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ABSTRACT 

Ship and offshore structures are constantly exposed to complex cyclic and multiaxial 

loading throughout their operational life. These demanding conditions often lead to 

localized plastic deformation, creating a high risk of fatigue crack initiation and propagation. 

Accurate assessment of crack opening and closure behavior is therefore essential for 

predicting fatigue crack growth life and maintaining structural integrity. 

In the field of elastic-plastic fracture mechanics (EPFM), parameters such as plastic 

zone size and crack tip opening displacement (CTOD) are key indicators of crack tip 

behavior. While finite element (FE) analysis has traditionally been used to evaluate these 

parameters, its computational cost—particularly in fatigue crack propagation (FCP) 

problems involving numerous cycles—poses significant limitations, especially when 

tackling complex three-dimensional (3D) crack geometries. 

To address these challenges, this study proposes an efficient and accurate method 

for evaluating EPFM parameters in 3D crack geometries by extending the equivalent 

distributed stress (EDS) concept originally introduced by Toyosada et al. The EDS method, 

based on a simplified analytical cohesive zone model (CZM), is adapted to a modified 

framework suitable for 3D crack analysis. By constructing two-dimensional (2D) substitute 

crack models that replicate the behavior of 3D cracks, the proposed method achieves 

computational efficiency without sacrificing accuracy. EDSs are applied to the substitute 

models to ensure consistency in crack length and stress intensity factor (SIF) between the 

original 3D geometry and its 2D representations. 

 Validation is carried out through analytical and numerical FE simulations, 

demonstrating satisfactory agreement between the EDS-based method and reference 

solutions in terms of both plastic zone size and CTOD. These results confirm the 

effectiveness of EDS method to provide a reliable and efficient alternative for analyzing 3D 

cracks under elastic-plastic conditions. By significantly reducing computational demands, 

this approach offers a practical tool for structural integrity assessments in marine and 

offshore engineering applications. The framework established in this study lays the 

foundation for future integration with FCP analysis, thereby enhancing its utility in the long-

term performance evaluation of critical structural components. 

Keywords: Equivalent distributed stress; Cohesive zone model; Stress intensity factor; 

Plastic zone size; Crack tip opening displacement 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Engineering structures, particularly those used in demanding environments such as 

shipbuilding and offshore engineering, are routinely exposed to complex loading conditions 

throughout their service lives. These conditions often involve cyclic and multiaxial stresses 

arising from external forces such as waves, wind, current, and operational loads. Over time, 

repeated application of these stresses can lead to localized plastic deformation in structural 

components, making them vulnerable to fatigue damage. This fatigue process typically 

initiates from sites of stress concentration, such as welds, notches, and material 

imperfections, and may ultimately result in the formation and growth of fatigue cracks. If 

left unchecked, these cracks can compromise the structural integrity of critical components, 

leading to serious and sometimes catastrophic failures. 

Ensuring the structural integrity of ship and offshore structures is of paramount 

importance, not only to protect human lives but also to avoid severe environmental and 

economic consequences. Famous historical examples highlight the significance of 

understanding and managing fatigue behavior in large-scale structures. One notable case is 

the failure of the Liberty ships during World War II [1]. These cargo vessels, mass-produced 

to support wartime logistics, experienced unexpected brittle fractures, many of which were 

initiated from small cracks at welded joints under cyclic loading conditions. Another 

landmark event is the collapse of the Alexander L. Kielland offshore platform in 1980, 

which tragically resulted in the loss of 123 lives [2]. Investigations revealed that a fatigue 

crack, originating from a faulty weld, propagated under cyclic wave loading and ultimately 

caused the catastrophic failure of one of the platform’s legs. 

Such incidents highlight the critical role of fracture mechanics and fatigue crack 

growth analysis in ensuring the safety and reliability of large-scale marine structures. 

However, accurately predicting fatigue crack growth in ship and offshore structures remains 

particularly challenging due to the variable amplitude loading experienced in corrosive 

marine environments. Inaccurate estimation of crack propagation rates can lead to improper 

maintenance scheduling or unexpected structural failures, both carrying serious 

consequences. 



 
2 

 

 

Fig. 1.1 The SS Schenectady, a Liberty ship, fractured due to brittle failure while docked 

in harbor, 1943 [1] 

 

Fig. 1.2 Alexander L. Kielland offshore platform capsize accident, 1980 [2] 

Given these evolving challenges, the need for accurate assessment and deeper 

understanding of fracture mechanics parameters has never been more critical. Reliable 

evaluation of these parameters is essential for predicting fatigue crack growth and directly 

supports the development of effective design, inspection, and maintenance strategies. The 

historical failures of the Liberty ships and the Alexander L. Kielland platform serve as 

enduring reminders of the catastrophic consequences associated with inadequate fatigue 

management.  

As marine structures continue to grow in complexity and face more aggressive 

service environments, advancing fracture mechanics methodologies, particularly in the 

areas of crack growth evaluation, fatigue life prediction, and fracture parameter estimation, 

remains a vital research priority. These efforts contribute significantly toward ensuring safer, 

more reliable, and economically viable engineering solutions for the marine industry. 
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1.2 History and Overview of Fracture Mechanics 

Fracture mechanics has evolved as a fundamental discipline for understanding how 

materials and structures fail under various loading conditions. Originating from early 

theoretical models in the early 20th century, the field has expanded significantly through 

successive decades, driven by both scientific advances and the demands of engineering 

practice. Early contributions provided the foundation for quantifying crack behavior, while 

post-war research introduced critical modifications that connected theoretical models with 

real-world observations. Subsequent developments from the 1960s onward have refined the 

understanding of crack growth, material toughness, and fatigue under increasingly complex 

loading scenarios. Today, fracture mechanics continues to evolve, incorporating advanced 

computational methods, new materials, and multidisciplinary approaches. This section 

provides a historical overview of key developments in fracture mechanics, organized by 

major periods of research progress. 

1.2.1 Early Foundations of Fracture Theory 

Initial experimental insights into the fracture behavior of materials can be traced 

back to Leonardo da Vinci, who, several centuries earlier, observed that the tensile strength 

of iron wires decreased with increasing wire length [3]. This empirical observation 

suggested a flaw-controlled mechanism of failure, where larger specimens inherently 

possessed a higher probability of containing critical flaws. Although da Vinci’s findings 

were qualitative, they hinted at the fundamental role of material imperfections in governing 

mechanical strength. 

A quantitative framework was first established by Inglis in 1913 [4], who performed 

a stress analysis for an elliptical hole in a plate subjected to tension, demonstrating that sharp 

flaws create localized stress concentrations significantly greater than the nominal applied 

stress. Building upon this foundation, Griffith in 1920 [5] proposed the first energy-based 

fracture theory, developing a fracture criterion based on the first law of thermodynamics. 

According to Griffith’s model, crack propagation becomes unstable when the decrease in 

elastic strain energy resulting from an incremental crack extension exceeds the surface 

energy required to create new free surfaces. 

Griffith energy balance approach successfully explained the observed inverse 

relationship between flaw size and tensile strength in brittle materials such as glass. 
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However, the model inherently assumed that fracture resistance derived exclusively from 

the material’s surface energy, thereby limiting its applicability to ideally brittle solids. 

Efforts to apply the Griffith theory to ductile materials, such as metals, were unsuccessful 

due to the absence of plastic deformation mechanisms in the original formulation. 

Significant theoretical advancements were not introduced until 1948, when modifications 

to Griffith’s framework incorporated plastic energy dissipation, thereby enabling a more 

accurate description of fracture behavior in metallic systems. 

1.2.2 Evolution of Fracture Mechanics after World War II 

Following the widespread failures of Liberty ships during World War II, fracture 

mechanics evolved from a scientific curiosity into an essential engineering discipline. Dr. 

Irwin, leading the research group at the US Naval Research Laboratory, extended Griffith’s 

1920 fracture model by incorporating the energy dissipated through local plastic 

deformation in metals [6], an idea also independently proposed by Orowan [7] and Mott [8]   

further refined the theoretical framework by addressing rapidly propagating cracks. 

In 1956, Irwin [9] introduced the energy release rate, a reformulation of Griffith’s 

theory suited for practical engineering applications. Drawing on Westergaard’s 1938 

analytical solutions for sharp cracks [10], Irwin established that near-tip stresses and 

displacements could be characterized by a single parameter, later known as the stress 

intensity factor, SIF [11]. Williams independently derived similar crack-tip solutions using 

a different approach [12]. 

Early successful applications reinforced the value of fracture mechanics. In 1956, 

Wells [13] employed fracture mechanics to explain the catastrophic fuselage failures of the 

Comet aircraft, attributing them to fatigue cracks initiated at poorly reinforced, square-

cornered windows. In 1957, Winne and Wundt [14] utilized Irwin’s energy release rate 

method to predict and prevent the failure of large steam turbine rotors at General Electric 

Corporation. 

Despite early successes, fracture mechanics initially faced resistance within parts of 

government and industry. In 1960, Paris and his colleagues [15] proposed a fracture 

mechanics-based model for fatigue crack growth, challenging the prevailing S–N curve 

approach and marking a pivotal advancement in fatigue analysis. 
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1.2.3 Development of Fracture Mechanics: 1960–1980 

Following World War II, fracture mechanics evolved rapidly, particularly between 

1960 and 1980, when researchers addressed limitations of linear elastic fracture mechanics 

(LEFM) under significant plastic deformation. Irwin [16], Dugdale [17], and Barenblatt [18] 

introduced corrections for crack-tip plasticity, while Wells [19] proposed the CTOD as a 

new fracture parameter for ductile materials. 

Rice [20] developed the J-integral to characterize nonlinear material behavior, 

building on Eshelby’s earlier conservation integrals [21]. Hutchinson [22], and Rice and 

Rosengren [23] further related the J-integral to crack-tip stress fields, establishing it as both 

an energy release rate and a nonlinear stress-intensity parameter. 

The nuclear power industry’s interest in fracture toughness during the 1970s 

accelerated the adoption of J-integral methods. In 1971, Begley and Landes [24] 

successfully applied the J-integral to characterize nuclear pressure vessel steels, which led 

to the publication of standardized J-testing procedures a decade later (ASTM E813, 1981) 

[25]. Shih and Hutchinson [26] later provided a theoretical framework for fracture design 

based on the J-integral, which was formalized in the Electrical Power Research Institute 

fracture handbook [27]. 

In parallel, the UK advanced CTOD methodology for welded structures, driven by 

North Sea oil developments. Burdekin and Dawes [28] introduced the CTOD design curve, 

while UK nuclear industries developed fracture assessments based on strip yield models 

(SYMs). Shih [29] demonstrated the relationship between the J-integral and CTOD, leading 

to a convergence of US and UK approaches. Today, both parameters are widely used to 

characterize fracture behavior in various materials. Much of the theoretical foundation of 

dynamic fracture mechanics was laid during this period. 

1.2.4 Advancements in Fracture Mechanics: 1980–Present 

Since 1980, fracture mechanics has expanded significantly, driven by the demand 

for safer, more reliable structures across industries such as aerospace, nuclear power, 

transportation, and offshore engineering. Advances have been made in both theoretical 

development and practical applications, extending fracture mechanics beyond traditional 

metals to composites, polymers, and advanced ceramics. 
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EPFM has been further refined, with widespread adoption of J-integral and CTOD 

approaches for characterizing fracture toughness across a wide range of materials. Testing 

standards, such as ASTM E1820, were established to formalize procedures for measuring J-

integral and CTOD, enhancing consistency and reliability in material qualification [30]. 

Recent research trends include the development of microstructural fracture models 

and frameworks that relate local fracture processes to global material behavior. Closely 

related are efforts to characterize and predict the geometry dependence of fracture 

toughness—an important consideration when conventional, single-parameter fracture 

mechanics approaches prove insufficient. 

The development of computational fracture mechanics, especially FE methods with 

fracture criteria, enabled detailed simulations of crack initiation and propagation in complex 

structures [31]. Extended finite element method (XFEM) [32] and phase-field models 

(PFMs) have been introduced to simulate fracture processes without requiring predefined 

crack paths [33,34]. 

With the emergence of advanced materials such as fiber-reinforced composites and 

nanomaterials, new fracture mechanics concepts have been necessary. Multiscale modeling 

approaches have been developed to bridge material behavior from the atomic scale to the 

structural scale [35]. 

Structural integrity assessments have also evolved, supported by guidelines like the 

R6 procedure in the UK and the ASME Boiler and Pressure Vessel Code in the US [36]. 

These frameworks integrate fracture mechanics with probabilistic approaches to account for 

uncertainties in material properties, loading, and flaw detection. 

Today, fracture mechanics continues to play a central role in the design, assessment, 

and life-extension of critical structures. The integration of machine learning and data-driven 

approaches with traditional fracture mechanics analysis is an emerging trend, promising 

further improvements in prediction accuracy and decision-making for structural safety 

[37,38]. 

1.3 Development of Fracture Mechanics Frameworks 

As fracture mechanics evolved from its early foundations through the post-war 

period and into modern applications, it became evident that a systematic framework was 
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necessary to characterize and predict crack initiation and growth across a wide range of 

materials and loading conditions. Early developments were largely based on linear elastic 

assumptions, which provided a fundamental understanding of brittle fracture but proved 

insufficient when addressing the behavior of more ductile materials that exhibit significant 

plastic deformation at crack tips. 

The growing demand for safer and more reliable structures, coupled with the use of 

increasingly diverse materials, highlighted the limitations of purely linear elastic 

approaches. Consequently, the discipline expanded to incorporate plasticity effects, leading 

to the establishment of EPFM alongside traditional LEFM. The primary distinction between 

these frameworks lies in the development of plastic deformation around the crack tip during 

the fracture process, as illustrated in Fig. 1.3. 

 

Fig. 1.3 Schematic illustration of crack-tip plastic deformation fields under LEFM and 

EPFM conditions 

These two frameworks now form the foundation of modern fracture mechanics, 

providing critical tools for evaluating structural integrity under both brittle and ductile 

fracture conditions. 

The following subsections provide a detailed discussion of the principles, 

assumptions, and parameters associated with LEFM and EPFM. 
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1.3.1 Linear Elastic Fracture Mechanics 

LEFM provides the foundational framework for analyzing crack initiation and 

propagation under the assumption that the material remains linearly elastic up to fracture. 

This approach is particularly well-suited for brittle materials or situations where plastic 

deformation is confined to a very small region near the crack tip and can be neglected in the 

overall structural response. 

The primary parameter governing fracture in LEFM is the SIF, K, which 

characterizes the intensity of the stress field near the crack tip. When K reaches a critical 

value, known as the fracture toughness KIC, rapid crack propagation occurs, leading to 

structural failure. LEFM also assumes that the stress and displacement fields near the crack 

tip exhibit a singular behavior, following an inverse square root dependence on the distance 

from the crack tip. 

Classical solutions developed within the LEFM framework, such as those by Irwin 

[9] and Westergaard [10], have provided powerful tools for assessing structural integrity and 

designing against fracture in various engineering applications. However, as materials with 

higher ductility and structures subjected to complex loading became more common, the 

limitations of LEFM became increasingly apparent. In particular, LEFM does not 

adequately capture the effects of plastic deformation at the crack tip. Moreover, it may not 

be valid for fatigue crack growth when plasticity-induced crack closure (PICC) significantly 

affects propagation behavior [39]. 

As a result, for materials and conditions where plasticity plays a non-negligible role, 

an extended framework capable of addressing these phenomena was necessary. This need 

led to the development of EPFM. 

1.3.2 Elastic-Plastic Fracture Mechanics 

EPFM extends the principles of fracture mechanics into the regime where the 

assumptions of linear elasticity no longer hold. Unlike LEFM, where the crack tip is 

modeled as an idealized sharp point with an associated stress singularity, EPFM recognizes 

that plastic deformation occurs ahead of the crack tip, leading to blunting and redistribution 

of the stress and strain fields. This plasticity substantially influences crack growth behavior, 

making linear elastic models insufficient for accurately predicting fracture in ductile 

materials or under large-scale yielding conditions. 
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The development of EPFM has been critical for enabling the safe design and 

evaluation of structures operating under more demanding environments, where higher loads, 

PICC, complex geometries, and ductile materials are often encountered. By incorporating 

the effects of plastic deformation, EPFM provides a more comprehensive framework for 

assessing fracture processes across a wide range of engineering applications. 

Within EPFM, several specialized parameters have been formulated to characterize 

crack initiation and propagation under elastic-plastic conditions. These parameters serve as 

the foundation for evaluating fracture behavior when plasticity cannot be neglected. The 

following section introduces and discusses the key parameters utilized in EPFM, which are 

essential for quantifying the effects of nonlinear material behavior on crack growth. 

1.4 Key EPFM Parameters 

As discussed in the previous section, EPFM provides the framework necessary to 

evaluate fracture behavior in materials where significant plastic deformation occurs at the 

crack tip. Central to EPFM are parameters that quantitatively characterize the crack driving 

forces and resistance mechanisms under elastic-plastic conditions. Among these, the plastic 

zone size, the CTOD, and the J-integral are of particular importance. 

Each parameter captures a different aspect of the complex stress and strain fields 

near the crack tip. The plastic zone size quantifies the extent of plasticity influencing crack 

propagation, CTOD provides a physical measure of crack tip deformation, and J-integral 

offers an energy-based perspective. A thorough understanding of these parameters is 

essential not only for accurate fracture assessments but also for the development of 

advanced evaluation methods. 

1.4.1 Plastic Zone Size 

When a crack is present in a ductile material, the region near the crack tip 

experiences very high stress levels, often exceeding the material’s yield strength. As a result, 

a zone of plastic deformation—referred to as the plastic zone—forms around the crack tip 

as illustrated in Fig. 1.4. The size and shape of this plastic zone play a crucial role in 

determining the material’s fracture behavior, especially under elastic-plastic conditions. 

The plastic zone is influenced by several factors, including the applied load, material 

properties, and the stress state around the crack tip. Under plane stress conditions, which are 



 
10 

 

typical of thin specimens, the plastic zone tends to be larger and more spread out. In contrast, 

under plane strain conditions, which dominate in thicker materials, the plastic zone is 

smaller and more confined. This difference significantly affects the material’s apparent 

toughness and the development of crack tip fields. 

Understanding the plastic zone size is important because it reflects how much energy 

is being absorbed through plastic deformation, and it helps determine the applicability of 

fracture models. If the plastic zone is small relative to the crack size and specimen 

dimensions, LEFM may be sufficient. However, when the plastic zone becomes large, 

EPFM must be employed. 

The plastic zone also provides valuable insight into crack tip shielding, crack 

blunting, and material toughening mechanisms, all of which can contribute to increased 

fracture resistance. Accurate estimation of the plastic zone size is vital for numerical 

simulations and for the design of damage-tolerant structures. 

 

Fig. 1.4 Illustration of plastic zone at the crack tip [3] 

1.4.2 Crack Tip Opening Displacement 

CTOD plays a pivotal role in characterizing the deformation behavior of ductile 

materials. It provides a direct and physical measure of the displacement at the crack tip, 

offering clear insight into the local response of a material as it transitions from stable 

deformation to fracture. 

