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ABSTRACT

Information on assets and populations potentially exposed to tsunamis is essential for risk
mitigation prior to tsunami occurrence. This information is obtained by intersecting the extent
of tsunami inundation with exposure datasets. The accuracy of tsunami inundation is strongly
influenced by elevation data. Together, elevation data and exposure datasets are referred to
as essential variables. However, these essential variables are often not available in data-
scarce regions, leading to utilization of 'best available' global datasets. This research analyses
the applicability of global datasets for tsunami exposure assessment at a local scale. The
study evaluates 11 digital elevation models, 8 impervious surface layers, and 4 gridded
population datasets. The evaluation focuses on how these datasets can improve tsunami
inundation model performance and how their compounding biases affect the exposure
estimates in the tsunami-prone city of Banda Aceh, Indonesia. This city is known for being
heavily affected by the 2004 Indian Ocean Tsunami.

To minimize variability in global elevation model assessment, this research introduces a
sequential validation approach that assesses how well the models reproduce a historical event
while accounting for their inherent biases. In parallel, the global exposure datasets are
compared against high-resolution local data to evaluate intrinsic and analytical biases. The
least biased dataset variants from both assessments are selected and further used to analyse
how biases compound when elevation models and exposure datasets are integrated. Using
the least biased dataset variants, the study projects tsunami exposure estimates for future
tsunamigenic events in the area of interest using cross-uncertainty assessment, which
integrates probabilistic inundation with confidence levels of the global datasets used. Based
on this cross-uncertainty assessment, the research evaluates how existing mitigation
strategies can mitigate future tsunamigenic events. This research is presented through six
chapters.

Chapter 1 explains research objectives and research locations.
Chapter 2 examines the biases of global impervious surface and gridded population datasets.
Chapter 3 analyses the sensitivity of global elevation models in modelling historical tsunamis.

Chapter 4 calculates the compounding biases from global datasets and performs the cross-
uncertainty tsunami assessment.

Chapter 5 provides an evaluation of existing mitigation systems against future tsunamigenic
scenarios.

Chapter 6 presents conclusions and recommendations based on the results obtained.

The results show global exposure datasets exhibit bias by overestimating tsunami-exposed
built-up areas while underestimating tsunami-exposed populations. Additionally, elevation
data contributes more to underestimation than population datasets. When used together,
these biases compound, nearly doubling the underestimation of tsunami-exposed populations
compared to when each dataset is used separately.
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CHAPTER I: INTRODUCTION

1.1 Recent Advances in Tsunami Science

Several mega-tsunamis have occurred over the last two decades (Fig. 1.1). These
tsunamis claimed hundreds to thousands of lives. For instance, the 2004 Indian
Ocean Tsunami (IOT) claimed over 230,000 lives across 14 countries, the 2011
Tohoku Tsunami caused approximately 20,000 deaths, and the 2018 Palu Tsunami led
to over 4,300 casualties (UNDRR, 2019). In addition, these tsunamis have led to
significant economic losses, with estimates ranging from $10 billion to $300 billion
USD (Rafliana et al., 2022). This highlights the profound economic impact, along with
the tragic loss of life. Despite their significant drawbacks, tsunamis have served as

catalysts for rapid advancement of tsunami science.
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Fig. 1.1 Spatial distribution of tsunami fatalities between 2000 and 2024. These data were curated by
Shaw et al. (2025) and UNDRR (2016). The hatched lines represent the classification of economic
power (World Bank, 2024). The magenta star markers show the epicenters of the three most
catastrophic tsunamis on the timeline.

In the aftermath of the 2004 Indian Ocean Tsunami (IOT), significant advancements
were made in the field of tsunami physical studies, particularly in the areas of modelling
and reconstructing tsunami source models (Harig et al., 2022; Fuijii et al., 2021; Satake

2014; Tsushima et al., 2014). This event also catalysed research in disaster risk



reduction (DRR), focusing on hazard exposure mapping, evacuation strategies,
tsunami-resilient land use management, and post-disaster reconstruction efforts
(Suppasri et al., 2015). Furthermore, the 2004 IOT enhanced international
collaboration in near-real-time tsunami monitoring by establishing the Indian Ocean
Tsunami Warning and Mitigation System (IOTMWS), which is managed by the
Intergovernmental Oceanographic Commission (IOC) (Hettiarachchi, 2018). The
approach to tsunami monitoring has evolved from relying solely on near-distance
sources and local observations to incorporating far-field tsunami sources and global

observations (Imamura et al., 2019; Bernard and Titov, 2015).

Building upon these advancements, the 2011 Tohoku Tsunami catalysed further
methodological innovations. Notably, probabilistic tsunami hazard assessment
(PTHA) has been extensively developed to address uncertainties in hazard
assessment that cannot be quantified through conventional scenario-based tsunami
hazard assessment or worst-case scenarios (Davies et al., 2018; Grezio et al., 2017,
De Risi and Goda, 2017). PTHA systematically considers all potential tsunami
generation mechanisms and associated uncertainties in tsunami sources and
parameters, thereby providing comprehensive risk information for long-term planning
and coastal management in regions susceptible to potential tsunamis (Behrens et al.,
2021).

