering Different Budget Scenarios 

5.4.1. Limitless Budget Scenario Evaluation 

The unconstrained budget scenario was implemented, considering maintaining condition 

state 1 and repairing road condition states 2–4 with corresponding actions (Table 1) to 

improve the conditions to the best condition state 1. Road network condition for a 10-

year life-cycle was compared with the estimation results from the current Laos RMS.  

Two estimation dimensions were compared: estimation of road condition 

distribution from 2016–2025, and LCCs during the analysis period. Table 5.8 presents 

the LCC estimation, considering both the limitless and constrained budget scenarios. 
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Table 5.8 LCC’s Comparison between MUSTEM and Laos RMS 

Strategy 𝒎𝒑
𝒔𝒌

 

Estimated LCC (Million kips) 

Empirical 

network 

(73.43%) 

Whole 

network 

(100%) 

Lao RMS 

estimation 

 MUSTEM (HDM-4) 

Limitless 4,017,171 5,470,608 6,426,029 

70% budget 

constraint 

2,812,020 3,829,425 4,473,864 

50% budget 

constraint 

2,010,671 2,738,143 3,209,855 

30% Budget 

constraint 

1,206,402 1,642,886 1,926,466 

 

The estimated road conditions using the MUSTEM and HDM-4 at the end of the 

analysis period (2016-2025) were compared as shown below.  

 

 

Figure. 5.5a MUSTEM road condition distribution estimation (limitless budget scenario). 
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Figure. 5.5b HDM-4 road condition distribution estimation (limitless budget scenario). 

Considering a limitless budget, the MUSTEM was found to maintain a larger 

percentage of the network in fair to good condition compared to HDM-4 considering the 

entire analysis period. This stark difference stems from the fact that the MUSTEM 

captures the deterioration uncertainty typical of pavements which enables better 

intervention prescription compared to HDM-4 that considers deterministic deterioration. 

At the end of the analysis period, MUSTEM and the Laos RMS based on HDM-4 

estimated about 92.99% and 92.81% of the road network in fair to good condition, 

respectively (see Figure. 5.5a and Figure.  5.5b). Additionally, LCCs of 5,470,608 

Mkips estimated with MUSTEM were relatively lower than Laos RMS estimate of 

6,426,029 Mkips (85.13% of the Laos RMS estimate). Figure. 5.6 illustrates the average 

roughness estimation during the analysis period (2016-2025). 

 

Figure. 5.6 Average IRI estimation comparison (limitless budget scenario). 
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The average IRI estimated by MUSTEM was significantly better than that 

estimated by the Laos RMS. The predicted average IRI at the end of the analysis year of 

the MUSTEM was approximately 3.18m/km, which is lower than the 3.53 m/km 

estimated by RMS in 2025. The reason behind this improvement is that the MUSTEM 

captures pavement deterioration uncertainty and specifies more optimal interventions. In 

contrast, based on HDM-4, the RMS estimation prioritizes benefits for road users and 

social advantages over road performance. Hence, the interventions applied may differ due 

to the distinct objectives of the two models in terms of road network performance and 

LCCs.   

The LCC estimate by MUSTEM was better than the HDM-4 estimate. However, the 

MUSTEM framework of the limitless scenario proposed in this study demands a 

substantial maintenance budget from the start of the analysis year. 7 shows the cumulative 

maintenance cost under the limitless scenario, highlighting the total maintenance 

expenditure at the end of each year during the analysis period from 2016 to 2025. 

 

 

Figure. 5.7 Cumulative maintenance costs (million Kips). 
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5.4.2. Budget Constraint Scenario Evaluation 

In the context of budget constraints, prioritization was employed to allocate limited 

resources for maintenance. Specifically, the available budget was considered to account 

for only 70%, 50%, and 30% of the total maintenance requirements. As a result, the top 

priority was to keep road sections that required minor maintenance in good condition. 

Consequently, any remaining maintenance tasks were deferred to next year. 

Consequently, more roads were expected to be in poor condition, necessitating significant 

maintenance efforts and/or new construction and rehabilitation projects.  