Historically, the concept of CTOD was introduced in the early 1960s by Wells [19], 

who observed that ductile materials exhibit a consistent opening displacement at the crack 

tip just before fracture. His experiments on mild steel demonstrated that even under 
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significant plastic deformation, the amount of opening at the crack tip remained nearly 

constant at the onset of crack propagation. This observation laid the groundwork for CTOD 

as a fracture criterion, particularly effective for materials where plasticity plays a dominant 

role. 

CTOD is defined as the displacement between the upper and lower crack surfaces at 

a specified point near the crack tip, typically at the original crack tip location and the 90 deg 

intercept as illustrated in Fig. 1.5. It captures the amount of opening induced by applied 

loads, reflecting the material’s resistance to crack growth in the presence of plastic 

deformation. 

 

Fig. 1.5 Schematic definitions of CTOD: (a) displacement at the original crack tip;         

(b) displacement at the intersection of a 90 deg vertex drawn between the crack flanks [3] 

There are several methods to experimentally determine CTOD, depending on the 

geometry and loading conditions of the specimen: 

• Direct Measurement: Using high-resolution extensometers or digital image 

correlation (DIC), the opening displacement at the crack tip can be measured directly 

during testing. This method is common in standardized fracture toughness tests such 

as the BS7448 for metallic materials [40]. 

• Clip Gauge Method: In single edge notch bend (SENB) or compact tension (CT) 

specimens, clip gauges attached at the crack mouth measure the crack mouth 

opening displacement (CMOD), from which CTOD can be inferred through 

geometry-based calibration relationships [41]. 
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• Numerical Estimation: FE analysis is frequently used to determine CTOD from 

simulated stress and displacement fields, especially in cases where direct 

measurement is impractical [42]. 

A simplified but insightful method to estimate CTOD is through the SYM, originally 

developed by Dugdale [17] and later extended by others. This model idealizes plastic 

deformation at the crack tip as a narrow zone of yielded material (the strip) extending ahead 

of the crack in an otherwise elastic medium. The size of the strip-yield zone, or plastic zone, 

is defined by the requirement of finite stresses at the crack tip. CTOD can be defined as the 

opening displacement at the end of the strip-yield zone. Thus, the SYM provides a means to 

estimate both CTOD and the plastic zone size. A detailed discussion of this model is 

presented in Section 2.1.3 of Chapter 2. 

1.4.3 J-Integral 

In 1968, Rice [20] considered the changes in potential energy associated with crack 

growth in nonlinear elastic materials, recognizing that such behavior could realistically 

approximate plastic deformation as long as no unloading occurred. Through this work, Rice 

derived a fracture parameter known as the J-integral, a contour integral that can be evaluated 

along any arbitrary path enclosing the crack tip, as illustrated in Fig. 1.6 [3]. He 

demonstrated that the J-integral is equivalent to the energy release rate for a crack in 

nonlinear elastic material. 

 

Fig. 1.6 Arbitrary contour path enclosing the crack tip in non-linear elastic material [3] 

Building on this foundation, the J-integral has become a fundamental parameter in 

EPFM. It characterizes the intensity of the stress and strain fields near a crack tip under 

elastic-plastic conditions, extending the concept of crack driving force beyond the limits of 

linear elasticity. Defined as the energy release rate per unit crack extension, the J-integral 

provides a generalized and powerful measure of the fracture driving force. 
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Mathematically, the J-integral is expressed as: 

i
i

uJ wdy T ds
xΓ

∂ = − ∂ ∫  (1.1) 

where Γ is a contour around the crack tip, w is the strain energy density, Ti is the traction 

vector, ui is the displacement vector, and s is the arc length along the contour. 

One of the major advantages of the J-integral is its path-independence under 

conditions of monotonic loading and absence of crack tip plastic instability, allowing it to 

be evaluated on contours remote from the crack tip where numerical solutions are more 

stable. The J-integral thus forms the basis for many fracture toughness tests and crack 

growth criteria in elastic-plastic materials. 

However, while the J-integral effectively captures the global energy-based 

characteristics of crack propagation, it does not directly account for the localized 

deformation and crack opening behavior critical to understanding crack initiation. 

Therefore, this thesis focuses on physical parameters, particularly plastic zone size and 

CTOD, which provide more localized insight essential for advancing fracture assessments 

of complex 3D crack geometries, a task that remains a significant challenge in EPFM. 

1.5 Existing Methods and Challenges in Evaluating EPFM Parameters 

Plastic zone size and CTOD are widely recognized as key parameters in EPFM, 

particularly in studies related to PICC and FCP [43–48]. Conventionally, these parameters 

are evaluated through numerical fracture mechanics analyses, often employing FE methods. 

While FE analysis provides a straightforward and comprehensive approach, it becomes 

computationally impractical for FCP problems involving numerous loading cycles, where 

repeated mesh updates are required. Consequently, despite its accuracy, FE analysis faces 

significant limitations in practical applications, particularly for evaluating EPFM 

parameters of 3D crack geometries. This challenge has led to increasing demand for faster 

and more efficient alternative methods. 

In response to such needs, Newman [49,50] developed the fatigue crack growth 

analysis program FASTRAN, based on the concept of PICC. This program utilizes a 2D 

analytical SYM, originally derived from the Dugdale model [17] but modified to leave 

plastically deformed material in the wake of the advancing crack. By superimposing two 
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elastic problems—one involving a cracked plate under remote uniform stress, and the other 

involving the same cracked plate subjected to a uniform stress distributed over a segment of 

the crack surface—the plastic zone size and crack face displacements can be estimated. 

Newman’s SYM has since become one of the most influential analytical frameworks for 

crack closure and FCP analysis. However, the extension of this model to 3D crack 

geometries and complex loading conditions remains limited, as it has not been fully 

validated for such cases. The effectiveness of SYM in accurately addressing complex stress 

fields and crack propagation behavior of 3D cracks continues to be an open issue, 

necessitating further research and validation. 

In parallel with SYM developments, PFMs have also gained significant attention in 

fracture mechanics due to their ability to model complex crack propagation without 

requiring explicit crack tracking [51–53]. PFMs offer significant advantages, such as 

capturing evolving crack patterns, handling multiple interacting fractures, and providing 

smooth crack interface representations. However, these models are computationally 

intensive and typically require fine mesh discretization, which limit their feasibility for 

large-scale or industrial FCP applications [54,55]. Although recent advancements, such as 

adaptive mesh refinement techniques and improved energy formulations, have enhanced the 

computational efficiency of PFMs [56–58], a substantial gap remains between academic 

research and practical implementation. Notably, no widely available PFM-based FCP 

analysis code currently exists that could be easily utilized by practicing engineers for fatigue 

design purposes. Consequently, despite their promise, PFMs have not yet supplanted simpler 

and more practical methods like SYM in engineering practice, especially where 

computational simplicity and ease of use are essential. 

Efforts have also been made to extend numerical approaches to 3D crack problems. 

Kelly and Nowell [59] proposed a general method for determining the plastic zone size of 

cracks in 3D bodies, employing a Dugdale-type penny-shaped crack model. Their approach 

uses an eigenstrain method, discretizing the elastic and plastic regions into triangular 

elements to calculate stresses induced by specified crack surface displacements. However, 

the accuracy of this method heavily depends on the refinement of the mesh, and oscillations 

may occur in the computed crack opening displacement (COD) profiles, posing challenges 

for practical applications. 

Building further upon SYM concepts, Yamashita and Gotoh [60] investigated PICC, 

and evaluated elastic-plastic COD profiles of 3D surface cracks by incorporating weight 
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function methods [61,62] into the SYM framework. Although their method provided 

improvements in estimating EPFM parameters for 3D cracks, a major challenge remains: 

the development of SYMs applicable to arbitrary 3D crack shapes requires the derivation 

and application of corresponding original 3D weight functions, a task that is mathematically 

complex and practically demanding. 

In response to these challenges, the EDS approach was introduced by Toyosada and 

Niwa [63], based on the Dugdale model and the SYM concept, as a computationally efficient 

and physically interpretable alternative. The EDS method transforms a complex crack 

geometry into an equivalent 2D crack by applying a fictitious crack face traction (CFT), 

thereby preserving the same SIF characteristics. This enables the analysis of EPFM 

parameters, such as plastic zone size and CTOD, without requiring complex remeshing or 

full-field stress calculations. Moreover, this method lends itself well to analytical and semi-

analytical formulations, which are particularly advantageous when dealing with fatigue 

analysis involving repetitive crack extension. Unlike FE or PFM approaches that demand 

extensive numerical effort, EDS can offer rapid estimations of key EPFM parameters with 

accuracy sufficient for practical design and safety assessments. Furthermore, its theoretical 

foundation based on fictitious CFT enables straightforward extension to different loading 

conditions and geometries, provided that the corresponding SIF relationships can be 

obtained or approximated. 

However, existing EDS-based studies have primarily focused on simple 2D 

geometries [64]. For the EDS concept to be utilized effectively in real-world engineering 

applications, it must be generalized to accommodate arbitrary 3D crack shapes and validated 

against reliable reference solutions. This gap presents both a challenge and an opportunity: 

by extending the EDS methodology to 3D crack configurations, the method could serve as 

a powerful alternative to traditional fracture mechanics approaches, particularly in contexts 

where efficiency, interpretability, and adaptability are essential. 

Accordingly, this dissertation is driven by the aim of enhancing the applicability of 

the EDS method to 3D crack geometries and to integrate it into a broader framework for 

EPFM analysis. The specific objectives and structure of this research are outlined in the 

following sections. 
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1.6 Objectives of Research 

As discussed in the preceding section, while several methods—ranging from FE 

analysis to analytical models like SYM and emerging approaches such as PFMs—have 

contributed to the evaluation of EPFM parameters, significant challenges persist, 

particularly for practical applications involving 3D crack geometries under elastic-plastic 

conditions. Existing methods either suffer from prohibitive computational demands, are 

limited to specific idealized crack shapes, or require complex mathematical formulations 

that hinder their widespread adoption in engineering practice. 

The primary objective of this research is to develop a practical, efficient, and 

accurate method for evaluating EPFM parameters of 3D cracks by extending the EDS 

framework. Building on the promising results demonstrated for 2D crack problems, this 

study seeks to generalize the EDS approach to more complex 3D crack configurations, 

where conventional methods face substantial limitations. 

Specifically, the goals of this research are: 

• To establish a theoretical formulation for applying the EDS method to 3D cracks, 

ensuring that essential fracture parameters such as plastic zone size and CTOD can 

be accurately estimated while maintaining computational efficiency. 

• To develop a practical computational procedure for determining the EDS 

distribution for 3D cracks, including the adaptation of iterative schemes for 

reproducing the crack length–SIF relationships under elastic-plastic conditions. 

• To validate the proposed EDS-based method by comparing its predictions of key 

EPFM parameters with high-fidelity FE solutions and available reference data for 

representative 3D crack configurations. 

While the current scope focuses on establishing and validating the EDS approach 

for the efficient evaluation of EPFM parameters, its extension to FCP problems is identified 

as a future direction. The outcomes of this research are expected to contribute a new 

analytical framework to the field of EPFM, bridging the gap between computationally 

intensive numerical simulations and simplified analytical models, and offering practical 

value for engineering applications involving complex 3D crack problems. 
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1.7 Structure and Overview of the Dissertation 

This dissertation is organized into six chapters, systematically presenting theoretical 

development, numerical formulation, and verification of the EDS method for evaluating 

EPFM parameters in 3D cracked bodies. 

• Chapter 1 introduces the background and motivation of the study, reviews the 

historical development of fracture mechanics, and outlines the limitations of existing 

EPFM methods. The research objectives are defined in the context of extending the 

EDS framework to 3D crack problems. 

• Chapter 2 establishes theoretical groundwork by introducing key principles such as 

the superposition principle, the weight function method, and the Dugdale CZM. The 

concept of EDS is formulated in detail, including the explanation of three distinct 

loading methods within the EDS framework. The advantages and limitations of each 

method are discussed. Additionally, this chapter introduces weight functions for 2D 

substitute crack models (center-through and edge cracks), which are fundamental for 

constructing the EDS representation in 3D analysis. 

• Chapter 3 details the development of the EDS-based analysis method using the 

fictitious crack face loading method. It outlines the procedures for determining the 

EDS distribution through spline interpolation and generalized matrix inversion. A 

CZM formulated within the EDS framework is also introduced, and an integrated 

EDS-based fracture mechanics analysis system is constructed. 

• Chapter 4 presents the validation of the proposed EDS-based EPFM analysis 

system for 3D cracks. A 3D penny-shaped crack in an infinite plate under 

axisymmetric loading is selected as a verification case due to its simple geometry 

and the availability of an analytical weight function. This chapter demonstrates the 

EDS analysis procedures in detail and verifies its accuracy in estimating elastic-

plastic COD profiles, as well as in comparing key EPFM parameters—plastic zone 

size and CTOD—with existing analytical solutions. 

• Chapter 5 extends the EDS methodology to semi-elliptical surface cracks, which 

are commonly encountered in engineering structural components. An idealized 

plastic zone model is adopted to establish consistent reference crack length–SIF (a–

K) relationships for the target 3D cracks. High-precision numerical integration is 

incorporated into the open-source FE code WARP3D for accurate SIF evaluation. 
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Based on FE simulations, this chapter determines reference solutions and evaluates 

EDS distributions and corresponding EPFM parameters at key locations along the 

crack front—specifically, the deepest and corner points—demonstrating the 

method’s applicability to non-axisymmetric 3D crack geometries. 

• Chapter 6 summarizes the main contributions of the research, confirms the validity 

and advantages of the proposed method, and discusses directions for future work, 

including the potential application of the EDS framework to FCP analysis. 

Together, these chapters establish a comprehensive framework for analyzing 3D 

cracks under elastic-plastic conditions using the EDS approach, delivering both theoretical 

foundations and practical guidance for engineering applications.  
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Basic Principles 

This chapter presents the theoretical background essential for understanding the 

framework of the present study. It begins by reviewing fundamental principles employed in 

the EDS method, including the superposition principle, the weight function approach, and 

the Dugdale CZM. These concepts provide the foundation for analyzing crack behavior and 

evaluating SIFs in elastic and elastic-plastic materials. Building upon these basic principles, 

the concept of EDS is then introduced. The EDS method serves as the core analytical tool 

in this study, offering a means to represent the crack opening behavior of 3D cracks in a 

simplified yet effective manner. Through this theoretical foundation, the subsequent 

chapters will develop and apply the EDS-based methodology to address the objectives of 

the research. 

2.1.1 Superposition Principle 

The superposition principle is a fundamental concept in LEFM. It states that the 

response of a linear elastic system to multiple loads can be obtained by summing the 

individual responses caused by each load acting separately. This principle greatly facilitates 

the analysis of SIFs in cracked bodies by allowing complex problems to be decomposed into 

simpler, more manageable subproblems. 

To illustrate the application of the superposition principle in the present study, 

consider first an isotropic elastic uncracked body subjected to a remote stress distribution 

σP(x). When σP(x) is applied, it induces an internal traction distribution tP(x) along the plane 

corresponding to the would-be crack face, indicated by the dotted line in Fig. 2.1(a). 

Analysis of the stresses along this dotted line reveals that the internal tractions tP(x) are equal 

in magnitude to the applied remote stress σP(x). 

In order to create a stress-free condition along the dotted line, opposing stresses of 

magnitude σP(x) must be applied along the dotted line, as shown in Fig. 2.1(b). The stresses 

induced by the remote loading σP(x) along the dotted line are referred to as the opening 

stresses tP(x), while the opposing stresses applied to cancel them out are termed the crack 

closing stresses, denoted as -tP(x). It is important to note that the opening stresses tP(x) 
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generated by the remote loading lead to a crack opening condition and contribute directly to 

a nonzero SIF. 

 
Fig. 2.1 An isotropic elastic uncracked body: (a) remote stress σP(x) inducing internal 

opening tractions tP(x); (b) closing tractions -tP(x) 

Now, consider an isotropic elastic cracked body subjected to a remote stress σP(x), 

as shown in Fig. 2.2(a). According to the superposition principle, this configuration can be 

decomposed into two subproblems, as illustrated in Fig. 2.2(b) and (c). 

• One configuration consists of the crack subjected solely to the opening tractions tP(x)  

(Fig. 2.2(b)). 

• The other configuration consists of the crack subjected to the remote stress σP(x) 

together with the closing tractions -tP(x) (Fig. 2.2(c)). 

In the latter case (Fig. 2.2(c)), the applied remote stresses and the closing tractions 

cancel each other out along the crack surfaces, resulting in a clamped crack with no crack 

opening. Consequently, the SIF for this configuration is zero. Mathematically, this can be 

expressed as: 

(a) (b) (c)K K K= +  (2.1) 

which reduces to 

(a) (b) 0K K= +  (2.2) 

Therefore, the SIF for the cracked body under the remote stress σP(x) (Fig. 2.2(a)) 

is equal to that for the crack subjected only to the opening tractions tP(x) (Fig. 2.2(b)). i.e., 
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(a) (b)K K=  (2.3) 

This decomposition enables a more tractable analysis by isolating the effects of 

internal tractions and external loads separately. The approach is particularly effective when 

combined with the weight function method, providing an efficient means for calculating 

SIFs for arbitrary stress distributions. 

 

Fig. 2.2 Superposition principle: (a) crack under remote stress σP(x); (b) crack under 

opening tractions tP(x); (c) crack under remote stress σP(x) and closing tractions -tP(x) 

2.1.2 Weight Function Approach 

The weight function approach is a widely used method in fracture mechanics for 

calculating SIFs under arbitrary stress distributions without directly solving complex 

boundary value problems. A weight function is defined as a fundamental solution that 

characterizes how a unit load applied along the crack surface contributes to SIF. Once the 

weight function is known for a given crack geometry and boundary condition, the SIF under 

any applied stress can be obtained by a simple integration. 

For example, consider an edge-cracked elastic body with a crack length a. The SIF 

resulting from a unit force applied at a point x, as shown in Fig. 2.3(a), can be interpreted 

as the weight function g(x,a). When a distributed traction stress t(x) is applied along the 

crack faces, as illustrated in Fig. 2.3(b), the corresponding SIF, K, can be mathematically 

expressed as: 

0
( ) ( , )

a

x
K t x g x a dx

=
= ∫  (2.4) 
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A graphical representation of the weight function approach is shown in Fig. 2.3(c), 

where the area under the curve of t(x)g(x,a) corresponds to the resulting SIF, K.  

 

Fig. 2.3 Concept of the weight function approach: (a) unit force applied at position x 

defining the weight function g(x,a); (b) distributed traction stress t(x) applied along the 

crack faces; (c) graphical representation of SIF, K as the area under the curve t(x)g(x,a) 

The weight function depends solely on the geometry of the cracked body and the 

crack configuration, and is independent of the specific external loading. Thus, once 

determined, it offers an efficient and flexible means of evaluating SIFs for various loading 

conditions through straightforward integration. However, as discussed in Section 1.5, the 

evaluation of SIFs in the development of 3D SYMs using their corresponding 3D weight 

functions remains mathematically complex and practically challenging. 

