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第 1章 序論 

1.1 はじめに 

沿岸生態系は，魚介類の生育域提供，水質汚濁抑制，岩礁などによる洪水や暴風雨の緩和，土砂の

維持，炭素固定などのサービスを通じて，人類の生存に貢献しており，欠かすことのできない財産で

ある (Barbier, 2017)．その一方，人間活動に伴う沿岸開発や生活排水・工場排水による汚濁負荷によっ

て，多くの生態系が破壊され，様々な水質問題が発生している．加えて，気候変動による環境変化が

生態系に更なる悪影響を及ぼす可能性があり，沿岸生態系の持続可能な管理施策が益々求められてい

る．沿岸生態系の恩恵を潰やすことなく，この先の人類へ存続させることは，現在の我々に課された

重要課題である． 

人間の生存に酸素が不可欠であるように，水中の溶存酸素は水生生物の生存に欠かすことができな

い重要な物質である．溶存酸素量 (DO) は，水温や塩分，および水中の生物化学的反応によって変動し，

閉鎖的な海域では，貧酸素水塊と呼ばれる著しい DO低下現象が発生する．また，現在までの地球温暖

化による DOの低下傾向が海洋全体で確認されている (Diaz and Rosenberg, 1995, 2008 ; Diaz, 2001)．海水

温の上昇は，水中に溶存可能な酸素量を低下させるとともに，微生物活動を活発化させ，より多くの

酸素が消費される構造を作り出す．人間活動に伴う汚濁負荷を受ける沿岸域では，DO 低下が海洋に比

べて著しく，多くの貧酸素水域を抱えている (Gilbert et al., 2010)．特に水交換率が低い湖沼や湾灘は，

汚濁負荷の影響が顕れ易く，富栄養化による赤潮，貧酸素水塊などの水質問題が将来的な環境変化に

よって悪化する可能性がある．貧酸素水塊は水生生物の生息域を制限し，底生生物の大量斃死を引き

起こす (Karlson et al., 2002; Valanko et al., 2015; Breitburg et al., 2018)．貧酸素水塊による被害を抑制し，

変わりゆく地球環境・地域環境に対応する水質保全施策を講じてゆくためには，水質観測による現状

把握および貧酸素化機構の解明が不可欠である．  

水域の健康状態を把握する上で，水質観測は欠かせない．船舶による定期観測は，水域における広

範な水質情報を数十年にわたって記録しており，水質変動の長期傾向を把握することに大いに貢献し

てきた．また，観測頻度が高い定点自動観測システムは，船舶観測による把握が困難な，潮汐変動や

気象擾乱による水質の応答特性を明らかにする上で有益かつ重要である．しかしこれらの空間および

時間的な解像度の高さはトレードオフの関係にあるため，いずれの観測データからも，断片的な情報

しか得られない．  

流動水質モデルを用いた数値計算では，領域をグリッドに分割し，理論的・経験的方程式に基づい

て，グリッドごとの流速，密度などの物理変数から，植物プランクトン，栄養塩，DO などの生物化学

的変数について時空間変動予測を行うことができる．そのため数値計算では，観測が網羅できない時

空間的情報，および，観測困難な物質や変数同士の相互作用をシミュレートすることができる．水質

モデルは，対象領域内の複雑な相互作用を理解するための有効なアプローチであり，富栄養化による

赤潮発生や貧酸素化などの現象メカニズム解明や水質改善施策を講じる上で重要である (Sohma et al., 

2009 ; Kumar et al., 2022 ; Lancelot et al., 2006)．ただし，流動水質モデルを構成する方程式群は，必ずし

も物理法則のような普遍原理から成っておらず，その予測結果には少なからぬ不確実性が含まれてい

る．特に，生物化学的な物質収支を取り扱う水質モデルは，多くの仮定や近似の上に成り立っており，

不確実性はなおのこと大きい (Ward et al., 2020)．水質モデルの中核である植物プランクトンの増殖過程

ひとつとっても，そのモデル化は様々な形式が考案されている．しかし，その明確な選定基準は存在
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せず，観測値との整合性がモデルの妥当性を評価するほとんど唯一の指標となる．また，水質モデル

が持つ多くのパラメータ，例えば，有機物の分解速度や植物プランクトンの成長速度といった反応定

数などを設定する必要があるが，利用可能な観測値のみでは，パラメータのすべてを決定することが

できないため，モデル利用者が経験的に決定せざるを得ない (James, 2002)． 

水質現象の発生機構を正確に把握し，将来予測に資する水質モデルは，現在利用できる観測データ

を活用し，それらの変動パターンを可能な限り再現できる性能を有していることが理想的である．一

方，沿岸域の水質動態は多くの要因の影響を受け，その要因のすべてをモデル上で表現することは不

可能である．水質モデルを構成する生物化学的な反応過程は，限定的な観測データを後追いするよう

に継ぎ足される．即ち，観測データと，それまでのモデル計算値のギャップ（ミスフィット）を埋め

るべく，状態変数を追加，反応速度の算出関数を変更するなど，様々なモデル改修が行われる． 

モデル改修を行う際には，ミスフィットが生じている原因に注意を払わなければならない．ある原

因で生じたミスフィットを，それとは異なる要因によって補うことで，その水質モデルによる計算結

果は，観測データとモデルの整合性が得られているにも関わらず，その背後で行われている状態変数

間の相互作用が現実を正確に反映できなくなる．現象メカニズムの理解や将来予測において，より信

頼できる推定結果を得るためにも，モデル構造の改修およびパラメータ最適化のアプローチは，流動

水質モデルの構成要素それぞれが有する不確実性を評価し，観測値とモデルのギャップを生じさせて

いる原因を定量的に把握できる手法であることが望ましい． 

1.2 データ同化の水質モデル改良への応用可能性 

近年，観測とモデルを融合するデータ同化手法が目覚ましい発展を遂げている．データ同化は数値

計算に観測値を同化することで，観測値に整合する計算出力を得られる統計的解析手法の一つであり，

天気予報や台風進路予測のなど，気象分野における実用例が有名である．予報性能を重視する用例の

ほかにも，数値シミュレーションにおけるモデル状態変数の最適な初期空間分布やパラメータ推定に

も適用されており，流動水質モデルもその例に漏れず，いくつかの適用例がある (Mattern et al., 2017; 

Laurent et al., 2016; 入江ら, 2012)． 

数値モデルに適用し得るデータ同化手法は逐次法と変分法（非逐次法）とに大別される．逐次法は

時間発展計算において観測値が得られ次第，計算値を修正し，観測値に近づける．適用し易く，迅速

に高精度な計算結果が得られるため，天気予報や河川水位予測など，正確性と迅速性が求められる場

面で活躍している．反面，逐次法の出力結果は，人為的な増減が施されるため物質量が非保存となり，

物質循環構造の把握が困難となる．一方の変分法，とりわけ 4次元変分法は，計算値と観測値のミスフ

ィットを時空間的に低減させる手法であり，物質量を保存することも可能である．．また，感度解析的

にパラメータ，境界条件に修正量が割り振られるため，データ同化の中でも，モデル表現性能が低下

する要因の解析に長けている． 

データ同化によって，観測値に整合するようなモデルパラメータや状態変数の時空間推移が得られ

るが，その際に発生したパラメータや初期場の修正は，現状のモデルが表現できない現象や相互関係

が反映された結果である．そのため，修正要因や修正後のモデル変数あるいはパラメータの間の関係

を調べることで，水質モデルに必要でありながらも，現状ではモデル化されていない関係を見出すこ

とができるはずである．しかしながら，データ同化を扱った研究の多くは同化による精度向上を目的

とするため，モデル性能の改善に向けた検討はほとんど為されていない．また，変分法の中でもより

高度な 4次元変分法では修正量を最適化するための誤差伝播計算（アジョイント計算）を行うが，アジ
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ョイントコードは元のモデルを改訂した際に，それに合わせた編集作業を人間の手で行わなければな

らず，当該手法の欠点の一つである． 

1.3 研究目的・論文構成 

本研究では，大阪湾を対象に 4次元変分データ同化法を応用した水質モデルの構造改修手法について

検討する．大阪湾における定点水質観測データを酸素循環モデルに同化し，修正された状態変数の分

析を通して，溶存酸素の時空間変動の表現する上でのモデル構造課題を明らかにする．そのためにま

ず，同化する観測データの品質を評価するシステムの構築，および，水質モデル改修に伴うアジョイ

ントコードの編集コスト削減を目的に，自動微分システムを導入する．その上で，水質項目の再現性

向上とデータ同化を用いた水質モデルパラメータ推定とミスフィットが推定に及ぼす影響を評価し，

さらにパラメータ推定を活用する一例として，パラメータ推定を基にした解析により，水質モデルの

妥当性評価と改修指針を提案できることを示す． 

第 2章では，大阪湾における貧酸素水塊の現状について，観測値および数値計算を用いて検討する．

また，将来予想される温暖化を想定した仮想実験を実施し，温暖化による大阪湾貧酸素水塊への影響

評価を実施する． 

第 3章では，定点自動水質観測システムの信頼性評価手法を開発する．大阪湾に設置されている定点

自動観測システムは，クロロフィルや貧酸素水塊を監視する上で，有益なデータを提供し，シミュレ

ーションの精度評価やデータ同化にも利用されている．しかし，高周波ノイズおよびセンサーの異常

によって測定誤差が度々大きく変化し，測定値の信頼性が損なわれている．そこで本検討では，機械

学習と次元削減を組み合わせた観測データ予測モデルを開発し，観測データの信頼性評価システムを

構築する． 

第 4章では，4次元変分法の理論について述べる．また，自動微分ツールの「二重数」について概説

し，二重数による自動微分をアジョイント演算の代替手法として 4次元変分法に実装する方法について

解説する．また，流動水質モデルの状態推定を実施し，構築した手法の性能検証および密度場の再現

性能が溶存酸素空間分布に及ぼす影響評価を行う． 

第 5章では，自動微分を実装した 4次元変分法 (DN-4DVar) によるパラメータ推定の性能評価を実施

する．これまで DN-4DVarの適用例は状態推定（初期場推定）のみであり，水質モデルパラメータの推

定精度を定量的に評価できていない．そこで，数値計算から作成した擬似観測値を同化する双子実験

を実施し，真値と異なる値を与えた水質モデルパラメータが正しく推定されるかについて検討する．

また，パラメータ推定性能が低下する要因を検討する． 

第 6章では，4次元変分法の解析結果に基づいて，水質モデル構造の妥当性を評価する手法を提案す

る．本検討では，大阪湾奥部の上層において発生する過飽和現象に着目し，現状の水質モデルにおけ

る光合成過程が，過飽和現象を十分に表現できない課題について取り扱う．現状の流動水質モデルに，

4 次元変分法による状態推定およびパラメータの空間分布推定を適用し，最適化されたパラメータと状

態変数との関係を分析することで，水質モデルの改修すべき項目を明らかにする． 

第 7章では，結論を述べる． 
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第 2章 大阪湾における貧酸素化の現状および将来予測 

2.1 はじめに 

本章では，大阪湾において発生する貧酸素化について，観測データを確認しながらその変動特性・

傾向を明らかにする．また，3 次元流動水質シミュレーションを用いた貧酸素水塊拡大の再現および温

暖化を想定したシナリオにおける貧酸素化予測を行い，数値モデルの構造上発生する不確実性につい

て考察する． 

2.2 大阪湾の地形と流動および水質 

図-2.1に大阪湾の水深分布を示す．大阪湾は瀬戸内海の東端に位置する閉鎖性の強い海域である．西

側に播磨灘，南側に紀伊水道が位置し，それぞれ明石海峡と紀淡海峡を介して海水交換が行われてい

る．大阪湾の流動および水質は，神戸港から関西国際空港を通る水深 20 m の等深線で分けた東西領域

で特徴を異にしている．急峻な湾西部では，潮流の影響が強く，海水の鉛直混合が激しい．対して，

海底勾配が平坦な湾東部は潮流の影響が小さい（城, 1989）．また，湾東部は多くの河川が流入してい

るため季節によらず成層している．大阪湾の主要な流入河川は一級河川の淀川，大和川および神崎川

であり，淀川の流量は湾全体流入量の 90%以上を占める（城, 1986）．また，それら主要河川のほとん

どが大阪湾北東海域に集中して流れ込んでおり，湾東部の密度成層を常態化させる要因となっている．

図-2.2 に浅海定線調査 1)による 43 か年の塩分データから作成した，塩分の平均断面分布および，地点

AおよびBにおける年間平均塩分の時系列を示す．湾西部の混合域では，鉛直勾配が小さく，表底層の

塩分差は 1程度である．湾東部に向かうほど，鉛直勾配が大きく，密度成層が形成されていることがう

図-2.1 大阪湾の水深分布，および水質測定点の分布． 

丸印：大阪湾定点自動観測システム 2)，逆三角形：浅海定線調査 1) 

A 
B 
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かがえる．この密度構造は，前述の河川流入に加え，湾奥部における人工島による強い停滞性にも起

因しており，夏季の貧酸素水塊発生要因となっている． 

大阪湾においては，夏季を中心に底層における貧酸素化が頻発している．貧酸素化は魚介類の大量

へい死による漁業資源の減少や，青潮発生に伴う景観や悪臭などの被害を生じさせる（藤原ら，2005）．

一方，水面下では，嫌気環境となった底泥からアンモニア態窒素やリン酸態リンなどの栄養塩が溶出

し，水質が悪化する．また，高濃度の栄養塩が上層に供給されることで植物プランクトンの異常増殖

を助長し，それらが沈降・分解されることで，さらなる水質悪化を引き起こす要因となる．大阪湾に

おける貧酸素化の発生は，古くは 1950 年代に確認されているが，1970 年代以降には毎年のように観測

されるようになった（城, 1989）．  

2.3 水質時系列データの周波数特性 

水質状態の把握に向けて，大阪湾では長期間に渡って栄養塩や溶存酸素の現地観測が実施されてい

る．上で用いた水産試験場による浅海定線調査 1)や国土交通省による瀬戸内海総合水質調査 2)では，ひ

と月から数か月に一度の頻度で水質測定を行っており，大阪湾全体の大まかな水質を把握する上で有

用なデータを蓄積している．また，2010年からは近畿地方整備局によって定点自動観測システム 3)（図

-2.3）が設置されたことで，流況や水温・塩分，クロロフィルや溶存酸素などの鉛直分布データが 1 時

間ごとに得られるようになった．これにより，船舶による広域調査では観測できなかった溶存酸素の

鉛直混合の様子や，潮汐変動や風況，河川出水などに対する短期的な応答特性について把握すること

が可能となった（入江ら，2011 ; 小野ら, 2016 ; 大久保ら, 2012）． 

図-2.2 大阪湾における塩分の断面分布．測定地点は図-2.1丸印における浅海定線調査結果 1)より，1972年から 2015

年までの 43年間平均値を示している． 

 

A B 

(B) (A) 
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以下では，定点自動観測システムによる DO鉛直分布データを用いて，大阪湾奥部における DO変動

を構成する要因について検討する． 

モニタリングシステムによって得られた DOデータの周波数成分を解析すると，図-2.3に示すような

結果が得られる．明瞭に表れるのは，半日周期，日周期，および年周変動であり，表層 DOは底層に比

べて日周成分が卓越し，底層 DOでは半日周期成分がより顕著である．さらに，半日周期には 2つのピ

ークがあり，これらは潮汐変動にみられる主要分潮である 12時間周期 (S2) および 12.42時間周期 (M2) 

とほとんど一致している．このことから，表層では日周変動の影響，たとえば日射や夏季の陸海風の

影響が顕著である一方，底層 DOは潮汐の影響を強く受けていると考えられる． 

次に，図-2.4 に神戸港波浪観測塔 (Sta.4)，大阪港波浪観測塔 (Sta.12)，阪南窪地 (Sta.6)，関空 MT 局

(Sta.3)の各観測層における M2, S2 および日周成分に抽出されたスペクトル強度を示す．いずれの地点

においても，海面に近づくにつれて日周変動成分が強まり，M2 成分は弱まる傾向にあることがわかる． 

表層で観測される日周変動は，植物プランクトンによる日中の光合成活動（一次生産）に起因する

酸素生成によって説明できる．一次生産による酸素生成は，光量，水温，および海域の栄養状態に依

存しており，河川からの栄養塩供給や，鉛直混合による下層からの栄養塩供給の影響を受ける．場合

図-2.3 神戸港波浪観測塔における表層 (赤)および底層 (青) DO ．(b) (c) 周波数分解結果 
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によっては，植物プランクトンが夜間に沈降し，細胞内に栄養塩を蓄積して翌日の生合成に利用する

こともある．また，植物プランクトンの一次生産は，内部生産有機物として躍層下の酸素消費要因と

なる．有光層で増殖した植物プランクトンや，それを餌とする動物プランクトンは，活動停止後に沈

降して下層に到達し，微生物による分解（無機化）の過程で酸素が消費される．夏季に成層が発達す

る時期には，上層からの酸素供給が抑制されるため，酸素の消費量が供給量を上回り，貧酸素水塊の

発生につながる．このように，生産性の高い水域における貧酸素化を理解するうえで，酸素消費源と

なる鉛直循環構造を把握することが重要である． 

広域調査における表層・底層の 2点観測値からは，その時刻の底層における貧酸素水塊の広がりを把

握することはできるが，それが底層に薄く広がっているのか，あるいは，鉛直方向に厚く形成されて

いるのかを判断することは困難である．つまり，貧酸素水塊の動態を把握するためには，気象外力や

潮汐といった外的要因に加え，水柱内部の生物化学的要因を考慮したうえで，時空間的に変化する酸

素消費・低下の要因を明らかにすることが重要である．  

図-2.4 神戸港波浪観測塔 (Sta.4)，大阪港波浪観測塔 (Sta.12), 阪南窪地 (Sta.5)，関空 MT局 (Sta.3)における周波数ス

ペクトル強度の鉛直分布． 
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2.4 流動モデル ROMSの概要 

ROMS (Regional Ocean Modelling System) はさまざまな海域において適用されている流動水質モデルで

ある．数種類の水質モデルをカップリングすることが可能で，またオープンソースモデルであるため，

対象領域や対象水質現象に応じて独自の水質モデルを開発し適用することができる． 

ROMSの鉛直グリッドは，シグマ座標系を拡張した s座標系が採用されている： 

𝑧 = 𝜁(1 + 𝑧) + ℎ𝑠 ∙ 𝑠 + (ℎ − ℎ𝑠) ∙ 𝐶(𝑠) (2.1) 

𝐶(𝑠) = (1 − 𝜃𝑏)
𝑠𝑖𝑛ℎ(𝜃𝑠𝑠)

𝑠𝑖𝑛ℎ 𝜃𝑠
+ 𝜃𝑏

𝑡𝑎𝑛ℎ {𝜃𝑠 (𝑠 +
1
2)} − 𝑡𝑎𝑛ℎ (

𝜃𝑠
2 )

2 𝑡𝑎𝑛ℎ (
𝜃𝑆

2 )
 (2.2)

 

𝐻𝑧 =
𝜕𝑧

𝜕𝑠
= (𝜁 + ℎ𝑠) + (ℎ − ℎ𝑠) ∙

𝜕𝐶(𝑠)

𝜕𝑠
(2.3) 

ここで， 

𝑧 ：水位変化を考慮した基準面からの鉛直上向きデカルト座標 [m] 

𝑠 ：水位変化を考慮した基準面からの鉛直上向き一般化座標 [m] 

𝜁 ：基準面からの水位 [m] 

ℎ ：水深 [m] 

ℎ𝑠 ：最小水深 [m] (=0.5) 

𝐶(𝑠) ：層厚分割関数 

𝜃𝑠, 𝜃𝑏 ：層厚を決定するパラメータ 

𝐻𝑧 ：鉛直方向の層厚 

である．シグマ座標系は，水深によらずすべてのグリッドを同じ層数で分割する鉛直座標系である．

これに対し改良型の s座標系では，𝜃𝑠および 𝜃𝑏の値を変えることで，表層ほど細かい，底層ほど細かい

など，様々な層切りが可能となっている（図-2.5）．本研究ではs=3.0, b = 0.0 とし，表層ほど層が薄く

なるよう設定した． 

図-2.5 s-座標系を用いたモデルグリッドの断面図．太線は海底地形を表す． 
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(1) 連続式 

𝜕𝜁

𝜕𝑡
+

𝜕(𝐻𝑧𝑢)

𝜕𝑥
+

𝜕(𝐻𝑧𝑣)

𝜕𝑦
+

𝜕(𝐻𝑧𝛺)

𝜕𝑠
= 0 (2.4) 

𝐻𝑧𝛺(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤 −
𝑧 + ℎ

𝜁 + ℎ

𝜕𝜁

𝜕𝑡
− 𝑢

𝜕𝑧

𝜕𝑥
− 𝑣

𝜕𝑧

𝜕𝑦
 (2.5) 

(2) 運動方程式 

𝜕(𝐻𝑧𝑢)

𝜕𝑡
+ 𝑣 ∙ 𝛻(𝐻𝑧𝑢) − 𝑓𝐻𝑧𝑣 = −

𝐻𝑧

𝜌0

𝜕𝑃

𝜕𝑥
− 𝑔𝐻𝑧

𝜕𝜁

𝜕𝑥
−

𝜕

𝜕𝑠
(𝑢′𝑤′̅̅ ̅̅ ̅̅ −

𝜈

𝐻𝑧

𝜕𝑢

𝜕𝑠
) + 𝐷𝑢 + 𝐹𝑢 (2.6) 

𝜕(𝐻𝑧𝑣)

𝜕𝑡
+ 𝒗 ∙ 𝛻(𝐻𝑧𝑣) − 𝑓𝐻𝑧𝑢 = −

𝐻𝑧

𝜌0

𝜕𝑃

𝜕𝑦
− 𝑔𝐻𝑧

𝜕𝜁

𝜕𝑦
−

𝜕

𝜕𝑠
(𝑣′𝑤′̅̅ ̅̅ ̅̅ −

𝜈

𝐻𝑧

𝜕𝑣

𝜕𝑠
) + 𝐷𝑣 + 𝐹𝑣 (2.7) 

−
𝐻𝑧

𝜌0

𝜕𝑃

𝜕𝑥
−

𝜌𝑔𝐻𝑧

𝜌0
= 0 (2.8) 

𝒗 = (𝑢, 𝑣, 𝛺) (2.9) 

𝒗 ∙ 𝛻 = 𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝛺

𝜕

𝜕𝑠 

(3) 水温・塩分の移流拡散方程式 

𝜕(𝐻𝑧𝐶)

𝜕𝑡
+ 𝑣 ∙ 𝛻(𝐻𝑧𝐶) =

𝜕

𝜕𝑠
(𝐶′𝑤′̅̅ ̅̅ ̅̅ −

𝜈

𝐻𝑧

𝜕𝐶

𝜕𝑠
) + 𝐷𝑐 + 𝐹𝑐 (2.10) 

𝑢, 𝑣, 𝑤 ：x, y, z方向の流速 [m/s] 

Ω ：s方向の流速 [m] 

𝜌 ：密度 (kg/m3) 

𝜌0 ：海水の基準密度 (kg/m3) 

𝑃 ：静水圧 (kg/m3/s2) 

𝑔 ：重力加速度 (m/s2) 

𝑢′, 𝑣′, 𝑤′ ：流速の微小変動成分 (m/s) 

𝜈 ：動粘性係数 (m2/s) 

𝐷𝑢, 𝐷𝑣 ：x,y方向の単調和型の粘性項 

𝐷𝐶 ：水温あるいは塩分の水平方向の単調和型の拡散項 

𝐹𝑢, 𝐹𝑣, 𝐹𝐶 ：領域境界における u, v, Cの外力項である． 
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(4) 鉛直渦動粘性・拡散項 

𝑢′𝑤′̅̅ ̅̅ ̅̅ = −
𝐾𝑚

𝐻𝑧

𝜕𝑢

𝜕𝑠
(2.11) 

𝑣′𝑤′̅̅ ̅̅ ̅̅ = −
𝐾𝑚

𝐻𝑧

𝜕𝑣

𝜕𝑠
(2.12) 

𝐶′𝑤′̅̅ ̅̅ ̅̅ = −
𝐾𝐶

𝐻𝑧

𝜕𝐶

𝜕𝑠
(2.13) 

𝐾𝑚 ：流速の鉛直渦動粘性係数(m2/s) 

𝐾𝐶 ：水温，塩分の鉛直渦動粘性係数(m2/s) 

(5) 海表面における境界条件 

𝐾𝑚

𝐻𝑍

𝜕𝑢

𝜕𝑠
= 𝜌𝑎𝑖𝑟𝐶𝑑𝑢𝑤√𝑢𝑤𝑖𝑛𝑑

2 + 𝑣𝑤𝑖𝑛𝑑
2 (2.14) 

𝐾𝑚

𝐻𝑍

𝜕𝑣

𝜕𝑠
= 𝜌𝑎𝑖𝑟𝐶𝑑𝑣𝑤√𝑢𝑤𝑖𝑛𝑑

2 + 𝑣𝑤𝑖𝑛𝑑
2 (2.15) 

𝛺 = 0 (2.16) 

𝐾𝐶

𝐻𝑧

𝜕𝐶

𝜕𝑠
=

𝑄𝐶

𝜌0𝐶𝑃

(2.17) 

𝜌𝑎𝑖𝑟 ：流速の鉛直渦動粘性係数(m2/s) 

𝑢𝑤𝑖𝑛𝑑, 𝑣𝑤𝑖𝑛𝑑 ：x, y 方向の風速(m/s) 

𝐶𝑑 ：海表面におけるバルク係数 

𝑄𝐶 ：短波放射，長波放射，潜熱，顕熱によるフラックス和 

𝐶𝑃 ：海水の比熱（3.985 J/g/°C） 

(6) 海底面における境界条件 

𝐾𝑚

𝐻𝑍

𝜕𝑢

𝜕𝑠
= 𝜌0𝐶𝑑𝑏𝑢√𝑢2 + 𝑣2 (2.18) 

𝐾𝑚

𝐻𝑍

𝜕𝑣

𝜕𝑠
= 𝜌0𝐶𝑑𝑏𝑣√𝑢2 + 𝑣2 (2.19) 

𝛺 = 0 (2.20) 
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𝐾𝐶

𝐻𝑧

𝜕𝐶

𝜕𝑠
= 0 (2.21) 

𝐶𝑑𝑏 ：海底面における抵抗係数であり，対数側に従って求められる（カルマン定数 0.41，

粗度係数 0.02 m-1） 

 

2.5 水質モデル：低次生態系モデル 

本研究では ROMSにカップリングする水質モデルとして窒素-リン-酸素循環モデルを用いる．このモ

デルは 14 の状態変数で構成される物質循環モデルであり，大きく分けて，プランクトン（植物/動物プ

ランクトン），デトリタス態有機物（懸濁態/溶存態），栄養塩，および溶存酸素の 5 つの状態変数グル

ープからなる．各状態変数は，図-2.6の概要図に示すように，アンモニア態窒素，硝酸態窒素，リン酸

態リン，植物プランクトン，動物プランクトン，懸濁有機態窒素およびリン，溶存有機態窒素および

リン，堆積有機態窒素およびリン，溶存酸素である．植物プランクトンは冬季および夏季優占種の 2種

類が含まれる．溶存酸素は，植物プランクトンの光合成によって増加し，一方で，有機物分解，呼吸，

硝化，底泥による消費で減少する．有機物分解の際，DO 濃度に応じて好気分解，嫌気分解が選択され，

好気分解では植物プランクトンの C/N比に応じてDOを消費，嫌気分解では硝酸態窒素を消費する．ま

た，大気海界面では曝気により飽和状態に向かう増減が発生する． 

以下，各状態変数の生化学的生成消滅項を示す． 

(1) 植物プランクトン 

図-2.6 窒素・リン・酸素循環モデルの模式図 
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植物プランクトンは，光合成・増殖により栄養塩を取り込んで増加し，呼吸，枯死，動物プランク

トンによる捕食（被捕食）および沈降により減少する．本モデルでは，夏季および冬季にそれぞれ増

殖最適水温をもつ植物プランクトン 2種を考慮した (Nphy = 2)． 

𝑅𝑃ℎ𝑦𝑡,𝑖 = ∑ {𝜇̂ − (𝑟̂𝑃𝑅 + 𝑟̂𝑃𝑀)}𝐶𝑃ℎ𝑦𝑡,𝑖

𝑁𝑝ℎ𝑦

𝑖=1

− 𝑟̂𝑍𝐺𝐶𝑍𝑜𝑜𝑝 − 𝑤𝑝

𝑑𝐶𝑃ℎ𝑦𝑡,𝑖

𝑑𝑧
(2.22) 

光合成・一次生産 

一次生産による増殖速度𝜇̂（（day-1）は，最大増殖速度，水温制限，光制限，栄養塩制限を乗じて計算

される．本研究では，水温制限に最適水温型を採用している． 

𝜇̂ = 𝜇𝑖(𝑇) 𝑓(𝑇, 𝐼) 𝑓(𝐶𝑁𝐻4, 𝐶𝑁𝑂3, 𝐶𝑃𝑂4) (2.23) 

𝜇𝑖(𝑇) = 𝜇𝑚𝑎𝑥,𝑖 ∙ 𝑒−𝛽̂(𝑇−𝑇𝑜𝑝𝑡,𝑖)
2

(2.24) 

𝛽̂ = {
𝛽𝑙𝑜𝑤,𝑖 (𝑇 ≤ 𝑇𝑜𝑝𝑡,𝑖)

𝛽ℎ𝑖𝑔ℎ,𝑖 (𝑇 > 𝑇𝑜𝑝𝑡,𝑖)
(2.25) 

𝑓(𝑇, 𝐼) =
𝛼𝐼

√(𝛼𝐼)2 + 𝜇𝑖(𝑇)2
(2.26)

 

𝑓(𝐶𝑁𝐻4, 𝐶𝑁𝑂3, 𝐶𝑃𝑂4) = 𝑚𝑖𝑛(𝐿𝐷𝐼𝑁, 𝐿𝑃𝑂4) 