While the 2004 Indian Ocean Tsunami (IOT) and the 2011 Tohoku Tsunami have
significantly advanced the understanding of earthquake-generated tsunamis, the 2018
Palu tsunami introduced new complexities to tsunami science. Unlike its predecessors,
the 2018 Palu tsunami was triggered by a more intricate combination of source
mechanisms involving both an earthquake and a submarine landslide (Behrens et al.,
2021). This combination produced catastrophic results, even though the fault
mechanism initially suggested that the tsunami would not be highly destructive
(Lahcene et al., 2021). The extensive damage was subsequently confirmed by
comparing the Normalized Difference Vegetation Index (NDVI) values before and after
the tsunami event (Fig. 1.2). NDVI values range from 0 to 1, where O indicates
completely non-vegetated areas and values between 0.5 and 1 represent areas with

healthy, dense vegetation cover.



Prior to the tsunami occurrence, NDVI values within the coastal areas of Palu City
were predominantly in the range of 0.5 to 1, indicating that these areas had partial
vegetation cover (Fig. 1.2b). Following the tsunami event, NDVI values decreased
dramatically to predominantly 0-0.5, demonstrating that significant land cover changes
had occurred as vegetation was destroyed and areas were transformed into water
bodies (Fig. 1.2c). Additionally, land cover change detection analysis revealed that the
vegetated sandpit located at the river mouth was completely removed, which

contributed to the collapse of the bridge (Fig. 1.2d and 1.2e).
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Fig. 1.2. Palu City before and after the tsunami on September 28, 2018. The normalized difference
vegetation index (NDVI) shows land cover changes processed from Planet Scope (Planet, 2025). The
RGB images display physical infrastructure damage, retrieved from the Maxar Open Data Program
(Maxar, 2025).



Following the Palu tsunami, research on landslides as tsunamigenic sources has
gained wide attention (Cecioni et al., 2023; Heidarzadeh and Mulia, 2023; Somphong
et al., 2022; Nakata et al., 2020). The 2018 Palu tsunami also improved tsunami
damage assessment studies by expanding the fragility function database
(mathematical relationships that estimate damage probability based on hazard
intensity) for compound tsunamigenic sources—cases where multiple mechanisms
such as earthquakes and landslides contribute to tsunami generation (Lahcene et al.,
2021; Mas et al., 2020; Imamura et al., 2019).

Despite advancements in scientific understanding, the 2018 Palu tsunami
underscored persistent challenges in disaster risk reduction (DRR) within this
vulnerable region, which experienced significant tsunami events in 1927, 1968, and
1996 (Ho et al., 2021). These challenges pertain to the accurate prediction of tsunami
intensity, including its extent and height, as well as the projection of expected
casualties (luchi et al., 2023; Rafliana et al., 2022). Previous research has emphasized
that the precise modelling of tsunami hazards and the assessment of exposure are
critically dependent on two fundamental types of input data: elevation models and
exposure datasets (Raduszynski and Numada, 2023; Tonini et al., 2021; Ledn et al.,
2019; Ehrlich et al., 2018). However, as Behren et al. (2021) noted, these essential
data are often unavailable, outdated, or inaccurate, particularly in low- and middle-

income countries, where the majority of tsunami events occur (see Fig. 1).
1.2 Challenges in Tsunami Exposure Assessment

Given the challenges introduced by these essential input data, the following
subsections systematically examine these challenges and present the research gaps

that must be addressed by future studies.

1.2.1 Limitations in Elevation Models

In addition to tsunami source scenarios, numerical models, and computational
capabilities, the precision of tsunami inundation estimates is significantly affected by
the quality of topographic and bathymetric data (Gibbons et al., 2022; Sugawara,
2021; Griffin et al., 2015). Ideally, high-resolution topographic data obtained through
airborne light detection and ranging (LiDAR) can adequately represent terrain features,

thereby facilitating the creation of detailed inundation maps (McClean et al., 2020).



However, the availability of LIDAR topographic data is limited, particularly in middle-
and lower-income countries (Pronk et al., 2024). Simultaneously, two of the three most
catastrophic tsunamis over the past two decades have occurred in middle-income
countries (see Fig. 1.1). As a result, most inundation hazard assessments depend on
the "best-available" elevation datasets, including global digital elevation models
(DEMs) (Hawker et al., 2018).

Unfortunately, global DEMs frequently exhibit inaccuracies, which can lead to incorrect
flood predictions. For example, the widely used Shuttle Radar Topography Mission
(SRTM) (Farr et al., 2007) often underestimates flood coverage, leading to an
underestimation of the population at risk of coastal flooding (Hinkel et al., 2021). This
discrepancy may be attributed to errors associated with SRTM, such as biases related

to elevation and vegetation (Yamazaki et al., 2017).