In the present study, the weight function approach is employed to calculate the 

equivalent SIFs of 3D cracks via 2D substitute crack bodies, forming a foundation for the 

development of the EDS method. 

2.1.3 Dugdale Cohesive Zone Model 

The Dugdale CZM, introduced in 1960 [17], is a foundational approach for 

describing crack tip behavior in ductile materials. It addresses a key limitation of LEFM—

the assumption of an infinite stress singularity at the crack tip—by introducing a finite 

plastic (cohesive) zone where material separation occurs under a constant yield stress. 

In this model, the crack does not terminate abruptly. Instead, it is considered to be 

physically extended by a cohesive zone of finite length, within which plastic deformation 

resists further crack opening. The material in this zone yields at a constant stress, denoted 
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by σY, thereby eliminating the stress singularity and providing a more realistic description 

of ductile fracture. 

Consider a centrally cracked, thin, elastic-perfectly plastic sheet subjected to an 

external tensile stress σP, as illustrated in Fig. 2.4. The physical crack has a half-length c, 

and a cohesive zone of length rp develops, where the material yields under a constant stress 

σY. For plane strain conditions, the yield stress is multiplied by a plastic constraint factor λ 

(i.e., λσY) to account for the effect of thickness constraint. The total length including the 

physical crack and the plastic zone is defined as the fictitious crack length a. 

 

Fig. 2.4 Schematic of the Dugdale CZM for a centrally cracked, thin elastic-perfectly 

plastic sheet under tensile stress σP, with cohesive zones of length rp exerting closing 

tractions equal to the material yield stress σY 

The Dugdale model is governed by two main conditions: 

• Equilibrium: The applied external stress and the cohesive (closing) tractions within 

the plastic zone must be balanced to ensure force equilibrium. 

• CTOD: The opening displacement at the physical crack tip must match the 

displacement produced by the yielded zone, ensuring continuous deformation. 
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Under these conditions, the total SIF at the fictitious crack tip is given by the 

superposition of: 

• the SIF, KP, due to external loading σP, 

• the SIF, KY, due to closing tractions σY within the plastic zone  

To prevent stress singularity at the fictitious crack tip, the net SIF must be zero: 

0P YK K+ =  (2.5) 

This signifies that the crack is stabilized under the combined influence of external 

stress and internal cohesive resistance. 

The Dugdale model provides a conceptual basis for many modern SYMs, and 

fracture process zone models used in EPFM . It plays a significant role in understanding and 

modeling crack tip plasticity and has been widely extended to 3D fracture problems. 

In the present study, the Dugdale model offers an essential analogy for understanding 

the role of distributed internal tractions along the crack faces, particularly when developing 

simplified 2D substitute models for analyzing 3D elastic-plastic crack problems. 

2.2 Equivalent Distributed Stress 

This study introduces the concept of EDS for 3D cracks to represent the mechanical 

effect of complex 3D crack-tip plasticity through a simplified 2D models. The approach 

builds upon the original EDS theory proposed by Toyosada et al., enabling the evaluation of 

EPFM parameters in 3D cracked bodies while significantly reducing computational costs. 

The EDS concept stems from the physical analogy to the Dugdale CZM, in which 

internal plastic resistance is modeled as closing tractions distributed along the extended 

crack faces within the cohesive region. In the present study, EDS is defined as a distributed 

normal traction acting along the crack surfaces of a 2D substitute body, reproducing the SIFs 

that would be obtained in the original 3D configuration. 

Unlike actual cohesive tractions governed by plastic flow or material separation, the 

EDS is not a physically measurable quantity, but a mathematically equivalent representation 

derived from inverse analysis. By calibrating the EDS such that the resulting SIF in the 2D 

substitute body matches that of the original 3D crack under given loading, the model 

captures the essential features of crack-tip shielding due to plasticity. 
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This method leverages the weight function approach described earlier, allowing the 

EDS to be evaluated from known or estimated SIF values. Once obtained, the EDS serves 

as a unified internal loading that represents the effect of 3D plastic deformation and 

facilitates the evaluation of key EPFM parameters, such as plastic zone size and CTOD for 

3D cracks. 

In the current study, EDS analyses are conducted for 3D penny-shaped and surface 

cracks with various aspect ratios using two types of 2D substitute cracks: edge crack in a 

semi-infinite plate and center-through crack in an infinite plate.  For the edge crack model, 

c and a denote the physical and fictitious crack lengths, respectively. In the center-through 

crack model, they represent the half-lengths of the physical and fictitious cracks. The 

corresponding model configurations and their weight functions are discussed in detail in 

Section 2.3.  

When an external stress σP is applied to a 3D cracked body, CFTs tP and tY are 

induced, representing the effects of σP and the cohesive stress σY. Based on the Dugdale 

concept, the cohesive traction tY is assumed to act at a constant value λσY over the cohesive 

region, where λ is the plastic constraint factor, and σY is the yield stress of the material. The 

SIFs associated with tP and tY, designated KP and KY are used as prescribed input values in 

the EDS analysis to characterize the crack-opening behavior. These prescribed SIFs can also 

be obtained analytically or numerically, depending on the geometry of the 3D crack. To 

reproduce the prescribed SIFs in the 2D substitute model, EDS distributions are applied, 

denoted by fP and fY corresponding to tP and tY, respectively.  

The SIF, denoted as KEDS
P , resulting from the external stress EDS fP, is determined 

using the weight function g*(x,a) corresponding to the 2D substitute crack, as follows: 

0
( ) *( , )

aP P
EDS x

K f x g x a dx
=

= ∫  (2.6) 

In the EDS framework, three numerical procedures are available to determine the 

cohesive stress EDS: yield stress loading method (YLM), whole crack face loading method 

(WLM), and fictitious crack face loading method (FLM). 

The advantages and limitations of each method, along with the one adopted in this 

study and its rationale, are discussed in the following subsections.  



 
26 

 

2.2.1 Yield Stress Loading Method 

The YLM offers a simplified approach to evaluate the cohesive stress SIF by 

applying a constant cohesive traction equal to the product of the plastic constraint factor λ 

and the material yield stress σY, instead of determining the full EDS distribution. By 

assuming tY = λσY over the cohesive zone region, this method eliminates the need to 

iteratively establish the relationship between cohesive stress and fictitious crack length, 

thereby significantly reducing computational complexity. 

In this method, the approximate cohesive stress SIF, denoted as K�EDS
Y , is calculated 

as follows: 

 ( ) *( , )
aY Y

EDS
x c

K t x g x a dx
=

= ∫  (2.7) 

However, this simplification comes with limitations. The assumption of a uniform 

cohesive traction in the 2D substitute model does not accurately reflect the stress 

redistribution near the crack tip, which may affect the precision of the resulting SIF, 

particularly for 3D cracks with pronounced plasticity gradients. Therefore, YLM is suitable 

only for approximate analyses or as an initial estimate in iterative procedures. 

2.2.2 Whole Crack Face Loading Method 

In WLM, the cohesive stress EDS,  f0
Y, for the case of c = 0 is first calculated, and 

the resulting SIF is then determined using superposition principle by subtracting the SIF 

generated by  f0
Y acting on the physical crack face (0 ≤ x ≤ c) from the SIF generated by the 

same EDS f0
Y  applied over the entire crack face up to the fictitious crack tip (0 ≤ x ≤ a) as 

illustrated in Fig. 2.5. (Note: For clarity, the closing stress f0
Y is depicted with an opening 

direction in the figure.) 

Mathematically, the approximate cohesive stress SIF K�EDS
Y  can be expressed as: 



0 00 0
( ) *( , ) ( ) *( , )

a cY Y Y
EDS

x x
K f x g x a dx f x g x a dx

= =
= −∫ ∫  (2.8) 

This method is straightforward because it involves only the evaluation of SIF due to 

external stress distribution, and the cohesive stress SIF can be obtained simultaneously using 

a similar procedure. However, it may introduce numerical inefficiencies due to the 

subtraction of two large, similar quantities to obtain a relatively small cohesive stress SIF. 



 
27 

 

 

Fig. 2.5 Concept of WLM for calculating the cohesive stress SIF: (a) f0
Y acting on the 

region (c ≤ x ≤ a); (b) f0
Y acting on the whole crack face (0 ≤ x ≤ a); (c) f0

Y acting on the 

physical crack face (0 ≤ x ≤ c) 

2.2.3 Fictitious Crack Face Loading Method 

Previous research by Toyosada et al. [64] demonstrated that EPFM parameters 

evaluated using YLM tend to overestimate the plastic zone size under high applied stress, 

while WLM tend to underestimate both the plastic zone size and CTOD under the examined 

conditions. In contrast, FLM shows good agreement with reference solutions. Based on 

these findings, FLM is adopted in the present study. 

In FLM, the cohesive stress EDS fY is applied only over the fictitious crack extension 

region, i.e., from the physical crack tip to the fictitious crack tip (c ≤ x ≤ a). This focused 

application better captures the actual distribution of crack-tip plasticity effects and avoids 

the oversimplification of uniform loading across the cohesive region. 

The cohesive stress SIF KEDS
Y  is evaluated as: 

( ) *( , )
aY Y

EDS x c
K f x g x a dx

=
= ∫  (2.9) 

Unlike YLM and WLM, FLM requires iterative updates of the cohesive stress SIF 

as the physical crack grows in order to determine the appropriate fY that reproduces the 

prescribed KY. While this increases computational effort, it results in more accurate 

predictions of both the plastic zone size and CTOD, making FLM particularly suitable for 

the evaluation of 3D cracks under significant plastic deformation. 

Fig. 2.6 presents an illustrative example of the FLM-based EDS approach, where a 

3D surface crack is used as the target model and a 2D edge crack serves as the substitute 
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model. The coordinate systems and dimensional definitions for both models are also 

depicted in the figure. The crack length–SIF relationships at the point of interest, resulting 

from the traction stresses tP and tY acting on the 3D surface crack, are provided as prescribed 

input values to reproduce equivalent relationships in the 2D substitute edge crack. These 

relationships should be extended to a specific coordinate to ensure full coverage of the 

cohesive region under the intended applied stress conditions. 

To match the SIFs of the 3D model, corresponding stress distributions must be 

applied to the 2D model. These fictitious stresses are referred to as EDSs, denoted fP and fY, 

corresponding to tP and tY, respectively. These EDSs are constructed using spline partitions, 

with the spline coefficients determined via generalized matrix inversion techniques. Once 

the EDSs are obtained, the elastic-plastic CODs and associated EPFM parameters of the 

target 3D crack can be evaluated by performing numerical integration or by employing 

analytical closed-form solutions to the 2D substitute crack model. The procedures for 

deriving EDSs that reproduce the crack length–SIF relationships are detailed in Chapter 3. 

 

Fig. 2.6 Illustration of the FLM-based EDS concept for a 3D surface crack 
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2.3 Weight Functions of 2D Substitute Cracks 

In the EDS method, the weight function approach is utilized to evaluate SIFs in 2D 

substitute crack models that replicate the fracture behavior of original 3D cracks. This 

section introduces the specific weight functions for two representative 2D crack 

configurations: a center-through crack in an infinite plate and an edge crack in a semi-

infinite plate. The elastic-plastic crack opening behavior of 3D cracks is analyzed using 

these 2D models subjected to EDS distributions. The effectiveness and accuracy of each 

configuration in representing 3D crack behavior are discussed in the subsequent chapters. 

2.3.1 Center-Through Crack in an Infinite Plate 

The center-through crack in an infinite plate is a classical 2D configuration 

commonly used for analytical fracture mechanics studies due to its geometric simplicity and 

well-established solutions. This model consists of a crack of total length 2a, symmetrically 

embedded in an infinite plate. The symmetry and unbounded geometry facilitate accurate 

evaluation of the SIFs and CODs through the use of its analytical weight function. 

Let gC(x,a) represent the weight function of a center-through crack in an infinite 

plate, where a pair of unit concentrated forces is applied symmetrically at position ± x on 

the crack faces, as illustrated in Fig. 2.7. Here, a represents the half-length of the crack.  

The analytical closed-form solution for gC(x,a) is given as follows [65]: 

( )
2 2

2,C
ag x a

a x
=

−π
 (2.10) 

 

Fig. 2.7 Schematic of a center-through crack in an infinite plate with symmetrically 

applied unit-concentrated forces at coordinate ± x on the crack faces 
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2.3.2 Edge Crack in a Semi-Infinite Plate 

An edge crack in a semi-infinite plate is another fundamental 2D configuration 

frequently used to simulate cracks emanating from a free surface. In this setup, a single 

crack of length, a, extends from the edge of a semi-infinite body. 

Consider gE(x,a) as the weight function or SIF of an edge crack in a semi-infinite 

plate when a pair of unit-concentrated forces is applied at point x on the crack length a, as 

shown in Fig. 2.8. This function is given by the following approximation formula, which 

was derived by Sih [66]. 

( )
1.25

2

2, 1.297 0.297

1
E

xg x a
axa

a
π

  = −  
      −  

   

 (2.11) 

 

Fig. 2.8 Schematic of an edge crack in a semi-infinite plate with symmetrically applied 

unit-concentrated forces at coordinate x on the crack faces 

  



 
31 

 

CHAPTER 3 

FLM-BASED EDS METHODOLOGY 

3.1 EDS Determination Procedures 

Building on the methodologies and the concept of EDS introduced in Chapter 2, 

this section details the procedures for determining EDS distributions that reproduce the SIFs 

of 3D cracks using 2D substitute models. The EDS determination process involves 

establishing the relationship between crack length and SIFs, employing spline interpolation 

to represent the stress distribution, and formulating a system of equations based on the 

continuum conditions of the EDS. This system is subsequently solved using generalized 

matrix inversion to obtain the spline coefficients that define the EDS profile. These 

procedures constitute the core of the FLM-based EDS fracture analysis system and are 

essential for accurately evaluating the elastic-plastic crack behavior of 3D geometries. The 

following subsections describe each step of the procedure in detail. 

3.1.1 Spline Interpolation and a–K Relationship Matrix 

To accurately reconstruct the SIF distribution of 3D cracks using 2D substitute 

models, the EDS profiles must be precisely defined. In the EDS approach, spline 

interpolation is employed to approximate the EDS distributions over a discretized crack face 

of substitute crack. This subsection describes the partitioning strategy, spline representation, 

and the formulation of the a–K relationship matrix used as a basis for determining the EDS 

profiles. 

Consider N as the number of spline partitions, with partition points located at 

coordinates x0, x1, ⸳⸳⸳, xN. The i-th partition spans the interval [xi-1, xi], where i = 1, 2, ⸳⸳⸳, N. 

These partition points are arranged so that one of them aligns with the physical crack tip at 

x = c. The partition where the lower boundary of the x-coordinate interval as c is designated 

as the ic-th partition. 

Let amax be the maximum length of the fictitious crack. The partitioning is set up to 

ensure x0 = 0, and xN > amax. The indices imin and imax represent the minimum and maximum 

partition numbers within the integral region specified by Eqs. (2.6) and (2.9). Specifically, 

when evaluating KEDS
P , imin is assigned the value 1, whereas for KEDS

Y  calculation, imin is set 

equal to ic. 
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The EDS in the i-th partition, fi(x), is approximated using 3rd-order spline 

interpolation as outlined below.  

( )3 2
1 INT( ) ;   1, ,i i i i i i if x x x x x x x i Nα β γ δ −= + + + < ≤ =   (3.1) 

Here, NINT = imax – imin + 1, and αi, βi, γi, δi represent the coefficients for spline interpolation. 

Fig. 3.1 shows the schematic diagram of EDS expressed by a whole section spline function. 

 

Fig. 3.1 Schematic diagram of the EDS expressed by a whole section spline function 

The coefficient vector {X} is expressed as: 

{ }
min min min min max max max max

, , , , , , , ,
T

i i i i i i i iX α β γ δ α β γ δ =    (3.2) 

Consider Na as the number of SIF calculation points, where the J-th point is 

represented as aJ (J = 1, ⸳⸳⸳, Na). The value of Na must be chosen to fulfill the condition Na ≥ 

N. The SIF at x = aJ is denoted as KJ, and it can be evaluated using the following equation. 

( ) ( ) ( ) ( ){ }
min

;  1, ,i Jx a
J i i i i ai J i J i J i Ji i

K A A A A J N≤

=
= + + + =∑ α β γ δα β γ δ  (3.3) 

Ai(Jα), Ai(Jβ), Ai(Jγ), and Ai(Jδ) in Eq. (3.3) are provided as follows: 

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( )3 2 1 0
, , , ,,  ,  ,  K i J K i J K i J K i Ji J i J i J i JA G a A G a A G a A G aα β γ δ= = = =  (3.4) 

and ( ) ( ), ; ( 0,1, 2,3)K iG a =

  are computed as: 

( ) ( ) ( )( )

1

min , *
, ,i

i

a x

K i x
G a g a d

ξ
ξ ξ ξ

−=
= ∫

  (3.5) 
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Eq. (3.3) can be represented in the following matrix form: 

[ ]{ } { }A X B=  (3.6) 

The matrix [A] in Eq. (3.6) is termed the a–K relationship matrix, and it is presented 

as follows: 

[ ]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

{ }

min min min min max

min min min min max

min min min min max

1 1 1 1 1

2 2 2 2 2

1 2

,  

, ,...,

i i i i i

i i i i i

i n i n i n i n i n

T
n

A A A A A

A A A A A
A

A A A A A

B K K K

α β γ δ δ

α β γ δ δ

α β γ δ δ

 
 
 

=  
 
 
 

=   





     



 (3.7) 

{B} is a column vector listing SIFs in the a–K relationship. The dimensions of the 

matrix [A], with respect to its rows (m) and columns (l), are given as: 

( )INT max min,  4 4 1am N l N i i= = = − +  (3.8) 

3.1.2 Continuum Condition of EDS and Elimination of Dependent Variables 

The continuum condition of EDS at the node (i = imin, ⸳⸳⸳, imax-1), representing the 

connection point of the adjacent intervals, along with its 0th, 1st, and 2nd order derivatives, 

can be expressed by the following equations. 

( ) ( ) ( ) ( ) ( ) ( )1 1 1,  ,  i i i i i i i i i i i if x f x f x f x f x f x+ + +′ ′ ′′ ′′= = =  (3.9) 

From Eq. (3.9), the connection conditions at ximin are obtained as: 

( )
( )

( )

min min min min min min min min min min min min min min

min min min min min min min min min min

min min min min min min

1 1 1 1

1 1 1

1

3 2 3 2

2 2

1

0

3 2 3 2 0

6 6

i i i i i i i i i i i i i i

i i i i i i i i i i

i i i i i i

x x x x x x

x x x x

x x

α β γ δ α β γ δ

α β γ α β γ

α β α β

+ + + +

+ + +

+ +

+ + + − + + + =

+ + − + + =

+ − + = 0

 (3.10) 

Eq. (3.10) is solved for αimin, βimin,  and γimin to obtain the following. 
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min

min min
minmin

minmin

min min

minmin

min
min min

1

1

1

1

3 3

1 1 2 2

1 11 0 0

3 3;  0 1 0

3 30 0 1

i

i i
ii

ii
i i

ii

i
i i

x x

C C
x x

x x

δ

αα
ββ
γγ
δ

+

+

+

+
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 (3.11) 
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From Eqs. (3.2) and (3.11), 

{ } [ ] [ ] [ ] [ ]
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 (3.12) 

[I1] is an identity matrix of dimensions {4NINT – (4 ⸳ 1) + 1}×{4NINT – (4 ⸳ 1) + 1}, 

and [O1U] is a zero matrix of  size 3×{4NINT – (4 ⸳ 1) + 1 – 5}. 