Table 8 presents the MUSTEM estimation, with budget constraints of 70%, 50%, 

and 30% of the total demand. The predicted LCCs were 3,829,425 Mkips, 2,738,143 

Mkips, and 1,642,886 Mkips, respectively. Notably, these results slightly differ from the 

RMS estimation. 

However, when comparing the overall road condition and the average IRI of the 

road network at the end of the analysis year, there are noticeable differences. At a budget 

availability of 70%, the road condition estimation was 36.94% in fair to good condition 

by MUSTEM, while the RMS estimation was 72.57%. Furthermore, the average IRI 

estimation was 6.67 m/km by MUSTEM and 5.05 m/km by RMS. 

At a 50% budget level, the road condition estimation was 27.17% by MUSTEM 

and 55.41% by RMS, and the average IRI was 7.28 m/km by MUSTEM and 6.30 m/km 

by RMS estimation. Lastly, at a 30% budget availability, the road condition estimation 

was 17.41% by MUSTEM and 41.76% by RMS, while the average IRI was 7.88 m/km 

by MUSTEM and 7.21 m/km by RMS estimation, respectively. 
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5.4.3. Do nothing scenario 

The road condition deteriorates over time as the pavement experiences accelerated wear 

and tear due to traffic, weather, and other stressors. Figure.  5.8 illustrates the comparison 

of the road condition performance predictions between MUSTEM and HDM-4. 

 

Figure. 5.8 Road network IRI deterioration estimation comparison. 

The road condition (IRI) will reach the maximum worse condition (absorbing 

state) by 4.39 years from the MUSTEM estimation, while the predicted IRI from HDM-

4 will reach the maximum condition state at around 8 years. The difference in the life 

expectancy can be attributed to the different modeling approaches for the MUSTEM and 

HDM-4. MUSTEM incorporates uncertainty in pavement deterioration, which is suitable 

for modeling pavement degradation, unlike the deterministic deterioration model in 

HDM-4, which considers linear/ non-linear deterioration without incorporating 

uncertainty (see in Table 3). Also, HDM-4 estimation is based on a set of parameters, 

including IRI, cracking, pothole, and raveling, as well as traffic data and environmental 

factors to estimate the total performance. 

Figure. 5.9 shows the Laos road network condition distribution estimation using 

MUSTEM with no intervention (Do nothing). It shows a rapid degradation of the network 

with about 94% deteriorating to terminal state within 10 years if nothing is done. A similar 

degradation may be expected for the Laos RMS using HDM-4, but this is not shown here 

due to model inaccessibility 
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Figure. 5.9 Road conditions distribution with no intervention. 

5.5. Conclusions 

The results of the study provide valuable insights into the respective efficacy and 

limitations of MUSTEM and HDM-4, particularly in road network performance 

estimation, and optimal maintenance/ intervention strategies. These results provide 

details on the superiorities and limitations of each approach for decision-makers, i.e., road 

administrators and governments, in charge of road and infrastructure development and 

maintenance. 

This research reveals that the MUSTEM model and the HDM-4 model are 

efficient in predicting road conditions in cooperation with parameters such as traffic 

loading, pavements, and environment. Specifically, this study highlights the merits of the 

MUSTEM model in empirically analyzing the road network in Laos. The estimation 

provided by the MUSTEM model predicted a higher percentage of road conditions to be 

in fair to good condition throughout the analysis period in the context of a budget 

unconstraint scenario. 

A comparative analysis using data from Laos RMS highlights notable differences 

between both models. The study has implied the minimum data requirements and 

differences in model performance and LCC prediction at different budget levels. The 

MUSTEM model has been widely recommended for its effectiveness in predicting road 

deterioration, even when faced with uncertainties, aligning well with the actual road 

degradation characteristics observed in Laos. Additionally, in this study, the LCCs 

associated with the different scenarios identified by MUSTEM were relatively lower than 
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the total budget needs estimated by HDM-4. However, the MUSTEM may not inherently 

include economic analysis and the impact of road condition on vehicle operating costs.  

On the other hand, the HDM-4 offers precise performance metrics and cost-

effectiveness that incorporate traffic benefits (user costs) and society. The HDM-4 model 

also considers various cost components in order to estimate the whole life-cycle cost, 

including construction costs, operation and maintenance costs, rehabilitation costs, road 

users’ costs, and environmental costs. Therefore, they ask for a bunch of data to estimate 

precise values. 