Recent research has addressed inherent biases in SRTM. These investigations have
led to the development of improved variants of SRTM, such as NASADEM (NASA JPL,
2020), CoastalDEM (Kulp and Strauss, 2018), and multi-error-removed improved
terrain DEM (MERIT) (Yamazaki et al., 2017). The latter was created by integrating
data from SRTM and ALOS World 3D — 30 m (AW3D30) (Tadono et al., 2016). In
addition to SRTM, efforts to mitigate errors in the relatively new Copernicus DEM — 30
m (COP30) (Fahrland et al., 2022), have resulted in two other enhanced variants: the
forest and building removed DEM (FABDEM) (Hawker et al., 2022), and DiluviumDEM
(Dusseau et al., 2023). These improved elevation datasets are collectively referred to

as error-reduced DEMs.

To the best of our knowledge, the application of error-reduced DEMs has been
predominantly limited to sea-level rise projections and glacier assessments (Seeger
et al., 2023; Chen et al., 2022). This limitation underscores the necessity of evaluating
the performance of these new DEMs in broader coastal flooding contexts, particularly
concerning tsunami inundation. Moreover, when uncertainties in DEM accuracy are
compounded with uncertainties in tsunami source data, the resultant effect may
substantially affect the reliability of the predictions. This critical intersection of
uncertainties and their impact on exposure estimates remains largely unexplored in

the current literature, highlighting the urgent need for targeted research in this area.



1.2.2 Limitations in Land Cover Roughness Models

In the absence of high-resolution topographic data, the effects of terrain attributes can
be represented by integrating "bare-earth" topography, which excludes buildings and
vegetation elevations, with friction models (Gibbons et al., 2022; Sadashiva et al.,
2022). To investigate detailed tsunami behaviours, prior research has developed
several friction models, including the structure resolve model (SRM), drag force model
(DFM), and individual drag force model (iDFM) (Fukui et al., 2022). However, these
models require relatively high-resolution elevation datasets ranging from 0.5 mto 5 m.
Consequently, the application of a simple bottom friction model remains advantageous

owing to its compatibility with moderate-resolution data (10 — 100 m).

The implementation of the bottom friction model in inundation modelling involves
selecting Manning’s roughness coefficients (n-values) to represent the effects of
terrain features such as buildings and vegetation (Bricker et al., 2015). These
coefficients may be spatially uniform or vary based on land cover maps, also referred
to as land cover roughness (LCR) models. Previous studies have indicated that high-
resolution LCR models can produce more accurate inundation results (Kaiser et al.,
2011; Gayer et al., 2010).

However, the extent to which the spatial resolution of LCR models influences
inundation estimates has not been thoroughly examined. Although Laso Bayas et al.
(2015) explored the effect of various LCR models derived from multiresolution land
cover maps on tsunami simulations, the low accuracy of the utilized land cover maps
ultimately impeded a definitive conclusion. This knowledge gap necessitates further
investigation using accurate land cover maps to establish reliable relationships

between the LCR model resolution and inundation prediction accuracy.
1.2.3 Limitations in Tsunami Hazard Assessment

In addition to the challenges associated with accurately modelling the extent of
inundation, the characteristics of exposure data—comprising input data, methodology,
and spatial and temporal resolution—also significantly impact the assessment of
inundation exposure (Behrens et al., 2021). Oktari et al. (2025) emphasized that
information regarding tsunami exposure plays a crucial role in enhancing the

preparedness of coastal communities.



The assessment of tsunami exposure entails the integration of tsunami intensity
measures, such as flow depth and inundation extent, with critical societal exposure
variables, including built-up areas, buildings, and population density (Ehrlich et al.,
2018). Consequently, the precision of these societal variables ultimately determines
the accuracy of exposure information. However, Behrens et al. (2021) observed that
in numerous developing countries, exposure data are often unavailable or outdated,
necessitating the use of the "best available" global open data for exposure

assessments.

With the advancement of Earth observation systems, numerous global-scale exposure
datasets, such as land cover maps, built-up layers, and gridded population datasets,
have become publicly available (Table 1.1). These datasets were developed using
diverse input data, methodologies, and spatiotemporal resolutions. When datasets
with low temporal resolutions are integrated with others for long-term disaster
assessment, they may introduce bias owing to geolocation misalignment across
datasets and methodological inconsistencies (Sleeter et al., 2017). Bonatz et al.
(2024) specifically emphasized that methodological inconsistencies, such as the
definition of built-up areas, resulted in substantial differences in the exposed

population, with variations of up to 65%.

Variations in the distribution of populations across built-up areas or buildings result in
numerous discrepancies in the exposed population (Kuffer et al., 2022). Smith et al.
(2019) highlighted those existing open datasets face challenges in accurately
representing concentrations of exposure, as the total exposed population is dispersed
over extensive areas. Although several studies have been conducted to assess bias
in global exposure datasets, most have focused on the country level. In contrast,
Bernhofen et al. (2022) emphasized that national-level bias may not accurately reflect

behaviour at the local scale.