= 𝑚𝑖𝑛 (
𝐶𝑁𝐻4

𝑘𝑁𝐻4,𝑖 + 𝐶𝑁𝐻4
+

𝐶𝑁𝑂3

𝑘𝑁𝑂3,𝑖 + 𝐶𝑁𝑂3
∙

𝑘𝑁𝐻4,𝑖

𝑘𝑁𝐻4,𝑖 + 𝐶𝑁𝐻4
,

𝐶𝑃𝑂4

𝑘𝑃𝑂4,𝑖 + 𝐶𝑃𝑂4
) (2.27) 

ここで，i (∈ 1, … , 𝑁𝑝ℎ𝑦)は，植物プランクトン種を表す識別番号である．T，I はそれぞれ水温および光

合成有効日射量，𝜇𝑚𝑎𝑥は最大増殖速度 (day-1)，Topt,iは最適水温 (°C)，low，highはそれぞれ最適水温型

水温制限関数における尖り度パラメータ， は P-I カーブの初期勾配，𝑘𝑁𝐻4，𝑘𝑁𝑂3，𝑘𝑃𝑂4はそれぞれの

栄養塩制限における半飽和定数である．最適水温は冬季・夏季の植物プランクトンそれぞれに異なる

値が与えられている．また，光合成有効日射量 Iは海面から入射する短波放射量から換算し，海水とク

ロロフィルとによって減衰する． 

𝐼 = 𝐼(𝑧) = 𝐼0 𝑟𝑃𝐴𝑅 𝑒𝑥𝑝 {(𝑘𝑆𝑊 + 𝑘𝑐ℎ𝑙 ∫ 𝐶𝐶ℎ𝑙𝑜(𝜑)𝑑𝜑
0

𝑧

) ∙ 𝑧} (2.28) 

ここで，I0 は水面における短波放射量 (W/m2)，rPAR は短波放射量から光合成有効放射量への変換パラメ

ータ (𝑟𝑃𝐴𝑅 = 0.43)，kSWは海水による消散係数 (m-1)，kchlはクロロフィル aによる消散係数((mgChl m-2)-

1)である． 

呼吸 

呼吸速度は，光合成に伴う光呼吸および常時行われる基底呼吸の和で表される．光呼吸速度は光合

成活性に比例する．基底呼吸は水温に依存する： 
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𝑟̂𝑃𝑅 = 𝑟′
𝑃𝑅 ∙ 𝜇(𝑇) ∙ 𝑓(𝑇, 𝐼) + 𝑟𝑃𝑅𝜃𝑃𝑅

𝑇−20 (2.29) 

ここで，𝑟′
𝑃𝑅（は光合成に対する光呼吸比率，𝑟𝑃𝑅（は基底呼吸速度(day-1)，𝜃𝑃𝑅（は基底呼吸の温度活性係

数である． 

枯死 

枯死過程は，植物プランクトン細胞の老朽化による生物量の減衰を表すとともに，高次栄養段階に

よる摂食等，種々の要因を総合した不確定パラメータとしても位置づけられている（沿岸の環境圏

p.686より）． 

𝑟̂𝑃𝑀 = 𝑟𝑃𝑀𝜃𝑃𝑀
𝑇−20 (2.30) 

ここで𝑟𝑃𝑀は 20°Cにおける枯死速度，𝜃𝑃𝑀は温度活性係数である． 

動物プランクトンによる摂食 

動物プランクトンによる摂食は，次の式で表される． 

𝑟̂𝑍𝐺 = 𝑟𝑍𝐺𝜃𝑍𝐺
𝑇−20 ∙

𝐶𝑃ℎ𝑦𝑡,𝑖
2

𝑘𝑃ℎ𝑦𝑡 + 𝐶𝑃ℎ𝑦𝑡,𝑖
2

(2.31) 

ここで，𝑟𝑍𝐺は 20°C における被捕食速度 (d-1)，𝜃𝑍𝐺は被捕食速度の温度活性係数，𝑘𝑃ℎ𝑦𝑡は植物プラン

クトン濃度の半飽和定数 ((mmol-N m-3)2) である．また，本モデルでは，最も濃度の高い植物プランク

トンが捕食される． 

(2) クロロフィル a 

クロロフィル aは植物プランクトン体内に含まれる色素化合物であり，植物プランクトンとほとんど

同様のプロセスに基づいて増減する． 

𝑅𝐶ℎ𝑙𝑜 = ∑ 𝜇̂ ∙
𝜇̂

𝛼𝐼
(𝜃𝐶ℎ𝑙2𝐶 ∙ 𝑝𝐶:𝑁 ∙ 𝐶𝑃ℎ𝑦𝑡,𝑖)

𝑁𝑝ℎ𝑦

𝑖=1

− (𝑟̂𝑃𝑅 + 𝑟̂𝑃𝑀)𝐶𝐶ℎ𝑙𝑜 − 𝑟̂𝑍𝐺𝐶𝑍𝑜𝑜𝑝

𝐶𝐶ℎ𝑙𝑜

𝐶𝑃ℎ𝑦𝑡
− 𝑤𝑝

𝑑𝐶𝐶ℎ𝑙𝑜

𝑑𝑧
(2.32) 

ここで，𝜃𝐶ℎ𝑙2𝐶（は植物プランクトン体内におけるクロロフィル炭素重量比，𝑝𝐶:𝑁（は植物プランクトン

の炭素窒素体組成比 (molC molN-1)である．植物プランクトン細胞内のクロロフィル-炭素重量比は，植

物プランクトンの増殖速度に比例して増加し，光強度に逆比例することが，様々な実験によって明ら

かになっており（Laws & Bannister, 1980 Hyaley, 1985 ; Chalup & Laws, 1990），このモデルでは右辺第 1

項において 𝜇̂/𝛼𝐼を乗じることで表現されている． 

(3) 動物プランクトン 

動物プランクトンは，植物プランクトンの摂餌により増加し，排泄，代謝および死亡によって減少

する． 

𝑅𝑍𝑜𝑜𝑝 = 𝑟̂𝑍𝐺 ∙ 𝜃𝑍𝐺𝐶𝑍𝑜𝑜𝑝 − (𝑟̂𝑍𝐸 + 𝑟̂𝑍𝐵 + 𝑟̂𝑍𝑀)𝐶𝑍𝑜𝑜𝑝 (2.33) 

𝑟̂𝑍𝐸 = 𝑟𝑍𝐸𝜃𝑍𝐸
𝑇−20 (2.33𝑎) 
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𝑟̂𝑍𝐵 = 𝑟𝑍𝐵𝜃𝑍𝐵
𝑇−20 (2.33𝑏) 

𝑟̂𝑍𝑀 = 𝑟𝑍𝑀𝜃𝑍𝑀
𝑇−20 (2.33𝑐) 

rZE は排泄速度 (day-1)，rZB は代謝速度 (day-1)，rZM は死亡速度 (day-1)であり，いずれも水温に依存し

て増加する．（捕食に関するパラメータは (1)植物プランクトンを参照のこと．） 

(4) 懸濁態有機物（窒素/リン） 

懸濁態有機物は植物プランクトンの枯死，動物プランクトンの枯死および再懸濁により増加し，懸

濁態有機物自体の無機化，加水分解，沈降により減少する． 

𝑅𝐿𝐷𝑒𝑁 = ∑ 𝑟̂𝑃𝑀𝐶𝑃ℎ𝑦𝑡,𝑖

𝑁

𝑖=1

+ 𝑟̂𝑍𝑀𝐶𝑍𝑜𝑜𝑝 + 𝑟̂𝑠𝑢𝑠𝜃𝐿:𝑆𝐶𝐵𝐷𝑒𝑁 − 𝑟̂𝐿𝑅𝑁𝐶𝐿𝐷𝑒𝑁 − 𝑟̂𝐿𝐻𝐶𝐿𝐷𝑒𝑁 − 𝑤𝐿

𝑑𝐶𝐿𝐷𝑒𝑁

𝑑𝑧
(2.34)

 

𝑅𝐿𝐷𝑒𝑃 = 𝑝𝑃:𝑁 ∑ 𝑟̂𝑃𝑀𝐶𝑃ℎ𝑦𝑡,𝑖

𝑁

𝑖=1

+ 𝑧𝑃:𝑁𝑟̂𝑍𝑀𝐶𝑍𝑜𝑜𝑝 + 𝑟̂𝑠𝑢𝑠𝜃𝐿:𝑆𝐶𝐵𝐷𝑒𝑃 − 𝑟̂𝐿𝑅𝑃𝐶𝐿𝐷𝑒𝑃 − 𝑟̂𝐿𝐻𝐶𝐿𝐷𝑒𝑃 − 𝑤𝐿

𝑑𝐶𝐿𝐷𝑒𝑃

𝑑𝑧
(2.35)

 

𝑟̂𝑠𝑢𝑠 = 

ここで，𝑟̂𝑠𝑢𝑠は堆積有機物 (CBDeN/CBDeP)の再懸濁フラックス，𝜃𝐿:𝑆は再懸濁した有機物に含まれる溶存

態と懸濁態有機物の比率，𝑟̂𝐿𝑅𝑁および𝑟̂𝐿𝑅𝑃は懸濁態有機物の好気分解（無機化）速度 (day-1)，𝑟̂𝐿𝐻は懸濁

態有機物の加水分解速度 (day-1)，wLは懸濁態有機物の沈降速度である． 

(5) 溶存態有機物（窒素/リン） 

溶存態有機物は動物プランクトンの捕食中の非同化分（食べこぼし），懸濁態有機物の加水分解，再

懸濁および河川からの流入によって増加し，溶存有機物の無機化，沈降によって減少する．  

𝑅𝑆𝐷𝑒𝑁 = 𝑟̂𝑍𝐺(1 − 𝜃𝑍𝐺)𝐶𝑍𝑜𝑜𝑝 + 𝑟̂𝐿𝐻𝐶𝐿𝐷𝑒𝑁 + 𝑟̂𝐵𝑅(1 − 𝜃𝐿:𝑆)𝐶𝐵𝐷𝑒𝑁 − 𝑟̂𝑆𝑅𝑁𝐶𝑆𝐷𝑒𝑁 − 𝑤𝑆

𝑑𝐶𝑆𝐷𝑒𝑁

𝑑𝑧
+ 𝑅𝑠𝑜𝑢𝑟𝑐𝑒 (2.37) 

𝑅𝑆𝐷𝑒𝑃 = 𝑧𝑃:𝑁(𝑍)𝑟̂𝑍𝐺(1 − 𝜃𝑍𝐺)𝐶𝑍𝑜𝑜𝑝 + 𝑟̂𝐿𝐻𝐶𝐿𝐷𝑒𝑃 + 𝑟̂𝐵𝑅(1 − 𝜃𝐿:𝑆)𝐶𝐵𝐷𝑒𝑃 − 𝑟̂𝑆𝑅𝑃𝐶𝑆𝐷𝑒𝑃 − 𝑤𝑆

𝑑𝐶𝑆𝐷𝑒𝑃

𝑑𝑧
+ 𝑅𝑠𝑜𝑢𝑟𝑐𝑒(2.38) 

𝑟̂𝑆𝑅𝑁 = 𝑟̂𝑆(𝑜𝑥𝑖𝑐) + 𝑟̂𝑆(𝑠𝑢𝑏) = 𝑟𝑆𝑅𝑁𝜃𝑆𝑅𝑁
𝑇−20 (

𝐶𝑂𝑥𝑦𝑔

𝑘𝑂2𝑅 + 𝐶𝑂𝑥𝑦𝑔
+

𝐶𝑁𝑂3

𝑘𝑁𝑂3𝑅 + 𝐶𝑁𝑂3
∙

𝑘𝑂2𝑅

𝑘𝑂2𝑅 + 𝐶𝑂𝑥𝑦𝑔
) (2.39) 

ここで，𝑟̂𝐵𝑅は堆積有機物 (CBDeN/CBDeP)の再懸濁フラックス，𝜃𝐿:𝑆は再懸濁した有機物に含まれる溶存

態と懸濁態有機物の比率，𝑟̂𝐿𝑅𝑁および𝑟̂𝐿𝑅𝑃は溶存態有機物の好気分解（無機化）速度 (day-1)，𝑤𝑆は溶存

態有機物の沈降速度である． 

(6) 堆積有機物（窒素/リン） 

堆積有機物は最下層のモデルグリッドから沈降により消失するフラックスを一時的にモデル内に保

持することを目的とした変数である．よって堆積有機物は底層のみ有効である．沈降により増加，再

懸濁，無機化により減少する．  
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𝑅𝐵𝐷𝑒𝑁 = ∑ 𝑤𝑝

𝑑𝐶𝑃ℎ𝑦𝑡,𝑖

𝑑𝑧
+ 𝑤𝐿

𝑑𝐶𝐿𝐷𝑒𝑁

𝑑𝑧
+ 𝑤𝑆

𝑑𝐶𝑆𝐷𝑒𝑁

𝑑𝑧
− 𝑟̂𝐵𝑅𝐶𝐵𝐷𝑒𝑃 − 𝑟̂𝐵𝑅𝑁𝐶𝐵𝐷𝑒𝑁 (2.40) 

𝑅𝐵𝐷𝑒𝑃 = 𝑧𝑃:𝑁(𝑍)𝑟̂𝑍𝐺(1 − 𝜃𝑍𝐺)𝐶𝑍𝑜𝑜𝑝 + 𝑟̂𝐿𝐻𝐶𝐿𝐷𝑒𝑃 + 𝑟̂𝐵𝑅(1 − 𝜃𝐿:𝑆)𝐶𝐵𝐷𝑒𝑃 − 𝑟̂𝑆𝑅𝑃𝐶𝑆𝐷𝑒𝑃 − 𝑤𝑆

𝑑𝐶𝑆𝐷𝑒𝑃

𝑑𝑧
+ 𝑅𝑠𝑜𝑢𝑟𝑐𝑒(2.41) 

𝑟̂𝐵𝑅𝑁 = 𝑟̂𝐵(𝑜𝑥𝑖𝑐) + 𝑟̂𝐵(𝑠𝑢𝑏) = 𝑟𝐵𝑅𝑁𝜃𝑅𝑅
𝑇−20 (

𝐶𝑂𝑥𝑦𝑔

𝑘𝑂2
+ 𝐶𝑂𝑥𝑦𝑔

+
𝐶𝑁𝑂3

𝑘𝑁𝑂3
+ 𝐶𝑁𝑂3

∙
𝑘𝑂2𝑅

𝑘𝑂2
+ 𝐶𝑂𝑥𝑦𝑔

) (2.42) 

(7) アンモニア態窒素 

アンモニア態窒素は，懸濁態・溶存態有機物の無機化，植物プランクトンおよび動物プランクトン

の呼吸，動物プランクトンの代謝および河川からの流入によって増加し，植物プランクトンによる吸

収，硝化により減少する． 

𝑅𝑁𝐻4 = 𝑟̂𝐿𝑅𝑁𝐶𝐿𝐷𝑒𝑁 + 𝑟̂𝑆𝑅𝑁𝐶𝑆𝐷𝑒𝑁 + ∑ 𝑟̂𝑃𝑅𝐶𝑃ℎ𝑦𝑡,𝑖

𝑁

𝑖=1

+ (𝑟̂𝑍𝐸 + 𝑟̂𝑍𝐵)𝐶𝑍𝑜𝑜𝑝

− ∑ 𝜇̂𝐶𝑃ℎ𝑦𝑡,𝑖

𝐿𝑁𝐻4

𝐿𝑁𝑂3 + 𝐿𝑁𝐻4

𝑁

𝑖=1

− 𝑟̂𝑁𝑖𝑡𝑟𝑖𝐶𝑁𝐻4 + 𝑅𝑠𝑜𝑢𝑟𝑐𝑒 (2.44) 

𝑟̂𝑁𝑖𝑡𝑟𝑖 = 𝑟𝑁𝑖𝑡𝑟𝑖𝜃𝑁𝑖𝑡𝑟𝑖
𝑇−20

𝐶𝑂𝑥𝑦𝑔

𝐶𝑂𝑥𝑦𝑔 + 𝑘𝑁𝑖𝑡𝑟𝑖
 (1 − 𝑚𝑎𝑥 [0,

𝐼 − 𝐼𝑡ℎ

𝐾𝐼 + 𝐼 − 𝐼𝑡ℎ
]) 

(8) 硝酸態窒素 

硝酸態窒素は硝化および河川からの流入によって増加し，一次生産に伴う吸収，嫌気分解，脱窒に

よって減少する． 

𝑅𝑁𝑂3 = 𝑟̂𝑁𝑁𝐶𝑁𝐻4 − ∑ 𝜇̂𝐶𝑃ℎ𝑦𝑡,𝑖

𝐿𝑁𝑂3

𝐿𝑁𝑂3 + 𝐿𝑁𝐻4

𝑁

𝑖=1

− 𝑟̂𝐿(𝑠𝑢𝑏) − 𝑟̂𝑆(𝑠𝑢𝑏) + 𝑅𝑠𝑜𝑢𝑟𝑐𝑒 (2.45)
 

 

(9) リン酸態リン 

リン酸態リンは，懸濁態・溶存態有機物の無機化，植物プランクトンおよび動物プランクトンの呼

吸，動物プランクトンの代謝および河川からの流入によって増加し，一次生産に伴う吸収により減少

する． 

𝑅𝑃𝑂4 = 𝑟̂𝐿𝑅𝑃𝐶𝐿𝐷𝑒𝑃 + 𝑟̂𝑆𝑅𝑃𝐶𝑆𝐷𝑒𝑃 + 𝑝𝑃:𝑁 ∑ 𝑟̂𝑃𝑅𝐶𝑃ℎ𝑦𝑡,𝑖

𝑁

𝑖=1

+ 𝑧𝑃:𝑁(𝑟̂𝑍𝐸 + 𝑟̂𝑍𝐵)𝐶𝑍𝑜𝑜𝑝

−𝑝𝑃:𝑁 ∑ 𝜇̂𝐶𝑃ℎ𝑦𝑡,𝑖

𝑁

𝑖=1

+ 𝑅𝑠𝑜𝑢𝑟𝑐𝑒 (2.46) 
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(10) 溶存酸素量 (DO) 

溶存酸素量は，光合成による生産により増加し，動植物プランクトンの呼吸，硝化，好気性無機化，

および底泥による消費により減少する． 

𝑅𝑂𝑥𝑦𝑔 = 𝑝𝐶:𝑁 ∑(𝜇̂ − 𝑟̂𝑃𝑅 − 𝑟̂𝑃𝑀)𝐶𝑃ℎ𝑦𝑡,𝑖

𝑁

𝑖=1

− 𝑟̂𝑍𝐵𝐶𝑍𝑜𝑜𝑝

−2 ∙ 𝑟̂𝑁𝑁𝐶𝑁𝐻4 − 𝑑𝐶:𝑁(𝑟̂𝐿(𝑜𝑥𝑖𝑐) − 𝑟̂𝑆(𝑜𝑥𝑖𝑐)) − 𝑅̂𝐷𝑂(𝑥, 𝑦, 𝑇) (2.47)
 

𝑅̂𝐷𝑂(𝑥, 𝑦, 𝑇) = 𝐹𝑆𝑂𝐷(𝑥, 𝑦) 𝜃𝑆𝑂𝐷
𝑇−20

𝐶𝑂𝑥𝑦𝑔

𝐶𝑂𝑥𝑦𝑔 + 𝑘𝐷𝑂
∙ 𝛥𝐻𝑧𝑏𝑜𝑡(𝑥, 𝑦) (2.48)

 

ここで，𝑅̂𝐷𝑂は底泥による酸素消費量 (SOD; mgO2 L-1 day-1) であり，最底層のモデルグリッドのみ考慮

される．FSOD は単位面積当たりの底泥による酸素消費速度 (gO2 m-2 day-1)  SODは SOD の温度活性係数，

Hzbot(x,y)はモデルグリッドの最底層厚 (m)である．底泥による酸素消費速度は 2019 年に実施された底

泥調査・底泥直上水培養実験の結果（入江ら, 2021）を参考に，4段階の SODを決定した．また，SOD

の空間分布は底泥の TOCと相関すると仮定し，第 4回瀬戸内海環境情報基本調査結果 4)より TOCの水

平分布結果（図-2.7）をもとに，図-2.7の水平分布を作成した． 

  

図-2.7 (a) TOCの水平分布（第 4回 (2015~2017年度)瀬戸内海環境情報基本調査結果より環境省が作成)，(b) 流動

水質モデルおける海底面境界条件として与えた SOD水平分布． 

(a) (b) 



第 2章 大阪湾における貧酸素化の現状および将来予測 

－18－ 

 

2.6 大阪湾の貧酸素化の再現計算 

2.6.1 計算領域・計算条件 

(1) 計算領域 

図-2.8 に計算領域を示す．計算領域は大阪湾および播磨灘，紀伊水道の一部を含む 70 km×70 kmの

領域である．水平方向に 500 m×500 mの直交座標系を設定した．鉛直方向には 20層の s座標系を採用

し，底層から表層にかけて層厚が薄くなるようパラメータを設定した（𝜃𝑠 = 3, 𝜃𝑏 = 0 in eq.(2.1)）．  

(2) 計算条件 

3次元流動水質モデル ROMSは初期場，開境界条件，気象外力，河川流入条件によって駆動される．

ROMS には外力条件として気象変数（気温，湿度，短波放射量，大気圧，降水量，雲量，風速）およ

び開境界条件として水位，水温，塩分，各種水質変数を入力する． 

気象外力のうち，気温，湿度，降水量，大気圧，短波放射量および雲被覆率は大阪管区気象台 5)によ

る観測データを領域一様に入力した．風条件には，空間分布を考慮するために，複数地点の観測値を

放射基底関数に基づき補間したものを入力した．風速データは気象庁が設置している 6地点，国土交通

省が設置している 4地点の風速観測値を用いた． 

西側開境界条件の水位には，江井・東二見における観測潮位を線形補間した値を入力し，水温およ

び塩分は浅海定線調査 (Sta.6)による月ごとの観測値（鉛直分布）および大阪湾自動観測システム明石地

点の表層水温を用いて鉛直方向に線形補間し，境界線に対して一様に与えた．また，総合水質調査 2) 

KB19 地点の毎年 4 回観測されている表層・底層栄養塩を鉛直方向に線形補間し与えた．南側境界水位

は和歌山・沼島の潮位観測データを境界線に沿って線形補間して与えた．水温および塩分は浅海定線

調査 (Sta.4)，水質項目は瀬戸内海総合水質調査（WY02）から，それぞれ鉛直方向に線形補間し境界線

に対して一様に与えた． 

図-2.8 計算領域の水深および定点観測地点の分布 
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河川境界条件では，大阪湾に流入する大小 34 河川を考慮した．一級河川の淀川の流量には，高浜・

枚方の水位データから H-Q式により流量を推定し，2つの導水（大川：85.31 m3 s-1，神崎川：10.0 m3 s-

1）を差し引いた値を用いた．このとき観測地点からモデル河川境界位置までの流下時間（6 時間）を

考慮している．同じく一級河川である大和川の流量には，遠里小野観測所の観測水位から H-Q 式を用

いて推定した流量を与えた．遠里小野は河口近くに位置しているため，大和川では流下時間を考慮し

ていない．そのほかの中小河川には，それぞれの流域面積に 24 時間前の降水量を乗じて推定した流量

を与えた．いずれの河川にも，大阪湾自動観測システム淀川河口地点の表層水温を河川水温として与

え，塩分はいずれも 0.1とした． 

淀川および大和川の栄養塩は，L-Q式（中谷ら，2010）を適用し，流量から算定した負荷量を流入栄

養塩濃度に変換して与えた．その他の 31 河川には，各河川における公共用水域調査結果 6)の 5 か年平

均値を平水時の流入負荷とし，雨天時には降水量と各河川の集水面積を乗じた値を平水時の負荷に加

えた． 

  

図-2.9 計算期間における気象条件の時系列 
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(3) モデルパラメータ 

表-2.1に水質モデルに与えたパラメータの設定値を示す． 

 

表-2.1 水質モデルパラメータ 

論文内表記  モデル内表記 設定値 単位 

植物プランクトン 

𝑘𝑐ℎ𝑙 AttChl 0.0302 m²/mg Chl 

𝑘𝑠𝑤 AttSW 0.2952 m-1 

𝛽𝑙𝑜𝑤,𝑖 beta1 0.003 - 

𝛽ℎ𝑖𝑔ℎ,𝑖 beta2 0.006 - 

𝜃𝐶ℎ𝑙2𝐶 Chl2C_m 0.02 mg Chl/mg C 

𝜇𝑚𝑎𝑥,𝑖 g_max 3.7 day⁻¹ 

𝑘𝑁𝐻4,𝑖 K_NH4 1.4 mmol N/m³ 

𝑘𝑁𝑁 K_Nitri 3 mmol N/m³ 

𝑘𝑁𝑂3,𝑖 K_NO3 1.4 mmol N/m³ 

𝑘𝑃𝑂4,𝑖 K_PO4 33.33 mmol P/m³ 

𝑟𝑃𝐴𝑅 PARfrac 0.43 - 

𝑝𝐶:𝑁 PhyCN 10.625 mol C/mol N 

𝛼 PhyIS 0.125 (W m-2)-1 day-1 

𝑟𝑃𝑀 PhyMR 0.01 day⁻¹ 

𝜃𝑃𝑀 PhyMR_t 1.058 - 

𝑝𝑃:𝑁 PhyPN 0.04 mol P/mol N 

𝜃𝑃𝑅 PhyRP_t 1.058 - 

𝑟𝑃𝑅 PhyRPb 0.1 day⁻¹ 

𝑟′
𝑃𝑅 PhyRPg 0.12 day⁻¹ 

𝑇𝑜𝑝𝑡,𝑖 t_opt 26 °C 

動物プランクトン 

𝜃𝑍𝐺 ZooAE_N 0.75 - 

𝑟𝑍𝐵 ZooBM 0.1 day⁻¹ 

𝑧𝐶:𝑁 ZooCN 6.625 mol C/mol N 

𝑟𝑍𝐸 ZooER 0.1 day⁻¹ 

𝑟𝑍𝐺 ZooGR 0.5 day⁻¹ 

𝜃𝑍𝐺 ZooGR_t 1.06 - 

𝑘𝑃ℎ𝑦𝑡 K_Phy 1.0 (mmol-N m-3)2 

𝑟𝑍𝑀 ZooMR 0.025 day⁻¹ 

𝑧𝑃:𝑁 ZooPN 0.0625 mol P/mol N 

栄養塩 

𝐾𝐼 D_p5NH4 0.1 mmol N/m³ 

𝑟𝐷𝑒𝑛𝑖𝑡 DenitR 0.05 day⁻¹ 

𝜃𝐷𝑒𝑛𝑖𝑡 DenitR_t 1.045 - 

𝐼𝑡ℎ I_thNH4 0.0095 mmol N/m³ 

𝐾𝐷𝑒𝑛𝑖𝑡 K_Denit 3.125 mmol N/m³ 

𝑘𝑁𝑖𝑡𝑟𝑖 K_DO 0.096 mg O2 L-1 

𝑟𝑁𝑖𝑡𝑟𝑖 NitriR 0.05 day⁻¹ 

𝜃𝑁𝑖𝑡𝑟𝑖 NitriR_t 1.08 - 
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表-2.1 水質モデルパラメータ(続き) 

デトリタス 

𝑟𝐵𝑅𝑁 BDeRRN 0.08 day⁻¹ 

𝑟𝐵𝑅𝑃 BDeRRP 0.08 day⁻¹ 

𝑟𝐻𝐿 Hydls 0.08 day⁻¹ 

𝑘𝑁𝑂3
 K_SUB 132.8 mmol N/m³ 

𝑟𝐿𝑅𝑁 LDeRRN 0.005 day⁻¹ 

𝑟𝐿𝑅𝑃 LDeRRP 0.005 day⁻¹ 

𝜃𝑅𝑅 RR_t 1.08 - 

𝑟𝑅𝑠𝑢𝑠 Rsus 1 - 

𝑟𝑆𝑅𝑁 SDeRRN 0.05 day⁻¹ 

𝑟𝐿𝑅𝑁 SDeRRP 0.093 day⁻¹ 

沈降速度 

𝑤𝐿 wLDet 1.0 m day⁻¹ 

𝑤𝑝 wPhy 0.1 m day⁻¹ 

𝑤𝑝 wSDet 0.1 m day⁻¹ 

底泥 

𝑘𝐷𝑂 K_DO_npflux 0.064 mg O2 L-1 

𝐹𝑁𝐻4 R_NH4f 15.3 mg/m²/day 

𝐹𝑃𝑂4 R_PO4f 2 mg/m²/day 

𝐹𝑆𝑂𝐷 

R_SODfa 566.9 mg/m²/day 

R_SODfb 799.1 mg/m²/day 

R_SODfc 874.3 mg/m²/day 

R_SODfd 1450 mg/m²/day 

𝜃𝑆𝑂𝐷 t_SODf 1.067 - 
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2.6.2 乱流モデルの比較検討 

(1) 流動の再現性 

図-2.10に 2012年 10月における，表層・中層・底層流速の 15日平均流速分布を示す．表層から底層

にかけて時計回りの潮汐残差流である沖ノ瀬環流および反時計回りの須磨沖反流が表れている．北東

海域では中層に西宮沖環流が形成されている．また大阪港から関西空港島までの岸沿い表層から中層

には東岸恒流帯がみられ，関空島で二股に分かれたのち沖ノ瀬環流に合流する．このように，平水期

には大阪湾の代表的な残差流系がモデルで表現できることが確認された．一方で，大規模な出水が発

生した 2012 年 8 月における残差流には，淀川や大和川からの淡水流入による影響が，特に表層におい

て強く表れる（図-2.11）．出水時の淀川河川水は西進することが知られており，計算結果においても西

宮から明石海峡にかけて卓越した西方向流速が表れており，大阪湾における出水時にみられる特徴的

な流速分布が表現されていることがわかる．また，出水期の中層における残差流には西宮沖還流は現

れなくなるが，表層の流向に対して補償流となって沿岸に向かう流れが形成されている．  

図-2.11 2012年 8月 1日から 15日間の平均流速の水平分布．左から表層 -1 m，-4 m, 底層を表す． 

 