The comparison between the MUSTEM and HDM-4 in various aspects, for 

instance, data requirements, road performance estimation, and LCC analysis, underscores 

the importance of carefully considering multiple factors or limited data when employing 

each model in road management. Both models need capacity building to improve the 

proficiency of users, as well as balancing costs and performance when adopting advanced 

modeling in the road maintenance system, to support precise road intervention decisions. 

In conclusion, comparing the stochastic model, MUSTEM, and the deterministic 

model, HDM-4, highlights their respective efficacy and limitations in estimating road 

network performance and optimizing maintenance strategies. MUSTEM uses a 

probabilistic approach to account for uncertainties, while HDM-4 uses a deterministic 

approach that simplifies calculations but demands extensive data to generate precise 

estimations. Balancing these trade-offs is crucial for effective road network management 

and maintenance planning.   

Future research endeavors could focus on exploring novel maintenance strategies 

and further validating the accuracy and applicability of the MUSTEM model. 

Investigating alternative maintenance approaches, such as innovative materials or 

technology-driven solutions, could offer insights into optimizing road maintenance 

practices and enhancing infrastructure resilience.  Furthermore, the expansion of the 

analysis to incorporate data from other developing countries would enable a 

comprehensive evaluation of the MUSTEM model's performance in diverse settings. 

These comparative studies could provide valuable insights into the generalizability and 

robustness of both models, facilitating informed decision-making in road maintenance 

management globally. 
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6. Conclusions and Recommendations 

6.1. Summary of Findings 

This research investigated the effectiveness of a proposed road management model 

incorporating stochastic pavement deterioration and life-cycle cost estimation using a 

Markov hazard model and a Markov decision process. By comparing the proposed 

models, MUSTEM, with the extensive employed HDM-4 system, the study identified 

critical strengths and limitations of both frameworks. While HDM-4 excels in economic 

evaluation and policy planning, it requires extensive datasets and calibration, making it 

challenging for resource-limited scenarios like Lao PDR. MUSTEM, on the other hand, 

enhances predictive accuracy through stochastic modeling, allowing for better planning 

under uncertainty but requiring careful balancing between condition-dependent and time-

dependent strategies. As a result, the findings identified the critical strengths and 

limitations of both frameworks, ultimately enhancing the efficiency and cost-

effectiveness of the road network management system, particularly in the context of the 

Lao PDR road management system. 

The findings are summarized as follows: 

1) Current RMS Evaluation 

The existing Road Management System (RMS) in Lao PDR is hindered by 

insufficient data collection, limited funding, and a lack of advanced analytical 

capabilities. For instance, inadequate traffic data often leads to poorly informed 

maintenance schedules, resulting in the rapid deterioration of key road sections. 

Limited funding restricts the ability to address critical repairs promptly, thereby 

escalating overall maintenance costs. Additionally, the lack of advanced 

analytical tools makes it challenging to prioritize interventions effectively, further 

compounding inefficiencies and contributing to mounting debt of approximately 

2,433 billion Kips (USD 200 million) as of 2021. This debt is largely attributed to 

the gap between the annual budget plan and the reimbursement capacity, as well 

as emergency maintenance needs arising from unpredictable disasters. 
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2) The HDM-4 Application 

The HDM-4 model is widely used in comprehensive road condition assessments 

and economic impact evaluations. However, its reliance on extensive datasets, 

such as traffic volume, pavement conditions, and vehicle operating costs, requires 

significant investment in data collection infrastructure. Furthermore, the 

calibration process involves complex adjustments to local conditions, including 

climate, terrain, and material specifications, making it challenging to implement 

in resource-constrained environments like developing countries, particularly in 

the Lao PDR. 

3) MUSTEM Application  

The MUSTEM model, based on stochastic methodologies, provides accurate 

predictions of road deterioration by accounting for uncertainties in pavement 

condition transitions. While the model does not prescribe specific maintenance 

intervention for decision-makers, its outputs can assist both condition and time-

dependent intervention policies, enabling more effective prioritization of 

maintenance funding under budget constraints. MUSTEM provides a cost-

effective forecasting framework but does not directly assess broader economic 

indicators such as Net Present Value (NPV), Vehicle Operating Costs (VOC), or 

user costs, which are typically addressed by models like HDM-4. 

