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ABSTRACT

Ship and offshore structures are constantly exposed to complex cyclic and multiaxial
loading throughout their operational life. These demanding conditions often lead to
localized plastic deformation, creating a high risk of fatigue crack initiation and propagation.
Accurate assessment of crack opening and closure behavior is therefore essential for

predicting fatigue crack growth life and maintaining structural integrity.

In the field of elastic-plastic fracture mechanics (EPFM), parameters such as plastic
zone size and crack tip opening displacement (CTOD) are key indicators of crack tip
behavior. While finite element (FE) analysis has traditionally been used to evaluate these
parameters, its computational cost—particularly in fatigue crack propagation (FCP)
problems involving numerous cycles—poses significant limitations, especially when

tackling complex three-dimensional (3D) crack geometries.

To address these challenges, this study proposes an efficient and accurate method
for evaluating EPFM parameters in 3D crack geometries by extending the equivalent
distributed stress (EDS) concept originally introduced by Toyosada et al. The EDS method,
based on a simplified analytical cohesive zone model (CZM), is adapted to a modified
framework suitable for 3D crack analysis. By constructing two-dimensional (2D) substitute
crack models that replicate the behavior of 3D cracks, the proposed method achieves
computational efficiency without sacrificing accuracy. EDSs are applied to the substitute
models to ensure consistency in crack length and stress intensity factor (SIF) between the

original 3D geometry and its 2D representations.

Validation is carried out through analytical and numerical FE simulations,
demonstrating satisfactory agreement between the EDS-based method and reference
solutions in terms of both plastic zone size and CTOD. These results confirm the
effectiveness of EDS method to provide a reliable and efficient alternative for analyzing 3D
cracks under elastic-plastic conditions. By significantly reducing computational demands,
this approach offers a practical tool for structural integrity assessments in marine and
offshore engineering applications. The framework established in this study lays the
foundation for future integration with FCP analysis, thereby enhancing its utility in the long-

term performance evaluation of critical structural components.

Keywords: Equivalent distributed stress; Cohesive zone model; Stress intensity factor;

Plastic zone size; Crack tip opening displacement
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CHAPTER 1

INTRODUCTION

1.1 Background

Engineering structures, particularly those used in demanding environments such as
shipbuilding and offshore engineering, are routinely exposed to complex loading conditions
throughout their service lives. These conditions often involve cyclic and multiaxial stresses
arising from external forces such as waves, wind, current, and operational loads. Over time,
repeated application of these stresses can lead to localized plastic deformation in structural
components, making them vulnerable to fatigue damage. This fatigue process typically
initiates from sites of stress concentration, such as welds, notches, and material
imperfections, and may ultimately result in the formation and growth of fatigue cracks. If
left unchecked, these cracks can compromise the structural integrity of critical components,

leading to serious and sometimes catastrophic failures.

Ensuring the structural integrity of ship and offshore structures is of paramount
importance, not only to protect human lives but also to avoid severe environmental and
economic consequences. Famous historical examples highlight the significance of
understanding and managing fatigue behavior in large-scale structures. One notable case is
the failure of the Liberty ships during World War II [1]. These cargo vessels, mass-produced
to support wartime logistics, experienced unexpected brittle fractures, many of which were
initiated from small cracks at welded joints under cyclic loading conditions. Another
landmark event is the collapse of the Alexander L. Kielland offshore platform in 1980,
which tragically resulted in the loss of 123 lives [2]. Investigations revealed that a fatigue
crack, originating from a faulty weld, propagated under cyclic wave loading and ultimately

caused the catastrophic failure of one of the platform’s legs.

Such incidents highlight the critical role of fracture mechanics and fatigue crack
growth analysis in ensuring the safety and reliability of large-scale marine structures.
However, accurately predicting fatigue crack growth in ship and offshore structures remains
particularly challenging due to the variable amplitude loading experienced in corrosive
marine environments. Inaccurate estimation of crack propagation rates can lead to improper
maintenance scheduling or unexpected structural failures, both carrying serious

consequences.



Fig. 1.1 The SS Schenectady, a Liberty ship, fractured due to brittle failure while docked
in harbor, 1943 [1]

Fig. 1.2 Alexander L. Kielland offshore platform capsize accident, 1980 [2]

Given these evolving challenges, the need for accurate assessment and deeper
understanding of fracture mechanics parameters has never been more critical. Reliable
evaluation of these parameters is essential for predicting fatigue crack growth and directly
supports the development of effective design, inspection, and maintenance strategies. The
historical failures of the Liberty ships and the Alexander L. Kielland platform serve as
enduring reminders of the catastrophic consequences associated with inadequate fatigue

management.

As marine structures continue to grow in complexity and face more aggressive
service environments, advancing fracture mechanics methodologies, particularly in the
areas of crack growth evaluation, fatigue life prediction, and fracture parameter estimation,
remains a vital research priority. These efforts contribute significantly toward ensuring safer,

more reliable, and economically viable engineering solutions for the marine industry.
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1.2  History and Overview of Fracture Mechanics

Fracture mechanics has evolved as a fundamental discipline for understanding how
materials and structures fail under various loading conditions. Originating from early
theoretical models in the early 20th century, the field has expanded significantly through
successive decades, driven by both scientific advances and the demands of engineering
practice. Early contributions provided the foundation for quantifying crack behavior, while
post-war research introduced critical modifications that connected theoretical models with
real-world observations. Subsequent developments from the 1960s onward have refined the
understanding of crack growth, material toughness, and fatigue under increasingly complex
loading scenarios. Today, fracture mechanics continues to evolve, incorporating advanced
computational methods, new materials, and multidisciplinary approaches. This section
provides a historical overview of key developments in fracture mechanics, organized by

major periods of research progress.

1.2.1 Early Foundations of Fracture Theory

Initial experimental insights into the fracture behavior of materials can be traced
back to Leonardo da Vinci, who, several centuries earlier, observed that the tensile strength
of iron wires decreased with increasing wire length [3]. This empirical observation
suggested a flaw-controlled mechanism of failure, where larger specimens inherently
possessed a higher probability of containing critical flaws. Although da Vinci’s findings
were qualitative, they hinted at the fundamental role of material imperfections in governing

mechanical strength.

A quantitative framework was first established by Inglis in 1913 [4], who performed
a stress analysis for an elliptical hole in a plate subjected to tension, demonstrating that sharp
flaws create localized stress concentrations significantly greater than the nominal applied
stress. Building upon this foundation, Griffith in 1920 [5] proposed the first energy-based
fracture theory, developing a fracture criterion based on the first law of thermodynamics.
According to Griffith’s model, crack propagation becomes unstable when the decrease in
elastic strain energy resulting from an incremental crack extension exceeds the surface

energy required to create new free surfaces.

Griffith energy balance approach successfully explained the observed inverse

relationship between flaw size and tensile strength in brittle materials such as glass.



However, the model inherently assumed that fracture resistance derived exclusively from
the material’s surface energy, thereby limiting its applicability to ideally brittle solids.
Efforts to apply the Griffith theory to ductile materials, such as metals, were unsuccessful
due to the absence of plastic deformation mechanisms in the original formulation.
Significant theoretical advancements were not introduced until 1948, when modifications
to Griffith’s framework incorporated plastic energy dissipation, thereby enabling a more

accurate description of fracture behavior in metallic systems.

1.2.2 Evolution of Fracture Mechanics after World War 11

Following the widespread failures of Liberty ships during World War II, fracture
mechanics evolved from a scientific curiosity into an essential engineering discipline. Dr.
Irwin, leading the research group at the US Naval Research Laboratory, extended Griffith’s
1920 fracture model by incorporating the energy dissipated through local plastic
deformation in metals [6], an idea also independently proposed by Orowan [7] and Mott [§]

further refined the theoretical framework by addressing rapidly propagating cracks.

In 1956, Irwin [9] introduced the energy release rate, a reformulation of Griffith’s
theory suited for practical engineering applications. Drawing on Westergaard’s 1938
analytical solutions for sharp cracks [10], Irwin established that near-tip stresses and
displacements could be characterized by a single parameter, later known as the stress
intensity factor, SIF [11]. Williams independently derived similar crack-tip solutions using

a different approach [12].

Early successful applications reinforced the value of fracture mechanics. In 1956,
Wells [13] employed fracture mechanics to explain the catastrophic fuselage failures of the
Comet aircraft, attributing them to fatigue cracks initiated at poorly reinforced, square-
cornered windows. In 1957, Winne and Wundt [14] utilized Irwin’s energy release rate
method to predict and prevent the failure of large steam turbine rotors at General Electric

Corporation.

Despite early successes, fracture mechanics initially faced resistance within parts of
government and industry. In 1960, Paris and his colleagues [15] proposed a fracture
mechanics-based model for fatigue crack growth, challenging the prevailing S—N curve

approach and marking a pivotal advancement in fatigue analysis.



1.2.3 Development of Fracture Mechanics: 1960-1980

Following World War II, fracture mechanics evolved rapidly, particularly between
1960 and 1980, when researchers addressed limitations of linear elastic fracture mechanics
(LEFM) under significant plastic deformation. Irwin [16], Dugdale [17], and Barenblatt [18]
introduced corrections for crack-tip plasticity, while Wells [19] proposed the CTOD as a

new fracture parameter for ductile materials.

Rice [20] developed the J-integral to characterize nonlinear material behavior,
building on Eshelby’s earlier conservation integrals [21]. Hutchinson [22], and Rice and
Rosengren [23] further related the J-integral to crack-tip stress fields, establishing it as both

an energy release rate and a nonlinear stress-intensity parameter.

The nuclear power industry’s interest in fracture toughness during the 1970s
accelerated the adoption of J-integral methods. In 1971, Begley and Landes [24]
successfully applied the J-integral to characterize nuclear pressure vessel steels, which led
to the publication of standardized J-testing procedures a decade later (ASTM E&813, 1981)
[25]. Shih and Hutchinson [26] later provided a theoretical framework for fracture design
based on the J-integral, which was formalized in the Electrical Power Research Institute

fracture handbook [27].

In parallel, the UK advanced CTOD methodology for welded structures, driven by
North Sea oil developments. Burdekin and Dawes [28] introduced the CTOD design curve,
while UK nuclear industries developed fracture assessments based on strip yield models
(SYMs). Shih [29] demonstrated the relationship between the J-integral and CTOD, leading
to a convergence of US and UK approaches. Today, both parameters are widely used to
characterize fracture behavior in various materials. Much of the theoretical foundation of

dynamic fracture mechanics was laid during this period.

1.2.4 Advancements in Fracture Mechanics: 1980—Present

Since 1980, fracture mechanics has expanded significantly, driven by the demand
for safer, more reliable structures across industries such as aerospace, nuclear power,
transportation, and offshore engineering. Advances have been made in both theoretical
development and practical applications, extending fracture mechanics beyond traditional

metals to composites, polymers, and advanced ceramics.



EPFM has been further refined, with widespread adoption of J-integral and CTOD
approaches for characterizing fracture toughness across a wide range of materials. Testing
standards, such as ASTM E1820, were established to formalize procedures for measuring J-

integral and CTOD, enhancing consistency and reliability in material qualification [30].

Recent research trends include the development of microstructural fracture models
and frameworks that relate local fracture processes to global material behavior. Closely
related are efforts to characterize and predict the geometry dependence of fracture
toughness—an important consideration when conventional, single-parameter fracture

mechanics approaches prove insufficient.

The development of computational fracture mechanics, especially FE methods with
fracture criteria, enabled detailed simulations of crack initiation and propagation in complex
structures [31]. Extended finite element method (XFEM) [32] and phase-field models
(PFMs) have been introduced to simulate fracture processes without requiring predefined

crack paths [33,34].

With the emergence of advanced materials such as fiber-reinforced composites and
nanomaterials, new fracture mechanics concepts have been necessary. Multiscale modeling
approaches have been developed to bridge material behavior from the atomic scale to the

structural scale [35].

Structural integrity assessments have also evolved, supported by guidelines like the
R6 procedure in the UK and the ASME Boiler and Pressure Vessel Code in the US [36].
These frameworks integrate fracture mechanics with probabilistic approaches to account for

uncertainties in material properties, loading, and flaw detection.

Today, fracture mechanics continues to play a central role in the design, assessment,
and life-extension of critical structures. The integration of machine learning and data-driven
approaches with traditional fracture mechanics analysis is an emerging trend, promising
further improvements in prediction accuracy and decision-making for structural safety

[37,38].

1.3 Development of Fracture Mechanics Frameworks

As fracture mechanics evolved from its early foundations through the post-war

period and into modern applications, it became evident that a systematic framework was



necessary to characterize and predict crack initiation and growth across a wide range of
materials and loading conditions. Early developments were largely based on linear elastic
assumptions, which provided a fundamental understanding of brittle fracture but proved
insufficient when addressing the behavior of more ductile materials that exhibit significant

plastic deformation at crack tips.

The growing demand for safer and more reliable structures, coupled with the use of
increasingly diverse materials, highlighted the limitations of purely linear elastic
approaches. Consequently, the discipline expanded to incorporate plasticity effects, leading
to the establishment of EPFM alongside traditional LEFM. The primary distinction between
these frameworks lies in the development of plastic deformation around the crack tip during

the fracture process, as illustrated in Fig. 1.3.

LEFM EPFM

Extensive
plastic zone

Localized
plastic zone

-——

Blunt
crack tip

Sharp
crack tip

Fig. 1.3 Schematic illustration of crack-tip plastic deformation fields under LEFM and
EPFM conditions

These two frameworks now form the foundation of modern fracture mechanics,
providing critical tools for evaluating structural integrity under both brittle and ductile

fracture conditions.

The following subsections provide a detailed discussion of the principles,

assumptions, and parameters associated with LEFM and EPFM.



1.3.1 Linear Elastic Fracture Mechanics

LEFM provides the foundational framework for analyzing crack initiation and
propagation under the assumption that the material remains linearly elastic up to fracture.
This approach is particularly well-suited for brittle materials or situations where plastic
deformation is confined to a very small region near the crack tip and can be neglected in the

overall structural response.

The primary parameter governing fracture in LEFM is the SIF, K, which
characterizes the intensity of the stress field near the crack tip. When K reaches a critical
value, known as the fracture toughness Kic, rapid crack propagation occurs, leading to
structural failure. LEFM also assumes that the stress and displacement fields near the crack
tip exhibit a singular behavior, following an inverse square root dependence on the distance

from the crack tip.

Classical solutions developed within the LEFM framework, such as those by Irwin
[9] and Westergaard [10], have provided powerful tools for assessing structural integrity and
designing against fracture in various engineering applications. However, as materials with
higher ductility and structures subjected to complex loading became more common, the
limitations of LEFM became increasingly apparent. In particular, LEFM does not
adequately capture the effects of plastic deformation at the crack tip. Moreover, it may not
be valid for fatigue crack growth when plasticity-induced crack closure (PICC) significantly

affects propagation behavior [39].

As aresult, for materials and conditions where plasticity plays a non-negligible role,
an extended framework capable of addressing these phenomena was necessary. This need

led to the development of EPFM.

1.3.2 Elastic-Plastic Fracture Mechanics

EPFM extends the principles of fracture mechanics into the regime where the
assumptions of linear elasticity no longer hold. Unlike LEFM, where the crack tip is
modeled as an idealized sharp point with an associated stress singularity, EPFM recognizes
that plastic deformation occurs ahead of the crack tip, leading to blunting and redistribution
of the stress and strain fields. This plasticity substantially influences crack growth behavior,
making linear elastic models insufficient for accurately predicting fracture in ductile

materials or under large-scale yielding conditions.