図-2.10 2012年 10月 1日から 15日間の平均流速の水平分布．左から表層 -1 m，-4 m, 底層を表す． 
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(2) 密度成層の再現性 

ここでは，流動計算に用いた乱流モデルの違いによる水温および塩分の表現性能の差異について検

討する．乱流モデル KPPを用いた計算ケースを ROMS-KPP，Mellor-Yamada 2.5 level closureモデルを用

いた計算ケースを ROMS-MY25 と表記する．まず，それぞれの計算結果について，図-2.12 および図-

2.13に神戸港波浪観測塔（Sta. 4）水温および塩分の日平均値の時系列を示す．Sta. 4は淀川河口の西側

に位置する観測地点であり，出水時には淀川から西進する河川水の影響を受ける海域である． 

Sta. 4 における観測水温は，成層発達期の夏季に鉛直方向の水温差が拡大する．いずれの乱流モデル

を用いた場合においても，季節変動が良好に再現されていたが，KPP モデルを用いた計算値は表層の

水温がやや高く，Mellor-Yamada モデルを用いた計算値は，夏季底層水温が観測値よりも高い傾向がみ

られた．また，表層塩分の再現性については，夏季表層を除いて，同等の再現性を示した．しかし，7

月から 9月の表層塩分低下時において，KPPモデルよりも Mellor-Yamadaモデルは観測値とのミスフィ

ットが小さかった． 

図-2.14 および図-2.15 に，Sta. 4 における水温および塩分の月平均鉛直分布を示す．水温の鉛直分布

について 2つの計算結果と観測値を比較すると，冬季から夏季にかけて，水温勾配が生じてゆく過程が

良好に再現されていることがわかる．また，併せて示した標準偏差も観測値のそれと同等の値である

ことがわかる．モデル間の違いとして，5月の平均水温は，-4 m以深でKPPモデルによる計算値がやや

観測値よりも低く，一方で 8 月の鉛直分布は KPP がより観測値に整合している．そのため，KPP モデ

ルでは水温成層が形成されやすく，その形成時期は観測値よりも早いものの，Mellor-Yamada モデルよ

りも夏季の水温成層が維持されやすいと考えられる． 

一方，塩分の平均鉛直分布を比較すると，いずれの計算結果も表層塩分は観測値よりも低い傾向を

示した．モデル間の差異は表層から水深-5 mにおいて表れており，KPPモデルが Mellor-Yamadaモデル

よりも塩分勾配が大きいことが特徴的である． 

他の観測地点における再現性を確認するために，関空 MT局 (Sta. 3)，Sta.4，阪南窪地 (Sta. 6)，大阪

港波浪観測塔（Sta. 12）における，夏季のモデル－観測ミスフィットの平均鉛直分布を図-2.16 に示し

た．ここでの夏季は 6, 7, 8月の 3か月間とし，水温成層が形成され貧酸素水塊が形成されている時期に

着目している．4 地点のいずれにおいても，KPP モデルを用いた場合の下層水温は Mellor-Yamada モデ

ルの場合よりも平均ミスフィットが小さく，夏季の大阪湾における水温構造を良好に再現できている

ことがわかる．以降の節では，KPPモデルを用いた計算結果を示す． 
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図-2.13 神戸港波浪観測塔 (Sta. 4) における日平均観測値および ROMS-MY25による計算結果． 

 

図-2.12 神戸港波浪観測塔 (Sta. 4) における日平均観測値および ROMS-KPPによる計算結果． 



第 2章 大阪湾における貧酸素化の現状および将来予測 

－25－ 

 

図-2.14 Sta. 4 における月別平均水温の鉛直分布（赤線：ROMS-KPP，青線：ROMS-MY25，黒点+エラーバー：

観測値および標準偏差，赤帯・青帯：各計算値の標準偏差） 

図-2.15  Sta. 4 における月別平均塩分の鉛直分布（赤線：ROMS-KPP，青線：ROMS-MY25，黒点+エラーバー：

観測値および標準偏差，赤帯・青帯：各計算値の標準偏差） 
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図-2.16 水温および塩分の観測値-計算値ミスフィットの平均鉛直分布（赤：ROMS-KPP，青：ROMS-MY25） 
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(3) クロロフィルおよび DOの再現性 

図-2.17 ~ 図-2.20に，それぞれ Sta. 3，Sta. 6，Sta. 4，Sta.12におけるクロロフィルおよび DOの日平

均値の時系列を示す．また，各図における実線および点はそれぞれ表層および底層における計算値お

よび観測値を示している．4 地点の中で最も沖合に位置する Sta. 3 では，表層クロロフィルの極端な増

殖現象や，底層 DOの貧酸素化は発生しておらず，計算値もまた同様の傾向を示した．また東岸帯に位

置し窪地となっている Sta. 6では，観測値が 7月頃に貧酸素化し，9月から 10月にかけて回復していく

季節変動に計算値が追従できていることがわかる．一方，同地点 4月から 6月における表層クロロフィ

ルおよび表層 DOについて，観測値にみられるような増減の再現性は低かった． 

湾北東部に位置する Sta. 4および Sta. 12では，上述の 2地点に比べて生物生産性が高く，また底泥に

よる酸素消費が大きいため，表層クロロフィル濃度は平均的に高く，底層 DOの貧酸素化期間も長い傾

向にある．Sta. 4 では，2 月から表層クロロフィルが増殖し始める様子，および，6，7 月の大規模な出

水に伴い表層クロロフィルと DOが増加した状態が計算によって再現されている．しかし，同地点 8月

の表層クロロフィルの計算値は，観測値よりも高かった．また，8 月の表層クロロフィルについては，

図-2.17  Sta. 3におけるクロロフィルおよび DOの日平均時系列． 

図-2.18 Sta. 6におけるクロロフィルおよび DOの日平均時系列． 
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観測値と計算値が同程度の値であるにもかかわらず，表層 DO は計算値の方が 3 ~ 4 mgO2 L-1程度高い

ことがわかる．一方，大阪港波浪観測塔 (Sta. 12) において，4月 ~ 6月にみられる底層 DOの低下は，

計算値の方が早く発生しており，計算値では 6 月の時点で既に無酸素状態となっている．また，Sta. 4，

Sta. 12のいずれも，9月に観測された表層クロロフィル増加に追従していないなど，湾北東部において

は短期的変動，特に表層における数日間の増殖現象に対して観測値と計算値の間に乖離が生じること

があることがわかる． 

  

図-2.19 Sta. 4におけるクロロフィルおよび DOの日平均時系列． 

 

図-2.20 Sta. 12におけるクロロフィルおよび DOの日平均時系列． 
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図-2.21， 図-2.22に Sta. 4および Sta. 12におけるクロロフィルの平均鉛直分布を示す．冬季クロロフ

ィルの観測値では，表層から底層まで少なくとも 5 mgChl m-3程度の値が測定されている一方で，計算

値の底層クロロフィルはほとんど存在しない．特に中層よりも底層濃度が高い，弓なりの分布形状は，

沈降し着底した植物プランクトン (クロロフィル) をデトリタスとして扱う現状のモデル構造では，再

現が困難であると考えられる．また，時系列データでも確認したように，Sta. 4 において夏季の表層ク

ロロフィル計算値は観測値よりも過大であるが，-5 m 以深では計算値の方が低いことがわかる．これ

は，表層のクロロフィルが光を吸収し，中層へ到達する有効光量が減少することで，植物プランクト

ン増殖が抑制されている可能性がある． 

図-2.23, 図-2.24に同じく DOの平均鉛直分布を示す．Sta. 4の冬季における上層 DOは計算値の方が

高い傾向にある．また， 7月から 8月において，最底層 DOは観測，計算値ともにほとんど無酸素状態

である一方，中層 DOの計算値が観測値よりも高く，中層に及ぶ酸素低下の再現ができていないことが

わかる．底層 DOが観測値よりも早期に低下しているにもかかわらず，中層における DO減少の再現性

が低いことは，一次生産によって増殖した植物プランクトンが，酸素消費源の有機物として沈降，分

解される過程の表現がモデル内で不十分であることを示唆している． 

図-2.25から図-2.28に表層水温，塩分，クロロフィルおよび底層 DOの月別平均水平分布を示す．表

層水温の計算値は観測値にみられる分布を良好に再現しており，また，季節変動は，湾西部の混合域

より湾奥部の成層域の方が大きいことがわかる．表層塩分の水平分布は湾奥部の，とりわけ神戸港湾

域において低塩分であり，二つの海峡に向かう水平勾配を有していることがわかる．また，表層クロ

ロフィルの水平分布は表層塩分と同様の水平勾配を有し，淀川河口から神戸港を中心に高い値となっ

た．河川水は植物プランクトンの増殖に必要な栄養塩の主要な供給源であるため，クロロフィルの分

布は河川水の水平拡散に依るところが大きいことがわかる．底層 DO の水平分布では，5 月頃から湾奥

部における DOが低下し始め，夏季に貧酸素水塊が発生，東岸沿いに関空島付近まで拡大し，成層が崩

れる 10月から縮小する様子が再現されている． 
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図-2.22 Sta.12 における月ごとの平均クロロフィル鉛直分布．黒丸は観測値，赤線は ROMS-KPP の計算値

を表す． 

図-2.21 Sta.4 における月ごとの平均クロロフィル鉛直分布．黒丸は観測値，赤線は ROMS-KPP の計算値を

表す． 
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図-2.24 Sta.12における月ごとの平均DO鉛直分布．黒丸は観測値，赤線はROMS-KPPの計算値を表す． 

図-2.23 Sta.4における月ごとの平均DO鉛直分布．黒丸は観測値，赤線はROMS-KPPの計算値を表す． 
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図-2.25 月ごとの表層水温水平分布 
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図-2.26 月ごとの表層塩分水平分布 
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図-2.27 月ごとの表層クロロフィル水平分布 
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図-2.28 月ごとの底層 DO水平分布 
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2.7 大阪湾における貧酸素水塊の将来予測 

地球温暖化による大気・海水温度の上昇は海洋溶存酸素を減少させる効果があることが知られてい

る (Schmidtko et al., 2017; Stramma et al., 2008)．その原因は，海水の酸素溶解度の低下および水中微生物

の呼吸活性化である．図-2.29 は水温と酸素溶解度の関係を示している．高温高塩な水塊ほど，同じ飽

和度 100%であっても溶存酸素量が低く，例えば，塩分 30の海水であれば 26°Cから 30°Cへの水温上昇

によって約 0.94 mg O2 L-1低下する．このように，水温上昇によって水塊が保有することができる酸素

量そのものが減少するのである．また，水中微生物の呼吸代謝活動は水温が高いほど活性化すること

が知られており，将来の温暖化環境では，微生物活動に伴う酸素消費量が増加すると予想されている．

後者の要因は，一次生産性が高い水域で影響が大きいと考えられ，大阪湾のような閉鎖性が強く，ま

た人為的な汚濁負荷を受ける海域では，特に顕著な影響が及ぼされると予想される．そのため，こう

した沿岸水域では，地球環境の変化を予測し，早期の適応施策を立てることが求められる． 

今後の気候変動への適応施策を講じるべく，様々な閉鎖性海域において，閉鎖性内湾を対象とした

数値シミュレーションが実施されてきた．北アメリカ大陸東岸に位置するチェサピーク湾を対象とし

た水質将来予測研究は数多く，気温上昇，海面水位，気象変化，あるいはそれらの複合的影響を評価

している (Wang et al, 2017 ; Irby et al, 2018 ; Ni et al, 2019)．また，国内に目を向けると，地球温暖化が及

ぼす沿岸域の貧酸素水塊への影響に着目した研究が，瀬戸内海を対象に実施されており，東ら (2021) 

は将来的な気温および水温上昇が貧酸素化を悪化させる可能性を示唆し，将来の水温は現在夏季に卓

越している植物プランクトンの増殖最適水温を超過し，海域全体の一次生産を抑制することを示して

いる．  

図-2.29 水温および塩分と酸素溶解度の関係． 
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2.7.2 計算条件 

温暖化条件と現況条件について，変更のあった条件について以下に示す．将来予測の入力条件には，

既往研究で東ら（2020）が実施した瀬戸内海域の将来予測に用いられた入力データおよびその予測結

果から，大阪湾における気温，比湿，短波放射量，および大阪湾，播磨灘，紀伊水道の表層水温の 19

年間の月平均値を用いた．気温，比湿，短波放射量の「現在」に対する「将来」の変化がそれぞれ線

形的に対応すると仮定し，現在条件から将来条件に変化する一次関数を作成し，簡易的に将来気候の

入力値を作成した．その他の気象条件は現在条件と同様にした．開境界条件の水温について，気象条

件と同様に，東らの結果から播磨灘および紀伊水道における表層水温の一次関数を作成し，大阪湾の

現在条件で用いる開境界水温に適用することで温暖化条件下の西側南側開境界水温を作成した．また，

本来ならば，河川流量や陸域および隣接海域からの栄養塩負荷の変化について想定するべきであるが，

それらの変化予測には不確実性が多く，将来変化の要因が不鮮明となる可能性があるため，今回は水

質条件については無変更とした．水温初期値についても，他の水温変換方法と同様に，東らの大阪湾

における表層水温に基づいて，線形変換して与えた． 

  

図-2.30 (a) 西側開境界，(b)南側境界，および (c) 河川境界条件における現況-将来水温の関係および回帰式を示

す．それぞれ，横軸に現在，縦軸に将来水温を示す． 

(d) 将来計算に用いる相対湿度の変換を行う手順． 
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2.7.3 結果および考察 

(1) 鉛直分布 

図-2.31に神戸港波浪観測塔 (Sta. 4) における観測値，現況計算値，将来推定値の時間水深プロファイ

ルを示す．将来の水温は，全層がほとんど一様に上昇しており，9月には水柱全体が 31.5 ~ 33°Cまでに

達している．また，将来計算値では，5 月の末にはすでに水温成層が形成されており，現況計算よりも

1か月程度早期化したことがわかる．図-2.32にDOの鉛直分布の時間変化を示す．同図には，密度勾配

が最大となる水深，密度躍層を破線で附載している．水温上昇にも関わらず，密度躍層厚は大きく変

動しておらず，そのため DO濃度が高い生産層の厚さも現在と将来で大きく変化していない．これは淡

水流入条件を変更していないため，水温以上に密度躍層形成に影響する淡水量が変化していないため

であると考えられる． 

温暖化条件下における DOは 6月の時点で密度躍層に及ぶ貧酸素水塊が形成された．これは，上述し

た水温成層の早期化による物理的影響に加え，水温上昇による 3つの生化学的要因に起因している．第

一に，水温上昇による酸素溶解度の低下，第二に，昇温による有機物分解速度の増加である．第三に，

植物プランクトンによる一次生産の最盛期が水温上昇によって早期化したことで，現況よりも早期に

躍層下へ有機物が供給されたことである．この効果は，現況の水質予測に用いている，植物プランク

トンの最適増殖速度の設定に由るところが大きい．実際に温暖化による水温上昇が起こった海洋環境

においては，現在よりも高水温でも生存可能な植物プランクトン種が優占種として存在している可能

性があると考えられる．これは最適水温型の植物プランクトンモデルを用いた将来予測において，少

なからぬ不確実性を生じさせるが，一方で，将来環境における優占植物プランクトン種やその最適水

温を決定することもまた不確実な予測に変わりなく，決定論モデルの適用限界であるといえる． 

(2) 酸素収支の変化 

図-2.33に湾北東部における，DO循環収支解析の結果を示す．解析対象領域は同図(a)に示す，水深 -

6 m から-20 mのモデル領域であり，-6 m を境に上層と下層に分割し，水質モデルで計算される生化学

的な酸素生成消費フラックスを月ごとに計上した．また，将来ケースの下層における全体の酸素消費

量に対して，それぞれの生化学過程による消費割合を図-2.34 に示す．植物プランクトンによる酸素生

成量は，現況計算では 8月，将来計算では 7月まで増加した．将来計算の酸素生成量は 8月および 9月

を除いて現況計算より大きい．将来ケースの一次生産量の増加に伴い，上層の無機化による酸素消費

量の絶対値が増加している．一方，下層においては，無機化による酸素消費量は，8 月および 9 月に現

況計算よりも減少し，図-2.34 をみると，下層における全体の酸素消費量の 2~4 割程度まで下がってい

る．これは上層における無機化のそれと同様，一次生産量の低下に由来していると考えられる． 
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図-2.31 神戸港波浪観測塔における鉛直水温分布の時系列．(a) 観測値，(b) 現況計算値，(c) 将来計算値 

 

図-2.32 神戸港波浪観測塔における鉛直 DO分布の時系列．(a) 観測値，(b) 現況計算値，(c) 将来計算値．図中破

線は密度躍層水深を表す． 
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図-2.33 (a) 酸素収支計算を実施したモデルグリッド． 

(b) (a)に示した領域の上層・下層における酸素収支解析結果． 

 

図-2.34 将来計算結果における生化学的過程それぞれの酸素消費割合 

(a) 

(b) 

(c) 
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(3) 貧酸素水塊体積の変化 

最後に水温上昇が貧酸素水塊の体積に及ぼす影響を検討する．まず，図-2.35 に，6 月の水深に対す

る貧酸素水塊割合の水平分布および図中 A-B断面における，6月 12日 15時時点の DO分布を示す．貧

酸素化割合を比較すると，現況計算における 6月には水柱の貧酸素化割合は神戸港港湾部において大き

く，一部で 5割に至る程度であった．また，大阪港から大和川河口においては，水柱に対し 2割程度の

貧酸素化が存在していた．一方，将来計算においては，神戸港港湾域を中心に，湾奥部全体の貧酸素

化層厚が拡大しており，貧酸素水塊の規模が拡大していることがわかる．同図(c),(d) に示した DO断面

分布では，水温上昇によって，貧酸素水塊が海底に沿って沖合方向に領域を広げる様子および河口域

では密度躍層下のほとんどの水塊で約 1.5 mgO2 L-1減少し，貧酸素化が鉛直方向にも拡大することがわ

かる． 

図-2.36 は，貧酸素化した計算格子の体積を累積して求めた貧酸素水塊体積の時系列を示している．

現在ケースでは，5月末から 6月までの期間において増減を繰り返しながら増加し，9月から 10月の成

層崩壊期に急減することがわかる．このときの最大体積は 2.9 km3 に達し，7 月末の強風連吹によって

解消されるまで増加を続けた．一方，将来ケースでは，現況計算と同様の増減傾向を呈しているが，5

月末から発達する貧酸素水塊体積が顕著に増加した．このとき，6 月の累計貧酸素化体積は 52.4 km3 

day であり，これは現況計算値の 1.6倍にもなる． 

  

図-2.35 貧酸素水塊が水深に占める割合の水平分布および 6月 12日 15時の A-B断面における溶存酸素濃度の断面

分布．(a), (c) は現況計算結果，(b), (d) は将来計算値を示す． 
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図-2.36 貧酸素水塊体積の時系列．実線は日平均値，破線は月平均値を表し，黒色で現況計算，赤色で将来計算値

を表している． 
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2.8 まとめ 

本章では，研究対象領域である大阪湾について概説し，3 次元流動水質モデルを用いた酸素循環シミ

ュレーションの課題について考察した．本章で明らかにした水質モデルに関する課題点は次のようで

ある． 

3 次元数値モデルを用いた大阪湾酸素循環モデルは，季節変動を表現する性能は有していたが，短期

的，即ち数日から日周期の酸素変動には追従できない期間が多い．その主な原因は，ひとつに気象条

件や河川条件を設定する際の不確実性による影響，また，密度成層を表現する乱流モデルの性能が不

完全であり，気象擾乱による短期的な鉛直混合が十分に発生しないことが挙げられる．また，5 月から

9 月にかけて湾北東部表層で発生する，高い溶存酸素濃度を再現することができなかった．溶存酸素の

再現性低下要因には，物理モデルと水質モデルの双方の問題が関与している．そのため，今回起用し

た水質モデルに，新たな数式や状態変数を追加し，結果的にモデル性能が改善し，即ち，観測値との

ミスフィットが低減することができても，水質モデルとしての正確性が向上したとは必ずしもいえな

い． 

また，数値モデルの再現性を確認するための重要なデータである定点自動観測システムにおいても，

異常値の発生および年々増加する欠測頻度の増加という課題がある．特に前者の課題は，定量的な判

断が困難である場合があり，簡便な判別方法では限界がある．今後も継続的に蓄積されるデータを有

効に活用し，データ同化手法などを通じて水質モデルを発展させてゆくためにも，モニタリングシス

テムデータの信頼性を評価するシステムが求められる． 

注釈 

1) 大阪府立環境農林水産総合研究所，浅海定線調査  

(http://www.kannousuiken-osaka.or.jp/publication/suisan_shiryo/index.html) 

2) 瀬戸内海総合水質調査ホームページ (https://www.pa.cgr.mlit.go.jp/suishitu/) 

3) 大阪湾定点自動観測データ配信システム (http://teiten.pa.kkr.mlit.go.jp/obweb/) 

4) 環境省，第 4回瀬戸内海環境情報基本調査 

5) 気象庁 (https://www.jma.go.jp/jma/) 

6) 国立環境研究所，環境数値データベース，公共用水域水質調査（大阪府，兵庫県，和歌山県） 

(https://www.nies.go.jp/igreen/index.html) 
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第 3章 機械学習による観測データ信頼性定量化 

3.1 はじめに 

沿岸域の水質改善の取り組みにおいて，水質観測は枢要な役割を担っている．現在まで大阪湾を含

め，水質問題が発生する沿岸域の多くに，自動モニタリングシステムが導入され，それまで困難であ

った長期にわたる高頻度の水質連続観測が実現してきた．月に数度の定期観測と比べて，観測が高頻

度であるほど，風や日射などの半日から数日周期の外力因子との関連を研究することができる．ただ

し，観測値が数値化しているものは真値ではなく，真値に近い値である．観測値には，人為的誤差や

測量機器の系統的な誤差，ランダム誤差が含まれており，観測行為を通して真値が「ぼやけた」状態

で認識している．そのため，観測データを扱う際には，この観測誤差を踏まえた解析を行わなければ

ならず，観測誤差の評価はデータ分析の枢要といえる．自動モニタリングシステムのデータも例に漏

れず，観測値に含まれる観測誤差を考慮し利用しなければならない． 

定点モニタリングシステムの長所は，人的コストを最小限に，時間的に高密度なデータ収集が可能

である点にある．その反面，人間による逐一の観測品質確認がなされないという短所が付きまとう．

すなわち，明らかに異常な測定値を，データ記録後閲覧者によって判断する必要がある．定点観測に

用いられる観測機器は，長期間現場に放置される関係上，測定の都度キャリブレーションを行うこと

はしない．そのため，機器の定期メンテナンスが実施されるまでの間，センサー部分に付着したゴミ

などによって引き起こされる異常値が継続することがある．図-3.1は，大阪湾定点自動観測システムに

よって観測された DOデータより，異常値とみられる観測値が発生した 3つの期間を抜粋して示してい

る．これらの異常イベントはそれぞれ，ある時刻まで DOが低下傾向を示していた状態から，不連続的

に上昇する様子が記録されており，この不連続的上昇（ドリフト）を以って観測値の異常性を認知す

ることができる．一方，異常値の発生時刻を特定することは困難である．例えば，図-3.1(c) のような

時系列観測データでは，表層から下層までの DO が低下し，8 月に正常に戻ったとみられるが，どの時

点から異常が発生していたかを判別することは困難である．こうした正常と異常の如何により時系列

解析や数値モデルの解釈に影響を及ぼすことは言うまでもない． 

この問題に対するひとつの解決策として，近年，ソフトセンサーと呼ばれる技術が開発・適用され

ている．ソフトセンサーはモニタリングデータの異常値対策や不確実性評価手法として提案されたデ

図-3.1 異常値の例．異常とみられる区間はそれぞれ，(a) 2011年 6月末から 8月 9日頃まで，(b) 10月中
旬から 11月 16日までであり，(c) に関しては明確な開始時点が不明瞭である． 
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ジタルツインに分類される技術であり，擬似的な観測値を生成し，現場のセンサー（ハードセンサー）

との比較を以って，実観測値の不確実性を評価する．ソフトセンサーの多くが，数値モデルや機械学

習を用いた予測モデルによってモニタリングデータを予測する経験的モデルが採用されている． Xu ら

(2021)は，エリー湖における貧酸素水塊の予測とその不確実性評価を目的として毎時 DO 観測データの

EOF（Empirical Orthogonal Function: 経験的直交関数）解析およびベイズクリギンングによる推定を行っ

た．  

北アメリカ大陸東海岸に位置するチェサピーク湾では，長期 DO観測データを，気象外力や河川流量

などから予測する機械学習アルゴリズムが開発された (Yu et al, 2020)．しかし，毎時モニタリングシス

テムのような高頻度観測データへの適用に関する研究例はない．また，大阪湾自動水質観測システム

で発生する異常値対策においても，こうしたソフトセンサー技術の開発は，モニタリングデータを最

大限利用していく上で有益であると考えられる．そこで本章では，大阪湾定点自動観測システムデー

タを対象に，当該システムで発生する DOデータの異常検知モデルを開発し，観測データの信頼性の定

量化について検討する．3.2 節では，次元削減手法，機械学習手法について概説し，使用する観測デー

タについて述べる．また，本章で開発する信頼性評価手法について述べ，ワークフローを示す．3.3 節

では，構築した水質予測モデルの予測精度について検証する．3.4 節では信頼性評価指標を設定し，各

データサンプルに対して観測誤差を定める．最後に 3.5節で本章のまとめを述べる． 

3.2 データおよび手法 

3.2.1 Empirical Orthogonal Function (EOF)  

経験的直交関数 (EOF) 解析は，主成分分析とも呼ばれる次元削減手法である．EOF では，多次元

（多サンプル）データが共通して有する成分に分解し，それらの重ね合わせとして元データを表現す

る．フーリエ級数直交関数分解と類似した解析方法であるが，EOF で抽出される関数は三角関数に限

らない点で適用性が高い． 

ある地点および水深における時系列観測データ𝜓𝑚(𝑡)とする．ここで，mは地点，Mは総地点数，tは

時刻を表す（𝑡 = {𝑡1, … , 𝑡𝑁}，N: 観測数）．このとき，𝜓𝑚(𝑡)の主成分分解は次のように表される： 

𝜓𝑚(𝑡) = ∑[𝑓𝑗(𝑡) ∙ 𝜙𝑗𝑚] 

𝑀

𝑗=1

(3.1)
 

ここで，Mは総サンプル数，𝑓𝑗(𝑡)は j番目の主成分 (PCj)，𝜙𝑚𝑗は観測点 mにおける j番目の固有関数

である．主成分は互いに直交するため，主成分および固有関数はそれぞれ以下の性質を持つ： 

∑ [𝜙𝑖𝑚𝜙𝑗𝑚]

𝑀

𝑚=1

= 𝛿𝑖𝑗 (3.2)
 

𝑓𝑖(𝑡)𝑓𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝜆𝑖𝛿𝑖𝑗 (3.3) 

ここで，𝛿𝑖𝑗ははクロネッカーのデルタである．また，𝑎̅はは平均値，𝜆𝑖はは固有値である．ただし，時系列

観測データから平均値を差し引いている場合，𝜆𝑖はデータの各主成分の分散に等しい．各地点における

時系列観測データ𝜓𝑚(𝑡)を縦に連ねて観測値行列 Dとおくと，式 (3.1)は次のように書き換えられる： 



第 3章 機械学習による観測データ信頼性定量化 

－ 47 － 

𝑭 = 𝑽𝑳𝑼 (3.4) 

𝑽 = [
𝜙11 … 𝜙1𝑀

⋮ ⋱ ⋮
𝜙𝑀1 … 𝜙𝑀𝑀

] (3.5)
 

𝑳𝑼 = [
𝑓1(𝑡)

⋮
𝑓𝑀(𝑡)

] (3.6)
 

また，各主成分の寄与率は，固有値の合計に対する割合で表現される． 

𝐶(𝑝) =
∑ 𝜆𝑖

𝑝
𝑖=1

∑ 𝜆𝑖
𝑀
𝑖=1

(3.7) 

この指標は，第 1から第 p主成分までを用いた場合，分解前のデータをどの程度再構成できるかを示

す． 

3.2.2 勾配ブースティング決定木 (GBDT) 

本研究では，観測データが持つ主成分の回帰モデルを構築するために，勾配ブースティング決定木 

(GBDT)，特に lightGBMを用いる．GBDTは分類や回帰に用いられる決定木 (Decision Tree) をアンサン

ブルモデルに発展させた機械学習手法である．GBDTでは，決定木を連続的に生成し，ひとつ前の決定

木のデータミスフィット情報を次の決定木に引き継いでゆくことで，学習データとのミスフィットを

効率的に減らすことができる．以下に GBDTの理論の概要を述べる． 

決定木は損失関数 Lを最小化するような回帰関数を求めることを目的としている．損失関数は多くの

場合，データミスフィットの二乗和などが用いられる．GBDT では，学習データ yに対する回帰関数 F

による予測値のミスフィットそれぞれに対して勾配を計算することで誤差学習器 f を更新する．また，

学習器によってミスフィットをどれだけ強く修正するかを，学習率 aで制御する． 

𝐹𝑚+1(𝑿) = 𝐹𝑚(𝑿) + 𝑎𝑓𝑚(𝑿; 𝑷) (3.8) 

ここで Xは説明変数，Fm(X)は m 回目の繰り返し回数における回帰関数，fm(X; P) は学習パラメータ

セット Pを用いた，誤差過学習器である． 

3.2.3 LightGBM 

GBDT 改良手法のひとつである LightGBM（Ke et al, 2017）は，大規模データおよび多数の特徴量に

対処するための改良版 GBDTアルゴリズムである．LightGBMでは，損失関数を以下のように定める． 

ℒ̃𝑚+1 = ∑ [𝑔𝑖
𝑚𝑓𝑚+1(𝑥𝑖) +

1

2
ℎ𝑖

𝑚𝑓𝑚+1(𝑥𝑖)] + 𝛺(𝑓𝑚+1) + 𝑐𝑜𝑛𝑠𝑡

𝑛

𝑖=1

(3.9)
 

