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ABSTRACT 

Information on assets and populations potentially exposed to tsunamis is essential for risk 

mitigation prior to tsunami occurrence. This information is obtained by intersecting the extent 

of tsunami inundation with exposure datasets. The accuracy of tsunami inundation is strongly 

influenced by elevation data. Together, elevation data and exposure datasets are referred to 

as essential variables. However, these essential variables are often not available in data-

scarce regions, leading to utilization of 'best available' global datasets. This research analyses 

the applicability of global datasets for tsunami exposure assessment at a local scale. The 

study evaluates 11 digital elevation models, 8 impervious surface layers, and 4 gridded 

population datasets. The evaluation focuses on how these datasets can improve tsunami 

inundation model performance and how their compounding biases affect the exposure 

estimates in the tsunami-prone city of Banda Aceh, Indonesia. This city is known for being 

heavily affected by the 2004 Indian Ocean Tsunami.  

To minimize variability in global elevation model assessment, this research introduces a 

sequential validation approach that assesses how well the models reproduce a historical event 

while accounting for their inherent biases. In parallel, the global exposure datasets are 

compared against high-resolution local data to evaluate intrinsic and analytical biases. The 

least biased dataset variants from both assessments are selected and further used to analyse 

how biases compound when elevation models and exposure datasets are integrated. Using 

the least biased dataset variants, the study projects tsunami exposure estimates for future 

tsunamigenic events in the area of interest using cross-uncertainty assessment, which 

integrates probabilistic inundation with confidence levels of the global datasets used. Based 

on this cross-uncertainty assessment, the research evaluates how existing mitigation 

strategies can mitigate future tsunamigenic events. This research is presented through six 

chapters.  

Chapter 1 explains research objectives and research locations.  

Chapter 2 examines the biases of global impervious surface and gridded population datasets.  

Chapter 3 analyses the sensitivity of global elevation models in modelling historical tsunamis.  

Chapter 4 calculates the compounding biases from global datasets and performs the cross-

uncertainty tsunami assessment.  

Chapter 5 provides an evaluation of existing mitigation systems against future tsunamigenic 

scenarios. 

Chapter 6 presents conclusions and recommendations based on the results obtained.  

The results show global exposure datasets exhibit bias by overestimating tsunami-exposed 

built-up areas while underestimating tsunami-exposed populations. Additionally, elevation 

data contributes more to underestimation than population datasets. When used together, 

these biases compound, nearly doubling the underestimation of tsunami-exposed populations 

compared to when each dataset is used separately.  
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CHAPTER I: INTRODUCTION 

1.1 Recent Advances in Tsunami Science 

Several mega-tsunamis have occurred over the last two decades (Fig. 1.1). These 

tsunamis claimed hundreds to thousands of lives.  For instance, the 2004 Indian 

Ocean Tsunami (IOT) claimed over 230,000 lives across 14 countries, the 2011 

Tohoku Tsunami caused approximately 20,000 deaths, and the 2018 Palu Tsunami led 

to over 4,300 casualties (UNDRR, 2019). In addition, these tsunamis have led to 

significant economic losses, with estimates ranging from $10 billion to $300 billion 

USD (Rafliana et al., 2022). This highlights the profound economic impact, along with 

the tragic loss of life. Despite their significant drawbacks, tsunamis have served as 

catalysts for rapid advancement of tsunami science. 

 

 

Fig. 1.1 Spatial distribution of tsunami fatalities between 2000 and 2024. These data were curated by 

Shaw et al. (2025) and UNDRR (2016). The hatched lines represent the classification of economic 

power (World Bank, 2024). The magenta star markers show the epicenters of the three most 

catastrophic tsunamis on the timeline.  

 

In the aftermath of the 2004 Indian Ocean Tsunami (IOT), significant advancements 

were made in the field of tsunami physical studies, particularly in the areas of modelling 

and reconstructing tsunami source models (Harig et al., 2022; Fujii et al., 2021; Satake, 

2014; Tsushima et al., 2014). This event also catalysed research in disaster risk 
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reduction (DRR), focusing on hazard exposure mapping, evacuation strategies, 

tsunami-resilient land use management, and post-disaster reconstruction efforts 

(Suppasri et al., 2015). Furthermore, the 2004 IOT enhanced international 

collaboration in near-real-time tsunami monitoring by establishing the Indian Ocean 

Tsunami Warning and Mitigation System (IOTMWS), which is managed by the 

Intergovernmental Oceanographic Commission (IOC) (Hettiarachchi, 2018). The 

approach to tsunami monitoring has evolved from relying solely on near-distance 

sources and local observations to incorporating far-field tsunami sources and global 

observations (Imamura et al., 2019; Bernard and Titov, 2015). 

Building upon these advancements, the 2011 Tohoku Tsunami catalysed further 

methodological innovations. Notably, probabilistic tsunami hazard assessment 

(PTHA) has been extensively developed to address uncertainties in hazard 

assessment that cannot be quantified through conventional scenario-based tsunami 

hazard assessment or worst-case scenarios (Davies et al., 2018; Grezio et al., 2017; 

De Risi and Goda, 2017). PTHA systematically considers all potential tsunami 

generation mechanisms and associated uncertainties in tsunami sources and 

parameters, thereby providing comprehensive risk information for long-term planning 

and coastal management in regions susceptible to potential tsunamis (Behrens et al., 

2021). 

While the 2004 Indian Ocean Tsunami (IOT) and the 2011 Tohoku Tsunami have 

significantly advanced the understanding of earthquake-generated tsunamis, the 2018 

Palu tsunami introduced new complexities to tsunami science. Unlike its predecessors, 

the 2018 Palu tsunami was triggered by a more intricate combination of source 

mechanisms involving both an earthquake and a submarine landslide (Behrens et al., 

2021). This combination produced catastrophic results, even though the fault 

mechanism initially suggested that the tsunami would not be highly destructive 

(Lahcene et al., 2021). The extensive damage was subsequently confirmed by 

comparing the Normalized Difference Vegetation Index (NDVI) values before and after 

the tsunami event (Fig. 1.2). NDVI values range from 0 to 1, where 0 indicates 

completely non-vegetated areas and values between 0.5 and 1 represent areas with 

healthy, dense vegetation cover.  



 
 

3 

 

Prior to the tsunami occurrence, NDVI values within the coastal areas of Palu City 

were predominantly in the range of 0.5 to 1, indicating that these areas had partial 

vegetation cover (Fig. 1.2b). Following the tsunami event, NDVI values decreased 

dramatically to predominantly 0-0.5, demonstrating that significant land cover changes 

had occurred as vegetation was destroyed and areas were transformed into water 

bodies (Fig. 1.2c). Additionally, land cover change detection analysis revealed that the 

vegetated sandpit located at the river mouth was completely removed, which 

contributed to the collapse of the bridge (Fig. 1.2d and 1.2e). 

 

 

Fig. 1.2. Palu City before and after the tsunami on September 28, 2018. The normalized difference 

vegetation index (NDVI) shows land cover changes processed from Planet Scope (Planet, 2025). The 

RGB images display physical infrastructure damage, retrieved from the Maxar Open Data Program 

(Maxar, 2025).  
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Following the Palu tsunami, research on landslides as tsunamigenic sources has 

gained wide attention (Cecioni et al., 2023; Heidarzadeh and Mulia, 2023; Somphong 

et al., 2022; Nakata et al., 2020). The 2018 Palu tsunami also improved tsunami 

damage assessment studies by expanding the fragility function database 

(mathematical relationships that estimate damage probability based on hazard 

intensity) for compound tsunamigenic sources–cases where multiple mechanisms 

such as earthquakes and landslides contribute to tsunami generation (Lahcene et al., 

2021; Mas et al., 2020; Imamura et al., 2019). 

Despite advancements in scientific understanding, the 2018 Palu tsunami 

underscored persistent challenges in disaster risk reduction (DRR) within this 

vulnerable region, which experienced significant tsunami events in 1927, 1968, and 

1996 (Ho et al., 2021). These challenges pertain to the accurate prediction of tsunami 

intensity, including its extent and height, as well as the projection of expected 

casualties (Iuchi et al., 2023; Rafliana et al., 2022). Previous research has emphasized 

that the precise modelling of tsunami hazards and the assessment of exposure are 

critically dependent on two fundamental types of input data: elevation models and 

exposure datasets (Raduszynski and Numada, 2023; Tonini et al., 2021; León et al., 

2019; Ehrlich et al., 2018). However, as Behren et al. (2021) noted, these essential 

data are often unavailable, outdated, or inaccurate, particularly in low- and middle-

income countries, where the majority of tsunami events occur (see Fig. 1). 

1.2 Challenges in Tsunami Exposure Assessment 

Given the challenges introduced by these essential input data, the following 

subsections systematically examine these challenges and present the research gaps 

that must be addressed by future studies.  

1.2.1 Limitations in Elevation Models 

In addition to tsunami source scenarios, numerical models, and computational 

capabilities, the precision of tsunami inundation estimates is significantly affected by 

the quality of topographic and bathymetric data (Gibbons et al., 2022; Sugawara, 

2021; Griffin et al., 2015). Ideally, high-resolution topographic data obtained through 

airborne light detection and ranging (LiDAR) can adequately represent terrain features, 

thereby facilitating the creation of detailed inundation maps (McClean et al., 2020). 
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However, the availability of LiDAR topographic data is limited, particularly in middle- 

and lower-income countries (Pronk et al., 2024). Simultaneously, two of the three most 

catastrophic tsunamis over the past two decades have occurred in middle-income 

countries (see Fig. 1.1). As a result, most inundation hazard assessments depend on 

the "best-available" elevation datasets, including global digital elevation models 

(DEMs) (Hawker et al., 2018). 

Unfortunately, global DEMs frequently exhibit inaccuracies, which can lead to incorrect 

flood predictions. For example, the widely used Shuttle Radar Topography Mission 

(SRTM) (Farr et al., 2007) often underestimates flood coverage, leading to an 

underestimation of the population at risk of coastal flooding (Hinkel et al., 2021). This 

discrepancy may be attributed to errors associated with SRTM, such as biases related 

to elevation and vegetation (Yamazaki et al., 2017). 

Recent research has addressed inherent biases in SRTM. These investigations have 

led to the development of improved variants of SRTM, such as NASADEM (NASA JPL, 

2020), CoastalDEM (Kulp and Strauss, 2018), and multi-error-removed improved 

terrain DEM (MERIT) (Yamazaki et al., 2017). The latter was created by integrating 

data from SRTM and ALOS World 3D – 30 m (AW3D30) (Tadono et al., 2016). In 

addition to SRTM, efforts to mitigate errors in the relatively new Copernicus DEM – 30 

m (COP30) (Fahrland et al., 2022), have resulted in two other enhanced variants: the 

forest and building removed DEM (FABDEM) (Hawker et al., 2022), and DiluviumDEM 

(Dusseau et al., 2023). These improved elevation datasets are collectively referred to 

as error-reduced DEMs.  

To the best of our knowledge, the application of error-reduced DEMs has been 

predominantly limited to sea-level rise projections and glacier assessments (Seeger 

et al., 2023; Chen et al., 2022). This limitation underscores the necessity of evaluating 

the performance of these new DEMs in broader coastal flooding contexts, particularly 

concerning tsunami inundation. Moreover, when uncertainties in DEM accuracy are 

compounded with uncertainties in tsunami source data, the resultant effect may 

substantially affect the reliability of the predictions. This critical intersection of 

uncertainties and their impact on exposure estimates remains largely unexplored in 

the current literature, highlighting the urgent need for targeted research in this area. 
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1.2.2 Limitations in Land Cover Roughness Models 

In the absence of high-resolution topographic data, the effects of terrain attributes can 

be represented by integrating "bare-earth" topography, which excludes buildings and 

vegetation elevations, with friction models (Gibbons et al., 2022; Sadashiva et al., 

2022). To investigate detailed tsunami behaviours, prior research has developed 

several friction models, including the structure resolve model (SRM), drag force model 

(DFM), and individual drag force model (iDFM) (Fukui et al., 2022). However, these 

models require relatively high-resolution elevation datasets ranging from 0.5 m to 5 m. 

Consequently, the application of a simple bottom friction model remains advantageous 

owing to its compatibility with moderate-resolution data (10 – 100 m).  

The implementation of the bottom friction model in inundation modelling involves 

selecting Manning’s roughness coefficients (n-values) to represent the effects of 

terrain features such as buildings and vegetation (Bricker et al., 2015). These 

coefficients may be spatially uniform or vary based on land cover maps, also referred 

to as land cover roughness (LCR) models. Previous studies have indicated that high-

resolution LCR models can produce more accurate inundation results (Kaiser et al., 

2011; Gayer et al., 2010).  

However, the extent to which the spatial resolution of LCR models influences 

inundation estimates has not been thoroughly examined. Although Laso Bayas et al. 

(2015) explored the effect of various LCR models derived from multiresolution land 

cover maps on tsunami simulations, the low accuracy of the utilized land cover maps 

ultimately impeded a definitive conclusion. This knowledge gap necessitates further 

investigation using accurate land cover maps to establish reliable relationships 

between the LCR model resolution and inundation prediction accuracy. 

1.2.3 Limitations in Tsunami Hazard Assessment 

In addition to the challenges associated with accurately modelling the extent of 

inundation, the characteristics of exposure data—comprising input data, methodology, 

and spatial and temporal resolution—also significantly impact the assessment of 

inundation exposure (Behrens et al., 2021). Oktari et al. (2025) emphasized that 

information regarding tsunami exposure plays a crucial role in enhancing the 

preparedness of coastal communities.  
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The assessment of tsunami exposure entails the integration of tsunami intensity 

measures, such as flow depth and inundation extent, with critical societal exposure 

variables, including built-up areas, buildings, and population density (Ehrlich et al., 

2018). Consequently, the precision of these societal variables ultimately determines 

the accuracy of exposure information. However, Behrens et al. (2021) observed that 

in numerous developing countries, exposure data are often unavailable or outdated, 

necessitating the use of the "best available" global open data for exposure 

assessments. 

With the advancement of Earth observation systems, numerous global-scale exposure 

datasets, such as land cover maps, built-up layers, and gridded population datasets, 

have become publicly available (Table 1.1). These datasets were developed using 

diverse input data, methodologies, and spatiotemporal resolutions. When datasets 

with low temporal resolutions are integrated with others for long-term disaster 

assessment, they may introduce bias owing to geolocation misalignment across 

datasets and methodological inconsistencies (Sleeter et al., 2017). Bonatz et al. 

(2024) specifically emphasized that methodological inconsistencies, such as the 

definition of built-up areas, resulted in substantial differences in the exposed 

population, with variations of up to 65%. 

Variations in the distribution of populations across built-up areas or buildings result in 

numerous discrepancies in the exposed population (Kuffer et al., 2022). Smith et al. 

(2019) highlighted those existing open datasets face challenges in accurately 

representing concentrations of exposure, as the total exposed population is dispersed 

over extensive areas. Although several studies have been conducted to assess bias 

in global exposure datasets, most have focused on the country level. In contrast, 

Bernhofen et al. (2022) emphasized that national-level bias may not accurately reflect 

behaviour at the local scale. 

Given the identified limitations, it is essential to evaluate global exposure products and 

their inherent biases before utilizing them for local risk assessment, particularly in 

regions with limited data. Furthermore, because elevation models and exposure 

datasets each possess distinct biases, it is critical to comprehend how these biases 

may compound when used in conjunction. However, to our knowledge, research 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib57
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specifically addressing the combined effects of these biases on tsunami exposure 

assessments remains limited. 

Table 1.1. Global exposure datasets 

Dataset Resolution Epoch Input datasets Reference 

Built-up and impervious surfaces 

GHS–BUILT 100 m 1975 - 2030 Landsat; Sentinel-2 Pesaresi et al, 2024 

GUF 12 m 2012 TanDEM; TerraSAR-X Esch et al., 2017 

GAIA 30 m 1985 - 2018 Landsat; Sentinel-1 Gong et al., 2020 

GAUD 30 m 1992 - 2020 Landsat; NTL Zhao et al., 2022 

GISA 30 m 1972 - 2019 Landsat 5, 7, 8 Huang et al., 2021 

WSF-2015 10 m 2015 Landsat-8; Sentinel-1 Marconcini et al., 2020 

WSF-2019 10 m 2019 Sentinel-2; Sentinel-1 Marconcini et al., 2021 

WSF-Evolution 30 m 1985 - 2015 Landsat-5; Landsat-7 Marconcini et al., 2021 

GISD30 30 m 1985 - 2020 Landsat 4, 5, 7, 8 Zhang et al., 2022 

Population distribution 

GHS–POP 100 m 1975 - 2030 Census Pesaresi et al, 2024 

HRSL 30 m 2016 Census Tiecke et al., 2017 

WorldPop 100 m 2000 - 2020 GPWv4; Census Lloyd et al., 2019 

LandScan Global 1 km 2000 - 2022 Census Lebakula et al., 2025 

GlobPop 1 km 1990 - 2020 Products assimilation Liu et al., 2024 

Land cover map 

ESRI Annual 10 m 2017 - 2022 Sentinel-2 Karra et al., 2021 

ESA World cover 10 m 2020 - 2021 Sentinel-2; Sentinel-1 Zanaga et al., 2021 

GLC 10 m 2015 - 2019 Proba-V Buchhorn et al., 2020 

Dynamic World 10 m 2016 - 2024 Sentinel-2 Brown et al., 2022 

GLC-2015 30 m 2014 Multi Global LC fusion Li et al., 2023 

GLC_FCS30D 30 m 1985 - 2022 Landsat 5, 7, 8, 9 Zhang et al., 2024 

Glance 30 m 2001 – 2020 Landsat 5, 7, 8, 9 Friedl et al., 2022 

 

1.3 Area of interest (AOI) 

The Area of Interest (AOI) of this study  is situated in Banda Aceh (BNA), a prominent 

coastal city located at the northern extremity of Sumatra, Indonesia (Fig. 1.3). The 

BNA comprises nine subdistricts (Fig. 1.3b) and is characterized by a low-lying coastal 

plain with an average elevation of less than 10 m above sea level (Meilianda et al., 

2019). The city is positioned along the tectonically active Sunda-Andaman subduction 

zone and was significantly impacted by the 2004 Indian Ocean Tsunami (IOT) (Fig. 

1.3c). The 2004 IOT was induced by a catastrophic earthquake with a moment 

magnitude (Mw) of 9.2 (Yanagisawa et al., 2010; Koshimura et al., 2009). The 

consequent tsunami resulted in approximately 73,000 fatalities within the BNA, 

representing 30% of its total population in 2004 (Syamsidik et al., 2023). 
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Fig. 1.3. Area of interest (AOI). (a) Map of Sumatera (Basemap: ESRI Light Gray). (b) BNA before the 

2004 IOT, yellow lines and circled numbers indicate the subdistricts boundary and ID, respectively 

(Basemap: SPOT 5 05-08-2004). (c) BNA after the 2004 IOT, blue line indicates the inundation limit, 

manually digitized from SPOT-5 image (Basemap: SPOT 5 29-01-2005). (d) Physical zoning, and (e) 

Spatial land use planning map of 2009-2029 (Banda Aceh Municipality, 2018).  

 

In response to the 2004 IOT disaster, BNA City was reconstructed according to a 

master plan that incorporated historical tsunami data through four designated zoning 

schemes (Fig. 1.3d). Zone I was designated as a restricted development area, Zones 

II and III were identified as limited development zones, and zone IV was earmarked 

as a promoted development zone. However, local residents expressed opposition to 

this zoning system because of its restrictions on their living areas (Takabatake, 2022). 

As a result, the local municipality revised the initial zoning plan by transforming Zones 

I, II, and III into ecozones and traditional city center areas, while retaining the concept 

of the newly promoted development zone (Zone-IV) (Banda Aceh Municipality, 

2018).This revision was translated into a spatial land use planning map, as shown in 

Fig. 1.3e.  

Despite these planning efforts, previous research documented substantial urban 

expansion within the coastal zone after the 2004 IOT event. Meilianda et al. (2019) 

found a 30.7% increase in built-up areas by 2017 relative to pre-tsunami baselines, 

while Syamsidik et al. (2023) reported an additional 31% growth in building stock 

between 2017 and 2021. This rapid coastal development raises critical questions 
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about adherence to the prescribed land use planning framework and potential 

exposure to future tsunami hazards. 

 

 
Fig. 1.4. Spatial distribution of seismic events from 1976 to 2018 revealing two distinct seismic gap 

zones along the Sumatran coast denoted by coloured circles. The green circle shows the closest 

seismic gap zone within the area of interest (AOI). Modified from Jihad et al. (2020) 

 

The 2004 IOT also triggered ongoing post-seismic processes, including long-term 

slow-slip events (SSEs) that generated microseismicity and tectonic tremors (Sarkawi 

et al., 2024). The US Geological Survey documented over 6,000 earthquakes with 

magnitudes Mw ≥ 4.5 along the Sunda megathrust during the first decade following 

2004 (USGS, 2017). Although these earthquakes occurred randomly along the Sunda 

subduction zone, Jihad et al. (2020) identified seismic gap zones with reduced activity 

along the Sumatran coast (Fig. 1.4). The decrease in seismic activity reflects an 

ongoing stress accumulation mechanism, implying that the gap zone retains the 

potential to generate large earthquakes. Through the analysis of seismic data (Mw ≥ 

2.0) from 1976 to 2018, which were compiled from both the USGS and the Indonesian 

Meteorology, Climatology, and Geophysics Agency (BMKG), Jihad et al. (2020) 

determined that these gap zones could potentially generate tsunamigenic events up 
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to a magnitude of Mw 8.7. Critically, the seismic gap zone closest to the BNA (indicated 

by the green circle in Fig. 1.4) poses a direct threat to our AOI.  

1.4 Research Formulation 

Considering the substantial urban transformation and persistent seismological 

hazards, it remains essential to evaluate the long-term exposure changes, the 

alignment of urban development with land use planning, and the efficacy of the current 

mitigation system in addressing potential tsunamigenic events within the AOI. 

However, given the existing challenges in exposure assessment owing to the 

availability of essential datasets, several fundamental research questions emerge:  

1. Two decades after the 2004 IOT event, what are the current tsunami exposure 

estimates within the AOI?  

2. In the absence of local exposure datasets, how accurate are exposure 

estimates using global datasets? How do the biases inherent in global datasets 

affect the magnitude and variation of tsunami exposure estimates? 

3. To what extent has the two decades of post-disaster urban development 

adhered to prescribed spatial land use planning? 

4. How adequate are existing mitigation measures against the identified Mw 8.7 

tsunamigenic threat? 

Addressing these questions is essential for developing evidence-based disaster risk 

reduction strategies and informing future urban planning decisions in tsunami-prone 

coastal environments with limited data availability. Therefore, to address these 

research questions and bridge the identified knowledge gaps, this study aims to: 

1. Assess the sensitivity of global error-reduced Digital Elevation Models (DEMs) 

in modelling tsunami inundation due to the absence of accurate elevation 

information. In addition, this study examines the performance of DEMs when 

integrated with multiresolution land cover roughness (LCR) models to 

accurately simulate tsunami inundation. 

2. Quantify the biases inherent in global built-up and gridded population datasets 

when projecting assets and populations vulnerable to tsunami hazards and 

evaluate their accuracy in comparison to our high-resolution exposure models. 
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3. Analyse compounding bias effects on tsunami exposure estimates to 

understand cumulative uncertainties in assessment methodologies. 

4. Evaluate exposure progression by analysing the evolution of exposure over the 

past two decades and project anticipated exposure from prospective 

tsunamigenic scenarios. 

5. Assess the current mitigation adequacy by incorporating compounding bias into 

a probabilistic tsunami hazard assessment to critically evaluate existing 

mitigation systems within the AOI. 

 

1.5 Thesis Structures 

To address the aforementioned research objectives systematically, this study is 

divided into the following chapters. 

─ Chapter I: Introduction. This section describes the research background and 

objectives. 

─ Chapter II: Bias in Global Exposure Datasets. This chapter examines global 

exposure data and their biases in assessing the changes in exposure within our 

AOI two decades after the 2004 IOT. In this section, high-resolution datasets 

for land cover, built-up areas, and gridded populations were created and then 

compared with global datasets. 

─ Chapter III: Sensitivity of Digital Elevation Models and Land Cover Roughness. 

This section offers an in-depth evaluation of global elevation models and their 

effectiveness in reconstructing the 2004 IOT. Additionally, this chapter provided 

an evaluation how the spatial resolution of LCR models impacts their 

performance when integrated with these elevation models 

─ Chapter IV: Compounding Bias and Cross-Uncertainty Exposure Assessment. 

This chapter examines how the compounding bias from elevation models and 

global exposure datasets affects tsunami exposure estimates within our area of 

interest. In this section, a tsunami hazard assessment is conducted to anticipate 

future tsunamigenic events by employing hypothetical tsunami scenarios. The 

results from the probabilistic simulations were combined with bias assessments 

from the DEMs and LCR models to create a cross-uncertainty tsunami hazard 

map. Utilizing this hazard map along with the evaluated exposure datasets, the 

population exposure estimates in BNA were analysed. 
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─ Chapter V: Exposure and Mitigation System. This chapter evaluates the 

effectiveness of tsunami shelters against the number of populations exposed to 

future tsunamigenic events. This chapter also evaluates the effectiveness of 

spatial planning against land cover evolution. 

─ Chapter VI: Discussion. This chapter outlines the conclusions and limitations of 

this study. Additionally, based on these research findings, some suggestions to 

improve tsunami disaster preparedness and risk reduction were offered.  
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CHAPTER II: BIAS IN GLOBAL EXPOSURE DATASETS 

2.1 Evaluated Global Datasets 

To conduct long-term exposure evolution detection after the 2004 Indian Ocean 

Tsunami, only global datasets with temporal coverage from 2004 to 2014 were 

selected. As a result, out of 21 global datasets listed in Table 1.1 (see chapter 1), this 

chapter reviewed 12 global exposure datasets, including eight built-up areas or 

impervious surface layers and four gridded population datasets covering the Banda 

Aceh (BNA) region. A visual comparison of each dataset is displayed in Fig. 2.1. 

Sections 2.2 and 2.3 provided detailed explanations of each dataset. 

 

 

Fig. 2.1. Visual comparison of subset of global datasets covering BNA region for epoch 2004, with BU 

indicating built-up and impervious layers, while POP indicates gridded population datasets. 

 

2.2 Built-up and Impervious Dataset 

The resolution of the evaluated built-up and impervious surface layers ranges from 30 

m to 1 km. Additionally, two land cover maps were included by exclusively analysing 

their built-up classes. A brief description of the datasets used is as follows:  
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a. GHS-BUILT: Global Human Settlement Layer – Built Surface (Fig. 2.1a). The 

GHS-BUILT layer was developed utilizing Symbolic Machine Learning (SML) 

based on a linear regression algorithm (Pesaresi et al., 2024). The input data 

integrated spatial-temporal interpolation of five-year observed collections of 

multisensor, multi-platform satellite images. Specifically, Landsat (MSS, TM, ETM 

sensor) data support the 1975, 1990, 2000, and 2014 epochs, while a Sentinel-2 

(S2) image composite supports the 2018 epoch. Additionally, data from Facebook 

settlement delineation, Microsoft, and Open Street Map (OSM) building 

delineation were incorporated. The GHS-BUILT raster layer provides a built-up 

fraction using the total area count in square meters per each 100x100 grid size. 