The development of EPFM has been critical for enabling the safe design and
evaluation of structures operating under more demanding environments, where higher loads,
PICC, complex geometries, and ductile materials are often encountered. By incorporating
the effects of plastic deformation, EPFM provides a more comprehensive framework for

assessing fracture processes across a wide range of engineering applications.

Within EPFM, several specialized parameters have been formulated to characterize
crack initiation and propagation under elastic-plastic conditions. These parameters serve as
the foundation for evaluating fracture behavior when plasticity cannot be neglected. The
following section introduces and discusses the key parameters utilized in EPFM, which are

essential for quantifying the effects of nonlinear material behavior on crack growth.

1.4 Key EPFM Parameters

As discussed in the previous section, EPFM provides the framework necessary to
evaluate fracture behavior in materials where significant plastic deformation occurs at the
crack tip. Central to EPFM are parameters that quantitatively characterize the crack driving
forces and resistance mechanisms under elastic-plastic conditions. Among these, the plastic

zone size, the CTOD, and the J-integral are of particular importance.

Each parameter captures a different aspect of the complex stress and strain fields
near the crack tip. The plastic zone size quantifies the extent of plasticity influencing crack
propagation, CTOD provides a physical measure of crack tip deformation, and J-integral
offers an energy-based perspective. A thorough understanding of these parameters is
essential not only for accurate fracture assessments but also for the development of

advanced evaluation methods.

1.4.1 Plastic Zone Size

When a crack is present in a ductile material, the region near the crack tip
experiences very high stress levels, often exceeding the material’s yield strength. As a result,
a zone of plastic deformation—referred to as the plastic zone—forms around the crack tip
as illustrated in Fig. 1.4. The size and shape of this plastic zone play a crucial role in

determining the material’s fracture behavior, especially under elastic-plastic conditions.

The plastic zone is influenced by several factors, including the applied load, material

properties, and the stress state around the crack tip. Under plane stress conditions, which are



typical of thin specimens, the plastic zone tends to be larger and more spread out. In contrast,
under plane strain conditions, which dominate in thicker materials, the plastic zone is
smaller and more confined. This difference significantly affects the material’s apparent

toughness and the development of crack tip fields.

Understanding the plastic zone size is important because it reflects how much energy
is being absorbed through plastic deformation, and it helps determine the applicability of
fracture models. If the plastic zone is small relative to the crack size and specimen
dimensions, LEFM may be sufficient. However, when the plastic zone becomes large,

EPFM must be employed.

The plastic zone also provides valuable insight into crack tip shielding, crack
blunting, and material toughening mechanisms, all of which can contribute to increased
fracture resistance. Accurate estimation of the plastic zone size is vital for numerical

simulations and for the design of damage-tolerant structures.

Plastic zone

Fig. 1.4 Illustration of plastic zone at the crack tip [3]

1.4.2 Crack Tip Opening Displacement

CTOD plays a pivotal role in characterizing the deformation behavior of ductile
materials. It provides a direct and physical measure of the displacement at the crack tip,
offering clear insight into the local response of a material as it transitions from stable

deformation to fracture.

Historically, the concept of CTOD was introduced in the early 1960s by Wells [19],
who observed that ductile materials exhibit a consistent opening displacement at the crack

tip just before fracture. His experiments on mild steel demonstrated that even under
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significant plastic deformation, the amount of opening at the crack tip remained nearly
constant at the onset of crack propagation. This observation laid the groundwork for CTOD
as a fracture criterion, particularly effective for materials where plasticity plays a dominant

role.

CTOD is defined as the displacement between the upper and lower crack surfaces at
a specified point near the crack tip, typically at the original crack tip location and the 90 deg
intercept as illustrated in Fig. 1.5. It captures the amount of opening induced by applied
loads, reflecting the material’s resistance to crack growth in the presence of plastic

deformation.

(a) (b)

Y

““““““ - CTOD

——
— —
— —

Fig. 1.5 Schematic definitions of CTOD: (a) displacement at the original crack tip;

(b) displacement at the intersection of a 90 deg vertex drawn between the crack flanks [3]

There are several methods to experimentally determine CTOD, depending on the

geometry and loading conditions of the specimen:

e Direct Measurement: Using high-resolution extensometers or digital image
correlation (DIC), the opening displacement at the crack tip can be measured directly
during testing. This method is common in standardized fracture toughness tests such
as the BS7448 for metallic materials [40].

e Clip Gauge Method: In single edge notch bend (SENB) or compact tension (CT)
specimens, clip gauges attached at the crack mouth measure the crack mouth
opening displacement (CMOD), from which CTOD can be inferred through

geometry-based calibration relationships [41].
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e Numerical Estimation: FE analysis is frequently used to determine CTOD from
simulated stress and displacement fields, especially in cases where direct

measurement is impractical [42].

A simplified but insightful method to estimate CTOD is through the SYM, originally
developed by Dugdale [17] and later extended by others. This model idealizes plastic
deformation at the crack tip as a narrow zone of yielded material (the strip) extending ahead
of the crack in an otherwise elastic medium. The size of the strip-yield zone, or plastic zone,
is defined by the requirement of finite stresses at the crack tip. CTOD can be defined as the
opening displacement at the end of the strip-yield zone. Thus, the SYM provides a means to
estimate both CTOD and the plastic zone size. A detailed discussion of this model is

presented in Section 2.1.3 of Chapter 2.

1.4.3 J-Integral

In 1968, Rice [20] considered the changes in potential energy associated with crack
growth in nonlinear elastic materials, recognizing that such behavior could realistically
approximate plastic deformation as long as no unloading occurred. Through this work, Rice
derived a fracture parameter known as the J-integral, a contour integral that can be evaluated
along any arbitrary path enclosing the crack tip, as illustrated in Fig. 1.6 [3]. He
demonstrated that the J-integral is equivalent to the energy release rate for a crack in

nonlinear elastic material.

Fig. 1.6 Arbitrary contour path enclosing the crack tip in non-linear elastic material [3]

Building on this foundation, the J-integral has become a fundamental parameter in
EPFM. It characterizes the intensity of the stress and strain fields near a crack tip under
elastic-plastic conditions, extending the concept of crack driving force beyond the limits of
linear elasticity. Defined as the energy release rate per unit crack extension, the J-integral

provides a generalized and powerful measure of the fracture driving force.
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Mathematically, the J-integral is expressed as:
7= wdy —T 2 s (1.1)
r " Ox

where I' is a contour around the crack tip, w is the strain energy density, 7; is the traction

vector, u, is the displacement vector, and s is the arc length along the contour.

One of the major advantages of the J-integral is its path-independence under
conditions of monotonic loading and absence of crack tip plastic instability, allowing it to
be evaluated on contours remote from the crack tip where numerical solutions are more
stable. The J-integral thus forms the basis for many fracture toughness tests and crack

growth criteria in elastic-plastic materials.

However, while the J-integral effectively captures the global energy-based
characteristics of crack propagation, it does not directly account for the localized
deformation and crack opening behavior critical to understanding crack initiation.
Therefore, this thesis focuses on physical parameters, particularly plastic zone size and
CTOD, which provide more localized insight essential for advancing fracture assessments

of complex 3D crack geometries, a task that remains a significant challenge in EPFM.

1.5 Existing Methods and Challenges in Evaluating EPFM Parameters

Plastic zone size and CTOD are widely recognized as key parameters in EPFM,
particularly in studies related to PICC and FCP [43—48]. Conventionally, these parameters
are evaluated through numerical fracture mechanics analyses, often employing FE methods.
While FE analysis provides a straightforward and comprehensive approach, it becomes
computationally impractical for FCP problems involving numerous loading cycles, where
repeated mesh updates are required. Consequently, despite its accuracy, FE analysis faces
significant limitations in practical applications, particularly for evaluating EPFM
parameters of 3D crack geometries. This challenge has led to increasing demand for faster

and more efficient alternative methods.

In response to such needs, Newman [49,50] developed the fatigue crack growth
analysis program FASTRAN, based on the concept of PICC. This program utilizes a 2D
analytical SYM, originally derived from the Dugdale model [17] but modified to leave

plastically deformed material in the wake of the advancing crack. By superimposing two
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elastic problems—one involving a cracked plate under remote uniform stress, and the other
involving the same cracked plate subjected to a uniform stress distributed over a segment of
the crack surface—the plastic zone size and crack face displacements can be estimated.
Newman’s SYM has since become one of the most influential analytical frameworks for
crack closure and FCP analysis. However, the extension of this model to 3D crack
geometries and complex loading conditions remains limited, as it has not been fully
validated for such cases. The effectiveness of SYM in accurately addressing complex stress
fields and crack propagation behavior of 3D cracks continues to be an open issue,

necessitating further research and validation.

In parallel with SYM developments, PFMs have also gained significant attention in
fracture mechanics due to their ability to model complex crack propagation without
requiring explicit crack tracking [51-53]. PFMs offer significant advantages, such as
capturing evolving crack patterns, handling multiple interacting fractures, and providing
smooth crack interface representations. However, these models are computationally
intensive and typically require fine mesh discretization, which limit their feasibility for
large-scale or industrial FCP applications [54,55]. Although recent advancements, such as
adaptive mesh refinement techniques and improved energy formulations, have enhanced the
computational efficiency of PFMs [56-58], a substantial gap remains between academic
research and practical implementation. Notably, no widely available PFM-based FCP
analysis code currently exists that could be easily utilized by practicing engineers for fatigue
design purposes. Consequently, despite their promise, PFMs have not yet supplanted simpler
and more practical methods like SYM in engineering practice, especially where

computational simplicity and ease of use are essential.

Efforts have also been made to extend numerical approaches to 3D crack problems.
Kelly and Nowell [59] proposed a general method for determining the plastic zone size of
cracks in 3D bodies, employing a Dugdale-type penny-shaped crack model. Their approach
uses an eigenstrain method, discretizing the elastic and plastic regions into triangular
elements to calculate stresses induced by specified crack surface displacements. However,
the accuracy of this method heavily depends on the refinement of the mesh, and oscillations
may occur in the computed crack opening displacement (COD) profiles, posing challenges

for practical applications.

Building further upon SYM concepts, Yamashita and Gotoh [60] investigated PICC,

and evaluated elastic-plastic COD profiles of 3D surface cracks by incorporating weight
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function methods [61,62] into the SYM framework. Although their method provided
improvements in estimating EPFM parameters for 3D cracks, a major challenge remains:
the development of SYMs applicable to arbitrary 3D crack shapes requires the derivation
and application of corresponding original 3D weight functions, a task that is mathematically

complex and practically demanding.

In response to these challenges, the EDS approach was introduced by Toyosada and
Niwa [63], based on the Dugdale model and the SYM concept, as a computationally efficient
and physically interpretable alternative. The EDS method transforms a complex crack
geometry into an equivalent 2D crack by applying a fictitious crack face traction (CFT),
thereby preserving the same SIF characteristics. This enables the analysis of EPFM
parameters, such as plastic zone size and CTOD, without requiring complex remeshing or
full-field stress calculations. Moreover, this method lends itself well to analytical and semi-
analytical formulations, which are particularly advantageous when dealing with fatigue
analysis involving repetitive crack extension. Unlike FE or PFM approaches that demand
extensive numerical effort, EDS can offer rapid estimations of key EPFM parameters with
accuracy sufficient for practical design and safety assessments. Furthermore, its theoretical
foundation based on fictitious CFT enables straightforward extension to different loading
conditions and geometries, provided that the corresponding SIF relationships can be

obtained or approximated.

However, existing EDS-based studies have primarily focused on simple 2D
geometries [64]. For the EDS concept to be utilized effectively in real-world engineering
applications, it must be generalized to accommodate arbitrary 3D crack shapes and validated
against reliable reference solutions. This gap presents both a challenge and an opportunity:
by extending the EDS methodology to 3D crack configurations, the method could serve as
a powerful alternative to traditional fracture mechanics approaches, particularly in contexts

where efficiency, interpretability, and adaptability are essential.

Accordingly, this dissertation is driven by the aim of enhancing the applicability of
the EDS method to 3D crack geometries and to integrate it into a broader framework for
EPFM analysis. The specific objectives and structure of this research are outlined in the

following sections.
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1.6 Objectives of Research

As discussed in the preceding section, while several methods—ranging from FE
analysis to analytical models like SYM and emerging approaches such as PFMs—have
contributed to the evaluation of EPFM parameters, significant challenges persist,
particularly for practical applications involving 3D crack geometries under elastic-plastic
conditions. Existing methods either suffer from prohibitive computational demands, are
limited to specific idealized crack shapes, or require complex mathematical formulations

that hinder their widespread adoption in engineering practice.

The primary objective of this research is to develop a practical, efficient, and
accurate method for evaluating EPFM parameters of 3D cracks by extending the EDS
framework. Building on the promising results demonstrated for 2D crack problems, this
study seeks to generalize the EDS approach to more complex 3D crack configurations,

where conventional methods face substantial limitations.
Specifically, the goals of this research are:

e To establish a theoretical formulation for applying the EDS method to 3D cracks,
ensuring that essential fracture parameters such as plastic zone size and CTOD can
be accurately estimated while maintaining computational efficiency.

e To develop a practical computational procedure for determining the EDS
distribution for 3D cracks, including the adaptation of iterative schemes for
reproducing the crack length—SIF relationships under elastic-plastic conditions.

e To validate the proposed EDS-based method by comparing its predictions of key
EPFM parameters with high-fidelity FE solutions and available reference data for

representative 3D crack configurations.

While the current scope focuses on establishing and validating the EDS approach
for the efficient evaluation of EPFM parameters, its extension to FCP problems is identified
as a future direction. The outcomes of this research are expected to contribute a new
analytical framework to the field of EPFM, bridging the gap between computationally
intensive numerical simulations and simplified analytical models, and offering practical

value for engineering applications involving complex 3D crack problems.
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1.7 Structure and Overview of the Dissertation

This dissertation is organized into six chapters, systematically presenting theoretical
development, numerical formulation, and verification of the EDS method for evaluating

EPFM parameters in 3D cracked bodies.

e Chapter 1 introduces the background and motivation of the study, reviews the
historical development of fracture mechanics, and outlines the limitations of existing
EPFM methods. The research objectives are defined in the context of extending the
EDS framework to 3D crack problems.

e Chapter 2 establishes theoretical groundwork by introducing key principles such as
the superposition principle, the weight function method, and the Dugdale CZM. The
concept of EDS is formulated in detail, including the explanation of three distinct
loading methods within the EDS framework. The advantages and limitations of each
method are discussed. Additionally, this chapter introduces weight functions for 2D
substitute crack models (center-through and edge cracks), which are fundamental for
constructing the EDS representation in 3D analysis.

e Chapter 3 details the development of the EDS-based analysis method using the
fictitious crack face loading method. It outlines the procedures for determining the
EDS distribution through spline interpolation and generalized matrix inversion. A
CZM formulated within the EDS framework is also introduced, and an integrated
EDS-based fracture mechanics analysis system is constructed.

e Chapter 4 presents the validation of the proposed EDS-based EPFM analysis
system for 3D cracks. A 3D penny-shaped crack in an infinite plate under
axisymmetric loading is selected as a verification case due to its simple geometry
and the availability of an analytical weight function. This chapter demonstrates the
EDS analysis procedures in detail and verifies its accuracy in estimating elastic-
plastic COD profiles, as well as in comparing key EPFM parameters—plastic zone
size and CTOD—with existing analytical solutions.

e Chapter 5 extends the EDS methodology to semi-elliptical surface cracks, which
are commonly encountered in engineering structural components. An idealized
plastic zone model is adopted to establish consistent reference crack length—SIF (a—
K) relationships for the target 3D cracks. High-precision numerical integration is

incorporated into the open-source FE code WARP3D for accurate SIF evaluation.
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Based on FE simulations, this chapter determines reference solutions and evaluates
EDS distributions and corresponding EPFM parameters at key locations along the
crack front—specifically, the deepest and corner points—demonstrating the
method’s applicability to non-axisymmetric 3D crack geometries.

e Chapter 6 summarizes the main contributions of the research, confirms the validity
and advantages of the proposed method, and discusses directions for future work,

including the potential application of the EDS framework to FCP analysis.