𝑔𝑖
𝑚 =

𝜕𝐿(𝑦𝑖 , 𝐹𝑚(𝑥𝑖))

𝜕𝐹𝑚(𝑥𝑖)
(3.10) 
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ℎ𝑖
𝑚 =

𝜕2𝐿(𝑦𝑖 , 𝐹𝑚(𝑥𝑖))

𝜕{𝐹𝑚(𝑥𝑖)}2
(3.11) 

ここで，𝑛ははデータ数，𝑚はは繰り返し回数，𝑔𝑖
𝑚はは損失関数に対する𝐹𝑚はの勾配，ℎ𝑖

𝑚はは損失勾配に対す

る𝐹𝑚のヘシアン行列である．構造が固定された決定木では，𝑓および𝛺は以下のように書ける． 

𝑓𝑚+1(𝑥𝑖) = ∑ 𝑤𝑗𝐼𝑗
𝐽

𝑗=1
(3.12) 

𝛺(𝑓𝑚+1) =
1

2
𝜆 ∑ 𝑤𝑗

2
𝐽

𝑗=1
(3.13) 

ここで，𝐽はは決定木の葉の総数，𝐼𝑗はは葉𝑗はに分類されたデータ群，𝑤𝑗はは葉の重みである．は非負なる任

意の実数である．式 (3.12) および式 (3.13) を式 (3.9) に代入することで，以下を得る． 

ℒ̃𝑚+1 = ∑ [(∑ 𝑔𝑖
𝑚

𝑖∈𝐼𝑗

) 𝑤𝑗 +
1

2
(∑ ℎ𝑖

𝑚 + 𝜆
𝑖∈𝐼𝑗

) 𝑤𝑗
2]

𝐽

𝑗=1

(3.14)
 

このとき，𝜕ℒ̃𝑚+1/𝜕𝑤𝑗 = 0なる最適な重み𝑤𝑗
∗および最適目的関数ℒ̃∗は， 

𝑤𝑗
∗ =

− ∑ 𝑔𝑖
𝑚

𝑖∈𝐼𝑗

∑ ℎ𝑖
𝑚

𝑖∈𝐼𝑗
+ 𝜆

(3.15)
 

ℒ̃∗ = −
1

2

(∑ 𝑔𝑖
𝑚

𝑖∈𝐼𝑗
)

2

∑ ℎ𝑖
𝑚

𝑖∈𝐼𝑗
+ 𝜆

(3.16) 

と表される．このように，lightGBM（およびXGBoosting）は，誤差学習器の解析解が導出されること

が特徴である．また，決定木の構築において，さらに枝葉を分岐させるか否かを評価するためにゲイ

ン (gain)または情報ゲイン (information gain)と呼ばれる決定木の性能評価指標が用いられる． 

𝑔𝑎𝑖𝑛 =
1

2
[

(∑ 𝑔𝑖
𝑚

𝑖∈𝐼𝑙𝑒𝑓𝑡
)

2

∑ ℎ𝑖
𝑚

𝑖∈𝐼𝑙𝑒𝑓𝑡
+ 𝜆

+
(∑ 𝑔𝑖

𝑚
𝑖∈𝐼𝑟𝑖𝑔ℎ𝑡

)
2

∑ ℎ𝑖
𝑚

𝑖∈𝐼𝑟𝑖𝑔ℎ𝑡
+ 𝜆

−
(∑ 𝑔𝑖

𝑚
𝑖∈𝐼 )2

∑ ℎ𝑖
𝑚

𝑖∈𝐼 + 𝜆
] (3.17)

 

上式右辺は 3つの項から構成されている．第一項および第二項は分岐点における左側および右側の損

失関数（スコア）の和であり，第三項は根におけるスコアである．即ち，ゲインは分岐前のスコアに

比べ，データをさらに分岐させたことでスコアが向上しているかを示す指標となっている．損失関数

に二乗誤差関数を採用する場合，hm は定数であり，∑ ℎ𝑖
𝑚

𝑖 はデータ数の合計となる．また=0 とすると，

ゲインは勾配𝑔の分散として表現される．GBDT には，しかし，教師データや説明変数が膨大になるほ

ど，勾配の計算コストは増幅し，学習効率が低下するという課題がある． 

LightGBMでは，GOSS (Gradient-based One-Side Sampling)法により，決定木の分岐条件探索を高速化
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している．分岐点ノード𝑗はにおけるデータをある説明変数の値𝑑はを境にデータを分類した場合について

考える．勾配𝑔はを降順に並べたときの上位100 a%のデータ(A)を抽出し，残りの100(1-a)%のデータをAc

とする．GOSSでは，情報ゲインを評価する際，式（3.18）のように，Aに含まれる勾配とAcからラン

ダムに選択した勾配データについて，分散𝑉̃𝑗(𝑑)を評価する． 

𝑉̃𝑗(𝑑) =
1

𝑛
{

(𝛴{𝑥𝑖∈𝐴𝑙}𝑔𝑖 +
1 − 𝑎

𝑏
𝛴{𝑥𝑖∈𝐵𝑙}𝑔𝑖)

2

𝑛𝑙
𝑗(𝑑)

+
(𝛴{𝑥𝑖∈𝐴𝑟}𝑔𝑖 +

1 − 𝑎
𝑏

𝛴{𝑥𝑖∈𝐵𝑟}𝑔𝑖)
2

𝑛𝑟
𝑗(𝑑)

} (3.18)
 

𝐴𝑙 = {𝑥𝑖 ∈ 𝐴: 𝑥𝑖𝑗 ≤ 𝑑} (3.18𝑎) 

𝐴𝑟 = {𝑥𝑖 ∈ 𝐴: 𝑥𝑖𝑗 > 𝑑} (3.18𝑏) 

𝐵𝑙 = {𝑥𝑖 ∈ 𝐵: 𝑥𝑖𝑗 ≤ 𝑑} (3.18𝑐) 

𝐵𝑟 = {𝑥𝑖 ∈ 𝐵: 𝑥𝑖𝑗 > 𝑑} (3.18𝑑) 

ここで，𝑑は例えば，a=0.1 の場合，全体の 10%+サンプルについて分散を評価する．このように重

要度の高い（勾配が大きい）データのみを用いて，特徴量の分岐値を推定することで，計算コストが

大幅に軽量化される．さらに，この手法は訓練精度を損なうことなく，ランダムサンプリングを上回

るとされている（Ke et al, 2017）． 

3.2.4 使用するデータ 

a) 学習データ 

大阪湾定点水質観測システム 1) について概説する．2010年 4月より，大阪湾再生行動計画の一環とし

て，水質汚濁機構の解明および漂流油・ゴミ対策を目的に定点水質流況データの取得・配信が開始さ

れた．図-3.2に観測塔の配置を示す．また表-3.1にはそれぞれの観測塔において測定している水質項目

を示している．13基の中で，7地点（関西空港 MT局，神戸港波浪観測塔，淀川河口地点，阪南沖窪地

地点，堺港，大阪港波浪観測塔，岸和田沖）では，水温塩分のほかに，クロロフィル蛍光強度，溶存

酸素飽和度などの一次生産や貧酸素水塊に関わる水質項目の観測が行われている．自動昇降式測定を

行う地点では，毎時，各測定層で 10 秒間停止し水質測定を行う．これにより時間的に詳細なデータを

測定できるだけでなく，鉛直方向に詳細な水質データを取得することができる．  
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表-3.1 大阪湾定点自動観測システムの観測地点名，観測項目および測定方法の一覧 

No. 地点名 

水
深 (m

) 

水
温 

塩
分 

D
O

 (%
) 

ク
ロ
ロ
フ
ィ
ル 

濁
度 

水
中
光
量 

測
定
方
法 

1 明石海峡航路東方灯浮標 -47 〇 〇     固定式(1層) 

2 洲本沖灯浮標 -58 〇 〇     固定式(1層) 

3 関西空港 MT局 -21 〇 〇 〇 〇 〇 〇 自動昇降式 

4 神戸港波浪観測塔 -17 〇 〇 〇 〇 〇 〇 自動昇降式 

5 淀川河口 -11 〇 〇 〇 〇 〇 〇 固定式(3層) 

6 阪南沖窪地 -25 〇 〇 〇 〇 〇 〇 自動昇降式 

7 堺浜 -15 〇 〇 〇 〇 〇 〇 自動昇降式 

8 
神 戸 六 甲 ア イ ラ ン ド 

東水路中央第三号灯標 
-14.2 〇      固定式(1層) 

9 浜寺航路第十号灯標 -14.9 〇      固定式(1層) 

10 淡路交流の翼港 -7.1 〇 〇     固定式(1層) 

11 須磨海づり公園 -6.0 〇 〇     固定式(1層) 

12 大阪港波浪観測塔 -12.0 〇 〇 〇 〇 〇 〇 自動昇降式 

13 岸和田沖 -12.6 〇 〇 〇 〇 〇 〇 自動昇降式 

図-3.2 大阪湾の水深分布および定点自動観測システム観測地点 
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b) 説明変数に用いるデータ 

説明変数には，気象，河川流量の観測データおよび天文潮位を用いた．気象データには，大阪管区

気象台 2)による，気温，降水量，短波放射量，風速，風向の毎時データを用いた．ただし，夜間の短波

放射量は 0.0 とした．また，潮位には大阪港における天文潮位を用いた．河川出水の影響を考慮するた

めに，淀川の枚方・高浜地点における水位データから H-Q 式に基づいて毎時流量を算出し与えた．こ

の学習では，学習データの DOを説明変数によって表現するために，気象の変化によって DO値に影響

が発生するまでのタイムラグおよび累積効果を考慮する必要がある．たとえば，大久保ら (2016) は前

日に発生した日平均風速 10 m s-1程度の強風によって，底層 DOが一時的に回復したことを報告してい

る．また小野ら（2012）によれば，淀川の河川出水から 4から 5日後まで，エスチュアリー循環と風の

影響によって底層DOが上昇していると考察している． 出水発生とそれによるDO変動の時間差などを

表現するために，説明変数に対し 1，6，24，48，72，96，120時間のタイムラグを考慮した値を説明変

数に追加した．また，説明変数およびラグを考慮した説明変数に対して，24，48，…，168 時間までの

累積値を同様に追加した． 

3.2.5 データの事前処理 

観測データの事前処理として，ノイズおよび異常値を EOF および学習から除外した．ノイズ発生の

判断は，モニタリングシステムが同時に計測している濁度値にノイズが発生した時刻を選択した．  

3.2.6 信頼性評価システムの流れ 

本研究で構築した観測値信頼性評価システム全体の流れを図-3.3に示す．正規化した観測データから

EOF により主成分と再構成に用いる固有値行列（Mapping matrix）を抽出する．つづいて，主成分予測

図-3.3 信頼性評価システムの概要図 
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モデルを，機械学習 lightGBM を用いて構築する．訓練データには学習用データ全体の 70%を使用し，

残りの 30%は検証用データとした．  

3.2.7 交差検証 (Cross Validation) 

GBT ベースの DO 予測モデルの性能を定量的に把握するため，交差検証（cross validation）を実施し

た．2011 年から 2018 年までの学習データから，1 年分のデータを外した予測モデルを構築し，除外し

た期間の予測を行うことで，GBT 予測モデルの学習外のデータに対する頑健性を評価できる．本研究

における交差検証では，DO 観測値を再構成に用いる最適な主成分数を検討する．交差検証ケースは，

2011 年，2012 年，…，2018 年のデータを除外した 8 パターンについて，再構成に使用する主成分数を

1から 13まで変化させた合計 104ケースを実施し，次節の性能評価指標に基づいて評価を行った．  

3.2.8 モデル性能の評価指標 

GBTモデルの予測性能を評価するため，以下の評価指標を用いた． 

(i) Skill (Willmott, 1981) 

𝑆𝑘𝑖𝑙𝑙 = 1 −
𝛴|𝑦𝑚𝑜𝑑 − 𝑦𝑜𝑏𝑠|2

𝛴(|𝑦𝑚𝑜𝑑 − 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ | + |𝑦𝑜𝑏𝑠 − 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |)2
(3.19) 

(ii) 平均二乗誤差平方根 

𝑅𝑀𝑆𝐸 = √
𝛴(𝑦𝑚𝑜𝑑 − 𝑦𝑜𝑏𝑠)2

𝑛
(3.20) 

(iii) 決定係数 

𝑅2 = 1 −
𝛴|𝑦𝑚𝑜𝑑 − 𝑦𝑜𝑏𝑠|2

𝛴|𝑦𝑜𝑏𝑠 − 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ |2
(3.21) 

ここで, 𝑦𝑚𝑜𝑑 , 𝑦𝑜𝑏𝑠ははそれぞれ予測値および観測値であり，𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ はは観測値全体の平均値，𝑛はは総サンプ

ル数である． 
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3.3 結果 

3.3.1 EOF解析 

まず，定点自動観測システムのDOの EOFによって得られた結果について述べる．第 1主成分 PC1，

第 2主成分 PC2, 第 3主成分 PC3の時系列データ，およびそれぞれの EOF固有関数の空間分布を図-3.4

に示す．また，図-3.5に 2015年 2月 1日から 2016年 10月 1日までの範囲を拡大した時系列，および，

すべての期間について行った周波数解析結果を示す． 

PC1の時系列変動には季節変動，また日周期から数日程度の短い周期の変動が含まれていた．各地点

について底層ほど EOF 固有関数が大きくなることから，Sta.5 を除く各地点の底層における DO 変動の

特徴が反映された主成分であるといえる．すなわち，毎夏底層 DOが低下し，秋から春に回復する季節

変動および強風による一時的な底層 DOの上昇を抽出した成分だといえる． 

PC2の時系列変動には，PC1に比べて周波数が高い変動が抽出された．また，冬季よりも夏季の変動

が大きい．固有関数は大阪港や神戸港地点の表層にかけて大きく，Sta.3 では全層で正の値である一方，

Sta.4では-5 mから下層で，Sta.6では-9 m以下で負の値となった．また，PC2の周波数は日周期のスペ

クトルが大きく抽出されていることも考慮すれば，PC2は植物プランクトンの増殖に伴う DOの日周変

動を表していると考えられる．  

PC3もPC2と同様，短い周期と夏季の大きな変動域が特徴的な成分である．ただしPC2とは異なり，

図-3.4  学習データに用いた観測 DOの第 1，第 2，第 3主成分の時系列および固有関数鉛直分布． 
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固有関数の鉛直分布において，Sta. 4, Sta. 6, Sta. 12の 3地点では，最表層よりも数 m下層で大きい．そ

のため，PC3は躍層付近における変動特性を抽出した成分であると推察される．半日および日周期変動

が卓越していることから，夏季における酸素豊富な上層水塊と低酸素な下層水塊を隔てる躍層が，潮

汐および風によって上下することで生じる DO変動が抽出されていると考えられる． 

図-3.5 図-3.4左段の 2015年 3月から 2016年 8月を拡大した時系列，および周波数スペクトル 

（横軸は周期，縦軸はスペクトル強度）． 
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3.3.2 再構成による生データの再現性 

主成分の観測地点・観測層への寄与度を確認する．図-3.6，図-3.7 にはそれぞれ，第一主成分のみで

再構成したデータと生データで計算した Skill (式 3.4)の値を土台として，再構成に用いる主成分数を 2

から 10 まで変化させた際の，Skill 増加量を積み上げて示している．すべての地点・層において，第一

主成分を用いた再構成データの Skillは 0.5を超えていたため，横軸は 0.5から始まることに注意された

い．また，神戸港波浪観測塔 (Sta.4)，4 mにおいてのみ PC1, PC2を用いた Skillが，第 1主成分のみを

用いた Skillをわずかに下回ったが，10-6のオーダーであり無視できる大きさであったため，当該地点で

は 0に置換して図示している．その他の地点および水深では，再構成に用いる主成分が増えるごとに，

Skillが向上した．また，本節においてのみ「主成分 Aの寄与度」は，「主成分 Aを再構成要素に追加す

ることによる Skill増加分」を意味する． 

全 5地点に共通して，底層ほど PC1の寄与が大きい傾向にある．Sta.3の 8 m ~ 20 m層においては 95%

を超え，それらの地点・層で観測されるDO変動のほとんどが PC1によって説明可能であることを示唆

している．一方，表層へ近づくにつれて PC1 の Skill 値が低下し，PC2 の寄与度が増加している．上で

述べたように，PC2は有効層における酸素生成消費の変動を抽出した主成分であると考えられるため，

PC2を再構成に用いることで表層の生データに近づくことは妥当である．一方で，Sta.4, Sta.12, Sta.6の

中層から底層にかけ，PC2 の寄与度がわずかに増加している．また，PC3 の寄与度が大きい地点は，

Sta.4 上層および Sta.6中層であり，その他の地点では PC3による Skill向上効果は小さい．Sta.4と同じ

く，大阪湾北東部に位置する Sta.12では，PC5が中層の再構成に貢献しており，両地点は類似した特性

の海域に位置しながらも，中層の DO変動は異なる主成分によって説明されうることが示唆された．ま

た，Sta.4や Sta.12では，PC10まで用いた再構成データの Skillは，最底層よりも数 m上層の方が高い．

この原因は，夏季貧酸素水塊発生時，DO がゼロになり，横ばいとなる変動パターンを PC10 までの重

ね合わせで表現しきれていないためだと考えられる．Sta. 5 では，他の地点よりも再構成による再現性

がほかの地点よりも低い．Sta.5では他の地点と異なり，3層固定の水中テレメータを用いた観測手法で

あることが，DO変動の特徴の違いを生じさせている可能性がある． 

これらの結果は，いずれの地点・層においても，PC1 がほとんどの変動を説明でき，一方，上層の

DO変動を PC2 以降が説明しているとも解釈できる．また，各地点上層における主成分ごとの寄与率が

それぞれ異なることから，大阪湾上層における DO変動は下層に比べて様々な変動成分で構成されてお

り，その再構成にはより多数の主成分を考慮する必要があることがわかる． 
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図-3.6  主成分 PC1から PC10を順に再構成に用いた場合の生データ再現精度．上から Sta. 4, Sta. 5, Sta. 

12の各観測層における生データと再構成データとで算出した Skill値を示す． 
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図-3.7  主成分 PC1から PC10を順に再構成に用いた場合の生データ再現精度． 

上から Sta. 3, Sta. 6の各観測層における生データと再構成データとで算出した Skill値を示
す． 
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3.3.3 GBTモデルによる主成分の学習結果 

図-3.9に，第 1主成分 PC1の学習結果を示す．図-3.9 (a) および (b) は，訓練データおよび検証デー

タと lightGBM による推定値との関係を示している．また，同図 (c) は，決定木モデル構築に際してノ

ード分岐に用いられた回数（重要度）が高い説明変数を降順に並べ，上位 10 項目を示している．同図 

(d)は訓練・検証におけるコスト関数が繰り返しによって減少する様子を示している． 

PC1の予測モデルは良好な推定精度を得ており，検証データに適用した際の性能低下も軽微であった

ため過学習は発生していない．構築した PC1の予測モデルにおける重要度は，タイムラグ 6時間の短波

放射量 (radiation_lag6) および天文潮位 (Z0) の値が高く，風速，累積降雨，累積流量と続いている．PC1

は，いずれの観測地点においても下層 DOの変動に対して寄与の大きい主成分であり，また，日周成分

および季節変動成分が卓越している．そのため，日周期と季節性をもつ短波放射量が決定木構築にお

いて分岐に用いられる回数が多かったと考えられる．また，潮汐は沖合水の侵入，風速は鉛直混合に

よる一時的な下層 DOの回復に寄与するため，重要度が高くなっていると考えられる． 

図-3.10に各主成分の学習を 100回実施した平均推定精度，および標準偏差を示す．黒線で示す R2お

よび青線で示す Skillは，予測精度が高いほど 1に近づき，赤線の RMSEは予測精度が高いほど 0に近づ

く．PC1の学習を合計 100回実施した結果，RMSEおよび Skillの平均値はそれぞれ 0.09および 0.998，

であり，学習による推定精度のばらつきは無視できる程度に小さかった．主成分の寄与率が小さくな

るにつれ，モデルによる推定精度が低下する傾向が読み取れる．寄与率が小さい主成分は，それまで

の主成分による再構成データが表現できない局所的な特徴を抽出しているため，気象や出水といった

外力因子による説明が困難であることに起因していると考えられる． 
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図-3.9 LightGBMを用いた第 1主成分の学習結果．(a), (b)の横軸はそれぞれ (a) 訓練データ，(b) 検証
データ，縦軸は推定値を，赤線は y=x を表す．(c) 重要度の高い説明変数のうち，上位 10 変
数およびその重要度，(d) 繰り返し回数 (横軸)によるコスト関数 (縦軸)の変化． 

図-3.10 各主成分 (1~13) の推定精度指標の平均値および標準偏差．黒線：R2，赤線：RMSE，青線：
Skill 
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3.3.4 交差検証結果 

観測値再構成に用いる主成分の数を 1 から 13 まで変化させた予測モデルについて，除外した年の

RMSEを比較した（図-3.11）．再構成に PC7まで用いたモデルで平均 RMSEが最小となった．寄与率の

小さい主成分を使用したモデルの RMSE は 11 以降，横ばいとなっていることがわかる．寄与率が低い

ほど，主成分の推定精度は低かったため，再構成主成分がある一定数より大きくなると，予測性能は

改善しなかったと考えられる．3.3.1 節において主成分の寄与度表層 DO のデータ再構成には PC4 より

も多くの主成分を必要とすることも確認した．寄与度の小さい主成分ほど機械学習によるモデル精度

が低下することも考慮すれば，再構成に用いる主成分は PC7 まで考慮するのが適切であると考えられ

る． 

以降では，PC1から PC7までの予測主成分を再構成したデータを予測データとする． 

  

図-3.11 GBT モデルの主成分数ごとの RMSE．破線は一年間のデータを学習から除外した検討ケースで
あり，判例は除外年を表す．実線は 8ケースの平均値を示す． 
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3.4 観測データの信頼性評価 

3.4.1 評価指標 

まず，異常値を検出する評価指標として，それぞれのデータサンプルに対しマハラノビス距離

（Mahalanobis, 1930）を計算し，「異常度」とした (式 (3.22))．ここでマハラノビス距離とは，母集団の

分散を考慮したサンプルと平均値の距離である． 

𝛼 =
(𝒆 − 𝜇𝑒)2

𝜎𝑒
2

(3.22) 

𝑒𝑖 = 𝑦𝑜𝑏𝑠,𝑖 − 𝑦𝑚𝑜𝑑,𝑖 (3.23) 

全サンプルの中で異常度が上位5%（=95%）を超過したデータについては，無効なデータであるとし

て除去した． 

つぎに，観測値の信頼性指標を式 (3.24)のように定めた．あるデータの信頼性指標が小さいほど，そ

のデータが正常で信頼に足る観測値であることを示す，観測誤差に類する指標である．また，測定誤

差に加えて，予測モデル𝑦𝑚𝑜𝑑,𝑖と観測値𝑦𝑜𝑏𝑠,𝑖のミスフィット eiと寄与率で予測モデルの表現誤差を考慮

した． 

𝜎̂𝑜,𝑖 = 𝜎𝑚 + |𝑒𝑖| ∙
∑ 𝜆𝑗

𝑀′

𝑗=1

∑ 𝜆𝑗
𝑀
𝑗=1

(3.24) 

ここでmは DO観測に用いられているセンサーの測定誤差 (=0.2 mg/L)，jは主成分 jの固有値（寄与

度），Mは主成分の総数，および M’は再構成モデルに用いた主成分数 (= 7)である． 

3.4.2 評価指標に基づく異常検知および観測誤差の推定 

図-3.12 に神戸波浪観測塔地点における表層 DO の観測値とモデルによる予測値および異常判定結果

を示す．当該地点では，2016年 8月下旬に，継続的な DO低下が観測された．この期間のデータは異常

値とみなされ学習時に除去したデータ群のひとつである．一方，GBTモデルによる予測値では，DO低

下は発生せず，連続した（ドリフトが発生していない）時系列データが生成されている．この予測値

が本来観測されるべきであった DO値とどれほど整合するかについては，本研究では明らかにできない．

例えば，-14 m における予測 DOは，ドリフト後の観測値 (11月 16日)に接続している．この期間が網掛

け，即ち EOF および GBT 学習の対象データではないにも関わらず，予測値が整合している，これは

GBTモデルによる予測値の妥当性の証左である．対して-1 m, -4 m の予測値はドリフト後のデータに合

流していない．しかしながら，GBTモデルによる予測DOは，異常発生以前の変動傾向からみてもおよ

そ妥当であると考えられる．これらのデータは，異常度 95%の閾値を超え，異常値として判定された

ため，DO低下が観測計器の不具合によるものであろうと推察できる． 

 



第 3章 機械学習による観測データ信頼性定量化 

－ 62 － 

  

図-3.12 2016年 9月 15日から 11月 30日における実観測データおよび推定値の時系列． 
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異常値を除いたデータの観測誤差を，地点ごとに算出した結果を図-3.13 に示す．沖合に近い関西空

港 MP局 (Sta.3) の平均観測誤差が最も小さく，次いで阪南窪地 (Sta.6)，神戸港波浪観測塔 (Sta.4)，大阪

港波浪観測塔 (Sta.12) と続き，淀川河口地点 (Sta.5)が最も大きかった． Sta. 5は，図-3.7で示されている

ように，PC7までを用いた再構成による元データの再現率が低いため，今回の予測モデルでは予測モデ

ルと観測値の差が大きくなったと考えられる．大阪湾モニタリングシステムの観測誤差を推定した既

往研究（入江ら, 2011）では，船舶を用いた現地観測結果を，モニタリングシステムと比較することで

観測誤差を算定した．本研究で推定した観測誤差とは評価方法が根本的に異なるため，参考値として

比較する．入江らでは，Sta.4の観測誤差は 0.45 mg/L，Sta.5では 1.17 mg/L，Sta.12では 0.94 mg/Lであ

り，これらの値は本章で推定した観測誤差の第 1，第 3四分位点の間に位置する．このことから，本章

で推定した観測誤差が，妥当性を評価できないとしても，見当違いな値ではないと判断できる． 

  

図-3.13 予測モデルと観測値との残差絶対値を地点別に示した箱ひげ図．赤破線は過去に現場測定か
ら推定された Sta. 4，Sta. 5，Sta. 12の観測誤差（入江ら, 2011）． 
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3.5 まとめ 

本章で構築した観測値信頼性評価システムは，頻繁なメンテナンスが困難なモニタリングデータの

異常検知および異常区間・欠測区間の補間予測を行うことができ，モニタリングデータ分析や数値シ

ミュレーションと比較する際に有用である．また，観測データの信頼性を定量化できるため，データ

同化技術における観測誤差の評価にも貢献できる可能性がある．特に，アンサンブルカルマンフィル

タや 4次元変分法に代表される高度なデータ同化手法において，観測誤差の評価は同化結果を左右する

一方で，それらの定量化は困難である．本システムとデータ同化を組み合わせることにより，データ

同化によるモデル改善効果を高め，機械学習に不向きな水柱内の物質収支モデリングの精度向上に貢

献することが期待できる．本章では，溶存酸素濃度を対象としたが，他項目の水温，塩分，クロロフ

ィルなどに対しても，本システムは適用可能性があると考えられる．本章で構築したモデルでは，表

層における変動が大きい主成分の表現が十分でなく，よって表層 DOの再現性は低かった．同様のこと

が塩分やクロロフィルにも起こるだろう．主成分予測に用いた機械学習モデルは，同様のモデル構造

を有していれば，手法の種類は問わないため，学習パラメータだけでなく学習モデルを変更すること

によっても，再現性の課題は解決しうると考えられる．また，構築段階の限界として，異常値の自動

的な分離が困難であったため，分析者の経験に基づく正常/異常の判断を行わなければならなかった．

そのため，本手法のより定量的な異常検知性能を検証するためには，数値モデルなどによる擬似的な

観測データを用いた検証実験が必要である．  

本章では，大阪湾定点自動観測システムによる溶存酸素データの信頼性評価システムを構築し，欠

測値補間や異常検知手法として実装した．また，構築した予測モデルと生データの差分に基づく信頼

性評価指標を適用し，生データの異常度を定量化することで，サンプル一つひとつの観測誤差を推定

した．予測モデルに使用する主成分は，交差検証の結果 7つに決定した．勾配決定木で予測した主成分

を用いて再構成した予測値は，各観測地点，各水深における季節変動および短期的な変動を表現し良

好な再現性能を示した．淀川河口に位置する地点では，他の地点に比べて予測精度が十分に得られな

かったが，これは観測機器の設置方法の違いによると考えられる． 

また，本章で開発した手法は大阪湾の DOソフトセンサーとなり得，気象などの外力データを参照し

て DOを推定し，リアルタイムで観測データの信頼性を定量的に評価することが可能である．これによ

り，設置型モニタリング観測システムのセンサー異常を早期に発見するできるため，観測システム維

持管理の円滑化，省力化に貢献すると考えられる．また，異常検知や欠測補間用途のみならず，デー

タ同化に代表される数値解析において，観測値の信頼性（観測誤差）を定量化するための手法として

貢献することが期待される． 
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第 4章 二重数を用いた 4次元変分データ同化 

4.1 はじめに 

第 4章では，4次元変分法 (4DVar) の概要および自動微分の導入について述べる．また，4次元変分法

を用いた状態推定を行う．本節ではまず，4 次元変分法を用いる背景として，水質モデル開発・改良に

おける課題を提示する．4.2 節にて 4 次元変分法の理論を概説する．次に自動微分ツール「二重数」の

仕組み（4.3節），および 4次元変分法への実装方法（4.4節）について述べる．4.5節では，大阪湾の流

動水質モデルを対象に状態推定を行い，貧酸素水塊規模の計算結果へ及ぼす影響を検討する． 

4.1.1 水質モデルの発展と改善に向けた課題 

沿岸水域における水質は気象，潮汐，河川出水などの影響を受けながら，水柱の微生物群による複

雑な生化学反応によって非線形に変動する．実海域で得られる水質データには限りがあり，対象海域

における貧酸素水塊の水平・空間分布や内部の物質循環を明らかにするためには，流動水質モデルに

よる数値シミュレーションを併用することが望ましい．水柱の物質循環を表現する水質モデルには，

NPZD，Fasham, Fennel，NEMURO，CAEDYM，Row-Column AESOP (RCA)，CE-QUAL-ICMなどがある 

(Fasham, 1993; Fennel et al, 2011; Kishi et al, 2007; Hipsey et al., 2007; HydroQual, Inc., 2004.; Cerco & Cole, 