This fraction is categorized into three groups: residential built-up surfaces, non-

residential built-up surfaces, and a combination of both. This study utilized the 

combination of categories, acknowledging that human activities are not solely 

concentrated in residential buildings. The accuracy assessment indicated that the 

F1 score of GHS-BUILT reached 0.82 for total validation points. 

b. GISD30: Global 30 m Impervious-Surface Dynamic (Fig. 2.1b). GISD30 was 

developed utilizing Harmonized Landsat imagery spanning from 1984 to 2020, 

specifically from Landsat 4, 5, 7, and 8, and was classified using the random forest 

algorithm (Zhang et al., 2022). The training and validation datasets were sourced 

from other global impervious surface land cover map products. The GISD30 raster 

layer is provided at a temporal resolution from 1985 to 2020, with five-year 

intervals, and is categorized into two classes: built-up and non-built-up. The 

accuracy assessment indicated that the overall accuracy achieved a score of 

90.1%. 

c. GAIA: Global Artificial Impervious Area (Fig. 2.1c). Similar to the GISD30, the 

GAIA raster layer was provided at five-year intervals from 1985 to 2018 (Gong et 

al., 2020). In order to detect impervious surfaces, GAIA excluded all potential 

areas of vegetation, water, and bare land, subsequently generating temporally 

consistent artificial impervious maps through the analysis of Landsat time series 

data. To enhance accuracy, two ancillary datasets—nighttime light (NTL) and 

Sentinel-1 Synthetic Aperture Radar—were incorporated as input data. The 

accuracy assessment indicated that the overall accuracy achieved a score of 90%. 
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d. GAUD: Global Annual Urban Extents Dataset (Fig. 2.1d). GAUD was developed 

utilizing harmonized nighttime light (NTL) time-series composites by integrating 

multi-source NTL observations, thereby providing a comprehensive and consistent 

record of the nightscape (Zhao et al., 2022). Areas emitting light were 

subsequently identified as built-up regions. The raster layer is available at a 1 km 

resolution, encompassing the period from 1992 to 2020. 

e. GLC FCS30D: Global 30 m Land-Cover Dynamics with Fine Classification System 

(Fig. 2.1e). The GLC FCS30D land cover map encompasses the period from 1985 

to 2022 (Zhang et al., 2024). Utilizing Landsat imagery as the input dataset and 

employing local adaptive classification models, it achieved a mean accuracy of 

81.91%. This land cover map comprises ten land classes, of which only the 

impervious surface class was selected for further analysis. 

f. Glance: Global Land Cover Estimation (Fig. 2.1f). The Glance dataset provides a 

global annual land cover map for the period from 2001 to 2020, with a spatial 

resolution of 30 m (Friedl et al., 2022). The land cover classification was conducted 

using a random forest classifier in conjunction with Continuous Change Detection 

and Classification algorithms. The input data comprised Landsat imagery, which 

was categorized into seven land classes, with the "developed/built-up" class being 

utilized for further analysis (Table 2.1). This land cover product achieved an overall 

accuracy of 79%. 

g. GISA: Global Impervious Surface Area version 2.0 (Fig. 2.1g). GISA 2.0 was 

developed through the integration of various built-up area layers, including GISA 

1.0, GAIA, GAUD, and GHS-BUILT (Huang et al., 2022). By employing a random 

forest classifier to assess the concordance of each input dataset, GISA 2.0 

attained an F1-score of 0.93.  

h. WSF: World Settlement Footprints Evolution (Fig. 2.1h). WSF provides information 

on human settlement from 1984 until 2015 at 30 m resolution. Leveraging Landsat 

imagery as the input dataset, WSF employed adaptive thresholding method to 

extract temporal mean values from several spectral indices, including Normalized 

Different Vegetation Index (NDVI), Normalized Different Building Index (NDBI), 

and Modified Normalized Different Water Index (MNDWI). These spectral indices 

were then used as input for image classification using random forest algorithm.  
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Table 2.1 Glance classification scheme  

Land cover class Descriptions 

Water Perennial water bodies encompass rivers, channels, ponds, storage basins, 
and seas. 

Developed 
(Built-up areas) 

Areas with high levels of use; land occupied by structures, including any 
land that is functionally linked to developed or constructed activities 

Barren Landscapes featuring natural formations of soil, sand, or rocks, where 
vegetation covers less than 10% of the surface 

Tree Cover Regions where the tree canopy covers more than 30% of the area. It's 
crucial to recognize that locations where trees have been cleared, like clear-
cuts, are categorized according to their present condition, such as barren, 
sparsely vegetated, or covered with shrubs or grasses. 

Herbaceous The region is mainly dominated by herbaceous plants, with the total 
vegetation surpassing 10%. Trees cover less than 30% of the area, while 
shrubs make up under 10% of the land. 

Shrublands Regions where tree coverage is below 30% of the area, yet the total 
vegetation exceeds 10%, with shrubs making up more than 10% of the 
vegetation. 

Ice/Snow Areas where snow and ice consistently blanket more than half of the terrain 
throughout the year 

 

2.3 Gridded Population Dataset 

The resolution of the gridded population datasets ranges from 100 m to 1 km. A brief 

description of the datasets used is as follows:  

a. GHS-POP: Global Human Settlement Layer – Population (Fig. 2.1i). The GHS-

POP layer was developed by disaggregating the population count into each built-

up pixel cell of the GHS-BUILT layer at a 100 m spatial resolution (Pesaresi et al., 

2024). The population data spanning from 1975 to 2030 were sourced from 

CIESIN for the Gridded Population of the World, version 4.11 (GPWv4.11), the UN 

World Population Prospects 2022, and the UN World Urbanization Prospects 2018. 

These population estimates were subsequently disaggregated within the 

residential built-up surfaces category at the district-level administrative boundaries 

(see Section 2.2). The administrative boundary data were derived from the 

Database of Global Administrative Areas (GADM) level 2 (https://gadm.org/). 

Láng-Ritter et al. (2025) identified that GHS-POP underestimated the total 

population in rural areas by 84% in 2000. However, Leyk et al. (2019) suggested 

that this gridded dataset might be suitable for use in urban areas due to its detailed 

urban settlement data. 
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b. WorldPop: World Population Dataset (Fig. 2.1j). WorldPop population grid 

datasets are generated using a Random Forest–based approach, distributing 

population estimates from GPWv4 into built-up layers at a 100 m spatial resolution, 

covering the period from 2000 to 2020 (Lloyd et al., 2019). The built-up layers are 

compiled and harmonized from multiple sources, including GSH-BUILT, OSM, and 

Global Urban Footprint (Esch et al., 2017). Opdyke and Fatima (2024) asserted 

that this dataset overestimates urban exposure estimates in Australia by 21%. 

c. LSG: LandScan Global (Fig. 2.1k). LSG disaggregated the census data into 1 km 

grid cells for the period from 2000 to 2022 by utilizing a likelihood coefficient 

between the auxiliary data and the population counts (Lebakula et al., 2025). 

Compared with other datasets, LSG is considered to represent the nighttime 

population rather than the residential population. Additionally, this dataset 

demonstrates the distribution of the working and traveling population, particularly 

in urban areas where there is a concern of population overestimation (Liu et al., 

2024). In rural areas, LSG underestimates the population by 68% (Láng-Ritter et 

al., 2025). 

d. GlobPop: Global  Gridded Population Dataset (Fig. 2.1l). GlobPop is a relatively 

new gridded population dataset with a 1 km spatial resolution, developed by 

harmonizing other global datasets, including LSG, GHS-POP, and WorldPop (Liu 

et al., 2024). In comparison to actual population dynamics, GlobPop demonstrates 

superior temporal accuracy relative to the other three datasets. 

 
2.4 Bias Assessment Method 

Two levels of bias assessment were conducted: intrinsic bias and analytical bias. 

Intrinsic bias was considered as the bias originating from the data source, which may 

arise due to limitations in input data, methodology, or validation data. Although the 

intrinsic bias assessment for each global built-up and gridded population layer was 

analyzed prior to public release, most were validated against global-scale data. 

Consequently, re-evaluation of biases in both dataset types against actual local data 

is crucial.  

To evaluate the intrinsic bias, total built-up areas and population estimates from global 

datasets were compared against local datasets. To illustrate the processes involved in 

the intrinsic bias assessment, a flowchart is presented in Fig. 2.2. All the processes 
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were performed using GIS applications. Initially, all global exposure datasets were 

clipped within the area of interest (AOI). Then, total built-up areas and population 

within the AOI extent were derived and compared with the local datasets. The 

calculated biases were expressed in equations 1 and 2, with positive values indicating 

overestimation and negative values representing underestimation: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 𝑖𝑛 𝑏𝑢𝑖𝑙𝑡 − 𝑢𝑝 𝑎𝑟𝑒𝑎𝑠 =
𝐵𝑈𝐺𝑙𝑜𝑏𝑎𝑙,𝑇 − 𝐵𝑈𝐿𝑜𝑐𝑎𝑙,𝑇

𝐵𝑈𝐿𝑜𝑐𝑎𝑙,𝑇
 𝑥 100%                                                (1) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑃𝑂𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑇 − 𝑃𝑂𝑃𝐿𝑜𝑐𝑎𝑙,𝑇

𝑃𝑂𝑃𝐿𝑜𝑐𝑎𝑙,𝑇
 𝑥 100%                                                      (2) 

 

where BUGlobal,T and BULocal,T represent the total built-up areas within the AOI extent 

derived from global and local built-up datasets, respectively, for the year T (where T = 

2004 or 2014). Similarly, POPGlobal,T and POPLocal,T denote the total population within 

the same extent derived from global and local gridded population datasets, 

respectively, for the year T.  

 

Fig. 2.2. Flowchart to perform the intrinsic bias assessment 

 

To assess built-up areas and populations exposed to tsunami inundation, the global 

exposure datasets were overlaid with tsunami inundation extents. Total built-up areas 

and populations within the inundation extent were then referred to as exposure 

estimates. Biases introduced by this exposure estimates were referred to as analytical 
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bias. To identify the analytical bias, exposure estimates derived from global exposure 

datasets were compared against the local datasets, where the 2004 IOT inundation 

limit served as the inundation extent reference.  

The analytical bias assessment consisted of two analyses. The first analysis focused 

on biases in exposure estimates during the 2004 IOT event. This analysis exclusively 

compared the 2004 temporal exposure datasets between global and local datasets 

(equations 3 and 4). The second analysis focused on biases in exposure estimate 

evolution over the 2004-2014 period. In this analysis, additional exposure estimates 

for the 2014 temporal period were evaluated and compared with the 2004 temporal 

estimates to assess how biases changed during the 10-year interval (equations 5 and 

6). Subsequently, the rates of exposure evolution from global datasets were compared 

with those derived from local datasets. To summarize all processes involved in the 

analytical bias assessment, a flowchart illustration is presented in Fig. 2.3. All 

processes can be expressed mathematically using the following equations: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 𝑖𝑛 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑏𝑢𝑖𝑙𝑡 − 𝑢𝑝 𝑎𝑟𝑒𝑎𝑠 =
𝐸𝐵𝑈𝐺𝑙𝑜𝑏𝑎𝑙,2004 − 𝐸𝐵𝑈𝐿𝑜𝑐𝑎𝑙,2004

𝐸𝐵𝑈𝐿𝑜𝑐𝑎𝑙,2004
 𝑥 100%              (3) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 𝑖𝑛 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝐸𝑃𝑂𝑃𝐺𝑙𝑜𝑏𝑎𝑙,2004 − 𝐸𝑃𝑂𝑃𝐿𝑜𝑐𝑎𝑙,2004

𝐸𝑃𝑂𝑃𝐿𝑜𝑐𝑎𝑙,2004
 𝑥 100%                    (4) 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑓𝑜𝑟 𝑏𝑢𝑖𝑙𝑡 − 𝑢𝑝 𝑎𝑟𝑒𝑎𝑠 =
𝐸𝐵𝑈(𝐵𝑈 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠,2014−2004)

𝐸𝐵𝑈(𝐵𝑈 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠,2004)
 𝑥 100%        (5) 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛  𝑓𝑜𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 =
𝐸𝑃𝑂𝑃(𝑃𝑂𝑃 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠,2014−2004)

𝐸𝑃𝑂𝑃(𝑃𝑂𝑃 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠,2004)
 𝑥 100%            (6) 

 

where EBUGlobal,2004 and EBULocal,2004 represent the total built-up areas within the 2004 

IOT inundation extent derived from the global and local built-up datasets, respectively, 

for the year 2004. Similarly, EPOPGlobal,2004 and EPOPLocal,2004 denote the total 

population within the same extent derived from the global and local gridded population 

datasets, respectively, for the year 2004. EBU(BU datasets,2014-2004) and EPOP(POP 

datasets,2014-2004) represent the evolution of built-up areas and population within the 2004 

IOT inundation extent over the 2004-2014 period, where BU datasets and POP 

datasets can be either global or local sources. Meanwhile, BU datasets, 2004 and 
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POP datasets, 2004 are built-up and population datasets derived from either global or 

local sources, but exclusively for the year 2004. 

 

Fig. 2.3. Flowchart to perform the analytical bias assessment 

 

2.5 Generating Local Exposure Datasets 

Similar to the global exposure datasets, the local exposure datasets consisted of built-

up area and gridded population layers. This study developed the exposure layers at 

5-meter resolution, covering three temporal periods: 2004, 2014, and 2024. The 2004 

and 2014 datasets were used to evaluate the global exposure datasets and assess 

exposure evolution following the 2004 Indian Ocean Tsunami (IOT). Meanwhile, the 

2024 datasets were subsequently used to assess exposure estimates for future 

hypothetical tsunamigenic events.  
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2.5.1 Local Built-Up Area Datasets  

To generate the local built-up area datasets, the land cover classification was 

performed using satellite imagery as input through Object-Based Image Analysis with 

a supervised Random Forest algorithm (OBIA-RF) (Kotaridis & Lazaridou, 2020; Phiri 

et al., 2018). Satellite images are optical images which consist of multiple spectral 

bands (e.g., visible bands: red, green, blue; near-infrared; shortwave infrared) that 

capture electromagnetic radiation across different wavelengths, providing both 

radiometric information (reflectance values across these various spectral bands) and 

textural information (spatial patterns and relationships between neighbouring pixels) 

(Shim, 2014).  

OBIA-RF utilizes both radiometric and textural information extracted from the satellite 

images, where OBIA first segments the image into homogeneous objects based on 

pixel similarity and then RF classifies these objects into different land cover categories 

using the combined spectral-textural features (Hermosilla et al., 2022; Sideris et al., 

2020). With adequate prior knowledge, such as labelled ground truth points, OBIA-RF 

is regarded as a reliable method for land cover mapping (Geiβ et al., 2017). It is 

important to note that a satellite image is released publicly at several different 

radiometric levels (Young et al., 2017):  

─ Digital Number (DN). This level represents the raw, uncalibrated electromagnetic 

signal detected by the satellite sensor. As illustrated in Fig. 2.4, solar radiation 

from the sun travels through space, reflects off the Earth's surface, and reaches 

the satellite sensor. The sensor records these incoming photons as discrete 

integer values for each pixel area. These integer values are also referred to as 

the raw "counts" or DN values. DN values are unitless and sensor-specific, 

representing the fundamental radiometric data before any calibration or 

atmospheric processing is applied.  

─ Top-of-Atmosphere (ToA) radiance. At this level, solar radiation has travelled 

from the sun to the Earth's surface and back to the satellite, but the values are 

now calibrated to represent physically meaningful radiance units 

(W·m⁻²·sr⁻¹·nm⁻¹). As illustrated in the diagram (Fig. 2.4), the measurement 

conceptually occurs at the top of the atmospheric boundary (blue hatched). The 

"At-sensor Radiance" represents the total electromagnetic energy detected by 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib29
https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib20
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the satellite sensor, which includes both the target radiance reflected from the 

surface (solid arrows from the surface object) and path radiance contributed by 

atmospheric scattering events (dotted arrows from the red scattering point). In 

simpler terms, radiance (Lλ) measures the amount of electromagnetic energy 

flowing through a unit area (pixel size, m²), into a unit solid angle of the sensor's 

view (sr), per unit wavelength (nm), and can be expressed as: 

 

𝐿𝜆 =  
𝐷𝑁

𝐺𝑎𝑖𝑛
+ 𝐵𝑖𝑎𝑠                                                                                                                                    (7) 

 

where Gain and Bias are calibrating coefficients and are provided in the ancillary 

XML metadata files that accompany satellite image downloads from operational 

data sources. 

─ Top-of-Atmosphere (ToA) reflectance. This level converts the ToA radiance into 

reflectance values by normalizing for solar illumination conditions. As shown in 

the diagram (Fig. 2.4), this accounts for the incoming solar radiation (yellow sun) 

and geometric factors such as solar zenith angle. ToA reflectance removes the 

influence of varying solar irradiance and illumination geometry, making it possible 

to compare measurements across different times and locations. ToA reflectance 

(ρ) is dimensionless (typically expressed as a fraction between 0 and 1 or as a 

percentage) and represents the proportion of incident solar radiation that is 

reflected back to the sensor, expressed as: 

 

𝜌𝜆
𝑇𝑜𝐴 =  

𝜋𝐿𝜆

𝐶𝑜𝑠(𝜃𝑠)𝐸𝑠𝜆
                                                                                                                            (8) 

 

where π equals to 3.14, cos(θs) is the cosine of the solar zenith angle, and Esλ 

is solar irradiance. Both solar zenith angle and irradiance values are provided in 

the ancillary XML metadata files that accompany satellite image downloads from 

operational data sources.  Although satellite images at TOA level still contain 

atmospheric effects, they can be used in remote sensing for environmental 

monitoring using spectral indices such as Normalized Difference Vegetation 

Index (NDVI), Normalized Difference Water Index (NDWI), etc (Roy et al., 2016).  
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Fig. 2.4. Diagram illustrates the radiative transfer processes and radiometric measurement levels in 

satellite remote sensing. Modified from Fernández-Pacheco et al. (2018) 

 

─ Bottom-of-Atmosphere (BoA) reflectance. This represents the final, 

atmospherically corrected surface reflectance values. As illustrated in the 

diagram (Fig. 2.4), the atmospheric correction process removes the effects of 

atmospheric absorption (where solar radiation is absorbed within the 

atmosphere) and scattering (represented by the red scattering point and 

associated dotted path radiance arrows) that occur as solar radiation travels 

through the atmosphere. The BoA reflectance can be conceptually expressed as: 

 

𝜌𝜆
𝐵𝑜𝐴 =  

𝜌𝜆
𝑇𝑜𝐴 − 𝜌𝜆

𝑎𝑡𝑚

𝑇𝜆
𝑑𝑜𝑤𝑛 + 𝑇𝜆

𝑢𝑝                                                                                                                            (9) 

 

where 𝜌𝜆
𝑎𝑡𝑚  is atmospheric path reflectance (scattering by air molecules and 

aerosols), while 𝑇𝜆
𝑑𝑜𝑤𝑛  and 𝑇𝜆

𝑢𝑝
  are the total fraction of sunlight reaches the 

surface after passing through the atmosphere and then successfully travels back 

up to the satellite, respectively. These calibration coefficients are provided in the 

ancillary XML metadata files that accompany satellite image downloads from 
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operational data sources. It should be noted that the conversion from ToA to BoA 

reflectance is complex and typically requires sophisticated atmospheric 

correction algorithms such as the 6S algorithm, which account for various 

atmospheric parameters including aerosol optical depth, water vapor content, 

and atmospheric gases (Yang et al., 2021). BoA reflectance is essential for 

accurate land cover classification and mapping applications, as it represents the 

true spectral characteristics of Earth's surface objects without the confounding 

effects of atmospheric variability (Tu et al., 2022).  

 

2.5.1.a Input Satellite Images 

The inputs for the land cover classification were multiresolution satellite images 

covering the period of 2004-2024. All images were cloud-free and derived from two 

sensors: SPOT 5 for the 2004-2014 period and PlanetScope (PS) for the 2024 period. 

The SPOT 5 images consist of four spectral bands at 10 m resolution and one 

panchromatic band at 5 m resolution (Table 2.2). These images were obtained from 

the SPOT World Heritage (SWH) program and were provided in Level 0 image file 

format, which are radiometrically corrected to top-of-atmosphere (ToA) radiance level 

but geometrically uncorrected in planar earth coordinates (Nosavan et al., 2020; 

Frazier & Hemingway, 2021). Therefore, additional pre-processing steps were 

required to prepare these images for analysis, including geometric correction, and 

radiometric calibration to obtain surface reflectance values suitable for land cover 

classification.  

To correct the geometric distortions in the SPOT 5 images, orthorectification was 

performed using the SPOT SWH Carto-services (https://swh-2a-carto.fr/), provided by 

the French national space agency or Centre National D'études Spatiales (CNES). The 

orthorectification process corrects geometric distortions in satellite imagery by 

removing perspective effects and transforming the image to an accurate overhead 

view with proper map coordinates (Shean et al., 2016). It should be noted that the 

orthorectification was performed to both multispectral bands and panchromatic band 

(PAN) (see Table 2.2). At this stage, the SPOT 5 images has transformed into level 

1─geometrically orthorectified at ToA radiance radiometric level (Crawford et al., 2023). 

 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib50
https://swh-2a-carto.fr/
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Table 2.2. Input datasets for image analysis 

Period Scene ID Acquisition Sensor Resolution 

2004 
 

004-S5-255-339 
005-S5-255-339 
 

05/08/2004 
 
 

SPOT 5 
Spectral radiometric wavelength (in μm): 
 

Near infrared (NIR): 0.78-0.89 
Red: 0.63-0.69 
Green: 0.52-0.60 
Short wave infrared (SWIR): 1.55-1.75 
Panchromatic (PAN): 0.48-0.71 

 
Spatial: 
 
NIR: 10 m 
Red: 10 m 
Green: 10 m 
SWIR: 10 m 
PAN: 10 m 

2005 
 

004-S5-255-339 
006-S5-255-339 
 

29/01/2005 
 
 

2014 
 

004-S5-255-339 
005-S5-255-339 

18/05/2014 
 

2024 
 

20240629_0326
04_67_24af_3B 

29/06/2024 Planet Super Dove 
Spectral radiometric wavelength (in μm): 
 

NIR: 0.84 – 0.88 
Red: 0.65 – 0.680 
Green: 0.55 – 0.58 
Blue: 0.46-0.52 

 
Spatial: 
 
NIR: 3 m 
Red: 3 m 
Green: 3 m 
Blue: 3 m 

 

To obtain images at surface reflectance level, the atmospheric correction was 

performed using the 6s algorithm. This process was executed using the Python 

extension of Orfeo Toolbox (pyOTB) (Grizonnet et al., 2017). PyOTB sequentially 

converted the radiometric values from ToA radiance to ToA reflectance,  then to BoA 

(surface) reflectance. Fig. 2.5 presents the transformation of SPOT 5 images from 

sensor measurements (ToA radiance) to physically meaningful surface reflectance 

values. The analysis was performed using a random sample of approximately 1,000 

pixels per spectral band, with boxplots illustrating the distribution of digital values 

across the green (0.50-0.59 μm), red (0.61-0.68 μm), NIR (0.78-0.89 μm), and SWIR 

(1.58-1.75 μm) spectral ranges. Instead of the 0-1 range, the surface reflectance 

values were scaled by 1,000 to reduce quantization error. At this stage, the SPOT 5 

images has transformed into level 2.  

Fig. 2.6 summarizes the product from each pre-processing steps for the SPOT 5 

images. As shown in the illustration, there is a progressive brightening from ToA 

radiance to ToA reflectance and then to surface reflectance. The radiance image 

appears darkest as it represents the raw digital numbers converted to physical units 

of energy measured at the sensor (Fig. 2.6a). The TOA reflectance image shows 

increased brightness after normalization for solar illumination conditions and Earth-

Sun distance, eliminating variations due to seasonal and daily solar geometry (Fig. 

2.6c).  

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib26
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Fig. 2.5. Comparison band-to-band radiometric properties of SPOT 5 image at: (a) ToA radiance, and 

(b) BoA (surface) reflectance. 

  

 

Fig. 2.6. A visual comparison of the 2004 SPOT 5 image at different radiometric levels. 
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The surface reflectance image appears brightest following atmospheric correction, 

which removes the effects of atmospheric scattering and absorption that attenuate the 

signal during its passage through the atmosphere (Fig. 2.6d). The pansharpening 

process resulted the surface reflectance to be more sharped. In addition, the 

pansharpening process enhanced the spatial detail of the surface reflectance image 

by incorporating the higher resolution information from a panchromatic band (Fig. 

2.6b), resulting in improved edge definition and feature clarity while preserving the 

spectral characteristics of the multispectral data. 

Meanwhile, PS images consist of visible bands (i.e., red, green, and blue) and NIR 

band (Planet, 2023). Each band has spatial resolution at 3 m and was obtained from 

Planet Explorer (www.planet.com/explorer). The PS data products are delivered as 

orthorectified surface reflectance (level 2), having undergone both geometric 

correction (orthorectification) and atmospheric correction to remove scattering and 

absorption effects, with reflectance values are scaled by 10,000. To match the spatial 

resolution of the SPOT 5 images, the PS datasets were resampled at 5 m resolution.  

2.5.1.b Harmonization of  Multisensor Input Images  

Fig. 2.7 presents the false colour band composites of the analysis-ready input images, 

which were used for land cover classification (Fig. 2.7a, 2.7c, and 2.7d) and 

identification of the 2004 IOT inundation limit (Fig. 2.7a and 2.7b). The false colour 

composites use NIR, red, and green bands instead of the standard red-green-blue 

combination (natural colour). This could enhance the contrast between vegetation, 

water, and built-up areas, facilitating a better visual comparison between pre- and 

post-tsunami conditions within the AOI.  

However, as described in Table 2.2, the spectral wavelengths between the SPOT-5 

and PS datasets differ significantly. Moreover, while both sensors provide 4-band 

multispectral imagery, the SPOT-5 sensor does not include a blue spectral band. 

Conversely, PS does not provide an SWIR spectral band. This disparity can affect 

downstream products such as land cover maps, leading to inconsistency and 

introducing bias in land cover change analysis (Leach et al., 2019). Besides the 

radiometric differences, satellite images derived from different sensors potentially 

have slight spatial misalignment at the pixel level. Indeed, spatial misalignment can 

also occur within the same sensor, especially for images acquired at different periods 

http://www.planet.com/explorer
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(Behling et al., 2014). It should be noted that spatial misalignment even at the sub-

pixel level can affect the reliability of change detection maps (Sundaresan et al., 2007).  

 

 

Fig. 2.7. Input images at 5 m resolution for the land cover classification and the 2004 IOT inundation 
limit detection. 

 

Therefore, spatial and spectral harmonization of the input images prior to land cover 

classification is essential. The harmonization was performed in two sequential steps. 

First, spatial misalignment between the multisensor images was detected and 

minimized through image-to-image co-registration. Second, radiometric 

inconsistencies in the spatially aligned images were assessed and corrected through 

radiometric normalization.  

The image-to-image co-registration was performed using AROSICS, a Python-based, 

open-source tool designed for the automatic detection and correction of spatial 

misalignments between cross-sensor images at sub-pixel level (Scheffler et al., 2017). 
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It could work effectively regardless of the images' resolution, spectral band 

characteristics, cloud cover coverage, and temporal land cover dynamics.  