Similar to Eq. (3.12), the following equation is obtained as the connection condition 

for xi (i = imin+1, ⸳⸳⸳, imax-1). 
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Using Eq. (3.13) for i = imin+1, 
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[I2,L] is an identity matrix of dimensions {4NINT – (4 ⸳ 2) + 1}×{4NINT – (4 ⸳ 2) + 1}, 

and [O2] is a zero matrix of size 3×{4NINT – (4 ⸳ 2) + 1 – 5}. [C2] corresponds to [Ci] in Eq. 

(3.13) when i = imin+1.  

Substituting Eq. (3.14) into Eq. (3.12), 

{ } [ ][ ]
min min min min min min max1 2 1 2 2 2 2, , , , , , ,

T

i i i i i i iX T T δ δ α β γ δ δ+ + + + + =    (3.15) 

Repeating the above procedure for i = imin+2, ⸳⸳⸳,imax-1 yields the following equation. 

{ } [ ]{ } [ ] [ ]
INT1 1;  T T NX X T T − ′= Π Π =  

 (3.16) 

[T1]i≥2 of Eq. (3.16) is given as: 

[ ] [ ] [ ]
,

2

,

0 0

0
0

i U

i i ii

i L

I

T C O
I

≥

    
=  

     

 (3.17) 

[Ii,U] is an identity matrix of size {i – 1}×{i – 1}. [Ii,L] is an identity matrix with 

dimensions of {4NINT – (4i) + 1}×{4NINT – (4i) + 1}, and [Oi] is a zero matrix of size 3×

{4NINT – (4i) + 1 – 5}. 

{X′} in Eq. (3.16) is the independent spline coefficient matrix defined by: 

{ }
min min max 1 max max max max1, , , , , ,

T

i i i i i i iX δ δ δ α β γ δ
−+ ′ =    (3.18) 

The number of independent coefficients, n̅, is calculated by the following equation. 

INT max min3 4n N i i= + = − +  (3.19) 

[ΠT] in Eq. (3.16) is a transformation matrix that computes all coefficients from the 

independent coefficients. 

Substituting Eq. (3.16) into Eq. (3.6) yields: 

[ ]{ } [ ]{ } { } [ ] [ ][ ];  TA X M X B M A′= = = Π  (3.20) 

The matrix [M] has m rows, as defined in Eq. (3.8), and the number of columns n̅ 

corresponds to the expression in Eq. (3.19). When NINT = 1, {X′} = {X}, and the 

transformation matrix [ΠT] in Eq. (3.16) becomes the identity matrix. 
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3.1.3 Determination of Spline Coefficients by Generalized Matrix Inversion 

Spline partition points are placed at intervals coarser than the SIF calculation points, 

with exclusive consideration given to the case where m > n̅. {X′} from Eq. (3.18) can be 

obtained by utilizing the least-squares generalized inverse of the matrix [M] [67]. In case 

the solution shows oscillations due to the instability of the generalized inverse matrix, the 

rank reduction method using singular value decomposition [68] can be implemented to 

alleviate such behavior. For the scenario where m > n̅, the rank of matrix [M] can be 

determined using the following equation. 

[ ] ( )Rank min ,R M m n n= = =  (3.21) 

Let λ(q) and {v(q)} (q = 1, ⸳⸳⸳, Rank [M] = n̅) represent the eigenvalues and 

eigenvectors of [M]T[M]. For q = 1, ⸳⸳⸳, n̅, the vector {w(q)} can be defined as follows: 

( ){ } ( ) [ ] ( ){ } ( ) ( )1 ;  q q q q
qw M v κ λ

κ
= =  (3.22) 

Here, κ(q) denotes the singular value of matrix [M]. The Moore-Penrose generalized inverse 

matrix [M+] which is an n̅ × m matrix, with Rank [M+] = n̅ can be computed using the 

subsequent equation. 

( )
[ ] ( ){ } ( )Rank

1

1E n q q
qq

M v w
κ

=+
=

   =   ∑  (3.23) 

When κ(q) takes on exceptionally small values, the sensitivity of [M+] to numerical 

errors increases, leading to an ill-posed inverse problem. To address this issue, a lower 

threshold for κ(q) can be imposed, and singular values below this threshold can be excluded 

from the summation in Eq. (3.23), consequently reducing the rank of [M+]. In such cases, 

the generalized inverse matrix can be evaluated using the following equation. 

( )

( ) ( ){ } ( )ˆ ,

1

1q q n q q
qq

M v wκ κ

κ
≥ ≤+

=
   =   ∑  (3.24) 

By employing the matrix [M+] from Eq. (3.24), {X′} can be achieved as: 

{ } { }X M B+′  =    (3.25) 

Substituting Eq. (3.25) into Eq. (3.16), the spline coefficients for all partitions can 

be determined as follows: 

{ } [ ]{ } [ ] { }T TX X M B+′  = Π = Π    (3.26) 
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3.2 EDS-Based Cohesive Zone Model 

Following the establishment of EDS distributions through spline-based interpolation 

and generalized matrix inversion in Section 3.1, this section introduces the application of 

these distributions to 2D substitute models within a CZM framework. The EDS-based CZM 

enables the evaluation of fracture behavior by explicitly incorporating both externally 

applied and cohesive stresses into the SIF calculation and crack opening analysis. 

The EDS due to external loading, denoted as f P(x), is represented using a piecewise 

cubic spline function over imax segments, with nodal coordinates x0 = 0, ⸳⸳⸳, ximax. In the FLM 

approach, the EDS due to cohesive stress,  f Y(x), is similarly approximated using a spline 

defined over imax-ic+1 segments, spanning from  xic = c to ximax. Each spline segment of  

fi
 P(x)  and fi

 Y(x)  is characterized by four spline coefficients: �αi
P, βi

P, γi
P, δi

P�  and 

�αi
Y, βi

Y, γi
Y, δi

Y�, respectively.  

3.2.1 Calculation of SIF and Plastic Zone Size 

When  fi
 P(x) acts over the region (0 ≤ x ≤ a) of the substituted 2D crack, the SIF at 

the fictitious crack tip, KEDS
P , can be determined using the following equation. 

( )( )
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 (3.27) 

Likewise, the SIF at the fictitious crack tip for cohesive stress EDS, denoted as KEDS
Y , 

is obtained when  fi
 Y(x) acts over the region (c ≤ x ≤ a) of the substitute body, as follows. 
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 (3.28) 

Here ξ  is the coordinate of the crack length a in the x-direction.  

Since the stress singularity disappears at the fictitious crack tip, the following 

equation can be derived. 

0P Y
EDS EDSK K− =  (3.29) 
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The length of the fictitious crack, a, is determined through iterative calculations 

satisfying Eq. (3.29). The plastic zone size rp can be computed as: 

pr a c= −  (3.30) 

3.2.2 Calculation of Crack Opening Displacement 

The calculation of CODs for the target 3D crack is carried out using the EDS applied 

to the 2D substitute crack models. COD at the coordinate x, resulting from a pair of unit-

concentrated EDS applied to the coordinate ξ of the crack length a, can be determined using 

Paris’s reciprocal theorem, as presented below [69]. 

( ) ( ) ( )
( )

* *
0 max ,

2; , , ,
a

a x
V x a g a g x a da

E ξ
ξ ξ

=
=

′ ∫  (3.31) 

E′ is defined in terms of Young’s modulus E, and Poisson’s ratio ν, considering either the 

plane stress or plane strain condition. 

( )

( )2

plane stress

plane strain
1

E
E E

ν


′ = 
 −

 (3.32) 

According to Eq. (3.31), CODs induced by fi
 P(x) and fi

 Y(x), referred to as VP(x) and 

VY(x) respectively, can be calculated using the following equations. 
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 (3.34) 

GV,i
(p)(x,a); (p = 3, 2, 1, 0) is expressed as: 

( ) ( ) ( )( )

1

min ,

, 0, ; ,i

i

a xp p
V i x

G x a V x a d
ξ

ξ ξ ξ
−=

= ∫  (3.35) 

The elastic-plastic COD of the target 3D crack, calculated from the EDS-applied 2D 

substitute crack is obtained as follows: 

( ) ( ) ( )P YV x V x V x= −  (3.36) 
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When using the center-through crack as the substitute model, the integrals in Eqs. 

(3.5), (3.31), and (3.35) can be evaluated analytically, reducing computation time in FCP 

analysis over many loading cycles. For the edge crack model, these integrals are computed 

numerically using the 10–21 point Gauss-Kronrod adaptive quadrature [70] from 

QUADPACK [71]. 

The characteristics of the COD curves resulting from the EDS-applied center-

through and edge cracks are illustrated in Figs. 3.2 and 3.3, respectively. Here, the subscripts 

C and E represent the center-through and edge crack models. The slope of the COD curve 

resulting from the center-through crack is zero at x = 0 due to the symmetric boundary 

conditions. In contrast, the COD curve resulting from the edge crack exhibits a non-zero 

slope at x = 0, reflecting the absence of constraint at the crack mouth. 

 
Fig. 3.2 Characteristic of the COD curves resulting from the EDS-applied 2D substitute 

center-through crack in an infinite plate 

 
Fig. 3.3 Characteristic of the COD curves resulting from the EDS-applied 2D substitute 

edge crack in a semi-infinite plate 
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Using this EDS-based CZM framework, it is also possible to account for the effects 

of residual stress on crack tip opening behavior, discussed in Appendix A, by employing 

the same procedures as those used for external stress. 

3.3 EDS Fracture Mechanics Analysis System 

Based on the formulations described in the previous sections, the EDS-based fracture 

mechanics analysis of 3D cracks proceeds through the following steps: 

a) Define the physical crack length c for the 3D target crack. The a–K relationships due 

to external and cohesive stresses are obtained using analytical or numerical methods 

appropriate for the crack geometry. 

b) Set the number of spline intervals N and the nodal coordinates xi such that the lower 

bound of the ic-th interval coincides with c. Specify a lower threshold κ̂  for singular 

values to be used in computing the generalized inverse matrix [M+]. 

c) Store the a–K relationships for external stress in column vector {B} of Eq. (3.6). 

Using the weight function g* of the substitute crack, calculate the a–K relationship 

matrix [A] and transformation matrix [ΠT] from Eqs. (3.6) and (3.16), respectively, 

with imin = 1. Then compute generalized inverse matrix [M+] using Eq. (3.24) and 

determine the spline coefficient matrix {X}(P) via Eq. (3.26). 

d) Similarly, store the cohesive stress a–K relationships in {B} and evaluate [A] and 

[ΠT] with imin = c. Use Eq. (3.24) to compute [M+] and obtain {X}(Y) from Eq. (3.26). 

e) Set the initial fictitious crack length a0 and the upper limit aUP for the iterative search. 

f) Assume a = a0 and approximate the EDSs for external and cohesive stresses,  fi
 P(x) 

and fi
 Y(x), using {X}(P) and {X}(Y), respectively. Calculate the corresponding SIFs, 

KEDS
P  and KEDS

Y  using Eqs. (3.27) and (3.28), and check whether Eq. (3.29) is 

satisfied. 

g) If Eq. (3.29) is not satisfied, apply the bisection method with c and aUP as lower and 

upper bounds, respectively, to find the value of a that satisfies Eq. (3.29). The plastic 

zone size rp is then determined as a – c. 

h) Using {X}(P) , {X}(Y) , and the fictitious crack length a, compute CODs VP(x) and 

VY(x) induced by fi
 P(x)  and fi

 Y(x) , respectively via Eqs. (3.33) and (3.34), 

employing the weight function g* of the substitute crack. Finally, obtain the elastic-

plastic COD V(x) using Eq. (3.36). 
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A comprehensive flowchart summarizing this FLM-based EDS analysis for 

evaluating EPFM parameters of the 3D cracked body is shown in Fig. 3.4. 

 

Fig. 3.4 Flowchart of FLM-based EDS fracture mechanics analysis system for 3D cracks 
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CHAPTER 4 

VERIFICATION OF EDS ANALYSIS SYSTEM FOR 3D CRACKS 

4.1 Framework for Validation 

To verify the accuracy and applicability of the developed EDS analysis system for 

general 3D cracks, a benchmark problem with established reference solutions is required. 

For this purpose, a 3D penny-shaped crack embedded in an infinite plate under 

axisymmetric loading is adopted as the verification case [72,73]. This configuration is 

particularly well-suited for validation, as it possesses a straightforward analytical weight 

function that enables the precise generation of reference SIF data. Additionally, reference 

COD profiles can be obtained directly from existing analytical solutions. The axisymmetric 

geometry further ensures that the details of the EDS procedures can be presented clearly, 

free from the complexities introduced by asymmetric boundary conditions.  

This chapter begins by determining the plastic constraint factor specific to the 

reference penny-shaped crack to enable accurate elastic-plastic fracture simulation under 

plane strain conditions. The prescribed a–K relationships for both external and cohesive 

stresses are then derived using the analytical weight function. Next, EDS distributions 

derived using the FLM-based formulation are then used to reproduce a–K relationships, 

which are then compared with the prescribed values. Finally, elastic-plastic COD profiles 

obtained from the EDS-based CZM framework are compared with those from analytical 

solutions, thereby demonstrating the physical fidelity of the proposed method. The EDS 

system was originally developed using a 2D center-through crack model due to its 

straightforward and computationally efficient weight function, and this model is employed 

as the primary substitute for the EPFM analysis of the 3D penny-shaped crack. 

4.2 3D Penny-Shaped Crack under Axisymmetric Loading 

A Dugdale-type 3D penny-shaped crack in an infinite plate subjected to 

axisymmetric loading is illustrated in Fig. 4.1. The crack, with radius c, lies in the x-y plane 

and is centered at the origin O. The loading is applied in the z-direction, normal to the crack 

surface, and is distributed in a radially symmetric manner, reducing the problem to a one-

dimensional formulation in the radial coordinate x. Geometry assumes an infinite plate to 

eliminate boundary effects, ensuring the generality of the results. 
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In this model, the external loading is represented by a uniform tensile stress σP 

applied remotely. As stress increases, a Dugdale-type plastic zone rp develops around the 

crack front, extending radially from x = c to a fictitious crack tip at x = a. Within this plastic 

zone, a constant cohesive stress λσY, is assumed to oppose crack opening. This cohesive 

stress is introduced in the same spirit as in Dugdale CZM to capture elastic-plastic behavior.  

The material is modeled as elastic–perfectly plastic, with no strain hardening. The 

mechanical properties are assigned as follows:  

• Physical crack radius: c = 1.0 mm 

• Young’s Modulus: E = 206,000 MPa 

• Yield stress: σY = 392 MPa 

• Poisson’s ratio: ν = 0.3 

The axisymmetry of the problem permits straightforward derivation of the SIFs for 

both external and cohesive loading through the use of an analytical weight function, which 

plays a central role in both the reference solution and EDS formulation. 

 

Fig. 4.1 Schematic of a 3D Dugdale-type penny-shaped crack of radius c embedded in an 

infinite solid, subjected to axisymmetric remote tensile loading σP, with a surrounding 

plastic zone extending to radius a 
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4.2.1 Determination of Plastic Constraint Factor 

To accurately simulate elastic-plastic crack behavior using the EDS analysis system, 

it is essential to determine the plastic constraint factor λ for the target crack configuration. 

This factor accounts for the constraint effect near the crack tip and scales the yield stress σY 

to reflect the level of triaxiality in the plastic zone. In general, λ ranges from 1.0 to 3.0, 

where λ = 1.0 corresponds to a fully plane stress condition, and λ = 3.0 represents an ideal 

plane strain condition [49]. However, in practical 3D configurations, even under conditions 

approximating plane strain, the actual constraint effect is often lower than the idealized 

value of 3 because the stress state is not as severe as it would be in a fully 3D deformation 

[74]. 

For the case of a 3D penny-shaped crack embedded in an infinite, isotropic, and 

homogeneous solid, λ can be estimated analytically. When the axial stress σz in the cohesive 

region corresponds to λσY, the plastic zone size rp can be computed from the following 

equation derived for axisymmetric loading conditions [75]. 

1
2 2

1 1
P

p Yr c σ
λσ

− 
    = − −   

    
 

 (4.1) 

An alternative estimation of λ is provided by Keer’s analysis, which is based on the 

maximum shear stress criterion. According to Keer’s model, it is necessary to satisfy the 

following equation in the plastic region [76]. 

Y
z − =θσ σ σ  (4.2) 

In this expression, σθ is the circumferential stress acting ahead of the crack front in 

the radial direction. Under this formulation, the plastic zone size rp = a – c can be explicitly 

expressed as: 

2
1

(1 2 )
1 cos

2
2 (1 2 )

P

Y

P

Y

c c c
a a a

σν
σ

σν
σ

−

 
−  

   = − −    − +  
 

 (4.3) 

From Eqs. (4.1) and (4.3), λ can be determined for various values of the normalized 

external load σP/σY [77]. Fig. 4.2 illustrates the relationship between λ and σP/σY, as obtained 
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from the maximum shear stress model. The curve indicates that λ decreases with increasing 

applied stress, suggesting a gradual loss of constraint. This behavior highlights the 

transitional nature of constraint in 3D geometries, where the stress state evolves 

continuously. 

The obtained λ values for the reference penny-shaped crack are subsequently used 

to calibrate the EDS-based CZM, ensuring that the simulated crack-tip fields faithfully 

represent elastic-plastic fracture under given conditions. 

 

Fig. 4.2 Relationship between λ and σP/σY for a 3D penny-shaped crack 

4.2.2 Calculation of Prescribed a–K Relationships by Weight Function Method 

The prescribed a–K relationships for both external and cohesive stresses are 

computed using the analytical weight function for a penny-shaped crack embedded in an 

infinite elastic medium.  

The weight function, denoted as gP(x,a), represents the SIF response to a unit 

concentrated ring load applied at a radial position r = x on the crack face of radius a, as 

illustrated in Fig. 4.3. 

2 2

2( , )P
xg x a

a a xπ
=

−
 (4.4) 
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For external loading, normal stress is assumed to be a uniform traction tP acting over 

the crack face. The corresponding reference SIF, denoted KRef
P , is derived by integrating the 

weight function with respect to the applied stress profile over the fictitious crack length a. 

The value of a is systematically varied beyond the physical crack radius c to simulate the 

extension of the plastic zone. 