1994)．図-4.1 に示すように，水質モデルの構成要素は研究対象とする現象に応じて追加され，状態変

数およびパラメータが多項目化するほど非線形な水質挙動の表現力を得られ，自由度が高くなる．一

方で，複雑な水質モデル構造になるほど不確実性を増し，計算値と観測値のミスフィットの原因が不

明瞭になる．水質モデルの役割は，非観測領域の水質や，観測困難な物質収支，将来の水質を予測す

ることにあるため，不確実性の高い水質モデルは，これらの精度検証が困難な推定結果を誤って出力

する危険性がある．水質モデルの再現性能を適切に改善するためには，モデル性能がどのような原因

図-4.1 物質循環水質モデルの例．図中左から，NPZD モデル，Fennel モデル，右側ほどモデル構造が複雑で，より

多くの状態変数およびパラメータを有している．図中の矢印は生化学的反応による物質変化を示すが，単純

化のため，すべての反応は描かれていない．(Fennel et al, 2022より引用) 
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によって低下するか，即ち，諸条件（初期値，パラメータ，その他各種境界条件）が有する不確実性

がモデル性能へ与える影響を定量化する必要があるが，多項目化した水質モデルほど，性能低下要因

の切り分けは困難であり，水質モデリング分野の課題である． 

データ同化手法による解析は，こうした課題に対して重要な示唆を与えてくれる．データ同化は，

数値モデルの初期場等の入力条件に対して，観測値に最も近づくような尤もらしい修正を施す手法で

あり，数値解析値と観測値の双方の長所を複合した手法である．観測値は真値に近い情報を得ること

ができる反面，断片的である．他方，数値モデルは時間・空間的に詳細な予測を行うことができる一

方で上述の不確実性の問題を孕んでいる．データ同化では，観測値を同化することで，数値モデルの

入力条件やモデル構造によるミスフィットを低減するため，観測値に整合的な解析値を得られる．そ

のためデータ同化手法は，限られた範囲で得られた観測値を時間・空間的に拡張する手段であると同

時に，数値モデルの再現性を向上させるような初期場やパラメータを推定することができるため，モ

デル改良手法でもある． 

データ同化にはシミュレーションの修正方法によって 2種類のアプローチがある．ひとつは逐次法で

あり，観測値が得られると随時，計算値がその観測値に漸近するように修正する．代表的な手法に

EnKF (Ensemble Kalman Filter) などがあり，導入が容易な一方，人為的なソースシンクが物質収支の保

存性を損なう，解析上の欠点がある．もうひとつは，変分法であり，同化期間内に得られるすべての

観測値に最も整合するような状態（3 次元変分法）あるいはモデルの時間発展（4 次元変分法）を求め

るため，熱収支や水収支の解析に適している (Kerry et al., 2024)．代表的な手法のひとつに 4次元変分法 

(4DVar，アジョイント法) があり，4DVar は同化ウィンドウと呼ばれる一定期間に存在するすべての観

測値に最も整合するような初期条件・境界条件あるいはモデルパラメータを最尤推定的に求めること

ができる．4DVar は以下に説明するように，設定された同化区間内におけるミスフィットを，逆解析的

に各種境界条件・パラメータの修正で以て縮減する手法であるため，モデルの再現性低下要因を把握

する上で大きな一助となる． 

4.1.2 4次元変分法のデメリットとその回避策 

4 次元変分法は有益なモデル改良手法である一方で，計算コストと実装にかかる作業コストが高い欠

点がある．同化ウィンドウ内のすべての観測値に整合するような修正をするために，何度も繰り返し

計算を行うだけでなく，時間逆伝播時に用いる計算結果を保持しておく必要がある．これらの実行に

は，高い CPU 性能や多くのメモリを要求する．また，一般的に非線形モデルに適用される 4 次元変分

法において，時間逆伝播計算を実現するために接線形近似した接線形モデル (Tangent linear model; TLM) 

とその随伴計算を行う随伴モデル (adjoint model; ADM) を作成する必要がある．  

一般的には，これらの追加のソースコードは解析者が作成する必要があり，その作成方法も公開さ

れている (Giering & Kaminski, 1998)．しかしながら，モデルが複雑かつ長大な場合には作業コストが高

く，またモデルに改修が加わる都度，対応箇所の修正を要求される．接線形モデルおよび随伴モデル

の作成は不具合やニューマンエラーの原因にもなり，デバッグを含めて大きなコストとなる．また，

データ同化を適用するモデルの規模が大きいほど煩雑となる． 

作業コストを削減するために，TLMから ADMを自動作成するツールや，深層学習を用いた ADMの

エミュレーション技術 (Solvik et al, 2024) などが提案されているが，これらの方法では，TLM または

ADM を事前に作成する必要があり，コーディングに要する作業コストやミスコーディングのリスクは

依然残されている．別なアプローチでは，TLMおよびADMを用いずに 4次元変分法を行う，ハイブリ
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ッド型 4DVarの研究も近年進められてきており，EnKFと 4DVarを組み合わせた 4DEnVar（岡田ら, 2023）

はアンサンブル計算を利用して随伴計算を行わずに，評価関数の勾配を算出することができる．また，

水圏への適用例はないが，パラメータ推定における直交解析に基づく接線形・随伴計算の簡易化アプ

ローチも提案されている(Altaf & McCabe, 2019)． 

Matternら (2019) は自動微分を用いて TLMおよび ADMの演算を非線形モデルによって代替する方法

を提案した．自動微分モジュールを既存のプログラムに導入・適用こそ必要ではあるが，接線近似や

随伴計算のためのコーディング作業のほとんど一切を回避できる．当該手法は導入が容易でありなが

ら，非線形モデルが改修されても，それに伴う二つのモデル改修を必要としない点において，モデル

式が頻繁に改修される水質モデルへ適用する変分法として相性が良い．以下では，4 次元変分法の理論

について概説し，自動微分ツール（二重数）を用いた，接線形モデルおよび随伴モデルの代替計算方

法について説明する． 

4.2 4次元変分法（インクリメント法）の概要 

本節では，高度なデータ同化手法である 4 次元変分法について説明する．4 次元変分法（4-

dimensional variational data assimilation ; 4DVar）は，3次元変分法から発展した高度な変分法であり，3次

元の空間的整合性に加え，時間的な整合性を有した同化結果（解析値）を得ることができる． 

4.2.1 評価関数 

4DVar では，状態変数の初期値，観測ノイズおよびシステムノイズがガウス分布に従うと仮定し，式 

(4.1)で示される評価関数 Jを最小化するような制御変数 z を求める．評価関数 Jは制御変数の修正前後

の変化量（修正量，摂動，イノベーションなど）が大きいほど増加する「背景誤差項」と，モデル-観

測ミスフィットが大きいほど増加する「観測誤差項」の和で記述される． 

𝐽(𝒛) =
1

2
(𝒛 − 𝒛𝑏)

𝑇𝑩−1(𝒛 − 𝒛𝑏)⏟              
背景誤差項

+
1

2
∑(𝓗𝑡𝓜𝑡(𝒛) − 𝒚𝑡)

𝑇𝑹𝑡
−1(𝓗𝑡𝓜𝑡(𝒛) − 𝒚𝑡)

𝑇

𝑡=1⏟                            
観測誤差項

 (4.1)

 

𝒛 ：制御変数（∈ ℝ𝑚） 

𝒛𝑏 ：制御変数の事前推定値（背景値） 

B ：背景誤差標準偏差行列 

T ：同化ウィンドウ内の全観測時刻 

𝓗𝑡 ：非線形観測行列（ℝ𝑛 ↦ ℝ） 

𝓜𝑡 ：非線形モデル（ℝ𝑚 ↦ ℝ𝑚） 

𝒚𝑡 ：時刻 tで得られる観測値（∈ ℝ） 

𝑹 ：観測誤差標準偏差行列 

ここで，制御変数とは，データ同化によって修正対象となる変数群であり，物理場や状態変数の初期

値，モデルパラメータ，その他各種境界条件が含まれる．また，観測行列は予測モデルにより出力さ

れた値を，観測空間に射影する行列である．具体例を挙げると，観測値に栄養塩濃度が得られており，
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水質モデルが植物プランクトン・デトリタス・栄養塩の 3変数で構成されている場合に，計算値から栄

養塩濃度を選びとる操作が該当する．ほかにも，モデルグリッドから測定地点への補正，単位を合わ

せる等，モデル出力と観測値とを直接比較することができる形式へ変換する諸々の操作が含まれる． 

背景誤差標準偏差行列はモデル内における制御変数の不確実性を与えるものであり，ある制御変数

の背景誤差標準偏差が大きいほど，初期条件やパラメータの変更によって予測値が変化しやすい．つ

まり，その制御変数は優先的に修正される．一方，観測誤差標準偏差行列は，同化する観測値の不確

実性を与えるものであり，観測手段の測定誤差および表現誤差を考慮した値が用いられる． 

評価関数 J を最小化するためには，制御変数に対する勾配 𝜕𝐽/𝜕𝒛を求める必要がある．制御変数の修

正量を𝛿𝒛とすると，評価関数は式 (4.2)のようになる． 

𝐽(𝛿𝒛) =
1

2
𝛿𝒛𝑇𝑩0

−1𝛿𝒛 +
1

2
∑(𝑴𝑡𝛿𝒛 − 𝒅𝑡)

𝑇𝑹𝑡
−1(𝑴𝑡𝛿𝒛 − 𝒅𝑡)

𝑇

𝑡=1

(4.2) 

𝛿𝒛 = 𝒛 − 𝒛𝑏 (4.3) 

ここで dt は，モデル－観測値ミスフィットである(= 𝓗𝑡𝓜𝑡(𝒛) − 𝒚𝑡)．制御変数の修正量 𝛿𝒛を用いて評

価関数を接線形空間で扱うことで，随伴行列𝑴𝑡
𝑇にによって複数タイムステップのモデルミスフィットを

初期値に逆伝播することが可能となる．この手法を強拘束インクリメント法 (IS4D-Var; Moore, 2011)と

呼ぶ．IS4D-Varにおける評価関数の勾配は式 (4.4)で表され，𝜕𝐽/𝜕𝛿𝒛 = 0なる𝛿𝒛は式(4.5)で表される． 

𝜕𝐽

𝜕𝛿𝒛
= 𝑩−1𝛿𝒛 +∑𝑴𝑡

𝑇

𝑇

𝑡=1

𝑹𝑡
−1(𝑴𝑡𝛿𝒛 − 𝒅𝑡) (4.4) 

𝛿𝒛 = (𝑩−1 +∑𝑴𝑡
𝑇𝑹𝒕 

−1𝑯𝑡𝑴𝑡

𝑇

𝑡=0

)

−1

∑𝑴𝑡
𝑇𝑹𝒕 

−1𝒅𝑡

𝑇

𝑡=0

(4.5) 

𝑴𝑡
𝑇 = 𝑴0

𝑇𝑴1
𝑇⋯𝑴𝑡−1

𝑇 𝑯𝑡
𝑇 (4.6) 

𝑯𝑡 ：接線形観測行列（ℝ𝑛 ↦ ℝ） 

𝑴𝑡 ：接線形モデル（ℝ𝑚 ↦ ℝ𝑛） 

ここで𝑴𝑡
𝑻には随伴モデルであり，時間後方積分を行うことで同化ウィンドウ内のミスフィット情報を初

期値まで伝達する役割がある． 

  



第 4章 二重数を用いた 4次元データ同化 

－ 70 － 

 

4.2.3 4次元変分法の流れ 

4次元変分法のワークフローを以下に示す．また図-4.2に模式図を示す： 

(i)  通常のモデル（非線形モデル）計算を行い，観測値とのミスフィットを算出する． 

(ii) ミスフィットに基づき，同化するデータを選別する．  

(iii)  接線形モデルにより，制御変数の摂動を時間発展させ，𝑹−1(𝑯𝑖𝛿𝒛 − 𝑑𝑖)を求める． 

(iv) アジョイントモデルにより，勾配を時間後方積分し初期値まで逆伝播させる． 

(v) 共役勾配法により摂動zを更新する． 

(vi)  (iii) ~ (v)を繰り返す．（内部ループ） 

(vii)  摂動を制御変数に加え更新する． 

(viii)  (i) ~ (vi)を繰り返す．（外部ループ） 

(ix)  最後の外部ループによる出力を解析結果とする． 

  

図-4.2 4DVarの流れ 
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4.3 二重数 

4.3.1 二重数の定義および表記方法 

Mattern et al (2020)は 4次元変分法における接線形モデルおよびアジョインモデルの演算を自動微分に

よって代替する手法を提案し，自動微分手法に二重数 (Dual number) を用いた 4 次元変分法の同化性能

を示した．二重数は実数の拡張概念であり，複素数と同様に実部・虚部を有する．二重数の虚数単位

は 𝜀 と表記され，この虚数単位の 2以上の累乗はゼロとなる (Angeles, 1998)． 

𝑥̂ = 𝑥 + 𝑥̃𝜀 (𝑥, 𝑥̃ ∈ ℝ)

𝜀 ≠ 0, 𝜀𝑛 = 0 𝑓𝑜𝑟 𝑛 ≥ 2
(4.7) 

二重数 𝑥̂ の実部および虚部は以下で表される． 

𝑥 = 𝑅𝑒[𝑥̂]

𝑦 = 𝐷𝑢[𝑥̂] (4.8) 

4.3.2 二重数の四則演算 

二重数には実数空間の四則演算を適用することができる．（式 (4.15)）  

𝑥̂ ± 𝑦̂ = (𝑥 + 𝑦) ± (𝑥̃ + 𝑦̃)𝜀 (4.9) 

𝑥̂𝑦̂ = 𝑥𝑦 + (𝑥̃𝑦 + 𝑥𝑦̃)𝜀 (4.10) 

𝑥̂

𝑦̂
=
𝑥

𝑦
+
(𝑥̃𝑦 − 𝑥𝑦̃)

𝑦2
𝜀 (4.11) 

4.3.3 二重数の特性（自動微分） 

ここで，微分可能な関数 f(x) へ二重数 𝑎 + 𝑏𝜀  (𝑎, 𝑏 ∈ ℝ)を代入することを考える．ここでは例として，

f(x)=x2とする． 

𝑓(𝑥) = 𝑥2 

𝑓(𝑎 + 𝑏𝜀) = (𝑎 + 𝑏𝜀)2 = 𝑎2 + 2𝑎𝑏𝜀 + 𝑏2 𝜀2⏟
=0

= 𝑓(𝑎) + 𝑓′(𝑎)𝑏𝜀 (4.12)
 

このとき，二重数空間で演算した関数の出力は，実部に関数値 f(a)．また，関数 f(x)へ代入する二重数

の虚部 bを 1とすれば，出力の虚部には x=aのときの導関数が得られる． 

𝑓(𝑎 + 𝜀) = 𝑎2 + 2𝑎𝜀 

= 𝑓(𝑎) + 𝑓′(𝑎) ∙ 𝜀 (4.13) 

この特性は，テイラー展開による近似式から式 (4.14) のように任意の微分可能な関数 f(x) に対して拡張

することができる． 

𝑓(𝑎 + 𝜀) = 𝑓(𝑎) + 𝑓′(𝑎) ∙ 𝜀 + 𝜀2⏟
=0

∙ ∑ {
𝑓(𝑘)(𝑥)𝑥=𝑎

𝑘!
∙ 𝜀𝑘−2}

∞

𝑘=2
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= 𝑓(𝑎) + 𝑓′(𝑎) ∙ 𝜀 (4.14) 

このような実関数の計算と同時に導関数を得られる性質は自動微分と呼ばれる．数値微分では離散化

の幅によって誤差が発生する．これに対して，二重数による自動微分は，実部と虚部を用いて導関数

を計算する，解析的微分であるため，数値微分に精度で勝る．実際のプログラミング言語でモジュー

ル化されている二重数ソースコードには，四則演算や比較演算子，各種関数（三角関数，対数関数，

べき乗，指数関数など）に対する実部および虚部の出力が格納されている．実用に際しては，二重数

を適用したいモデルが含む演算子への出力方法が，二重数ソースコードに含まれている必要があり，

対応するものがない場合には適宜書き加える必要がある． 

4.3.4 二重ベクトル 

ここまでの自動微分の例では，一変数関数を扱っており，一度の関数計算で得られるのは一変数に

関する導関数（勾配）であった．しかし，データ同化における評価関数や生態系モデルなどのように，

より多数の独立変数を有する関数に対して，それぞれの独立変数に関する勾配を求めたい場合，上記

の方法では独立変数の数の演算を繰り返す必要があり非効率的である．そこで，二重数の虚部に 2つ以

上の独立した要素を持たせた，二重ベクトルを導入する． 

𝑥̂ = 𝑥 + 𝑥̃𝜺𝒋 (𝑥, 𝑥̃ ∈ ℝ) (4.15) 

𝜺𝒋 = [0 ⋯ 0⏞      
𝑗−1

1 0 ⋯ 0⏟                
𝑛

] ∙ 𝜀 (4.16)

(1 ≤ 𝑗 ≤ 𝑛)
 

𝑔(𝑥 + 𝜀1, 𝑦 + 𝜀2) = 𝑔(𝑥, 𝑦) +
𝜕𝑔(𝑥, 𝑦)

𝜕𝑥
𝜀1 +

𝜕𝑔(𝑥, 𝑦)

𝜕𝑦
𝜀2 (𝜀𝑖𝜀𝑗 = 0   𝑓𝑜𝑟   𝑖, 𝑗 ∈ {1,2,… , 𝑛}) (4.17) 

二重ベクトルの虚部は，独立した𝜀1  𝜀𝑛にで構成されており，実装時には，式(4.16)のように配列型を虚

部に与える．複数の虚部を持つ二重ベクトルを導入することにより，式(4.17)のように1度の順計算か

ら複数の独立変数について導関数の計算を並行して行うことが可能となり，計算効率の向上を図るこ

とができる (Mattern et al., 2019)． 

4.4 二重数を用いた変分データ同化法 

ここからは，データ同化，特に変分法への二重数の適用例について，二通りの方法を紹介する．前

者は変分法における評価関数を計算する際に，その勾配計算を同時に行う方法 (Wang et al., 2018)であり，

後者は接線形および随伴モデルの計算を二重数で代替する方法 (Mattern et al., 2019)である． 

4.4.1 評価関数の勾配を二重数で評価する方法 

n個の状態変数 xで駆動する関数M(x)を考える．また，評価関数 Jが以下の式で表されるとする： 

𝐽(𝒙) =
(𝒙 − 𝒙𝑏)2

𝜎𝑏
+∑

(𝑴𝑖(𝒙) − 𝑦𝑖)
2

𝜎𝑜,𝑖

𝑛

𝑖=0
(4.17) 
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状態変数 x を実数から二重数に置き換え，この評価関数を，二重空間で計算することにより，自動的に

評価関数の勾配が得られる． 

𝛻𝐽 = 𝐷𝑢(𝐽(𝒙̂)) (4.18) 

𝒙̂ = 𝒙 + 𝜺 = [

𝑥1 + 𝜀1
⋮

𝑥𝑛 + 𝜀𝑛

] (4.19)
 

ただし，この方法は制御変数の次元が高くなるほど，計算負荷が大きくなるため，流動水質モデルの

ように，制御変数の次元が高い (1e5 ~ 1e7) モデルへの適用は現実的でない． 

4.4.2 接線形・随伴モデル計算を二重数で代替する方法 

二重数を変分法で利用する第 2の方法は，接線形モデルおよび随伴モデルによる計算を非線形モデル

と二重数を用いた計算で代替する方法である．先に紹介した評価関数の勾配を直接求める方法では，

虚部に抱える要素数次第では，計算コストが膨大になる．例えば 3次元流動 (水質)モデルの初期場を推

定する場合，制御変数の数，即ち二重ベクトルの長さはおよそ 106のオーダーとなり，そのすべての勾

配を同時に計算することは実質的に不可能である．そこで，Mattern et al. (2019)らは，評価関数自体で

はなく，接線形モデルおよび随伴モデルの演算に二重数を採用することで，従来の 4DVarのシステムフ

ローを踏襲しながらも，これらのソースコード作成を行うコストを削減する方法を提案した．この手

法の利点は，ソースコード編集に伴うデメリットの削減だけでなく，既存の 4DVarシステムを流用でき

る点にもある． 

以下，制御変数は状態変数の初期値およびモデルパラメータからなるベクトルと仮定する． 

𝒛 = [
𝒙0
𝒑 ] = [

𝑧0
⋮
𝑧𝑛
] 𝛿𝒛 = [

𝛿𝒙0
𝛿𝒑
] = [

𝛿𝑧0
⋮
𝛿𝑧𝑛

] (4.20)
 

また，各モデルおよびベクトルは次のように記述する． 

非線形モデル 𝓜(𝒛)  

接線形モデル 𝓜𝑇𝐿(𝒛, 𝛿𝒛) = 𝑴(𝑧)𝛿𝒛 (4.21) 

随伴演算子 𝝀  

随伴モデル ℳ𝐴𝐷(𝒛, 𝝀) = 𝑴(𝒛)
𝑇 ∙ 𝝀 (4.22) 

ここで接線形行列Mは 

𝑀(𝒛) = (
𝜕

𝜕𝑧1
…

𝜕

𝜕𝑧𝑛
)𝓜(𝒛) (4.23) 

であり，随伴演算子𝝀は随伴モデルによって後方積分されるベクトルである． 

まず，接線形モデルの代替計算は，非線形モデルに対し，実部が制御変数𝒛に，虚部が𝛿𝒛になる二重数を

代入して演算することで，以下のように導出される： 

ℳ(𝒛 + 𝛿𝒛 ∙ 𝜀) = ℳ(𝒛) +𝑴(𝒛)𝛿𝒛 ∙ 𝜀 

=ℳ(𝒛) +𝓜𝑻𝑳(𝒛, 𝛿𝒛) ∙ 𝜀 (4.24) 
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したがって 

𝓜𝑻𝑳(𝒛, 𝛿𝒛) = 𝐷𝑢[ℳ(𝒛 + 𝛿𝒛 ∙ 𝜀)] (4.25) 

であり，ある制御変数の修正量𝛿𝒛𝑖  の時間発展は，𝑧𝑖 + 𝛿𝑧𝑖にを虚部に持つ制御変数を入力した非線形モ

デルの虚部に出力される． 

随伴モデルは接線形行列の転置と随伴演算子の積で表される．随伴モデルを書き下すと式 (4.26) のよ

うに，xnの x1に対する影響度を重みとする随伴演算子の重み付き和で表される． 

𝑴𝑇𝝀 =

[
 
 
 
 
 
 
 
𝜕𝒛1
𝜕𝒛1

∙ 𝜆1 +
𝜕𝒛1
𝜕𝒛2

∙ 𝜆2 +⋯+
𝜕𝒛1
𝜕𝒛𝑛

∙ 𝜆𝑛

⋮

𝜕𝒛𝑛
𝜕𝒛1

∙ 𝜆1 +
𝜕𝒛𝑛
𝜕𝒛2

∙ 𝜆2 +⋯+
𝜕𝒛𝑛
𝜕𝒛𝑛

∙ 𝜆𝑛]
 
 
 
 
 
 
 

 

=∑𝒆𝑖[(𝑀(𝒛) ∙ 𝒆𝑖)
𝑇 ∙ 𝝀]

𝑛

𝑖=1
 

=∑𝒆𝑖[ℳ𝑇𝐿(𝒛 ∙ 𝒆𝑖)
𝑇 ∙ 𝝀]

𝑛

𝑖=1

(4.26)
 

単位ベクトルを用いて接線形行列の特定の成分を明的に抽出することができることを利用すれば，接

線形行列の転置行列が求められる．まず，非線形モデルに入力される制御変数を，単位行ベクトルを

用いて次のように二重数空間に拡張する： 

𝒛̂ = 𝒛 + [

𝜺1
⋮
𝜺𝑛
] (4.27) 

𝜺𝒋 = [0 ⋯ 0⏞      
𝑗−1

1 0 ⋯ 0⏟                
𝑛

] ∙ 𝜀 (4.28)

(1 ≤ 𝑗 ≤ 𝑛)
 

単位行ベクトルを虚部に与えたとき，制御変数 zjの虚部には接線形行列の j行目が出力される． 

𝓜(𝒛̂) =𝓜(𝒛) +𝑴(𝒛) ∙ [

𝜺𝟏
⋮
𝜺𝒏
] 

=𝓜(𝒛) +𝑴(𝒛) ∙ [

1 0 ⋯ 0
0
⋮

⋱
⋮
0

0 ⋯ 0 1

] ∙ 𝜀
 

=𝓜(𝒛) + [
𝑴1(𝒛)
⋮

𝑴𝑛(𝒛)
] ∙ 𝜀
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=ℳ(𝒛) + [ 𝑴(𝒛) ] ∙ 𝜀 (4.28)
 

∴ 𝑴(𝒛)𝑖𝑗 = 𝐷𝑢[𝒛𝑖
𝑛𝑒𝑤]𝑗 (4.29) 

以上のように非線形モデルを二重数空間で演算することで，接線形行列の全要素を明的に算出するこ

とができる．このように，二重数による随伴モデルの代替計算では，アジョイントコードの作成なし

に接線形行列の転置計算が実行可能となる． 

4.5 DN-4DVarによる状態推定 

4.5.1 対象領域および同化データ 

以下では，実観測値を用いた DN-4DVarによる状態推定について検討する． 

流動水質モデルは第 2章で再現計算に使用したROMSおよび窒素・リン・酸素循環モデルを用いる．

計算期間は 2012年 8月 1日から 31日までの 1か月とし，初期値には再現計算における 8月 1日 0:00に

おける結果を用いた．開境界条件，気象条件，河川境界条件に関しても，再現計算時と同様のデータ

を与えた．計算期間中の気象および淀川流量の時系列を図-4.3に示す． 

同化する観測データには定点自動観測システムによる水温，塩分，クロロフィル，DO の毎時鉛直分

図-4.3 入力する気象条件および淀川流量の時系列．(a) 気温，(b) 相対湿度，(c) 大気圧，(d) 雲被覆率，(e) 降水量，(f) 

短波放射量，(g) 大阪港地点における風速，および (h) 淀川流量． 
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布を用いた．ただし，図-4.4に示す全 13地点のうち，堺港湾内に位置する Sta. 7 を除いた，12 地点に

おける観測データを同化対象とした．  

観測誤差は，ガウス分布に従い，各観測データの誤差には時空間的な相関はないと仮定した．評価

関数の計算に用いる観測誤差標準偏差は，観測塔に設置された水質計測機器によって測定された値と，

同時刻に現場で別途測定した値との差の標準偏差とする（岡田, 2016）． 

データ同化により修正する変数（制御変数）は，水温および塩分の密度場，また，植物プランクト

ン，クロロフィル，動物プランクトン，各種栄養塩・デトリタス，そして溶存酸素量の同化ウィンド

ウにおける初期値（水質場）とした．本実験では，密度場のみ (Case 1)，水質場・水質パラメータ 

(Case 2)，密度場・水質場・水質パラメータ (Case 3)を修正する場合の 3種類の実験ケースを設定した． 

初期値の背景誤差標準偏差には，再現計算値とノイズを与えた風場および水質モデルパラメータの

下で出力した計算値との残差の標準偏差を与えた．また，背景誤差共分散行列の非対角成分はゼロと

仮定した．相関スケールはいずれの変数についても，水平方向に 10 km，鉛直方向に 3 m とした（岡田，

2016）．また，4DVarのフロー（図-4.2）における外部ループおよび内部ループはそれぞれ 5回および 3

回とした． 

  

図-4.4 計算領域の水深および観測地点の分布．マーカーの形状はそれぞれの地点にける観測

項目を表す． 

（ひし形：水温・塩分・クロロフィル・DO，丸：水温および塩分，三角形：水温） 
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4.5.2 再現性能の変化 

図-4.5に観測地点ごとに集計した，計算値と観測値の平均二乗残差平方根 (RMSD) を示す．水温およ

び塩分の RMSDは，初期値を修正した Case 1および Case 3 において，同化前 (Case 0) と比べて低下し，

観測値に近づいたことがわかる．一方，クロロフィルおよび DOについても同様に，水質状態変数を制

御変数に含んでいる Case 2，Case 3において RMSDが減少していることが分かる．また，Case 1のいく

つかの地点では，水質状態変数の修正を行っていないにもかかわらず，クロロフィルおよび DO の

RMSD が減少していることが分かる．これは即ち，密度分布のモデル表現性能不足によって生じてい

た水質のミスフィットが切り分けられ，密度場の再現性向上が水質モデルの再現性を改善させたとい

える． 

図-4.6に Case 0および Case 1（同図では“DA”と表記）から得られた，水温，塩分，DOの月平均鉛

直分布を示す．Case 1は，水温および塩分の観測値を同化，および，水温・塩分の初期値のみ修正を行

った結果であり，水質状態変数の修正は行っていない．そのため，Case 1では，密度場の再現性が向上

することによる水質再現性への影響について検討することができる．図-4.4 において，観測地点 Sta. 4

の水温鉛直分布は同化前の計算値と観測値との間に 0.7 °C 程度のミスフィットがほとんど一様に生じて

いたが，同化後の水温分布は観測値に一致し，再現性が向上していることがわかる．同様のことが Sta. 