AROSICS estimates misalignment by generating a grid of tie points (TPs) across the 

image overlap, spaced at a user-defined interval (e.g., 100 pixels). For each tie point 

(TP), X/Y offsets at a given geographical position (also known as X/Y displacement) 

between target and reference images are calculated within a local window of 256×256. 

The method uses phase correlation in the frequency domain to first determine integer 

pixel shifts. These integer shifts are then refined to achieve sub-pixel accuracy. 

Following displacement calculation, each shift must pass through sequential validation 

tests: 

1. Reliability Check. This ensures the detected shift is statistically significant and 

not caused by noise or ambiguous patterns (Rogass et al., 2013). AROSICS 

measures the sharpness of the peak in the cross-power spectrum (Fourier 

domain) and calculates a reliability percentage. Tie points (TPs) with reliability 

values below 30% are rejected, as they likely represent false matches (e.g., in 

cloudy or homogeneous areas).  

2. Structural Similarity Index (SSIM) Test. This verifies whether the estimated shift 

actually improves local image alignment. AROSICS compares the structural 

similarity between the reference and shifted target patch using the Mean SSIM 

(MSSIM) metric (Zhou Wang et al., 2004). TPs are discarded if the MSSIM 

decreases after applying the shift, indicating poor correction.  

3. RANdom SAmple Consensus (RANSAC) detection (Fischler & Bolles, 1981). 

This removes globally inconsistent TPs that deviate from the expected 

geometric transformation. AROSICS fits an affine transformation model to all 

candidate shifts and iteratively flags outliers (e.g., shifts caused by clouds or 

terrain distortions). The algorithm automatically adjusts the outlier threshold to 

exclude approximately 10% of TPs, ensuring robust results. 

Validated TPs and their final X/Y displacement vectors are then used to warp the target 

image via affine transformation. Approximately 1,000 TPs were utilized to calculate 

and correct the spatial misalignment between PS (reference) and SPOT 5 scenes 

(target images). Fig. 2.8 shows TPs distribution and their X/Y calculated shift 

displacement for the 2004 SPOT 5 image. Before co-registration, AROSICS detected 
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the maximum geolocation offset of 55 m relative to the PS image. The spatial 

misalignment was reduced to a maximum of 5 m after the co-registration was applied. 

Overall, the geolocation offsets in the multitemporal all input images ranged from a 

minimum of 10 m (observed in SPOT 5 2014) to a maximum of 55 m (observed in 

SPOT 5 2004) (Table 2.3). The co-registration process effectively reduced the 

geolocation misalignment by 85.6%–92.2%. 

 

 
Fig. 2.8. TP distribution used to calculate spatial offset between the 2004 SPOT 5 and 2024 PS images. 

The colour bars indicate X/Y offsets in meters for each TP: (a) before and (b) after co-registration. 

 

Table 2.3. Spatial misalignment of input images, relative to the 2024 PS image 

Target image 
Spatial geolocation offset (detected maximum X/Y displacement) 

Before co-registration After co-registration 

SPOT 5 2004 55 m 5.0 m 

SPOT 5 2005 25 m 2.7 m 

SPOT 5 2014 10 m 2.5 m 

 

Next, to address the radiometric inconsistency across input co-registered images, the 

radiometric normalization was applied using the Iterative Reweighted Multivariate 

Alteration Detection transformation algorithm (IR-MAD) (Leach et al., 2019). IR-MAD 

yields optimal results when the acquisition gap between the reference and target 

images is minimal, such as a few months. However, given that the SPOT 5 sensor 

ceased operations in 2015 while the PS constellation began producing imagery in 

2016, it would be difficult to use either sensor as the radiometric reference for the other. 



 
32 

 

Therefore, as an alternative, the Landsat products were selected as the radiometric 

reference (Crawford et al., 2023). Landsat produces a long record and consistent time-

series dataset which have been widely used in many studies for normalizing 

radiometric differences in multitemporal and inter-sensor datasets (Ju et al., 2025; Tu 

et al., 2022; Houborg & McCabe, 2018). The Landsat satellite has been operating 

since 1972 (Landsat 1) and most recently launched Landsat 9 in 2021. The U.S. 

Geological Survey (USGS) initiated collection-based processing of the entire image 

archive, which was processed as collection 1 in 2016. By 2020, the USGS 

reprocessed images in collection 1 archive and included additional new images to 

create the collection 2.   

For this study, the Landsat Collection 2 Level 2 was employed as the radiometric 

reference, with selected scenes having narrow temporal gaps with the input datasets 

(SPOT 5 and PS images), as detailed in Table 2.4. It should be noted that neither 

SPOT 5 nor PS images were spatially co-registered to Landsat products. This is 

because the SPOT 5 images have already been co-registered to the PS images, while 

the spatial misalignment between PS and Landsat products was approximately 6 m, 

which was considered sufficient for change detection analysis (Wegmueller et al., 

2021; Leach et al., 2019).  

 

Table 2.4. Landsat scenes used as references for radiometric normalization  

Target images Reference images 

Sensor Acquisition Sensor Acquisition 

SPOT 5 

 

 

5 August 2004 Landsat 5 TM 

Scene ID: LT51310562004356BKT00 

 

21 December 2004 

SPOT 5 

 

 

29 January 

2005 

Landsat 5 TM 

Scene ID: LT51310562004356BKT00 

 

21 December 2004 

SPOT 5 

 

 

18 May 2014 Landsat 8 OLI 

Scene ID: LC81310562014047LGN01 

 

16 February 2014 

PS 

 

29 June 2024 Landsat 9 OLI-2 

Scene ID: LC09_L2SP_131056_20240611_02 

27 June 2024 

 

The normalized different vegetation index (NDVI) values before and after radiometric 

normalization were used as indicator for identifying improvements in radiometric 

consistency. The NDVI is a widely used vegetation index that measures the density 
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and health of vegetation by calculating the ratio between spectral bands of NIR (ρNIR) 

and red (ρRED) (equation 10) (Houborg & McCabe, 2016). Its values range from -1 to 

+1, where values closer to +1 indicate dense, healthy vegetation, values near 0 

represent bare soil or non-vegetated surfaces, and negative values typically indicate 

water bodies or clouds. NDVI is particularly useful for radiometric normalization 

assessment because vegetation areas should maintain consistent index values across 

different sensors and acquisition dates when radiometric differences are properly 

corrected (Leach et al., 2019).  

The NDVI values were exclusively extracted at invariant pixels between the reference 

and target images. IR-MAD transformation identifies invariant pixels, applying a no-

change probability threshold of 95% for invariant pixel selection. These invariant pixels 

are subsequently utilized in a regression model to adjust the radiometry of the target 

image to align with the reference image. As an example, Fig. 2.9 shows the detected 

invariant pixels between the SPOT 5 images before and after the 2004 IOT event and 

the 2004 Landsat 5 TM at 30 m resolution (radiometric reference). Number of invariant 

(unchanged) pixels detected (N) was 213 for the 2004 SPOT 5 (Fig. 2.9a). Due to land 

cover change caused by the tsunami occurrence, this number reduced to 133 for the 

2005 SPOT 5 (Fig. 2.9b). This indicates that invariant pixel detection was precise since 

the majority of unchanged pixels (i.e., yellow coloured markers) were located in areas 

not affected by the tsunami event.  

The inconsistency in NDVI values between the reference and target images was 

measured using root mean squared error (RMSE) (equation 11). Fig. 2.10 shows the 

NDVI value distribution before and after radiometric normalization was applied 

(derived from invariant pixels in Fig. 2.9). Before normalization, differences in NDVI 

values were observed with an RMSE of 0.26 for the 2004 SPOT 5 (Fig. 2.10a) and 

0.33 for the 2005 SPOT 5 (Fig. 2.10c). After normalization, the discrepancy in NDVI 

values reduced, with an RMSE of 0.02 for both datasets (Fig. 2.10b and 2.10d). Overall, 

for all input datasets, the radiometric normalization improved radiometric consistency 

by 87.5%–92.3%, as detailed in Table 2.5. 
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Fig. 2.9. Distribution of detected invariant pixels (yellow markers) between the reference image (2004 

Landsat 5 TM) and SPOT 5 images at: (a) four months before and (b) one month after the 2004 IOT.  

 

 

Fig. 2.10. Comparison of NDVI values before and after radiometric normalization, derived from invariant 

pixels in Fig. 2.9 

 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷
                                                                                                                                       (10) 
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𝑅𝑀𝑆𝐸𝑁𝐷𝑉𝐼 =  √
1

𝑁
∑(𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑚𝑎𝑔𝑒 𝑁𝐷𝑉𝐼

𝑖
− 𝑇𝑎𝑟𝑔𝑒𝑡 𝑖𝑚𝑎𝑔𝑒 𝑁𝐷𝑉𝐼

𝑖
)2

𝑁

𝑖=1

                                (11) 

 

Table 2.5. Comparison of NDVI values between input and reference images (in RMSE) 

Input datasets Total invariant pixels (N) Before normalization After normalization 

SPOT 5 2004 236 0.26 0.02 

SPOT 5 2005 133 0.33 0.02 

SPOT 5 2014 200 0.32 0.04 

PS 2024 220 0.28 0.01 

 

2.5.1.c The 2004 IOT Inundation Limit 

A combination of manual digitization and semi-automated technique were performed 

to identify the inundation extent of the 2004 IOT event. The semi-automated approach 

involved comparing the normalized difference water index (NDWI) layers from images 

taken before (the 2004 SPOT 4; Fig. 2.11a) and after the tsunami (the 2005 SPOT 4; 

see Fig. 2.11b). The NDWI is a water detection index that measures the presence and 

extent of surface water by calculating the ratio between bands of green (ρGREEN) and 

NIR (ρNIR) (equation 12) and is widely used to define the flood extent (Hese & Heyer, 

2016).  

 

𝑁𝐷𝑊𝐼 =  
𝜌𝐺𝑅𝐸𝐸𝑁−𝜌𝑁𝐼𝑅

𝜌𝐺𝑅𝐸𝐸𝑁+𝜌𝑁𝐼𝑅
                                                                                                                                 (12) 

Theoretically, NDWI values ranges from −1 to +1 based on the spectral characteristics 

of land surface features. Since water has strong absorption properties in the NIR 

spectrum, it produces high NDWI values (Koshimura et al., 2020). The tsunami 

inundation extraction analysis is based on the principle that NDWI values will be higher 

in flooded areas due to water presence and will show a sharp decline in dry areas at 

the inundation boundary. This fundamental concept forms the basis for establishing 

NDWI threshold values to delineate tsunami-affected zone (Samela et al., 2022).  

The trial-and-error thresholding method was applied and an NDWI threshold of +0.15 

was obtained to distinguish wet areas. Subsequently, a post-classification step was 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib35
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performed on the post-tsunami NDWI layer (Fig. 2.11b) through manual digitization of 

regions that were either missed or incorrectly classified by the semi-automated method. 

This integrated approach helps reduce bias in determining the tsunami extent, with the 

obtained boundary for the 2004 IOT event shown in Fig. 2.11c. 

 

 
 

Fig. 2.11. NDWI layers before and after 2004 IOT event, with the red colour indicating water/wet areas. 

The orange line shows inundation limit, derived from manually digitization of post-tsunami NDWI layer. 

 

2.5.1.d Land cover classification 

The OBIA-RF for land cover classification process was executed using pyOTB, which 

involved image segmentation, zonal statistics, model training, and image classification. 

Considering variation in four-bands composition between SPOT 5 and PS sensors 

(see Table 2.2), only three of similar spectral bands were used (i.e., NIR, red, and 

green). The accuracy of land cover classification is determined by number of bands 

from input images (Zeferino et al., 2020; Gašparović et al., 2018). Given this, four 

additional bands from spectral indices were included as environmental features.  

These spectral indices included vegetation (NDVI) and water (NDWI) indices which 

has been explained in sections 2.5.1.b and 2.5.1.c. The other two spectral indices 

were the second modified soil adjusted vegetation index (MSAVI2) and the visible-red 

near-infrared built-up index (VrNIRBI). The MSAVI2 was included to better distinguish 

vegetation from soil backgrounds, particularly in areas with sparse vegetation cover, 

as it reduces soil brightness influences that can affect NDVI measurements (equation 

13) (Gholizadeh et al., 2018). Meanwhile, the VrNIRBI was incorporated to enhance 

the identification of built-up areas and impervious surfaces (equation 14) (Montero et 

al., 2023).  
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𝑀𝑆𝐴𝑉𝐼2 =  
2 ∗ 𝜌𝑁𝐼𝑅 + 1 − √ (2 ∗ 𝜌𝑁𝐼𝑅 + 1)2 − 8(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷)

2
                                                     (13) 

𝑉𝑟𝑁𝐼𝑅𝐵𝐼 =  
𝜌𝑅𝐸𝐷−𝜌𝑁𝐼𝑅

𝜌𝑅𝐸𝐷+𝜌𝑁𝐼𝑅
                                                                                                                                (14) 

 

Fig. 2.12 presents the pipeline process for the land cover classification. First, the three 

spectral and four environmental indices bands were stacked to form a seven-band 

input image. It should be noted that the scale of radiometric value between spectral 

and environmental indices bands were different. Given this, all radiometric values were 

rescaled to 0 and 1. Next, the image segmentation was performed, resulting in polygon 

features with unique identifiers. Each polygon was characterized by its radiometric 

properties through zonal statistics, which calculated the mean and standard deviation 

values for all seven bands within each segment.  

The ground truth labels were then spatially joined with the segmented polygons based 

on their location, creating labelled polygon sample datasets with radiometric properties 

for each land cover class. To address the uneven sample distribution across land cover 

classes (Ma et al., 2017), a proportional class-weighted sampling approach was 

implemented by selecting 70% of labelled polygons as training datasets. The 

remaining 30% served as validation sets to assess classification accuracy.  

Following Teluguntla et al. (2018), the ground truth labels were obtained by manually 

annotating very high-resolution historical basemap imagery from Google Earth Pro 

using photointerpretation techniques. The basemap imagery was selected to closely 

match the acquisition dates of the input satellite images. The ground truth labels 

consisted of approximately 3,000 randomly distributed points for each temporal period, 

divided into five land cover classes: water, bare land, low-vegetation, high-vegetation, 

and built-up areas (Fig. 2.13). To ensure accurate label assignment, the annotated 

points were validated using the classification scheme outlined in Table 2.6. 
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Fig. 2.12. The pipeline process for land cover classification using OBIA-RF method. 

 

 
Fig. 2.13. Distribution of ground truth labelled points (10% subset) for three temporal periods. 
Background: Google Earth Pro very high resolution imagery.  
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Table 2.6. Classification scheme  

Class Description (Montero et al., 2023) Examples 

Water • Water is present in image 

• Include intertidal zone 

• Contain no vegetation 

• NDWI value: more than 0  

Shallow coastal areas, river, ponds 

Bare • Contain no vegetation and water 

• Does not include intertidal zone 

• Does not include unpaved roads 

• MSAVI2 value: -1 to 0.2 

Beach, soil, sand, and reclaimed 
land 

Low-vegetation • Homogeneous green covered area 

• Human planted crops 

• Less dark than surrounding vegetation  

• less dense canopy vegetation 

• Small trees in a city park, pedestrian or 
highway median.  

• NDVI value: 0.2 to 0.7  

Grass, paddy field, corn, and shrub 

High-vegetation • Dense canopy vegetation 

• Darker than surrounding vegetation 

• High trees in a city park 

• Included  flooded vegetation  

• NDVI value: more than 0.7  

Mangrove and forest 

Built-Up (BU) • All man-made structures 

• VrNIRBI value: more than 0 

Road, building, impervious surface 

 

The land cover model was then trained using the prepared training dataset based on 

RF classifier, where each polygon's radiometric features (mean and standard deviation 

values from seven bands) served as input variables and the corresponding land cover 

labels as target variables. The performance of land cover classification using RF 

classifier is highly dependent on its hyperparameters. It should be noted that RF is a 

nonparametric ensemble learning algorithm (Breiman, 2001).  

The RF model's architecture is depicted in Fig. 2.14. This ensemble method employs 

bagging to produce numerous base predictors, with the ultimate prediction determined 

by majority voting across all individual models. According to bagging theory, model 

accuracy improves with an increasing number of predictors, though this relationship 

holds only up to a certain point (Chowdhury, 2024). In RF, the bagging process 

generates many decision trees (NT), each trained on a bootstrapped subset of the 

original training data (sampled with replacement). The trees are developed to their full 

depth (DT)—the maximum possible path length from the root to any leaf node—

enabling them to model intricate data relationships. However, excessively deep trees 

may overfit the training data, necessitating careful optimization of the maximum depth 

to achieve a trade-off between model complexity and generalization. 
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During tree construction, each node split is determined by evaluating a randomly 

chosen subset of features, using metrics such as Gini impurity or entropy to identify 

the optimal partition. To enhance robustness and prevent overfitting, the minimum 

samples required to split a node is imposed (VPS). This parameter defines the 

smallest number of data points that a node must contain to be eligible for further 

splitting. Lower values permit more granular splits but increase susceptibility to noise, 

whereas higher values encourage broader, more generalizable decision boundaries. 

The final classification is derived by aggregating the predictions of all trees through 

majority voting. A grid search method from Python's Scikit-learn (Version 1.5) was 

employed to determine the optimal RF parameters (Liao et al., 2024). Table 2.7 lists 

the optimal parameters with respect to the training datasets. 

 

 

Fig. 2.14. The model’s architecture of random forest classifier. 

 

Table 2.7. Optimal parameter for random forest classifier 

Land cover model Sample sizes DT VPS NT 

2004 2219 16 5 200 

2014 2229 16 2 300 

2024 2240 16 2 100 

Parameters Random variable 

Maximum depth (DT) 2, 4, 8 ,16, 32 

Minimum sample to split (VPS) 2, 5, 10, 25, 50 

Number of Trees (NT) 1, 10, 50, 100, 200, 300, 500, 1000 

 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib42
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To minimize potential misclassification between built-up and bare classes owing to 

similarities in the spectral characteristics (Geiβ et al., 2017), a manual post-

classification correction was performed. Additionally, the generated land cover maps 

were reviewed by two local experts to ensure their accuracy.  

Fig. 2.15 presents the results of land cover classification. The accuracy of land cover 

maps was evaluated using a confusion matrix against validation points, represented 

by three accuracy indicators: F1 score, overall accuracy, and kappa index (Table 2.8). 

The accuracy assessment showed that the generated land cover maps were relatively 

accurate, with overall accuracies of 95.2% for the 2004 land cover (LC-04; Fig. 2.15a), 

92.7% for the 2014 land cover (LC-14; Fig. 2.15b), and 94.5% for the 2024 land cover 

(LC-24; Fig. 2.15c).  

 

Table 2.8. The confusion matrix and land cover classification accuracy 

LC-04 (Land cover in 2004, before the 2004 IOT event) 

 Truth Label Accuracy Metrics (P: Precision; R: Recall) 

Land cover* I II III IV V P R F1 Overall Accuracy Kappa Index 

Predicted 
Label 

I 146 0 0 0 1 0.99 0.99 0.99 

95.2%. 0.92 

II 2 38 0 0 16 0.88 0.68 0.77 

III 0 0 142 2 8 0.92 0.93 0.93 

IV 0 0 5 62 0 0.97 0.93 0.95 

V 0 5 7 0 523 0.95 0.98 0.97 

LC-14 (Land cover in 2014, 10 years after the 2004 IOT event) 

 Truth Label Accuracy Metrics 

Land cover I II III IV V P R F1 Overall Accuracy Kappa Index 

Predicted 
Label 

I 127 0 2 0 5 0.92 0.95 0.93 

92.7% 0.88 

II 1 26 2 0 15 0.87 0.59 0.7 

III 7 2 119 7 10 0.88 0.82 0.85 

IV 0 0 8 70 1 0.91 0.89 0.9 

V 3 2 4 0 537 0.95 0.98 0.96 

LC-24 (Land cover in 2024, 20 years after the 2004 IOT event) 

 Truth Label Accuracy Metrics 

Land cover I II III IV V P R F1 Overall Accuracy Kappa Index 

Predicted 
Label 

I 130 0 0 0 0 0.98 1 0.99 

94.5% 0.91 

II 2 24 1 0 12 0.75 0.62 0.68 

III 0 3 129 7 6 0.9 0.89 0.89 

IV 0 0 3 69 0 0.9 0.96 0.93 

V 0 5 11 1 524 0.97 0.97 0.97 

* I: water; II: bare; III: low-vegetation; IV: high-vegetation, and V: built-up areas 

 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib20
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Fig. 2.15. Local land cover map for temporal period of: (a). 2004, (b) 2014, and (c) 2024. The black 

dashed line represents the 2004 IOT inundation limit. 

 

Table 2.9 provides the percentage of each land cover type within the total AOI between 

2004-2024. The land cover change analysis revealed that the built-up areas have 

expanded from 38.73% of the total BNA region in 2004 to 50.9% in 2014 and further 

rose to 62.81% in 2024—a total expansion of 1,442.35 ha. This growth corresponded 

with decreased coverage of other land cover classes, particularly low-vegetation 

regions which declined by nearly 50% from approximately 1,750 ha in 2004 to 910.74 

ha by 2024. The high-vegetation and bare areas also showed decreasing trends, 

though less dramatically. Notably, bare areas slightly increased by 10 ha compared to 

2014, likely due to ongoing reclamation processes, further evidenced by the 

concurrent reduction in inland water coverage.  

 

Table 2.9. Land cover class area estimates  

Year Land cover 
Land-class fraction (areas and percentage) 

Water Bare Low-vegetation High-vegetation Built-up areas 

2004 LC-04 1174.83 ha 320.54 ha 1750.04 ha 374.61 ha 2288.61 ha 

19.88% 5.42% 29.62% 6.34% 38.73% 

2014 LC-14 1224.48 ha 137.38 ha 1168.85 ha 370.16 ha 3007.76 ha 

20.72% 2.32% 19.78% 6.26% 50.9% 

2024 LC-24 866.67 ha 147.52 ha 910.74 ha 272.6 ha 3710.96 ha 

14.67% 2.5% 15.41% 4.61% 62.81% 
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2.5.2 Local Gridded Population Datasets  

To construct the gridded population layers, the binary dasymetric mapping was 

adopted (Swanwick et al., 2022). First, the built-up class was extracted from each land 

cover map, resulting in built-up layers as shown in Fig. 2.16a-2.16c. These built-up 

layers were then intersected with subdistrict polygon boundaries to calculate the total 

built-up pixels within each polygon. Next, the population-to-built-up pixel ratio was 

calculated for each subdistrict. Finally, these ratio values were assigned to each built-

up pixel, while non-built-up pixels were assigned a value of zero. Table 2.10 presents 

the population data for the AOI from 2004-2024, and the generated gridded population 

layers are shown in Fig. 2.16d-2.16f. 

While some studies narrowly define built-up areas to include only buildings for more 

granular exposure assessment (Bonatz et al., 2024; Tiecke et al., 2017), this approach 

may oversimplify population distribution during tsunami events, as people are not 

always inside buildings. Therefore, this study employed a broader definition 

encompassing all man-made surfaces, including roads, buildings, and impervious 

areas, to better reflect the distribution of human activity.  

 

Fig. 2.16. Local exposure datasets for temporal period 2004-2024: (a-c) built-up area and (d-e) gridded 

population layers. The black dashed line represents the 2004 IOT inundation limit. 
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 Table 2.10. Population census data by subdistrict within the AOI (2004-2024).  

ID Subdistrict 2004 2005 2014 2018 2024 

1 Kuta Raja 20,217 5,122 12,831 13,632 14,943 

2 Syiah Kuala 42,776 35,514 35,702 37,938 34,545 

3 Meuraxa 31,218 5,657 18,979 20,561 25,916 

4 Kuta Alam 55,062 43,113 49,545 52,645 44,836 

5 Baiturrahman 37,449 36,783 35,249 37,445 34,111 

6 Jaya Baru 22,005 11,348 24,481 26,525 27,239 

7 Lueng Bata 18,360 18,254 24,581 26,119 25,802 

8 Ulee Kareng 17,510 17,388 25,170 26,745 27,926 

9 Banda Raya 19,071 19,015 22,961 24,878 26,651 

 Total 263,668 192,194 249,499 265,111 261,969 

 Source JICA (2005) BPS (2024) 

See Fig. 1.3 to refer to the subdistrict ID distribution  

 

2.6 Bias Assessment of Global Built-up Area Datasets 

Table 2.11 presents the estimation of built-up areas within the AOI and the 2004 IOT 

inundation limit. By leveraging the local built-up layers as a reference, the analysis 

revealed that global built-up area datasets exhibited both overestimation and 

underestimation of total built-up areas in 2004 and 2014 (Fig. 2.17a). For the 2004 

temporal period, GHS-BUILT demonstrated the most severe overestimation at 

2,620.09 ha, exceeding the actual built-up area estimates by twofold. While this 

overestimation persisted in 2014, GHS-BUILT's overestimation decreased to 69% 

(2,077.14 ha).  

Conversely, GLD FCD30D and GAUD underestimated the estimation of  built-up areas 

in 2004 by 55% and 29%, respectively. By 2014, both datasets exhibited 

overestimation patterns. This aligns with the behaviour of other datasets, which 

showed increases in total built-up areas between 2004-2014. However, GAIA was an 

exception, providing the same estimation of built-up areas in both 2004 and 2014. This 

resulted in GAIA underestimating built-up areas in 2014.  

The observed biases in the built-up area estimations subsequently influenced the total 

built-up area exposed to the tsunami (Fig. 2.17b). The local dataset estimated that 

approximately 1,535.71 ha of built-up areas were affected by the 2004 IOT. Meanwhile, 

the global datasets overestimated the inundated areas by 6% to 98%. GHS-BUILT 

demonstrated the greatest overestimation by projecting about 3,045.3 ha of tsunami-

exposed areas, nearly twice amount projected by the local dataset. Similar to the bias 

pattern in estimating total built-up areas, GLD FCD30D and GAUD underestimated 
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tsunami-exposed areas. The tsunami-affected areas were estimated at 976.1 ha by 

GLD FCD30D and 850.9 ha by GAUD, which are 37% and 45% lower, respectively, 

than the local dataset.  

 

Table 2.11. Estimation of built-up areas derived from global built-up datasets 

Dataset 
Resolution 
(m) 

Built-up areas within 
the AOI (ha) 

Built-up areas within the 2004 IOT 
inundation limit (ha) 

2004 2014 2004 2014 

Local (reference) 5 2288.61 3007.76 752.9 1,260.8 

GAIA 30 2,729.3 2,729.3 1,101.4 1,101.4 

GISA 30 3,440.1 3,960.3 1,308.5 1,564.2 

GISD30 30 3,381.5 3,931.3 1,370.2 1,647.2 

Glance 30 3,768.8 3,920.6 1,498.7 1,550.8 

GLC FCD30D 30 1,627.7 4,088.2 660.5 1,670.2 

WSF 30 4,302.5 4,554.2 1,734.9 1,794.3 

GHS-BUILT 100 4,908.7 5,084.9 1,863.4 1,869.4 

GAUD 1,000 1,021.0 3,403.5 170.2 1,616.7 

 

Fig. 2.17. Bias assessment for global built-up area datasets: (a) relative bias, (b) bias in the 2004 IOT 

exposure, and (c) bias in the exposure evolution between 2004-2014. The red line represents the 

reference dataset for built-up area expansion within the 2004 IOT limit.  