Given the identified limitations, it is essential to evaluate global exposure products and
their inherent biases before utilizing them for local risk assessment, particularly in
regions with limited data. Furthermore, because elevation models and exposure
datasets each possess distinct biases, it is critical to comprehend how these biases

may compound when used in conjunction. However, to our knowledge, research


https://www.sciencedirect.com/science/article/pii/S2352938524003021?via%3Dihub#bib57

specifically addressing the combined effects of these biases on tsunami exposure

assessments remains limited.

Table 1.1. Global exposure datasets

Dataset

Resolution

Epoch

Input datasets

Reference

Built-up and impervious surfaces

GHS-BUILT 100 m 1975 - 2030 Landsat; Sentinel-2 Pesaresi et al, 2024
GUF 12m 2012 TanDEM; TerraSAR-X Esch et al., 2017
GAIA 30m 1985-2018 Landsat; Sentinel-1 Gong et al., 2020
GAUD 30m 1992 - 2020 Landsat; NTL Zhao et al., 2022
GISA 30m 1972-2019 Landsat5, 7,8 Huang et al., 2021
WSF-2015 10m 2015 Landsat-8; Sentinel-1 Marconcini et al., 2020
WSF-2019 10 m 2019 Sentinel-2; Sentinel-1 Marconcini et al., 2021
WSF-Evolution 30m 1985 - 2015 Landsat-5; Landsat-7 Marconcini et al., 2021
GISD30 30m 1985-2020 Landsat4,5,7,8 Zhang et al., 2022
Population distribution

GHS-POP 100 m 1975-2030 Census Pesaresi et al, 2024
HRSL 30m 2016 Census Tiecke et al., 2017
WorldPop 100 m 2000 - 2020 GPWv4; Census Lloyd et al., 2019
LandScan Global 1 km 2000 - 2022  Census Lebakula et al., 2025
GlobPop 1 km 1990 - 2020 Products assimilation Liu et al., 2024

Land cover map

ESRI Annual 10 m 2017 - 2022  Sentinel-2 Karra et al., 2021

ESA World cover 10 m 2020 - 2021 Sentinel-2; Sentinel-1 Zanaga et al., 2021
GLC 10 m 2015-2019  Proba-V Buchhorn et al., 2020
Dynamic World 10 m 2016 - 2024  Sentinel-2 Brown et al., 2022
GLC-2015 30m 2014 Multi Global LC fusion Lietal., 2023
GLC_FCS30D 30m 1985-2022 Landsat5,7,8,9 Zhang et al., 2024
Glance 30m 2001 —2020 Landsat5,7,8,9 Friedl et al., 2022

1.3 Area of interest (AOI)

The Area of Interest (AOI) of this study is situated in Banda Aceh (BNA), a prominent
coastal city located at the northern extremity of Sumatra, Indonesia (Fig. 1.3). The
BNA comprises nine subdistricts (Fig. 1.3b) and is characterized by a low-lying coastal
plain with an average elevation of less than 10 m above sea level (Meilianda et al.,
2019). The city is positioned along the tectonically active Sunda-Andaman subduction
zone and was significantly impacted by the 2004 Indian Ocean Tsunami (IOT) (Fig.
1.3c). The 2004 IOT was induced by a catastrophic earthquake with a moment
magnitude (Mw) of 9.2 (Yanagisawa et al., 2010; Koshimura et al., 2009). The
consequent tsunami resulted in approximately 73,000 fatalities within the BNA,
representing 30% of its total population in 2004 (Syamsidik et al., 2023).



(a) Map of Sumatra, Indonesia (b) BNA: Before IOT 2004 (d) Physical zoning after IOT 2004
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Fig. 1.3. Area of interest (AQI). (a) Map of Sumatera (Basemap: ESRI Light Gray). (b) BNA before the
2004 10T, yellow lines and circled numbers indicate the subdistricts boundary and ID, respectively
(Basemap: SPOT 5 05-08-2004). (c) BNA after the 2004 10T, blue line indicates the inundation limit,
manually digitized from SPOT-5 image (Basemap: SPOT 5 29-01-2005). (d) Physical zoning, and (e)
Spatial land use planning map of 2009-2029 (Banda Aceh Municipality, 2018).

In response to the 2004 I10T disaster, BNA City was reconstructed according to a
master plan that incorporated historical tsunami data through four designated zoning
schemes (Fig. 1.3d). Zone | was designated as a restricted development area, Zones
Il and Il were identified as limited development zones, and zone IV was earmarked
as a promoted development zone. However, local residents expressed opposition to
this zoning system because of its restrictions on their living areas (Takabatake, 2022).
As a result, the local municipality revised the initial zoning plan by transforming Zones
[, 11, and Il into ecozones and traditional city center areas, while retaining the concept
of the newly promoted development zone (Zone-lV) (Banda Aceh Municipality,
2018).This revision was translated into a spatial land use planning map, as shown in
Fig. 1.3e.