For the cohesive stress case, a constant traction λσY is assumed to act uniformly over 

the plastic zone c ≤ x ≤ a, representing the Dugdale-type cohesive zone. The resulting 

reference SIF, KRef
Y , is calculated using the same weight function, but with the integration 

domain limited to the plastic zone from c to a. Both sets of prescribed a–K relationships 

serve as reference data for determining the EDSs to be applied on the 2D substitute center-

through crack, such that the resulting SIF values match those of the original problem. 

 

Fig. 4.3 Schematic of a penny-shaped crack embedded in an infinite plate, with unit 

concentrated ring load applied at a radial position r = x on the crack face of radius a 

As an illustrative example, consider a case in which a remote tensile stress of σP = 

200 MPa is applied to a 3D penny-shaped crack with a physical radius of c = 1.0 mm. 

According to Eqs. (4.1) and (4.3), this loading results in a plastic zone that extends radially 

to a fictitious crack size of a = 1.06 mm. 

Fig. 4.4 presents a comparison between the weight functions gC and gP. Both 

functions increase monotonically with x, diverging to infinity as x→a. The ratio gC/gP is 

plotted in Fig. 4.5, where it is evident that gC > gP over the interval 0 ≤ x ≤ a. This ratio 

diverges as x→0, decreases monotonically with increasing x, and approaches unity as  x→a. 
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Fig. 4.4 Comparison of weight functions gC and gP as a function of x 

 

Fig. 4.5 Relationship between the ratio gC/gP and x 

4.3 EDSs and Reproduced a–K Relationships 

In this section, EDSs are computed to reproduce the prescribed a–K relationships 

established for the 3D penny-shaped crack. The objective is to assess how accurately the 

EDS-based formulation, originally developed using a 2D substitute model, can capture the 

elastic-plastic fracture behavior of the target 3D geometry. By applying the EDS analysis 

framework, the reconstructed SIFs are directly compared to the reference values derived 

analytically in Section 4.2.2. The consistency between these two sets of results provides a 

measure of the applicability and fidelity of the proposed method. 
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In the EDS analysis, the domain ranging from x = 0 to 1.2 mm is discretized into 

spline partitions with a uniform interval of 0.2 mm. Consequently, the interval index ic 

corresponding to the location of the physical crack tip (i.e., c = 1.0 mm) is identified as 5.  

Fig. 4.6 shows the comparison between the CFTs, tP and tY, and the corresponding 

EDSs, fP and fY, computed by the EDS-based analysis under a remote tensile stress of σP = 

200 MPa. Since the analysis is performed on a 3D penny-shaped crack, while the EDS 

procedure employs the 2D center-through crack weight function gC, a geometric mismatch 

arises. As a result, the EDSs cannot coincide with the CFTs due to the non-conformity of 

the applied weight function. 

As discussed in Section 4.2.2, the 2D center-through crack weight function gC is 

consistently larger than the 3D penny-shaped crack weight function gP across the interval 0 

≤ x ≤ a. Therefore, in order to ensure that the SIFs calculated from EDSs match the 

prescribed a–K relationships of the 3D model, the EDS magnitudes must be proportionally 

lower than the corresponding CFT, resulting in  fP(x) < tP(x). 

 

Fig. 4.6 Comparison of applied CFTs and calculated EDSs for a 3D penny-shaped crack in 

an infinite plate under uniform tensile loading (c = 1.0 mm, σP = 200 MPa) 

Fig. 4.7 compares the products CFTs × gP and EDSs × gC. As outlined in Section 

2.1.2, the area under each curve represents the corresponding SIF value. This comparison 

highlights how appropriately scaled EDSs can compensate for the use of a non-fitting weight 

function.  
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Fig. 4.7 Comparison of integrands used in the calculation of SIFs for a penny-shaped 

crack with c = 1.0 mm under σP = 200 MPa: (a) external stress case showing tP(x)gP(x,a) 

and fP(x)gC(x,a); (b) cohesive stress case showing tY(x)gP(x,a) and fY(x)gC(x,a) 

Fig. 4.8 presents a comparison between the reference a–K relationships and those 

reconstructed using EDSs with the 2D center-through crack weight function. The 

reproduced SIFs show excellent agreement with the analytical reference values, thereby 

confirming the validity and robustness of the proposed EDS determination method for 

practical use in 3D crack problems. 



 
50 

 

 

Fig. 4.8 Comparison of reference a–K relationships of the target 3D penny-shaped crack 

with reproduced a–K relationships obtained using EDSs applied to the substituted 2D 

center-through crack model (c = 1.0 mm, σP = 200 MPa) 

4.4 Comparison of Elastic-Plastic COD Profiles 

To evaluate the effectiveness of the proposed EDS-based fracture analysis system, 

this section compares elastic-plastic COD profiles obtained using the EDS method with 

analytical reference solutions. In the EDS analysis, CODs are computed using Eqs. (3.31) 

– (3.36), incorporating the weight function of the 2D center-through crack model. The 

simulations are conducted under remote tensile stresses of σP = 160, 200, and 240 MPa. 

The resulting elastic-plastic COD profiles and corresponding EPFM parameters are 

compared against analytical solutions derived by Sneddon [78], which are presented in 

Appendix B. The results of this comparison are presented in Fig. 4.9 and Table 4.1. As 

shown, the COD profiles and EPFM parameters predicted by the EDS method exhibit 

excellent agreement with the reference solutions for the 3D penny-shaped crack. 

These findings validate the accuracy and reliability of the developed EDS-based 

framework. The close match between the EDS results and analytical benchmarks confirms 

that the proposed method offers a robust and computationally efficient alternative for EPFM 

analysis of 3D cracks. 
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Fig. 4.9 Comparison of CODs of the 3D penny-shaped crack obtained from the EDS 

method and Sneddon’s solution: (a) full profile; (b) magnified view ahead of the crack tip 

Table 4.1 Comparison of rp and CTOD of the 3D penny-shaped crack obtained using the 

EDS method and Sneddon’s solution 

σP (MPa) λ 
rp (mm) × 10-3 CTOD (mm) × 10-3 

EDS Sneddon EDS Sneddon 

160 1.716 29.540 29.540 0.217 0.217 

200 1.537 60.154 60.154 0.384 0.384 

240 1.368 118.243 118.243 0.638 0.638 

 

4.5 Summary 

This chapter presented the validation of the developed EDS-based EPFM analysis 

framework for 3D cracks. A 3D penny-shaped crack in an infinite plate under axisymmetric 

loading was adopted as the verification case owing to its simple geometry and the 

availability of an analytical weight function, which enabled a detailed and systematic 

demonstration of the EDS analysis procedures.  

To enhance computational efficiency, a 2D center-through crack in an infinite 

plate—featuring a well-established and computationally efficient weight function—was 

employed as a substitute model for the 3D penny-shaped crack. Prescribed a–K relationships 

for both external and cohesive stresses were analytically derived using the original weight 

function of the penny-shaped crack and were successfully reproduced on the 2D model 

using the FLM-based EDS formulation. 
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The elastic-plastic COD profiles obtained through the EDS-based CZM framework 

were subsequently compared with the analytical solutions by Sneddon. Across a range of 

applied remote stress levels, the EDS-derived CODs and associated EPFM parameters 

showed excellent agreement with the analytical results. 

These results confirm the reliability, physical fidelity, and computational efficiency 

of the proposed EDS-based fracture analysis framework. This chapter demonstrates that the 

developed method offers a robust and practical alternative for the EPFM analysis of 3D 

cracks, laying a solid foundation for extending its application to a wider range of crack 

configurations commonly encountered in engineering structures. 
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CHAPTER 5 

EDS ANALYSIS OF 3D SURFACE CRACKS 

5.1 Extension of the EDS Method to 3D Surface Cracks 

In the previous chapter, the effectiveness of the EDS method for analyzing 

axisymmetric 3D crack, specifically penny-shaped crack, was successfully demonstrated. 

This validation established a foundational framework for applying the EDS concept to 

EPFM problems involving 3D geometries. However, extending the FLM-based EDS 

methodology to crack configurations more commonly encountered in engineering 

applications remains a significant challenge. 

Among these, surface cracks are particularly prevalent in steel structural 

components, often initiating as shallow flaws with low aspect ratios and evolving over time 

[79–81]. Numerous experiments and numerical investigations have shown that crack growth 

predominantly occurs in the depth direction under tension loading, as the SIF is higher at 

the deepest point for most aspect ratios until they approach an aspect ratio of 1.0 [82–85]. 

This chapter investigates the applicability of the EDS method to such practical 

surface crack scenarios. The analysis focuses on both the deepest and corner points of semi-

elliptical surface cracks, enabling a detailed assessment of key EPFM parameters including 

plastic zone size and CTOD. The reference a–K relationships for external and cohesive 

stresses are analyzed using WARP3D [86], within the framework of the FLM approach. 

In the EDS analysis, a 2D edge crack in a semi-infinite plate and a center-through 

crack in an infinite plate are considered as substitute crack models to thoroughly examine 

the elastic-plastic crack opening behavior and assess their computational efficiency for 

analyzing 3D surface cracks. Due to similar boundary conditions and geometry, the 2D edge 

crack is employed as a substitute model for 3D surface cracks, with the expectation of 

achieving a comparable COD profile along the crack face [87,88].  

However, in the context of FCP, the accurate prediction of EPFM parameters—

particularly the plastic zone size and CTOD—is essential, as these parameters strongly 

influence the SIF and the crack opening behavior. The accuracy of the COD at the crack 

mouth, while useful for visualization, is less critical since it does not reflect the localized 

mechanical fields near the crack front. Therefore, EDS analysis is also conducted using the 
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2D center-through crack model. If both substitute models yield consistent predictions for 

the essential EPFM parameters, the center-through model offers a more straightforward and 

computationally efficient alternative by eliminating the need for numerical integration 

through the use of closed-form solution. 

By applying and refining the EDS methodology to non-axisymmetric 3D surface 

crack problems, this chapter addresses a notable gap in the literature and extends the 

practical capabilities of the EDS framework. These developments not only enhance the 

original SYM-based approach but also provide a robust basis for integration into fatigue life 

prediction tools for complex structural systems. 

5.2 Configuration of Target Surface Cracks 

To investigate the applicability of the EDS method to 3D surface cracks, a semi-

elliptical surface crack embedded in a semi-infinite plate is considered, as illustrated in Fig. 

5.1. The geometry is carefully selected to ensure that the stress distribution around the crack 

remains unaffected by the finite boundaries of the plate, thereby approximating a semi-

infinite body condition suitable for EDS analysis. 

The coordinate system is defined such that the origin, O, lies at the midpoint of the 

surface crack along the y-axis. c1 and c2 represent the physical crack lengths in the positive 

x-direction (depth) and y-direction (width), respectively. Five surface crack models are 

prepared with initial aspect ratios (c1/c2) of 0.2, 0.4, 0.6, 0.8 and 1.0 to represent a range of 

practical crack shapes from shallow to semi-circular. For consistency, the crack width c2 is 

fixed at 1.0 mm in all models, while the crack depth c1 varies from 0.2 mm to 1.0 mm in 

increments of 0.2 mm. 

In this study, the EDS analysis is performed at two critical locations along the crack 

front: the deepest point (on the x-axis) and the corner point (intersection with the free 

surface), capturing the variation in local constraint and crack-tip plasticity across the crack 

front. This dual-point analysis enables a more comprehensive understanding of the EPFM 

parameters, particularly the plastic zone size and CTOD, under the influence of 3D surface 

crack geometry. For simplicity and consistency with the Dugdale CZM, the material is 

assumed to behave as an elastic-perfectly plastic body without strain hardening. The 

material properties used in the EDS calculations are as follows: E = 206,000 MPa, σY = 392 

MPa, and ν = 0.3. 
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This idealized material model allows clear interpretation of plastic zone 

development and cohesive stress distribution, providing a robust basis for comparison with 

the EDS-derived results. 

 

Fig. 5.1 Configuration of a 3D surface crack in a semi-infinite plate under uniform tensile 

loading σP (dimensions in mm) 

5.3 Elastic-Plastic FE Analysis for Reference Solutions 

To obtain the reference CODs and corresponding EPFM parameters for comparison 

with the EDS results, elastic-plastic FE analysis is conducted using MSC Marc [89]. The 

FE mesh is generated using TSV-Crack [90], and 10-node tetrahedral (TET10) element type 

is employed. As shown in Fig. 5.2, an extra fine mesh is constructed in the vicinity of the 

physical crack front to capture the localized stress-strain behavior accurately. The minimum 

element size near the crack front is set to 0.005 mm to ensure high fidelity in the computed 

reference data. 

 The reliability of the developed mesh is also validated by comparing the SIFs 

calculated using the virtual crack closure-integral method for quadratic tetrahedral elements 

[91,92] with the well-known Newman-Raju solutions [93]. The comparison indicates a 

negligible discrepancies of approximately 1.0% or less at both the deepest and corner points 

of the crack front across all aspect ratio models. 
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Fig. 5.2 FE mesh of a 3D surface crack model with an aspect ratio c1/c2, showing the 

global mesh distribution and local refinement near the crack front (dimensions in mm) 

5.3.1 Determination of Elastic-Plastic COD Profile in FE Analysis 

To characterize the COD in a cracked structure under elastic-plastic conditions, the 

displacement field along the crack faces must be carefully extracted from the FE analysis 

results. The actual COD in the physical crack region, denoted as VA, is obtained by extracting 

the relative displacement of nodes located on the opposing crack faces along the x- and y-

directions.  

Beyond the physical crack tip, the COD is no longer directly measurable and must 

be estimated through a fictitious extension of the crack. In this region, the fictitious COD, 

referred to as VF, is evaluated based on the accumulated plastic strain in the ligament ahead 

of the crack tip, using the following expression [94]. 

{ }0
2 1

Y
p

F zzV dz
E

∞  
= + ′ 

∫
σε  (5.1) 

where εzz
p   denotes the component of plastic strain in the z-direction beyond the physical 

crack tip. The parameter E′ is the effective modulus under plane strain conditions, as 

previously defined in Eq. (3.32). This formulation allows the representation of the crack 

opening in the plastic zone beyond the actual crack front. 
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At the junction between the physical and fictitious crack regions lies the physical 

crack tip, where the COD is referred to as the CTOD. Since the mesh node corresponding 

to the physical crack tip typically exhibits zero displacement in FE analysis, the CTOD is 

computed by linearly interpolating the displacements of adjacent nodes near the crack tip. 

This approach provides a continuous and smooth COD profile, seamlessly connecting the 

physical crack region to the plastic zone ahead of the crack tip. A comprehensive depiction 

of the definitions VA, VF, and CTOD in the FE analysis is provided in Fig. 5.3. 

 

Fig. 5.3 Schematic illustration of the definitions of VA, VF, and CTOD in FE analysis 

5.3.2 Investigation of Actual Plastic Zone Shape 

In the FLM-based EDS analysis framework, an accurate understanding of the plastic 

(or cohesive) zone characteristics is crucial for establishing cohesive stress a–K 

relationships. To address this, the actual shapes of plastic zones for target surface cracks 

under specific loading conditions are examined through detailed elastic-plastic FE analysis.  

Fig. 5.4 illustrates the plastic zone shapes as viewed from the xy-plane for σP values 

of 100, 200, and 300 MPa. These visualizations reveal how the size and geometry of the 

plastic zones evolve with increasing applied load. The variation in plastic zone morphology 

is strongly influenced by the crack aspect ratio and the corresponding distribution of SIFs 

along the crack front. In general, under tensile loading, cracks with lower aspect ratios 

exhibit a tendency for the plastic zone to extend more prominently in the depth direction. In 

contrast, when the aspect ratio approaches unity (a nearly circular crack front), the plastic 

zone expansion becomes more pronounced along the width direction. 
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Fig. 5.4 Plastic zone shapes (xy-view) of surface cracks obtained from FE analysis 

Fig. 5.5 examples a comprehensive view of the 3D plastic zone shape along the crack 

front for a surface crack with a c1/c2 ratio of 0.6 under a tensile load of σP = 200 MPa. Here, 

a1 and a2 represent the fictitious crack lengths in the positive x- and y-directions, 

respectively. The minimum element size close to the physical crack front is 0.005 mm, and 

the average size is 0.01 mm. 

 

Fig. 5.5 Configuration of the 3D plastic zone shape along the crack front of a surface 

crack obtained from FE analysis (c1/c2 = 0.6, σP = 200 MPa) 
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To facilitate a clearer comparison, the plastic zone shapes at both the deepest point 

and the corner of the crack front are projected onto a single reference plane, as illustrated in 

Fig. 5.6. rpx and rpy refers to the plastic zone size in the x- and y-directions, respectively. Due 

to variations in SIFs along the crack front, which depend on the aspect ratio, it can be 

observed that the plastic zone extends further in the depth direction (x-direction) up to a 

c1/c2 ratio of 0.6 but begins to extend more in the width direction (y-direction) as the c1/c2 

ratio reaches 0.8. 

 

Fig. 5.6 Plastic zone shapes at the deepest and corner points of surface cracks from FE 

analysis: (a) c1/c2 = 0.2; (b) c1/c2 = 0.4; (c) c1/c2 = 0.6; (d) c1/c2 = 0.8; (e) c1/c2 = 1.0 

5.3.3 Determination of Plastic Constraint Factor 

In the evaluation of elastic-plastic crack behavior, the plastic constraint factor λ plays 

a critical role in characterizing the stress triaxiality at various points along the crack front. 

At the corner point of a surface crack, the stress state is assumed to be close to plane stress; 

therefore, λ is taken as 1.0.  
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In contrast, at the deepest point of the physical crack—where the stress state tends 

toward plane strain—the constraint is more severe and must be evaluated quantitatively. In 

this study,  λ at the deepest point is determined by matching the results of FE analysis with 

the analytical formulation shown below [75]. 

2

1

P

Y c
a

=
 −  
 

σλ

σ
 (5.2) 

Fig. 5.7 presents the calculated values of λ obtained from Eq. (5.2) for different 

normalized applied stress levels, specifically for σP/σY ratios ranging from 0.2 to 0.8. The 

results reveal a nearly linear decrease in λ with increasing applied stress, indicating a 

progressive relaxation of constraint as plasticity becomes more dominant. 

For practical implementation within the EDS framework, the variation of λ with 

applied stress is approximated using a linear regression fit. The resulting values are 

subsequently incorporated into the EDS analysis for the crack deepest point to ensure 

accurate representation of the constraint effect near the crack front. 

 
Fig. 5.7 Solutions of plastic constraint factors for the deepest point of target surface cracks 
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5.4 Calculation of Prescribed a–K Relationships 

To enable accurate application of the EDS method in surface crack analysis, it is 

essential to establish the prescribed a–K relationships for both external and cohesive 

stresses. These relationships are developed using LEFM analysis, employing the interaction 

integral method [95] together with the CFT-integral formulation [96,97], implemented in 

the public-domain FE code WARP3D.  