 

These biases in built-up area estimation also influenced projections of built-up area 

evolution between 2004-2012 within the 2004 IOT inundated areas (Fig. 2.17c). The 

local dataset revealed that built-up areas had expanded within the inundated areas by 
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719.15 ha, representing approximately a 15% increase compared to before the 2004 

IOT. Although the global built-up datasets captured this post-tsunami expansion trend 

(except for GAIA), they largely underestimated the actual expansion rate, particularly 

Glance with showing only a 4% expansion rate. In contrast, both GLC FCD30 and 

GAUD overestimated the post-tsunami expansion trend by 150% and 110%, 

respectively. This is likely related to their behaviour of underestimating total built-up 

areas in 2004, which ultimately led to a substantial increase by 2014.  

2.7 Bias Assessment of Global Gridded Population Datasets 

Table 2.12 presents the estimation of population within the AOI and the 2004 IOT 

inundation limit. The local datasets which were developed based on actual census 

data showed that the population in 2014 was 5% lower than in 2004. This indicates 

that the population did not fully recover to the pre-tsunami level even a decade after 

the 2004 IOT event. This decreasing pattern was also captured by WorldPop. In 

contrast, both GlobPop and LSG demonstrated an increase in population by 10% and 

6%, respectively. However, GHS-POP was an exception, as it provided the same 

population estimates for both 2004 and 2014. 

By using the local datasets as a reference, the analysis revealed that that global 

datasets underestimated the actual population, except for LSG (Fig. 2.18a). In 2004, 

the underestimation ranged between 29% and 47%, with WordPop exhibiting the 

greatest bias, underestimating 123,813 people. Although WorldPop showed a similar 

underestimation rate in 2014, its absolute value declined to 117,917. This is related to 

the fact that the total population projected by WorldPop also decreased in 2014. In 

contrast, LSG demonstrated an overestimation pattern by projecting 16,531 additional 

people in 2004, compared to the reference dataset. By 2014, the overestimation 

substantially increased to 48,650 people. This is because LSG showed an increase in 

the total population during the 2004-2014 period while the reference dataset projected 

the opposite.  

Ultimately, biases in total population estimates influenced the projections of tsunami-

exposed populations. Consistent behaviours were observed, with LSG exhibiting an 

overestimation of 2% and other datasets showing an underestimation ranging from 

35% to 51% (Fig. 2.18b). Furthermore, WorldPop exhibited the greatest 
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underestimation by capturing only approximately 86,239 people exposed to the 2004 

IOT. This estimation was nearly twice lower than the reference dataset.  

 

Table 2.12. Estimation of population derived from global gridded population datasets 

Dataset 
Resolution 
(m) 

Total population within 
the AOI 

Total population within the 2004 IOT 
inundation limit  

2004 2014 2004 2014 

Local (reference) 5 263,668 249,499 176,003 144,525 

WorldPop 100 139,855 131,582 86,239 75,308 

GHS-POP 100 175,242 175,242 98,973 98,973 

GlobPop 1,000 187,339 205,787 114,882 112,401 

LSG 1,000 280,199 298,149 179,329 166,485 

 

Fig. 2.18. Bias assessment for global gridded population datasets: (a) relative bias, (b) bias in the 2004 

IOT exposure, and (c) bias in the exposure evolution between 2004-2014. The red line represents the 

reference dataset for population dynamics within the 2004 IOT limit. 

 

By 2014, the reference dataset projected a decrease of 18% in the population living 

within the areas affected by the 2004 IOT, compared to 2004 (Fig. 2.18c). This aligns 

with the total population dynamics after the tsunami within the AOI. Although the global 

datasets also captured this decreasing trend (except for GHS-POP), they largely 

underestimated the decrease, with GlobPop projecting the lowest decrease of 2,481 

people or 28,997 people less than the estimation provided by the reference dataset.  
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2.8 Summary of Chapter II 

The reference dataset revealed that before the 2004 IOT, built-up areas were 

predominantly concentrated within zones that were later affected by the tsunami. A 

decade later, built-up areas expanded in both affected and non-affected areas. 

However, the distribution pattern in 2014 remained consistent with that in 2004, with 

affected areas still accounting for a larger share of built-up coverage. Notably, between 

2004-2014, the greatest increase occurred in the non-affected areas. 

The analysis showed that the affected areas increased by 211.25 ha (Fig. 2.19a), while 

non-affected areas expanded by 507.9 ha—more than twice as much (Fig. 2.19b). 

This finding suggested that greater increases in total built-up areas did not necessarily 

correspond to proportional increases in tsunami-exposed areas. 

 

 

Fig. 2.19. The dynamics of built-up area and population estimates within: (a and c) affected areas of 

the 2004 IOT and (b and d) non-affected areas of the 2004 IOT. The blue and dark red dashed-lines 

represent the reference estimates for 2004 and 2014, respectively. 

 

Dataset selection significantly influenced these observations. The magnitude of the 

built-up area increased considerably depending on the datasets used. Notably, except 
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for GISD30 and GAUD, global datasets indicated that the larger built-up increase 

between 2004-2014 occurred within affected areas. This pattern directly contradicts 

the evolution projected using the reference dataset. 

The population distributions exhibited contrasting patterns. Both the local and global 

datasets demonstrated comparable trends within the affected areas, showing 

population decreases during 2004-2014 (Fig. 2.19c). However, the datasets diverged 

regarding non-affected areas: global datasets projected population decreases, while 

the local dataset indicated population increases (Fig. 2.19d). 

These contrasting patterns have important implications for evaluating mitigation 

effectiveness. As mentioned in section 1.3, the AOI implemented spatial land use 

planning that designated non-affected areas as new development zones. Evaluation 

using global datasets like GHS-BUILT could have led to conclusions of ineffective 

planning, since built-up areas in new development zones appeared to grow by only 6 

ha over the decade.  

In contrast, population data from global datasets (WorldPop, GHS-POP, and GlobPop) 

could have suggested effective planning implementation, as these datasets indicated 

that most populations resided in new development zones rather than in tsunami-

affected areas. In conclusion, these findings underscore the critical importance of 

understanding global dataset properties and selecting appropriate data for specific 

applications to minimize analytical errors that could lead to inaccurate tsunami risk 

assessments. 
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CHAPTER III: 

SENSITIVITY OF DIGITAL ELEVATION AND LAND COVER ROUGHNESS MODELS 

3.1. Digital Elevation Models (DEMs) Datasets 

This study evaluated 11 digital elevation models (DEMs), consisting of original DEMs 

and their improved (error-reduced) versions. These DEMs varied in their creation 

methods, acquisition periods, and spatial resolutions, ranging from 30 to 90 m, as 

listed in Table 3.1. In addition to the improved versions from SRTM, COP30, and 

AW3D30, the TanDEM change elevation data (CRAWDEM) with a 30 m resolution was 

also incorporated into the analysis (Lachaise and Schweiβhelm, 2023). CRAWDEM 

was created by integrating new sensing data from 2017 to 2020 into the 30 m Edit 

TanDEM (EDEM) dataset (Gonzalez and Bueso-Bello, 2023). Additionally, the 

DEMNAS elevation model, a local DEM with an 8 m resolution introduced in 2018 

(tanahair.indonesia.go.id), was also evaluated. DEMNAS employs multisource 

datasets, including IFSAR (5 m), TERRASAR-X (95 m), and ALOS PALSAR (11.25 m), 

along with additional mass point data derived from a stereo-plotting process. However, 

details about the acquisition period of DEMNAS’s input datasets are limited. 

 

Table 3.1. Characteristic of evaluated Digital Elevation Models (DEMs) 

DEM (resolution) Datum Sensor Acquisition and improvement 

Original DEMs 

AW3D30 (30 m) EGM96 Optical stereoscopic 2006 to 2011 

COP30 (30 m) EGM08 SAR interferometry 2010 to 2015 

EDEM (30 m) WGS84 SAR interferometry 2011 to 2015 

SRTM (30 m) EGM96 SAR interferometry 2000 

Error-reduced DEMs 

CRAWDEM (30 m) WGS84 Improved EDEM 
Added new data from 2017-
2021 

DiluviumDEM (30 m) EGM08 Improved COP30 Reduced vertical bias 

FABDEM (30 m) EGM08 Improved COP30 
Removed building and 
vegetation biases 

NASADEM (30 m) EGM96 Improved SRTM Void filling 

CoastalDEM (90 m) EGM96 Improved SRTM & NASADEM Reduced vertical bias 

MERIT (90 m) EGM96 Improved SRTM & AW3D30 
Reduced speckle, stripe, void, 
and vegetation bias 

Local DEM 

DEMNAS (8 m) EGM08 TERRASAR, IFSAR, and stereo-plotting mass points 

 

Some of these DEMs have been evaluated by numerous studies for various 

applications, including ecological terrain assessment (Bielski et al., 2023; Tran et al., 
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2023; Li et al., 2022; Olajubu et al., 2021; Fassoni-Andrade et al., 2020),  inundation 

modelling (Liu et al., 2021; McClean et al., 2020; Hawker et al., 2019; Hawker et al., 

2018), sea level rise analysis (Seeger et al., 2023; Gesch, 2023; Kulp and Strauss, 

2016), and terrain change detection (Chen et al., 2022; Brosens et al., 2022). 

Nevertheless, variations in terrain across different locations may lead to 

geographically specific error patterns (Hawker et al., 2018).  

To address this, an elevation error analysis was performed within the research location 

before incorporating these data into the inundation models. Given the topographical 

setting of our area of interest (AOI), the error analysis focused on elevations lower 

than 10 m, a threshold to delimit the low-elevation coastal zone (Gesch, 2018). Prior 

to error analysis, all DEMs were harmonized to the same vertical datum of EGM2008, 

as the original datasets used two different datums (EGM1996 and EGM2008). Fig. 3.1 

illustrates the spatial distribution of elevations across all evaluated DEMs within the 

low-elevation coastal zone, with blue areas representing water bodies (≤0 m) and the 

colour gradient from green to red indicating increasing elevation from 0 m to 10 m.  

 

 
Fig. 3.1. Elevation distribution from evaluated DEMs within the AOI, vertical datum set to EGM2008 

 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib27
https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib21


52 

 

3.2. Elevation Error Analysis 

Errors were defined as the discrepancies in elevation between the DEMs and the 

ground truth data (Dusseau et al., 2023). To mitigate bias in error interpretation, three 

statistical measures were employed: mean error (ME), mean absolute error (MAE), 

and root mean square error (RMSE) (equations 15-18). Due to the unavailability of 

local LiDAR data, elevation data from the global altimetry dataset ICESat-2 (version 

006) were utilized as ground truth reference, sourced from the National Snow and Ice 

Data Center (https://nsidc.org).  

The ICESat-2 satellite employs a photon-counting lidar system from Advanced 

Topographic Laser Altimeter System (ATLAS) instrument along with supporting 

technologies (GPS, star cameras, and ground processing systems) to measure photon 

travel time between the instrument and Earth's surface, enabling precise 

determination of reflected photon coordinates in terms of geodetic latitude and 

longitude (Neumann et al., 2023; Neuenschwander et al., 2023). Fig. 3.2 illustrates the 

ATLAS beam configuration, showing how laser pulses create three paired illumination 

spots on the surface, resulting in six ground tracks approximately 14 m in width as the 

satellite orbits Earth. These ground tracks are designated by their corresponding laser 

spot numbers, ranging from the leftmost track (GT1L) to the rightmost track (GT3R), 

with left and right tracks within each pair separated by approximately 90 m across-

track and 2.5 km along-track. Additional details of ICESat-2 dataset are provided in 

Table 3.2. 

The ICESat-2 data products are structured according to ground track organization, 

where tracks 1L and 1R constitute the first pair, tracks 2L and 2R form the second pair, 

and tracks 3L and 3R comprise the third pair. Each pair is associated with a theoretical 

Pair Track, representing the midpoint between the actual left and right beam positions, 

with these pair tracks spaced approximately 3 km apart in the across-track direction. 

ICESat-2 provides several products, including the geolocated photon data (ATL03) 

(Neumann et al., 2023) and a land and vegetation height product (ATL08) 

(Neuenschwander et al., 2023), with along-track resolutions of 20 m and 100 m, 

respectively.  

 

∆ℎ𝑖 = ℎ. 𝐷𝐸𝑀𝑖 −   ℎ. 𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖                                                                                                   (15) 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib14
https://nsidc.org/
https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib49
https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib48
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Fig. 3.2. ATLAS/ICESat-2 beam configuration. Adopted from Neumann et al. (2023) 

 

Table 3.2. Characteristic of ICESat-2 dataset 

Parameter Characteristic 

Mission ICESat-2 

Type Discrete photon 

Main objective Cryosphere monitoring 

Duration 2018-2024 (ongoing) 

Orbit Inclination 92° 

Beam footprint 11 m 

# tracks 6 (in 3 strong/weak pairs) 

Along track spacing 0.7 m (20 m for ATL08) 

Across track spacing 3 km/90 m between pair 

Swath width 6.6 km 

Beam frequency 532 nm (green) 

Vertical accuracy 0.91 cm MAE 
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The ICESat-2 provided 40 photon laser tracks encompassing the AOI from December 

2018 to June 2023 (Fig. 3.3). Using the Python implementations of the Photon 

Research and Engineering Analysis Library (PhoReal) (Neuenschwander and 

Magruder, 2023), the photon signals were converted into elevation values. PhoReal 

can classify ATL03 photon signals into noise, canopy, and ground elevation data by 

utilising labelled information from ATL08 products.  

The conversion of 40 photon laser tracks resulted in 460,000 ICESat-2 ground 

elevation points, which were used to analyse the elevation errors. Fig. 3.4 illustrates 

the detailed workflow of the elevation error analysis. Using information from the local 

land cover map in 2014 (LC-14; see Fig. 2.15), the analysis was conducted across 

various land cover types: all classes (excluding water), built-up areas, and highly 

vegetated regions (forest).  

 

Fig. 3.3. (a) ICESat-2 track covered the AOI from 2018 to 2023. Sample of ATL03 photon classification 

for (b) Right ground track on 10 December 2019, and (c) Left ground track on 15 December 2020.  
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Table 3.3 summarises the error metrics for each DEMs at elevations below 10 m 

across various land cover types. The enhanced versions of COP30, namely FABDEM 

and DiluviumDEM, consistently demonstrated superior RMSE and MAE values 

compared to other DEM datasets. On average, FABDEM exhibited a slightly better 

performance than DiluviumDEM, with elevation errors being nearly normally 

distributed (ME = 2 cm) (Fig. 3.5). The error distributions further indicated that 

DiluviumDEM had a higher incidence of negative errors than FABDEM in built-up 

areas. However, when evaluated using an alternative error metric, DiluviumDEM 

surpassed FABDEM, achieving an RMSE of 1.02 m in built-up areas and 1.25 m in 

highly vegetated regions.  

Furthermore, among the improved SRTM variants, CoastalDEM outperformed MERIT 

and NASADEM, particularly in built-up areas (RMSE: 1.27 m and MAE: 1 m) and highly 

vegetated regions (RMSE: 1.4 m and MAE: 1.07 m). However, CoastalDEM still 

exhibited significant negative biases, with an average of 1 m, resulting in an 

underestimation of the elevation of coastal low-lying areas when compared to ground 

truth data. 

 

Table 3.3. Calculated statistical elevation error metrics 

Metric (m): RMSE ME MAE 

DEM [Resolution] AVG BU HV AVG BU HV AVG BU HV 

AW3D30 [30 m] 3.13 4.12 4.27 1.66 3.43 3.54 2.54 3.46 3.63 

COP30 [30 m] 1.64 2.11 2.85 0.37 1.41 1.83 0.94 1.63 1.97 

CRAWDEM [30 m] 2.06 2.39 3.14 0.83 1.73 2.16 1.26 1.90 2.29 

CoastalDEM [90 m] 1.53 1.27 1.40 -0.98 -0.34 -0.73 1.30 1.00 1.07 

DEMNAS [8 m] 2.35 1.94 3.16 -0.32 0.72 2.12 1.78 1.40 2.42 

DiluviumDEM [30 m] 1.18 1.02 1.25 -0.36 -0.21 0.10 0.70 0.71 0.81 

EDEM [30 m] 1.78 1.97 3.00 0.48 1.30 2.02 1.01 1.53 2.19 

FABDEM [30 m] 1.09 1.11 1.38 0.02 0.43 0.65 0.59 0.81 0.97 

MERIT [90 m] 2.74 3.30 3.57 1.58 2.80 3.00 2.29 2.86 3.13 

NASADEM [30 m] 2.14 2.49 3.70 0.07 1.20 2.31 1.60 1.91 2.73 

SRTM [30 m] 3.13 3.87 5.21 1.56 3.06 4.25 2.45 3.17 4.32 

AVG: Average errors. All land cover classes, except water; BU: built-up area; HV: High-vegetation 

 

Notably, the average accuracy of the 8 m resolution local DEMNAS was lower than 

that of certain global DEMs with coarser resolutions, such as FABDEM, DiluviumDEM, 

CoastalDEM, COP30, and NASADEM. Nevertheless, DEMNAS demonstrated 

https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#tbl5
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superior performance compared to MERIT across various land cover types. It also 

exhibited greater accuracy than COP30 and NASADEM in built-up areas. 

 

 
Fig. 3.4. Workflow for the DEMs error analysis and seamless topo-bathymetric model generation 

 

In general, the accuracy of the error-reduced DEMs consistently surpassed the original 

DEMs, with the exception of CRAWDEM. This exception likely stems from insufficient 

calibration of newly added data (Lachaise and Schweiβhelm, 2023). Consequently, 

EDEM performed better than CRAWDEM in nine separate comparisons, despite 

CRAWDEM being designed as an improved version of EDEM.  

Among the error-reduced DEMs, MERIT was observed to be the least accurate 

elevation model, with ME reaching 1.58 m. Similarly, its original datasets, AW3D30 

and SRTM, showed the highest overestimation compared to other original datasets of 

EDEM and COP30. Specifically, positive errors within built-up areas reached 4.12 m 

for AW3D30 and 3.87 m for SRTM. For SRTM, these errors increased significantly up 

to 5 m in highly vegetated regions.  
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Fig. 3.5. The error distributions of evaluated DEMs, with red line indicates built-up areas and black line 

represents all land cover type (except water class).  

 

3.3. Land Cover Roughness (LCR) Models 

To develop the LCR model, a Manning's n value was assigned to each land-cover 

class, utilizing coefficients as listed in Table 3.4. Bricker et al. (2015) observed that 

commonly employed Manning coefficients tend to underestimate the dampening effect 

of dense vegetation and are inadequate for modelling tsunami flow in urban 

environments. Therefore, this study adopted Manning coefficients derived from 

extensive experiments and field measurements.  

To address the impact of variations in roughness coefficients on tsunami estimates, 

two distinct sets of roughness coefficients were employed based on Bunya et al. 

(2010) and Koshimura et al. (2009). Both studies provide density-based Manning 

coefficients for built-up areas. The density of built-up areas was determined by 

calculating the ratio of built-up pixels to total pixels within a 1-hectare area. 

Subsequently, built-up area density was classified into three categories: low (ratio 

<30%), moderate (ratio 30-70%), and high (ratio >70%). 
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Table 3.4. Manning roughness coefficient values 

Class 
Manning’s n value 

(s/m1/3) 
Manning’s n value  

(s/m1/3) 

Water 0.013 0.013 

Bare 0.025 0.020 

Low vegetation 0.020 0.040 

High vegetation 0.030 0.180 

Low-density built-up (BU). Ratio: < 30%* 0.053 0.050 

Moderate-density built-up (BU). Ratio: 30% -60% 0.094 0.120 

High-density built-up (BU). Ratio: > 30% 0.172 0.150 

Source Koshimura et al. (2009) Bunya et al. (2010) 

* Ratio of built-up area  

 

To investigate how spatial resolution affects inundation modelling accuracy, 

multiresolution LCR models representing terrain features in the BNA region before the 

2004 Indian Ocean Tsunami (IOT) were developed at three different resolutions: 30 m, 

10 m, and 5 m. The development process involved: 

1. Using the 2004 land cover map (LC-04) to generate a 5 m resolution LCR-04 

model. 

2. Resampling the LC-04 map to create a 10 m resolution LCR-04 model. 

3. Developing a 30 m resolution LCR-04 model by following the land cover 

classification method described in section 2.5.4 (Chapter-II), using 30 m 

Landsat 5 TM imagery from 2004 as input (see Table 2.4) 

To assess how land cover changes affect inundation properties, inundation models 

using the 2004 and 2014 LCR models were compared. In total, eight LCR models 

were developed, encompassing three spatial resolutions (30 m, 10 m, and 5 m), two 

temporal periods (2004 and 2014), and two different roughness coefficient sources, 

as shown in Fig. 3.6. 

3.4. Relationship Between DEMs, LCR Models, and Inundation Accuracy 

To evaluate how combinations of global DEMs and LCR models might influence 

inundation accuracy, the Mw 9.2 2004 Indian Ocean Tsunami (IOT) inundation was 

reproduced using various combinations of global DEMs and LCR models. The 

inversion fault model developed by Koshimura et al. (2009) was employed as the 

tsunami source model. This inversion model has been widely used to reproduce the 

2004 IOT impact within BNA region (Jihad et al., 2023; Tursina et al., 2021; Syamsidik 

et al., 2019).  
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Fig. 3.6. Multiresolution LCR models, covering the computational region of Layer 4 (see Fig. 3.7). 

 

To generate tsunami wave based on the inversion fault model input, the Cornell 

multigrid coupled tsunami model (COMCOT) was employed (Wang and Power, 2011). 

This model solves both the linear and nonlinear two-dimensional shallow water 

equations (2D-SWE). 2D-SWE consists of the continuity equation (equation 19) and 

momentum equation in both the x- (equation 20) and y-directions (equation 21). The 

governing equations are expressed as: 

 

𝜕𝜂

𝜕𝑡
+ (

𝜕𝑃

𝜕𝑥
+

𝜕𝑄

𝜕𝑦
) = −

𝜕ℎ

𝜕𝑡
; 𝐻 = 𝜂 + ℎ                                                                                                            (19) 
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𝜕𝑃
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𝜕
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(
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𝐻
) +

𝜕
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(

𝑃𝑄

𝐻
) + 𝑔𝐻

𝜕𝜂

𝜕𝑥
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𝜕𝑄
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𝜕

𝜕𝑥
(

𝑃𝑄

𝐻
) +

𝜕

𝜕𝑦
(

𝑄2

𝐻
) + 𝑔𝐻

𝜕𝜂

𝜕𝑦
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𝐹𝑥 =
𝑔𝑛2

𝐻
7
3

 𝑃√𝑃2 + 𝑄2                                                                                                                                         (22)                 

𝐹𝑦 =
𝑔𝑛2

𝐻
7
3

 𝑄√𝑃2 + 𝑄2                                                                                                                                       (23) 

𝑃 = ∫ 𝑢𝑑𝑧 = 𝑢𝐻
𝜂

−ℎ
                                                                                                                                             (24)                 

𝑄 = ∫ 𝑣𝑑𝑧 = 𝑣𝐻
𝜂

−ℎ
                                                                                                                                             (25)  

 

where h is water depth or land elevation; η represents water surface fluctuation; P and 

Q represent flux in the x- and y- directions, respectively; t is time; g is gravity; Fx and 

Fy represent bottom friction in the x- and y- directions, respectively; and n denotes the 

Manning’s coefficient values, which are represented by the LCR models.  

COMCOT assumes that the seafloor displacement would instantaneously occur after 

an earthquake event (Wang and Power, 2011). Using the elastic finite fault theory 

proposed by Okada (1985), COMCOT computes the initial sea surface deformation. 

The elastic fault theory models earthquake-induced deformation by conceptualizing a 

rectangular fault surface embedded within an elastic half-space medium. The fault 

surface serves as an approximation of the fracture zone between converging tectonic 

plates, where sudden slip movement generates seismic events. 

When displacement occurs along this fault surface, it generates stress distributions 

throughout the surrounding elastic medium, resulting in surface deformation that 

manifests as vertical and horizontal seafloor movements. As illustrated in Fig. 3.7, the 

COMCOT model requires both focal fault geometry parameters and focal mechanism 

to compute the initial sea surface deformation. The focal mechanisms include fault's 

azimuthal orientation (strike angle, θ), inclination from horizontal (dip angle, δ), and 

direction of slip movement (rake angle, λ). Meanwhile, the fault geometry parameters 

include depth to the fault's upper edge (focal depth, h), and the fault's physical 

dimensions (length, L,  and width, W).  
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Fig. 3.7. Schematic illustration of fault plane geometry and associated parameters for initial sea surface 

deformation calculations. Colour-coded surfaces indicate the reference earth surface (light grey), the 

fault plane (green), and the projected fault area onto the earth's surface (light red). Modified from Wang 

and Power (2011). 

 

For earthquakes involving complex rupture patterns, the source region can be 

discretized into multiple fault patches or segments. The cumulative deformation field 

is obtained through linear superposition of individual segment contributions, each 

computed using the elastic dislocation theory. This segmented approach allows for 

heterogeneous slip distribution across the rupture zone, producing more realistic 

spatial patterns of seafloor deformation.  

The employed inversion fault model to generate the Mw 9.2 2004 IOT consisted of six 

segments, as illustrated in Fig. 3.8a. The detailed parameters of fault geometry and 
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focal mechanism are provided in Table 3.5. The initial sea surface deformation served 

as the initial condition for tsunami wave propagation in the numerical domains. To 

simulate the tsunami propagation from the Sunda-Andaman segment to the AOI, a 

four nested-grid configuration was employed as the numerical domain, as illustrated 

in Fig. 3.8b.  

 

Table 3.5. Inversion fault model properties based on Koshimura et al. (2009) 

Segment 
Focal depth 

(km) 
Length 
(km) 

Width 
(km) 

Strike 
(°) 

Dip 
(°) 

Rake 
(°) 

Slip 
(m) 

1 10 200 150 323 15 90 14.0 

2 10 125 150 335 15 90 12.6 

3 10 180 150 340 15 90 15.1 

4 10 145 150 340 15 90 7.0 

5 10 125 150 345 15 90 7.0 

6 10 380 150 7 15 90 7.0 

 

 
Fig. 3.8. (a) Subfault setting of inversion fault model and the initial sea surface deformation. Details of 

subfault properties are provided in Table 3.5. (b) Nested-grid layer setting and topo-bathymetric 

configuration for each layer.  

 

Table 3.6 lists the details of the numerical domain configurations. The outermost 

domain (Layer 1), with a grid resolution of 1080 m, utilized the initial sea surface 

deformation as the initial condition, while the inner layers incorporated the wave 

heights and wave fluxes in the horizontal directions (x and y) along their nesting 

boundaries. The GEBCO 2023 Grid, with a resolution of 15 s (∼450 m), served as the 

topo-bathymetric input for Layer 1 (GEBCO Bathymetric Compilation Group, 2023).  
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Layers 2 and 3 with grid resolutions of 216 m and 43.2 m, respectively, employed the 

Indonesian National Bathymetric Chart (BATNAS) with a resolution of 6 s (∼180 m) 

(tanahair.indonesia.go.id). The topo-bathymetric input data for the innermost domain 

(Layer 4) integrated depth information from local bathymetric measurements and 

elevation data from the examined DEMs.  