Together, these chapters establish a comprehensive framework for analyzing 3D
cracks under elastic-plastic conditions using the EDS approach, delivering both theoretical

foundations and practical guidance for engineering applications.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Basic Principles

This chapter presents the theoretical background essential for understanding the
framework of the present study. It begins by reviewing fundamental principles employed in
the EDS method, including the superposition principle, the weight function approach, and
the Dugdale CZM. These concepts provide the foundation for analyzing crack behavior and
evaluating SIFs in elastic and elastic-plastic materials. Building upon these basic principles,
the concept of EDS is then introduced. The EDS method serves as the core analytical tool
in this study, offering a means to represent the crack opening behavior of 3D cracks in a
simplified yet effective manner. Through this theoretical foundation, the subsequent
chapters will develop and apply the EDS-based methodology to address the objectives of

the research.

2.1.1 Superposition Principle

The superposition principle is a fundamental concept in LEFM. It states that the
response of a linear elastic system to multiple loads can be obtained by summing the
individual responses caused by each load acting separately. This principle greatly facilitates
the analysis of SIFs in cracked bodies by allowing complex problems to be decomposed into

simpler, more manageable subproblems.

To illustrate the application of the superposition principle in the present study,
consider first an isotropic elastic uncracked body subjected to a remote stress distribution
o”(x). When o (x) is applied, it induces an internal traction distribution #’(x) along the plane
corresponding to the would-be crack face, indicated by the dotted line in Fig. 2.1(a).
Analysis of the stresses along this dotted line reveals that the internal tractions #*(x) are equal

in magnitude to the applied remote stress o (x).

In order to create a stress-free condition along the dotted line, opposing stresses of
magnitude ¢’ (x) must be applied along the dotted line, as shown in Fig. 2.1(b). The stresses
induced by the remote loading ¢”(x) along the dotted line are referred to as the opening
stresses #(x), while the opposing stresses applied to cancel them out are termed the crack

closing stresses, denoted as -#"(x). It is important to note that the opening stresses ¢ (x)
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generated by the remote loading lead to a crack opening condition and contribute directly to

a nonzero SIF.

o’(x)

kil

F(x) = o(x) -F(x)
N eI

(a) (b)
Fig. 2.1 An isotropic elastic uncracked body: (a) remote stress ¢’ (x) inducing internal

opening tractions #°(x); (b) closing tractions -(x)

Now, consider an isotropic elastic cracked body subjected to a remote stress o (x),
as shown in Fig. 2.2(a). According to the superposition principle, this configuration can be

decomposed into two subproblems, as illustrated in Fig. 2.2(b) and (c¢).

e One configuration consists of the crack subjected solely to the opening tractions #(x)
(Fig. 2.2(b)).
e The other configuration consists of the crack subjected to the remote stress o’(x)

together with the closing tractions -(x) (Fig. 2.2(c)).

In the latter case (Fig. 2.2(c)), the applied remote stresses and the closing tractions
cancel each other out along the crack surfaces, resulting in a clamped crack with no crack
opening. Consequently, the SIF for this configuration is zero. Mathematically, this can be

expressed as:

K,=K,+K, (2.1)
which reduces to

K, =K,+0 2.2)

Therefore, the SIF for the cracked body under the remote stress ¢ (x) (Fig. 2.2(a))
is equal to that for the crack subjected only to the opening tractions #(x) (Fig. 2.2(b)). i.e.,
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Ko =Ky (2.3)

This decomposition enables a more tractable analysis by isolating the effects of
internal tractions and external loads separately. The approach is particularly effective when
combined with the weight function method, providing an efficient means for calculating

SIFs for arbitrary stress distributions.

o’(x) o"(x)

i F(w) -P(x)
) — (- i () o

VAN N\ N\

W/, W/, W/,
(a) (b) (c)

Fig. 2.2 Superposition principle: (a) crack under remote stress o (x); (b) crack under

opening tractions #(x); (¢) crack under remote stress ¢ (x) and closing tractions -£(x)

2.1.2 Weight Function Approach

The weight function approach is a widely used method in fracture mechanics for
calculating SIFs under arbitrary stress distributions without directly solving complex
boundary value problems. A weight function is defined as a fundamental solution that
characterizes how a unit load applied along the crack surface contributes to SIF. Once the
weight function is known for a given crack geometry and boundary condition, the SIF under

any applied stress can be obtained by a simple integration.

For example, consider an edge-cracked elastic body with a crack length a. The SIF
resulting from a unit force applied at a point x, as shown in Fig. 2.3(a), can be interpreted
as the weight function g(x,a). When a distributed traction stress #(x) is applied along the
crack faces, as illustrated in Fig. 2.3(b), the corresponding SIF, K, can be mathematically

expressed as:

K= J.::Ot(x)g(x, a)dx 2.4)
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A graphical representation of the weight function approach is shown in Fig. 2.3(c),

where the area under the curve of #(x)g(x,a) corresponds to the resulting SIF, K.

1(x)g(x.a) ;
y Unit force (x) :
a a
N\ N\
W/, Zé%;z 0 a o
(a) (b) (c)

Fig. 2.3 Concept of the weight function approach: (a) unit force applied at position x
defining the weight function g(x,a); (b) distributed traction stress #(x) applied along the

crack faces; (¢) graphical representation of SIF, K as the area under the curve #(x)g(x,a)

The weight function depends solely on the geometry of the cracked body and the
crack configuration, and is independent of the specific external loading. Thus, once
determined, it offers an efficient and flexible means of evaluating SIFs for various loading
conditions through straightforward integration. However, as discussed in Section 1.5, the
evaluation of SIFs in the development of 3D SYMs using their corresponding 3D weight

functions remains mathematically complex and practically challenging.

In the present study, the weight function approach is employed to calculate the
equivalent SIFs of 3D cracks via 2D substitute crack bodies, forming a foundation for the

development of the EDS method.

2.1.3 Dugdale Cohesive Zone Model

The Dugdale CZM, introduced in 1960 [17], is a foundational approach for
describing crack tip behavior in ductile materials. It addresses a key limitation of LEFM—
the assumption of an infinite stress singularity at the crack tip—by introducing a finite

plastic (cohesive) zone where material separation occurs under a constant yield stress.

In this model, the crack does not terminate abruptly. Instead, it is considered to be
physically extended by a cohesive zone of finite length, within which plastic deformation

resists further crack opening. The material in this zone yields at a constant stress, denoted
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by o7, thereby eliminating the stress singularity and providing a more realistic description

of ductile fracture.

Consider a centrally cracked, thin, elastic-perfectly plastic sheet subjected to an
external tensile stress ¢”, as illustrated in Fig. 2.4. The physical crack has a half-length c,
and a cohesive zone of length 7, develops, where the material yields under a constant stress
o”. For plane strain conditions, the yield stress is multiplied by a plastic constraint factor A
(i.e., Zo") to account for the effect of thickness constraint. The total length including the

physical crack and the plastic zone is defined as the fictitious crack length a.

O-P

RRERRRAREARRN

Vl"ll"'l"'l'
oF
Fig. 2.4 Schematic of the Dugdale CZM for a centrally cracked, thin elastic-perfectly

plastic sheet under tensile stress o”, with cohesive zones of length 7, exerting closing

tractions equal to the material yield stress o
The Dugdale model is governed by two main conditions:

e Equilibrium: The applied external stress and the cohesive (closing) tractions within
the plastic zone must be balanced to ensure force equilibrium.
e CTOD: The opening displacement at the physical crack tip must match the

displacement produced by the yielded zone, ensuring continuous deformation.
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Under these conditions, the total SIF at the fictitious crack tip is given by the

superposition of:

e the SIF, K%, due to external loading o”,

e the SIF, K?, due to closing tractions ¢¥ within the plastic zone

To prevent stress singularity at the fictitious crack tip, the net SIF must be zero:
K'+K" =0 (2.5)

This signifies that the crack is stabilized under the combined influence of external

stress and internal cohesive resistance.

The Dugdale model provides a conceptual basis for many modern SYMs, and
fracture process zone models used in EPFM . It plays a significant role in understanding and

modeling crack tip plasticity and has been widely extended to 3D fracture problems.

In the present study, the Dugdale model offers an essential analogy for understanding
the role of distributed internal tractions along the crack faces, particularly when developing

simplified 2D substitute models for analyzing 3D elastic-plastic crack problems.

2.2 Equivalent Distributed Stress

This study introduces the concept of EDS for 3D cracks to represent the mechanical
effect of complex 3D crack-tip plasticity through a simplified 2D models. The approach
builds upon the original EDS theory proposed by Toyosada et al., enabling the evaluation of

EPFM parameters in 3D cracked bodies while significantly reducing computational costs.

The EDS concept stems from the physical analogy to the Dugdale CZM, in which
internal plastic resistance is modeled as closing tractions distributed along the extended
crack faces within the cohesive region. In the present study, EDS is defined as a distributed
normal traction acting along the crack surfaces of a 2D substitute body, reproducing the SIFs

that would be obtained in the original 3D configuration.

Unlike actual cohesive tractions governed by plastic flow or material separation, the
EDS is not a physically measurable quantity, but a mathematically equivalent representation
derived from inverse analysis. By calibrating the EDS such that the resulting SIF in the 2D
substitute body matches that of the original 3D crack under given loading, the model

captures the essential features of crack-tip shielding due to plasticity.
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This method leverages the weight function approach described earlier, allowing the
EDS to be evaluated from known or estimated SIF values. Once obtained, the EDS serves
as a unified internal loading that represents the effect of 3D plastic deformation and
facilitates the evaluation of key EPFM parameters, such as plastic zone size and CTOD for

3D cracks.

In the current study, EDS analyses are conducted for 3D penny-shaped and surface
cracks with various aspect ratios using two types of 2D substitute cracks: edge crack in a
semi-infinite plate and center-through crack in an infinite plate. For the edge crack model,
c and a denote the physical and fictitious crack lengths, respectively. In the center-through
crack model, they represent the half-lengths of the physical and fictitious cracks. The
corresponding model configurations and their weight functions are discussed in detail in

Section 2.3.

When an external stress ¢ is applied to a 3D cracked body, CFTs ¢ and ¢! are
induced, representing the effects of ¢ and the cohesive stress ¢'. Based on the Dugdale
concept, the cohesive traction ¢ is assumed to act at a constant value i¢” over the cohesive
region, where 1 is the plastic constraint factor, and ¢! is the yield stress of the material. The
SIFs associated with # and ¢, designated K and K" are used as prescribed input values in
the EDS analysis to characterize the crack-opening behavior. These prescribed SIFs can also
be obtained analytically or numerically, depending on the geometry of the 3D crack. To
reproduce the prescribed SIFs in the 2D substitute model, EDS distributions are applied,
denoted by f” and /¥ corresponding to # and #?, respectively.

The SIF, denoted as K5y, resulting from the external stress EDS /*, is determined

using the weight function g*(x,a) corresponding to the 2D substitute crack, as follows:
Ky =] 7 (x)g*(x,a)dx (2.6)

In the EDS framework, three numerical procedures are available to determine the
cohesive stress EDS: yield stress loading method (YLM), whole crack face loading method
(WLM), and fictitious crack face loading method (FLM).

The advantages and limitations of each method, along with the one adopted in this

study and its rationale, are discussed in the following subsections.
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2.2.1 Yield Stress Loading Method

The YLM offers a simplified approach to evaluate the cohesive stress SIF by
applying a constant cohesive traction equal to the product of the plastic constraint factor 1
and the material yield stress ¢!, instead of determining the full EDS distribution. By
assuming ¢ = Jo? over the cohesive zone region, this method eliminates the need to
iteratively establish the relationship between cohesive stress and fictitious crack length,

thereby significantly reducing computational complexity.

. . . =Y .
In this method, the approximate cohesive stress SIF, denoted as Kzpg, is calculated

as follows:
~Y _ a y *
Kes = [ ' (x)g*(x,a)dx 2.7

However, this simplification comes with limitations. The assumption of a uniform
cohesive traction in the 2D substitute model does not accurately reflect the stress
redistribution near the crack tip, which may affect the precision of the resulting SIF,
particularly for 3D cracks with pronounced plasticity gradients. Therefore, YLM is suitable

only for approximate analyses or as an initial estimate in iterative procedures.

2.2.2 Whole Crack Face Loading Method

In WLM, the cohesive stress EDS, f(}; , for the case of ¢ = 0 is first calculated, and
the resulting SIF is then determined using superposition principle by subtracting the SIF

generated by f(}; acting on the physical crack face (0 < x < ¢) from the SIF generated by the
same EDS fé’ applied over the entire crack face up to the fictitious crack tip (0 <x < a) as

illustrated in Fig. 2.5. (Note: For clarity, the closing stress f(}; is depicted with an opening

direction in the figure.)

. . . ~Y
Mathematically, the approximate cohesive stress SIF Kzpg can be expressed as:

Kios =[" fi (g*aydx—[" £ (x)g*(x,a)dx 2.8)

This method is straightforward because it involves only the evaluation of SIF due to
external stress distribution, and the cohesive stress SIF can be obtained simultaneously using
a similar procedure. However, it may introduce numerical inefficiencies due to the

subtraction of two large, similar quantities to obtain a relatively small cohesive stress SIF.
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Fig. 2.5 Concept of WLM for calculating the cohesive stress SIF: (a) fé/ acting on the
region (¢ < x < a); (b) fé{ acting on the whole crack face (0 < x < a); (¢) f(}; acting on the

physical crack face (0 <x<c¢)

2.2.3 Fictitious Crack Face Loading Method

Previous research by Toyosada et al. [64] demonstrated that EPFM parameters
evaluated using YLM tend to overestimate the plastic zone size under high applied stress,
while WLM tend to underestimate both the plastic zone size and CTOD under the examined
conditions. In contrast, FLM shows good agreement with reference solutions. Based on

these findings, FLM is adopted in the present study.

In FLM, the cohesive stress EDS /¥ is applied only over the fictitious crack extension
region, i.e., from the physical crack tip to the fictitious crack tip (¢ < x < a). This focused
application better captures the actual distribution of crack-tip plasticity effects and avoids

the oversimplification of uniform loading across the cohesive region.

The cohesive stress SIF KXy is evaluated as:
Klps =] ST (0)g*(x,a)dx 2.9)

Unlike YLM and WLM, FLM requires iterative updates of the cohesive stress SIF
as the physical crack grows in order to determine the appropriate /! that reproduces the
prescribed K?. While this increases computational effort, it results in more accurate
predictions of both the plastic zone size and CTOD, making FLM particularly suitable for

the evaluation of 3D cracks under significant plastic deformation.

Fig. 2.6 presents an illustrative example of the FLM-based EDS approach, where a

3D surface crack is used as the target model and a 2D edge crack serves as the substitute
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model. The coordinate systems and dimensional definitions for both models are also
depicted in the figure. The crack length—SIF relationships at the point of interest, resulting
from the traction stresses #” and ' acting on the 3D surface crack, are provided as prescribed
input values to reproduce equivalent relationships in the 2D substitute edge crack. These
relationships should be extended to a specific coordinate to ensure full coverage of the

cohesive region under the intended applied stress conditions.