Despite these planning efforts, previous research documented substantial urban
expansion within the coastal zone after the 2004 IOT event. Meilianda et al. (2019)
found a 30.7% increase in built-up areas by 2017 relative to pre-tsunami baselines,
while Syamsidik et al. (2023) reported an additional 31% growth in building stock

between 2017 and 2021. This rapid coastal development raises critical questions



about adherence to the prescribed land use planning framework and potential

exposure to future tsunami hazards.
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Fig. 1.4. Spatial distribution of seismic events from 1976 to 2018 revealing two distinct seismic gap
zones along the Sumatran coast denoted by coloured circles. The green circle shows the closest
seismic gap zone within the area of interest (AOI). Modified from Jihad et al. (2020)

The 2004 IOT also triggered ongoing post-seismic processes, including long-term
slow-slip events (SSEs) that generated microseismicity and tectonic tremors (Sarkawi
et al., 2024). The US Geological Survey documented over 6,000 earthquakes with
magnitudes Mw = 4.5 along the Sunda megathrust during the first decade following
2004 (USGS, 2017). Although these earthquakes occurred randomly along the Sunda
subduction zone, Jihad et al. (2020) identified seismic gap zones with reduced activity
along the Sumatran coast (Fig. 1.4). The decrease in seismic activity reflects an
ongoing stress accumulation mechanism, implying that the gap zone retains the
potential to generate large earthquakes. Through the analysis of seismic data (Mw =
2.0) from 1976 to 2018, which were compiled from both the USGS and the Indonesian
Meteorology, Climatology, and Geophysics Agency (BMKG), Jihad et al. (2020)

determined that these gap zones could potentially generate tsunamigenic events up
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to a magnitude of Mw 8.7. Critically, the seismic gap zone closest to the BNA (indicated

by the green circle in Fig. 1.4) poses a direct threat to our AOI.

1.4 Research Formulation

Considering the substantial urban transformation and persistent seismological
hazards, it remains essential to evaluate the long-term exposure changes, the
alignment of urban development with land use planning, and the efficacy of the current
mitigation system in addressing potential tsunamigenic events within the AOI.
However, given the existing challenges in exposure assessment owing to the

availability of essential datasets, several fundamental research questions emerge:

1. Two decades after the 2004 10T event, what are the current tsunami exposure
estimates within the AOI?

2. In the absence of local exposure datasets, how accurate are exposure
estimates using global datasets? How do the biases inherent in global datasets
affect the magnitude and variation of tsunami exposure estimates?

3. To what extent has the two decades of post-disaster urban development
adhered to prescribed spatial land use planning?

4. How adequate are existing mitigation measures against the identified Mw 8.7

tsunamigenic threat?

Addressing these questions is essential for developing evidence-based disaster risk
reduction strategies and informing future urban planning decisions in tsunami-prone
coastal environments with limited data availability. Therefore, to address these

research questions and bridge the identified knowledge gaps, this study aims to:

1. Assess the sensitivity of global error-reduced Digital Elevation Models (DEMs)
in modelling tsunami inundation due to the absence of accurate elevation
information. In addition, this study examines the performance of DEMs when
integrated with multiresolution land cover roughness (LCR) models to
accurately simulate tsunami inundation.

2. Quantify the biases inherent in global built-up and gridded population datasets
when projecting assets and populations vulnerable to tsunami hazards and

evaluate their accuracy in comparison to our high-resolution exposure models.
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3. Analyse compounding bias effects on tsunami exposure estimates to
understand cumulative uncertainties in assessment methodologies.

4. Evaluate exposure progression by analysing the evolution of exposure over the
past two decades and project anticipated exposure from prospective
tsunamigenic scenarios.

5. Assess the current mitigation adequacy by incorporating compounding bias into
a probabilistic tsunami hazard assessment to critically evaluate existing

mitigation systems within the AOI.

1.5 Thesis Structures

To address the aforementioned research objectives systematically, this study is

divided into the following chapters.

— Chapter I: Introduction. This section describes the research background and
objectives.

— Chapter Il: Bias in Global Exposure Datasets. This chapter examines global
exposure data and their biases in assessing the changes in exposure within our
AOI two decades after the 2004 10T. In this section, high-resolution datasets
for land cover, built-up areas, and gridded populations were created and then
compared with global datasets.

— Chapter lll: Sensitivity of Digital Elevation Models and Land Cover Roughness.
This section offers an in-depth evaluation of global elevation models and their
effectiveness in reconstructing the 2004 10T. Additionally, this chapter provided
an evaluation how the spatial resolution of LCR models impacts their
performance when integrated with these elevation models

— Chapter IV: Compounding Bias and Cross-Uncertainty Exposure Assessment.
This chapter examines how the compounding bias from elevation models and
global exposure datasets affects tsunami exposure estimates within our area of
interest. In this section, a tsunami hazard assessment is conducted to anticipate
future tsunamigenic events by employing hypothetical tsunami scenarios. The
results from the probabilistic simulations were combined with bias assessments
from the DEMs and LCR models to create a cross-uncertainty tsunami hazard
map. Utilizing this hazard map along with the evaluated exposure datasets, the

population exposure estimates in BNA were analysed.
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— Chapter V: Exposure and Mitigation System. This chapter evaluates the
effectiveness of tsunami shelters against the number of populations exposed to
future tsunamigenic events. This chapter also evaluates the effectiveness of
spatial planning against land cover evolution.