All topographic and bathymetric inputs were resampled to align them with the 

resolution of each numerical layer using a regular point-based sampling approach in 

GIS applications. To produce seamless topo-bathymetric input for Layer 4, 

multiresolution water masks derived from multiresolution land cover maps in Fig. 3.6 

were used to identify land and water areas, including small water bodies such as ponds 

and rivers that may not be captured by local bathymetric data. As illustrated in Fig. 3.9, 

to adjust the water bodies detected by the masks but absent from the bathymetric data, 

a uniform depth of −0.5 m was assigned.  

 

Table 3.6. Configuration of numerical domains 

Domain Layer 1 Layer 2 Layer 3 Layer 4 

Ymin-Ymax (deg) 2 - 14 3 - 6 5.4 - 5.74 5.52 - 5.62 

Xmin-Xmax (deg) 90 - 100 94 - 97 95.2 – 95.45 95.27 - 95.38 

Grid size (m) 1080 216 43.2 10.8 

Time step (s) 1.2 0.24 0.048 0.012 

Layer ratio 1 5 5 4 

Initial condition Fault Model Layer-1 Layer-2 Layer-3 

Input depth GEBCO_2023 Grid BATNAS BATNAS Local bathymetry 

Input elevation GEBCO_2023 Grid BATNAS BATNAS DEMs 

Friction model None None None Uniform and 8 LCR 

SWE type Linear Linear Linear Non-linear 

Boundary condition Radiation Interpolated Interpolated Interpolated 

 

The linear SWE scheme was implemented for Layers 1 to 3, while Layer 4 used the 

nonlinear SWE scheme. The outputs from Layer 4 were then used to develop 

inundation maps and evaluate inundation model performance. To evaluate the impact 

of DEMs on inundation model performance, DEMs were integrated with a uniform 

Manning's friction coefficient (Manning's n = 0.025). Concurrently, to assess the 

performance of DEMs coupled with variable Mannings, DEMs were incorporated with 

multiresolution LCR models as another scenario. In total, 99 inundation models were 

simulated, comprising 11 DEMs, 8 LCR models, and one uniform Manning model. All 
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computational topo-bathymetric grids were automatically updated at the start of each 

simulation to account for changes in seafloor and land deformation. Each scenario 

simulated tsunami propagation at a duration of 2 hours. 

 

Fig. 3.9. Illustration of topo-bathymetric adjustment using water masks from land cover maps for 

CoastalDEM (top panel) and FABDEM (bottom panel).  

 

3.5. Performance of Inundation Models 

The performance of the inundation models was evaluated based on the simulated 

inundation maps. To evaluate the uncertainty of inundation performance, this study 

proposed three sequential assessments, incorporating historical data and the 

confidence level associated with inherent DEM error characteristics. First, the 

simulated inundation extents were compared against the 2004 IOT satellite-derived 

inundation limit (see section  2.5.3). A threshold of 25% difference was set as a 

benchmark for acceptable model performance. This accounts for the inherent 

challenges to accurately reproduce the 2004 IOT inundation due to limitations in pre-

tsunami bathymetric dataset and constraints in the tsunami source model (Ocean 

Networks Canada et al., 2023; Sugawara, 2021). 

Second, the simulated flow depth estimates were validated against field measurement 

data. The measured data were collected from various sources, including Tsuji et al. 

(2006), Borrero (2005), and Sugimoto et al., (2010) (Fig. 3.10a). The agreement 

between the simulated and observed flow depths was evaluated using Aida’s functions, 

expressed as the geometric mean (K) and standard deviation (k) (Aida, 1978): 
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𝑙𝑜𝑔 𝐾 =
1

𝑁
 ∑ 𝑙𝑜𝑔 𝐾𝑖                                                                                                                                        (26)

𝑁
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                                                                                                   (27) 

𝐾𝑖 =
𝑀𝑖

𝑆𝑖
                                                                                                                                                                 (28) 

where Mi and Si are the observed and simulated flow depths, respectively. The 

simulation results were considered to be in good agreement when Aida’s parameters 

were: 0.8 ≤ K ≤ 1.2 and k ≤ 1.60 (Takeuchi et al., 2005). 

 

Fig. 3.10. (a) The 2004 IOT post-tsunami field measurement points. Details of observed points were 

provided in Appendix. Black dashed line indicated the inundation limit.(b). DEMs’ RMSE values used 

for equations 29 and 30. These values were obtained from elevation errors analysis (see Table 3.3).  

 

The uncertainties associated with mapping coastal flooding are affected by the 

characteristics of elevation data errors (Hinkel et al., 2021). To address this issue, a 

third criterion was introduced to assess the confidence level of any inundation model 

by quantifying the relationship between flood depth predictions and underlying 

elevation data uncertainties. Following Dusseau et al. (2023), an inundation model 

should achieve at least a 68% confidence level to be considered reliable for coastal 

flood exposure assessments, including tsunami inundation.  
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The confidence level can be determined by evaluating the relationship between the 

median of the maximum inundation height in terrestrial areas (ground elevation >0 m) 

derived from inundation simulations (MIH) and the root-mean-square error (RMSE) of 

the DEM used as the input for the inundation model (Fig. 3.10b) (Gesch, 2018). By 

assuming unbiased DEM errors (mean elevation errors = 0), the confidence level is 

derived from the standardized normal distribution of the ratio of MIH to DEM error. The 

standardized inundation height, Z, is computed as: 

 

𝑍 =
𝑀𝐼𝐻

𝑅𝑀𝑆𝐸
                                                                                                                                                           (29) 

The confidence level, CL, is then calculated as the probability that the true inundation 

height lies within ± Z∕2 standard deviations of the mean. This is expressed using the 

cumulative distribution function (CDF) of the standard normal distribution, Φ:  

 

𝐶𝐿 = 𝛷 (
𝑍

2
) − 𝛷 (−

𝑍

2
)                                                                                                                                     (30) 

For example, an inundation model using an elevation dataset with an RMSE of 2 m 

achieved a minimum of 68% confidence level when the simulated MIH was 4 m (twice 

the RMSE value of the used DEM). Conversely, inundation models with lower MIH 

values yielded lower confidence levels. The minimum MIH values required to achieve 

68% (MIH68%) and 95% (MIH95%) confidence level can be computed as: 

 

𝑀𝐼𝐻68% = 𝑅𝑀𝑆𝐸 𝑥 2                                                                                                                                        (31) 

𝑀𝐼𝐻95% = (𝑅𝑀𝑆𝐸 𝑥 1.96)𝑥 2                                                                                                                         (32) 

 

3.5.1 Performance of Inundation Models: Influence of DEMs 

Fig. 3.11 presents the simulated inundation maps for the scenario that exclusively 

evaluated the influence of DEMs on inundation model performance. The inundation 

maps revealed varying degrees of agreement between the simulated and observed 

inundation extents across different DEMs. CoastalDEM demonstrates the closest 

agreement to the observed inundation extent, with an inundation extent difference of 

only 1.25%. FABDEM and DiluviumDEM also showed relatively good agreement, with 
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inundation extent differences of 4.89% and 5.90%, respectively. Based on the first 

reliability criterion (the difference between simulated and observed inundation extent 

must be less than 25%), six DEMs satisfied the given threshold: CoastalDEM, 

FABDEM, DiluviumDEM, COP30, EDEM, and local DEMNAS.  

 

 

Fig. 3.11. The maximum flow depth distributions for DEMs coupled with uniform roughness Manning. 

The black dashed line indicates shoreline in 2004, and red line represents the 2004 IOT inundation limit.  

 

The relationship between the DEM error characteristics and inundation bias was 

observed to be nonlinear (Fig. 3.12). Although DEMs with lower vertical elevation 

errors generally exhibited lower inundation bias, statistical testing revealed that this 

relationship is better represented by a quadratic function (Fig. 3.12a). Furthermore, 

MAE proved to be a superior indicator compared to RMSE for characterizing the 

relationship between DEMs’ error characteristics and inundation accuracy (Fig. 3.12b). 

Next, the inundation models that satisfied the first reliability criterion were then 

validated against observed inundation depth. As illustrated in Fig. 3.13, the results 

showed that none of these models met the second reliability criterion (i.e., Aida's 

parameters: 0.8 ≤ K ≤ 1.2 and k ≤ 1.6). Consequently, the third reliability criterion was 



68 

 

not examined, and it was concluded that inundation models coupled with uniform 

Manning coefficients were not reliable for reproducing the historical 2004 IOT event. 

 

 

Fig. 3.12. Comparison of DEMs’ errors and inundation extent differences between simulated and 

observed inundation. The left and right panels use the RMSE and MAE as elevation error indicators, 

respectively. The light blue shaded area indicates the acceptable 25% threshold for the inundation 

extent differences.  

 

 

Fig. 3.13. Simulated vs. observed inundation depths for the scenario using DEMs coupled with uniform 

Manning coefficients, with K and k representing the geometric mean and standard deviation of Aida’s 

parameters, respectively.  
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It is important to note that this conclusion stems from the proposed sequential 

evaluation approach, which requires models to satisfy all reliability criteria in sequence. 

If these criteria were applied independently, different conclusions might emerge. For 

instance, CRAWDEM could be considered reliable based solely on its confidence level 

estimate exceeding 68% (Table 3.7), while MERIT and SRTM might be assumed 

reliable based solely on Aida’s parameters, despite their inundation extents covering 

less than 20% of validation points. These discrepancies underscore the importance of 

using sequential criteria when determining reliable elevation model inputs for tsunami 

simulation.  

 

Table 3.7. Sequential validation assessment for DEMs coupled with uniform Manning 

Input DEM 

Validation-1 Validation-2 Validation-3 

Inundation 
extent 

difference (%) 
N K k 

MIH68% 

(m) 
MIH95% 

(m) 
MIHsim 

(m) 
CL 
(%) 

AWD30D 32.87 23 0.90 1.63 6.26 12.27 4.74 55.09 

CoastalDEM 1.25 133 0.63 1.67 3.28 6.43 4.18 79.73 

COP30 22.92 57 0.77 1.69 4.12 8.08 4.41 71.57 

CRAWDEM 31.38 37 0.93 1.55 3.06 6.00 4.34 84.41 

DEMNAS 19.11 71 0.79 1.67 4.70 9.21 4.16 62.39 

DiluviumDEM 5.9 127 0.70 1.70 2.36 4.63 3.91 90.23 

EDEM 22.99 56 0.78 1.69 3.56 6.98 4.43 78.64 

FABDEM 4.89 130 0.62 1.74 2.18 4.27 4.32 95.24 

MERIT 32.41 23 1.01 1.56 5.48 10.74 4.41 57.93 

NASADEM 29.25 41 1.00 1.61 4.28 8.39 3.90 63.84 

SRTM 36.68 17 1.16 1.58 6.26 12.27 4.25 50.32 

N: number of observation points covered by inundation extent; CL: confidence level.  

 

3.5.2 Performance of Inundation Models: Influence of DEMs and LCR Models 

Figs. 3.14─3.16 present the simulated inundation maps for scenarios where DEMs 

were coupled with LCR models at resolutions of 30 m, 10 m, and 5 m, respectively. 

The first reliability assessment indicated that DEMs coupled with LCR models led to  

greater underestimation compared to when DEMs were combined with a uniform 

Manning's coefficient (Fig. 3.17). Given the acceptable threshold for the first reliability 

criterion, only four DEMs satisfied the given threshold: DEMNAS, FABDEM, 

CoastalDEM, and DiluviumDEM.  
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Fig. 3.14. The maximum flow depth distributions for DEMs coupled with LCR model at 30 m resolution. 

The black dashed line indicates shoreline in 2004, and red line represents the 2004 IOT inundation limit.  

 

 
Fig. 3.15. The maximum flow depth distributions for DEMs coupled with LCR model at 10 m resolution. 

The black dashed line indicates shoreline in 2004, and red line represents the 2004 IOT inundation limit.  
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Fig. 3.16. The maximum flow depth distributions for DEMs coupled with LCR model at 5 m resolution. 

The black dashed line indicates shoreline in 2004, and red line represents the 2004 IOT inundation limit.  

 

The effect of LCR model spatial resolution on inundation extent was observed to be 

minimal, with differences of less than 5%. Similar to the scenario using uniform 

Manning coefficients, the integration of DEMs and LCR models showed that DEMs 

with lower vertical errors tend to produce less inundation bias. Here, the relationship 

between DEM error characteristics and inundation bias was better represented by a 

logarithmic function rather than a quadratic function (see Fig. 3.17).  

The inundation models that met the first reliability criterion were further evaluated 

using a second reliability assessment. The assessment revealed that combinations of 

DEMs with uniform Manning coefficients did not satisfy the AIDA parameters (Fig. 

3.18). Interestingly, when coupled with LCR models, only CoastalDEM and 

DiluviumDEM satisfied the given thresholds. Again, the effect of the spatial resolution 

of the LCR model remained minimal. 

For the combinations of CoastalDEM and DiluviumDEM with LCR models that satisfied 

both reliability criteria, confidence levels were then calculated. First, maximum flow 

depth distributions were examined to estimate the median inundation height (MIH). 
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The results indicated non-normal distributions with positive skewness (Fig. 3.19). The 

analysis showed that LCR models with finer resolution produced lower MIH estimates, 

likely because finer-resolution models better represent drainage systems (small rivers 

and ponds), which ultimately influence simulated flow depth (Koyama and Yamada, 

2022). Additionally, CoastalDEM exhibited higher tsunami MIH estimates than 

DiluviumDEM, probably due to CoastalDEM's larger negative bias (averaging −1 m). 

 

 
Fig. 3.17. First validation assessment for scenarios where DEMs coupled with: (a) a uniform Manning’s 

coefficient, (b) LCR model at 30 m resolution, (c) LCR model at 10 m resolution, and (d) LCR model at 

5 m resolution. The light blue shaded area indicate threshold region for acceptable model performance.  

 

Given the skewed flow depth distributions, a log-normal distribution was employed to 

compute the fitted-median values, which served as MIH estimates for confidence level 

calculation (Glimsdal et al., 2019). The computed confidence levels revealed that both 

CoastalDEM and DiluviumDEM exceeded the minimum threshold (confidence level 

≥68%), with DiluviumDEM achieving higher confidence level estimates (88.6% on 

average). This superior performance is related to DiluviumDEM's better vertical 
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accuracy compared to CoastalDEM (Table 3.8). The effect of LCR model resolution on 

confidence levels was minimal, with differences of less than 5%. 

 

 
Fig. 3.18. Second validation assessment ─ Calculated Aida’s parameters for inundation models that 

satisfy the first reliability criteria: (a) geometric mean (K), and (b) variance (k). The black dashed line 

indicates the acceptable threshold.  

 

 
Fig. 3.19. Histograms of simulated flow depths for inundation models that satisfied the second reliability 
criterion.  
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Table 3.8. Confidence level (CL) assessment for models satisfied second reliability criterion 

DEM RMSE 
Minimum MIH to reach: Computed MIH relative to LCR models: 

CL68% CL95% LCR: 30 m LCR: 10 m LCR: 5 m 

CoastalDEM 1.53 m 3.06 m 6.00 m 81.97 81.97 80.89 

DiluviumDEM 1.18 m 2.36 m 4.63 m 89.26 88.31 88.31 

 

It is important to note that finer-resolution LCR models generally yield slightly lower 

confidence levels. This is associated with their MIH estimates, as the finer models 

produce lower inundation depths due to more precise mapping of drainage systems 

(see Fig. 3.19). Furthermore, coarser LCR models, which rely on lower-resolution land 

cover maps, identified more built-up areas (see Fig. 3.6). The larger proportions of the 

built-up areas likely enhance flow resistance, decrease flow infiltration capacity, and 

result in greater flow depths. In conclusion, after assessing all reliability criteria, 

inundation models that incorporate LCR models with either CoastalDEM or 

DiluviumDEM have proven to be more reliable choices for tsunami modelling. 

3.5.3 Performance of Inundation Models: Influence of Manning Coefficients 

It should be noted that, all the results discussed in sections 3.5.2 were derived from 

inundation models using Manning coefficients from Bunya et al. (2010). To evaluate 

how variations in Manning coefficients affect flood inundation performance, simulated 

inundation maps from models using the coefficients from Bunya et al. (2010) and 

Koshimura et al. (2009) were compared. For simplicity, the comparison was limited to 

inundation models using CoastalDEM and DiluviumDEM, as these were the only 

DEMs that met all reliability criteria in the previous assessment. Additionally, since 

spatial resolution showed minimal effect on outcomes, only the finest 5 m resolution 

LCR model was used for this comparison.  

The analysis revealed that models using Manning coefficients from Koshimura et al. 

(2009) produced larger inundation extents, resulting in smaller differences between 

simulated areas and the observed inundation limit (Table 3.9). These models also 

generated higher inundation depths, as indicated by the higher MIH estimates 

compared with models using coefficients from Bunya et al. (2010). Furthermore, the 

simulated flow depths showed better agreement with the observational data, as 

represented by lower RMSE values. These patterns were exhibited by both 

CoastalDEM and DiluviumDEM and can be attributed to the lower Manning 
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coefficients for vegetated areas provided by Koshimura et al. (2009) compared with 

Bunya et al. (2010) (see Table 3.4). The lower Manning coefficients might reduce 

vegetation's damping effect and consequently lead to larger inundation extents and 

deeper inundation depths. 

Despite these differences, the reliability parameters exhibited an average variation of 

less than 5% between the two coefficient sources, indicating a minimal overall impact 

on model performance. Nevertheless, these minor differences warrant careful 

interpretation, particularly when evaluating inundation extent. For instance, COP30 

with LCR models utilizing Manning coefficients from Bunya et al. (2010) demonstrated 

inundation differences averaging 26% against the actual 2004 IOT event—1% above 

the acceptable threshold (see section 3.5.2). Employing Manning coefficients from 

Koshimura et al. (2009) may increase inundation extent and enable COP30 to meet 

the first reliability criterion. However, this adjustment does not ensure compliance with 

the other two reliability criteria. 

 

Table 3.9. Validation assessments comparison from different source of Manning coefficients 

Reliability Parameter 

CoastalDEM & LCR 5 m. 

Manning coefficient source: 

DiluviumDEM & LCR 5 m. 

Manning coefficient source: 

Bunya et al. 

(2010) 

Koshimura et al. 

(2009) 

Bunya et al. 

(2010) 

Koshimura et al. 

(2009) 

First reliability criteria 

Inundation extent 

(Difference to 2004 IOT) 
16.94% 11.05% 17.10% 12.94% 

Second reliability criteria 

Flow depth agreement:     

RMSE 1.72 m 1.64 m 1.74 m 1.60 m 

Aida’s K 0.87 0.80 0.98 0.90 

Aida’s k 1.57 1.55 1.56 1.55 

Third reliability criteria 

MIH 4.0 m 4.2 m 3.7 m 3.9 m 

Confidence level 80.89% 83.01% 88.31% 90.16% 

 

3.5.4 Performance of Inundation Models: Effect of Land Cover Change 

To evaluate the sensitivity of inundation models to land cover change effects, 

simulation results from models using LCR derived from land cover maps of 2004 (LC-
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04) and 2014 (LC-14) were compared, as shown in Fig. 3.20. Both LCR models were 

at 5 m resolution and employed Manning coefficients from Bunya et al. (2010). The 

results revealed that land cover change had minimal impact on variations in total 

inundated areas. Additionally, land cover changes also had a minimal impact on 

inundation depth, as shown in Fig. 3.21. 

Despite this, the differences would still influence exposure assessments, particularly 

in high-density urban areas. Furthermore, contrasting patterns were observed for 

these two DEMs. CoastalDEM showed an increase in total inundated areas, from 

2389.44 ha in 2004 to 2397.22 ha in 2014. Conversely, DiluviumDEM projected a 

decrease of approximately 3 ha over the same period. Additionally, the flow depth 

distributions exhibited slightly different skewness rates 

 

 

Fig. 3.20. Comparison of total inundated areas (land and inland water) due to land cover changes 

between 2004-2014 period. 
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Fig. 3.21. Comparison of flow depth distributions (land and inland water) due to land cover changes. 

 

3.6. Summary of Chapter III 

In summary, the results indicate that two global error-reduced DEMs—CoastalDEM 

and DiluviumDEM—are more reliable elevation inputs for inundation modelling when 

coupled with LCR models, with DiluviumDEM demonstrating a higher confidence level 

than CoastalDEM. The effect of the LCR model spatial resolution on the inundation 

model accuracy was observed less significant.  

Nevertheless, finer-resolution LCR models are recommended, as they provide a 

superior representation of terrain features. Given that most DEMs were developed 

after the 2004 IOT event, and land cover changes demonstrated minimal effects on 

tsunami inundation patterns, the findings suggest that DEMs exert a more dominant 

influence than LCR models in determining tsunami intensity measurements. 
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CHAPTER IV: 

COMPOUNDING BIAS AND CROSS-UNCERTAINTY EXPOSURE ASSESSMENT 

4.1. Compounding Bias Assessment 

As discussed in the previous chapters, both DEMs and exposure datasets introduce 

bias into tsunami exposure assessments. To examine the effects of these 

compounding biases, exposure estimates derived from global datasets were 

compared against local reference datasets. The satellite-derived 2004 Indian Ocean 

Tsunami (IOT) inundation limit served as the hazard reference, while local datasets 

provided the exposure reference. 

The simulated hazard was derived from the scenario using the 2004 LCR model at 5 

m resolution coupled with DiluviumDEM. DiluviumDEM was selected based on its 

superior confidence level compared to CoastalDEM, as detailed in chapter 3. For the 

simulated exposure estimates, the least biased datasets were selected. Based on the 

relative bias assessment for 2004 period, the 30 m GAIA and 1 km GlobPop were 

chosen as built-up areas and gridded population datasets, respectively. 

The results revealed that DEMs introduced larger biases than exposure datasets 

(Table 4.1). For built-up areas, GAIA caused a 6% overestimation, while DiluviumDEM 

introduced a 52% underestimation. Integrating both datasets reduced the 

underestimation to 34.7%, although this remained nearly six times larger than the bias 

introduced by GAIA alone. 

 

Table 4.1. Estimation of built-up areas and populations exposed to the 2004 IOT.  

Exposure dataset 
Tsunami inundation limit 

Observed Simulation (DiluviumDEM) 

Exposed built-up areas 

Reference (BU-04) 1535.71 ha 736.58 ha 

Global dataset (GAIA) 1627.80 ha 1002.11 ha 

Exposed population 

Reference (POP-04) 176,003 104,189 

Global dataset (GlobPop) 114,882 65,416 
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A consistent bias trend was observed in population exposure estimates. GlobPop 

alone caused a 35% underestimation, whereas the DEM increased the 

underestimation to 40.8%. The combination of GlobPop and DiluviumDEM further 

increased the underestimation rate to 62.8%. This indicates that compounding biases 

are substantially larger than individual biases, particularly those from exposure 

datasets. 

4.2. Modelling Expected Future Tsunamigenic Event 

Previous research by Jihad et al. (2020) suggested that an Mw 8.7 earthquake could 

potentially occur within the Sunda-Andaman segment due to the seismic gap. 

Earthquakes with this typical magnitude can generate tsunamis within the area of 

interest (AOI), as reported by Horspool et al. (2014). To forecast the tsunami risk from 

future tsunamigenic events, the probabilistic tsunami models were employed (Grezio 

et al., 2017). To date, probabilistic models, also known as probabilistic tsunami hazard 

assessments (PTHA), are predominantly used for pre-disaster risk assessments. 

Briefly, PTHA quantifies the relationship between tsunami heights and their 

exceedance probabilities over a specified period (Behrens et al., 2021).  

PTHA addresses the uncertainty caused by variations in earthquake properties 

(seismic source, fault segmentation, slip distribution, and maximum magnitude) by 

simulating a set of random hypothetical tsunamigenic scenarios that pose a threat to 

the site of interest. One of the outputs of PTHA is the hazard curve (Fig. 4.1), which 

depicts the annual rate of tsunamigenic events (i.e., events per year) affecting specific 

locations exceeding a certain wave height. 

 

 

Fig. 4.1. Schematic illustration of the tsunami hazard curve. Modified from Geist and Lynett (2014) 
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An often-implicit assumption in numerous probabilistic analyses of tsunamis and other 

natural hazards is that these events occur randomly over time and are independent of 

one another, a concept known as the Poisson process. In this process, the interval 

between tsunami occurrences follows an exponential distribution. Consequently, the 

hazard curve illustrates the probability that one or more tsunamis will reach or surpass 

the specified wave height on the horizontal axis within a given exposure time (T), as 

expressed by P(R ≥ R0) = 1 – exp(–λT), where λ represents the constant rate of 

occurrence of these tsunamis over time, as depicted in Fig. 4.1 (Geist and Lynett, 

2014). 

Recently, numerous PTHA have been conducted, including local, regional, and global 

scale assessments. These assessments have resulted in synthetic earthquake 

databases. One of them is the PTHA18 database, which is publicly accessible and 

consists of hundreds of thousands of synthetic earthquake scenarios, developed from 

both uniform and heterogeneous slip models (Davies and Griffin,  2018). Synthetic 

earthquake scenarios in the PTHA18 database have been validated against several 

historical tsunamis (Davies and Griffin, 2020; Davies, 2019).  

PTHA18 modelled earthquake-tsunami scenarios and their frequencies at a global 

scale. These scenarios were modelled using several seismic sources (Fig. 4.2a), 

including the Sunda Subduction zone, which is the closest earthquake source zone to 

our area of interest (AOI). On each source zone, a large suite of hypothetical 

earthquake scenarios was created, with earthquake magnitudes ranging from Mw 7.2 

to Mw 9.6. All earthquakes are represented as linear combinations of slip on the unit 

sources, with the dimension of each unit source being 50x50 km2 (Fig. 4.2b). The 

moment magnitude values are related to the earthquake’s slip and area by the 

following definitions: 

 

𝑀0 =  ∑ 𝑆𝑗𝐴𝑗𝜇𝑗                                                                                                                           (33)𝑗 ∈ 𝑢𝑛𝑖𝑡 𝑠𝑜𝑢𝑟𝑐𝑒𝑠                                                                                                

𝑀𝑤 =
2

3
(𝑙𝑜𝑔10(𝑀0) − 9.05)                                                                                                                            (34)              

 

where M0 is the seismic moment (kg m2/s2), Mw is the moment magnitude, Sj is the slip 

(m) on the j’th unit-source, Aj is the j’th unit-source area (m2), and μj is the j’th unit-

source shear modulus (kg/ms2).  
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The optimal method for translating an offshore PTHA scenario into an onshore hazard 

at a specific site involves simulating inundation for each scenario e ∈ E, where E 

represents the set of all offshore PTHA scenarios or a subset of interest, such as all 

scenarios within a particular source zone (Power et al., 2017; Davies & Griffin, 2020; 

Basili et al., 2021). For each individual earthquake scenario, PTHA18 estimates the 

frequency at which earthquake-tsunami waves exceeding a specified "size" occur at 

thousands of observation points, also referred to as hazard points. These observation 

points are distributed globally and are located offshore at a depth of approximately 100 

m (Fig. 4.2a and 4.2b). Therefore, the estimated tsunami heights at these offshore 

hazard points cannot be directly used to represent onshore tsunami conditions. 