To match the SIFs of the 3D model, corresponding stress distributions must be
applied to the 2D model. These fictitious stresses are referred to as EDSs, denoted /* and £,
corresponding to #” and ¢, respectively. These EDSs are constructed using spline partitions,
with the spline coefficients determined via generalized matrix inversion techniques. Once
the EDSs are obtained, the elastic-plastic CODs and associated EPFM parameters of the
target 3D crack can be evaluated by performing numerical integration or by employing
analytical closed-form solutions to the 2D substitute crack model. The procedures for

deriving EDSs that reproduce the crack length—SIF relationships are detailed in Chapter 3.

Target 3D surface crack Substituted 2D edge crack
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Fig. 2.6 Illustration of the FLM-based EDS concept for a 3D surface crack
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2.3  Weight Functions of 2D Substitute Cracks

In the EDS method, the weight function approach is utilized to evaluate SIFs in 2D
substitute crack models that replicate the fracture behavior of original 3D cracks. This
section introduces the specific weight functions for two representative 2D crack
configurations: a center-through crack in an infinite plate and an edge crack in a semi-
infinite plate. The elastic-plastic crack opening behavior of 3D cracks is analyzed using
these 2D models subjected to EDS distributions. The effectiveness and accuracy of each

configuration in representing 3D crack behavior are discussed in the subsequent chapters.

2.3.1 Center-Through Crack in an Infinite Plate

The center-through crack in an infinite plate is a classical 2D configuration
commonly used for analytical fracture mechanics studies due to its geometric simplicity and
well-established solutions. This model consists of a crack of total length 2a, symmetrically
embedded in an infinite plate. The symmetry and unbounded geometry facilitate accurate

evaluation of the SIFs and CODs through the use of its analytical weight function.

Let g(x,a) represent the weight function of a center-through crack in an infinite

plate, where a pair of unit concentrated forces is applied symmetrically at position + x on

the crack faces, as illustrated in Fig. 2.7. Here, a represents the half-length of the crack.

The analytical closed-form solution for g-(x,a) is given as follows [65]:

gc(x,a)= \/%ﬁ (2.10)

y
A
Unit force
A A
: X
X
<>
Yy - Y
2a a
I =

Fig. 2.7 Schematic of a center-through crack in an infinite plate with symmetrically

applied unit-concentrated forces at coordinate + x on the crack faces
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2.3.2 Edge Crack in a Semi-Infinite Plate

An edge crack in a semi-infinite plate is another fundamental 2D configuration
frequently used to simulate cracks emanating from a free surface. In this setup, a single

crack of length, a, extends from the edge of a semi-infinite body.

Consider g,(x,a) as the weight function or SIF of an edge crack in a semi-infinite

plate when a pair of unit-concentrated forces is applied at point x on the crack length a, as
shown in Fig. 2.8. This function is given by the following approximation formula, which

was derived by Sih [66].

2 X 1.25
gE(x,a)=—2{1.297—0.297(—j } (2.11)
] a
wa|ll—| —
a
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Fig. 2.8 Schematic of an edge crack in a semi-infinite plate with symmetrically applied

unit-concentrated forces at coordinate x on the crack faces
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CHAPTER 33

FLM-BASED EDS METHODOLOGY

3.1 EDS Determination Procedures

Building on the methodologies and the concept of EDS introduced in Chapter 2,
this section details the procedures for determining EDS distributions that reproduce the SIFs
of 3D cracks using 2D substitute models. The EDS determination process involves
establishing the relationship between crack length and SIFs, employing spline interpolation
to represent the stress distribution, and formulating a system of equations based on the
continuum conditions of the EDS. This system is subsequently solved using generalized
matrix inversion to obtain the spline coefficients that define the EDS profile. These
procedures constitute the core of the FLM-based EDS fracture analysis system and are
essential for accurately evaluating the elastic-plastic crack behavior of 3D geometries. The

following subsections describe each step of the procedure in detail.

3.1.1 Spline Interpolation and a—K Relationship Matrix

To accurately reconstruct the SIF distribution of 3D cracks using 2D substitute
models, the EDS profiles must be precisely defined. In the EDS approach, spline
interpolation is employed to approximate the EDS distributions over a discretized crack face
of substitute crack. This subsection describes the partitioning strategy, spline representation,
and the formulation of the a—K relationship matrix used as a basis for determining the EDS

profiles.

Consider N as the number of spline partitions, with partition points located at
coordinates xy, X1, ---, Xy. The i-th partition spans the interval [x;.1, x;], where i =1, 2, ..., N.
These partition points are arranged so that one of them aligns with the physical crack tip at
x = c. The partition where the lower boundary of the x-coordinate interval as c is designated

as the i.-th partition.

Let amax be the maximum length of the fictitious crack. The partitioning is set up to
ensure xo = 0, and xy > @max. The indices imin and imax represent the minimum and maximum
partition numbers within the integral region specified by Eqs. (2.6) and (2.9). Specifically,
when evaluating KEDS, imin 18 assigned the value 1, whereas for KEDS calculation, imin is set

equal to ic.
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The EDS in the i-th partition, fi(x), is approximated using 3rd-order spline

interpolation as outlined below.
[ =ax’ +Bx" +yx+6,(x <x<x); i=1-, Ny 3.1

Here, NINT = imax — imin + 1, and a;, fi, 7i, 0; represent the coefficients for spline interpolation.

Fig. 3.1 shows the schematic diagram of EDS expressed by a whole section spline function.

3 2
ax’ + px"+yx+4

3 2
anx + ﬁnx + ynx + 571

3 2
a,x” + p,x" +y,x+0,

/ ax’ + Bx’ +yx+ 6,
N / )
] AN >
\\'—— sssssss —_—
5‘?0 ')El 562 563 564 Xﬂ—l 5611

Crack length: x

Fig. 3.1 Schematic diagram of the EDS expressed by a whole section spline function

The coefficient vector {X} is expressed as:

(Xy=la B S St O | (3.2)

min

Consider N, as the number of SIF calculation points, where the J-th point is

represented as a; (J = 1, ---, Na). The value of N, must be chosen to fulfill the condition N, >

N. The SIF at x = a, is denoted as K/, and it can be evaluated using the following equation.
Ky =2 @+ A Bt A1+ A S T =10, 3.3)
Aiuay, Aiup), Airy), and Aiys) in Eq. (3.3) are provided as follows:
Ai(Ja) = GS), (a ) i(Jp) = G(z) (a ) i(7y) = G(l ( )’ i(J8) = G(O) (a ) (3.4)

and Gg), (a);(£=0,1,2,3) are computed as:

min(a,x

GV)(a)=["" &'’ (£.a)de (3.5)

&=x;
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Eq. (3.3) can be represented in the following matrix form:
[4]{x}={B} (3.6)

The matrix [4] in Eq. (3.6) is termed the a—K relationship matrix, and it is presented

as follows:
Ao Ao Aoy A 4, 9)
[4]= ) Aen Aoy Ao T Ao
. . . . *. (3.7)
_Aimm(na) Aimi" (nB) Aimi“(n;/) Aimin(né') /11',“ElX (n5) ]

(B} =| K,,K,,..K, |

{B} is a column vector listing SIFs in the a—K relationship. The dimensions of the

matrix [A4], with respect to its rows (m) and columns (/), are given as:

m:Na’ Z:4NINT:4(imax_imin+l) (3‘8)

3.1.2 Continuum Condition of EDS and Elimination of Dependent Variables

The continuum condition of EDS at the node (i = imin, -+, imax-1), representing the
connection point of the adjacent intervals, along with its Oth, 1st, and 2nd order derivatives,

can be expressed by the following equations.

fi ('xi) = fi+1 ('xi)’ fi’(xi) = fz,+1 (xi)’ fi”(xi) = f;Zl (xi) 3.9
From Eq. (3.9), the connection conditions at x; . are obtained as:
3 2 3 2
aimin ximin + ﬂjmm ximin 7 bmin ximin + é‘imin - (ailnin+1xin1in + ﬂ imin+1ximin t7 imin+1ximin + é‘ilni|1+1) =0
min + 7/imin - (3aimin+1xfnin + 2ﬂimin+1ximin + }/imin+1) =0 (3.10)

. (6aimin+1ximin + ﬂilnin+1 ) =0

S, _1 oy 00 L
min x[3 x3
aimm aimm +1 mn min
3 3

B t=[C1 B« [C]= . 010 - G.11)
Vi Vi s l“"" fin
5 . 2001 =
Ipin + X i ximin




From Eqs. (3.2) and (3.11),

aimin
Vinia "
ai ol
5imm ﬁmm
a, . linin 1 C 0
{X} _ min +1 :[7—;] }/[mmH . [];]:|:[ 1] [ 1U]:| (3.12)
:Bimi" +1 [11 ]
5i i+l
Vi1 n
O 0.
O

[/1] is an identity matrix of dimensions {4Nmwt— (4 - 1)+ 1} X {4NinTt— (4 - 1) + 1},
and [O1vu] is a zero matrix of size 3 X {4Nwr—(4 - 1)+ 1—5}.

Similar to Eq. (3.12), the following equation is obtained as the connection condition

for x; (i = imin+1, *++, imax-1).

1 1
S, — 1 00 =
ai C(i-H 3[ i3
B e=[C13B. ¢ [Cl= = 010 — (3.13)
7:’ 7i+l [ [
S 2001 2
L xi xl a
Using Eq. (3.13) for i = imint1,
5,
a,'minﬂ Imin+1
B, /3 100
Viwr (=1L ™ 15 [B]=|0 [G] [0)] (3.14)
ol
51. .
‘max 51.‘“
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[12,2] 1s an identity matrix of dimensions {4Nwt— (4 -2)+ 1} X {4Niwr—(4 - 2) + 1},

and [O2] is a zero matrix of size 3 X {4Nnt— (4 - 2) + 1 —5}. [C2] corresponds to [Ci] in Eq.

(3.13) when i = imin+1.
Substituting Eq. (3.14) into Eq. (3.12),
(X} =[BIL 0 O BT ereB o s0, || (3.15)
Repeating the above procedure for i = imin+2, --,imax-1 yields the following equation.
(x)=[n, ){x): [m,]=[7]-{7,,, ] (3.16)
[T1]i>2 of Eq. (3.16) is given as:

[7,] 0 0
- ¢l [o

0o [
0 (7, ]

[Zi,u] is an identity matrix of size {i — 1} X {i — 1}. [/;z] is an identity matrix with

[7]., ] (3.17)

dimensions of {4Nmt — (4i) + 1} X {4Nit — (4i) + 1}, and [O;] is a zero matrix of size 3 X
{4NINT — (40) + 1 =5},

{X'} in Eq. (3.16) is the independent spline coefficient matrix defined by:

T
{X,} = Lé;|ni|1 ’ é‘imin +1° o é‘immx—l ’ ailnax ? ﬂinmx ? yimax ’ §imax J (3.18)
The number of independent coefficients, 7, is calculated by the following equation.
ﬁ:NINT+3:imax_imin+4 (3'19)

[[17] in Eq. (3.16) is a transformation matrix that computes all coefficients from the

independent coefficients.

Substituting Eq. (3.16) into Eq. (3.6) yields:
[A]{x} =M ]{x7) ={B}; [M]=[4][T,] (3.20)

The matrix [M] has m rows, as defined in Eq. (3.8), and the number of columns #
corresponds to the expression in Eq. (3.19). When Nwr = 1, {X'} = {X}, and the

transformation matrix [I17] in Eq. (3.16) becomes the identity matrix.
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3.1.3 Determination of Spline Coefficients by Generalized Matrix Inversion

Spline partition points are placed at intervals coarser than the SIF calculation points,
with exclusive consideration given to the case where m > n. {X'} from Eq. (3.18) can be
obtained by utilizing the least-squares generalized inverse of the matrix [M] [67]. In case
the solution shows oscillations due to the instability of the generalized inverse matrix, the
rank reduction method using singular value decomposition [68] can be implemented to
alleviate such behavior. For the scenario where m > n, the rank of matrix [M] can be

determined using the following equation.
R =Rank[M]|=min(m,n)=7n 3.21)

Let A9 and {V} (¢ = 1, -, Rank [M] = i) represent the eigenvalues and
eigenvectors of [M][M]. For g = 1, ..., ir, the vector {w?} can be defined as follows:

{W(q)} _ }q) [M]{v(")}; 9 =@ (3.22)
K

Here, 9 denotes the singular value of matrix [M]. The Moore-Penrose generalized inverse
matrix [M'] which is an 7 X m matrix, with Rank [M'] = 7 can be computed using the

subsequent equation.

(M = ZZT[E]:E%{V(” H | (3.23)

K

When x@ takes on exceptionally small values, the sensitivity of [M'] to numerical
errors increases, leading to an ill-posed inverse problem. To address this issue, a lower
threshold for 9 can be imposed, and singular values below this threshold can be excluded
from the summation in Eq. (3.23), consequently reducing the rank of [A/']. In such cases,

the generalized inverse matrix can be evaluated using the following equation.

[M+:| Z pONS q<n { q)}LW(q)J (3.24)
By employing the matrix [M'] from Eq. (3.24), {X'} can be achieved as:
{x'}=[ M ]{B} (3.25)

Substituting Eq. (3.25) into Eq. (3.16), the spline coefficients for all partitions can

be determined as follows:
)=, [{x7} =[] M~ |{B} (3.26)
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3.2 EDS-Based Cohesive Zone Model

Following the establishment of EDS distributions through spline-based interpolation
and generalized matrix inversion in Section 3.1, this section introduces the application of
these distributions to 2D substitute models within a CZM framework. The EDS-based CZM
enables the evaluation of fracture behavior by explicitly incorporating both externally

applied and cohesive stresses into the SIF calculation and crack opening analysis.
The EDS due to external loading, denoted as fP (x), is represented using a piecewise
cubic spline function over ip,, segments, with nodal coordinates xo =0, ---, x; . In the FLM

approach, the EDS due to cohesive stress, /7 (x), is similarly approximated using a spline

defined over iy, «-i.+1 segments, spanning from x;, = c¢ to x; . Each spline segment of
fl.P (x) and JjY (x) 1is characterized by four spline coefficients: {af , ﬁlp , ylP L oF } and

{a], ﬁf, v o1}, respectively.

3.2.1 Calculation of SIF and Plastic Zone Size

When ]jp (x) acts over the region (0 < x < a) of the substituted 2D crack, the SIF at

the fictitious crack tip, Kapg, can be determined using the following equation.

Kpps =20, I " g (Eaa)de

< (3.27)
_y a{ )a! +G2(a) B +GV (a)y! +G)(a )§P}

Likewise, the SIF at the fictitious crack tip for cohesive stress EDS, denoted as Ky,

is obtained when fl.Y(x) acts over the region (¢ < x < a) of the substitute body, as follows.

(@ (¢.a)de
zll .[ maxcvc g ( a) (3.28)

—ZTT“{ Qe + L@ G ()7 + G ()

Here & is the coordinate of the crack length a in the x-direction.

Since the stress singularity disappears at the fictitious crack tip, the following

equation can be derived.