— Chapter VI: Discussion. This chapter outlines the conclusions and limitations of
this study. Additionally, based on these research findings, some suggestions to

improve tsunami disaster preparedness and risk reduction were offered.
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CHAPTER II: BIAS IN GLOBAL EXPOSURE DATASETS

2.1 Evaluated Global Datasets

To conduct long-term exposure evolution detection after the 2004 Indian Ocean
Tsunami, only global datasets with temporal coverage from 2004 to 2014 were
selected. As a result, out of 21 global datasets listed in Table 1.1 (see chapter 1), this
chapter reviewed 12 global exposure datasets, including eight built-up areas or
impervious surface layers and four gridded population datasets covering the Banda
Aceh (BNA) region. A visual comparison of each dataset is displayed in Fig. 2.1.

Sections 2.2 and 2.3 provided detailed explanations of each dataset.

B BUILT-UP (@)|(b) (c) (d)

BU: GHS-BUILT 100 m BU: GISD30 30 m BU: GAIA30 m BU: GAUD 1 km

(e) (f) (9) (h)

BU: GLC-FCD30D 30 m BU: Glance 30 m BU: GISA 30 m BU: WSF-Evolution 30 m
(k) 0]

POPULATION/PIXEL

Iso

POP: GHS-POP 100 m POP: -WdridPop 100 m POP: LSG 1 km POP: GlobPop 1 km

Fig. 2.1. Visual comparison of subset of global datasets covering BNA region for epoch 2004, with BU
indicating built-up and impervious layers, while POP indicates gridded population datasets.

2.2 Built-up and Impervious Dataset

The resolution of the evaluated built-up and impervious surface layers ranges from 30
m to 1 km. Additionally, two land cover maps were included by exclusively analysing

their built-up classes. A brief description of the datasets used is as follows:
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a.

GHS-BUILT: Global Human Settlement Layer — Built Surface (Fig. 2.1a). The
GHS-BUILT layer was developed utilizing Symbolic Machine Learning (SML)
based on a linear regression algorithm (Pesaresi et al., 2024). The input data
integrated spatial-temporal interpolation of five-year observed collections of
multisensor, multi-platform satellite images. Specifically, Landsat (MSS, TM, ETM
sensor) data support the 1975, 1990, 2000, and 2014 epochs, while a Sentinel-2
(S2) image composite supports the 2018 epoch. Additionally, data from Facebook
settlement delineation, Microsoft, and Open Street Map (OSM) building
delineation were incorporated. The GHS-BUILT raster layer provides a built-up
fraction using the total area count in square meters per each 100x100 grid size.
This fraction is categorized into three groups: residential built-up surfaces, non-
residential built-up surfaces, and a combination of both. This study utilized the
combination of categories, acknowledging that human activities are not solely
concentrated in residential buildings. The accuracy assessment indicated that the
F1 score of GHS-BUILT reached 0.82 for total validation points.

GISD30: Global 30 m Impervious-Surface Dynamic (Fig. 2.1b). GISD30 was
developed utilizing Harmonized Landsat imagery spanning from 1984 to 2020,
specifically from Landsat 4, 5, 7, and 8, and was classified using the random forest
algorithm (Zhang et al., 2022). The training and validation datasets were sourced
from other global impervious surface land cover map products. The GISD30 raster
layer is provided at a temporal resolution from 1985 to 2020, with five-year
intervals, and is categorized into two classes: built-up and non-built-up. The
accuracy assessment indicated that the overall accuracy achieved a score of
90.1%.

GAIA: Global Artificial Impervious Area (Fig. 2.1c). Similar to the GISD30, the
GAIA raster layer was provided at five-year intervals from 1985 to 2018 (Gong et
al., 2020). In order to detect impervious surfaces, GAIA excluded all potential
areas of vegetation, water, and bare land, subsequently generating temporally
consistent artificial impervious maps through the analysis of Landsat time series
data. To enhance accuracy, two ancillary datasets—nighttime light (NTL) and
Sentinel-1 Synthetic Aperture Radar—were incorporated as input data. The
accuracy assessment indicated that the overall accuracy achieved a score of 90%.
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GAUD: Global Annual Urban Extents Dataset (Fig. 2.1d). GAUD was developed
utilizing harmonized nighttime light (NTL) time-series composites by integrating
multi-source NTL observations, thereby providing a comprehensive and consistent
record of the nightscape (Zhao et al., 2022). Areas emitting light were
subsequently identified as built-up regions. The raster layer is available at a 1 km
resolution, encompassing the period from 1992 to 2020.