Fig. 5.8 illustrates an example of the specific locations along both the crack depth 

and width directions where the a–K relationships are computed, in the case of a surface 

crack with an aspect ratio of c1/c2 = 0.8. As noted in the preceding sections, the actual 

cohesive (plastic) zone shape evolves non-uniformly along the crack front, depending on 

the aspect ratio and loading conditions. This variation renders it impractical to predetermine 

the plastic zone shape a priori. To address this, a simplified and idealized model of the plastic 

zone is adopted to facilitate consistent development of the prescribed a–K relationships 

required in the EDS analysis. 

Specifically, a Dugdale-type cohesive zone is assumed to extend an equal distance 

ahead of the physical crack front along the entire crack front, as depicted in Fig. 5.8. This 

assumption implies that the distance between the physical and fictitious crack fronts remains 

constant for each increment along crack front, regardless of the parametric angle ϕ. Based 

on this simplified geometry, the a–K relationships are computed by applying the following 

loading conditions: 
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Within the physical crack region, the a–K relationships for external stresses are 

determined by incrementally extending the crack front in accordance with the actual aspect 

ratio c1/c2. Beyond the physical crack front, where the cohesive zone is defined, the a–K 

relationships for both external and cohesive stresses are developed by uniformly extending 

the crack front. This approach ensures that the cohesive zone representation in the EDS 

analysis accurately captures SIFs at the fictitious crack tip. To this end, the fictitious crack 

front is extended in very small increments over a predefined distance, providing sufficient 
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resolution to characterize the cohesive region across the range of applied stress levels 

considered. 

To realize this, WARP3D has been enhanced to compute the equivalent nodal forces 

resulting from partially applied CFT stresses on an element face using numerical surface 

integration with ultra-high order Gauss-Legendre quadrature (up to 64 points) [88]. 

Consistent with the Dugdale assumption, cohesive stress is applied as λσY in the loading 

direction, and the a–K relationships for cohesive stresses are computed using a 0.01 mm 

increment of the fictitious crack front. 

For completeness and clarity, the resulting SIFs along the crack front for both 

external and cohesive stresses are provided in Appendix C. These results are tabulated at 

0.05 mm increments of the fictitious crack front, offering a detailed characterization of the 

SIF distribution along the crack front and serving as a structured foundation for subsequent 

evaluation in the EDS analysis. 

 

Fig. 5.8 Arrangement of evaluation locations for prescribed a–K relationships in the depth 

and width directions of a surface crack: (a) for KP; (b) for KY (c1/c2 = 0.8) 
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5.5 EDS Analysis of Surface Cracks at the Deepest Point 

This section presents the application of the EDS method to surface cracks, with a 

focus on the deepest point along the crack front. As one of the most critical locations for 

evaluating fracture behavior, the deepest point typically experiences higher constraint and 

stress intensity, making it essential for accurate prediction of EPFM parameters. Building 

upon the prescribed a–K relationships developed in the preceding sections, the EDS analysis 

is carried out using the weight functions of two substitute crack models, gC and gE. The 

performance and accuracy of each model in representing the 3D crack opening behavior at 

the deepest point are also discussed. 

5.5.1 EDS and Reproduced a–K Relationships for the Deepest Point 

In the EDS analysis, spline partition points are set at coarser intervals than the SIF 

calculation points. For cracks with c1/c2 ratios of 0.2 and 0.4, the points are placed at 0.1 

mm intervals, whereas for cracks with c1/c2 ratios of 0.6, 0.8, and 1.0, they are placed at 0.2 

mm intervals, ensuring appropriate spacing based on the crack size. 

Figs. 5.9 – 5.13 show the applied CFTs (tP and tY) and  EDSs (fP and fY) for σP = 200 

MPa, with c1/c2 ratios ranging from 0.2 to 1.0. The results demonstrate that smooth and 

continuous EDS distributions are calculated for both external and cohesive stresses.  

 

Fig. 5.9 Comparison of applied CFTs and calculated EDSs along the depth direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 0.2, σP = 200 MPa) 
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Fig. 5.10 Comparison of applied CFTs and calculated EDSs along the depth direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 0.4, σP = 200 MPa) 

 

Fig. 5.11 Comparison of applied CFTs and calculated EDSs along the depth direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 0.6, σP = 200 MPa) 
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Fig. 5.12 Comparison of applied CFTs and calculated EDSs along the depth direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 0.8, σP = 200 MPa) 

 

Fig. 5.13 Comparison of applied CFTs and calculated EDSs along the depth direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 1.0, σP = 200 MPa) 

Figs. 5.14 – 5.18 present the comparison between the prescribed a–K relationships 

and those reproduced by the EDS method using the weight functions of the 2D edge crack 

(gE) and center-through crack (gC). As described in the previous sections, the prescribed a–
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K relationship inputs are defined up to a certain distance beyond the physical crack tip. The 

a–K relationships reproduced by the EDS method terminate at the end of the cohesive zone, 

where the stress singularity disappears under the given stress level. The calculated SIFs 

demonstrate a strong correlation with the prescribed inputs, validating the effectiveness and 

reliability of the developed EDS determination system. 

 

Fig. 5.14 Comparison of reference a–K relationships along the depth direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to 

substituted 2D center-through and edge crack models (c1/c2 = 0.2, σP = 200 MPa) 

 

Fig. 5.15 Comparison of reference a–K relationships along the depth direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to 

substituted 2D center-through and edge crack models (c1/c2 = 0.4, σP = 200 MPa) 
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Fig. 5.16 Comparison of reference a–K relationships along the depth direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to 

substituted 2D center-through and edge crack models (c1/c2 = 0.6, σP = 200 MPa) 

 

Fig. 5.17 Comparison of reference a–K relationships along the depth direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to 

substituted 2D center-through and edge crack models (c1/c2 = 0.8, σP = 200 MPa) 
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Fig. 5.18 Comparison of reference a–K relationships along the depth direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to 

substituted 2D center-through and edge crack models (c1/c2 = 1.0, σP = 200 MPa) 

5.5.2 Comparison of EPFM Parameters for the Deepest Point 

In the EDS analysis, elastic-plastic CODs induced by EDSs are calculated through 

Eqs. (3.31) – (3.36) from Chapter 3, based on the weight functions of 2D center-through 

and edge cracks. Surface cracks with c1/c2 ratios of 0.2, 0.4, 0.6, 0.8, and 1.0 are analyzed 

under three loading conditions (σP = 160, 200, and 240 MPa). The results are then compared 

with the reference FE analysis solutions along the depth direction.  

Figs. 5.19 – 5.23 show comparisons between the elastic-plastic CODs calculated 

using the EDS method and the reference FE solutions. The COD profiles along the crack 

face, obtained via the edge crack weight function, closely match the FE results and exhibit 

better agreement than those derived from the center-through crack. However, it is evident 

that the key EPFM parameters (rp and CTOD) can be accurately determined regardless of 

whether an edge crack or a center-through crack is used as the substitute crack. The values 

obtained are nearly identical ahead of the physical crack tip, with a percentage difference of 

approximately 0.01% across all cases. 

Therefore, employing a center-through crack as the substitute body in the EDS 

analysis is advantageous as it leverages closed-form solutions to simplify calculations while 

maintaining the necessary accuracy for rp and CTOD. This also provides significant 

advantages for future implementation in FCP analysis involving multiple loading cycles. 
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Fig. 5.19 Comparison of CODs along the depth direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (c1/c2 = 0.2) 

 
Fig. 5.20 Comparison of CODs along the depth direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (c1/c2 = 0.4) 

 

Fig. 5.21 Comparison of CODs along the depth direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (c1/c2 = 0.6) 
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Fig. 5.22 Comparison of CODs along the depth direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (c1/c2 = 0.8) 

 
Fig. 5.23 Comparison of CODs along the depth direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (c1/c2 = 1.0) 

Table 5.1 presents the comparison between the key EPFM parameters (rp and 

CTOD) at the deepest point, obtained using the EDS method with the center-through crack 

weight function and those derived from detailed FE analysis. The results show excellent 

agreement across all crack geometries and loading conditions, with differences consistently 

within an acceptable engineering tolerance. This level of accuracy demonstrates the 

robustness of the EDS method for evaluating critical fracture parameters at the deepest point 

of 3D surface cracks, even when using simplified 2D substitute crack models. 

Moreover, the effectiveness of the current EDS framework underscores the validity 

of the cohesive zone assumptions and the prescribed a–K relationships developed in Section 

5.4. These relationships provide a direct and consistent link between the applied loading and 

the resulting crack front conditions, which is essential for accurate near-tip fracture 
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characterization. The demonstrated capability of the EDS method to capture essential EPFM 

parameters with reduced computational effort suggests strong potential for its integration 

into practical engineering workflows. In particular, the use of a center-through crack allows 

for analytical simplification through closed-form solutions, making the approach especially 

suitable for FCP analysis under repeated cycles. 

Table 5.1 Comparison of rp and CTOD at the deepest point of target 3D surface cracks 

obtained from the EDS method and FE analysis 

c1/c2 
σP      

(MPa) λ 
rp (mm) × 10-3 CTOD (mm) × 10-3 

EDS FEA EDS FEA 

0.2 

160 1.043 17.146 15.0 0.121 0.095 

200 1.036 29.785 30.0 0.197 0.163 

240 1.030 49.574 55.0 0.299 0.259 

0.4 

160 1.142 27.353 25.0 0.194 0.163 

200 1.125 48.957 50.0 0.321 0.264 

240 1.108 83.374 85.0 0.495 0.427 

0.6 

160 1.277 31.535 30.0 0.227 0.186 

200 1.246 57.814 60.0 0.381 0.312 

240 1.215 100.902 105.0 0.597 0.518 

0.8 

160 1.422 32.734 30.0 0.237 0.190 

200 1.375 61.621 65.0 0.404 0.330 

240 1.327 111.260 115.0 0.645 0.560 

1.0 

160 1.586 31.661 30.0 0.233 0.191 

200 1.526 59.775 60.0 0.398 0.329 

240 1.466 107.906 110.0 0.637 0.555 
 

5.6 EDS Analysis of Surface Cracks at the Corner Points 

While the previous section demonstrated the effectiveness of the EDS method at the 

deepest point of surface cracks, additional challenges arise at the corner point, where the 

crack front intersects the free surface. Unlike the deepest point, the corner point is typically 

characterized by a highly complex stress state, which complicates the accurate 

determination of SIF and other EPFM parameters. The geometry of the crack front at this 
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location, combined with the rapid transition from the interior of the material to the surface, 

results in a stress distribution that is difficult to model and compute reliably. Additionally, 

the interaction between the crack tip and the free surface can introduce localized effects, 

further complicating the analysis. 

To address these complexities, the EDS method is extended to the corner point using 

the same cohesive zone assumptions and the prescribed a–K relationships developed in 

earlier sections. To ensure computational efficiency while maintaining sufficient accuracy 

in the evaluation of key EPFM parameters, the center-through crack is employed as the 

substitute model. This choice allows for the use of closed-form weight functions, 

simplifying the analysis of elastic-plastic crack opening behavior at this location [98]. 

The analysis in this section focuses on crack configurations with aspect ratios 

approaching 1.0, where crack growth is often more likely to initiate from the corner points. 

Specifically, surface cracks with c1/c2 = 0.6, 0.8, and 1.0 are examined using the EDS 

method. Since the corner point lies on the free surface and is predominantly subjected to a 

plane stress condition, λ is assumed to be 1.0 through the analysis. 

5.6.1 EDS and Reproduced a–K Relationships for the Corner Points 

As in the analysis at the deepest point, spline partition points for the corner point 

evaluation are set at wider intervals than the calculation points used for SIF determination. 

Specifically, the partition points are spaced at intervals of 0.2 mm. Given that c2  = 1.0 mm 

for the analyzed cracks, this results in an interval number of 5 at c2. 

Figs. 5.24 – 5.26 show comparisons of CFTs (tP and tY), and EDSs (fP and fY), along 

the width direction of surface cracks with aspect ratios c1/c2 = 0.6, 0.8, and 1.0, under σP = 

200 MPa. It is observed that both fP and fY exhibit smooth and continuous behaviors when 

the aspect ratio is 1.0. However, for lower aspect ratios of 0.6 and 0.8, only fP maintains a 

reasonable and physically consistent trend, while fY deviates significantly from tY. 

This discrepancy arises from the nature of the local crack tip conditions at the corner 

point. In particular, it reflects the shift in the SIF-dominant region and the intrinsic 

characteristics of the cohesive stress a–K relationships. As discussed in the Appendix C, 

cohesive stress SIF at the corner point does not differ significantly from that generated by 

external stress when the crack has a low aspect ratio. Consequently, the cohesive response 

derived from yield-based loading does not develop in the same manner as it does at the 
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deepest point, resulting in a less accurate reproduction of fY at the corner. In contrast, fP, 

obtained from traction applied over the entire crack face, remains more representative 

because it captures the broader stress distribution acting along the crack front. 

 

Fig. 5.24 Comparison of applied CFTs and calculated EDSs along the width direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 0.6, σP = 200 MPa) 

 

Fig. 5.25 Comparison of applied CFTs and calculated EDSs along the width direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 0.8, σP = 200 MPa) 
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Fig. 5.26 Comparison of applied CFTs and calculated EDSs along the width direction of a 

3D surface crack in a semi-infinite plate under uniform tensile loading                                          

(c1/c2 = 1.0, σP = 200 MPa) 

Figs. 5.27 – 5.29 illustrate the prescribed a–K relationships of the analysis crack 

models at the corner point, alongside those reproduced from the EDSs using the weight 

function of the center-through crack (gC). Consistent with the trends observed in the EDS 

results, the reproduced a–K relationships show good agreement with the prescribed values 

only for the crack with an aspect ratio c1/c2 = 1.0. In this case, the SIFs for both external and 

cohesive stresses are accurately captured across the entire range of crack extension. 

However, for lower aspect ratios (c1/c2 = 0.6 and 0.8), although the external stress 

SIFs remain in good agreement with the prescribed a–K curves, the cohesive stress SIFs 

exhibit noticeable deviations. This discrepancy reinforces the earlier observation that 

cohesive zone behavior is strongly influenced by local fracture mechanics conditions at the 

corner point. Specifically, when the corner is not the SIF-dominant region, the applied 

cohesive stresses fail to develop the same crack-driving effect due to the reduced constraint 

and altered stress state near the free surface. As a result, the cohesive SIF response becomes 

less representative, leading to discrepancies in the reproduced.  

It is important to emphasize that this deviation is not due to limitations of the 

substitute model or the chosen weight function, but rather to the physical nature of crack tip 

interactions in low-constraint regions. 
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Fig. 5.27 Comparison of reference a–K relationships along the width direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to the 

substituted 2D center-through crack model (c1/c2 = 0.6, σP = 200 MPa) 

 

Fig. 5.28 Comparison of reference a–K relationships along the width direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to the 

substituted 2D center-through crack model (c1/c2 = 0.8, σP = 200 MPa) 



 
76 

 

 

Fig. 5.29 Comparison of reference a–K relationships along the width direction of a 3D 

surface crack with reproduced a–K relationships obtained using EDSs applied to the 

substituted 2D center-through crack model (c1/c2 = 1.0, σP = 200 MPa) 

5.6.2 Comparison of EPFM Parameters for the Corner Points 

EDS analysis of surface cracks with c1/c2 ratios of 0.6, 0.8, and 1.0 are performed 

under three loading conditions (σP = 160, 200, and 240 MPa), consistent with the cases 

examined for the deepest point. The results were then compared with reference FE solutions 

along the width direction to evaluate the performance of the EDS method at the corner 

points. 

Figs. 5.30 – 5.32 present a comparison between the elastic-plastic CODs obtained 

using the EDS method against those derived from FE analyses. For each loading case, results 

for all three aspect ratios are shown together to facilitate a comprehensive comparison. 

 The results indicate that for c1/c2 ratios of 0.6 and 0.8, the COD profiles computed 

using the EDS method agree well with the FE results in the region 0 ≤ y < c2, i.e., within the 

physically meaningful crack length. However, beyond the physical crack tip, significant 

discrepancies appear, particularly in the computed plastic zone size rp and CTOD. These 

discrepancies are primarily attributed to the limitations of the EDS method in accurately 

reproducing the SIF, KY, associated with yield-based cohesive loading at the corner point, 

as discussed in the preceding sections.  
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Fig. 5.30 Comparison of CODs along the width direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (σP=160 MPa) 

 
Fig. 5.31 Comparison of CODs along the width direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (σP=200 MPa) 

 
Fig. 5.32 Comparison of CODs along the width direction obtained from the EDS method 

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (σP=240 MPa) 
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In contrast, for the c1/c2 = 1.0, where the corner point is the dominant location in 

terms of SIF, the EDS method successfully reproduces both KP and KY. As a result, the 

computed COD profiles, as well as the corresponding rp and CTOD, show favorable 

agreement with the FE results across all loading levels. A summary of rp and CTOD values 

at the corner point, obtained using the EDS method with the center-through crack weight 

function and those derived from detailed FE analyses is provided in Table 5.2. 

Table 5.2 Comparison of rp and CTOD at the corner point of target 3D surface cracks 

obtained from the EDS method and FE analysis 

c1/c2 σP (MPa) 
rp (mm) × 10-3 CTOD (mm) × 10-3 

EDS FEA EDS FEA 

0.6 

160 5.594 30.0 0.105 0.152 

200 8.812 70.0 0.157 0.303 

240 13.689 120.0 0.204 0.437 

0.8 

160 10.350 50.0 0.142 0.232 

200 18.090 100.0 0.227 0.418 

240 31.880 170.0 0.340 0.618 

1.0 

160 105.070 90.0 0.487 0.344 

200 179.830 160.0 0.798 0.588 

240 257.067 240.0 1.193 0.832 

 

These findings underscore the importance of geometric and boundary conditions in 

cohesive stress-based evaluations using the EDS method. Since the EDS method is 

formulated to reproduce the SIF of a 3D crack using a 2D crack, its accuracy is sensitive to 

the local dominance of crack-driving forces. When the corner point is not the SIF-dominant 

location—as in the cases with c1/c2 = 0.6 and 0.8—the method becomes less reliable, despite 

the FE results in Section 5.3 indicating a slightly longer plastic zone at the corner for c1/c2 

= 0.8, possibly due to mesh-related effects. 

Understanding this behavior is essential for applying the EDS method to realistic 

surface cracks, where local conditions may vary significantly along the crack front. 
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5.7 Summary 

This chapter presented an extension of the EDS method to the analysis of non-

axisymmetric 3D surface cracks. The investigation focused on evaluating the applicability 

and limitations of the EDS approach in predicting key EPFM parameters (rp and CTOD) at 

two characteristic locations along the crack front: the deepest point and the corner point. To 

achieve this, surface cracks with varying aspect ratios were analyzed under specific loading 

conditions, using substituted 2D center-through and edge crack models. 

Following the configuration of the target crack geometries, detailed elastic-plastic 

FE analyses were performed to generate reference solutions. These analyses provided COD 

profiles, plastic zone morphologies, and plastic constraint factors necessary for verifying 

the EDS method and the simplified cohesive zone assumptions. 