12 についても言え，底層の再現性が向上している．また，Sta.4 表層における同化後の塩分についても

観測値により漸近している．DO の鉛直分布をみると，Sta. 12 では，データ同化による状態推定を行っ

ていないにもかかわらず，同化前に比べて観測値に近づいている． 

図-4.7から図-4.10に観測値およびすべての計算ケースについて，Sta. 4における水温，塩分，クロロ

フィル，DO の平均鉛直分布および鉛直分布の時間変化を示す．密度場を修正した Case1 および Case3

の水温鉛直分布において，26 °C の等温線が観測値に漸近し水温成層の再現性が向上したことが分かる． 

鉛直 DO分布において，8月 5日から 10日における無酸素水塊は，同化なし計算では約 -12 m 以下に

存在していたのに対し，3 つの同化ケースすべてにおいて表層に近づいており，観測値の分布により整

合的な結果を示した．特に Case 1のDO鉛直分布の変化は，密度場の鉛直構造の再現性が向上によるも

のであると考えられ，水温成層の表現が貧酸素水塊の規模を推定するために重要であることを裏付け

る結果となった． 

また，表層塩分は，状態推定を行った後も，8月 14 日から 21日まで観測値を下回る状態で改善され

なかったが，22 日以降の表層において観測値に近づいていることがわかる．このように，河川境界条

件が計算結果に強く影響する状況においては，初期場の修正のみでは，データ同化を行ったとしても，

モデルと観測値の間に一定の差を残すことがある．また，表層塩分のミスフィット残存の影響はクロ

ロフィルや DOにも及ぶ．最も再現性が高い Case 3においても，出水時の表層 DOは観測値よりも高い

濃度を示していることがわかる． 

こうした密度推定性能が水質場の再現性に少なからぬ影響を及ぼすことを考慮すれば，水質状態変

数のみを修正した Case 2の結果は，クロロフィル・DOが観測値に近いものの，水質解析の点では適切

な結果ではない可能性がある．なぜなら，水温成層の表現性能不足などによって発生していた観測値

との乖離が，水質の初期場修正によって強引に矯正されているため，誤差の相殺が発生していると考

えらえるためであり，非観測領域の推定結果に悪影響が及んでいる可能性もある． 
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図-4.6 神戸港波浪観測塔 (Sta.4) および大阪港波浪観測塔 (Sta. 12) における水温，塩分，DOの月

平均鉛直分布．丸印は観測値，細線は同化前 (free run)，太線は Case1 (DA)を表す． 

図-4.5 観測地点別の計算値－観測値の RMSD．縦軸に地点名 (観測データ数) を示し，横軸に RMSDを示す． 

各地点下側から Case 0, 1, 2, 3と並ぶ． 
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図-4.7 神戸港波浪観測塔 (Sta.4)における鉛直水温分布の期間中の平均鉛直分布および時系列．エラーバーおよび破

線は標準偏差を表す．また，上段から，観測値，同化なし計算 (Case 0)，Case 1, Case 2, Case 3の結果を表す． 



第 4章 二重数を用いた 4次元データ同化 

－ 80 － 

 

図-4.8 神戸港波浪観測塔 (Sta.4)における鉛直塩分分布の期間中の平均鉛直分布および時系列．エラーバーおよび破

線は標準偏差を表す．また，上段から，観測値，同化なし計算 (Case 0)，Case 1, Case 2, Case 3 の結果を表

す． 
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図-4.9 神戸港波浪観測塔 (Sta.4)における鉛直クロロフィル分布の期間中の平均鉛直分布および時系列．エラーバ

ーおよび破線は標準偏差を表す．また，上段から，観測値，同化なし計算 (Case 0)，Case 1, Case 2, Case 3の

結果を表す． 
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図-4.10 神戸港波浪観測塔 (Sta.4)における鉛直 DO 分布の期間中の平均鉛直分布および時系列．エラーバーおよび

破線は標準偏差を表す．また，上段から，観測値，同化なし計算 (Case 0)，Case 1, Case 2, Case 3の結果を表

す． 
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4.5.3 状態推定が貧酸素水塊体積の推定値へ及ぼす影響について 

ここでは，4DVar (DN-4DVar) による状態推定によって，貧酸素水塊の規模の推定結果がどのように

変化するかについて検討する．図-4.11 に，それぞれのメッシュの鉛直グリッドにおける貧酸素化した

モデルグリッドが水深に占める割合の水平分布を示す．値が大きい（色が濃い）領域は，貧酸素水塊

が底層だけでなく中層付近まで拡大していることを表している．また，ここでの貧酸素化は，計算グ

リッドにおける DOが 2.5 mgO2 L-1を下回った状態とした． 

まず，密度場から水質状態変数まで修正対象とした Case 3 では，最も観測地点における貧酸素化割

合に整合している．また，Case 3と Case 0 の分布を比較すると，神戸港周辺において水柱の 7割近くを

占める貧酸素水塊の発生が表現された一方，貧酸素化が東岸帯に沿って南側に広がる様子も再現でき

ている．Case 1では，密度場がデータ同化により修正されたが，同化しない結果に比べると，Case 3に

みられるような，神戸港に発達した貧酸素化や，南方に向かって拡大する貧酸素化が表現されている． 

また，上述した鉛直分布の再現性においては，Case 2（水質状態変数のみを修正）の計算結果は Case 3

（密度・水質を修正）の結果と大差ないようにみられたが，貧酸素化割合の水平分布では，0.6 以上の

範囲が Case 3よりも Case 2の方が広く，また僅かではあるが Case 3よりも沖合側に貧酸素領域が広が

っていることがわかる．これは密度場の再現性能を不十分なままに，観測値に整合するように初期場

やパラメータが修正されたことで，貧酸素水塊規模を過大に推定してしまう可能性を示唆している． 

 

図-4.11 各ケースにおける水柱の貧酸素化割合の水平分布． 
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4.6 まとめ 

本章では，4 次元変分データ同化アルゴリズムに二重数を用いた自動微分を導入することで，モデル

変更に伴う再コーディングの作業コストを大幅に低減可能な DN-4DVar を構築した．また，DN-4DVar

を ROMS内の水質モデルに適用し，流動水質モデルにおける状態推定性能の検証を行った． 

状態推定の結果，DN-4DVar は大阪湾における密度場および水質の時空間的な再現性能を向上させる

ことがわかった．また，密度場のみ修正対象としたデータ同化結果では，水温および塩分の再現性だ

けでなく，溶存酸素量の空間分布も観測値に近づくことが示された．また，大阪湾における貧酸素水

塊規模の空間分布についても状態推定による精度向上が確認された．さらに，DN-4DVar によって水質

変数の修正を行った場合に限らず，水温・塩分のみを修正した場合においても，貧酸素水塊の空間分

布の推定性能が向上することが示唆された．一方，密度場を修正せずに水質変数のみを観測値に合わ

せた場合には，非観測領域における貧酸素水塊がより広範囲に拡大する結果を示し，初期値やパラメ

ータの修正が過剰となる可能性が示唆された． 

 

 

参考文献 

Altaf, M. U., & McCabe, M. F. (2019). A variational approach for parameter estimation based on balanced proper 

orthogonal decomposition. Computer Methods in Applied Mechanics and Engineering, 344, 694–710.  

Cerco, C. F., & Cole, T. M. (1994). CE-QUAL-ICM: a three-dimensional eutrophication model, version 1.0. User’s Guide. 

US Army Corps of Engineers Waterways Experiments Station, Vicksburgh, MS. 

Diaz-Rodriguez, J. 2023. Adjoint-Free 4D-Var Methods Via Line Search Optimization For Non-Linear Data Assimilation. 

(Diaz-Rodriguez, 2023) 

Fennel, K., Mattern, J. P., Doney, S. C., Bopp, L., Moore, A. M., Wang, B., & Yu, L. (2022). Ocean biogeochemical 

modelling. Nature Reviews Methods Primers, 2(1), 76. 

Fasham, M. J. R., Sarmiento, J. L., Slater, R. D., Ducklow, H. W., & Williams, R. (1993). Ecosystem behavior at Bermuda 

Station “S” and Ocean Weather Station “India”: a general circulation model and observational analysis. Global 

Biogeochemical Cycles, 7(2), 379-415. 

Fennel, K., Hetland, R., Feng, Y., & DiMarco, S. (2011). A coupled physical-biological model of the Northern Gulf of 

Mexico shelf: model description, validation and analysis of phytoplankton variability. Biogeosciences, 8(7), 1881-

1899. 

Giering, R., & Kaminski, T. (1998). Recipes for adjoint code construction. ACM Transactions on Mathematical Software, 

24(4), 437–474.  

Hipsey, M. R., Antenucci, J. P., Romero, J. R., and Hamilton, D. P. (2007). Computational aquatic ecosystem dynamics 

model: CAEDYM v3 (Science Manual), Centre for Water Research, University of Western Australia. 

HydroQual, I. (2004). User’s guide for RCA. 

Kerry, C. G., Roughan, M., Keating, S., Gwyther, D., Brassington, G., Siripatana, A., & Souza, J. M. A. (2024). 

Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a 



第 4章 二重数を用いた 4次元データ同化 

－ 85 － 

 

Regional Ocean Modeling System (v3. 4) configuration of the eddy-dominated East Australian Current 

system. Geoscientific Model Development, 17(6), 2359-2386. 

Kishi, M. J., Kashiwai, M., Ware, D. M., Megrey, B. A., Eslinger, D. L., Werner, F. E., ... & Zvalinsky, V. I. (2007). 

NEMURO—a lower trophic level model for the North Pacific marine ecosystem. Ecological Modelling, 202(1-

2), 12-25. 

Mattern, J. P., Edwards, C. A., & Hill, C. N. (2019). Dual number-based variational data assimilation: Constructing exact 

tangent linear and adjoint code from nonlinear model evaluations. Plos one, 14(10), e0223131. 

Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Weaver, A. T., & Zavala-Garay, J. (2011). The Regional Ocean 

Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I–System overview and 

formulation. Progress in Oceanography, 91(1), 34-49. 

Solvik, K., Penny, S. G., & Hoyer, S. (2024). 4D-Var using Hessian approximation and backpropagation applied to 

automatically-differentiable numerical and machine learning models. https://doi.org/10.48550/arxiv.2408.02767  

Wang, G., Cao, X., Cai, X., Sun, J., Li, X., and Wang, H.: A new data assimilation method for high-dimensional models, 

Plos one, 13(2), 2018. 

岡田輝久, & 入江政安. (2023). 沿岸海域における物質循環解析のための 4 次元アンサンブル変分法の実装と評

価. 土木学会論文集, 79(17), 23-17144. 

永野隆紀, 入江政安, & 岡田輝久. (2020). 二重数を用いた 4 次元変分法によるデータ同化の実用性評価. 土木学

会論文集 B2 (海岸工学), 76(2), I_1003-I_1008. 

 

https://doi.org/10.48550/arxiv.2408.02767


第 5章 データ同化によるパラメータ推定および推定精度への影響要因 

－86－ 

 

第 5章 データ同化によるパラメータ推定および推定精度への影響要因 

5.1 はじめに 

流動水質モデルは，湖沼・湾灘・沿岸海域における物質循環や環境変動を定量的に解析し，将来予

測を行う上で有用なツールであり，対象領域や現象に応じて適切な水質モデルを構築する必要がある．

しかしながら，離散化に伴う近似や仮定を基にする数値モデルは本質的に不完全である．なかでも水

質モデルには数多くのパラメータが存在し，それらの多くは観測によって同定することが困難である

(Mattern & Edwards, 2023)．パラメータ以外にも初期値や各種境界条件，モデル構造もまた不確実性の

要因になるが，水質モデルを構築・改良するためには，それらの不確実性要因を適切に評価しながら

モデルパラメータを最適化する必要がある (Kriest et al., 2020 ; Löptien & Dietze, 2015 ; Löptien et al., 2021)． 

こうしたモデルと観測値の乖離を合理的に埋められる手法として，データ同化が注目されてきた．

特に 4次元変分法 (4DVar) は，観測値とモデルとの時空間的整合性を保ちつつ，最適な状態変数場やパ

ラメータを推定する手法である．例えば，Zhao et al (2008) は，低次生態系モデル NPZD モデルに含ま

れる 17 個のパラメータを，感度解析に基づく 5 つのグループに分類し，各グループから選ばれた合計

5つのパラメータをアジョイント法によって推定した．入江ら (2020) は 4DVarを沿岸域流動水質モデル

に適用し，状態推定と同時にパラメータ推定を実施し 13および 34個の水質モデルパラメータを推定し

ている．一方，4DVarによるパラメータ推定の性能や実海域への適用性に関する検討は十分ではなく，

さらなる検証が求められる （岡田ら, 2017）．  

データ同化手法性能検証には，「双子実験」が広く用いられている．双子実験とは，適当な条件を

与えた数値モデルによって「真値」を生成し，その一部を抽出して擬似的な観測値とみなし，異なる

初期値・パラメータから出発させた同じモデルで逆問題を実施し，真値との一致度を評価する手法で

ある．双子実験では，本来未知であるすべての状態変数システムの各時間ステップにおける真値や，

モデルパラメータの値を所与のものとして扱えるため，実海域にデータ同化を適用して得られる推定

結果の信頼性をあらかじめ把握することができる． 

沿岸域における実観測データに 4次元変分法を適用する場合，モデル構造やパラメータに不完全性や

誤差があることが常であり，観測データの背後にある真のシステムをモデルが表現できない条件下の

データ同化が行われる．そのため，沿岸流動水質モデルに 4次元変分法では，流動モデルが不完全であ

り，同化後の評価関数が十分に低減されず，その影響が他の制御変数や制御パラメータに伝播するこ

とがある．従って，データ同化手法の実用性を評価するためには，真値作成時と同じモデルを用いる

ような理想的条件にとどまらず，あえて真値シミュレーションとは異なる構造を持つモデルを用いて，

ミスフィットが生じるような条件を再現することが，実用上の知見を得るうえで重要である．  

以上の背景を踏まえ，本章では，第 4章で実装した，二重数導入型 4DVar (DN-4DVar) を用いたパラ

メータ推定の性能評価，および密度場再現性能の低下がパラメータ推定精度に及ぼす影響の定量的評

価を実施する．これまでに，DN-4DVarを用いた状態推定精度の検証は実施されているが (Mattern et al, 

2019 ; 永野ら, 2020)，パラメータ推定の性能評価は十分行われていなかった．そこで，大阪湾を対象領

域としたDN-4DVarの双子実験を実施し，沿岸域に偏在する観測データから，水質モデルパラメータを

推定し，その精度を評価する．また，データ同化によって修正できない要因によるミスフィットがパ

ラメータ推定性能に及ぼす影響を評価することで，実海域および実観測データに対する当該手法の適
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用限界について検討することとする． 

5.2 手法およびデータ 

5.2.1 双子実験の概要 

本検証では，双子実験と呼ばれる対照実験を実施する．双子実験は，データ同化手法の同化性能を

定量的に評価する数値実験である．双子実験の概要図を図-5.1 に示す．双子実験ではモデル A を用い

て出力した計算値を「真値」とし，「真値」から一部のデータを観測値（擬似観測値）として取り出す．

次に，モデルAに対し，異なる初期条件やパラメータセットを与えるなどして，Aとは異なる挙動をす

るモデル A’を作成し，A’による計算結果を「同化前」の計算値とする．最後に，このモデル A’に擬似

観測値をデータ同化し，「同化後」の計算値（解析値）が，擬似観測値および「真値」に整合したこと

を確かめる．このように双子実験では，通常不可知である真値と同化結果を直接比較することが可能

であり，データ同化によって得られたパラメータや非観測変数，あるいは非観測領域の予測精度につ

いて定量的に評価することができる．また，背景誤差や観測誤差などの定量化に真値を必要とする誤

差に関する検討も可能である． 

図-5.1 双子実験の概要図 
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5.2.3 実験条件 

(1) 対象領域および入力条件 

ここでは，第 2章にて流動水質再現計算に用いた ROMSおよび窒素-リン-酸素循環モデルを用いて双

子実験を実施した．計算領域は図-5.2に示す，大阪湾および，播磨灘・紀伊水道の一部を含む領域であ

る．水平解像度は 500 m で 117×124グリッド，鉛直解像度は 20層の s座標系を採用している． 

双子実験は，2012年 6月 1日から 15日まで，および，同年 6月 16日から 30日までの 2パターンの

実験期間を設け，それぞれ期間 A および期間 B とする．期間 A では状態推定やパラメータ推定精度の

検証を行う．一方，期間 B は，6 月 18 日頃から発生した大規模出水を含む，密度場の再現性能が低下

し易い期間として選定しており，出水およびそれに伴う密度場ミスフィット増大によるパラメータ推

定精度への影響評価を実施する．気象外力，開境界条件，河川境界条件は第 2章における再現計算と同

様の条件を用いた．例として図-5.3に神戸港波浪観測塔が位置するモデルグリッドにおける，気温，相

対湿度，大気圧，雲被覆率，降水量，短波放射量，風速の入力条件，および，淀川流量の時系列を示

す． 

  

図-5.2 計算領域，および観測地点の分布（観測項目はそれぞれ，赤枠が水温 (凡例：

T)，塩分 (S)，クロロフィル (Chl)，溶存酸素 (DO)，青枠が水温・塩分，緑枠が水

温のみである．測定水深など詳細は第 3章を参照のこと） 
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(2) 真値と擬似観測値および双子計算条件 

本実験では，再現計算結果から抽出した実験期間の計算値を双子実験における「真値」とし，擬似

観測値として，大阪湾定点自動観測システムが位置する地点，観測水深における毎時値を真値から抽

出した．図-5.2 に定点自動観測システム設置地点および各地点の観測項目を示す．13 地点の水温（°C），

11地点の塩分，6地点のクロロフィル (mg m-3) および溶存酸素濃度 (DO ; mg L-1) を真値より抽出した．

この「真値」（ROMS による出力）は s-座標系に基づいており鉛直グリッドによって層厚が異なる．そ

のため，擬似観測値を抽出する際は，観測水深における値を線形補間して与えた．また，本実験では

擬似観測値に測定誤差によるノイズを与えずに作成した． 

擬似観測値を同化する「シミュレーション値」には，初期条件および水質モデルパラメータに 2種類

のノイズを与えた条件で作成した計算値を用いる．真値と異なる初期条件を作成するために，5 月 1 日

から実験開始まで，流動モデル内の乱流モデルを，KPPモデル (Large et al, 1994)からMellor-Yamada 2.5 

level closureモデル(Mellor & Yamada, 1982)に変更したうえで，風および水質モデルパラメータにランダ

ムノイズを与えた助走計算を実施して作成した．風については，南北成分および東西成分の風速に平

均 1.0, 標準偏差 0.25 の正規分布に従うランダムノイズを乗じて与えた．水質モデルパラメータには，

0.5 から 1.5 の範囲のランダムノイズを乗じて与えた．図-5.4 に真値およびシミュレーション値，それ

ぞれの表層クロロフィルおよび底層 DOの初期値水平分布を示す． 

  

図-5.3 計算対象期間の外力条件および河川境界条件の時系列．（上から，気温，相対湿度，大気圧，降水量，短波放

射量，風速および淀川流量） 
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(3) 制御変数 

制御変数（修正対象変数）は，水温，塩分，状態変数（14 変数）の初期値，および水質モデルパラ

メータ 7種とした．ここで水質パラメータは，植物プランクトンの最大増殖速度 (g_max)，光合成の P-

Iカーブの初期勾配 (PhyIS)，植物プランクトンの基底呼吸速度 (PhyRPb)，体組成炭素窒素比 (PhyCN)，

体組成リン窒素比 (PhyPN)，硝化速度 (NitriR)，クロロフィル炭素重量比 (Chl2C) である．各パラメータ

は水質観測項目であるクロロフィルおよび DOの増減に関わるものから選択した．なお，アジョイント

モデルにおける移流拡散項の安定性確保のため，水位，流速の接線形および随伴モデルの計算は行わ

ない． 

(4) 4DVarに関する諸設定 

本研究では，ROMS に実装されている強拘束インクリメント法 ROMS-IS4DVar によるデータ同化ア

ルゴリズムを用いる (Moore et al, 2011)．水質状態変数の接線形モデルおよびアジョイントモデルの計算

は，非線形モデルと二重数を用いた自動微分によって行う DN-4DVarを適用し，水温，塩分の修正およ

びその他のアルゴリズムは ROMS-IS4DVar のモジュールを利用する．同化区間（同化ウィンドウ）は

24時間とした．即ち，毎 0時に制御変数が修正される．また，内部ループは 3回，外部ループは 5回と

図-5.4 表層クロロフィルおよび底層 DOの初期値水平分布． 

それぞれ (a) 真値，および(b) シミュレーション値 の初期値を示している． 
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した． 

評価関数 J は，水温，塩分，水質状態変数の初期値の修正量x0 および水質モデルパラメータの修正

量pを含む式 (5.1)で定義した： 

𝐽(𝛿𝒛) = 𝛿𝒙0
𝑇𝑩𝒊𝒏𝒊

−1𝛿𝒙0 + 𝛿𝒑𝑇𝑩𝑝
−1𝛿𝒑 +∑ (𝑯𝑖𝛿𝒛 − 𝑑𝑖)

𝑇𝑹𝒊
−1(𝑯𝑖𝛿𝒛 − 𝑑𝑖)

𝑖
(5.1) 

ここで，Bini は水温，塩分，および状態変数の初期値の背景誤差共分散行列，Bp は水質モデルパラメ

ータの背景誤差共分散行列，𝑯𝑖はは接線形モデルと観測行列をまとめた行列であり，制御変数の修正量 

(𝛿𝒛 = (𝛿𝒙0, 𝛿𝒑) )を𝑖は目目の観測に写す役割を持つ．また𝑑𝑖はは𝑖は目目の観測データと対応するモデルのミス

フィット（=𝑦𝑖 −𝑯𝑖𝒙は）であり，Ri は観測誤差共分散行列である．本検討では，背景誤差共分散行列 B

および観測誤差共分散行列 R の対角成分のみを考慮するため，評価関数 J は式 (5.2)のように書き下す

ことができる： 

𝐽(𝛿𝒛) =∑ (
𝛿𝑥0,𝑘
𝜎𝑏,𝑘

)

2𝑁𝑣𝑎𝑟

𝑘=1
+∑ (

𝛿𝑝𝑘
𝜎𝑝,𝑘

)

2𝑁𝑝𝑎𝑟𝑎𝑚

𝑘=1
+∑ (

𝑯𝑖𝛿𝒙0 − 𝑑𝑖
𝜎𝑜,𝑖

)

2𝑁𝑜𝑏𝑠

𝑖=1
(5.2) 

Nvar, Nparam, Nobsはそれぞれ修正対象の初期値の数，同様にモデルパラメータの数，および観測値の数

を表す．また，x0,k，b,k は初期値に与える摂動および対応する背景誤差標準偏差，pk，p,k はパラメ

ータに与える摂動および対応する背景誤差標準偏差，o,i観測値 yiの観測誤差標準偏差である． 

なお，ある同化ウィンドウにおける制御変数の推定結果は，次の同化ウィンドウの初期背景値とし

て用いられる． 

(5) 観測データの品質管理 

同化ウィンドウにおいて，モデルと観測値の差がある閾値よりも大きい場合，その観測値を評価関

数の計算から除外する，品質管理と呼ばれるシステムがある．品質管理はアジョイントモデルの計算

の安定性を高める役割をも担う．品質管理における除外条件は，観測誤差および背景誤差によって評

価される： 

𝑑𝑖
2 < 𝜏2(𝜎𝑜,𝑖

2 + (𝑯𝑖𝜎𝑏)
2) (5.2) 

ここで，di は観測―モデルミスフィット(=𝑦𝑖 −𝑯𝑖𝒙 )， は閾値パラメータ(=2.0)である．この品質管

理プロセスは，外部ループにおける制御変数の更新の都度実施される． 
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(6) 背景誤差共分散行列・観測誤差標準偏差共分散行列 

各制御変数の背景誤差は，期間 A における「真値」と「シミュレーション値」から予測結果の残差

の標準偏差で算出した．図-5.5に背景誤差標準偏差の水平分布を示す．非対角成分の空間的な相関は水

平方向 10 km，鉛直方向 3 mの相関スケールとした擬似拡散シミュレーションをもとに決定した（岡田

ら, 2017）．水質モデルパラメータの背景誤差標準偏差には，真値の 10%をそれぞれ与えた，ただし植

物プランクトンの体組成炭素窒素比 (PhyCN) のみ真値の 5%を与えた．これは，事前に行った感度解析

の結果，PhyCN の背景誤差標準偏差が 10%の場合，パラメータの推定挙動が不安定になることが確認

されたためである．擬似観測値の観測誤差標準偏差は既往研究に倣い，時刻および地点・水深によら

ず一様に与えた．本実験では測定誤差のみを考慮し，入江ら (2004) による現地実測値と定点自動観測

システムの測定値との差の標準偏差を，水温，塩分，クロロフィル，DO に与えた．各観測変数の観測

誤差標準偏差およびモデル変数の背景誤差標準偏差を表-5.1に示す． 

 

 

 

表-5.1 観測誤差標準偏差および背景誤差標準偏差 

Variable name Observation error 
Background error 

 (in average) 

Temperature (°C) 0.26 0.466 

Salinity (-) 0.40 1.61 

Chlorophyll (mgChl m-3) 2.40 4.09 

Oxygen (mgO2 L-1) 0.59 0.974 

NO3-N (mgN L-1) - 0.0553 

NH4-N (mgN L-1) - 0.0211 

Phytoplankton (type 1) (mgN L-1) - 0.0854 

Zooplankton (mgN L-1) - 0.00124 

PON (mgN L-1) - 0.0128 

DON (mgN L-1) - 0.0165 

PO4-P (mgP L-1) - 0.00642 

POP (mgP L-1) - 0.00110 

DOP (mgP L-1) - 0.00157 

g_max (day-1) - 0.37 (10%) 

PhyIS (W-1 m2 d-1) - 0.0125 (10%) 

PhyRPb (day-1) - 0.01 (10%) 

PhyCN (mol mol-1) - 0.43125 (5%) 

PhyPN (mol mol-1) - 0.002 (10%) 

NitriR (day-1) - 0.005 (10%) 

Chl2C (gChl gC-1) - 0.004 (10%) 
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図-5.5 背景誤差標準偏差の水平分布．(a) 水温 (°C)，(b) 塩分 (-)，(c) クロロフィル (mgChl m-3)，(d) 溶存酸素濃度 

(mgO2 L-1)，(e) 植物プランクトン (mgN L-1)，(f) 硝酸態窒素濃度 (mgN L-1) 
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(7) 実験ケース 

本研究では，複数の実験ケースを設定してパラメータ推定性能評価および，密度場の構造不完全性

の影響評価を行った． 

実験ケースの一覧を表-5.2 に示す．Case 1 では，DN-4DVar によるパラメータ推定の性能評価を目的

に，真値作成時と同一構造の流動モデルを使用したまま，初期パラメータ値のみ変更した双子実験を

実施する．Case 2では，密度場ミスフィットの影響を評価するため，初期パラメータ値の変更に加えて

真値作成時とは異なる構造のモデルを用いる．具体的には，乱流モデルが KPPモデル (Large et al, 1994)

から Mellor-Yamada 2.5 level closure モデル(MY25モデル ; Mellor & Yamada, 1982) に変更されている． 

それぞれのケースについて，前述の 2 つの実験期間（期間 A および期間 B）に対して実験を実施し

た．また，修正対象のパラメータに対し，2 通りの初期ノイズ，「増加ノイズ」および「減少ノイズ」

を与えて同化実験を開始する．増加ノイズでは，各パラメータに対して 1.25 ~ 1.5 の範囲で生成された

乱数を乗じ，減少ノイズでは，0.5 ~ 0.75 の範囲で生成された乱数を乗じて，制御パラメータの初期値

に変化を加えた．各実験ケース名は，例えば，Case 1 において，期間 A，増加ノイズを与える場合，

「Case 1A-P」のように表記することとする（減少ノイズは “-M”を付与して表記する）．  

 

 

  

