

Title	Study on Elastic-Plastic Fracture Mechanics Parameters of 3D Cracks Using the Equivalent Distributed Stress Concept and a Modified Cohesive Zone Model
Author(s)	Htut, Zwe Letyar
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103232
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (ZWE LETYAR HTUT)	
Title	Study on Elastic-Plastic Fracture Mechanics Parameters of 3D Cracks Using the Equivalent Distributed Stress Concept and a Modified Cohesive Zone Model (等価分布応力概念と修正結合力モデルに基づく三次元き裂の弾塑性破壊力学パラメータ決定法に関する研究)
<p>Abstract of Thesis</p> <p>This study proposes a robust and efficient framework for evaluating elastic-plastic fracture mechanics (EPFM) parameters in three-dimensional (3D) crack geometries by employing the equivalent distributed stress (EDS) concept in combination with a modified cohesive zone model (CZM). The method achieves computational efficiency without compromising accuracy by constructing two-dimensional (2D) substitute crack models that replicate the mechanical behavior of 3D cracks. EDSs are applied to the substitute models to ensure consistency in crack length and stress intensity factor (SIF) between the original 3D geometry and its 2D representations. Validation is performed through detailed finite element (FE) simulations, demonstrating good agreement between the EDS-based method and full 3D analyses in terms of key EPFM parameters such as plastic zone size and crack tip opening displacement (CTOD).</p> <p>This dissertation is organized into six chapters, systematically presenting theoretical development, numerical formulation, and verification of the EDS method for evaluating EPFM parameters in 3D cracked bodies.</p> <p>Chapter 1 introduces the background and motivation of the study, reviews the historical development of fracture mechanics, and outlines the limitations of existing EPFM methods. The research objectives are defined in the context of extending the EDS framework to 3D crack problems.</p> <p>Chapter 2 establishes theoretical groundwork by introducing key principles such as the superposition principle, the weight function method, and the Dugdale CZM. The concept of EDS is formulated in detail, including the explanation of three distinct loading methods within the EDS framework. The advantages and limitations of each method are discussed. Additionally, this chapter introduces weight functions for 2D substitute crack models (center-through and edge cracks), which are fundamental for constructing the EDS representation in 3D analysis.</p> <p>Chapter 3 details the development of the EDS-based analysis method using the fictitious crack face loading method. It outlines the procedures for determining the EDS distribution through spline interpolation and generalized matrix inversion. A CZM formulated within the EDS framework is also introduced, and an integrated EDS-based fracture mechanics analysis system is constructed.</p> <p>Chapter 4 presents the validation of the proposed EDS-based EPFM analysis system for 3D cracks. A 3D penny-shaped crack in an infinite plate under axisymmetric loading is selected as a verification case due to its simple geometry and the availability of an analytical weight function. This chapter demonstrates the EDS analysis procedures in detail and verifies its accuracy in estimating elastic-plastic COD profiles, as well as in comparing key EPFM parameters—plastic zone size and CTOD—with existing analytical solutions.</p> <p>Chapter 5 extends the EDS methodology to semi-elliptical surface cracks, which are commonly encountered in engineering structural components. An idealized plastic zone model is adopted to establish consistent reference crack length–SIF ($a-K$) relationships for the target 3D cracks. High-precision numerical integration is incorporated into the open-source FE code WARP3D for accurate SIF evaluation. Based on FE simulations, this chapter determines reference solutions and evaluates EDS distributions and corresponding EPFM parameters at key locations along the crack front—specifically, the deepest and corner points—demonstrating the method's applicability to non-axisymmetric 3D crack geometries.</p> <p>Chapter 6 summarizes the main contributions of the research, confirms the validity and advantages of the proposed method, and discusses directions for future work, including the potential application of the EDS framework to FCP analysis.</p>	

論文審査の結果の要旨及び担当者

氏名 (ZWE LETYAR HTUT)	
	(職)
論文審査担当者	主査 教授 大沢 直樹
	副査 教授 飯島 一博
	副査 教授 麻寧緒
	副査 准教授 辰巳 晃

論文審査の結果の要旨

本研究では、3次元(3D)き裂における弾塑性破壊力学(EPFM)パラメタの評価を目的に、等価分布応力(EDS)と修正き裂結合力モデル(CZM)を組み合わせた、ロバストで効率的な解析手法を提案している。提案手法では、3Dき裂の力学的挙動を再現する2次元(2D)代替き裂モデルを構築することで、精度の低下なく計算効率を大幅に改善している。提案手法の有効性は、3次元き裂の塑性域寸法とき裂先端開口変位(CTOD)の推定結果を3次元有限要素(FE)解析結果と比較して検証している。

本論文は6章から構成され、3次元き裂のEPFMパラメタ評価のためのEDS理論、数値計算手法と精度検証を体系的に論じている。

第1章では、研究の背景と動機、先行研究のレビュー、既存のEPFM計算手法の問題点を説明し、本研究の目的がEDS理論の3Dき裂問題への拡張であることを述べている。

第2章では、重ね合わせの原理、重み関数法、Dugdaleき裂結合力モデルなどの主要原理を導入し、理論的基盤を構築している。EDSの解析理論を精密に論じ、外力、結合力、残留応力の3種類の荷重条件に対するEDS決定方法を示すとともに、開発方法の適用範囲について議論している。さらに、3次元き裂におけるEDS表現に必要な2次元代替き裂モデル(中央貫通き裂と端部き裂)の重み関数を示している。

第3章では、仮想き裂面接触力を用いたEDS解析手法の構築過程を説明している。スプライン補間と一般化逆行列によるEDS分布の決定手順を解説し、EDS理論に適合したCZMの定式化を示すとともに、EDSに基づく、統合化された破壊力学解析システムを構築している。

第4章では、3次元き裂を対象にEDSに基づくEPFM解析手法の有効性を検証している。解析対象に、形状が単純で重み関数の解析解が存在する、軸対称荷重を受ける無限板中の円形埋没き裂を選択している。EDS解析の手順を詳細に示し、弾塑性き裂開口変位プロファイルの推定精度を検証するとともに、既往の解析解との比較を通じて、EPFMパラメタ(塑性域寸法とCTOD)の推定精度を検証している。

第5章では、EDS理論を、構造部材で頻発する表面半楕円き裂に適用できるよう拡張している。理想化塑性域モデルを提案し、対象3次元き裂に対するき裂長-SIF関係を決定している。SIF評価の精度向上のため、オープンソースFEコードWARP3Dに表面力高次積分機能を追加実装している。き裂最深部および開口部で、提案手法によりEDSを決定してEPFMパラメタを評価した結果と、3次元弾塑性FE解析で計算した参照解を比較し、提案手法の非軸対称3次元き裂問題への適用可能性を示している。

第6章では、研究の主な成果を要約し、提案手法の有効性と優位性を確認し、疲労き裂伝播(FCP)解析へのEDS理論の応用を含む今後の検討課題を提示し、結論としている。

以上のように、本論文は、き裂伝播解析に基づく溶接構造物の疲労強度評価で必要な、3Dき裂EPFMパラメタの、ロバストで効率的な評価手法を開発している。これらの知見・成果は、船舶海洋構造物の長期構造安全性を向上させる上で非常に有用である。

よって本論文は博士論文として価値あるものと認める。