Prescribed a–K relationships for external and cohesive stress are developed using 

LEFM analysis, combining the interaction integral method with the CFT-integral 

formulation. These were implemented in the public-domain FE code WARP3D. Due to the 

non-uniformity of the plastic zone along the crack front, simplified, idealized model of the 

plastic zone was adopted to enable consistent construction of the prescribed a–K 

relationships needed for the EDS analysis. To facilitate accurate evaluation of SIFs for 

cohesive stress, WARP3D was enhanced to compute equivalent nodal forces arising from 

partially applied traction stresses via high-precision numerical surface integration using 

ultra-high-order Gauss–Legendre quadrature. 

For the deepest point, the EDS method successfully reproduced the SIFs for both the 

externally applied and cohesive stresses (KP and KY), demonstrating favorable agreement 

with the FE solutions across all aspect ratios. The resulting rp and CTOD closely matched 

the reference data, confirming the robustness of the method in this region. Furthermore, it 

was shown that both center-through and edge crack can serve effectively as substitute 

models in the EDS analysis. Notably, using a center-through crack is advantageous due to 

the availability of closed-form solutions, which simplify calculations while maintaining 

sufficient accuracy in predicting rp and CTOD. 

In contrast, the application of the EDS method to the corner point revealed a strong 

sensitivity to the local geometric and constraint conditions. For c1/c2  = 1.0, where the corner 

point is a SIF–dominant location, the EDS method accurately reproduced KP and KY, 
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resulting in good agreement with the FE-derived EPFM parameters. However, for lower 

aspect ratios (c1/c2  = 0.6 and 0.8), the corner point exhibited reduced SIF dominance. In 

these cases, the EDS method showed limitations in replicating cohesive stress behavior, 

leading to deviations in the calculated rp and CTOD values—particularly beyond the 

physical crack front. These discrepancies are attributed to the method’s inherent reliance on 

SIF reproduction, which becomes less reliable in low-constraint, geometry-sensitive 

regions. 

The findings in this chapter highlight the importance of considering local crack-front 

characteristics when applying the EDS method to surface cracks. While the method provides 

a practical and analytically tractable tool for evaluating elastic-plastic behavior, its 

applicability is contingent on the crack-driving force being sufficiently dominated by the 

SIF. This insight is critical for extending the EDS method to realistic engineering 

applications involving complex crack geometries and constraint conditions. 
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CHAPTER 6 

CONCLUSION 

This dissertation has presented a comprehensive framework for EPFM analysis of 

3D cracks, grounded in EDS method. Motivated by the need for computationally efficient 

and physically interpretable approaches, the proposed method offers a practical tool for 

evaluating fracture parameters in support of SYM-based FCP analysis programs. 

The EDS-based fracture mechanics analysis system was constructed on the 

foundation of the original EDS theory, adopting the FLM approach to ensure high accuracy 

and reliability. Two 2D substitute crack models—a center-through crack in an infinite plate 

and an edge crack in a semi-infinite plate—were introduced to represent the crack tip 

opening behavior of 3D cracks. By matching the crack length–SIF (a–K) relationships 

between the original 3D crack and the substitute models through generalized matrix 

inversion, the system enabled direct evaluation of elastic-plastic CODs and associated 

EPFM parameters using the simplified solutions of the substitute cracks. 

The accuracy of the proposed framework was first validated using a 3D penny-

shaped crack in an infinite plate subjected to axisymmetric loading. This geometry, which 

offers an analytical weight function, allowed for rigorous verification. Using a 2D center-

through crack as the substitute model, the prescribed a–K relationships were accurately 

reproduced through the FLM-based EDS approach. The resulting elastic-plastic COD 

profiles showed excellent agreement with analytical solutions derived from Sneddon’s 

closed-form expressions, demonstrating both the reliability and computational efficiency of 

the proposed framework. 

To demonstrate broader applicability, the system was extended to non-axisymmetric 

3D surface cracks, which are more commonly encountered in engineering structures. The 

method was applied to a range of surface cracks with varying aspect ratios and loadings, 

with particular attention given to two key EPFM parameters: the plastic zone size, rp, and 

CTOD. FE analyses provided detailed reference data, including COD profiles and plastic 

zone morphologies, enabling validation of the EDS-based results at both the deepest and 

corner points along the crack front. To address the complex distribution of plastic zones, 

idealized plastic zone model was adopted to construct consistent a–K relationships, and 
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high-precision numerical integration was incorporated into the FE code WARP3D for an 

accurate evaluation of prescribed SIFs. 

At the deepest point along the crack front, the EDS method demonstrated strong 

performance by accurately reproducing both externally applied and cohesive stress SIF (KP 

and KY) across all aspect ratios. The resulting values of rp and CTOD closely matched the 

FE reference data, validating the robustness of the approach in this region. Both substitute 

crack models proved effective, with the center-through crack model offering the added 

advantage of closed-form solutions that simplify calculation without compromising 

accuracy. 

In contrast, the application of the EDS method to the corner point revealed greater 

sensitivity to local geometric and constraint conditions. For cracks where the corner region 

remained dominated by SIF, the EDS method maintained good accuracy in reproducing KP 

and KY and predicting rp and CTOD. However, for lower aspect ratios, where the corner 

point experienced reduced SIF dominance, the method showed limitations in capturing the 

cohesive stress behavior. This resulted in noticeable discrepancies beyond the physical crack 

front, especially in the values of rp and CTOD. These deviations are attributed to the 

method’s reliance on reproducing the SIF of a 3D crack using a 2D substitute crack, which 

becomes less reliable under low-constraint and geometry-sensitive conditions. 

Overall, this study demonstrates that the EDS-based framework provides a practical 

and analytically tractable approach for evaluating elastic-plastic fracture behavior of 3D 

cracks, particularly effective at crack propagation initiation points where the SIF is 

dominant. The method offers a significant reduction in computational cost while 

maintaining accuracy in predicting key EPFM parameters.  

As a future direction, the integration of the developed EDS-based system into FCP 

analysis programs is anticipated. Such integration will significantly enhance the efficiency 

and applicability of fatigue crack growth predictions in large-scale structural components 

with complex geometries, contributing to safer and more reliable engineering designs. 
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APPENDICES 

A. EDS-Based CZM Considering Residual Stress 

In fracture mechanics analysis, accounting for residual stress is essential to ensure 

safe and reliable structural design, particularly in welded components where tensile residual 

stress can significantly influence crack behavior. This appendix outlines the procedure for 

incorporating residual stress into the EDS-based CZM. 

Let tR denote the CFT representing the effects of welding-induced residual stress σR 

in the 3D cracked body. The reference SIF, KRef
R , induced by tR can be determined by efficient 

and reliable numerical tools such as FRANC3D [99].  

Let f R(x) represent the residual stress EDS applied to the substituted 2D models. 

Like the external stress EDS f P(x) , this distribution is expressed using a cubic spline 

function over imax segments, with nodal coordinates x0 = 0, ⸳⸳⸳, ximax. Each segment  fi
 R(x) is 

defined by spline coefficients �αi
R, βi

R, γi
R, δi

R�. When  fi
 R(x) is applied over the region (0 ≤ x 

≤ a) of the substituted 2D crack, the SIF at the fictitious crack tip, KEDS
R , is given by: 
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At the fictitious crack tip, where the stress singularity vanishes, the combined SIFs 

induced by fP and fR must cancel out that induced by cohesive stress EDS  fY, leading to: 

0P R Y
EDS EDS EDSK K K+ − = (A.2) 

The fictitious crack length a is determined iteratively to satisfy Eq. (A.2). 

CODs induced by fi
 R(x), denoted as VR(x), can be calculated using: 
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Finally, the total elastic-plastic COD that accounts for residual stress is obtained as: 

( ) ( ) ( ) ( )P R YV x V x V x V x= + − (A.4) 
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B. Sneddon’s Solutions for Elastic-Plastic COD of a 3D Penny-Shaped 

Crack under Axisymmetric Loading 

The coordinate system and configuration of a 3D penny-shaped are shown in Fig. 

4.1. When an annular loading tP(x) acts on the crack of radius a, the normal displacement u0 

at the crack surface is given by the following equation [78]. 

2 1 1

0 2 2 20

4(1 ) ( )( ) ,    and 
1

Pa d t a d xu x
E a

−
= = =

− −
∫ ∫ρ

ν µ µ ξ ξµ ξ ρρ ξ
π µµ ρ ξ

 (B.1) 

where ν is Poisson’s ratio, E is Young’s Modulus and tP is a function of x = ξ μa. 

When a uniform axisymmetric traction stress tP = σP acts on the entire crack face (0 

≤ x ≤ a), the displacement uP, can be obtained by solving the integral in Eq. (B.1) [100]: 

2
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Similarly, when the traction stress  tY = λσY is applied over the region c ≤ x ≤ a, the 

corresponding displacement uY,  is given by: 
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where 
2 2

1 22 2

1 1 arcsin ,  arcsin
1 1

c mm
a m

ρ, ϕ ϕ
ρ

− −
= = =

− −
, λ is the plastic constraint factor, 

F(φ,k) and E(φ,k) are the elliptic integrals of first and second kind, respectively. 

The elastic-plastic COD, denoted as u(x), for the 3D penny-shaped crack can then 

be expressed as: 

( ) ( ) ( )P Yu x u x u x= −  (B.4) 
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C. SIFs for External and Cohesive Stresses Calculated Using WARP3D 

Figs. C.1 – C.5 present the SIFs KP and KY for unit CFT, calculated using WARP3D 

and plotted along the crack front of the analyzed cracks. To provide a detailed 

characterization of the SIF distribution, the results are also tabulated at 0.05 mm increments 

of fictitious crack extension, up to 0.2 mm beyond the physical crack front. 

The results show that at the corner points (0 and 180 deg), KY is not significantly 

different from KP for cracks with low aspect ratios. As the aspect ratio c1/c2 increases, the 

difference between KP and KY becomes more pronounced.  

Notably, for c1/c2 = 1.0, KP reaches its maximum at the corner point. For other aspect 

ratios—c1/c2 = 0.2, 0.4, 0.6 and 0.8—the deepest point (90 deg) exhibits higher KP values 

than the corner, indicating that the dominant crack-driving location is the deepest point in 

these cases. In contrast, for c1/c2 = 1.0, the corner point becomes the most critical location 

for crack growth. 

 

Fig. C.1 KP and KY for unit CFT along the crack front of a surface crack with c1/c2 = 0.2: 

(a) 0.05 mm; (b) 0.1 mm; (c) 0.15 mm; (d) 0.2 mm extensions of the fictitious crack front 
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Fig. C.2 KP and KY for unit CFT along the crack front of a surface crack with c1/c2 = 0.4: 

(a) 0.05 mm; (b) 0.1 mm; (c) 0.15 mm; (d) 0.2 mm extensions of the fictitious crack front 

 
Fig. C.3 KP and KY for unit CFT along the crack front of a surface crack with c1/c2 = 0.6: 

(a) 0.05 mm; (b) 0.1 mm; (c) 0.15 mm; (d) 0.2 mm extensions of the fictitious crack front 
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Fig. C.4 KP and KY for unit CFT along the crack front of a surface crack with c1/c2 = 0.8: 

(a) 0.05 mm; (b) 0.1 mm; (c) 0.15 mm; (d) 0.2 mm extensions of the fictitious crack front 

 

Fig. C.5 KP and KY for unit CFT along the crack front of a surface crack with c1/c2 = 1.0: 

(a) 0.05 mm; (b) 0.1 mm; (c) 0.15 mm; (d) 0.2 mm extensions of the fictitious crack front  



 
88 

 

REFERENCES 

[1] Williams ML, Ellinger GA. Investigation of structural failures of welded ships. Weld 
J 1953;32:498–528. 

[2] Almar-Naess A, Haagensen PJ, Lian B, Moan T, Simonsen T. Investigation of the 
Alexander L. Kielland failure—metallurgical and fracture analysis. J Energy Resour 
Technol 1984;106:24–31. https://doi.org/10.1115/1.3231014. 

[3] Anderson TL. Fracture mechanics. CRC Press; 2005.  
https://doi.org/10.1201/9781420058215. 

[4] Inglis CE. Stresses in a plate due to the presence of cracks and sharp corners. Trans 
Inst Nav Archit 1913;55:219–41. 

[5] Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc A 
1921;221:163–98. https://doi.org/10.1098/rsta.1921.0006. 

[6] Irwin GR. Fracture dynamics. Fracturing of Metals, Cleveland, OH: American 
Society for Metals; 1948, p. 147–66. 

[7] Orowan E. Fracture and strength of solids. Rep Prog Phys 1949;12:309.  
https://doi.org/10.1088/0034-4885/12/1/309. 

[8] Mott NF. Fracture of metals: Theoretical considerations. Engineering 1948;165:16–
8. 

[9] Irwin GR. Onset of fast crack propagation in high strength steel and aluminum alloys. 
Sagamore Res Conf Proc, vol. 2, 1956, p. 289–305. 

[10] Westergaard HM. Bearing pressures and cracks: Bearing pressures through a slightly 
waved surface or through a nearly flat part of a cylinder, and related problems of 
cracks. J Appl Mech 1939;6:A49–53. https://doi.org/10.1115/1.4008919. 

[11] Irwin GR. Analysis of stresses and strains near the end of a crack traversing a plate. 
J Appl Mech 1957;24:361–4. https://doi.org/10.1115/1.4011547. 

[12] Williams ML. On the stress distribution at the base of a stationary crack. J Appl Mech 
1957;24:109–14. 

[13] Wells AA. The condition of fast fracture in aluminum alloys with particular reference 
to comet failures. Br Weld Res Assoc Rep, 1955. 

[14] Winne DH, Wundt BM. Application of the Griffith-Irwin theory of crack propagation 
to the bursting behavior of disks, including analytical and experimental studies. J 
Fluids Eng 1958;80:1643–55. https://doi.org/10.1115/1.4012835. 



 
89 

 

[15] Paris PC, Gomez MP, Anderson WP. A rational analytic theory of fatigue. Trend Eng 
1961;13:9–14. 

[16] Irwin GR. Plastic zone near a crack and fracture toughness. Sagamore Res Conf Proc, 
Syracuse University Research Institute, Syracuse, NY: 1961, p. 63–78. 

[17] Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids 
1960;8:100–4. https://doi.org/10.1016/0022-5096(60)90013-2. 

[18] Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture, 1962, 
p. 55–129. https://doi.org/10.1016/S0065-2156(08)70121-2. 

[19] Wells AA. Unstable crack propagation in metals: Cleavage and fast fracture. Proc 
Crack Propag Symp, Cranfield, UK: 1961. 

[20] Rice JR. A path independent integral and the approximate analysis of strain 
concentration by notches and cracks. J Appl Mech 1968;35:379–86. 

[21] Eshelby JD. The continuum theory of lattice defects, 1956, p. 79–144.  
https://doi.org/10.1016/S0081-1947(08)60132-0. 

[22] Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening 
material. J Mech Phys Solids 1968;16:13–31.  
https://doi.org/10.1016/0022-5096(68)90014-8. 

[23] Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law 
hardening material. J Mech Phys Solids 1968;16:1–12.  
https://doi.org/10.1016/0022-5096(68)90013-6. 

[24] Begley JA, Landes JD. The J-integral as a fracture criterion. ASTM STP 514, Am 
Soc Test Mater, Philadelphia, PA: 1972, p. 1–20. 

[25] ASTM E813-81: Standard test method for JIC, a measure of fracture toughness 1981. 

[26] Shih CF, Hutchinson JW. Fully plastic solutions and large scale yielding estimates for 
plane stress crack problems. J Eng Mater Technol 1976;98:289–95.  
https://doi.org/10.1115/1.3443380. 

[27] Kumar V, German MD, Shih CF. An engineering approach for elastic-plastic fracture 
analysis. Palo Alto, CA: 1981. 

[28] Burdekin FM, Dawes MG. Practical use of linear elastic and yielding fracture 
mechanics with particular reference to pressure vessels. Proc Inst Mech Eng Conf, 
London: 1971, p. 28–37. 

[29] Shih CF. Relationships between the J-integral and the crack opening displacement for 
stationary and extending cracks. J Mech Phys Solids 1981;29:305–26.  
https://doi.org/10.1016/0022-5096(81)90003-X. 



 
90 

 

[30] ASTM E1820-99a: Standard test method for measurement of fracture toughness 1999. 
https://doi.org/10.1520/E1820-99A. 

[31] Belytschko T, Black T. Elastic crack growth in finite elements with minimal 
remeshing. Int J Numer Methods Eng 1999;45:601–20.  
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-
NME598>3.0.CO;2-S. 

[32] Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling 
crack growth with frictional contact. Comput Methods Appl Mech Eng 
2001;190:6825–46. https://doi.org/10.1016/S0045-7825(01)00260-2. 

[33] Li H, Yang Z, Li B, Wu J. A phase-field regularized cohesive zone model for quasi-
brittle materials with spatially varying fracture properties. Eng Fract Mech 
2021;256:107977. https://doi.org/10.1016/j.engfracmech.2021.107977. 

[34] Baktheer A, Martínez-Pañeda E, Aldakheel F. Phase field cohesive zone modeling for 
fatigue crack propagation in quasi-brittle materials. Comput Methods Appl Mech Eng 
2024;422:116834. https://doi.org/10.1016/j.cma.2024.116834. 

[35] Sorić J, Wriggers P, Allix O. Multiscale modeling of heterogeneous structures. vol. 
86. Cham: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-
319-65463-8. 

[36] Budden PJ, Sharples JK, Dowling AR. The R6 procedure: Recent developments and 
comparison with alternative approaches. Int J Press Vessels Pip 2000;77:895–903. 
https://doi.org/10.1016/S0308-0161(01)00012-6. 

[37] Gorji MB, de Pannemaecker A, Spevack S. Machine learning predicts fretting and 
fatigue key mechanical properties. Int J Mech Sci 2022;215:106949.  
https://doi.org/10.1016/j.ijmecsci.2021.106949. 

[38] Wang H, Li B, Gong J, Xuan F-Z. Machine learning-based fatigue life prediction of 
metal materials: Perspectives of physics-informed and data-driven hybrid methods. 
Eng Fract Mech 2023;284:109242.  
https://doi.org/10.1016/j.engfracmech.2023.109242. 

[39] Elber W. The significance of fatigue crack closure. Damage Tolerance in Aircraft 
Structures, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-
2959: ASTM International; 1971, p. 230–42. https://doi.org/10.1520/STP26680S. 

[40] BS 7448-1: Fracture mechanics toughness tests - Method for determination of KIc, 
critical CTOD and critical J values of metallic materials 1991. 

[41] ASTM E1820-18: Standard test method for measurement of fracture toughness 2018. 
https://doi.org/10.1520/E1820-18. 



 
91 

 

[42] Gómez Gonzáles GL, Antunes FV, Sérgio ER, Vasco-Olmo JM, Díaz FA, Neto DM. 
A comparison between FEM predictions and DIC results of crack tip displacement 
field in CT specimens made of titanium. Theor Appl Fract Mech 2023;127:104055. 
https://doi.org/10.1016/j.tafmec.2023.104055. 