表-5.2 実験ケースの一覧 

ケース名 実験期間 乱流モデル 
パラメータ 

ノイズ 

Case 1A-M 
2012/6/1 ~ 2012/6/15 KPP 

減 

Case 1A-P 増 

Case 1B-M 
2012/6/16 ~ 2012/6/30 KPP 

減 

Case 1B-P 増 

Case 2A-M 
2012/6/1 ~ 2012/6/15 MY25 

減 

Case 2A-P 増 

Case 2B-M 
2012/6/16 ~ 2012/6/30 MY25 

減 

Case 2B-P 増 
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5.3 結果 

5.3.1 パラメータ推定精度の評価 

(1) 評価関数の変化 

Case 1A-Mの結果より，全同化ウィンドウにおける評価関数の変化を図-5.7に示す．各図横軸は繰り

返し回数，同図 (a)の縦軸は対数評価関数，(b)の縦軸は 0 回目の値で正規化した評価関数である．0 回

目は初期背景値，即ちインクリメントがゼロの評価関数値である．横軸の繰り返し総数は，初期背景

値 (0回目)の計算 1回に，内部ループ数と背景値更新した通常計算の和 (=3+1) と外部ループ数 (=5)の積

を加えた 21 回である．第 1 同化ウィンドウ，即ち計算開始 1 日目における背景値の評価関数が，同化

実験中最も大きく，またその同化ウィンドウ初回の内部ループにおける減少率が最も高いことがわか

る（図-5.7 (b)）．また，ほとんどの同化区間の評価関数値は外部ループが一巡するたびに増加している

ことがわかる．これは，制御変数が修正され，モデルの予測値が変動したことで，観測値の品質管理

評価が更新され，データ同化に採用される観測値が増える，もしくは減ることで，このような挙動を

示す．第 6，第 12 同化ウィンドウを除く，同化ウィンドウにおいて，同化開始時より最終推定値の評

価関数値が小さく，制御変数の更新が適切に行われたことがわかる．同化前よりも同化後の評価関数

が高かった，除いた 2 同化区間も評価関数そのものは十分に小さい．また，いずれの同化ウィンドウ

も，内部ループや外部ループの途中で途切れることなくデータ同化を完了した．4 次元変分法において，

時間逆方向に積分したミスフィットが過大あるいは異常な値でアジョイント変数に伝播された場合，

共役勾配法における修正量算出で計算が破綻し，同化ループが中断される．実際に，従来の 4DVarによ

る同化実験では，同化ループが破綻することがある（永野ら, 2020）．定量的な判断は困難であるが，

DN-4DVarにおける TLMおよび ADMの演算は破綻が少なく，安定してデータ同化を行うことができる

と推察される．  

図-5.7 各同化ウィンドウにおける繰り返し計算中の評価関数推移．横軸はそれぞれ繰り返し回数，(a)縦軸は評価関数

値，(b)縦軸は初期背景値で正規化した評価関数値を表す．同化ウィンドウ目号を曲線の終点に付記している． 

(a) (b) 
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(2) 水平分布の再現性 

図-5.8 から図-5.11 に，表層・底層水温および表層塩分，表層クロロフィルおよび表層・底層 DO の

水平分布を示す．水温，クロロフィル，DO は計算開始から 1 週間後（第 7 同化ウィンドウ）の 12:00

における真値，同化後 (Case 1A-M)，真値と同化前の残差および真値と同化後の残差を示している．た

だし，塩分に関しては，同時刻における真値とのミスフィットが，同化前後に関わらずほとんど見ら

れなくなるため，塩分のみ第 1同化ウィンドウ 12:00における分布を示した． 

擬似観測値の同化を行った結果，観測データが存在する周辺領域を中心に，各変数の推定精度が向

上し，ミスフィットは全体として減少した．水温のミスフィットは，湾奥部底層で約-0.6°C程度残存し

たが，同化前のミスフィットと比較して明らかな改善がみられた．また，観測が存在しない格子点に

おいてもミスフィットの低減が確認でき，データ同化が水温場全体に対して良好な修正効果を有する

ことがわかる．表層塩分についても，同化前には湾北東部において顕著なミスフィットが確認されて

いたが，データ同化によってミスフィットが解消され，真値近い水平分布が得られている．  

表層クロロフィルの水平分布では，湾奥部の西宮沖において同化前のミスフィットが大きかった．

データ同化により，湾奥部でみられたミスフィットが低減され，特に，観測地点の近傍では再現性が

向上したことがわかる．また，観測地点のない港湾域や関空島南部にみられたミスフィットも縮減し

ており，空間分布の点においても真値に近い解析結果を得られた． 

DO の同化前後を比較すると，表層・底層ともに湾東部では真値との残差が比較的小さく，同化によ

る再現性向上効果が良好に現れていることが確認できる．また，同化前の底層では，貧酸素化した領

域の範囲が狭く，浜寺沖の底層 DOが真値よりも 2.0 mg L-1以上高かったが，同化後には，観測地点が

ないにもかかわらず，底層貧酸素水塊の水平分布が真値に近づいた． 

一方で，湾西部では DOが 1.0 mg L-1程度真値より高い傾向がみられ，この傾向は実験期間の終了ま

で続いた．湾西部では，観測点が存在しないだけでなく，南側と西側，二つの開境界の影響が卓越す

る混合領域であるため，背景誤差標準偏差が小さく設定されており，結果として状態変数の初期値修

正の影響がほとんど及ばなかった．状態推定の効果が小さいことに加え，パラメータ推定結果もまた

湾西部のミスフィットの要因である．後述するように，推定対象としたパラメータのうち，植物プラ

ンクトンの呼吸速度はほとんど修正されず，真値よりも低いままであり，これらの要因によって，同

化後における湾西部 DOが真値より高い結果となったと推察される． 
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図-5.8 2012/6/6 12:00 における水温の水平分布．(a)~(e)は表層，(f)~(j)は底層の水温分布を表している，(a),(f)は真値， 

(b),(g)は同化前，(c),(h)は同化後，(d),(i)は同化前-真値，(e),(j)は同化後-真値の値を示す．図中，丸印は観測地点

を示す． 

図-5.9 2012/6/1 12:00 における表層塩分の水平分布． (a)は真値， (b)は同化前，(c)は同化後，(d)は同化前-真値，(e)は

同化後-真値の値を示す． 
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図-5.10 2012/6/6 12:00における表層クロロフィルの水平分布． (a)は真値， (b)は同化前，(c)は同化後，(d)は同化前-真

値，(e)は同化後-真値の値を示す． 

図-5.11 2012/6/6 12:00 における溶存酸素濃度の水平分布．(a)~(e)は表層，(f)~(j)は底層であり，(a),(f)は真値， (b),(g)は

同化前，(c),(h)は同化後，(d),(i)は同化前-真値，(e),(j)は同化後-真値の値を示す． 
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(3) 擬似観測値と計算値の差 

図-5.12に，Case 1A-Mについて，擬似観測値とモデルのミスフィットの平均二乗平方根 (Root-mean-

squared difference: RMSD)を観測項目ごとに示す．水温，塩分および DOの RMSDは，同化前 (NL)より

も，同化後の RMSD が小さいか同程度であり，観測値に漸近していることがわかる．このとき，デー

タ同化による RMSD平均減少率は，水温が 62.2%，塩分が-59.1% (増加)，クロロフィルが 65.5%，溶存

酸素が 52.3%であった．いずれの実験ケースも RMSD は完全にゼロにはならず，むしろ塩分の RSMD

は同化後の RMSDが同化前よりも高い．これは，塩分のミスフィットが観測誤差標準偏差 (= 0.4，同図

赤破線)を下回ったことで，評価関数内において，塩分摂動をさらに与えるミスフィット減少よりも背

景誤差項の増加が上回ったためであると考えられる．このように観測値の不確実性を考慮する 4DVarで

は，同化後の計算値が完全に観測値に一致させないことが特徴である．クロロフィルおよび DOについ

ても同様に，それぞれの観測誤差標準偏差と同じかやや下回る値までモデル観測ミスフィットが減少

している．  

  

図-5.12 擬似観測値-モデルミスフィットの RMS時系列．黒破線は同化なし計算，赤実線は Case1A-Mの RMSD

を表し，赤点線は各状態変数の観測誤差標準偏差を表す． 
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(4) 状態変数の修正量 

図-5.13 に，各状態変数初期値の修正量の平均値を示す．ここで修正量は，背景誤差標準偏差で正規

化した絶対値を示している．観測値が与えられた水温，塩分，クロロフィル，溶存酸素は，状態変数

の中でも修正量が平均的に大きい傾向にあることがわかる．また，一次生産を行う植物プランクトン

濃度や関連する硝酸態窒素やアンモニア態窒素などの栄養塩濃度（NO3, NH4）の修正量が次いで大き

いことがわかる．一方，動物プランクトン (zooplankton)，懸濁態有機物 (LdetritusN/P)などは，前述の変

数に比べて修正量が小さい．これは，それ自身も酸素消費に寄与するが，クロロフィル濃度や DOに影

響するためには，例えば動物プランクトンは植物プランクトンを捕食することで，また，懸濁態有機

物は溶存態有機物に加水分解されることで寄与する二次的な役割を担う（そのようなモデル構造であ

る）ためである．そのため，24 時間の同化ウィンドウにおいて，動物プランクトンおよび懸濁態有機

物は観測変数への寄与が小さくなり，修正量が小さくなったと考えられる． 

(5) パラメータの修正量 

図-5.14 に Case 1A-Mおよび Case 1A-Pによる，修正対象とした 7パラメータ推定結果を示す．増殖

速度 (g_max)，P-Iカーブの初期勾配 (PhyIS)，クロロフィル炭素重量比 (Chl2C_m)，植物プランクトンの

炭素窒素体組成比 (PhyCN)の 4 パラメータは，データ同化による修正量が大きい．一方で，硝化速度 

(NitriR)，植物プランクトンの基底呼吸速度 (PhyPRb)，植物プランクトンのリン窒素体組成比 (PhyPN)

は，ほとんど変動しなかった．修正量が小さかったパラメータは，24 時間の同化ウィンドウにおいて

擬似観測値（クロロフィル，DO）とのデータミスフィットへの寄与が小さいため，その他の制御変数

が優先して修正されることになったと考えられる．例えば，硝化反応は光阻害によって表層よりも底

層で活性し，反応に伴って酸素を消費する．しかし，実験期間における底層 DOは，特に観測地点で，

すでに枯渇状態にあるため，硝化反応自体が起こりづらい環境にあり，パラメータの寄与も小さくな

ったと考えられる． 

図-5.13  Case 1A-Mにおける，背景誤差標準偏差に対する初期値修正量の平均割合． 
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また，24時間内においてDOおよびクロロフィルの日周変動に関連する光合成のような生化学過程に

直接寄与する，増殖速度，P-I カーブの初期勾配，C/N 比は修正量が大きい．一方で，植物プランクト

ンにより摂取される栄養塩（窒素およびリン）のバランスを制御する P/N比は，直接的に光合成プロセ

スに関与しないため，評価関数に対する勾配が小さく，パラメータの修正がほとんど生じなかったと

考えられる．このように，DN-4DVar によるパラメータ推定によって最適化可能なパラメータはある一

定以上の感度を有している必要があると考えられる． 

本検討で制御対象としたパラメータ 7種は，いずれもモデル式においてクロロフィルおよび酸素の増

減に寄与すること基準に採用されたが，各制御パラメータがクロロフィル・DO へ寄与する経路は異な

る．増殖速度，P-I カーブ初期勾配，炭素窒素比は，植物プランクトンの光合成反応を介して，クロロ

フィル・DO 両方の増加に直接的に作用する．一方で，硝化は酸素消費，クロロフィル炭素重量比はク

ロロフィル増加といったように，一方の状態変数の増減に作用するパラメータも含まれていた．本実

験において，パラメータノイズの大小や密度モデルによる誤差にかかわらず，クロロフィル炭素重量

比の推定値は最も真値に近づく傾向にあり，制御パラメータの中でも理想的な最適化が施された．ク

ロロフィル炭素重量比は専ら植物プランクトンの増殖に伴うクロロフィルの増加量算出に用いられる

パラメータであり，クロロフィルはいずれの実験ケースでも評価関数の内に占める割合が最も大きか

った．これらのことから，パラメータへの摂動変化による評価関数への影響（勾配）が適切に評価さ

れ，良好な修正を施すことができたと推察される．  

パラメータの初期ノイズを増加させた Case 1A-Pでは，ほとんどのパラメータにおいて，低下ノイズ

を与えたCase 1A-Mと比較して，真値とのミスフィットがより効果的に低減された．これは，初期ノイ

ズを大きくすることで，パラメータの感度が高まり，同化による修正の程度が大きくなるためである

と考えられ，前述したパラメータ感度に関する議論と同じことがいえる． 

今回，制御パラメータに設定した 7パラメータの中で，PhyCNを除く 6つのパラメータは初期ノイズ

によって異なる値に収束し，増加方向のノイズが与えられた場合に，より真値に近い値が推定される

ことが分かった．そのため，実海域への適用時には，既に使用しているパラメータ値から推定するだ

けでなく，デフォルト値よりも数十%高い初期値からパラメータ推定を行うことで，異なる解が得られ

る可能性がある． 
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図-5.14 実験期間 Aにおけるパラメータ推定結果 

(赤実線：真値，赤破線＋点：Case 1A-M，青破線＋点：Case 1A-P，青実線＋点：Case 2A-M，赤実線＋点：

Case 2A-P) 
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5.3.2 密度場のモデル誤差によるパラメータ推定への影響 

以下では，4DVar を適用する流動モデルに，真値生成時と異なるモデルを用いた場合における，同化

効果，特にパラメータ推定に及ぼす影響について述べる．表-5.3に，同化ケースごとの，擬似観測値と

計算値の差の平均二乗誤差平方根 (RMS) を各変数の観測誤差標準偏差で除した値を示す．また，各ケ

ースと同じモデルおよびパラメータを用いた同化なし計算を合わせて示している．また，図-5.15 およ

び図-5.16にケースごとの RMSD時系列を示す． 

擬似観測値として与えた水温，塩分，クロロフィル，DO のすべてについて，Case 1A/B よりも Case 

2A/Bの RMSDが大きかった．また，Case 1の同化結果では，観測誤差標準偏差で除した RMSDはすべ

て 1を下回った一方で，Case 2では 1より大きいケースが多い．図-5.15のRMSDに示しているように，

塩分とクロロフィルの一部を除き，RMSD は観測誤差標準偏差の値で横ばいになるように修正されて

いることがわかる． 

Case 2B-Mの塩分は観測変数の中でもRMSDが比較的大きく，同化なし計算に比べても再現性向上効

果がほとんどみられず．時系列を見ても，同化なしよりやや低い程度であり，同化による変化がほと

んどみられない．擬似観測値を与えた観測地点のほとんどが，河川出水の影響を受やすい沿岸域に沿

って位置している．そのため，乱流スキームが異なる流動モデルを用いた Case 2 は，出水時に生じた

ミスフィットを，24時間ごとの初期値修正によって縮減し難い． 

これは水質についても同様のことが言える．同ケースのクロロフィルおよびDOのRMSDを見ても，

出水発生時に RMSD が明らかに増大しており，流量が減少すると再び同化効果が表れている．物理場

の変動が卓越する状況においては，初期値の評価関数に対する勾配は小さくなり，初期場の修正によ

ってミスフィットを十分に低減できないと判断されるため，結果として初期値の修正がほとんど行わ

れない．そのため，データ同化を行っているにも関わらず，観測値とモデルとの間のミスフィットが

残存する状況となる．これは，ミスフィット情報（評価関数勾配）を初期状態まで伝播させる随伴計

算において，物理的影響が卓越する状況では，観測地点のミスフィットが移流拡散項によって次々と

隣接グリッドへ伝播され，各モデルグリッドの初期値が負う修正量が小さくなることで起こる． 

 

表-5.3 各ケースの擬似観測値と計算値の差の RMSを観測誤差標準偏差で除した値． 

( )内は同化なしの場合 

ケース名 
水温 

[°C] 
塩分 

クロロフィル 

[mgChl m-3] 

DO 

[mgO2 L-1] 

Case 1A-M 

(NL) 

0.693 

(1.816) 

0.564 

(2.652) 

0.500 

(1.461) 

0.800 

(1.671) 

Case 1B-M 

(NL) 

0.521 

(0.686) 

0.720 

(0.338) 

0.438 

(1.632) 

0.710 

(1.035) 

Case 2A-M 

(NL) 

1.077 

(2.562) 

1.059 

(1.266) 

0.755 

(1.811) 

1.160 

(2.744) 

Case 2B-M 

(NL) 

0.911 

(1.616) 

1.948 

(2.168) 

1.123 

(1.896) 

1.067 

(2.193) 
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図-5.15 期間 A における，擬似観測値-モデルミスフィットの RMS 時系列．破線は同化なし計算，実線は

同化後の RMSDを表し，それぞれ黒色が Case1, 赤色が Case2を表す．また，赤点線は各状態変数の

観測誤差標準偏差を表す． 
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図-5.16 期間 B における，擬似観測値-モデルミスフィットの RMS 時系列．破線は同化なし計算，実線は

同化後の RMSDを表し，それぞれ黒色が Case1, 赤色が Case2を表す．また，赤点線は各状態変数の

観測誤差標準偏差を表す． 
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(3) パラメータ推定への影響 

図-5.17に Case 1B-M，Case 1B-P， Case 2B-Mおよび Case 2B-Pにおける各同化ウィンドウのパラメ

ータ推定値，および各同化ウィンドウの推定値から作成した箱ひげ図を示す．各ケースのパラメータ

初期値を境に，真値との差が増加する側を灰色の網掛けで示しており，各図の赤線に近づけば適切な

パラメータ修正が施されていると判断できる．また，破線で示した Case 1B-Mおよび Case 1B-Pは，真

値を作成したモデルと同じモデルで行った通常の双子実験であり，一方，実線で示した Case 2B-Mおよ

び Case 2B-Pは異なる乱流スキームを用いた流動水質モデルで実施した結果である． 

Case 1B-Mおよび Case 1B-P では，一部を除いて，各パラメータの真値に近づくよう修正されている．

Case 1Aの結果と同様に，PhyISや Chl2C_mなどは，高い値から推定を開始した同化ケースの方が真値

に漸近しやすい傾向がみてとれる．これに対し，Case 2B-Mおよび Case 2B-Pでは，Case 1に比べてパ

ラメータに対する修正量が大きい，特に出水によって塩分，クロロフィルの RMSD が増加した期間は

Case 2B-M, Case 2B -Pのいずれも同様の修正が行われている．例えば PhyISの推定値は，初期ノイズの

大小に由らず，単調に減少している．この期間はクロロフィルおよび DOのモデル－観測ミスフィット

が増加した期間とほとんど一致ししていることから，状態推定によって低減できないミスフィットが

増加し，評価関数の値が大きくなったため，その影響が水質モデルパラメータ推定に及んだと考えら

れる．このことから，初期値の修正によって観測値との不整合が低減しない場合，パラメータの評価

関数に対する勾配計算において，残存したミスフィットの影響をパラメータの勾配に反映するため，

それぞれの修正量は不必要に増大していると推察される．また，特に Case 2B-Pでは，出水後の同化ウ

ィンドウにおいて，パラメータがほとんど修正されていない．これは，出水後，初期値の修正が主に

ミスフィットの低減を担うようになり，推定対象のパラメータ修正量が低下し，出水時に推定された

値で推移したためだと考えられる． 

このように，モデル構造が真値を構成するシステムと異なる場合に大規模な出水が発生した場合，

状態推定による効果は小さくなった一方で，修正対象とした水質モデルパラメータは異なる応答を示

した．4DVar 適用後に依然，密度モデルの構造上の問題に起因するミスフィットが残存する場合には，

水質モデルパラメータの推定精度は低下する可能性がある．そのため，実海域に水質モデルパラメー

タを適用する際に，同化後の解析値と観測のミスフィットが観測誤差を十分に上回るような状況では，

推定されたパラメータが，真値から外れてしまう可能性を考慮するべきである．特に，大規模な出水

によって塩分の再現性が低下し，それに伴ってクロロフィル濃度が観測値と乖離する場合には注意を

払う必要がある． 

第 4章で述べたように，4DVarの安定性確保のため，評価関数を算出する際には，背景誤差および観

測誤差に基づく観測値の品質管理を行っている．これにより出水時における塩分の観測値が計算値か

ら大きく乖離する場合は，その外部ループにおける評価関数計算から除外され，塩分のミスフィット

による評価関数の増加は RMSD でみるよりも小さい可能性がある．一方で，クロロフィルや DO の観

測誤差標準偏差は，塩分のそれに比べて大きいため，出水時におけるクロロフィルおよび DOのミスフ

ィット増加は，評価関数の計算に採用されやすく，観測値の品質管理が行われるにも関わらず，出水

時には評価関数の増加が発生すると考えられる． 
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図-5.17 実験期間 Bにおけるパラメータ推定値の時系列および実験ケースごとの箱ひげ図． 

 (赤実線：真値，赤破線＋点：Case 1B-M，青破線＋点：Case 1B-P，青実線＋点：Case 2B-M，赤実線＋点：

Case 2B-P) 
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5.4 まとめ 

本章では，二重数による自動微分を導入した，改良型 4次元変分データ同化法 (DN-4DVar) を用いて，

モデルパラメータ推定の性能評価を実施した．また，流動モデルのモデル構造が真値を表現し得ない

条件によって，水質モデルパラメータの推定性能へ及ぶ影響について検討した．以下に得られた知見

を示す． 

DN-4DVar による状態推定およびパラメータ推定は，モデルと擬似観測値の間のミスフィットを良好

に低減した．推定したパラメータの中では，観測値として与えたクロロフィルや溶存酸素の変動に及

ぼす影響が大きいパラメータがより真値に近づく傾向を示した．また，推定前のパラメータを真値よ

りも低い値からデータ同化を実施した場合は，高い値から開始した場合よりも収束により多くの同化

ウィンドウを要した． 

真値生成時と異なる乱流スキームを用いた流動水質モデルに DN-4DVarを適用した場合，出水に伴う

密度場水質場の再現性劣化によって，水質モデルパラメータの推定性能は低下する可能性が示された．

大規模な出水の発生期間においては，水温，塩分および状態変数の初期値に施される修正量は小さく，

残存した観測とのミスフィットがパラメータの勾配を増幅することで，過剰な修正量がパラメータに

与えられることが示唆された．また，出水中の過剰な修正は出水後にも影響を残すことが示された．

一方で，上記のような出水の影響が大きく現れない平水時には，流動モデルの違いにもかかわらず，

同程度の性能でパラメータ推定が行えることがわかった．これは，沿岸域の流動密度場を完全に再現

することができない流動水質モデルを用いて，推定時期を適切に選択すれば，水質モデルパラメータ

を推定し得ることを示している．そのため，4 次元変分法によるパラメータ推定は，流動モデルの不完

全性という制約下においても，水質モデルに起因する性能低下要因にアプローチすることができ，今

後の水質モデル改良にとって有用なツールであると結論づけられる．  
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第 6章 データ同化によるモデル改良法の提案 

6.1 はじめに 

数値モデルの予測精度を向上させるために，モデル構造の改修やモデルパラメータチューニングを

行う場合，誤差の相殺 (Cancellation of errors ; Fennel et al, 2022) が生じる危険性がある．誤差の相殺とは，

ある原因で生じているモデル誤差を，それとは別な原因で生じたモデル誤差によって打ち消してしま

い，一見するとモデル計算値と観測値が整合し，モデル性能が改善したように見えてしまう問題であ

る．誤差の相殺は，複雑な構造の生態系モデルほど起こりやすいだけでなく，物理モデルに起因する

誤差を生態系モデルのパラメータ調整によって上塗りすることによっても起こりうる．流動水質モデ

ルの用途の多くは，水域における物質循環の評価や将来の地球環境変化に対する応答特性を予測する

ことに大別される．そのいずれの用途に対しても，誤差の相殺問題を抱えたモデルは誤った結論を導

きうる．例えば，Schmidtko ら (2019) が行った全球モデルを用いた実験においても，物理モデルの誤差

を水質モデルのチューニングによって相殺させた場合，貧酸素水塊の将来予測結果が全く異なること

が示されている．また，ボトル効果に代表されるように，実験系で観測された関係性に基づく方程式

が，現場海域のシミュレーション性能を必ずしも改善しないことがある (Pahlow et al., 2020)．このとき，

実験結果を適切に評価せずに新しいモデルに合わせたパラメータ調整を行えば，誤差の相殺の危険性

が再び浮上する． 

河口沿岸域においては，淡水と塩水が入り混じる複雑な流動密度場を完全に正確に表現できるモデ

ルはなく，物理モデルの誤差が少なからず残存した状態で水質予測やパラメータ調整が行われている．

同時に，人口が集中する河口沿岸域は汚濁負荷の影響を受けて赤潮や貧酸素水塊が発生する．現象メ

カニズムを解明すべく適用される水質モデルは複雑化しやすく，また水質モデルのパラメータはロー

カルなものになりやすい．物理モデルの不完全性も相まって，観測値に追従する流動水質モデルが果

たして妥当な水質表現をするかを評価することは一層困難である (Irby et al., 2016; Oschlies et al., 2018)． 

繰り返し改修される水質モデルの自由度は益々高く，改修した水質モデルのフィッティングはパラ

メータ調整次第で容易に正当化されるため，そのモデル改修が真に改良たるかを事後的に評価するこ

とは困難である．水質モデルの妥当性や改良方針を検討するためには，改修に先立つ検証手法を確立

する必要があり，その手法は，現状の流動水質モデルによる計算値と観測値の間の不整合（ミスフィ

ット）が生じる原因を切り分け，誤差の相殺による影響を最小限に，水質モデルの問題点を摘出する

手法であらねばならない． 

本章では，4 次元変分データ同化法（4DVar）による状態推定を応用した，モデル構造改修アプロー

チを提案する．4DVar は，観測値を数値シミュレーションに同化することで，双方の誤差を加味した解

析値を提供する最尤推定手法である．4DVar では，初期値やモデルパラメータなどの境界条件を，観測

-モデルミスフィットに対する影響度に基づいて修正可能であり，また物理場と水質場を同時に修正す

ることができるため，流動水質モデルにおけるミスフィットの誤謬が低減され得る．本章の検討では，

大阪湾における光合成モデルの課題を例に，理論ベースのモデル改修の妥当性をデータ同化実験によ

って検証する．6.2 節では，水質モデルの課題である溶存酸素の過飽和および光合成に関する知見を整

理する．次いで 6.3節に実験デザイン，6.4節に結果，6.5節に考察および 6.6節にまとめを述べる． 
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6.2 対象とする水質モデル構造：光合成による酸素生成 

6.2.1 溶存酸素の過飽和現象 

ここで，本章で改修を検討する水質モデル過程である，光合成による酸素生成について概説し，そ

の問題点について述べる．富栄養化した湖沼・内湾では，光合成によって溶存酸素濃度（DO）が増加

し，表層の酸素飽和度は 100%を超過することがある．大阪湾もその例にもれず，植物プランクトンの

ブルーム（短期的な増殖現象）発生時には，ほとんど同じタイミングで DO飽和度も急激に上昇する．

大阪湾で発生する過飽和現象の特徴は主に次の 2点である．第一に，風などの擾乱がなければ 13~15時

ごろまで上昇しつづけ，その後翌日の早朝までの間に低下し，ほとんどの日に 100%を下回る．過飽和

DOの減少は，大気-海面境界における曝気作用，群衆呼吸および底層 DOの湧昇などを主な要因とする

が，その内訳は明らかでない．第二に，DO 増加量は，その主要因である植物プランクトン（クロロフ

ィル濃度）の増加量と明確な相関を示さないことである．砕波による混入などを除けば，植物プラン

クトンが DO主要生成源であることに疑いないが，その生成量をクロロフィル濃度から見積もることは

困難であり，それらの間には未解明の生化学的な構造・関係があるものと予想される． 

6.2.2 植物プランクトンの光合成 

光合成は，植物や植物プランクトンが葉緑体内で行う，二酸化炭素の固定反応であり，一般的には

以下の式 (6.1) で表される． 

𝐶𝑂2 +𝐻2𝑂 → [𝐶𝐻2𝑂] + 𝑂2 (6.1) 

光合成は 2つの反応過程に分けられ，それぞれ明反応および暗反応と呼ばれる．明反応は，植物プラ

ンクトン細胞内のチラコイド膜が受容した光エネルギーによって駆動する反応である．チラコイド膜

で受け取った光エネルギーにより，光化学系 II に属する酸素発生複合体 (OEC) が水分子から水素イオ

ンおよび電子 (Pi) を奪取し，その過程で酸素が発生する 1)．暗反応では，吸収した二酸化炭素あるいは

炭酸イオンがカルビンベンソン回路の循環反応を経，炭水化物（グリセルアルデヒド-3-リン酸：GAP）

を生成する．この GAP が脂肪酸，アミノ酸などの細胞を構成する物質の合成（生合成）に用いられる．

明反応の化学式を式 (6.2) および式 (6.3)，暗反応の化学式を式 (6.4) に示す． 

2𝐻2𝑂 → 4𝐻+ + 4𝑃𝑖 + 𝑂2 (6.2)

𝑁𝐴𝐷𝑃+ +𝐻+ + 2𝑃𝑖 → 𝑁𝐴𝐷𝑃𝐻  

𝐴𝐷𝑃 + 𝑃𝑖 → 𝐴𝑇𝑃 (6.3) 

3𝐶𝑂2 + 9𝐴𝑇𝑃 + 6𝑁𝐴𝐷𝑃𝐻2
+ → 𝐺𝐴𝑃 + 9𝐴𝐷𝑃 + 9𝑃𝑖 + 6𝑁𝐴𝐷𝑃+ (6.4) 

NADPH2+および ATP は，暗反応において二酸化炭素を還元するために必要な有機化合物である．ま

た，植物プランクトンが摂取する無機栄養塩は，GAP を用いた体組成物質の合成時に用いられること

となる．こうして明反応は，暗反応に必要となる還元力を光エネルギーと水から得る反応である．光

合成過程を明・暗反応に分けたとき，酸素生成が明反応の副産物であり，また，二酸化炭素および栄

養塩を用いる生合成に先立って，酸素が生成されることが分かる． 
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6.2.3 水質モデルにおける光合成の問題点 

一方，水質モデルにおける光合成による酸素生成量は，一般的に，植物プランクトンの増殖フラッ

クスに比例するようモデリングされる (Fennel et al., 2013など)： 

𝐷𝑂𝑝𝑟𝑜𝑑 = 𝜇 ∙ 𝐶𝑃ℎ𝑦𝑡 ∙ 𝑓(𝑇, 𝐼) ∙ 𝑓(𝑁) ∙ 𝑃ℎ𝑦𝐶𝑁 (6.4) 

ここで，DO_prodは光合成による酸素生成量（mmol O2 m-3），は増殖速度（day-1），CPhytは植物プラン

クトン濃度（mmol-N m-3），f(T,I) ，f(N)はそれぞれ光制限および栄養塩制限，PhyCN は植物プランクト

ンの炭素窒素体組成比（molC molN-1）である．実際の光合成と水質モデルにおける光合成モデルの比

較を図-6.3に示す．両者を比較すると酸素生成過程に次の相違点がみつかる．実際の光合成では，水分

子から電子および水素イオンが奪取される際に酸素分子が発生し，このとき酸素発生量はクロロフィ

ルと光強度によって律速されると考えられる．一方水質モデルでは，植物プランクトンの増殖量に比

例して酸素生成量が決定されるため，モデル酸素生成量は増殖速度を律速する光制限に加えて，栄養

塩制限の影響を受けてしまう．即ち，水質モデルでは，「増殖―酸素生成」の順で光合成がモデリング

されている．このようにほとんどの水質モデルにおいて，酸素生成過程と増殖過程の順序は現実とは

逆の順で計算される．こうしたモデル構造の違いは，貧栄養環境において酸素生成量を実際以上に制

限するため，数値モデルによる流動水質シミュレーションが，表層における DO過飽和を表現できない

要因の一つであると考えられる．なぜなら現行のモデルにおいて，植物プランクトンが増殖する日中

表層は一時的に栄養塩が枯渇し，それにより植物プランクトンの増殖は抑制され，DO の生成も停止す

るが，実際の細胞構造を考慮すれば，栄養塩の有無にかかわらず酸素は生成し得るからである．仮に，

図-6.3 光合成-増殖プロセスの模式図（左：細胞生物学に基づく構造，右：水質モデル） 
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式 (6.4)における C/N 比を一定値ではなく，時空間的に可変なパラメータとして扱うことができ，溶存