Kio—Kj=0 (3.29)
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The length of the fictitious crack, a, is determined through iterative calculations

satisfying Eq. (3.29). The plastic zone size r, can be computed as:

r =a—c 3.30)

3.2.2 Calculation of Crack Opening Displacement

The calculation of CODs for the target 3D crack is carried out using the EDS applied
to the 2D substitute crack models. COD at the coordinate x, resulting from a pair of unit-
concentrated EDS applied to the coordinate £ of the crack length a, can be determined using
Paris’s reciprocal theorem, as presented below [69].

2 ¢a

()C g a) E' a=max(¢,x)

g (&.a)g (x,a)da (3.31)

E’ is defined in terms of Young’s modulus £, and Poisson’s ratio v, considering either the

plane stress or plane strain condition.

E  (plane stress)

E=! g , (3.32)
(plane strain)

1—-v?

According to Eq. (3.31), CODs induced by fl.P (x) and JjY (x), referred to as V(x) and

V¥(x) respectively, can be calculated using the following equations.

z, 1 Imln O(X;f,a)df

:_zll[ 7GY) (x,a)+ BIGY (x,a)ﬂ/fGI(,l’)i(x,a)+5iPGI(,(?(x,a)}

(3.33)

EZ - Jmm a,%) V¥, (56 a)de

; [ YG,(,Z)(x a)+p’ GV,(X a)+y, G()(x a)+5lYG (x a)]

(3.34)

G(Vpi) (x,a); (p=3,2,1,0) is expressed as:
G (x,a)= Imm e, (x;&,a)dé (3.35)

The elastic-plastic COD of the target 3D crack, calculated from the EDS-applied 2D

substitute crack is obtained as follows:

V(x)=V"(x)-V"(x) (3.36)
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When using the center-through crack as the substitute model, the integrals in Eqs.
(3.5), (3.31), and (3.35) can be evaluated analytically, reducing computation time in FCP
analysis over many loading cycles. For the edge crack model, these integrals are computed
numerically using the 10-21 point Gauss-Kronrod adaptive quadrature [70] from

QUADPACK [71].

The characteristics of the COD curves resulting from the EDS-applied center-
through and edge cracks are illustrated in Figs. 3.2 and 3.3, respectively. Here, the subscripts
C and E represent the center-through and edge crack models. The slope of the COD curve
resulting from the center-through crack is zero at x = 0 due to the symmetric boundary
conditions. In contrast, the COD curve resulting from the edge crack exhibits a non-zero

slope at x = 0, reflecting the absence of constraint at the crack mouth.

YYTYYIITYITYYYYis

|||||||||||||||

(8]

CcOD

Fig. 3.2 Characteristic of the COD curves resulting from the EDS-applied 2D substitute

center-through crack in an infinite plate

v P F

COD

0 c a
Fig. 3.3 Characteristic of the COD curves resulting from the EDS-applied 2D substitute

edge crack in a semi-infinite plate
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Using this EDS-based CZM framework, it is also possible to account for the effects

of residual stress on crack tip opening behavior, discussed in Appendix A, by employing

the same procedures as those used for external stress.

3.3

EDS Fracture Mechanics Analysis System

Based on the formulations described in the previous sections, the EDS-based fracture

mechanics analysis of 3D cracks proceeds through the following steps:

a)

b)

d)

2

h)

Define the physical crack length ¢ for the 3D target crack. The a—K relationships due
to external and cohesive stresses are obtained using analytical or numerical methods
appropriate for the crack geometry.

Set the number of spline intervals N and the nodal coordinates x; such that the lower
bound of the i-th interval coincides with c. Specify a lower threshold « for singular
values to be used in computing the generalized inverse matrix [M].

Store the a—K relationships for external stress in column vector {B} of Eq. (3.6).
Using the weight function g* of the substitute crack, calculate the a—K relationship
matrix [4] and transformation matrix [[17] from Egs. (3.6) and (3.16), respectively,
with imin = 1. Then compute generalized inverse matrix [M'] using Eq. (3.24) and
determine the spline coefficient matrix {X}©) via Eq. (3.26).

Similarly, store the cohesive stress a—K relationships in {B} and evaluate [4] and
[T17] with imin = c. Use Eq. (3.24) to compute [M'] and obtain {X} from Eq. (3.26).

Set the initial fictitious crack length a, and the upper limit a,, for the iterative search.
Assume a = a, and approximate the EDSs for external and cohesive stresses, fl.P x)

and ]jY (%), using {X}® and {X}D), respectively. Calculate the corresponding SIFs,
KEps and Khpg using Egs. (3.27) and (3.28), and check whether Eq. (3.29) is

satisfied.

If Eq. (3.29) is not satisfied, apply the bisection method with ¢ and a;, as lower and

upper bounds, respectively, to find the value of a that satisfies Eq. (3.29). The plastic
zone size r, 1s then determined as a — c.

Using {X}®, (X} | and the fictitious crack length a, compute CODs ¥*(x) and
V¥(x) induced by fl.P (x) and fl.Y(x) , respectively via Eqs. (3.33) and (3.34),
employing the weight function g* of the substitute crack. Finally, obtain the elastic-

plastic COD ¥V(x) using Eq. (3.36).
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A comprehensive flowchart summarizing this FLM-based EDS analysis for

evaluating EPFM parameters of the 3D cracked body is shown in Fig. 3.4.

Target 3D cracked body

¥

Calculate prescribed SIFs for
t£ and ¥

Prescribed

Prescribed

KP

Y

KY

Y

Store a—K relationships in column {B} of Eq. (3.6)

¥

¥

Calculate [4] [Eq. (3.6)]
and [I1] [Eq. (3.16)] with
Imin = 1 using g*

Calculate [4] [Eq. (3.6)]
and [II;] [Eq. (3.16)] with
[min = € UsSIng g*

v

Y

Calculate [M"] [Eq. (3.24)]
and {X}1@ [Eq. (3.26)]

Calculate [M*] [Eq. (3.24)]
and {X} [Eq. (3.26)]

i

L

Approximate f¥ using
{X1® and calculate K
[Eq. (3.27)]

Approximate ¥ using
{X1™® and calculate KY
[Eq. (3.28)]

Examine fulfillment of Eq. (3.29)

{

No

Yes

Iterative No
Calculations

| i m——

Yes

Y

Y

Calculate plastic zone size r, [Eq. (3.30)]

'

'

Calculate ¥ [Eq. (3.33)]

Calculate ¥ [Eq. (3.34)]

1

Calculate ¥ [Eq. (3.36)]
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CHAPTER 4

VERIFICATION OF EDS ANALYSIS SYSTEM FOR 3D CRACKS

4.1 Framework for Validation

To verify the accuracy and applicability of the developed EDS analysis system for
general 3D cracks, a benchmark problem with established reference solutions is required.
For this purpose, a 3D penny-shaped crack embedded in an infinite plate under
axisymmetric loading is adopted as the verification case [72,73]. This configuration is
particularly well-suited for validation, as it possesses a straightforward analytical weight
function that enables the precise generation of reference SIF data. Additionally, reference
COD profiles can be obtained directly from existing analytical solutions. The axisymmetric
geometry further ensures that the details of the EDS procedures can be presented clearly,

free from the complexities introduced by asymmetric boundary conditions.

This chapter begins by determining the plastic constraint factor specific to the
reference penny-shaped crack to enable accurate elastic-plastic fracture simulation under
plane strain conditions. The prescribed a—K relationships for both external and cohesive
stresses are then derived using the analytical weight function. Next, EDS distributions
derived using the FLM-based formulation are then used to reproduce a—K relationships,
which are then compared with the prescribed values. Finally, elastic-plastic COD profiles
obtained from the EDS-based CZM framework are compared with those from analytical
solutions, thereby demonstrating the physical fidelity of the proposed method. The EDS
system was originally developed using a 2D center-through crack model due to its
straightforward and computationally efficient weight function, and this model is employed

as the primary substitute for the EPFM analysis of the 3D penny-shaped crack.

4.2 3D Penny-Shaped Crack under Axisymmetric Loading

A Dugdale-type 3D penny-shaped crack in an infinite plate subjected to
axisymmetric loading is illustrated in Fig. 4.1. The crack, with radius c, lies in the x-y plane
and is centered at the origin O. The loading is applied in the z-direction, normal to the crack
surface, and is distributed in a radially symmetric manner, reducing the problem to a one-
dimensional formulation in the radial coordinate x. Geometry assumes an infinite plate to

eliminate boundary effects, ensuring the generality of the results.
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In this model, the external loading is represented by a uniform tensile stress o”
applied remotely. As stress increases, a Dugdale-type plastic zone 7, develops around the
crack front, extending radially from x = ¢ to a fictitious crack tip at x = a. Within this plastic
zone, a constant cohesive stress Ag?, is assumed to oppose crack opening. This cohesive

stress is introduced in the same spirit as in Dugdale CZM to capture elastic-plastic behavior.

The material is modeled as elastic—perfectly plastic, with no strain hardening. The

mechanical properties are assigned as follows:

e Physical crack radius: ¢ = 1.0 mm
e Young’s Modulus: £ = 206,000 MPa
e Yield stress: 67 = 392 MPa

e Poisson’s ratio: v=10.3

The axisymmetry of the problem permits straightforward derivation of the SIFs for
both external and cohesive loading through the use of an analytical weight function, which

plays a central role in both the reference solution and EDS formulation.

g

L Tl T L, | e p—

Fig. 4.1 Schematic of a 3D Dugdale-type penny-shaped crack of radius ¢ embedded in an
infinite solid, subjected to axisymmetric remote tensile loading ¢”, with a surrounding

plastic zone extending to radius a
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4.2.1 Determination of Plastic Constraint Factor

To accurately simulate elastic-plastic crack behavior using the EDS analysis system,
it is essential to determine the plastic constraint factor 4 for the target crack configuration.
This factor accounts for the constraint effect near the crack tip and scales the yield stress o
to reflect the level of triaxiality in the plastic zone. In general, 4 ranges from 1.0 to 3.0,
where 4 = 1.0 corresponds to a fully plane stress condition, and 4 = 3.0 represents an ideal
plane strain condition [49]. However, in practical 3D configurations, even under conditions
approximating plane strain, the actual constraint effect is often lower than the idealized
value of 3 because the stress state is not as severe as it would be in a fully 3D deformation

[74].

For the case of a 3D penny-shaped crack embedded in an infinite, isotropic, and
homogeneous solid, 4 can be estimated analytically. When the axial stress o: in the cohesive
region corresponds to Ao?, the plastic zone size r, can be computed from the following

equation derived for axisymmetric loading conditions [75].

r,=c {1—(;:Yj} -1 “.1)

An alternative estimation of 4 is provided by Keer’s analysis, which is based on the

maximum shear stress criterion. According to Keer’s model, it is necessary to satisfy the

following equation in the plastic region [76].
0,-0,=0 4.2)

In this expression, o, is the circumferential stress acting ahead of the crack front in

the radial direction. Under this formulation, the plastic zone size r, = a — ¢ can be explicitly

expressed as:

(1_2‘/)(6:} 2

7 - 1—(3j L costE 4.3)
2—(l+2v)(6Y] a) 2a a

O

From Egs. (4.1) and (4.3), A can be determined for various values of the normalized

external load ¢”/c" [77]. Fig. 4.2 illustrates the relationship between A and ¢”/c?, as obtained
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from the maximum shear stress model. The curve indicates that A decreases with increasing
applied stress, suggesting a gradual loss of constraint. This behavior highlights the
transitional nature of constraint in 3D geometries, where the stress state evolves

continuously.

The obtained 4 values for the reference penny-shaped crack are subsequently used
to calibrate the EDS-based CZM, ensuring that the simulated crack-tip fields faithfully

represent elastic-plastic fracture under given conditions.

3.0

25
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Fig. 4.2 Relationship between A and ¢/¢" for a 3D penny-shaped crack

4.2.2 Calculation of Prescribed a—K Relationships by Weight Function Method

The prescribed a—K relationships for both external and cohesive stresses are
computed using the analytical weight function for a penny-shaped crack embedded in an

infinite elastic medium.

The weight function, denoted as g,(x,a), represents the SIF response to a unit

concentrated ring load applied at a radial position » = x on the crack face of radius a, as

illustrated in Fig. 4.3.

“4.4)

2 X
RN e
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For external loading, normal stress is assumed to be a uniform traction ¢ acting over
the crack face. The corresponding reference SIF, denoted K,};ef, is derived by integrating the
weight function with respect to the applied stress profile over the fictitious crack length a.
The value of a is systematically varied beyond the physical crack radius c to simulate the

extension of the plastic zone.

For the cohesive stress case, a constant traction A¢” is assumed to act uniformly over
the plastic zone ¢ < x < a, representing the Dugdale-type cohesive zone. The resulting
reference SIF, K}gef, is calculated using the same weight function, but with the integration
domain limited to the plastic zone from ¢ to a. Both sets of prescribed a—K relationships
serve as reference data for determining the EDSs to be applied on the 2D substitute center-

through crack, such that the resulting SIF values match those of the original problem.

—

r=x Unit concentrated
ring load on r =x

7
~-

T

Fig. 4.3 Schematic of a penny-shaped crack embedded in an infinite plate, with unit

concentrated ring load applied at a radial position » = x on the crack face of radius a

As an illustrative example, consider a case in which a remote tensile stress of o =
200 MPa is applied to a 3D penny-shaped crack with a physical radius of ¢ = 1.0 mm.
According to Eqs. (4.1) and (4.3), this loading results in a plastic zone that extends radially

to a fictitious crack size of a = 1.06 mm.
Fig. 4.4 presents a comparison between the weight functions g. and g,. Both
functions increase monotonically with x, diverging to infinity as x—a. The ratio g/g, is

plotted in Fig. 4.5, where it is evident that g. > g, over the interval 0 < x < a. This ratio

diverges as x—0, decreases monotonically with increasing x, and approaches unity as x—a.
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Fig. 4.4 Comparison of weight functions g and g, as a function of x
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Fig. 4.5 Relationship between the ratio g /g, and x

EDSs and Reproduced a-K Relationships

In this section, EDSs are computed to reproduce the prescribed a—K relationships
established for the 3D penny-shaped crack. The objective is to assess how accurately the
EDS-based formulation, originally developed using a 2D substitute model, can capture the
elastic-plastic fracture behavior of the target 3D geometry. By applying the EDS analysis
framework, the reconstructed SIFs are directly compared to the reference values derived

analytically in Section 4.2.2. The consistency between these two sets of results provides a

measure of the applicability and fidelity of the proposed method.
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In the EDS analysis, the domain ranging from x = 0 to 1.2 mm is discretized into
spline partitions with a uniform interval of 0.2 mm. Consequently, the interval index i.

corresponding to the location of the physical crack tip (i.e., ¢ = 1.0 mm) is identified as 5.

Fig. 4.6 shows the comparison between the CFTs, #” and ¢, and the corresponding
EDSs, /£ and /¥, computed by the EDS-based analysis under a remote tensile stress of ¢* =
200 MPa. Since the analysis is performed on a 3D penny-shaped crack, while the EDS

procedure employs the 2D center-through crack weight function g, a geometric mismatch

arises. As a result, the EDSs cannot coincide with the CFTs due to the non-conformity of

the applied weight function.