Developing the stochastic road condition prediction model in Chapter 3, optimizing 

maintenance strategy and budget allocation in Chapter 4, and the comparative analysis 

between the existing tool and framework with the proposed model framework in Chapter 

5 underscore the value of integrating MUSTEM and MDP framework, the proposed 

model, into the existing RMS framework (Lao’s RMS). Integrating both frameworks 

allows for a more practical road maintenance system by combining HDM-4’s economic 

assessment capabilities with MUSTEM’s predictive accuracy. This hybrid approach 

ensures data-driven decision-making that optimizes maintenance schedules while 

improving cost efficiency and resource allocation, which could significantly enhance 

condition prediction accuracy, account for uncertainties, and improve both short-term and 

long-term maintenance planning in Lao PDR.  
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6.2. Policy and Practical recommendations 

Based on the findings and proposed model development, this research offers 

recommendations in order to enhance road network management, particular in Lao PDR, 

as follows: 

1) Develop a hybrid road management system 

Developing an integrated framework that combines the predictive strength of the 

MUSTEM model with the economic evaluation capabilities of HDM-4 can 

significantly enhance the effectiveness of the Road Management System (RMS), 

particularly in Lao PDR. While HDM-4 is already used as a core tool for long-

term maintenance planning and budget allocation, its integration with MUSTEM 

would provide a more robust decision-making process. Specifically, HDM-4 can 

continue to support high-level economic analyses such as evaluating Net Present 

Value, Vehicle Operating Costs, and user benefits. At the same time, MUSTEM 

strengthens condition-based forecasting by incorporating deterioration 

uncertainty. MUSTEM could identify critical road sections at risk of fast 

deterioration, informing prioritization decisions. HDM-4 would then be used to 

design targeted interventions and assess long-term economic plans. This 

integrated approach would enhance the precision of maintenance scheduling, 

optimize resource allocation, and enhance road network management. 

 

2) Improving data collection methodologies 

Integrating advanced technologies such as GIS, remote sensing, and automated 

road condition survey equipment to support reliable data collection. Implement 

regular and systematic data collection to support accurate condition estimation 

and maintenance needs. For example, In Australian expressway, GIS has been 

employed to enhance data collection, management, planning, resource allocation, 

and long-term maintenance activities. 

 

3) Capacity building and Research and Development 

Developing training programs, enhancing capacity and methodologies for central 

and local road authorities, and improving their skills in using advanced modeling 
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techniques and data analytics. In addition, collaborate with international experts 

to build capacity and transfer knowledge. 

 

4) Strengthening Funding Mechanisms 

Reducing public funding by developing a Public-Private partnership (PPP) system 

to reduce dependence on public funding. Given the financial constraints of Lao 

PDR, Build-Operate-Transfer (BOT) and Performance-Based Contract (PBC) 

could be cost-effective options for the government and private sector. In the 

meantime, developing an allocation funds strategy to prioritize critical road 

sections, optimize maintenance interventions, and enhance financing management 

using innovative and transparent mechanisms. 

5) Address climate change adaptation 

Invest in road infrastructure resilient to climate change impact using climate-

resistant materials and advanced construction techniques that can withstand 

extreme climate conditions. Integrate predictive climate models and 

environmental impact assessment into the road design process, considering 

uncertainties from climate changes to ensure the sustainability and reliability of 

road networks under changing climate conditions.  