[43] Armentani E, Caputo F, Esposito R, Soprano A. Plastic zone size as EPFM parameter. 
Key Eng Mater 2003;251–252:173–80.  
https://doi.org/10.4028/www.scientific.net/KEM.251-252.173. 

[44] Caputo F, Lamanna G, Soprano A. On the evaluation of the plastic zone size at the 
crack tip. Eng Fract Mech 2013;103:162–73.  
https://doi.org/10.1016/j.engfracmech.2012.09.030. 

[45] Antunes FV, Ferreira MSC, Branco R, Prates P, Gardin C, Sarrazin-Baudoux C. 
Fatigue crack growth versus plastic CTOD in the 304L stainless steel. Eng Fract 
Mech 2019;214:487–503. https://doi.org/10.1016/j.engfracmech.2019.04.013. 

[46] Escalero M, Muniz-Calvente M, Zabala H, Urresti I, Branco R, Antunes FV. A 
methodology for simulating plasticity induced crack closure and crack shape 
evolution based on elastic-plastic fracture parameters. Eng Fract Mech 
2021;241:107412. https://doi.org/10.1016/j.engfracmech.2020.107412. 

[47] Zhang W, Chai L, Ren L, Cai L. A unified prediction model for physically small crack 
and long crack growth based on modified CTOD. Eng Fract Mech 2022;271:108650. 
https://doi.org/10.1016/j.engfracmech.2022.108650. 

[48] Huang X. Constraint-corrected failure assessment diagrams based on crack tip plastic 
zone size. Eng Fract Mech 2024;309:110403.  
https://doi.org/10.1016/j.engfracmech.2024.110403. 

[49] Newman JC. A crack closure model for predicting fatigue crack growth under aircraft 
spectrum loading. NASA-TM-81941 1981. 

[50] Newman JC. FASTRAN II - A fatigue crack growth structural analysis program. 
NASA-TM-104159 1992. 

[51] Kuhn C, Müller R. A continuum phase field model for fracture. Eng Fract Mech 
2010;77:3625–34. https://doi.org/10.1016/j.engfracmech.2010.08.009. 

[52] Simoes M, Martínez-Pañeda E. Phase field modelling of fracture and fatigue in shape 
memory alloys. Comput Methods Appl Mech Eng 2021;373:113504.  
https://doi.org/10.1016/j.cma.2020.113504. 

[53] Li P, Li W, Li B, Yang S, Shen Y, Wang Q, et al. A review on phase field models for 
fracture and fatigue. Eng Fract Mech 2023;289:109419.  
https://doi.org/10.1016/j.engfracmech.2023.109419. 



 
92 

 

[54] Cheng P, Zhuang X, Zhu H, Fish J. Application of s-version finite element method to 
phase field modeling for localized fractures. Comput Geotech 2023;156:105204. 
https://doi.org/10.1016/j.compgeo.2022.105204. 

[55] Bui TQ, Hu X. A review of phase-field models, fundamentals and their applications 
to composite laminates. Eng Fract Mech 2021;248:107705.  
https://doi.org/10.1016/j.engfracmech.2021.107705. 

[56] Tang S, Zhang G, Guo TF, Guo X, Liu WK. Phase field modeling of fracture in 
nonlinearly elastic solids via energy decomposition. Comput Methods Appl Mech 
Eng 2019;347:477–94. https://doi.org/10.1016/j.cma.2018.12.035. 

[57] Tian F, Tang X, Xu T, Li L. An adaptive edge-based smoothed finite element method 
(ES-FEM) for phase-field modeling of fractures at large deformations. Comput 
Methods Appl Mech Eng 2020;372:113376.  
https://doi.org/10.1016/j.cma.2020.113376. 

[58] Xing C, Yu T, Sun Y, Wang Y. An adaptive phase-field model with variable-node 
elements for fracture of hyperelastic materials at large deformations. Eng Fract Mech 
2023;281:109115. https://doi.org/10.1016/j.engfracmech.2023.109115. 

[59] Kelly PA. Three-dimensional cracks with Dugdale-type plastic zones. Int J Fract 
2000;106:291–309. https://doi.org/10.1023/A:1026557509000. 

[60] Yamashita K, Gotoh K. A study on the strip yield model for a surface crack. Jpn Soc 
Nav Archit Ocean Eng 2016;22:433–8. (in Japanese) 

[61] Jin Z, Wang X. Point load weight functions for semi-elliptical cracks in finite 
thickness plate. J ASTM Int 2012;9:1–14. https://doi.org/10.1520/JAI103962. 

[62] Wang X, Glinka G. Determination of approximate point load weight functions for 
embedded elliptical cracks. Int J Fatigue 2009;31:1816–27.  
https://doi.org/10.1016/j.ijfatigue.2008.12.002. 

[63] Toyosada M, Niwa T. Fatigue life prediction of steel structures. Kyoritsu Shuppan 
Co., Ltd.; 2001. (in Japanese) 

[64] Toyosada M, Tanaka K, Matsumoto K, Tanaka S, Osawa N. Study on equivalent 
distributed stress determination technique based on generalized matrix inversion (part 
1): Analysis of two-dimensional edge cracks based on the center cracked plate’s 
weight function. Jpn Soc Nav Archit Ocean Eng 2020;31:213–28. (in Japanese) 
https://doi.org/10.2534/jjasnaoe.31.213. 

[65] Glinka G. Development of weight functions and computer integration procedures for 
calculating stress intensity factors around cracks subjected to complex stress fields. 
Hampton, VA 23666, USA: 1996. 



 
93 

 

[66] Sih GC. Handbook of stress-intensity factors: Stress-intensity factor solutions and 
formulas for reference. vol. 2. Lehigh University, Institute of Fracture and Solid 
Mechanics; 1973. 

[67] Adi Ben-Israel, Thomas NE Greville. Generalized inverses. New York: Springer-
Verlag; 2003. https://doi.org/10.1007/b97366. 

[68] Golub GH, Reinsch C. Singular value decomposition and least squares solutions. 
Numer Math (Heidelb) 1970;14:403–20. https://doi.org/10.1007/BF02163027. 

[69] Paris PC. The mechanics of fracture propagation and solutions to fracture arrestor 
problems. Document D2-2195, The Boeing Company 1957. 

[70] Kronrod AS. Nodes and weights of quadrature formulas. Sixteen-place tables, New 
York: Consultants Bureau; 1965. 

[71] Favati P, Lotti G, Romani F. Algorithm 691: Improving QUADPACK automatic 
integration routines. ACM Transactions on Mathematical Software 1991;17:218–32. 

[72] Htut ZL, Osawa N, Tanaka S, Kyaw PM, Toyosada M. Study on equivalent 
distributed stress determination technique based on generalized matrix inversion (part 
2). Proc Jpn Soc Nav Archit Ocean Eng, Kobe: 2022, p. 757–63. 

[73] Htut ZL, Osawa N, Tanaka S, Toyosada M. Efficient technique for evaluation of 
three-dimensional elastic-plastic fracture mechanics parameters based on equivalent 
distributed stress concept. Theor Appl Fract Mech 2024;131:104357.  
https://doi.org/10.1016/j.tafmec.2024.104357. 

[74] Wang CH, Rose LRF, Newman JC. Closure of plane-strain cracks under large-scale 
yielding conditions. Fatigue Fract Eng Mater Struct 2002;25:127–39.  
https://doi.org/10.1046/j.8756-758x.2002.00483.x. 

[75] Sneddon IN. The distribution of stress in the neighbourhood of a crack in an elastic 
solid. Proc R Soc Lond A Math Phys Sci 1946;187:229–60.  
https://doi.org/10.1098/rspa.1946.0077. 

[76] Keer LM, Mura T. Stationary crack and continuous distributions of dislocations. Proc 
First Int Conf Fract, Sendai, Japan: The Japanese Society for Strength and Fracture 
of Materials (JSFM); 1965. 

[77] Akiniwa Y, Tanaka K, Kimura H, Kogoshi M. Evaluation of fatigue strength of 
cracked components based on analysis of plasticity-induced crack closure. Trans Jpn 
Soc Mech Eng, Ser A 2001;67:1364–71. (in Japanese) 
https://doi.org/10.1299/kikaia.67.1364. 

[78] Sneddon IN. Fourier transforms. McGraw-Hill, New York: 1951. 



 
94 

 

[79] Lin XB, Smith RA. Finite element modelling of fatigue crack growth of surface 
cracked plates. Eng Fract Mech 1999;63:523–40. https://doi.org/10.1016/S0013-
7944(99)00041-7. 

[80] Brighenti R, Carpinteri A. Surface cracks in fatigued structural components: A review. 
Fatigue Fract Eng Mater Struct 2013;36:1209–22. https://doi.org/10.1111/ffe.12100. 

[81] Li Z, Jiang X, Hopman H. Surface crack growth in offshore metallic pipes under 
cyclic loads: A literature review. J Mar Sci Eng 2020;8:339.  
https://doi.org/10.3390/jmse8050339. 

[82] Müller H, Müller S, Munz D, Neumann J. Extension of surface cracks during cyclic 
loading. Fracture Mechanics: Seventeenth Volume, ASTM International100 Barr 
Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959; 1986, p. 625–43. 
https://doi.org/10.1520/STP17420S. 

[83] Brickstad B, Sattari-Far I. Crack shape developments for LBB applications. Eng Fract 
Mech 2000;67:625–46. https://doi.org/10.1016/S0013-7944(00)00077-1. 

[84] Feng L, Qian X. An adaptive learning approach to determine and update crack sizes 
from strain relaxation data for welded plate joints. Eng Fract Mech 2022;259:108165. 
https://doi.org/10.1016/j.engfracmech.2021.108165. 

[85] Huang C, Chen T, Xia Z, Jiang L. Numerical study of surface fatigue crack growth 
in steel plates repaired with CFRP. Eng Struct 2022;268:114743.  
https://doi.org/10.1016/j.engstruct.2022.114743. 

[86] Healy B, Gullerud A, Koppenhoefer K, Roy A, RoyChowdhury S, Petti J, et al. 
WARP3D-release 18.2.0: 3-D dynamic nonlinear fracture analyses of solids using 
parallel computers. 2020. 

[87] Htut ZL, Osawa N, Tanaka S. Modified enhanced approach for determining the 
elastic-plastic fracture mechanics parameters of 3D surface cracks. Proc 36th Asian-
Pac Tech Exch Advis Meet Mar Struct (TEAM), Busan, South Korea: 2023. 

[88] Htut ZL, Osawa N, Tanaka S, Toyosada M. Application of equivalent distributed 
stress concept and modified cohesive zone model in elastic-plastic fracture mechanics 
analysis of surface cracks. Eng Fract Mech 2025;315:110813.  
https://doi.org/10.1016/j.engfracmech.2025.110813. 

[89] MSC. Marc 2021 User’s Guide. Hexagon Co., Ltd.; 2021. 

[90] TSV-Crack V6.6 Manual Rev1. TechnoStar Co., Ltd.; 2016. 

[91] Okada H, Kawai H, Araki K. A virtual crack closure-integral method (VCCM) to 
compute the energy release rates and stress intensity factors based on quadratic 
tetrahedral finite elements. Eng Fract Mech 2008;75:4466–85.  
https://doi.org/10.1016/j.engfracmech.2008.04.014. 



 
95 

 

[92] Okada H, Kawai H, Tokuda T, Fukui Y. Fully automated mixed mode crack 
propagation analyses based on tetrahedral finite element and VCCM (virtual crack 
closure-integral method). Int J Fatigue 2013;50:33–9.  
https://doi.org/10.1016/j.ijfatigue.2012.04.009. 

[93] Newman JC, Raju IS. Stress-intensity factor equations for cracks in three-
dimensional finite bodies subjected to tension and bending loads. NASA-TM-85793 
1984. 

[94] Toyosada M, Gotoh K. Physical meaning of the fictitious crack opening displacement 
in Dugdale model. 11th Int Conf Fract, ICF11, Turin, Italy: 2005. 

[95] Walters MC, Paulino GH, Dodds RH. Interaction integral procedures for 3-D curved 
cracks including surface tractions. Eng Fract Mech 2005;72:1635–63. 
https://doi.org/10.1016/j.engfracmech.2005.01.002. 

[96] Gadallah R, Osawa N, Tanaka S. Evaluation of stress intensity factor for a surface 
cracked butt welded joint based on real welding residual stress. Ocean Eng 
2017;138:123–39. https://doi.org/10.1016/j.oceaneng.2017.04.034. 

[97] Kyaw PM, Osawa N, Gadallah R, Tanaka S. Accurate and efficient method for 
analyzing mixed-mode SIFs for inclined surface cracks in semi-infinite bodies by 
using numerical influence function method. Theor Appl Fract Mech 
2020;106:102471. https://doi.org/10.1016/j.tafmec.2019.102471. 

[98] Htut ZL, Osawa N, Tanaka S. Comprehensive investigation of plastic zone size and 
crack tip opening displacement of surface cracks at the corner point using the 
equivalent distributed stress-based cohesive zone model. Proc 35th Int Ocean Polar 
Eng Conf (ISOPE), Seoul, South Korea: 2025, p. 3504–11. 

[99] Htut ZL, Osawa N, Tanaka S. Introduction of crack closure assessment of surface 
cracks in butt joints based on equivalent distributed stress concept considering 
residual stress. Proc 77th IIW Annu Assem Int Conf, Rhodes, Greece: 2024. 

[100] Olesiak Z, Wnuk M. Plastic energy dissipation due to a penny-shaped crack. Int J 
Fract Mech 1968;4:383–96. https://doi.org/10.1007/BF00186804. 

  

  



 
96 

 

PUBLICATIONS 

Publications with Full or Peer Review 

1. Htut ZL, Osawa N, Tanaka S, Toyosada M. Efficient technique for evaluation of three-

dimensional elastic-plastic fracture mechanics parameters based on equivalent 

distributed stress concept. Theor Appl Fract Mech 2024;131:104357. 

2. Htut ZL, Osawa N, Tanaka S, Toyosada M. Application of equivalent distributed stress 

concept and modified cohesive zone model in elastic-plastic fracture mechanics analysis 

of surface cracks. Eng Fract Mech 2025;315:110813. 

3. Htut ZL, Osawa N, Tanaka S. Comprehensive investigation of plastic zone size and 

crack tip opening displacement of surface cracks at the corner point using the equivalent 

distributed stress-based cohesive zone model. Proc 35th Int Ocean Polar Eng Conf 

(ISOPE), Seoul, South Korea: 2025, p. 3504–11. 

Conference Proceedings 

1. Htut ZL, Osawa N, Tanaka S, Kyaw PM, Toyosada M. Study on equivalent distributed 

stress determination technique based on generalized matrix inversion (part 2). Proc Jpn 

Soc Nav Archit Ocean Eng, Kobe: 2022, p. 757–63. 

2. Htut ZL, Osawa N, Tanaka S. Modified enhanced approach for determining the elastic-

plastic fracture mechanics parameters of 3D surface cracks. Proc 36th Asian-Pac Tech 

Exch Advis Meet Mar Struct (TEAM), Busan, South Korea: 2023. 

3. Htut ZL, Osawa N, Tanaka S. Introduction of crack closure assessment of surface 

cracks in butt joints based on equivalent distributed stress concept considering residual 

stress. Proc 77th IIW Annu Assem Int Conf, Rhodes, Greece: 2024. 

 

 

 

 

 


	CHAPTER 1
	1.1 Background
	1.2 History and Overview of Fracture Mechanics
	1.2.1 Early Foundations of Fracture Theory
	1.2.2 Evolution of Fracture Mechanics after World War II
	1.2.3 Development of Fracture Mechanics: 1960–1980
	1.2.4 Advancements in Fracture Mechanics: 1980–Present

	1.3 Development of Fracture Mechanics Frameworks
	1.3.1 Linear Elastic Fracture Mechanics
	1.3.2 Elastic-Plastic Fracture Mechanics

	1.4 Key EPFM Parameters
	1.4.1 Plastic Zone Size
	1.4.2 Crack Tip Opening Displacement
	1.4.3 J-Integral

	1.5 Existing Methods and Challenges in Evaluating EPFM Parameters
	1.6 Objectives of Research
	1.7 Structure and Overview of the Dissertation

	CHAPTER 2
	2.1 Basic Principles
	2.1.1 Superposition Principle
	2.1.2 Weight Function Approach
	2.1.3 Dugdale Cohesive Zone Model

	2.2 Equivalent Distributed Stress
	2.2.1 Yield Stress Loading Method
	2.2.2 Whole Crack Face Loading Method
	2.2.3 Fictitious Crack Face Loading Method

	2.3 Weight Functions of 2D Substitute Cracks
	2.3.1 Center-Through Crack in an Infinite Plate
	2.3.2 Edge Crack in a Semi-Infinite Plate


	CHAPTER 3
	3.1 EDS Determination Procedures
	3.1.1 Spline Interpolation and a–K Relationship Matrix
	3.1.2 Continuum Condition of EDS and Elimination of Dependent Variables
	3.1.3 Determination of Spline Coefficients by Generalized Matrix Inversion

	3.2 EDS-Based Cohesive Zone Model
	3.2.1 Calculation of SIF and Plastic Zone Size
	3.2.2 Calculation of Crack Opening Displacement

	3.3 EDS Fracture Mechanics Analysis System

	CHAPTER 4
	4.1 Framework for Validation
	4.2 3D Penny-Shaped Crack under Axisymmetric Loading
	4.2.1 Determination of Plastic Constraint Factor
	4.2.2 Calculation of Prescribed a–K Relationships by Weight Function Method

	4.3 EDSs and Reproduced a–K Relationships
	4.4 Comparison of Elastic-Plastic COD Profiles
	4.5 Summary

	CHAPTER 5
	5.1 Extension of the EDS Method to 3D Surface Cracks
	5.2 Configuration of Target Surface Cracks
	5.3 Elastic-Plastic FE Analysis for Reference Solutions
	5.3.1 Determination of Elastic-Plastic COD Profile in FE Analysis
	5.3.2 Investigation of Actual Plastic Zone Shape
	5.3.3 Determination of Plastic Constraint Factor

	5.4 Calculation of Prescribed a–K Relationships
	5.5 EDS Analysis of Surface Cracks at the Deepest Point
	5.5.1 EDS and Reproduced a–K Relationships for the Deepest Point
	5.5.2 Comparison of EPFM Parameters for the Deepest Point

	5.6 EDS Analysis of Surface Cracks at the Corner Points
	5.6.1 EDS and Reproduced a–K Relationships for the Corner Points
	5.6.2 Comparison of EPFM Parameters for the Corner Points

	5.7 Summary

	CHAPTER 6
	APPENDICES
	A. EDS-Based CZM Considering Residual Stress
	B. Sneddon’s Solutions for Elastic-Plastic COD of a 3D Penny-Shaped Crack under Axisymmetric Loading
	C. SIFs for External and Cohesive Stresses Calculated Using WARP3D

	REFERENCES
	PUBLICATIONS