GLC FCS30D: Global 30 m Land-Cover Dynamics with Fine Classification System
(Fig. 2.1e). The GLC FCS30D land cover map encompasses the period from 1985
to 2022 (Zhang et al., 2024). Utilizing Landsat imagery as the input dataset and
employing local adaptive classification models, it achieved a mean accuracy of
81.91%. This land cover map comprises ten land classes, of which only the
impervious surface class was selected for further analysis.

Glance: Global Land Cover Estimation (Fig. 2.1f). The Glance dataset provides a
global annual land cover map for the period from 2001 to 2020, with a spatial
resolution of 30 m (Friedl et al., 2022). The land cover classification was conducted
using a random forest classifier in conjunction with Continuous Change Detection
and Classification algorithms. The input data comprised Landsat imagery, which
was categorized into seven land classes, with the "developed/built-up" class being
utilized for further analysis (Table 2.1). This land cover product achieved an overall
accuracy of 79%.

GISA: Global Impervious Surface Area version 2.0 (Fig. 2.1g). GISA 2.0 was
developed through the integration of various built-up area layers, including GISA
1.0, GAIA, GAUD, and GHS-BUILT (Huang et al., 2022). By employing a random
forest classifier to assess the concordance of each input dataset, GISA 2.0
attained an F1-score of 0.93.

WSF: World Settlement Footprints Evolution (Fig. 2.1h). WSF provides information
on human settlement from 1984 until 2015 at 30 m resolution. Leveraging Landsat
imagery as the input dataset, WSF employed adaptive thresholding method to
extract temporal mean values from several spectral indices, including Normalized
Different Vegetation Index (NDVI), Normalized Different Building Index (NDBI),
and Modified Normalized Different Water Index (MNDWI). These spectral indices
were then used as input for image classification using random forest algorithm.
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Table 2.1 Glance classification scheme

Land cover class Descriptions

Water Perennial water bodies encompass rivers, channels, ponds, storage basins,
and seas.

Developed Areas with high levels of use; land occupied by structures, including any

(Built-up areas) land that is functionally linked to developed or constructed activities

Barren Landscapes featuring natural formations of soil, sand, or rocks, where

vegetation covers less than 10% of the surface

Tree Cover Regions where the tree canopy covers more than 30% of the area. It's

crucial to recognize that locations where trees have been cleared, like clear-
cuts, are categorized according to their present condition, such as barren,
sparsely vegetated, or covered with shrubs or grasses.

Herbaceous The region is mainly dominated by herbaceous plants, with the total

vegetation surpassing 10%. Trees cover less than 30% of the area, while
shrubs make up under 10% of the land.

Shrublands Regions where tree coverage is below 30% of the area, yet the total
vegetation exceeds 10%, with shrubs making up more than 10% of the
vegetation.

Ice/Snow Areas where snow and ice consistently blanket more than half of the terrain
throughout the year

2.3 Gridded Population Dataset

The resolution of the gridded population datasets ranges from 100 m to 1 km. A brief

description of the datasets used is as follows:

a.

GHS-POP: Global Human Settlement Layer — Population (Fig. 2.1i). The GHS-
POP layer was developed by disaggregating the population count into each built-
up pixel cell of the GHS-BUILT layer at a 100 m spatial resolution (Pesaresi et al.,
2024). The population data spanning from 1975 to 2030 were sourced from
CIESIN for the Gridded Population of the World, version 4.11 (GPWv4.11), the UN
World Population Prospects 2022, and the UN World Urbanization Prospects 2018.
These population estimates were subsequently disaggregated within the
residential built-up surfaces category at the district-level administrative boundaries
(see Section 2.2). The administrative boundary data were derived from the
Database of Global Administrative Areas (GADM) level 2 (https://gadm.org/).
Lang-Ritter et al. (2025) identified that GHS-POP underestimated the total
population in rural areas by 84% in 2000. However, Leyk et al. (2019) suggested

that this gridded dataset might be suitable for use in urban areas due to its detailed

urban settlement data.
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b. WorldPop: World Population Dataset (Fig. 2.1j). WorldPop population grid
datasets are generated using a Random Forest—based approach, distributing
population estimates from GPWv4 into built-up layers at a 100 m spatial resolution,
covering the period from 2000 to 2020 (Lloyd et al., 2019). The built-up layers are
compiled and harmonized from multiple sources, including GSH-BUILT, OSM, and
Global Urban Footprint (Esch et al., 2017). Opdyke and Fatima (2024) asserted
that this dataset overestimates urban exposure estimates in Australia by 21%.

c. LSG: LandScan Global (Fig. 2.1k). LSG disaggregated the census data into 1 km
grid cells for the period from 2000 to 2022 by utilizing a likelihood coefficient
between the auxiliary data and the population counts (Lebakula et al., 2025).
Compared with other datasets, LSG is considered to represent the nighttime
population rather than the residential population. Additionally, this dataset
demonstrates the distribution of the working and traveling population, particularly
in urban areas where there is a concern of population overestimation (Liu et al.,
2024). In rural areas, LSG underestimates the population by 68% (Lang-Ritter et
al., 2025).

d. GlobPop: Global Gridded Population Dataset (Fig. 2.11). GlobPop is a relatively
new gridded population dataset with a 1 km spatial resolution, developed by
harmonizing other global datasets, including LSG, GHS-POP, and WorldPop (Liu
et al., 2024). In comparison to actual population dynamics, GlobPop demonstrates

superior temporal accuracy relative to the other three datasets.