Assuming that the offshore PTHA18 accounts for hazard uncertainties through 

multiple scenario-frequency models i ∈ I, where I denotes the set of all alternative 

scenario-frequency models, the exceedance rate (λi) for each scenario-frequency 

model can be quantified as 

 

𝜆𝑖(𝑄 > 𝑄𝑇) = ∑ 𝑟𝑖(𝑒) 1(𝑄(𝑒)>𝑄𝑇)                                                                                                                (35)

𝑒∈𝐸

 

 

In this context, λi(Q>QT) represents the exceedance rate, defined as the average 

number of events per year, for which a specific quantity of interest Q, such as tsunami 

height, surpasses a given threshold QT, under the scenario-frequency model i. Each 

scenario e possesses its own quantity of interest Q(e), which is determined through 

high-resolution inundation modelling. The offshore PTHA specifies the long-term 

occurrence rate of each scenario e, denoted as ri(e) (events/year), contingent upon 

the scenario-frequency model i. The indicator function 1(Q(e) > QT) assumes a value of 1 

if Q(e)>QT and 0 if otherwise. The uncertainty in the exceedance rate, characterized 

by variation with i ∈ I, can be summarized using the mean and percentiles, as 

illustrated in Fig. 4.2c.  
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Fig. 4.2. (a) Distribution of offshore hazard points and seismic unit sources in PTHA18. (b) The relevant 

hazard points near the AOI. (c). The corresponding exceedance-rate for hazard points near the AOI.  

 

4.3 Defining Relevant Offshore Hazard Points 

The PTHA18 database has been used for tsunami hazard assessments in Samoa 

(Giblin and Damlamian, 2022) and Tonga (Davies et al., 2022). To select the relevant 

scenarios for design earthquakes in PTHA18, a relevant hazard point must first be 

defined (Giblin et al., 2022). Four hazard points surround the AOI (Fig. 4.2b), of which 

two were considered most relevant, given their proximity to the Sunda subduction zone 

and perpendicular orientation to the AOI (Fig. 4.3a). To select the most relevant hazard 

point, the following steps were applied: 

1. The 2004 IOT was reproduced using PTHA18 hypothetical scenarios. 

2. The best-fitting scenario was selected. 

3. The simulated wave profile from the best-fitting scenario at the hazard points 

was compared with reference data. 

To reproduce the 2004 IOT, the return-period method based on Giblin et al. (2022) was 

followed. Codes to apply this method are provided in the Appendix. The synthetic 

earthquake scenarios of PTHA18 were filtered at a certain magnitude and specified 
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return periods. This produced a small scenario subset and reduced computational time, 

although it cannot explicitly quantify uncertainty. Given the objective of selecting the 

most relevant hazard point, uncertainty was initially neglected. To define the best-fitting 

scenario, the simulated wave profiles at two onshore points (Fig. 4.3b) were compared 

with the simulated wave profile from the inversion fault model by Koshimura et al. 

(2009) (see Section 3.4). The inversion fault model was assumed as the reference. 

Mw 9.2 was set as the defined magnitude to represent the 2004 IOT and 758 years as 

the annual recurrence interval (return period) for the 2004 IOT. Both values were 

obtained from Davies (2019). Based on Fujii et al. (2021), the slip rate for Mw 9.2 

scenarios was defined as ranging from 5 to 20 m. Given these criteria, 36 hypothetical 

earthquake scenarios based on the uniform slip model and 93 scenarios based on the 

heterogeneous slip model were identified. A list of the selected scenarios is provided 

in the appendix. 

 

 

Fig. 4.3. The location of: (a) offshore hazard points (OH) and onshore control points (OSH) 

 

Because the focus was on the Sunda-Andaman segment, the analysis was further 

limited to earthquake scenarios whose centroids (epicentres) were located within the 

Sunda-Andaman region, yielding 12 scenarios. The focal mechanism for all scenarios 

is thrust, which is also referred to as the reverse fault (Fig. 4.4). The details of the focal 

mechanism are listed in Table 4.2. PTHA18 provides the initial sea surface 

deformation files for each scenario in its database. Using the initial sea surface 
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information (Fig. 4.5), tsunami simulations were performed. The same numerical 

model configuration as in Section 3.4 was employed. However, the focus was only on 

tsunami wave profiles at offshore and onshore locations, whereas the inundation 

assessments were neglected. 

 

 

Fig. 4.4. Illustration of earthquake focal mechanisms and notation definition for parameters in Table 4.2 

 

Table 4.2. Earthquake focal mechanism with slip model ─ HS: Heterogeneous; U: Uniform 

No. Scenario ID Slip model Depth of epicentre (km) Dip (0) Rake (0) Strike (0) 

1 104248 HS 10 10 90 273 

2 104390 HS 40 21 90 270 

3 104433 HS 9 9 90 275 

4 107452 U 22 16 90 272 

5 105933 HS 9 9 90 276 

6 106012 HS 40 22 90 277 

7 106036 HS 9 10 90 277 

8 107580 U 39 24 90 283 

9 107469 HS 9 10 90 277 

10 107487 HS 23 19 90 275 

11 107606 HS 10 11 90 277 

12 107661 HS 24 20 90 275 

 

The comparison of wave profiles at onshore points indicated that most synthetic 

scenarios had similar waveforms, consisting of a leading depression followed by an 

elevated wave, as shown in Fig. 4.6. However, compared to the reference model, the 
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wave peak positions of all scenarios were not perfectly aligned, particularly at OSH-1. 

Scenarios 104433 and 107469 showed better alignment, especially for the leading 

depression wave. Additionally, these scenario produced the wavelength which 

resembles that of the reference model. However, they exhibited a slimmer shape in 

OHS-2.  

 

 

Fig. 4.5. Initial sea surface deformation for the Mw 9.2 selected scenarios. ID represents the scenario 

identification in the PTHA18 database. The black-gridded box shows Sunda subduction. 

 

Although the reliability of PTHA18 has been validated by previous research (Davies 

and Griffin, 2020; Davies, 2019), the similarity in wave profiles from scenarios 104433 

and 107469 also indicates that synthetic earthquake models from PTHA18 are 

capable of reproducing historical tsunamis within our AOI. Both scenarios were based 

on a heterogeneous slip model. This confirms that  the actual slip distribution is 

heterogeneous rather than uniform, as observed by Fujita et al. (2024). Furthermore, 
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the onshore wave profile comparison indicated that scenario 104433 provided a better 

fit than scenario 107469. The evaluation of wave profiles at offshore hazard points was 

then based on the output from scenario 104433.  

 

 

Fig. 4.6. Surface wave profiles at onshore points (OSH). The black and red lines represent the inversion 

fault model (reference) and the PTHA18 scenarios, respectively, while E indicates event or scenario. 

 

Two key metrics were used to evaluate the accuracy of the tsunami offshore wave 

profile comparisons. The first is the normalized root-mean-square error (NRMSE). This 

metric measures the differences in water surface elevation between the reference and 



87 

 

scenario 104433, with lower values (0-1 scale) indicating better agreement in tsunami 

amplitude, expressed as: 

 

𝑁𝑅𝑀𝑆𝐸 =

1
𝑁

∑ (𝜂𝑟𝑒𝑓(𝑡𝑖) −𝑁
𝑖=1 𝜂104433(𝑡𝑖))2

max(𝜂𝑟𝑒𝑓) − min(𝜂𝑟𝑒𝑓)
                                                                                              (36) 

where ηref (ti) and η104433 (ti) are water surface elevation at time ti from the reference 

and scenario 104433, respectively.  

Second, the cross-correlation maximum. The cross-correlation analysis was 

performed to assess waveform similarity and timing alignment between two time series 

(i.e., the reference and scenario 104433) as a function of time lag. The time lag, τ, 

reveals whether the hypothetical scenario predicted tsunami wave arrivals too early or 

too late, while the cross-correlation maximum represents the highest correlation value 

across all time lags and value closer to 1 signify nearly identical waveform patterns. 

The cross-correlation, CC(τ), can be expressed as:  

 

𝐶𝐶(𝜏) =
∑ (𝜂

𝑟𝑒𝑓
(𝑡𝑖)

𝑁
𝑖=1 . 𝜂

104433
(𝑡𝑖 + 𝜏))

√∑ (𝜂
𝑟𝑒𝑓
2 (𝑡𝑖). √∑ (𝜂

104433
2 (𝑡𝑖)

𝑁
𝑖=1

𝑁
𝑖=1

                                                                                           (37) 

 

The results showed that scenario 104433 showed a strong agreement in tsunami 

amplitude, with NRMSE values of 0.16 at offshore point 1 (OH-1) and 0.17 at point 2 

(OH-2) (Fig. 4.7; see also Fig. 4.3). In terms of waveform shape, OH-1 exhibited better 

similarity than OH-2, with cross-correlation maximum values of 0.9 and 0.72, 

respectively. Considering all metrics, OHS-1 ─with ID 6638.3 in the PTHA18 

database─ was selected as the most relevant hazard point and used as the reference 

for sampling Mw 8.7 scenarios from the database.  
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Fig. 4.7. Wave profiles at two offshore hazard points (OH). The black line represents the inversion fault 

model (reference). The red lines indicate PTHA18 scenario 104433.  

 

4.4 Sampling Mw 8.7 Earthquake Scenarios from PTHA18 Database 

As mentioned in the previous sections, an ideal approach to solve the hazard 

uncertainty is by simulating all scenarios from the design earthquake magnitude. 

However, this approach requires an intensive number of inundation simulations and is 

ultimately computationally infeasible. Therefore, this study adopted the stratified 

random importance sampling approach developed by Davies et al. (2022). This 

approach focuses on a subset of scenarios that potentially generate large inundation. 

As with stratified sampling, the set of all scenarios E is split into multiple bins Eb 

corresponding to magnitude ranges Mw,b. Then, a fixed number of scenarios, N(Mw,b), 

were randomly sampled from each bin based on their importance, I(e), using weighted 

random sampling. The sampling weight is expressed as  

 

𝑤𝑏,𝑖
𝑆𝐼𝑆(𝑒) =

𝐼(𝑒)𝑟∗(𝑒)

∑ 𝐼(𝑒)𝑟∗(𝑒)𝑒∈𝐸𝑏

                                                                                                                                  (38)         

   

where r∗(e) should be non-zero for all scenarios that have ri(e) > 0. If only one scenario 

frequency model i ∈ I is used, the natural choice is r∗(e) = ri(e). Using this weighting 

sampling method, then the ‘all scenarios’ exceedance-rate curve of all scenarios 

(equation 35) may be represented by a random scenario by:  
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𝜆𝑖
𝑆𝐼𝑆(𝑄 > 𝑄𝑇) = ∑ 𝜆𝑖

𝑆𝐼𝑆(𝑄 > 𝑄𝑇 ∣ 𝑀𝑤,𝑏)                                                                       (39)

𝑀𝑤,𝑏∈𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑒 𝑏𝑖𝑛𝑠

 

𝜆𝑖
𝑆𝐼𝑆(𝑄 > 𝑄𝑇 ∣ 𝑀𝑤,𝑏) = 𝜆𝑖(𝑀𝑤,𝑏)𝑞𝑏,𝑖,𝑇̂                                                                                                         (40) 

𝜆𝑖(𝑀𝑤,𝑏) = ∑ 𝑟𝑖(𝑒)                                                                                                                                          (41)

𝑒∈𝐸

 

𝑞𝑏,𝑖,𝑇̂ =
(∑ ∅𝑏,𝑖

𝑆𝐼𝑆 (𝑒) 1(𝑄(𝑒)>𝑄𝑇)𝑒∈𝐸𝑏,𝑖
𝑆𝐼𝑆 )

𝑁(𝑀𝑤,𝑏)
                                                                                                          (42) 

∅𝑏,𝑖
𝑆𝐼𝑆(e) = (

𝑟𝑖(𝑒) 

𝜆𝑖(𝑀𝑤,𝑏)
) /   𝑤𝑏,𝑖

𝑆𝐼𝑆(𝑒)                                                                                                                 (43) 

 

The application of equation 39 results in the exceedance rate curve shown in Fig. 4.2c. 

The variance, denoted as σ2, can be computed analytically as follows if the tsunami 

height Q(e) at hazard points is known: 

 

𝜎2 ( 𝜆𝑖
𝑆𝐼𝑆(𝑄 > 𝑄𝑇))   = ∑ 𝜎2(𝜆𝑖

𝑆𝐼𝑆(𝑄 > 𝑄𝑇 ∣ 𝑀𝑤,𝑏) )                                                (44)

𝑀𝑤,𝑏∈𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑒 𝑏𝑖𝑛𝑠

 

𝜎2(𝜆𝑖
𝑆𝐼𝑆(𝑄 > 𝑄𝑇 ∣ 𝑀𝑤,𝑏) )     =

(𝜆𝑖(𝑀𝑤,𝑏))
2

𝑁(𝑀𝑤,𝑏)
∑ ([ 1(𝑄(𝑒)>𝑄𝑇)∅𝑏,𝑖

𝑆𝐼𝑆(𝑒) − 𝑃𝑏,𝑖,𝑇]
2

𝑤𝑏,𝑖
𝑆𝐼𝑆(𝑒))           (45)

𝑒∈𝐸

 

𝑃𝑏,𝑖,𝑇     =
∑ 𝑟𝑖(𝑒) 1(𝑄(𝑒)>𝑄𝑇)    𝑒∈𝐸

∑ 𝑟𝑖(𝑒)    𝑒∈𝐸
                                                                                                                 (46) 

 

The central argument is that if numerous independent estimates of the Monte Carlo 

exceedance rate (equation 39) are generated through repeated sampling, the variance 

of these estimates will converge to that described by equation 44 as the number of 

repetitions increases. Given that equation 39 is unbiased, the variance of the Monte 

Carlo exceedance rates is equivalent to the variance of the Monte Carlo error, which 

has a mean of zero.  
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The variance of the Monte Carlo exceedance rate (equation 44) can be calculated to 

determine whether E represents the entire set of scenarios in the PTHA or a specific 

subset, such as a particular source zone. When the results are computed separately 

for distinct subsets, the variance of their combined results can be determined by 

summing the individual variances. It is relatively straightforward to compute equation 

44 at a selected offshore hazard point, as exemplified by Davies and Griffin (2018). 

To select the relevant subset scenarios for Mw 8.7, the 1 m wave height was set as  

the defined threshold, QT, following the minimum wave category set in the Indonesian 

Tsunami Early Warning System (InaTEWS) to trigger an evacuation warning (Jihad et 

al., 2023). Finally, to ensure that the selected samples sufficiently represent variability 

across all scenarios, the exceedance rate curves from equation 39 were compared 

with the median exceedance rate from all scenarios. To quantify the accuracy of this 

comparison, Davies et al. (2022) suggested that the confidence interval should be 

~95%. The confidence interval can be approximated by: 

 

𝜆𝑖
𝑆𝐼𝑆(𝑄 > 𝑄𝑇) ± 1.96√𝜎2(𝜆𝑖

𝑆𝑆(𝑄 > 𝑄𝑇))                                                                                     (47)  

 

Initially, all magnitudes available in the PTHA18 database were sampled and trial and 

error was used to determine the optimal number of scenarios. Repetitive sampling was 

performed, with 10,000 repetitions for the sample sizes of 300, 600, and 1200 

scenarios. The approximated confidence interval improved from 93.71% (300 

samples) to 94.21% (600 samples) and further increased to 94.59% (1200 samples). 

Fig. 4.8 illustrates the comparison of exceedance rates computed by equation 39 

against the median of all scenarios. 

4.5 Optimal Sample for Mw 8.7 Hypothetical Scenarios 

A total of 600 scenarios, Ntot, were selected for the sampling strategy because the 

computed confidence levels for the total scenarios of 600 and 1,200 were nearly 

similar. This decision also considered computational limitations. It should be noted that 

this total of 600 scenarios was to sample all magnitudes, ranging from Mw 7.2 to Mw 

9.6. The main difference between stratification by magnitude and stratification by 
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importance is that the sample size for each magnitude bin is not identical (Davies et 

al., 2022). 

 

 

Fig. 4.8. Stratified importance sampling and their corresponding confidence intervals, with total 

scenarios of (top panel) 300, (middle panel) 600, and (bottom panel) 1200, respectively.  

 

The optimal sample size for each magnitude bin, Ni, which can minimize the variance 

of the Monte Carlo errors (equation 39)–for any given Ntot, scenario-frequency model 

i, and threshold QT–can be computed by:   

 

𝑁𝑡𝑜𝑡 = ∑ 𝑁(𝑀𝑤,𝑏)                                                                                                                (48)

𝑀𝑤,𝑏∈𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑒 𝑏𝑖𝑛𝑠
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𝑁𝑖(𝑀𝑤,𝑏 ∣ 𝑄𝑇) =
𝑁𝑡𝑜𝑡√𝛼𝑖(𝑀𝑤,𝑏 ∣ 𝑄𝑇)

∑ √𝛼𝑖(𝑀𝑤,𝑏 ∣ 𝑄𝑇)                        𝑀𝑤,𝑏∈𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑒 𝑏𝑖𝑛𝑠

                                                   (49) 

𝛼𝑖(𝑀𝑤,𝑏 ∣ 𝑄𝑇) = (𝜆𝑖(𝑀𝑤,𝑏))
2
 (∑ ([ 1(𝑄(𝑒)>𝑄𝑇)∅𝑏,𝑖

𝑆𝐼𝑆(𝑒) − 𝑃𝑏,𝑖,𝑇]
2

𝑤𝑏,𝑖
𝑆𝐼𝑆(𝑒))𝑒∈𝐸 )                              (50) 

 

The calculated optimal sample for each magnitude bin is shown in Fig. 4.9, with 40 

scenarios selected for the Mw 8.7. Fig. 4.10 shows the initial sea surface deformation 

for the selected scenarios. The stratified importance sampling and extraction of initial 

sea surface deformation from the selected scenarios were performed using codes 

provided by Davies et al. (2022). A link to access the codes is provided in the Appendix.  

 

  

Fig. 4.9. Optimal sample for each magnitude bin. The black bars indicate equal sample sizes for each 

magnitude bin, given a total scenario of 600. The coloured bars show optimal sample sizes calculated 

for two different tsunami height thresholds, QT, demonstrating the variation in sampling strategy based 

on threshold selection. The analysis focused on a threshold of 1 m. 

 

4.6 Tsunami Inundation Simulation for Mw 8.7 Scenarios 

Inundation simulations were performed using the initial sea surface deformation 

information from the selected scenarios. The same numerical model configuration 

used to reproduce the 2004 IOT was employed (see Fig. 3.8). DiluviumDEM was set 

as the elevation model and the LCR model at 5 m resolution was used for the 

roughness model. To represent current terrain features, the LCR model was derived 

from the 2024 land cover map (see Fig. 2.15c), with Manning coefficients based on 

Bunya et al. (2010). In total, 40 scenarios were simulated, each representing two hours 

of tsunami conditions.  
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Fig. 4.10. Initial sea surface deformation for selected scenarios of Mw 8.7. The colour bar indicates the 

water surface elevation (in m). 

 

The numerical simulation resulted in 40 inundation maps at 10 m resolution. To 

quantify the uncertainty in inundation extent generated by Mw 8.7 earthquakes, a 

percentile-based aggregation approach was applied. Each inundation map was 

stacked into a spatial ensemble, and the inundation values at each grid cell were 

statistically analysed. For every pixel location across the study area, the 16th, 50th 
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(median), and 84th percentiles of inundation depth were computed from the 

distribution of the 40 simulations. The 16th percentile provides a conservative estimate, 

indicating inundation depths that exceed 84% of the scenarios, which is useful for 

lower-bound hazard assessments. The 50th percentile (median) represents the central 

tendency and offers a typical expected inundation extent. The 84th percentile, in 

contrast, reflects an upper-bound estimate, indicating that inundation depths 

exceeded in only 16% of the scenarios, which helps identify worst-case conditions for 

risk planning. 

This method accounts for variability across simulations while avoiding assumptions 

about underlying probability distributions, making it robust for decision-making in 

tsunami hazard mitigation. The resulting probabilistic maps allowed for spatially 

explicit hazard quantification, supporting differentiated risk assessments across 

coastal zones (Fig. 4.11).  

 

 

Fig. 4.11. Probabilistic tsunami inundation maps of Mw 8.7 scenarios showing the 16th, 50th, and 84th 

percentiles of maximum inundation depth.  

 

4.7. Cross-uncertainty Population Exposure Estimates 

The resulting probabilistic maps only account for uncertainty owing to variability in the 

tsunami sources (Grezio et al., 2017). However, the bias introduced by the elevation 

model has not been explicitly addressed. Given this, the probabilistic inundation maps 

were integrated with confidence levels derived from the elevation model used (see 

Section 3.5). First, the median inundation depth for each raster map was calculated 

(Fig. 4.12a-4.12c). Using the RMSE of DiluviumDEM (i.e., 1.18 m), the confidence 

level for each raster pixel was computed (Fig. 4.12d-4.12f). Subsequently, the raster 
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pixels with confidence levels higher than 68% and 95% were selected. Alternatively, 

using equations 31 and 32, the raster pixels with inundation depths less than 2.36 m 

for the 68% confidence level and less than 4.63 m for the 95% confidence level could 

be directly excluded. This process resulted in cross-uncertainty inundation maps, as 

illustrated in Fig. 4.12g to 4.12l. 

 

Fig. 4.12. (a-c) Probabilistic inundation maps. (d-f) Computed confidence levels for corresponding 

probabilistic inundation maps. (g-l). Cross-uncertainty inundation maps show the 16th, 50th, and 84th 

percentiles of the maximum inundation depth, with confidence levels of 68% and 95%, respectively.  

 

Using the cross-uncertainty inundation maps and generated gridded population for 

2024 (POP-24; see Fig. 2.16), the estimated number of Banda Aceh's population 

affected by the Mw 8.7 tsunami was calculated. The exposure assessment projected 

that the population potentially exposed to a tsunami of Mw 8.7 tsunami would range 

from a minimum of 563 people to a maximum of 36,306 people—14% of the total 

population (Fig. 4.13). Because the inundation maps with 95% confidence resulted in 

less inundation, they ultimately projected lower exposure estimates of 0.2% to 1.6% 

of the total population. In contrast, the inundation maps with 68% confidence projected 

much higher exposure estimates of 6–14% of the total population. For disaster risk 

preparedness, the median percentile (50th percentile) with a 95% confidence level 
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served as the lower-bound credible exposure estimates (i.e. 1,998 people) and the 

68% confidence level as the upper-bound credible exposure estimates (i.e. 24,696 

people). 

 

 
Fig. 4.13. The projection of Banda Aceh’s population exposed to the Mw 8.7 tsunami. The red line 

serves as a lower-bound credible estimates and the blue line indicates an upper-bound credible 

estimates.  

 

4.8. Summary of Chapter IV 

In summary, this chapter's analysis revealed that combining global elevation models 

with exposure datasets led to larger bias to the exposure assessment. The results 

showed that elevation models introduced a larger bias than exposure datasets alone. 

Additionally, the cross-uncertainty inundation assessment for a Mw 8.7 tsunami 

scenario demonstrated that approximately 10% of the current population of Banda 

Aceh faces potential tsunami exposure.  
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CHAPTER V: 

EXPOSURE AND MITIGATION SYSTEM 

5.1. Evacuation System: Tsunami Shelter Capacity Vs. Exposed Population 

The area of interest (AOI) is not equipped with tsunami coastal defense structure, such 

as sea wall (Syamsidik et al., 2019). As a result, this city relies on evacuation system 

to mitigate the tsunami risk. Five tsunami escape buildings were located in coastal-

front region, as shown in Fig. 5.1. Murao et al. (2025) found that the effective capacity 

of these shelters are 5,560. This already included the use of space at roof.   

 

 

Fig. 5.1. Location of tsunami escape buildings (yellow circles) and their capacity. 
 

Using the median lower-bound credible population exposure estimates, the analysis 

indicates that if the Mw 8.7 tsunami occurred in AOI, then the existing shelters could 

accommodate all 1,998 evacuees. The evacuees only occupied 36% of total shelters 

capacity. In contrast, when using the median upper-bound credible estimates, the 

existing shelters could only accommodate 23% of total evacuees, leaving 19,136 

people unsheltered.  
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Nevertheless, it should be noted that these results merely compare projected exposed 

populations and shelter capacity. This study did not account for influence of evacuation 

behaviour, tsunami time arrival, route choice, and disaster knowledge. Despite these 

limitations, the analysis suggests that evacuation shelter capacity requires significant 

expansion to adequately serve the population under worst-case tsunami scenarios.  

5.2. Spatial Planning: Spatial Land use Vs. Building Dynamics 

As discussed in section 1.3, following the 2004 Indian Ocean Tsunami (IOT), local 

authority introduced a physical zoning system to regulate urban development in 

tsunami-prone areas (Fig. 5.2a). This zonation framework was subsequently 

integrated into spatial land use planning, incorporating historical hazard data while 

maintaining flexibility for controlled urban development (Fig. 5.2b). The land use 

planning itself was introduced in 2009 and later experienced some minor modification 

in 2017 (Banda Aceh Municipality, 2018). This study classified the land use planning 

into building and non-building areas.   

The land use planning is also designed as a soft-mitigation strategy for tsunami 

disaster in the AOI. This such strategy is also highlighted in the Sendai Framework for 

Disaster Risk Reduction 2015-2030, especially for tsunami-prone regions with 

significant financial constraints, such as Indonesia and Chile (Takabatake, 2022; 

UNDDR, 2015). The integration of land-use planning with tsunami hazard mapping 

results in strategic urban spatial planning, assisting the planners in developing coastal 

cities while minimizing exposure to coastal hazards (Geiß et al., 2024; Rafliana et al., 

2022; Vicuña et al., 2022).  

In this context, monitoring urban evolution is essential to ensure the implementation 

of land-use planning, particularly where urban expansion cannot be regulated (León 

et al., 2022). Spatiotemporal building data are one of the key elements to characterize 

the evolution of built environments (Fuchs et al., 2015). To understand the degree to 

which the land use planning and temporal urban evolution have been consistent, the 

designated land use planning was compared with building evolution from 2018-2024, 

since the land use map was last modified in 2017. 

However, the availability of authoritative spatiotemporal building data remains limited 

to high-income countries (Chamberlain et al., 2024). As an alternative, urban analysis 

in data-scarce regions largely relies on globally open building datasets, including the 
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volunteered geographic information (VGI) of OpenStreetMap (OSM) and published 

data from commercial companies, such as Microsoft’s Global ML Building footprints 

(Microsoft, 2024) and Google Open Buildings Polygons (Sirko et al., 2021). While open 

building footprints could fill the gap where authoritative data are unavailable or 

incomplete, several issues regarding the quality of these datasets prevail (Herfort et 

al., 2023; Zhou et al., 2022). 

 

Fig. 5.2. (a) Physical zoning, and (b) Spatial land use planning map of 2009-2029 (Basemap: ESRI 

Light Gray). 

 

OSM dataset is produced and edited through manual digitization performed by 

thousands of individual volunteered mappers and contributing organizations. 