As discussed in Section 4.2.2, the 2D center-through crack weight function g is
consistently larger than the 3D penny-shaped crack weight function g, across the interval 0

< x < a. Therefore, in order to ensure that the SIFs calculated from EDSs match the

prescribed a—K relationships of the 3D model, the EDS magnitudes must be proportionally

lower than the corresponding CFT, resulting in /" (x) < £(x).
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Fig. 4.6 Comparison of applied CFTs and calculated EDSs for a 3D penny-shaped crack in

an infinite plate under uniform tensile loading (¢ = 1.0 mm, ¢” = 200 MPa)

Fig. 4.7 compares the products CFTs x g, and EDSs % g.. As outlined in Section

2.1.2, the area under each curve represents the corresponding SIF value. This comparison
highlights how appropriately scaled EDSs can compensate for the use of a non-fitting weight

function.
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Fig. 4.7 Comparison of integrands used in the calculation of SIFs for a penny-shaped

crack with ¢ = 1.0 mm under o = 200 MPa: (a) external stress case showing #"(x)g (x.,a)

and /" (x)g (x,a); (b) cohesive stress case showing #'(x)g(x,a) and f'(x)g (x,a)

Fig. 4.8 presents a comparison between the reference a—K relationships and those
reconstructed using EDSs with the 2D center-through crack weight function. The
reproduced SIFs show excellent agreement with the analytical reference values, thereby
confirming the validity and robustness of the proposed EDS determination method for

practical use in 3D crack problems.
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Fig. 4.8 Comparison of reference a—K relationships of the target 3D penny-shaped crack
with reproduced a—K relationships obtained using EDSs applied to the substituted 2D
center-through crack model (¢ = 1.0 mm, ¢° = 200 MPa)

4.4 Comparison of Elastic-Plastic COD Profiles

To evaluate the effectiveness of the proposed EDS-based fracture analysis system,
this section compares elastic-plastic COD profiles obtained using the EDS method with
analytical reference solutions. In the EDS analysis, CODs are computed using Eqs. (3.31)
— (3.36), incorporating the weight function of the 2D center-through crack model. The

simulations are conducted under remote tensile stresses of ¢ = 160, 200, and 240 MPa.

The resulting elastic-plastic COD profiles and corresponding EPFM parameters are
compared against analytical solutions derived by Sneddon [78], which are presented in
Appendix B. The results of this comparison are presented in Fig. 4.9 and Table 4.1. As
shown, the COD profiles and EPFM parameters predicted by the EDS method exhibit

excellent agreement with the reference solutions for the 3D penny-shaped crack.

These findings validate the accuracy and reliability of the developed EDS-based
framework. The close match between the EDS results and analytical benchmarks confirms
that the proposed method offers a robust and computationally efficient alternative for EPFM

analysis of 3D cracks.
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Fig. 4.9 Comparison of CODs of the 3D penny-shaped crack obtained from the EDS
method and Sneddon’s solution: (a) full profile; (b) magnified view ahead of the crack tip

Table 4.1 Comparison of r, and CTOD of the 3D penny-shaped crack obtained using the
EDS method and Sneddon’s solution

7, (mm) x 1073 CTOD (mm) x 107
o” (MPa) y)
EDS Sneddon EDS Sneddon
160 1.716 29.540 29.540 0.217 0.217
200 1.537 60.154 60.154 0.384 0.384
240 1.368 118.243 118.243 0.638 0.638

4.5 Summary

This chapter presented the validation of the developed EDS-based EPFM analysis
framework for 3D cracks. A 3D penny-shaped crack in an infinite plate under axisymmetric
loading was adopted as the verification case owing to its simple geometry and the
availability of an analytical weight function, which enabled a detailed and systematic

demonstration of the EDS analysis procedures.

To enhance computational efficiency, a 2D center-through crack in an infinite
plate—featuring a well-established and computationally efficient weight function—was
employed as a substitute model for the 3D penny-shaped crack. Prescribed a—K relationships
for both external and cohesive stresses were analytically derived using the original weight
function of the penny-shaped crack and were successfully reproduced on the 2D model

using the FLM-based EDS formulation.
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The elastic-plastic COD profiles obtained through the EDS-based CZM framework
were subsequently compared with the analytical solutions by Sneddon. Across a range of
applied remote stress levels, the EDS-derived CODs and associated EPFM parameters

showed excellent agreement with the analytical results.

These results confirm the reliability, physical fidelity, and computational efficiency
of the proposed EDS-based fracture analysis framework. This chapter demonstrates that the
developed method offers a robust and practical alternative for the EPFM analysis of 3D
cracks, laying a solid foundation for extending its application to a wider range of crack

configurations commonly encountered in engineering structures.
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CHAPTER 5

EDS ANALYSIS OF 3D SURFACE CRACKS

5.1 Extension of the EDS Method to 3D Surface Cracks

In the previous chapter, the effectiveness of the EDS method for analyzing
axisymmetric 3D crack, specifically penny-shaped crack, was successfully demonstrated.
This validation established a foundational framework for applying the EDS concept to
EPFM problems involving 3D geometries. However, extending the FLM-based EDS
methodology to crack configurations more commonly encountered in engineering

applications remains a significant challenge.

Among these, surface cracks are particularly prevalent in steel structural
components, often initiating as shallow flaws with low aspect ratios and evolving over time
[79-81]. Numerous experiments and numerical investigations have shown that crack growth
predominantly occurs in the depth direction under tension loading, as the SIF is higher at

the deepest point for most aspect ratios until they approach an aspect ratio of 1.0 [82—85].

This chapter investigates the applicability of the EDS method to such practical
surface crack scenarios. The analysis focuses on both the deepest and corner points of semi-
elliptical surface cracks, enabling a detailed assessment of key EPFM parameters including
plastic zone size and CTOD. The reference a—K relationships for external and cohesive

stresses are analyzed using WARP3D [86], within the framework of the FLM approach.

In the EDS analysis, a 2D edge crack in a semi-infinite plate and a center-through
crack in an infinite plate are considered as substitute crack models to thoroughly examine
the elastic-plastic crack opening behavior and assess their computational efficiency for
analyzing 3D surface cracks. Due to similar boundary conditions and geometry, the 2D edge
crack is employed as a substitute model for 3D surface cracks, with the expectation of

achieving a comparable COD profile along the crack face [87,88].

However, in the context of FCP, the accurate prediction of EPFM parameters—
particularly the plastic zone size and CTOD—is essential, as these parameters strongly
influence the SIF and the crack opening behavior. The accuracy of the COD at the crack
mouth, while useful for visualization, is less critical since it does not reflect the localized

mechanical fields near the crack front. Therefore, EDS analysis is also conducted using the
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2D center-through crack model. If both substitute models yield consistent predictions for
the essential EPFM parameters, the center-through model offers a more straightforward and
computationally efficient alternative by eliminating the need for numerical integration

through the use of closed-form solution.

By applying and refining the EDS methodology to non-axisymmetric 3D surface
crack problems, this chapter addresses a notable gap in the literature and extends the
practical capabilities of the EDS framework. These developments not only enhance the
original SYM-based approach but also provide a robust basis for integration into fatigue life

prediction tools for complex structural systems.

5.2  Configuration of Target Surface Cracks

To investigate the applicability of the EDS method to 3D surface cracks, a semi-
elliptical surface crack embedded in a semi-infinite plate is considered, as illustrated in Fig.
5.1. The geometry is carefully selected to ensure that the stress distribution around the crack
remains unaffected by the finite boundaries of the plate, thereby approximating a semi-

infinite body condition suitable for EDS analysis.

The coordinate system is defined such that the origin, O, lies at the midpoint of the
surface crack along the y-axis. ¢, and ¢, represent the physical crack lengths in the positive
x-direction (depth) and y-direction (width), respectively. Five surface crack models are

prepared with initial aspect ratios (c,/c,) 0f 0.2, 0.4, 0.6, 0.8 and 1.0 to represent a range of
practical crack shapes from shallow to semi-circular. For consistency, the crack width ¢, is
fixed at 1.0 mm in all models, while the crack depth ¢, varies from 0.2 mm to 1.0 mm in

increments of 0.2 mm.

In this study, the EDS analysis is performed at two critical locations along the crack
front: the deepest point (on the x-axis) and the corner point (intersection with the free
surface), capturing the variation in local constraint and crack-tip plasticity across the crack
front. This dual-point analysis enables a more comprehensive understanding of the EPFM
parameters, particularly the plastic zone size and CTOD, under the influence of 3D surface
crack geometry. For simplicity and consistency with the Dugdale CZM, the material is
assumed to behave as an elastic-perfectly plastic body without strain hardening. The
material properties used in the EDS calculations are as follows: E = 206,000 MPa, ¢* = 392
MPa, and v=0.3.
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This idealized material model allows clear interpretation of plastic zone
development and cohesive stress distribution, providing a robust basis for comparison with

the EDS-derived results.

Tensile load &
oP Crack face
/ \ Cl
Crack plane 1
' )
15

Fig. 5.1 Configuration of a 3D surface crack in a semi-infinite plate under uniform tensile

loading ¢” (dimensions in mm)

5.3 Elastic-Plastic FE Analysis for Reference Solutions

To obtain the reference CODs and corresponding EPFM parameters for comparison
with the EDS results, elastic-plastic FE analysis is conducted using MSC Marc [89]. The
FE mesh is generated using TSV-Crack [90], and 10-node tetrahedral (TET10) element type
is employed. As shown in Fig. 5.2, an extra fine mesh is constructed in the vicinity of the
physical crack front to capture the localized stress-strain behavior accurately. The minimum
element size near the crack front is set to 0.005 mm to ensure high fidelity in the computed

reference data.

The reliability of the developed mesh is also validated by comparing the SIFs
calculated using the virtual crack closure-integral method for quadratic tetrahedral elements
[91,92] with the well-known Newman-Raju solutions [93]. The comparison indicates a
negligible discrepancies of approximately 1.0% or less at both the deepest and corner points

of the crack front across all aspect ratio models.
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Fig. 5.2 FE mesh of a 3D surface crack model with an aspect ratio c¢,/c,, showing the

global mesh distribution and local refinement near the crack front (dimensions in mm)

5.3.1 Determination of Elastic-Plastic COD Profile in FE Analysis

To characterize the COD in a cracked structure under elastic-plastic conditions, the
displacement field along the crack faces must be carefully extracted from the FE analysis
results. The actual COD in the physical crack region, denoted as ¥, is obtained by extracting
the relative displacement of nodes located on the opposing crack faces along the x- and y-

directions.

Beyond the physical crack tip, the COD is no longer directly measurable and must
be estimated through a fictitious extension of the crack. In this region, the fictitious COD,

referred to as V, is evaluated based on the accumulated plastic strain in the ligament ahead

of the crack tip, using the following expression [94].

V.= 2{I:gzidz}(l+%J (5.1)

where ¢/ denotes the component of plastic strain in the z-direction beyond the physical
crack tip. The parameter £’ is the effective modulus under plane strain conditions, as
previously defined in Eq. (3.32). This formulation allows the representation of the crack

opening in the plastic zone beyond the actual crack front.
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At the junction between the physical and fictitious crack regions lies the physical
crack tip, where the COD is referred to as the CTOD. Since the mesh node corresponding
to the physical crack tip typically exhibits zero displacement in FE analysis, the CTOD is
computed by linearly interpolating the displacements of adjacent nodes near the crack tip.
This approach provides a continuous and smooth COD profile, seamlessly connecting the
physical crack region to the plastic zone ahead of the crack tip. A comprehensive depiction

of the definitions V', V', and CTOD in the FE analysis is provided in Fig. 5.3.

z = \\\
Q \
ol
Ol QO
O
OI i : —QO—xory
T Physical crack Plastic zone

Fig. 5.3 Schematic illustration of the definitions of V,, V', and CTOD in FE analysis

5.3.2 Investigation of Actual Plastic Zone Shape

In the FLM-based EDS analysis framework, an accurate understanding of the plastic
(or cohesive) zone characteristics is crucial for establishing cohesive stress a—K
relationships. To address this, the actual shapes of plastic zones for target surface cracks

under specific loading conditions are examined through detailed elastic-plastic FE analysis.

Fig. 5.4 illustrates the plastic zone shapes as viewed from the xy-plane for ¢” values
of 100, 200, and 300 MPa. These visualizations reveal how the size and geometry of the
plastic zones evolve with increasing applied load. The variation in plastic zone morphology
is strongly influenced by the crack aspect ratio and the corresponding distribution of SIFs
along the crack front. In general, under tensile loading, cracks with lower aspect ratios
exhibit a tendency for the plastic zone to extend more prominently in the depth direction. In
contrast, when the aspect ratio approaches unity (a nearly circular crack front), the plastic

zone expansion becomes more pronounced along the width direction.
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Fig. 5.4 Plastic zone shapes (xy-view) of surface cracks obtained from FE analysis

Fig. 5.5 examples a comprehensive view of the 3D plastic zone shape along the crack

front for a surface crack with a c,/c, ratio of 0.6 under a tensile load of 6" = 200 MPa. Here,
a, and a, represent the fictitious crack lengths in the positive x- and y-directions,

respectively. The minimum element size close to the physical crack front is 0.005 mm, and

the average size is 0.01 mm.

| Deepest point

Corner point

Fig. 5.5 Configuration of the 3D plastic zone shape along the crack front of a surface

crack obtained from FE analysis (c,/c,= 0.6, ¢” = 200 MPa)
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To facilitate a clearer comparison, the plastic zone shapes at both the deepest point
and the corner of the crack front are projected onto a single reference plane, as illustrated in
Fig. 5.6. ,x and 7, refers to the plastic zone size in the x- and y-directions, respectively. Due
to variations in SIFs along the crack front, which depend on the aspect ratio, it can be
observed that the plastic zone extends further in the depth direction (x-direction) up to a

¢,/c, ratio of 0.6 but begins to extend more in the width direction (y-direction) as the c,/c,

ratio reaches 0.8.

0.15 0.15 0.15
(a) (b) (c)
0.10 0.10 0.10
0.05 ¢ 0.05 ( 0.05 r
0.00 __T_ Plastic zone > 0.00 0.00
o [k 005 | 005 |
0.10 Deepest point (xz-plane) -0.10 | 010 -
— Corner point (yz-plane)
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Fig. 5.6 Plastic zone shapes at the deepest and corner points of surface cracks from FE

analysis: (a) ¢,/c,= 0.2; (b) ¢,/c,= 0.4; (¢) ¢,/c,= 0.6; (d) ¢,/c,=0.8; () c,/c,= 1.0

5.3.3 Determination of Plastic Constraint Factor

In the evaluation of elastic-plastic crack behavior, the plastic constraint factor 4 plays
a critical role in characterizing the stress triaxiality at various points along the crack front.
At the corner point of a surface crack, the stress state is assumed to be close to plane stress;

therefore, A is taken as 1.0.

59



In contrast, at the deepest point of the physical crack—where the stress state tends
toward plane strain—the constraint is more severe and must be evaluated quantitatively. In
this study, 4 at the deepest point is determined by matching the results of FE analysis with

the analytical formulation shown below [75].

P

As——— (5.2)
o’ 1—[cj
a
Fig. 5.7 presents the calculated values of 4 obtained from Eq. (5.2) for different
normalized applied stress levels, specifically for o*/o” ratios ranging from 0.2 to 0.8. The

results reveal a nearly linear decrease in A with increasing applied stress, indicating a

progressive relaxation of constraint as plasticity becomes more dominant.

For practical implementation within the EDS framework, the variation of 4 with
applied stress is approximated using a linear regression fit. The resulting values are
subsequently incorporated into the EDS analysis for the crack deepest point to ensure

accurate representation of the constraint effect near the crack front.
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Fig. 5.7 Solutions of plastic constraint factors for the deepest point of target surface cracks
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5.4 Calculation of Prescribed a-K Relationships

To enable accurate application of the EDS method in surface crack analysis, it is
essential to establish the prescribed a—K relationships for both external and cohesive
stresses. These relationships are developed using LEFM analysis, employing the interaction
integral method [95] together with the CFT-integral formulation [96,97], implemented in
the public-domain FE code WARP3D.