6) Incorporate Artificial Intelligence (AI) and Machine Learning  

Utilize the robustness of AI and machine learning to enhance road condition 

predictions and maintenance planning. Nowadays, AI-driven systems have been 

successfully implemented in developed countries to forecast pavement 

deterioration using real-time sensor data, enabling proactive maintenance 

planning. Similarly, machine learning models can analyze historical data to 

predict optimal intervention timings. However, as Laos is a developing country, 

significant efforts are required to build AI and machine learning capacity. This 

includes investing in technical education, fostering collaborations with 

international technology experts, and developing infrastructure that supports data-

driven innovations. 
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6.3. Contribution of Knowledge 

This research aims to provide significantly to both the academic and practical domains of 

road network management by introducing the MUSTEM model as a novel application of 

stochastic methodologies for road maintenance planning. Unlike traditional deterministic 

models, MUSTEM incorporates the uncertainty of pavement deterioration and provides 

optimized life-cycle cost estimates. This research bridges the gap between theoretical and 

real-world applications, particularly in the context of developing countries like Lao PDR. 

On the academic side, this study extends the boundaries of understanding 

stochastic models in road network management. It uniquely emphasizes the potential of 

the MUSTEM model, a stochastic approach that can significantly enhance traditional 

maintenance planning and cost-effectiveness. Demonstrating the effectiveness of this 

model also enriches the existing knowledge base in road network management. 

Moreover, introducing a comparative analysis framework as a new evaluation approach 

for different road management systems is a methodological innovation that advances 

research methods in the field and can be applied in other developing countries facing 

similar challenges. 

From a practical perspective, this research's findings provide valuable workable 

insights for road management authorities, specifically for the Lao PDR and similar 

contexts. The findings and recommendations can guide these authorities in improving 

their road network management practices. Furthermore, integrating stochastic 

methodology into road network management underscores the practical implications of 

embracing advanced methodology in maintenance planning and decision-making 

processes. By showcasing the potential of these approaches, this research highlights their 

usefulness and opens up new opportunities for enhancing the efficiency and effectiveness 

of road management practices. 

6.4. Limitations 

This study provides valuable insights into optimizing road network asset management in 

Lao PDR. However, several limitations need to be acknowledged. First, the accuracy of 

the MUSTEM model depends on the quality and availability of input data, which remains 

a challenge in data-limited environments. Second, integrating MUSTEM with HDM-4 

requires substantial capacity-building efforts among road authorities, which may delay 
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implementation. Third, financial constraints may hinder the adoption of the proposed 

model, limiting the practical application of predictive maintenance strategies. Lastly, the 

study's findings are based on data from the Lao PDR. At the same time, other developing 

countries can adapt the proposed framework. However, additional validation is required 

to assess its effectiveness in diverse geographic and economic contexts. 

6.5. Future Research 

This study highlights the effectiveness of enhancing existing Lao's RMS by integrating 

road condition prediction and finding optimal maintenance strategy and allocation by 

stochastic deterioration and decision process. However, this study revealed the model 

application using Lao road network data, which may differ from other counties. 

Therefore, the following areas are the suggestions for future research: 

1) Extend case study: Apply the conceptual model to other developing countries to 

validate its findings and assess its adaptability to different contexts and practices. 

For instance, countries like Cambodia, Myanmar, and Nepal, which share similar 

challenges in road network management due to limited resources and rugged 

topographies, could provide relevant contexts for testing the model. 

2) Investigate and explore the influences of innovative technology: Employing 

AI and machine learning on road and infrastructure management to enhance 

prediction model accuracy and improve decision-making.  

3) Different Policy and strategy impact assessment: Investigate the impact of 

various policy changes on road maintenance; this includes evaluating different 

types of maintenance interventions and budget allocations based on specific 

constraints in different regions to develop the most appropriate maintenance 

strategy. 

4) Research on Climate change adaptation: Climate change poses challenges to 

road networks, and investigating its short-term and long-term impact helps us 

design resilient infrastructure. Evaluate the effectiveness of resilient infrastructure 

and sustainable infrastructure to ensure the road's service longevity. 

5) Pilot Project Implementation in Lao PDR: Implement a pilot project to apply 

the proposed MUSTEM model in a real-world road maintenance project, 



 

CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

131 

 

particularly in Lao PDR, as recommended by the authorities in charge in Laos's 

MPWT. This pilot project will test the model's predictive accuracy and operational 

efficiency using the dataset in real road maintenance projects. The implementation 

and results from the pilot project will serve as a practical validation of the model 

regarding prioritizing maintenance interventions, optimizing budget allocation, 

and estimating road conditions under limited budget scenario. 