Consequently, its accuracy and completeness are geographically varied (equation 53) 

(Chamberlain et al., 2024). Europe and North America regions have relatively higher 

levels of completeness (Herfort et al., 2023), while tsunami-prone regions, such as 

Chile and Indonesia, demonstrated lower levels of completeness by 32% and 26%, 

respectively (Zhou et al., 2022).  
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The temporal information of OSM building footprints can be derived using the 

OpenStreetMap History Database (OSHDB) framework (Raifer et al., 2019). OSHDB 

analysed the OSM’s full database using object modification attribute information, e.g., 

added, removed, or modified. Given this, it may not completely record the building 

inventory for certain periods due to insufficient volunteered building mapping activity. 

For example, the addition of building footprints into OSM database stagnated in 2019 

and resumed an increase in 2021 after the COVID-19 pandemic (Herfort et al., 2023). 

It should be noted that incomplete spatiotemporal datasets might mislead the risk 

evolution assessment (Fuchs et al., 2015). Meanwhile, both Microsoft and Google 

building datasets ─derived from automated feature identification based on machine-

learning techniques─ are not accompanied by temporal attributes. This could limit their 

applicability to risk evolution analyses. 

To develop spatiotemporal building data for the 2018-2024 period within the AOI, a 

simple backdating technique was applied. The 2024 building dataset served as the 

foundation for this analysis, compiled from OSM and Microsoft's Global ML Building 

footprints (Table 5.1), yielding 82,563 and 59,290 building footprints respectively. The 

Google Open Building dataset was excluded due to its limited coverage within the AOI 

region. 

The backdating technique, also referred to as rapid backdating footprints generation 

(RBF), operates on the assumption that buildings are located within built-up areas. 

Built-up masks derived from satellite imagery were therefore used to identify which 

buildings from the 2024 dataset would have existed in 2018 and 2021, enabling the 

reconstruction of historical building distributions for these earlier time periods.  

To evaluate the backdating performance, the backdating-generated footprints were 

compared against ground truth (GT) polygons. These GT polygons were derived from 

on-screen digitization of three historical images in Google Earth Pro (see Table 5.1). 

Several accuracy metrics were employed, including intersection over union (IoU), 

agreement rate, and completeness (equations 51-53) (see Fig. 5.3 for symbol 

denotations). Conversely, the building count was not included as an accuracy indicator 

because of inconsistent feature representations across datasets. For example, 

structures such as terraced housing can be mapped as either single or multiple 

polygon features (Herfort et al., 2023).  
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𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                                                                                                       (51) 

𝐴𝑔𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 𝑥 100%                                                                                                               (52) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 (%) =
𝐴𝑟𝑒𝑎 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑    

𝐴𝑟𝑒𝑎 𝐺𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 
 𝑥100%                                                                               (53) 

 

 
Fig. 5.3. (a) Overlayer of all building datasets. (b and c). Illustrations of true positive (TP), false positive 

(FP) and false negative (FN) relative to GT polygons. Background: Google Earth Pro Imagery.  

 

Table 5.1. Input for built-up areas and backdating building footprint generation 

Date Type Description 

12 June 2018 Optical image  
 

Dove Classic PS2, scene’s ID: 
20180612_033219_1015_3B 
20180612_033220_1015_3B 
20180612_033221_1015_3B 

08 August 2021  SuperDove PSB.SD, scene’s ID: 
20210807_031345_46_2450_3B 

15 June 2018 Building footprints OSM-OSHDB, polygon counts: 
AOI: 66,951; ROI: 33,716 

10 August 2021  AOI: 68,087; ROI: 33,880 

01 July 2024  AOI: 82,563; ROI: 41,050 

2016 – 2020   Microsoft’s Global ML Buildings (MS) 
AOI: 59,290; ROI: 28,612 

August 2018 Ground truth polygons (GT) Google Earth Pro Imagery, counts: 
Building polygons: 44,144 (ROI) 

September 2021  Building polygons: 48,402 (ROI) 

March 2024  Building polygons: 50,939 (ROI) 
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5.2.1 Spatiotemporal Built-up Masks (2018-2024) 

Given that built-up area information was already available for 2024 (see Fig. 2.16), 

built-up area maps were only developed for 2018 and 2021 periods. To obtain this 

information, the land cover classification was re-performed using the OBIA-RF method 

as described in section 2.5.1.d. Multitemporal four-band imagery of PlanetScope with 

3 m geometric resolution was used (Table 5.1), retrieved via Planet Explorer 

(www.planet.com/explorer). All scenes were cloud-free and corresponded to 

orthorectified analytic surface reflectance products. 

To increase the radiometric consistency of PlanetScope images from two different 

sensors (i.e., Dove Classic-PS2 and SuperDove-PSB.SD), all scenes were 

normalized to match Sentinel-2 spectral response. Spectral normalization was 

performed using the harmonize operation available in Planet Explorer (Planet, 2024). 

Fig. 5.4 shows the input image datasets and ground truth labelled data. 

The spatial misalignment between PlanetScope multitemporal images was less than 

10 m (Planet, 2023), with Leach et al. (2019) consistently finding that the spatial error 

was approximately 6 m. Given this accuracy, spatial co-registration was not performed 

because the geolocation accuracy was already considered sufficient for change 

detection analysis (Wegmueller et al., 2021). 

The land cover classification for 2018 and 2021 achieved overall accuracies of 92.80% 

and 92.10%, respectively, with an average F1 score of 0.99 (Table 5.2). The lowest F1 

score was observed in the bare class, with scores below 0.7 across all temporal 

variations. This lower accuracy might be attributed to misclassification between bare 

and built-up area pixels (Ettehadi Osgouei et al., 2019). Meanwhile, the classification 

accuracy of built-up areas was excellent, with F1 scores of 0.97 for 2018 and 0.96 for 

2021. The 2018 and 2021 land cover maps were resampled to 5 m spatial resolution 

to ensure consistency with the 2024 land cover map (Fig. 5.5). 

The land cover class-area estimates revealed that built-up areas were the dominant 

land cover type in BNA, covering approximately 62.89% (37.08 km²) of the BNA region. 

Built-up areas demonstrated a clear expansion trend between 2018-2024 (2018: 28.91 

km²; 2021: 32.70 km²). This expansion subsequently caused a decline in other land 

classes, with a significant 44% decrease observed in the vegetation class. The 

http://www.planet.com/explorer
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vegetation area estimate was 16.6 km² in 2018, decreased to 14.36 km² in 2021, and 

dropped to 9.30 km² by 2024. 

 

 
Fig. 5.4. Input datasets for land cover classification in 2018 and 2021. 

 

Table 5.2. Land cover fraction, confusion matrix and classification accuracy 

LC-18. Class-area estimates (in km2)─I: 9.46; II: 0.81; III: 16.60; IV: 3.17;  V: 28.91 

 Truth Label Accuracy Metrics 

Land class* I II III IV V P R F1 Overall Accuracy Kappa Index 

Predicted 
Label 

I 128 0 1 0 1 0.99 0.98 0.99 

92.80% 0.88 

II 0 11 1 0 8 0.69 0.55 0.61 

III 1 1 129 20 10 0.87 0.8 0.83 

IV 0 0 10 43 0 0.68 0.81 0.74 

V 0 4 7 0 510 0.96 0.98 0.97 

LC-21. Class-area estimates (in km2)─I: 9.07; II: 0.53; III: 14.36; IV: 2.29;  V: 32.70 

 Truth Label Accuracy Metrics 

Land class I II III IV V P R F1 Overall Accuracy Kappa Index 

Predicted 
Label 

I 121 1 2 0 0 0.98 0.98 0.98 

92.10% 0.87 

II 0 22 3 0 15 0.79 0.55 0.65 

III 3 2 113 9 17 0.84 0.78 0.81 

IV 0 0 12 57 0 0.86 0.83 0.84 

V 0 3 4 0 519 0.94 0.99 0.96 

* I: water; II: bare; III: low-vegetation; IV: high-vegetation, and V: built-up areas 
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Although less pronounced compared to vegetation, the inland water class also 

exhibited a declining pattern by approximately 1% every three years (2018: 9.46 km2, 

2021: 9.07 km2, and 2024: 8.31 km2). The decline may be associated with land 

reclamation for urban development, which simultaneously increasing the bare class 

estimates (see Fig. 5.5). By 2024, the bare areas rose to 128 ha, increased about 47 

ha than in 2018. Meanwhile, the forestry areas (high-vegetation) exhibited a fluctuating 

trend: a decrease of 88 ha from 2018-2021, then succeeded by a 70 ha increase 

between 2021-2024. These temporal variations may be attributed to two factors. First, 

misclassification of forestry land cover in 2018, as indicated by a low F1 score of 0.74. 

Second, the observed expansion between 2021-2024 might result from mangrove 

development in wetland areas.  

 

 

Fig. 5.5. Land cover maps of 2018-2024 and subsets showing dynamics of bare and forestry areas.  
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5.2.2 Spatiotemporal Building Footprints (2018-2024) 

More than 50,000 GT polygons were digitized, covering an area of 5.54 km² for 2018, 

5.99 km² for 2021, and 6.21 km² for 2024. Given the labor-intensive process of manual 

digitization, GT polygons only covered four subdistricts (subdistric ID: 1-4). These 

areas were designated as the region of interest (ROI). To ensure consistency with GT 

polygons, the backdating technique was initially performed exclusively within the ROI 

coverage. Three inputs served as contemporary building datasets: OSHDB 2024 

(OSM), Microsoft's Global ML Buildings (MS), and a combination of both (OSMMS). 

To develop the OSMMS dataset, MS polygons that did not intersect with OSHDB 2024 

were inspected. The non-intersecting polygons were then added to the OSHDB 2024 

dataset. 

All datasets were clipped to the region of interest (ROI) using administrative polygons 

retrieved from the Global Administrative Area Database (GADM) (https://gadm.org). 

To examine the impact of input data quality on the backdating method, GT 2024 was 

included as an additional input dataset. Based on accuracy assessment within the ROI, 

the most accurate dataset for each epoch was selected and the backdating approach 

was reapplied within the entire BNA region. The accuracy of backdating-generated 

buildings was also compared with spatiotemporal datasets derived from the OSHDB 

framework (see Table 5.1). The detailed workflow is illustrated in Fig. 5.6. 

 

 

Fig. 5.6. Detailed pipeline of building backdating technique or also referred to as rapid backdating 

footprints generation (RBF) 

https://gadm.org/
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The accuracy assessments showed that the agreement between validation polygons 

and OSM footprints was less than 60% for 2018 and 2021, with completeness levels 

of 80.12% and 75.24%, respectively (Table 5.3). However, completeness reached 

90.19% by 2024, followed by an increase in agreement levels (74.85%) and IoU (0.65). 

The fluctuating level of completeness (i.e., decreasing in 2021 and a substantial rise 

in 2024) might reflect the volunteered mapping activity during and after the COVID-19 

pandemic, as also reported by Herfort et al. (2023).  

The increasing coverage of validation polygons aligned with built-up expansion within 

the ROI (Fig. 5.7). Overall, the 2018 and 2021 backdating generated buildings showed 

a better agreement with validation data than those in 2024. This suggests that the 

backdating approach is more effective in reconstructing historical data than the 

contemporary dataset. 

 

Table 5.3. Accuracy assessment for generated building footprints. BU: Built-up area layer 

Input Mask Output Validation IoU Agreement Completeness 

OSHDB 2018 - OSM 2018 GT 2018 0.46 57.16% 80.12% 

OSHDB 2021 - OSM 2021 GT 2021 0.46 55.80% 75.34% 

OSHDB 2024 - OSM 2024 GT 2024 0.65 74.85% 90.19% 

GT 2024 

BU-18 RBF-GT 2018 GT 2018 0.88 91.79% 95.98% 

BU-21 RBF-GT 2018 GT 2021 0.94 96.19% 98.16% 

BU-24 RBF-GT 2024 GT 2024 0.98 97.58% 97.52% 

OSHDB 
(OSM) 2024 

BU-18 RBF-OSM 2018 GT 2018 0.65 74.45% 89.69% 

BU-21 RBF-OSM 2021 GT 2021 0.66 74.86% 88.96% 

BU-24 RBF-OSM 2024 GT 2024 0.64 73.23% 87.09% 

MS 

BU-18 RBF-MS 2018 GT 2018 0.61 70.10% 84.44% 

BU-21 RBF-MS 2021 GT 2021 0.60 67.66% 81.15% 

BU-24 RBF-MS 2024 GT 2024 0.58 66.14% 79.26% 

OSMMS 

BU-18 RBF-OSMMS 2018 GT 2018 0.64 75.29% 92.49% 

BU-21 RBF-OSMMS 2021 GT 2021 0.65 75.27% 90.93% 

BU-24 RBF-OSMMS 2024 GT 2024 0.63 72.74% 88.96% 

 

The completeness of backdating-generated buildings for 2018 and 2021 was higher 

than that of OSM footprints (i.e., OSHDB 2018 and 2021). Furthermore, Microsoft-

based datasets (RBF-MS) had lower completeness than OSM-based data (RBF-

OSM) (Fig. 5.8). This could be associated with the research location, as Microsoft's 

building data typically have better coverage for major cities (Chamberlain et al., 2024). 

The combination of OSM and Microsoft datasets (RBF-OSMMS) did not significantly 
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improve the completeness level of generated datasets (e.g., RBF-OSM 2018: 74.45%; 

RBF-OSMMS 2018: 75.29%). In addition, the performance of the backdating approach 

was observed to be influenced by the quality of the input dataset, as RBF-GT 

demonstrated more than 90% agreement across all periods. Given the accuracy 

assessment, OSMMS was selected as the input dataset. The backdating approach 

was then performed for the entire AOI region. For 2024, rather than using backdating-

generated buildings, the original OSM 2024 data was used because of its high 

completeness level. 

 

 

Fig. 5.7. (a-c) Multitemporal built-up masks. (d-f) Spatial distribution of GT polygons. (g) Land cover 

fraction within the ROI. (h) Properties of GT datasets. 

 

Results showed that the building coverage reached 11.60 km2 by 2024, increased from 

11.40 km2 in 2021 and 10.56 km2 in 2018 (Fig. 5.9). This increase was consistent with 

the expansion of built-up areas. This highlights that built-up evolution could serve as 

an indicator for building dynamic behaviour. However, while built-up areas increased 

steadily at an average rate of 13% per three-year interval, building growth rates varied 

between intervals (2018-2021: 1.8%; 2021-2024: 8%).  
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Fig. 5.8. Subset comparison of GT, OSM, and backdating building footprints within the ROI coverage. 

 

 

Fig. 5.9. The land cover maps and generated building footprints, respectively, within the AOI for periods: 

(a and d) 2018, (b and e) 2021, and (c and f) 2024. 

 

5.2.3 Building Dynamics Assessment  

Building dynamics were evaluated within three regions: the 2004 IOT inundation limit, 

physical zoning areas, and designated non-building zones based on land use planning. 

The Mw 8.7 tsunami inundation limit was not incorporated as an evaluation criterion 
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since the land use planning was designed for the worst-case tsunami scenario, which 

is the Mw 9.2 2004 IOT. 

The analysis revealed that 56.77% of building stock in 2018 was located within the 

area affected by the 2004 IOT, with building coverage reaching nearly 6 km2 or 600 ha 

(Fig. 5.10a). This estimate increased substantially by 44.72 ha in 2021 and followed 

by a modest expansion of 9.96 ha by 2024. A lower increase of 38.77 ha was observed 

in non-inundated areas by 2021. In contrast, by 2024, building development within this 

zone was slightly higher than that in former inundated areas (i.e., 10.03 ha). Despite 

this, building distribution from 2018 to 2024 exhibited a relatively similar pattern, where 

most buildings were concentrated within the 2004 IOT affected zone. 

 

 

Fig. 5.10. Evolution assessment of building dynamics in the AOI within: (a) the 2004 IOT inundation 

limit, (b) physical zoning areas, and (c) non-building zones based on land use planning. 

 

The 2004 IOT inundation extent encompassed entire restricted development area 

(Zone-I) and covered approximately 81% of limited development zone (Zone-II and III). 

Zone-I comprised a small number of buildings, approximately 3% of total buildings for 

each period. The building dynamics within this region were minimal, with building 

coverage increased by only 2.55 ha and 1.64 ha for 2021 and 2024, respectively. 

Meanwhile, Zone-II and III accounted for 63% of total buildings in 2018, or 

approximately 663.5 ha (Fig. 5.10b) . This number increased by 48.22 ha in 2021 and 

a slight of 12 ha in 2024. Likewise, a substantial building increase of 32.73 ha was 

observed by 2021 within the newly promoted zone (Zone-IV), followed by a limited 

expansion of 6 ha in 2024. However, Zone-IV only hosted approximately 35% of the 

total buildings in 2024. 
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A comparison between land-use planning and building dynamics revealed an upward 

trend of building encroachment into the non-building zone (2018: 29.39 ha; 2021: 

32.42 ha, and 2024: 33.83 ha). A dominant encroachment was observed in green 

spaces with an incline of 1.65 ha between 2018 and 2024, accounting for an average 

of 37% of the total footprints in non-building zone (Fig. 5.10c).  

Meanwhile, number of buildings in open spaces and mangrove areas by 2024 

increased by 1.2 ha and 0.9 ha, respectively, compared to 2018. A relatively lower 

dynamics encroachment was observed in riverine (riparian) and aquatic areas, with 

3.23 ha and 3.78 ha in 2018, respectively. A slight increase was observed by 3.55 ha 

and 4.2 ha by 2024 for both zones, respectively. 

Given the results, the existing land use planning appears to have not fully incorporated 

the initial physical zoning scheme. This is confirmed by the newly promoted zone 

containing only an average of 35% of the building stock, with a cumulative increase of 

only 38.95 ha from 2018 to 2024. In contrast, the limited development zone 

experienced a nearly twofold increase, totalling 64.64 ha. This pattern resulted in 

building development being largely concentrated within the 2004 IOT inundation extent. 

5.3. Summary of Chapter V 

The analysis revealed that the existing capacity of tsunami shelter are not sufficient to 

accommodate the population which potentially exposed by Mw 8.7 tsunami. 

Additionally, building dynamic assessment showed that the city development does not 

fully comply with land-use planning. Furthermore, the rising trend in building 

encroachment, especially in green and open spaces, emphasizes deviations in urban 

planning implementation.  
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CHAPTER VI: 

DISCUSSION AND CONCLUSION 

6.1. Error-reduced DEMs, LCR model resolutions and Simulated Inundation 

Given these results, the improved variants of global DEMs have fewer inherent errors 

in coastal low-lying areas than their original datasets. Some of these DEMs, with 

spatial resolutions ranging from 30 m to 90 m, outperformed the local DEMNAS at 

resolution of 8 m. This highlights that spatial resolution should not be used as a sole 

indicator to define the performance of elevation data, as it is influenced by various 

factors, including generation techniques and geographical settings (Liu et al., 2021; 

Hawker et al., 2018). 

Despite having better accuracy, inundation models using error-reduced DEMs still 

underestimated the actual inundation extent of the 2004 Indian Ocean Tsunami (IOT). 

The underestimations likely correlate with several factors, such as the acquisition 

period of these DEMs (e.g., most data were collected between 2006 and 2020 or after 

the 2004 IOT) and limitations on the onshore bathymetric data used. As highlighted by 

Sugawara (2021), the evolution of coastal morphology and land cover changes after 

a tsunami disaster might present a significant challenge for accurately reconstructing 

historical tsunami estimates. 

This underestimation may also correlate with the accuracy of the tsunami source 

model. It should be noted that the simulated inundations were constrained to the Mw 

9.2 fault inversion model from Koshimura et al. (2009). Using alternative tsunami 

source models to reproduce the 2004 IOT inundation in the Banda Aceh region, such 

as the one proposed by Yanagisawa et al. (2010), may yield different simulation results 

and potentially lead to different agreement with the actual inundation. 

Results from combining DEMs with roughness models demonstrated that uniform 

Manning coefficients consistently produced larger inundation extents compared to 

variable Manning or Land Cover Roughness (LCR) models. Consequently, the uniform 

Manning approach showed better agreement with the historical inundation limits. This 

phenomenon can be attributed to the enhanced flow resistance provided by the LCR 

models, which incorporate spatially variable damping effects from different land cover 
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types, particularly vegetation and built-up areas. The increased resistance reduces the 

flow velocities and limits tsunami propagation. 

The sensitivity of the Manning coefficient values within the LCR models further 

illustrates this mechanism. The larger inundation extents produced when applying the 

coefficients from Koshimura et al. (2009) can be attributed to the lower resistance 

values assigned to vegetated areas compared with the coefficients from Bunya et al. 

(2010). Because vegetation covered approximately 30% of the area of interest (AOI) 

by 2004, this coefficient difference significantly influenced the overall flow dynamics 

and energy dissipation patterns across the simulation domain. 

The sensitivity of the Manning coefficient values within the LCR models further 

illustrates this mechanism. The larger inundation extents produced when applying the 

coefficients from Koshimura et al. (2009) can be attributed to the lower resistance 

values assigned to vegetated areas compared with the coefficients from Bunya et al. 

(2010). Because vegetation covered approximately 30% of the area of interest (AOI) 

by 2004, this coefficient difference significantly influenced the overall flow dynamics 

and energy dissipation patterns across the simulation domain. 

Furthermore, the analysis showed that CoastalDEM coupled with uniform Manning 

values resulted in the largest inundation extent. This is likely attributed to CoastalDEM 

having a larger negative bias than other error-reduced DEMs at nearly -1 m. This large 

negative bias underestimates ground elevation and eventually leads to greater 

inundation (Liu et al., 2021). However, when paired with LCR models at 10 m and 30 

m resolutions, CoastalDEM resulted in lower inundation extents than DiluviumDEM. 

These findings suggest that the interaction between inundation and parameterization 

of surface friction is unique to each DEM. When focusing on overland inundation, 

CoastalDEM showed less overland inundation than FABDEM and DiluviumDEM did. 

This might be because CoastalDEM has more water pixels than the other two DEMs. 

The analysis consistently showed that the spatial resolution of the LCR models did not 

significantly affect either inundation extent or flow depth. Although not statistically 

significant, a contrasting pattern was observed: LCR models with finer resolution 

produced larger inundation extents but smaller median maximum inundation heights 

(MIH). This contradiction can be explained by several interrelated mechanisms. 
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First, the relationship between the resolution and built-up area representation creates 

differential flow resistance patterns. Finer-resolution LCR models derived from higher-

resolution land cover maps tend to classify fewer areas as built-up than coarser LCR 

models. Because built-up areas provide greater flow resistance than other land cover 

types, their lower representation in finer models decreases the overall flow impedance. 

This reduced resistance allows water to spread more widely across the landscape, 

resulting in larger inundation extents but correspondingly shallower depths. This 

typical phenomenon was also observed by Koyama & Yamada (2022). 

Second, the inverse relationship between inundation extent and depth explains the 

lower MIH estimates. When floods spread over larger areas with reduced resistance, 

the same volume of water is distributed across a greater surface area, naturally 

resulting in smaller median depths. Third, finer-resolution LCR models provide a better 

representation of drainage systems (i.e., small rivers and ponds), which can influence 

the simulated flow depth. This was consistent with the inundation model setting, in 

which small water bodies were incorporated by adjusting the topo-bathymetric inputs 

based on the chosen land cover maps. 

Finally, the proposed sequential validation assessment identified that the combination 

of CoastalDEM and DiluviumDEM with LCR models was the most reliable input for 

tsunami modelling. Based on the elevation error analysis, these two DEMs 

consistently exhibited lower errors, particularly within the built-up areas. This suggests 

that elevation error distributions within built-up areas might be an alternative indicator 

in selecting global DEMs for inundation modelling, especially in locations dominated 

by built-up areas. Additionally, considering the relationship between inundation bias 

and vertical errors of DEMs, MAE could be an alternative elevation error metric in 

selecting global DEMs rather than RMSE, especially for flood modelling applications. 

6.2. Selecting Global Exposure Datasets for Local-scale Application 

Evaluation of global exposure datasets showed an underestimation pattern for 

population and an overestimation pattern for built-up area estimates. The analysis 

revealed that intrinsic biases from each dataset will ultimately introduce bias into the 

exposure analysis. In addition, the calculated intrinsic biases showed temporal 

variation, with differences between 2004 and 2014 varying according to the dataset.  
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Therefore, data selection should be guided by specific analytical objectives. For 

instance, GAIA was selected to analyse the compounding bias given that its intrinsic 

bias in 2004 was lower compared to other datasets. It should be noted that the bias in 

2004 was used as an indicator since the 2004 IOT inundation limit served as the 

hazard reference. While GAIA also showed a lower relative bias by 2014, it should not 

be used to evaluate the exposure evolution within the areas affected by the 2004 IOT. 

This is because GAIA showed no change in built-up area evolution, whereas the 

reference dataset suggested that exposed built-up areas increased by 15% compared 

to 2004. As for built-up exposure evolution between 2004-2014, GISD30 

demonstrated a relatively better accuracy.  

Beyond the bias assessment, understanding the properties of global exposure 

datasets is also essential before selecting data that fits the specific purposes. For 

instance, the generated local population datasets projected an increase of 8,805 

people living within the area affected by the 2004 IOT between 2014-2024. While 

global datasets such as LandScan Global (LSG) do not provide population data for 

2024, combining gridded population data from the 2024 local dataset and 2014 LSG 

to analyse the exposure evolution resulted in a decrease of 13,875 people. This 

discrepancy could lead to substantially different conclusions regarding risk evolution. 

Further analysis revealed that this discrepancy is potentially attributable to population 

overestimation by LSG in 2014. 

Overall, this discrepancy underscores the importance of maintaining consistent 

datasets for tsunami exposure assessments. Where feasible, identical datasets 

should be employed to evaluate the temporal exposure evolution. When different 

datasets are utilized, their respective biases should be systematically characterized 

beforehand. Failure to account for these biases may introduce systematic errors, 

potentially resulting in misinterpretation of risk evolution patterns. 

6.3. Tsunami Risk and Mitigation Strategy 

The ratio of tsunami shelters and populations that are potentially exposed to the Mw 

8.7 tsunami revealed that the existing shelter capacity is insufficient. Additionally, 

following the 2004 IOT, the newly promoted region was designed as a new city center. 

However, building dynamics assessment demonstrated that this region comprised 

only 35% of the total building inventory, suggesting that the majority of buildings were 
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concentrated in tsunami-prone areas. Moreover, the rising trend in building 

encroachment, especially in green and open spaces, emphasizes deviations in land 

use planning implementation in Banda Aceh.  

The observed deviations in land use planning may be attributed to multiple factors, 

including inadequate enforcement of land use policies (Iuchi et al., 2023). The absence 

of periodic monitoring further exacerbates these deviations. While the analysis 

revealed poor implementation of land use planning based on building dynamics 

between 2014 and 2024, Takabatake (2022) found that these issues had already 

emerged during the reconstruction period beginning in 2005. 

The initial master plan proposed relocation of populations from the most affected areas 

to safer zones. However, residential construction in new designated locations failed to 

achieve significant progress due to difficulties the local government encountered in 

acquiring land within the constrained timeframe. 

Consequently, the urgent need for coastal residents to restore their livelihoods 

compelled the government to approve resettlement plans permitting their return to 

original residential areas. This finding is corroborated by Syamsidik et al. (2017), who 

identified rental costs and land prices as key determinants influencing Banda Aceh 

residents’ continued coastal habitation despite their awareness of the devastating 

2004 tsunami. Given these results, it is clear that the community remained as 

vulnerable as it was in 2004.  