Fig. 5.8 illustrates an example of the specific locations along both the crack depth
and width directions where the a—K relationships are computed, in the case of a surface

crack with an aspect ratio of c,/c, = 0.8. As noted in the preceding sections, the actual

cohesive (plastic) zone shape evolves non-uniformly along the crack front, depending on
the aspect ratio and loading conditions. This variation renders it impractical to predetermine
the plastic zone shape a priori. To address this, a simplified and idealized model of the plastic
zone is adopted to facilitate consistent development of the prescribed a—K relationships

required in the EDS analysis.

Specifically, a Dugdale-type cohesive zone is assumed to extend an equal distance
ahead of the physical crack front along the entire crack front, as depicted in Fig. 5.8. This
assumption implies that the distance between the physical and fictitious crack fronts remains
constant for each increment along crack front, regardless of the parametric angle ¢. Based
on this simplified geometry, the a—K relationships are computed by applying the following

loading conditions:

2 2
P_ P - . KXY
t =0 ,1nthereg10n(x,y).7+—2ﬁl,xZO
1 2

(5.3)

2 2 2 2
: . X X
t" = Ac", in the region (x, y): _2+y_2 >1, and —2+y—2
G G a 4

<L, x=>0

Within the physical crack region, the a—K relationships for external stresses are
determined by incrementally extending the crack front in accordance with the actual aspect
ratio ¢,/c,. Beyond the physical crack front, where the cohesive zone is defined, the a—K
relationships for both external and cohesive stresses are developed by uniformly extending
the crack front. This approach ensures that the cohesive zone representation in the EDS
analysis accurately captures SIFs at the fictitious crack tip. To this end, the fictitious crack

front is extended in very small increments over a predefined distance, providing sufficient
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resolution to characterize the cohesive region across the range of applied stress levels

considered.

To realize this, WARP3D has been enhanced to compute the equivalent nodal forces
resulting from partially applied CFT stresses on an element face using numerical surface
integration with ultra-high order Gauss-Legendre quadrature (up to 64 points) [88].
Consistent with the Dugdale assumption, cohesive stress is applied as Ac¢” in the loading
direction, and the a—K relationships for cohesive stresses are computed using a 0.01 mm

increment of the fictitious crack front.

For completeness and clarity, the resulting SIFs along the crack front for both
external and cohesive stresses are provided in Appendix C. These results are tabulated at
0.05 mm increments of the fictitious crack front, offering a detailed characterization of the
SIF distribution along the crack front and serving as a structured foundation for subsequent
evaluation in the EDS analysis.

K? evaluation locations x [ applied region
for deepest point analysis

K7 evaluation locations
for corner point analysis

—

T

-a, -C; [9) € @& <
(a)
K¥ evaluation locations x [] # applied region

for deepest point analysis
K evaluation locations

for corner point analysis

Physical
crack front

Fig. 5.8 Arrangement of evaluation locations for prescribed a—K relationships in the depth

and width directions of a surface crack: (a) for K; (b) for K* (c,/c,= 0.8)
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5.5 EDS Analysis of Surface Cracks at the Deepest Point

This section presents the application of the EDS method to surface cracks, with a
focus on the deepest point along the crack front. As one of the most critical locations for
evaluating fracture behavior, the deepest point typically experiences higher constraint and
stress intensity, making it essential for accurate prediction of EPFM parameters. Building
upon the prescribed a—K relationships developed in the preceding sections, the EDS analysis

is carried out using the weight functions of two substitute crack models, g and g;. The

performance and accuracy of each model in representing the 3D crack opening behavior at

the deepest point are also discussed.

5.5.1 EDS and Reproduced a—K Relationships for the Deepest Point

In the EDS analysis, spline partition points are set at coarser intervals than the SIF

calculation points. For cracks with ¢,/c, ratios of 0.2 and 0.4, the points are placed at 0.1
mm intervals, whereas for cracks with ¢,/c, ratios of 0.6, 0.8, and 1.0, they are placed at 0.2

mm intervals, ensuring appropriate spacing based on the crack size.

Figs. 5.9 — 5.13 show the applied CFTs (# and ¢) and EDSs (f* and ") for ¢ = 200

MPa, with c,/c, ratios ranging from 0.2 to 1.0. The results demonstrate that smooth and

continuous EDS distributions are calculated for both external and cohesive stresses.
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Fig. 5.9 Comparison of applied CFTs and calculated EDSs along the depth direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(¢,/c, = 0.2, o” = 200 MPa)
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Fig. 5.10 Comparison of applied CFTs and calculated EDSs along the depth direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(¢,/c, = 0.4, 6" = 200 MPa)
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Fig. 5.11 Comparison of applied CFTs and calculated EDSs along the depth direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(c,/c; = 0.6, 6" = 200 MPa)
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Fig. 5.12 Comparison of applied CFTs and calculated EDSs along the depth direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(c,/c; = 0.8, 6" = 200 MPa)

700
— .
u i
_ 0 - Pt =g
§500 R ;J;(g*=g,€)
R 400 F - fF(g*=g0)
H == e =)
2 300
<
200
O N
100 F T T T T T T T T T
) a
0 1 L 1 L

x (mm)

Fig. 5.13 Comparison of applied CFTs and calculated EDSs along the depth direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(c,/c; = 1.0, 6" = 200 MPa)

Figs. 5.14 — 5.18 present the comparison between the prescribed a—K relationships
and those reproduced by the EDS method using the weight functions of the 2D edge crack

(gp) and center-through crack (g.). As described in the previous sections, the prescribed a—
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K relationship inputs are defined up to a certain distance beyond the physical crack tip. The
a—K relationships reproduced by the EDS method terminate at the end of the cohesive zone,
where the stress singularity disappears under the given stress level. The calculated SIFs
demonstrate a strong correlation with the prescribed inputs, validating the effectiveness and

reliability of the developed EDS determination system.
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Fig. 5.14 Comparison of reference a—K relationships along the depth direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to

substituted 2D center-through and edge crack models (c,/c, = 0.2, " = 200 MPa)
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Fig. 5.15 Comparison of reference a—K relationships along the depth direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to

substituted 2D center-through and edge crack models (c,/c, = 0.4, " =200 MPa)
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Fig. 5.16 Comparison of reference a—K relationships along the depth direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to

substituted 2D center-through and edge crack models (c,/c, = 0.6, " = 200 MPa)
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Fig. 5.17 Comparison of reference a—K relationships along the depth direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to

substituted 2D center-through and edge crack models (c,/c, = 0.8, " = 200 MPa)
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Fig. 5.18 Comparison of reference a—K relationships along the depth direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to

substituted 2D center-through and edge crack models (c,/c, = 1.0, " =200 MPa)

5.5.2 Comparison of EPFM Parameters for the Deepest Point

In the EDS analysis, elastic-plastic CODs induced by EDSs are calculated through
Egs. (3.31) — (3.36) from Chapter 3, based on the weight functions of 2D center-through

and edge cracks. Surface cracks with ¢,/c, ratios of 0.2, 0.4, 0.6, 0.8, and 1.0 are analyzed

under three loading conditions (¢ = 160, 200, and 240 MPa). The results are then compared
with the reference FE analysis solutions along the depth direction.

Figs. 5.19 — 5.23 show comparisons between the elastic-plastic CODs calculated
using the EDS method and the reference FE solutions. The COD profiles along the crack
face, obtained via the edge crack weight function, closely match the FE results and exhibit
better agreement than those derived from the center-through crack. However, it is evident
that the key EPFM parameters (, and CTOD) can be accurately determined regardless of
whether an edge crack or a center-through crack is used as the substitute crack. The values
obtained are nearly identical ahead of the physical crack tip, with a percentage difference of
approximately 0.01% across all cases.

Therefore, employing a center-through crack as the substitute body in the EDS
analysis is advantageous as it leverages closed-form solutions to simplify calculations while
maintaining the necessary accuracy for 7, and CTOD. This also provides significant

advantages for future implementation in FCP analysis involving multiple loading cycles.
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Fig. 5.19 Comparison of CODs along the depth direction obtained from the EDS method

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (¢,/c,= 0.2)

2.5 0.6
240 MPa (a)
2.0 ooy 200 MPa 0.5
i > 160 MPa iy q
e S ‘(;---59\9\ ~ 04
~ L5 My —_
"""""""" 05 Oy g
g ________ oy * O\ =] 0.3 d
- 1_0 [ Tl x '
2 © FEA (V) 202
@] O q
s | © FEAUR O
: — EDS (V) 0.1
---- EDS (V) el
0.0 L L L 0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.40
x (mm)

240 MPa (b)
200 MPa
160 MPa
O FEA (V)
— EDS (¥V})
---- EDS (V)
= (2 v o (NS Y o 7 &

042 044 046 048

x (mm)

0.50

Fig. 5.20 Comparison of CODs along the depth direction obtained from the EDS method

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (¢,/c,= 0.4)
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Fig. 5.21 Comparison of CODs along the depth direction obtained from the EDS method

and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (¢,/c,= 0.6)
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Fig. 5.22 Comparison of CODs along the depth direction obtained from the EDS method
and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (¢,/c,= 0.8)
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Fig. 5.23 Comparison of CODs along the depth direction obtained from the EDS method
and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (¢,/c,= 1.0)

Table 5.1 presents the comparison between the key EPFM parameters (r, and
CTOD) at the deepest point, obtained using the EDS method with the center-through crack
weight function and those derived from detailed FE analysis. The results show excellent
agreement across all crack geometries and loading conditions, with differences consistently
within an acceptable engineering tolerance. This level of accuracy demonstrates the
robustness of the EDS method for evaluating critical fracture parameters at the deepest point

of 3D surface cracks, even when using simplified 2D substitute crack models.

Moreover, the effectiveness of the current EDS framework underscores the validity
of the cohesive zone assumptions and the prescribed a—K relationships developed in Section
5.4. These relationships provide a direct and consistent link between the applied loading and

the resulting crack front conditions, which is essential for accurate near-tip fracture
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characterization. The demonstrated capability of the EDS method to capture essential EPFM
parameters with reduced computational effort suggests strong potential for its integration
into practical engineering workflows. In particular, the use of a center-through crack allows
for analytical simplification through closed-form solutions, making the approach especially

suitable for FCP analysis under repeated cycles.

Table 5.1 Comparison of 7, and CTOD at the deepest point of target 3D surface cracks
obtained from the EDS method and FE analysis

o rp (mm) x 1073 CTOD (mm) x 107

cilca A
(MPa) EDS FEA EDS FEA
160 1.043 17.146 15.0 0.121 0.095
0.2 200 1.036 | 29.785 30.0 0.197 0.163
240 1.030 | 49.574 55.0 0.299 0.259
160 1.142 27.353 25.0 0.194 0.163
0.4 200 1.125 48.957 50.0 0.321 0.264
240 1.108 83.374 85.0 0.495 0.427
160 1.277 31.535 30.0 0.227 0.186
0.6 200 1.246 57.814 60.0 0.381 0.312
240 1215 | 100.902 | 105.0 0.597 0.518
160 1.422 32.734 30.0 0.237 0.190
0.8 200 1.375 61.621 65.0 0.404 0.330
240 1327 | 111260 | 115.0 0.645 0.560
160 1.586 | 31.661 30.0 0.233 0.191
1.0 200 1.526 59.775 60.0 0.398 0.329
240 1466 | 107.906 | 110.0 0.637 0.555

5.6 EDS Analysis of Surface Cracks at the Corner Points

While the previous section demonstrated the effectiveness of the EDS method at the
deepest point of surface cracks, additional challenges arise at the corner point, where the
crack front intersects the free surface. Unlike the deepest point, the corner point is typically
characterized by a highly complex stress state, which complicates the accurate

determination of SIF and other EPFM parameters. The geometry of the crack front at this
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location, combined with the rapid transition from the interior of the material to the surface,
results in a stress distribution that is difficult to model and compute reliably. Additionally,
the interaction between the crack tip and the free surface can introduce localized effects,

further complicating the analysis.

To address these complexities, the EDS method is extended to the corner point using
the same cohesive zone assumptions and the prescribed a—K relationships developed in
earlier sections. To ensure computational efficiency while maintaining sufficient accuracy
in the evaluation of key EPFM parameters, the center-through crack is employed as the
substitute model. This choice allows for the use of closed-form weight functions,

simplifying the analysis of elastic-plastic crack opening behavior at this location [98].

The analysis in this section focuses on crack configurations with aspect ratios
approaching 1.0, where crack growth is often more likely to initiate from the corner points.
Specifically, surface cracks with ¢,/c, = 0.6, 0.8, and 1.0 are examined using the EDS
method. Since the corner point lies on the free surface and is predominantly subjected to a

plane stress condition, 4 is assumed to be 1.0 through the analysis.

5.6.1 EDS and Reproduced a—K Relationships for the Corner Points

As in the analysis at the deepest point, spline partition points for the corner point
evaluation are set at wider intervals than the calculation points used for SIF determination.

Specifically, the partition points are spaced at intervals of 0.2 mm. Given that ¢, = 1.0 mm

for the analyzed cracks, this results in an interval number of 5 at c,.

Figs. 5.24 — 5.26 show comparisons of CFTs (¢ and t*), and EDSs (/* and f?), along
the width direction of surface cracks with aspect ratios ¢,/c, = 0.6, 0.8, and 1.0, under o’ =
200 MPa. It is observed that both /* and f* exhibit smooth and continuous behaviors when
the aspect ratio is 1.0. However, for lower aspect ratios of 0.6 and 0.8, only f* maintains a

reasonable and physically consistent trend, while /¥ deviates significantly from ¢'.

This discrepancy arises from the nature of the local crack tip conditions at the corner
point. In particular, it reflects the shift in the SIF-dominant region and the intrinsic
characteristics of the cohesive stress a—K relationships. As discussed in the Appendix C,
cohesive stress SIF at the corner point does not differ significantly from that generated by
external stress when the crack has a low aspect ratio. Consequently, the cohesive response

derived from yield-based loading does not develop in the same manner as it does at the
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deepest point, resulting in a less accurate reproduction of /! at the corner. In contrast, f*,
obtained from traction applied over the entire crack face, remains more representative

because it captures the broader stress distribution acting along the crack front.
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Fig. 5.24 Comparison of applied CFTs and calculated EDSs along the width direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(c,/c, = 0.6, 6" =200 MPa)
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Fig. 5.25 Comparison of applied CFTs and calculated EDSs along the width direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(¢,/c, = 0.8, 6" = 200 MPa)
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Fig. 5.26 Comparison of applied CFTs and calculated EDSs along the width direction of a
3D surface crack in a semi-infinite plate under uniform tensile loading

(c,/c, = 1.0, 6” = 200 MPa)

Figs. 5.27 — 5.29 illustrate the prescribed a—K relationships of the analysis crack
models at the corner point, alongside those reproduced from the EDSs using the weight
function of the center-through crack (g.). Consistent with the trends observed in the EDS
results, the reproduced a—K relationships show good agreement with the prescribed values

only for the crack with an aspect ratio ¢,/c, = 1.0. In this case, the SIFs for both external and

cohesive stresses are accurately captured across the entire range of crack extension.

However, for lower aspect ratios (c,/c, = 0.6 and 0.8), although the external stress

SIFs remain in good agreement with the prescribed a—K curves, the cohesive stress SIFs
exhibit noticeable deviations. This discrepancy reinforces the earlier observation that
cohesive zone behavior is strongly influenced by local fracture mechanics conditions at the
corner point. Specifically, when the corner is not the SIF-dominant region, the applied
cohesive stresses fail to develop the same crack-driving effect due to the reduced constraint
and altered stress state near the free surface. As a result, the cohesive SIF response becomes

less representative, leading to discrepancies in the reproduced.