酸素の観測値の時系列変化に追従させようとする場合，栄養塩が枯渇する状況においてはその値を増

加させることになると予想される． 

海洋植物プランクトンを対象とした化学量論 (Stoichiometry)の分野では，植物プランクトンの分子配

分をモデリングすることで，その細胞内分子構成の推定が行われている（Elrifi & Turpin, 1985; Inomura, 

2020 など）．多くの研究は，植物プランクトンの細胞を構成する炭素・窒素・リンの比率は，必ずしも

Redfield比ではなく，また動的であるとしている（Chien et al., 2020 など）．しかし，海洋を対象とした

物質収支解析では，炭素，窒素，リンに代表される物質循環がモデリングされている一方，酸素を考

慮していないモデルがほとんどで，酸素の変数が考慮されていない．そのため，酸素生成に関する，

現実とモデルとの相違点を踏まえた沿岸域水質モデルの有効性は不明である． 

6.3 手法 

6.3.1 実験概要 

本章で実施したデータ同化実験では，密度場および水質モデル状態変数の状態推定を行い，上層に

おける栄養塩と CN比との間に，逆相関が顕れることを，データ同化を用いて検討した． 

まず，C/N比を空間的に可変なパラメータとして扱い，観測 DOを再現するために最適な空間分布を，

水温・塩分，水質状態変数の初期値と同時に推定した．これにより，誤差の相殺 (Löptien et al., 2021; 

Fennel et al., 2022)による影響を低減することができる．また，C/N比パラメータは無機化に伴う酸素消

費にも用いられるため，空間分布を考慮することで，上層で発生する光合成過程に伴う勾配変動との

競合を抑えた．次に，最適化された無機栄養塩および C/N比の関係を検証した． 

6.3.2 流動水質モデル 

本章では，流動モデル ROMS (Regional Ocean Modeling System)を用いる．計算領域は大阪湾，紀淡海

峡および明石海峡を含む領域（図-6.4）である．水平解像度500 m，鉛直方向20層の s座標系 (Haidvogel 

et al., 2008) を採用し，表層に近いほど層厚が小さくなる設定とした．気象外力は気温，気圧，相対湿

度，雲被覆率，降水量，短波放射量および風速を入力する．風速を除く気象データは，大阪管区気象

台が配信する毎時データを用いた．風速は計算領域に存在する 10 地点の毎時風速データを放射基底関

数によって空間補間して与えた．西側および南側開境界には，水位，水温，塩分，水質（アンモニア

態窒素，硝酸態窒素，リン酸態リン，植物プランクトン，クロロフィル，溶存態有機物，懸濁態有機

物）をそれぞれ与えた．西側開境界水位には江井および高砂，南側開境界水位には沼島および和歌山

の潮位観測データを開境界に沿って線形補間し与えた．水温，塩分，水質について，西側開境界には

浅海定線調査 Sta.6地点，南側開境界には同調査 Sta.4地点の鉛直分布データを線形補間して与えた．淀

川の流量は高浜・枚方水位流量観測所における H-Q 式を用いて算出した．また，大和川の流量は遠里

小野観測所における H-Q式を用いて算出した．そのほかの 31河川の流量は各府県による公共用水域調

査の 5か年平均値に，各河川の流域面積と 1時間遅延させた大阪管区気象台の毎時降水量の積を加えて

与えた．また，河川水温は大阪湾定点自動観測システム，淀川河口地点における表層水温の毎時デー

タを与え，塩分は 0.1とした． 
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6.3.3 計算条件・データ同化条件 

計算期間は 2012年 8月 1日~ 31日の期間とし，初期値は 2011年 1月 1日から行った計算から 2012年

8月 1日 0:00の結果を設定した．計算期間における気象データを図-6.5に示す．当該期間の気象の特徴

として，8月 13日 ~ 14日にかけて，南下した前線の影響で大気の状態が非常に不安定となり，近畿中

部を中心に大雨となったことが挙げられる．これに伴い，淀川では大規模な出水が発生した．また，

18 日には 14:40ごろから 20 分程度の短時間に 44 mm/h を超えるにわか雨が発生し，淀川の出水量が増

加した． 

水質モデルは，図-6.6 に示す窒素-リン-酸素循環モデルを用いる．植物プランクトン濃度は窒素で表

現されており，植物プランクトンの光合成では，植物プランクトン濃度増加量に C/N比 (PhyCN)を乗じ

て生成される酸素濃度を決定する．これは一次生産による酸素生成量が，増殖に用いられる窒素量に

PhyCN を乗じて得られる植物プランクトン内部炭素の増加量と等モルとなることに由来している．本

実験では，水質モデルパラメータ PhyCN，植物プランクトンの P/N比 (PhyPN)，クロロフィル炭素重量

比 (Chl2C)に空間成分を考慮し，それぞれの初期値は 6.625, 0.0625, 0.0535を一様に与えた．  

 

  

図-6.4 計算領域の水深および観測地点・観測項目（詳細は第 3章） 
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図-6.6 水質モデルの概要図．丸角矩形で状態変数，矢印で生化学的反応経路を表す．溶存酸素の生成消滅が関わる

反応経路は水色で表される． 

図-6.5 実験期間の気象条件（(a) 気温， (b) 相対湿度，(c) 大気圧，(d) 雲量，(e) 降水量，(f) 短波放射量，(g) 風速 (大

阪港波浪観測塔地点)）および (h) 淀川流量の時系列． 
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4 次元変分法で修正する制御変数として，水温，塩分，水質モデル状態変数（14 種）に加え，3 つの

パラメータ空間分布（PhyCN, PhyPN, Chl2C）を設定した．なお，PhyPN および Chl2C は酸素循環に直

接影響するパラメータではないが修正の対象とした．事前実験において，日中の表層 DOの増加量がク

ロロフィルの増加量よりも大きいため，DOよりクロロフィルへの整合を優先して PhyCNが修正される

状況が確認された．このような場合，同化後の解析値における DO過飽和の再現性が改善されない．そ

のため，クロロフィルの増減に関わる体組成パラメータである Chl2C および PhyPN を同化対象に加え

ることで，PhyCNが有するクロロフィルへの勾配を分散させ，DOの修正 

ROMSにはアジョイント法による強拘束 4次元変分法 (IS4DVar; Moore et al., 2011)が実装されており，

水温および塩分の同化には IS4DVarを適用した．また，水質状態変数の初期値およびパラメータの修正

量を推定する際には，DN-4DVar を用いて接線形計算および随伴計算を非線形モデルで代替した 

(Mattern et al., 2019; 永野ら 2020)．データ同化実験期間は 2012年 8月 1日から 31日までの 31日間とし，

初期値の第一推定値は，2011年から助走を含む 2年間の再現計算結果から 2012年 8月 1日のデータを

抽出し用いた．同化する観測データは，大阪湾定点自動観測システム 2)から得られる水温，塩分，DO，

クロロフィルの毎時鉛直分布データを使用した．観測地点および観測項目の分布を図-6.4に示す．  

同化サイクルは 24 時間とし，毎日 0 時に状態推定が行われる．空間分布を与える上記 3 つのパラメ

ータは同化ウィンドウ内において時間的に変化しないため，0 時時点の修正値がその後 24 時間の水質

計算に適用されることとなる．日中 DO の増加量は，基本的に，植物プランクトン濃度および PhyCN

に依存して変化するが，夜中に初期値を修正すると，日中のモデルミスフィットは移流拡散しない

PhyCN にその勾配が集中するため，DO の増加不足が PhyCN によって説明されやすくなる．水温，塩

分および，空間分布を付したパラメータを除く水質モデルの 14 状態変数について，背景誤差共分散行

列は第 5章と同様の方法で決定した．空間分布を付したパラメータの背景誤差はそれぞれのパラメータ

初期値の 10%を空間一様に与えた． 

観測誤差標準偏差の設定値についても，第 5章と同じく，モニタリングシステムの実測値と船舶観測

値の平均差分に基づいて与えた．ただし厳密に自動観測システムの観測誤差を評価するためには，計

器の測定バイアスを考慮するだけでは不十分である．例えば，当該システムは毎時鉛直分布を記録し

ているが，観測層から次の観測層までの移動や測定中の時間を含めれば，測定層ごとに観測時刻が数

分程度ずれることとなる．本研究では，水温，塩分，クロロフィルおよび DOが数分で生じる変化量が

小さいとみなし，この観測誤差を無視した． 
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6.4 結果 

6.4.1 モデル再現性の向上 

図-6.7 は，水温，塩分，クロロフィル，DO の同化前後における再現結果を示すテイラー図を，上層

下層に分けて表している．テイラー図では，半径軸に観測値および予測値それぞれの標準偏差を観測

値の標準偏差で除した値，円周軸に観測値と予測値との相関係数を表す．観測値にモデル予測値が近

いほど，半径軸が 0，円周軸が 1に漸近する．同点を中心とする同心円は，観測値とモデルの平均二乗

偏差平方根 (RMSD) を観測値の標準偏差で除した値を表している．同図，白抜き印はデータ同化前，青

塗り印は同化後の予測値データを示している．いずれの変数もデータ同化によって標準偏差，相関係

数が観測値（星印）に近づいたことがわかる．また，表-6.1 に各観測変数について計算した RMSD を

示す．いずれの変数・観測水深についても，同化後の RMSD が減少し，モデルの再現性能が向上した

ことがわかる．これらの評価を以って，データ同化によるモデル性能の向上を確認した．これより以

下では，データ同化によるパラメータ推定結果に関する解析を行う． 

表-6.1 観測値と計算値の平均二乗残差平方根 (RMSD) 

変数名  同化前 同化後 

水温 

[°C] 

上層 0.87 0.6 

下層 0.86 0.53 

塩分 

[-] 

上層 1.6 1.0 

下層 0.58 0.4 

クロロフィル 

[mg m-3] 

上層 7.9 5.6 

下層 3.2 2.8 

DO 

[mg L-1] 

上層 2.4 1.0 

下層 2.1 0.98 

図-6.7 同化前後の再現性 
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6.4.2 時系列の変化 

次に，湾奥部表層における，海況と状態変数の関連性を確認する．図-6.8に淀川および大和川の流量

および大阪港波浪観測塔における潮位の時系列を示す．また，同化前後の表層塩分，表層クロロフィ

ル，表層 DOおよび C/N比を合わせて示す．ただし，C/N比の値は同化ウィンドウにおいて時間経過に

よって変動しないが，DN-4DVarによる 24時間ごとの修正によって値が変化している．本実験期間の気

象の特徴は，8月13日から 8月14日頃に発生した大規模降雨およびそれに伴う淀川流量の増加である．

この出水イベントでは，湾奥塩分が約 20 程度まで低下し，その後，流量の低下に伴って 8月 15日頃か

ら植物プランクトンの増殖が発生した．出水発生前後で表層塩分の観測時系列（図-6.8 (c) 赤点）を比

較すると，出水前は 27.5 ~ 30の間で変動していたのに対し，出水後は23 ~ 27.5の範囲で推移しており，

湾奥に流入した淡水の影響が 1週間程度残ったことが読み取れる．同化前のモデルでは，出水後に発生

するクロロフィルの増加が十分に表現できず，観測値に見られる 40 ~ 80 mgChl/m3の日最大値に追従し

なかった．対して同化後の計算値では，日中の高クロロフィル状態を再現することができた． 

データ同化前の DOは日中の増加量が観測値より小さい．例えば，8月 12日の観測値では，8時間で

12 mg/L程度増加したのに対し，同化前（破線）の増加量は 2 mg/L程度である．その他区間においても

日中に観測されるような DO増加を，同化前のモデルでは再現することができなかった．一方，同化後

の結果では，DOが低い状態から日中に大きく上昇する挙動を示し，モデルの表現性能が向上した．  

4DVar の時間後方積分において，初期値から時間的に離れたデータミスフィットほど初期値の修正量

への寄与が小さくなる．これは，例えば DO は 24 時間の同化ウィンドウ中に移流拡散し，初期値の修

正効果は時間経過で小さくなるためである．そのため，DO の状態推定は，初期場推定時刻の 0 時から

数時間後に存在するモデルミスフィットが強く反映され，低 DO状態に合わせるような初期値修正が施

される．これに対して，C/N比は同化ウィンドウ内において一定値であるため，日中に DOのミスフィ

ットが大きい同化区間ほど，C/N比の修正は元の値よりも増加方向に修正されやすくなる．実際に，同

化実験期間のほとんどの期間で推定されたC/N比は元の値から増加しており，第 1同化ウィンドウおよ

び出水中の同化ウィンドウのみ同化前の値を下回るように修正された．また，出水の前後で平均推定

値は増加しており，出水前が 8 ~ 9 (mol C/mol N)であるのに対し，出水後は 12程度まで増加した． 

C/N比の推定値には出水前後に関わらず，小潮期に緩やかな減少傾向が確認された．小潮期は一日の

干満による潮汐変動が小さくなる時期であり，湾内の流動が穏やかで，成層の安定しやすい時期とな

る．この特性によって，湾北東部では水塊の上下層が分け隔てられ，有光層である上層の一次生産は

活発になり，一方，下層への酸素供給は低下する．即ち，小潮期に観測される DOの挙動は，潮汐によ

る物理的要因による変動よりもむしろ，生化学的反応による変動が優位になると考えられる．また，

データ同化によるパラメータ PhyCN の低下は，一次生産による酸素生成および有機物の無機化による

酸素消費のいずれかまたは双方が観測値の DO変動に比べて過剰である場合に施される修正である．そ

のため，小潮期には C/N比を修正せずとも観測 DO変動を表現可能であることを示唆している． 
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図-6.8  (a) 海面水位，(b) 淀川・大和川の流量，大阪港地点における(c) 表層塩分，(d) 表層クロロフィル濃度，(e) 表

層 DO，(f) C/N比の時系列を示す．(c)~(f)では，実線は同化前，破線は同化後を表す． 
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6.4.3 水平分布 

図-6.9に 2012年 8月 8日における表層 DIN (溶存無機態窒素)，表層 PO4-P，推定 C/N比の水平分布を

示す．観測値は浅海定線調査 3)による 2012年 8月 8日の表層値を表している．DINは NH4-Nと NO3-N

の合計値から計算した．淀川および大和川河口地点の DIN は計算値が 0.5 mg/L 程度であり，同日の観

測値よりも高いが，その他の地点において DINが低い状態は計算値と概ね一致している． 

植物プランクトンの成長律速は，植物プランクトン種の DIN および PO4-P の半飽和定数をいずれか

の現存量が下回ることで起こる．浅海定線調査 3)によれば，大阪湾奥部表層における DIN：PO4-P のモ

ル比は，1972年から 2016年までの夏季平均値 37.91 (mol N/mol P) であるのに対し，実験期間の 2012年

8月の DIN：PO4-P モル比は 0.81であり，PO4-Pに比べて DINが枯渇した状態であった．そのため実験

期間における現場海域では，植物プランクトンの増殖は窒素により律速されていると考えられる．一

方，推定された C/N 比の水平分布は，淀川河口にて初期設定値 6.625 を下回り，阪南・岸和田沿いで

9~10 と高い値に修正された．DINと C/N比の分布を比較すると，DINが高い淀川河口において C/N比

が低下する関係が読み取れる．  

上記以外の期間においても，C/N比の推定値が淀川河口近傍で低下し，湾東岸帯で増加する傾向が見

られた．図-6.10に 8月 2日，4日，6日，10日，13日の表層 -1 m における日平均 DIN，推定 C/N比，

および，表層 DO 増加量の水平分布を示す．いずれもデータ同化後の結果を示している．また，DO の

増加量は日中 (15時)と朝方 (5時)の濃度の差である．図示した期間中，表層 DINは淀川河口および西宮

防波堤港内で高く，他の領域では 0.2 mgN/Lを下回っている．これに対して推定された C/N比は，8月

2 日には大和川河口で高く，その後，極大をとる地点は徐々に関空島付近まで南下している．DO 増加

量と C/N比の水平分布を比較すると，C/N比が初期値よりも増加した湾東部において DO増加量が高い

傾向が読み取れる．なお，一次生産が活発でない湾西部の混合域では，C/N比の増減と DOの増加量の

大小は対応していない． 

  

図-6.9 2012年 8月 8日における DIN，PO4-Pおよび推定した C/N比の表層水平分布．丸は浅海定線調査による観測

値を表す．コンターは日平均解析値を示す． 
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図-6.10 表層-1 mにおける DIN (mg L-1)，PhyCN (molC molN-1)，日中の DO増加量 (mg O2 L-1) の水平分布． 



第 6章 データ同化によるモデル改良法の提案 

－122－ 

 

6.4.4 栄養塩と推定 C/N比の関係 

図-6.11に 8月 8日および 8月 17日におけるDIN，C/N比および植物プランクトン濃度の関係を示す．

同図は横軸に表層 DIN (mgN/L)，縦軸に表層 C/N 比をとり，マーカーの色で表層クロロフィル濃度 

(mgChl/m3)を表している．ここでは，モデルグリッドの海面から第 5 層までのデータを抽出し，各グリ

ッドについて日平均をとった値をプロットしている．これらの図では，DINが高いグリッドほどC/N比

が低く，DIN が低いほど C/N 比が高い，反比例あるいは逆相関の関係が表れている．また，17 日にお

いては，クロロフィル濃度が高いグリッドほど，上記関係が当てはまり，生産性の高い海域において

この関係性が成立していると考えられる． 

次に，計算期間全体で栄養塩と推定した C/N 比の関係を調べるために，DIN の日平均値および推定

C/N 比の関係を図-6.12 に示す．ここで，図-6.12 は 100×100 の 2 次元ヒストグラムであり，色の濃い

グリッドほどその範囲に該当するデータが多いことを意味する．また，図-6.8 で確認したように，8 月

14日の淀川出水を境に，C/N比の修正傾向が変化したことに基づいて，3つの期間（出水前，出水中，

出水後）に分画して図示した．出水前では，DIN が低いとき，C/N 比が元の値である 6.625 よりも高い

値に集中していることがわかる．対して，DINが 0.5 mg/L以上では，C/N比は元の値かそれ以下の値に

修正されている．例外として，0.5 mg L-1 以下の濃度帯でも元の値を下回るデータがあるが，これらの

データについても，DINの低下に伴い，C/N比が増加する関係が当てはまる． 

出水中および出水後の期間には，C/N比の分布範囲がさらに拡大した．出水時の C/N比は，0 ~ 13の

範囲に分布している．再三の説明になるが，C/N比は植物プランクトン量に対するクロロフィルおよび

酸素増加量を評価するために使用され，C/N比がゼロに修正される状況とは即ち，モデルの予測は植物

プランクトンを増殖させようとし，一方同化した観測値はクロロフィルや DOが増加しない，というモ

デルと観測で相反する応答を示していたことが考えられる．本実験では，淀川河川流量が増加した際，

上層の低塩分層が観測値よりも厚くなり，躍層近傍のクロロフィルおよび溶存酸素の再現性が著しく

低下した．そのため，C/N比の極端な低下は，データ同化後の塩分ミスフィットの増大に起因している

図-6.11 DIN (mg L-1 ; 横軸)と PhyCN (molC molN-1 ; 縦軸)，および植物プランクトン濃度 (mg L-1 ; 点の色)の関係． 

それぞれ(a) 8月 8日，(b) 8月 17日における日平均を示す． 
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可能性がある．データ同化後の物理場の再現性が十分に向上しない際のパラメータ修正傾向は第 5章で

言及したが，本章におけるパラメータは，モデル全体で単一の値ではなく，計算格子それぞれに割り

振られているため，評価関数の影響が集中して現れなかったと考えられる．また，出水後の期間にお

ける，「低 DINかつ低 C/N比」となった計算格子は，そのほとんどが港湾部のものであり，流動水質環

境が海域側とは異なるため，海域でみられる傾向が当てはまらなかったと考えられる．  

これに対して，DIN と同じく植物プランクトンの増殖に必要な栄養塩である溶存態リン酸態リン 

(PO4-P)とC/N比の関係を同様の区間に分けて図示した（図-6.13）．出水前および出水中の期間において

PO4-P が低い状態ほど，C/N 比は初期値を中心に増減の両側に広がっている．これは DIN の出水後(図-

6.12 (c))の関係性に近く，貧 PO4-P-高 C/N比の関係性は認められない．このように，推定された C/N比

と PO4-Pの間には，明確な相関関係が認められなかった．この理由は，実験期間における湾北東海域に

おいて，ほとんどの期間で DINが一次生産の律速因子であったことにあると考えられる．DO生成量が

DINによる律速を受けるとはすなわち，DINおよび C/N比は DOのモデル観測値ミスフィット（評価関

数）に対して勾配が大きく，PO4-P は評価関数に対する勾配が小さいことを意味する．そのため，律速

図-6.12 上層における DINと C/N比の二次元ヒストグラム. 集計期間はそれぞれ，(a) 8月 1日 ~ 8月 11日，(b) 8月

12日 ~ 15日，(c) 15日 ~ 31日である． 

 

図-6.13 上層における PO4-Pと C/N比の二次元ヒストグラム. 集計期間はそれぞれ，(a) 8月 1日 ~ 8月 11日，(b) 8

月 12日 ~ 15日，(c) 15日 ~ 31日である． 
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因子ではない PO4-Pは推定されたC/N比とほとんど相関しなかったと考えるのが妥当である．言い換え

れば，律速因子が DINではなく PO4-Pである状況では，PO4-Pと推定 C/N比に関係が表れると予想され

る． 

6.5 考察 

本研究では，水温，塩分，クロロフィル，DO の観測値を 4 次元変分法により同化し，光合成による

酸素生成過程と，生合成による植物プランクトンの増殖過程の分離が，表層 DOの過飽和状態を再現す

るために有効であることを示した．ここで得られた解析値は，水温・塩分の場を同時に修正している

ため，密度場の再現性低下によって生じる DOのミスフィットが低減されている．そのため，単にモデ

ルパラメータのみを調整する方法とは異なり，密度場の不確実性による誤差の相殺の影響を低減する

ことができており，水質モデルの構造を主因とするミスフィットに焦点を絞りながら，状態変数とパ

ラメータ，それぞれの最適化された空間分布の比較を行うことができた． 

本章で実施した状態変数やパラメータの空間分布の比較は，実験的経験則がモデルの再現性を有効

に向上せしめる期間や領域などの条件，即ち経験則の適用範囲を評価できるアプローチであるといえ

る．例えば今回のデータ同化実験では，港湾域を除く湾東部海域のグリッドかつ平水時において貧栄

養塩-高 C/N 比という関係が得られた．これにより光合成のモデル構造を上述のよう改修すれば，平水

時の表層 DOの再現性を向上し得るが，出水時や港湾内部，湾奥部における再現性は必ずしも向上しな

い，といったように，新しいモデル構造への変更が再現性に及ぼす影響を事前に評価することができ

る． 

図-6.8の推定C/N比の時系列変化では，出水前に比べて出水後の推定値が大きく増加した．この変化

には様々な解釈の余地がある．例えば，混合および栄養塩供給によって植物プランクトン優占種が変

化した，などが挙げられる．ただし，ここで注意しなければならないのは，大規模な出水によって塩

分すなわち密度場の再現性が劣化していること，即ち，密度場の計算値が観測値から乖離しているこ

とである．表層塩分の時系列をみると，出水およびそれ以降の期間では，データ同化後の計算結果が

同化前とほとんど変わらない状態が 1週間程度継続している．この結果が意味するところとは，初期塩

分値の修正がモデル－観測ミスフィットの低減に寄与しないということであり，物理モデル構造また

は入力条件などの非制御要因を原因とするミスフィットである可能性がある．第 5 章で検討したよう

に，4 次元変分法において，上記の原因によって評価関数が増加することは，各制御変数の修正量が増

加し過剰な修正量が加わることを意味する．そのため，出水時および出水直後のパラメータ推定値の

妥当性は低いと考えるべきであり，現時点では，先に述べた優占種の変化などの生物化学的な応答に

関する予想をする段階にはない．  
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6.6 まとめ 

本章では，水質モデル改修の有効性を評価するために，4 次元変分データ同化法を用いた状態推定お

よびパラメータ推定を実施した．4 次元変分法によって得られた結果から，状態変数およびパラメータ

間で表現できていない関係性を見出すことができた．実施したデータ同化実験では，低 DIN 環境にお

ける C/N 比の増加傾向を有意に示すことができた．これは，現状の水質モデルに採用されている光合

成モデルにおける，「酸素生成量を植物プランクトンの増殖フラックスに比例させて算出する」計算構

造が，現実の酸素生成を表現する上で再現性低下要因となっていることを示唆している．そのため，

より現実の光合成プロセスに基づき，光合成と生合成とを別の反応過程と定義し，モデリングするこ

とで，より現実的な酸素循環構造が評価できると考えられる．  

注釈 

1) 光合成 (http://www.sc.fukuoka-u.ac.jp/~bc1/Biochem/photosyn.htm) 

2) 大阪湾定点自動観測データ配信システム (http://teiten.pa.kkr.mlit.go.jp/obweb/) 

3) 大阪府立環境農林水産総合研究所，浅海定線調査  

(http://www.kannousuiken-osaka.or.jp/publication/suisan_shiryo/index.html) 
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第 7章 結論 

本研究では，沿岸水域における観測データを用いて，3 次元流動水質モデルにおける水質モデルパラ

メータの最適化およびモデル構造改修の妥当性を評価する手法を検討した．また，同化対象とした水

質観測データの信頼性を評価する機械学習システムの構築を行った． 

本研究で得られた知見を以下にまとめる． 

第 1章では，序論として，沿岸域における水質およびその水環境解析を行うための数値モデルを取り

巻く課題について述べるとともに，本論文の目的を述べた． 

 

第 2章では，研究対象領域の大阪湾について，その地理および水質の特徴を概説し，自動モニタリン

グシステムによる溶存酸素データの変動特性に関する解析を行った．また，3 次元流動水質モデルを用

いた再現計算を実施し，観測値のみでは把握が困難な領域の時空間流動・水質変動特性の解析を行っ

た．その結果，大阪湾における流動構造や出水に伴う植物プランクトンの増殖過程，および夏季底層

で発達する貧酸素水塊を再現することができた．また，将来的な気温上昇を想定したシミュレーショ

ンを実施した結果，一次生産の最盛期が早期化する影響が貧酸素水塊の拡大を早めることが示唆され

た． 

 

第 3章では，定点自動観測システムによる水質観測データを対象とした，観測値の信頼性評価システ

ムの開発を行った．本システムを用いることで，複数地点の溶存酸素量を，気象，潮位，河川流量に

基づいて推定し，実測値が欠測あるいは異常な挙動を呈する場合においても，妥当性のある観測デー

タを再現可能であることが示された．ただし，異常期間および欠測区間における推定値の精度検証に

は本来的に限界があり，今後擬似観測値を用いた検討が必要である． 

 

第 4章では，高度な非逐次型データ同化手法である 4次元変分法に対して，自動微分手法の二重数を

導入することで，モデル変更に伴う誤差伝播用モデルの作成コストを大幅に低減する方法およびその

メカニズムについて述べた．また，二重数を用いた 4次元変分データ同化モジュールを開発し，それを

用いて状態推定を実施し，大阪湾における実観測データを 3 次元流動水質シミュレーションに同化し

た．その結果，本手法は湾奥部における密度場および水質の再現性を良好に改善することが示された． 

 

第 5章では，二重数を用いた 4次元変分法による水質モデルパラメータの最適化を実施し，その推定

精度および影響要因に関する検討を実施した．構築した 4次元変分法を用いて，密度場および水質状態

変数の初期値修正と水質パラメータ推定とを同時に実施することで，真値に近いパラメータを推定す

ることができた．また，流動モデルのモデル構造が真値を十分に表現できないような条件において大

規模な出水が発生した場合，推定されたパラメータは真値とは異なる値に修正される可能性が示唆さ

れた．さらに，出水後において真値から乖離した状態で推移することが示された．こうしたパラメー

タ推定性能の低下は，出水による物理場の再現性低下が起こりやすい沿岸域流動水質モデルに実観測

値をデータ同化した場合にも起こりうることであり，実際には真値不明なパラメータの推定結果を誤

解させる可能性がある．したがって，適切なパラメータ推定のためには，状態推定の性能低下による
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影響が小さい平水時を対象にデータ同化を適用するべきである． 

 

第 6章では，二重数を用いた 4次元変分法による状態推定および水質モデルパラメータの推定を通じ

て，水質モデル構造の妥当性を評価する手法を提案した．提案したアプローチでは，4 次元変分法によ

る誤差の逆伝播に基づく推定値について解析を行うことで，物理モデルの不完全性によるミスフィッ

ト要因を切り分けた状態で，現状の水質モデルが表現できていない状態変数およびパラメータ間の関

係性について検討することを可能とする．本研究では，植物プランクトンの光合成による酸素生成メ

カニズムに着目し，酸素生成過程と栄養塩摂取を切り分けてモデリングすることで，表層における溶

存酸素の過飽和現象の表現性能が向上する可能性を示すことができた．提案手法を用いることで，水

質モデル内構造式の改修における誤差の相殺問題を回避しつつ，その改修によってモデル性能が改善

し得るかを評価でき，水質モデルの改善に当たってデータ同化を用いる手法を提案した． 

 

観測技術とコンピュータ技術の進歩に伴って，水環境解析に用いられる水質モデルの多項目化・複

雑化が課題となっている現状において，データ同化技術が果たす役割は大きい．本研究で開発・提案

した手法は，モデル改修に先立つ評価を行うことを可能とし，不必要なモデルの複雑化を抑制するこ

とが期待される．また，観測値の信頼性評価手法は，数値モデルが表現するべき観測値を見極めるア

プローチである．これらの技術によって，観測値および数値モデルの内包する不確実性を適切に把握

し，複雑な沿岸域水質における現象理解の一助となることを期待する． 
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