6.4. Limitations in Reported Results 

Although the results of this study can provide valuable insights for tsunami exposure 

assessment in data-scarce regions, it should be noted that certain limitations still exist. 

These limitations are comprehensively discussed in the following sub-sections.  

6.4.1 Limitations in Proposed Sequential Validation Approach 

Although the proposed sequential validation approach could illuminate the sensitivity 

of input datasets to inundation model performance, several limitations warrant further 

consideration. First, the evaluation of DEMs and surface roughness parameterizations 

is highly sensitive to the established threshold. For example, given the agreement 

between the simulated and observed inundation extents, changing the acceptable 
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threshold for the inundation difference from 25% to 10% could suggest that the 

application of the LCR models results in unreliable inundation estimates. Likewise, 

reducing the threshold by 10% would make SRTM and AW3D30 classified as “reliable” 

despite their elevation error characteristics.  

Second, while resulting in a less accurate prediction of inundation depths, the use of 

a uniform Manning’s coefficient has better agreement with the observed inundation 

extent. This suggests that the application of uniform Manning is still reliable to some 

extent. It is also crucial to highlight that uncertainties in reliability assessment may 

persist because of inaccurate records of tsunami measurements and potential 

geolocation offsets between the simulated and measured flow depth points.  

Third, the reported results were constrained to a specific historical tsunami event and 

the flat coastal plain characteristics of the research location. For example, given its 

intrinsic elevation errors within the Banda Aceh region, DiluviumDEM and CoastalDEM 

would achieve the minimum confidence level when the simulated MIH were at 2.36 m 

and 3.06 m, respectively. This is strongly correlated to their elevation errors with RMSE 

of 1.18 m for DiluviumDEM and 1.53 m for CoastalDEM. It should be highlighted that 

those RMSE values are geographically specific elevation error values for the Banda 

Aceh area. Consequently, changing the research location might yield different 

elevation error values and yield different confidence level estimates. Thus, the results 

should not be used to provide an absolute indication of the accuracy of different input 

data choices, but rather to illuminate how different input data choices can modify the 

simulated inundation extent.  

Finally, these limitations suggest that the relationships observed between model 

resolution, land cover representation, and inundation patterns may not be directly 

transferable to areas with different topographic characteristics or coastal 

configurations. The sensitivity patterns observed in the flat study area may differ 

significantly in regions with steeper topographies. Similarly, caution should be 

exercised when comparing the results of this study with other studies employing 

different hazard modelling approaches or different tsunami sources. Nevertheless, 

instead of independent individual assessment, these limitations should encourage the 

modeller to adopt the sequential validation approach to reduce uncertainty in 

evaluating inundation model performance.  



117 

 

6.4.2 Limitations in Exposed Population Projection 

The analysis has estimated that nearly 2,000 up to 24,696 people in Banda Aceh by 

2024 would be potentially exposed to an Mw 8.7 tsunami, depending on the exposure 

limit used. However, these exposure estimates should be interpreted cautiously, as 

they are constrained to the generated gridded population dataset (i.e., POP-24), which 

inherits uncertainties from the built-up area definitions used in land cover mapping.  

As highlighted by Bonatz et al. (2024), variations in built-up area definitions can lead 

to discrepancies in population estimates. Because roads and all impervious surfaces 

were included as built-up areas, using other local datasets at a more granular building 

level may yield different exposure estimates. Additionally, the gridded population 

datasets may underestimate settlement-associated properties, including settlement 

density, number of building stories, and type of settlement (e.g., residential, schools, 

or offices). 

Bias in the reported exposed population may also result from daily mobility patterns, 

particularly those related to work and school (Lloyd et al., 2019). This mobility 

potentially results in an unregistered or floating population (Wu and Zhang, 2021). For 

Banda Aceh, the floating population is reflected by local census data, which reported 

a population decline of 3000 people between 2018 and 2023 (BPS, 2024). In contrast, 

the same report revealed that the number of university students in Banda Aceh 

increased by 27,142 during the same period.  

These contrasting records may also explain the contrasting pattern in Banda Aceh's 

evolution from 2004 to 2014: built-up areas increased by close to 720 ha, but the total 

population declined by nearly 15,000. Given its administrative role as the capital city 

of Aceh Province, Banda Aceh hosts many universities and government offices that 

could attract people from other districts and provinces (Meilianda et al., 2019). This 

influx potentially leads to the development of built-up areas (e.g., student apartments), 

even though the city's population may not be significantly increasing. 

6.4.3 Limitations in Evacuation System Assessment 

The analysis projected that more than 19,000 people, or 77% of the total exposed 

population, were potentially unsheltered from the Mw 8.7 tsunami. While these findings 
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can provide valuable insight for disaster preparedness in Banda Aceh, they should be 

interpreted with caution due to several limitations.  

First, the population exposure estimates did not consider evacuation behaviour, 

evacuation time, routes, or tsunami time arrival. The exposed population could be 

minimized if unsheltered evacuees are able to evacuate to higher grounds away from 

the coastal areas. Obviously, this scenario would be possible if rigorous early warning 

systems are available, including alert information, evacuation routes, and disaster 

knowledge, such as where and how to evacuate. Future research should address 

these variables systematically. 

Second, the exposure estimates assumed that existing shelters remained structurally 

intact during the earthquake and subsequent tsunami waves. However, the 2018 Palu 

tsunami showed that designated shelters may not survive earthquake damage (Koul 

and Mulchandani, 2021). If shelters are compromised by an earthquake, exposure 

estimates would increase accordingly. Therefore, future research should incorporate 

shelter damage assessments to address this limitation. 

Third, the exposure assessment did not include alternative shelters to accommodate 

unsheltered evacuees. Jihad et al. (2023) and Murao et al. (2025) proposed using 

public buildings such as schools, government offices, and mosques as co-benefit 

structures for tsunami evacuation sites. Including these alternative shelters would 

ultimately reduce exposure projections. However, the analysis assumed that because 

these co-benefit structures are not officially designated for evacuation purposes, 

evacuees may not recognize them as evacuation sites. Therefore, future research 

should assess the public knowledge of these alternative shelters. Alternatively, the 

Banda Aceh municipality should officially designate these structures by installing 

shelter signage. 

6.4.4 Limitations in Building Dynamics Assessment 

The evaluation of building dynamics was conducted using spatiotemporal building data 

generated using a simple backdating method. However, this method has several 

limitations that warrant further investigation. First, the reported accuracies were 

strongly influenced by the quality of the contemporary building footprints and validation 

datasets. Because the validation polygons did not fully cover the Banda Aceh region, 

employing more complete validation data may yield different accuracy results. 
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Similarly, the performance of the backdating approach in other regions may differ due 

to variations in OSM and Microsoft’s Global ML Buildings data quality. Hence, 

assessing the quality of the building input data prior to applying this method is 

recommended. 

Second, the properties of built-up masks, including their resolution, definition of built-

up areas, and collection techniques, determine the number of filtered building features. 

Built-up masks with a high resolution of 5 m were employed. Using built-up masks 

from global datasets with resolutions ranging from 30 m to 90 m potentially leads to 

different results. Considering that the effect of the built-up mask resolution was not 

discussed in this study, further research is strongly recommended to comprehensively 

address this issue. 

Third, while the analysis revealed a substantial increase in building expansion within 

the inundation extent of the historical 2004 IOT, further research is required to evaluate 

its impact on human exposure. This is because the analysis did not classify the 

building categories (e.g., residential, public buildings, permanent buildings, or informal 

and temporary structures). 

6.5. Recommendation 

Given the obtained results and their limitations, this study offers some 

recommendations to address methodological gaps and improve tsunami disaster 

preparedness strategies: 

1. It is highly recommended that future studies reproduce other historical tsunami 

events and apply sequential validation assessments to evaluate the global DEMs 

and LCR model performance. By doing so, the robustness of the sequential 

validation approach could be evaluated. This could additionally characterize the 

performance of error-reduced DEMs and LCR models across varying terrain 

characteristics (e.g., slope gradients and land cover configurations). 

2. To evaluate population exposure assessment, future research should integrate 

evacuation modelling that accounts for tsunami arrival times and human 

behavioural responses during evacuation. 

3. To evaluate building exposure assessment, future research should integrate 

official building cadastral data to identify building structures (e.g., timber-framed 
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buildings, confined masonry infill brick walls, or reinforced concrete structures). 

By doing so, the modeller could integrate the inundation depth with the building 

fragility function and finally result in building damage probability (Lahcene et al., 

2021). Using building category information, modellers can develop more detailed 

and dynamic population exposure models by incorporating temporal population 

distribution patterns. For instance, populations can be allocated exclusively to 

residential buildings to model night-time exposure scenarios. Using appropriate 

weighting coefficients, the modeller could also proportionally distribute 

populations across all building types to develop exposure models for specific 

temporal scenarios, including office hours, lunch periods, and commuting times 

(i.e., travel to and from workplaces) (Dabbeek et al., 2025).  

4. In case measured ground elevation data are not available, it is recommended 

that modellers conducting coastal flood risk assessments within the Banda Aceh 

region should employ error-reduced DEMs–either DiluviumDEM or 

CoastalDEM–rather than the local DEMNAS model, which introduces larger 

elevation errors. 

5. For tsunami disaster risk reduction and preparedness, it is recommended that 

Banda Aceh's municipal government implement incentive programs targeting 

young residents and first-time homebuyers to promote residential development 

in designated low-risk areas or promoted zones. Additionally, constructing more 

evacuation shelters could facilitate evacuation processes and accommodate 

more residents in coastal areas.  

6. It is strongly recommended that modellers conducting coastal flood risk 

assessments in data-scarce regions should perform sequential bias 

assessments prior to data utilization. The inclusion of cross-uncertainty 

assessments in inundation map products based on the elevation models 

employed is also encouraged. This approach would enable disaster managers 

and decision-makers in low- and middle-income countries to understand the 

accuracy of risk information provided, facilitating the formulation of appropriate 

risk reduction strategies within budget constraints, without overestimating or 

underestimating the tsunami risk levels 

7. Finally, the transferability of the results and methods from this study to other 

locations requires careful consideration. Future research employing or adapting 
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the methodological framework of this study should carefully evaluate the above 

limitations within their specific contexts.  

 

6.6. Summary and Conclusion 

This research evaluated the applicability of global datasets–including 11 elevation 

models and 12 exposure datasets–for tsunami exposure assessment at the local scale. 

To evaluate these datasets, this study proposed a sequential validation framework to 

reduce the bias caused by individual reliability assessments. This study also proposed 

a cross-uncertainty inundation map concept, integrating probabilistic inundation with 

the confidence level from elevation data.  

The results of this study indicated that the error-reduced variant of global elevation 

models has better elevation accuracy and is relevant for utilization in coastal flood risk 

assessment, especially CoastalDEM and DiluviumDEM. Additionally, this study proved 

that integrating land cover roughness (LCR) models with elevation models could 

improve inundation model accuracy to a certain extent. While the effect of spatial 

resolution of LCR models seems minimal, it is advised that using finer resolution LCR 

models can represent better terrain features. 

This research has developed high-resolution local exposure datasets as a reference 

for reviewing applications of global exposure datasets at the local scale. Overall, global 

exposure datasets exhibit biases by overestimating the built-up environment and 

underestimating population estimates. Notably, elevation models introduced a larger 

bias in tsunami exposure estimates than exposure datasets. When both elevation 

models and exposure datasets were integrated, compounding bias occurred, which 

nearly doubled the error in exposure estimation.  

In conclusion, global elevation models and exposure datasets represent viable 

resources for local tsunami exposure assessments when their limitations are 

appropriately acknowledged. A comprehensive understanding of the inherent biases 

within these datasets is essential to ensure the credibility of tsunami risk assessments.  

6.7. Data Availability 

Link to access all materials and codes used in this study are provided in the Appendix 

section. 
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APPENDIX 

APPENDIX 1: Observed inundation depths from the 2004 Indian Ocean Tsunami 

 

No Latitude Longitude H (m) 

1 5.5529 95.3190 0.60 

2 5.5529 95.3189 1.00 

3 5.5603 95.3304 1.00 

4 5.5354 95.3053 1.00 

5 5.5547 95.3178 1.35 

6 5.5625 95.3282 1.50 

7 5.5626 95.3286 1.50 

8 5.5549 95.3176 1.80 

9 5.5576 95.3176 2.00 

10 5.5737 95.3453 2.40 

11 5.5303 95.2936 2.40 

12 5.5615 95.3204 2.60 

13 5.5620 95.3221 2.80 

14 5.5280 95.2871 2.80 

15 5.5603 95.3162 3.00 

16 5.5623 95.3166 3.00 

17 5.5612 95.3199 3.40 

18 5.5781 95.3224 3.40 

19 5.5716 95.3294 3.50 

20 5.5781 95.3271 4.00 

21 5.5361 95.2827 4.00 

22 5.5316 95.2822 4.20 

23 5.5597 95.3161 4.50 

24 5.5649 95.3217 4.50 

25 5.5330 95.2775 4.50 

26 5.5624 95.3151 5.00 

27 5.5637 95.3031 5.00 

28 5.5583 95.3107 5.00 

29 5.5533 95.2972 5.00 

30 5.5752 95.3248 5.00 

31 5.5590 95.3154 5.50 

32 5.5769 95.3226 6.00 

33 5.5615 95.3125 6.20 

34 5.5613 95.3113 6.20 

35 5.5612 95.3096 7.00 

36 5.5548 95.2857 7.00 

37 5.5561 95.2838 9.00 

38 5.5573 95.2843 9.00 

39 5.5624 95.3296 1.40 

40 5.5685 95.3355 1.95 

No Latitude Longitude H (m) 

41 5.5657 95.3350 1.39 

42 5.5675 95.3387 1.84 

43 5.5738 95.3461 2.60 

44 5.5717 95.3433 2.60 

45 5.5655 95.3428 1.55 

46 5.5634 95.3244 3.20 

47 5.5621 95.3233 2.70 

48 5.5621 95.3200 3.50 

49 5.5505 95.3186 2.57 

50 5.5614 95.3278 1.52 

41 5.5657 95.3350 1.39 

42 5.5675 95.3387 1.84 

43 5.5738 95.3461 2.60 

44 5.5717 95.3433 2.60 

45 5.5655 95.3428 1.55 

46 5.5634 95.3244 3.20 

47 5.5621 95.3233 2.70 

48 5.5621 95.3200 3.50 

49 5.5505 95.3186 2.57 

50 5.5614 95.3278 1.52 

51 5.5610 95.3298 0.89 

52 5.5628 95.3316 1.52 

53 5.5750 95.3560 1.91 

54 5.5701 95.3551 1.80 

55 5.5699 95.3536 1.40 

56 5.5684 95.3521 1.00 

57 5.5766 95.3657 1.30 

58 5.5792 95.3624 1.75 

59 5.5790 95.3682 1.45 

60 5.5812 95.3636 2.00 

61 5.5659 95.3444 1.00 

62 5.5679 95.3436 1.80 

63 5.5625 95.3431 0.90 

64 5.5700 95.3374 2.45 

65 5.5705 95.3367 2.65 

66 5.5666 95.3390 1.00 

67 5.5662 95.3392 1.80 

68 5.5683 95.3365 2.00 

69 5.5839 95.3687 1.80 

70 5.5757 95.3660 1.20 
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No Latitude Longitude H (m) 

71 5.5649 95.3245 3.40 

72 5.5652 95.3233 3.50 

73 5.5676 95.3187 4.60 

74 5.5649 95.3171 4.50 

75 5.5721 95.3197 7.00 

76 5.5624 95.3143 6.00 

77 5.5604 95.3105 8.00 

78 5.5545 95.3136 2.70 

79 5.5565 95.3172 2.30 

80 5.5507 95.3167 2.00 

81 5.5514 95.3125 3.40 

82 5.5485 95.3138 1.80 

83 5.5523 95.3113 3.80 

84 5.5535 95.2974 5.80 

85 5.5460 95.2942 3.90 

86 5.5459 95.2997 3.70 

87 5.5471 95.3098 2.20 

88 5.5442 95.3077 2.20 

89 5.5415 95.3010 3.40 

90 5.5399 95.3051 2.30 

91 5.5306 95.2975 2.00 

92 5.5309 95.2955 2.35 

93 5.5389 95.2874 3.80 

94 5.5807 95.3491 3.70 

95 5.5730 95.3627 3.20 

96 5.5340 95.2807 5.70 

97 5.5971 95.3748 5.50 

98 5.5587 95.3021 4.80 

99 5.5591 95.3134 3.41 

100 5.5592 95.3131 3.24 

101 5.5562 95.3065 4.49 

102 5.5587 95.3148 2.31 

103 5.5589 95.3147 2.42 

104 5.5590 95.3138 3.11 

105 5.5591 95.3136 3.00 

106 5.5587 95.3158 2.03 

107 5.5586 95.3155 2.07 

108 5.5585 95.3154 2.18 

109 5.5547 95.3096 3.43 

110 5.5547 95.3096 2.06 

 

 

No Latitude Longitude H (m) 

111 5.5553 95.3048 3.82 

112 5.5575 95.3013 3.31 

113 5.5575 95.3013 1.60 

114 5.5563 95.3051 3.75 

115 5.5573 95.3021 4.19 

116 5.5573 95.3021 1.49 

117 5.5573 95.3021 0.67 

118 5.5565 95.3056 3.02 

119 5.5572 95.3020 3.39 

120 5.5589 95.3143 2.57 

121 5.5589 95.3143 1.72 

122 5.5589 95.3143 1.04 

123 5.5559 95.3050 3.48 

124 5.5545 95.3104 2.41 

125 5.5545 95.3104 1.45 

126 5.5539 95.3126 2.18 

127 5.5552 95.3093 2.57 

128 5.5545 95.3147 1.03 

129 5.5543 95.3117 1.91 

130 5.5529 95.3150 0.64 

131 5.5550 95.3089 2.32 

132 5.5603 95.3174 1.13 

133 5.5554 95.3088 2.56 

134 5.5420 95.2809 3.85 
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APPENDIX 2: List of Mw 9.2 hypothetical  scenarios in PTHA18, obtained from return-

period based method. 

No. Scenario ID in PHTA18 database Slip model 

1 71078 Heterogeneous 

2 76250 Heterogeneous 

3 76256 Heterogeneous 

4 76281 Heterogeneous 

5 81293 Heterogeneous 

6 81324 Heterogeneous 

7 81379 Heterogeneous 

8 81471 Heterogeneous 

9 81475 Heterogeneous 

10 81515 Heterogeneous 

11 81564 Heterogeneous 

12 86451 Heterogeneous 

13 86541 Heterogeneous 

14 86604 Heterogeneous 

15 86701 Heterogeneous 

16 86719 Heterogeneous 

17 90392 Heterogeneous 

18 90512 Uniform 

19 90520 Uniform 

20 90561 Heterogeneous 

21 90567 Heterogeneous 

22 90589 Heterogeneous 

23 90605 Heterogeneous 

24 90617 Heterogeneous 

25 90663 Heterogeneous 

26 93888 Heterogeneous 

27 94119 Heterogeneous 

28 94127 Heterogeneous 

29 97142 Uniform 

30 97244 Heterogeneous 

31 97284 Heterogeneous 

32 97291 Uniform 

33 97356 Uniform 

34 97360 Uniform 

35 97380 Uniform 

36 97397 Uniform 

37 97466 Heterogeneous 

38 97492 Heterogeneous 

39 100559 Heterogeneous 

40 100589 Uniform 
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No. Scenario ID in PHTA18 database Slip model 

41 100612 Heterogeneous 

42 100626 Heterogeneous 

43 100666 Heterogeneous 

44 100772 Heterogeneous 

45 100791 Uniform 

46 100792 Heterogeneous 

47 102661 Heterogeneous 

48 102799 Uniform 

49 102802 Heterogeneous 

50 102840 Uniform 

51 102853 Heterogeneous 

52 102903 Heterogeneous 

53 102906 Heterogeneous 

54 102946 Uniform 

55 104297 Uniform 

56 104390 Heterogeneous 

57 104403 Heterogeneous 

58 104428 Uniform 

59 104433 Heterogeneous 

60 104512 Heterogeneous 

61 104536 Heterogeneous 

62 105828 Heterogeneous 

63 105933 Heterogeneous 

64 105953 Uniform 

65 105968 Heterogeneous 

66 105974 Uniform 

67 105978 Uniform 

68 106012 Heterogeneous 

69 106021 Heterogeneous 

70 106033 Uniform 

71 106036 Heterogeneous 

72 106143 Heterogeneous 

73 106238 Heterogeneous 

74 107272 Heterogeneous 

75 107441 Uniform 

76 107452 Uniform 

77 107469 Heterogeneous 

78 107487 Heterogeneous 

79 107491 Heterogeneous 

80 107563 Heterogeneous 

81 107580 Uniform 

82 107606 Heterogeneous 

83 107661 Heterogeneous 
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No. Scenario ID in PHTA18 database Slip model 

84 107718 Heterogeneous 

85 108490 Uniform 

86 108641 Heterogeneous 

87 108742 Heterogeneous 

88 108744 Uniform 

89 108764 Uniform 

90 108878 Heterogeneous 

91 108921 Heterogeneous 

92 108925 Heterogeneous 

93 108963 Heterogeneous 

94 109015 Uniform 

95 109015 Heterogeneous 

96 109029 Uniform 

97 109041 Heterogeneous 

98 109063 Heterogeneous 

99 109130 Uniform 

100 109153 Heterogeneous 

101 109214 Heterogeneous 

102 109224 Uniform 

103 109256 Heterogeneous 

104 109280 Heterogeneous 

105 109313 Heterogeneous 

106 109990 Heterogeneous 

107 110180 Uniform 

108 110219 Heterogeneous 

109 110326 Heterogeneous 

110 110346 Heterogeneous 

111 110357 Uniform 

112 110410 Heterogeneous 

113 110417 Heterogeneous 

114 110479 Heterogeneous 

115 110514 Heterogeneous 

116 110539 Heterogeneous 

117 110564 Uniform 

118 110590 Uniform 

119 110596 Heterogeneous 

120 110627 Uniform 

121 110808 Heterogeneous 

122 111044 Heterogeneous 

123 111293 Heterogeneous 

124 111508 Heterogeneous 

125 111559 Uniform 

126 111594 Heterogeneous 
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APPENDIX 3: Link to access codes applied in this study 

1. PTHA18 scenario selection ─ Return-period based method: 

https://github.com/GeoscienceAustralia/ptha/blob/master/ptha_access/example

_event_access_scripts/multi_site_scenario_selection/example_usage.md  

2. PTHA18 scenario selection ─ Centroid-based filter: 

https://github.com/GeoscienceAustralia/ptha/tree/nearshore_testing_ptha/misc/

nearshore_testing_ptha_2025/ptha18_scenarios_random/set_range_of_mw_a

nd_centroid  

3. PTHA18 scenario selection ─ Stratified-importance sampling: 

https://github.com/GeoscienceAustralia/ptha/blob/nearshore_testing_ptha/ptha

_access/example_event_access_scripts/random_scenarios_non_uniform_and_

importance_sampling/random_scenario_sampling.md 

4. Orfeo Toolbox (OTB): 

  https://www.orfeo-toolbox.org/  

  https://zenodo.org/doi/10.5281/zenodo.3522154  

5. Python implementation of Orfeo Toolbox (PyOTB):  

https://pyotb.readthedocs.io/en/stable/ 

https://github.com/orfeotoolbox/pyotb/tree/develop/pyotb  

6. PhoREAL: https://github.com/icesat-2UT/PhoREAL  

7. AROSICS: https://zenodo.org/doi/10.5281/zenodo.3742909  

8. IR-MAD: https://github.com/latmperkmol/ts-norm?tab=readme-ov-file  

9. OBIA-RF: https://github.com/yahcut/OBIA-RF  

10. Backdating Building Approach: https://github.com/yahcut/RBF  
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APPENDIX 4: Link to access the elevation models  

1. SRTM v.3.0 1 Arc-Second Global: https://doi.org/10.5066/F7PR7TFT 

2. NASADEM Merged DEM Global 1 arc-second V001: 

https://doi.org/10.5069/G93T9FD9 

3. CoastalDEM 3 arc-second v2.1 non-commercial: 

https://go.climatecentral.org/coastaldem/ 

4. Copernicus GLO-30: https://doi.org/10.5069/G9028PQB 

5. FABDEM V1-2: https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn 

6. DiluviumDEM V.1.0: https://zenodo.org/doi/10.5281/zenodo.8329293 

7. EDEM: https://download.geoservice.dlr.de/TDM30_EDEM/ 

8. CRAWDEM: https://download.geoservice.dlr.de/TDM30_DCM/ 

9. AW3D30 V.4.1: 

https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm 

10. MERIT 3 arc second: https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ 

11. GEBCO 2023 Grid 15 arc-second: https://download.gebco.net/ 

12. DEMNAS 0.27 arc-second and BATNAS 6 arc-second: 

https://tanahair.indonesia.go.id/demnas/ 

13. ATL03 and ATL08 V.006 IceSAT-2: https://nsidc.org/data/icesat-2/data 

 

APPENDIX 5: Link to access input satellite images  

1. Landsat 5 TM and Landsat 8 OLI, Collection 2 Level-2: https://www.usgs.gov/ee 

2. SPOT 5 images were acquired from Spot World Heritage Data Center (under 

CNES's Spot World Heritage Programme. Access: 

https://regards.cnes.fr/user/swh/modules/58 

3. Orthorectification of SPOT 5 images: https://swh-2a-carto.fr/   

4. The PlanetScope images were accessed from Planet Explorer under Planet’s 

Program for Education and Research (E&R). Access: 

https://www.planet.com/industries/education-and-research/  

 

APPENDIX 6: Link to access spatiotemporal building datasets 

1. Microsoft Building: https://github.com/microsoft/GlobalMLBuildingFootprint  

2. OSM building polygon were retrieved from OSHDB and processed using Python’s 

Ohsome-py. Access: https://github.com/GIScience/ohsome-py/tree/master  
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APPENDIX 7: Link to access built-up area datasets 

1. GHS-BUILT: https://human-settlement.emergency.copernicus.eu/download.php 

2. GISD30: https://doi.org/10.5281/zenodo.5220816 

3. GAIA: https://data-starcloud.pcl.ac.cn/data-nav/remote-sensing 

4. GAUD: https://doi.org/10.6084/m9.figshare.16602224.v1 

5. GLC FCD30: https://doi.org/10.5281/zenodo.8239305 

6. Glance: https://lpdaac.usgs.gov/products/glance30v001/ 

7. WSF Evolution: https://geoservice.dlr.de/web/maps/eoc:wsfevolution 

8. GISA v.2: https://doi.org/10.5281/zenodo.6476661  

9. Our generated local dataset:  

https://github.com/yahcut/OBIA-RF/tree/main/Land%20cover%20map 

 

APPENDIX 8: Link to access gridded population datasets 

1. GHS-POP: https://human-settlement.emergency.copernicus.eu/download.php 

2. WorldPop: https://hub.worldpop.org/geodata/listing?id=16 

3. LSG: https://landscan.ornl.gov/ 

4. GlobPop: https://doi.org/10.5281/zenodo.10088105 

5. Our generated local dataset:  

https://github.com/yahcut/OBIA-RF/tree/main/Gridded%20Population 
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