It 1s important to emphasize that this deviation is not due to limitations of the
substitute model or the chosen weight function, but rather to the physical nature of crack tip

interactions in low-constraint regions.
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Fig. 5.27 Comparison of reference a—K relationships along the width direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to the

substituted 2D center-through crack model (c,/c, = 0.6, " = 200 MPa)
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Fig. 5.28 Comparison of reference a—K relationships along the width direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to the

substituted 2D center-through crack model (c,/c, = 0.8, " = 200 MPa)
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Fig. 5.29 Comparison of reference a—K relationships along the width direction of a 3D
surface crack with reproduced a—K relationships obtained using EDSs applied to the

substituted 2D center-through crack model (c,/c, = 1.0, " = 200 MPa)

5.6.2 Comparison of EPFM Parameters for the Corner Points

EDS analysis of surface cracks with c,/c, ratios of 0.6, 0.8, and 1.0 are performed
under three loading conditions (¢ = 160, 200, and 240 MPa), consistent with the cases
examined for the deepest point. The results were then compared with reference FE solutions
along the width direction to evaluate the performance of the EDS method at the corner

points.

Figs. 5.30 — 5.32 present a comparison between the elastic-plastic CODs obtained
using the EDS method against those derived from FE analyses. For each loading case, results

for all three aspect ratios are shown together to facilitate a comprehensive comparison.

The results indicate that for c¢,/c, ratios of 0.6 and 0.8, the COD profiles computed
using the EDS method agree well with the FE results in the region 0 <y <c,, i.e., within the
physically meaningful crack length. However, beyond the physical crack tip, significant
discrepancies appear, particularly in the computed plastic zone size r, and CTOD. These
discrepancies are primarily attributed to the limitations of the EDS method in accurately
reproducing the SIF, K¥, associated with yield-based cohesive loading at the corner point,

as discussed in the preceding sections.
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Fig. 5.30 Comparison of CODs along the width direction obtained from the EDS method
and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (¢"=160 MPa)
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Fig. 5.31 Comparison of CODs along the width direction obtained from the EDS method
and FE analysis: (a) full profile; (b) magnified view ahead of the crack tip (¢"=200 MPa)
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In contrast, for the c,/c, = 1.0, where the corner point is the dominant location in
terms of SIF, the EDS method successfully reproduces both K* and K*. As a result, the
computed COD profiles, as well as the corresponding r, and CTOD, show favorable
agreement with the FE results across all loading levels. A summary of 7, and CTOD values
at the corner point, obtained using the EDS method with the center-through crack weight

function and those derived from detailed FE analyses is provided in Table 5.2.

Table 5.2 Comparison of 7, and CTOD at the corner point of target 3D surface cracks
obtained from the EDS method and FE analysis

7, (mm) x 1073 CTOD (mm) x 1073

cilca o” (MPa)
EDS FEA EDS FEA
160 5.594 30.0 0.105 0.152
0.6 200 8.812 70.0 0.157 0.303
240 13.689 120.0 0.204 0.437
160 10.350 50.0 0.142 0.232
0.8 200 18.090 100.0 0.227 0.418
240 31.880 170.0 0.340 0.618
160 105.070 90.0 0.487 0.344
1.0 200 179.830 160.0 0.798 0.588
240 257.067 240.0 1.193 0.832

These findings underscore the importance of geometric and boundary conditions in
cohesive stress-based evaluations using the EDS method. Since the EDS method is
formulated to reproduce the SIF of a 3D crack using a 2D crack, its accuracy is sensitive to
the local dominance of crack-driving forces. When the corner point is not the SIF-dominant
location—as in the cases with ¢,/c,= 0.6 and 0.8—the method becomes less reliable, despite

the FE results in Section 5.3 indicating a slightly longer plastic zone at the corner for ¢,/c,

= (.8, possibly due to mesh-related effects.

Understanding this behavior is essential for applying the EDS method to realistic

surface cracks, where local conditions may vary significantly along the crack front.
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5.7 Summary

This chapter presented an extension of the EDS method to the analysis of non-
axisymmetric 3D surface cracks. The investigation focused on evaluating the applicability
and limitations of the EDS approach in predicting key EPFM parameters (7, and CTOD) at
two characteristic locations along the crack front: the deepest point and the corner point. To
achieve this, surface cracks with varying aspect ratios were analyzed under specific loading

conditions, using substituted 2D center-through and edge crack models.

Following the configuration of the target crack geometries, detailed elastic-plastic
FE analyses were performed to generate reference solutions. These analyses provided COD
profiles, plastic zone morphologies, and plastic constraint factors necessary for verifying

the EDS method and the simplified cohesive zone assumptions.

Prescribed a—K relationships for external and cohesive stress are developed using
LEFM analysis, combining the interaction integral method with the CFT-integral
formulation. These were implemented in the public-domain FE code WARP3D. Due to the
non-uniformity of the plastic zone along the crack front, simplified, idealized model of the
plastic zone was adopted to enable consistent construction of the prescribed a—K
relationships needed for the EDS analysis. To facilitate accurate evaluation of SIFs for
cohesive stress, WARP3D was enhanced to compute equivalent nodal forces arising from
partially applied traction stresses via high-precision numerical surface integration using

ultra-high-order Gauss—Legendre quadrature.

For the deepest point, the EDS method successfully reproduced the SIFs for both the
externally applied and cohesive stresses (K” and K?), demonstrating favorable agreement
with the FE solutions across all aspect ratios. The resulting , and CTOD closely matched
the reference data, confirming the robustness of the method in this region. Furthermore, it
was shown that both center-through and edge crack can serve effectively as substitute
models in the EDS analysis. Notably, using a center-through crack is advantageous due to
the availability of closed-form solutions, which simplify calculations while maintaining

sufficient accuracy in predicting 7, and CTOD.

In contrast, the application of the EDS method to the corner point revealed a strong

sensitivity to the local geometric and constraint conditions. For ¢,/c, = 1.0, where the corner

point is a SIF—dominant location, the EDS method accurately reproduced K* and K7,
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resulting in good agreement with the FE-derived EPFM parameters. However, for lower

aspect ratios (c,/c, = 0.6 and 0.8), the corner point exhibited reduced SIF dominance. In

these cases, the EDS method showed limitations in replicating cohesive stress behavior,
leading to deviations in the calculated », and CTOD values—particularly beyond the
physical crack front. These discrepancies are attributed to the method’s inherent reliance on
SIF reproduction, which becomes less reliable in low-constraint, geometry-sensitive

regions.

The findings in this chapter highlight the importance of considering local crack-front
characteristics when applying the EDS method to surface cracks. While the method provides
a practical and analytically tractable tool for evaluating elastic-plastic behavior, its
applicability is contingent on the crack-driving force being sufficiently dominated by the
SIF. This insight is critical for extending the EDS method to realistic engineering

applications involving complex crack geometries and constraint conditions.
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CHAPTER 6

CONCLUSION

This dissertation has presented a comprehensive framework for EPFM analysis of
3D cracks, grounded in EDS method. Motivated by the need for computationally efficient
and physically interpretable approaches, the proposed method offers a practical tool for

evaluating fracture parameters in support of SYM-based FCP analysis programs.

The EDS-based fracture mechanics analysis system was constructed on the
foundation of the original EDS theory, adopting the FLM approach to ensure high accuracy
and reliability. Two 2D substitute crack models—a center-through crack in an infinite plate
and an edge crack in a semi-infinite plate—were introduced to represent the crack tip
opening behavior of 3D cracks. By matching the crack length—SIF (a—K) relationships
between the original 3D crack and the substitute models through generalized matrix
inversion, the system enabled direct evaluation of elastic-plastic CODs and associated

EPFM parameters using the simplified solutions of the substitute cracks.

The accuracy of the proposed framework was first validated using a 3D penny-
shaped crack in an infinite plate subjected to axisymmetric loading. This geometry, which
offers an analytical weight function, allowed for rigorous verification. Using a 2D center-
through crack as the substitute model, the prescribed a—K relationships were accurately
reproduced through the FLM-based EDS approach. The resulting elastic-plastic COD
profiles showed excellent agreement with analytical solutions derived from Sneddon’s
closed-form expressions, demonstrating both the reliability and computational efficiency of

the proposed framework.

To demonstrate broader applicability, the system was extended to non-axisymmetric
3D surface cracks, which are more commonly encountered in engineering structures. The
method was applied to a range of surface cracks with varying aspect ratios and loadings,
with particular attention given to two key EPFM parameters: the plastic zone size, r,, and
CTOD. FE analyses provided detailed reference data, including COD profiles and plastic
zone morphologies, enabling validation of the EDS-based results at both the deepest and
corner points along the crack front. To address the complex distribution of plastic zones,

idealized plastic zone model was adopted to construct consistent a—K relationships, and
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high-precision numerical integration was incorporated into the FE code WARP3D for an

accurate evaluation of prescribed SIFs.

At the deepest point along the crack front, the EDS method demonstrated strong
performance by accurately reproducing both externally applied and cohesive stress SIF (K*
and KY) across all aspect ratios. The resulting values of 7, and CTOD closely matched the
FE reference data, validating the robustness of the approach in this region. Both substitute
crack models proved effective, with the center-through crack model offering the added
advantage of closed-form solutions that simplify calculation without compromising

accuracy.

In contrast, the application of the EDS method to the corner point revealed greater
sensitivity to local geometric and constraint conditions. For cracks where the corner region
remained dominated by SIF, the EDS method maintained good accuracy in reproducing K”
and K" and predicting 7, and CTOD. However, for lower aspect ratios, where the corner
point experienced reduced SIF dominance, the method showed limitations in capturing the
cohesive stress behavior. This resulted in noticeable discrepancies beyond the physical crack
front, especially in the values of , and CTOD. These deviations are attributed to the
method’s reliance on reproducing the SIF of a 3D crack using a 2D substitute crack, which

becomes less reliable under low-constraint and geometry-sensitive conditions.

Overall, this study demonstrates that the EDS-based framework provides a practical
and analytically tractable approach for evaluating elastic-plastic fracture behavior of 3D
cracks, particularly effective at crack propagation initiation points where the SIF is
dominant. The method offers a significant reduction in computational cost while

maintaining accuracy in predicting key EPFM parameters.

As a future direction, the integration of the developed EDS-based system into FCP
analysis programs is anticipated. Such integration will significantly enhance the efficiency
and applicability of fatigue crack growth predictions in large-scale structural components

with complex geometries, contributing to safer and more reliable engineering designs.
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APPENDICES

A. EDS-Based CZM Considering Residual Stress

In fracture mechanics analysis, accounting for residual stress is essential to ensure
safe and reliable structural design, particularly in welded components where tensile residual
stress can significantly influence crack behavior. This appendix outlines the procedure for

incorporating residual stress into the EDS-based CZM.

Let % denote the CFT representing the effects of welding-induced residual stress o®
in the 3D cracked body. The reference SIF, Kﬁef, induced by #® can be determined by efficient
and reliable numerical tools such as FRANC3D [99].

Let /% (x) represent the residual stress EDS applied to the substituted 2D models.
Like the external stress EDS fP (x), this distribution is expressed using a cubic spline

function over i,,,,, segments, with nodal coordinates x, =0, ---, x; __. Each segment fl.R (x) is

defined by spline coefficients {af, ﬁf yf 5;?}. When fl.R (x) is applied over the region (0 <x

< a) of the substituted 2D crack, the SIF at the fictitious crack tip, Kips, is given by:

Kips =2 j " R g (E.a)de

. (A1)
=G (@)t + G (a) B+ G (@) + G (a) )

At the fictitious crack tip, where the stress singularity vanishes, the combined SIFs

induced by /* and /% must cancel out that induced by cohesive stress EDS f*, leading to:

+K}—K},s =0 (A2)

P
KEDS EDS
The fictitious crack length a is determined iteratively to satisfy Eq. (A.2).

CODs induced by fl.R(x), denoted as V*(x), can be calculated using:

2 5 [0 12 (8) Vi)

:_zl 1[ FGY) (x,a)+ B GV (x,a)+7/fGI(,l’Z(x,a)+5l.RG,(,(??(x,a)}

(A3)

Finally, the total elastic-plastic COD that accounts for residual stress is obtained as:
V(x):VP (x)-i—VR (x)—VY (x) (A.4)
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B. Sneddon’s Solutions for Elastic-Plastic COD of a 3D Penny-Shaped

Crack under Axisymmetric Loading

The coordinate system and configuration of a 3D penny-shaped are shown in Fig.

4.1. When an annular loading #°(x) acts on the crack of radius a, the normal displacement u,

at the crack surface is given by the following equation [78].

4(1- V)a pd Ilftp(fﬂa)dé X md =P

Sy ke

where v is Poisson’s ratio, £ is Young’s Modulus and # is a function of x = & ua.

1y () = (B.1)

When a uniform axisymmetric traction stress £ = ¢” acts on the entire crack face (0

< x < a), the displacement u”, can be obtained by solving the integral in Eq. (B.1) [100]:

u”(x):m /1—p2 (B.2)

7E

Similarly, when the traction stress ¢’ = Ao” is applied over the region ¢ < x < a, the

corresponding displacement u”, is given by:

1-m® —mE[(p
8(1-v)ic'a |\ 1-p° v

7E
\/1 pz pom F(coz,ﬂ] pE(coz,mj c<x<a
1-m p P
c . 1=m’ . |1=p* . . .
where m =—, @, =arcsin P @, = arcsin - A 1s the plastic constraint factor,
a -p —m

F(p,k) and E(p,k) are the elliptic integrals of first and second kind, respectively.

s

0<x<c

3

u' (x)= (B.3)

The elastic-plastic COD, denoted as u(x), for the 3D penny-shaped crack can then

be expressed as:

u(x):uP (x)—uY (x) (B4)
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C.

SIF's for External and Cohesive Stresses Calculated Using WARP3D

Figs. C.1 — C.5 present the SIFs K” and K for unit CFT, calculated using WARP3D

and plotted along the crack front of the analyzed cracks. To provide a detailed

characterization of the SIF distribution, the results are also tabulated at 0.05 mm increments

of fictitious crack extension, up to 0.2 mm beyond the physical crack front.

The results show that at the corner points (0 and 180 deg), K” is not significantly

different from K” for cracks with low aspect ratios. As the aspect ratio c,/c, increases, the

difference between K” and K becomes more pronounced.

Notably, for ¢,/c, = 1.0, K reaches its maximum at the corner point. For other aspect

ratios—c,/c, = 0.2, 0.4, 0.6 and 0.8—the deepest point (90 deg) exhibits higher K” values

than the corner, indicating that the dominant crack-driving location is the deepest point in

these cases. In contrast, for c¢,/c, = 1.0, the corner point becomes the most critical location

for crack growth.
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Fig. C.1 K and K" for unit CFT along the crack front of a surface crack with c¢,/c, = 0.2:

(a) 0.05 mm; (b) 0.1 mm; (c) 0.15 mm; (d) 0.2 mm extensions of the fictitious crack front
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Fig. C.3 K” and K" for unit CFT along the crack front of a surface crack with ¢,/c, = 0.6:
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Fig. C.5 K” and K" for unit CFT along the crack front of a surface crack with ¢,/c, = 1.0:

(a) 0.05 mm; (b) 0.1 mm; (c) 0.15 mm; (d) 0.2 mm extensions of the fictitious crack front
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