2.4 Bias Assessment Method

Two levels of bias assessment were conducted: intrinsic bias and analytical bias.
Intrinsic bias was considered as the bias originating from the data source, which may
arise due to limitations in input data, methodology, or validation data. Although the
intrinsic bias assessment for each global built-up and gridded population layer was
analyzed prior to public release, most were validated against global-scale data.
Consequently, re-evaluation of biases in both dataset types against actual local data

is crucial.

To evaluate the intrinsic bias, total built-up areas and population estimates from global
datasets were compared against local datasets. To illustrate the processes involved in
the intrinsic bias assessment, a flowchart is presented in Fig. 2.2. All the processes
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were performed using GIS applications. Initially, all global exposure datasets were
clipped within the area of interest (AOI). Then, total built-up areas and population
within the AOI extent were derived and compared with the local datasets. The
calculated biases were expressed in equations 1 and 2, with positive values indicating

overestimation and negative values representing underestimation:

BUGlobal,T - BULocal,T

Relative bias in built — up areas = x 100% D

B ULocal,T

POPgioparr — POProcarr
POPLocal,T

Relative bias in population = x 100% 2

where BUgiova,, 7 and BULocal, T represent the total built-up areas within the AOI extent
derived from global and local built-up datasets, respectively, for the year T (where T =
2004 or 2014). Similarly, POPgioba, 7 and POPLoca, 7 denote the total population within
the same extent derived from global and local gridded population datasets,

respectively, for the year T.

|
gridded population datasets

Relative bias in built-up areas: €—— Area of Interest —®»  Relative bias in population:
i (AOI)
Total built-up areas Mx 100% extent Total population Mx 100%
Local Local
Local Local
built-up datasets gridded population datasets

Fig. 2.2. Flowchart to perform the intrinsic bias assessment

To assess built-up areas and populations exposed to tsunami inundation, the global
exposure datasets were overlaid with tsunami inundation extents. Total built-up areas
and populations within the inundation extent were then referred to as exposure

estimates. Biases introduced by this exposure estimates were referred to as analytical
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bias. To identify the analytical bias, exposure estimates derived from global exposure
datasets were compared against the local datasets, where the 2004 10T inundation

limit served as the inundation extent reference.

The analytical bias assessment consisted of two analyses. The first analysis focused
on biases in exposure estimates during the 2004 10T event. This analysis exclusively
compared the 2004 temporal exposure datasets between global and local datasets
(equations 3 and 4). The second analysis focused on biases in exposure estimate
evolution over the 2004-2014 period. In this analysis, additional exposure estimates
for the 2014 temporal period were evaluated and compared with the 2004 temporal
estimates to assess how biases changed during the 10-year interval (equations 5 and
6). Subsequently, the rates of exposure evolution from global datasets were compared
with those derived from local datasets. To summarize all processes involved in the
analytical bias assessment, a flowchart illustration is presented in Fig. 2.3. All

processes can be expressed mathematically using the following equations:

EBUGlobal,2004 - EBULocal,2004

Relative bias in exposed built — up areas = x 100% 3)

EBULocal,2004

EPOPGlobal,2004 - EPOPLocal,2004
EPOPLocal,2004

Relative bias in exposed population = x 100% (€))

EB U(BU datasets,2014—2004)

Rate of exposure evolution for built — up areas = x 100% (5)

EB U(BU datasets,2004)

EPOP(POP datasets,2014—2004)

Rate of exposure evolution for populations = x 100% (6)

EPOPpop datasets,2004)

where EBUGiobal, 2004 and EBU | ocal 2004 represent the total built-up areas within the 2004
IOT inundation extent derived from the global and local built-up datasets, respectively,
for the year 2004. Similarly, EPOPGgiova,2004 and EPOPpLoca 2004 denote the total
population within the same extent derived from the global and local gridded population
datasets, respectively, for the year 2004. EBUpBu datasets,2014-2009 and EPOProp
datasets, 2014-2004) represent the evolution of built-up areas and population within the 2004
IOT inundation extent over the 2004-2014 period, where BU datasets and POP

datasets can be either global or local sources. Meanwhile, BU datasets, 2004 and
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POP datasets, 2004 are built-up and population datasets derived from either global or

local sources, but exclusively for the year 2004.
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Fig. 2.3. Flowchart to perform the analytical bias assessment

2.5 Generating Local Exposure Datasets

Similar to the global exposure datasets, the local exposure datasets consisted of built-
up area and gridded population layers. This study developed the exposure layers at
5-meter resolution, covering three temporal periods: 2004, 2014, and 2024. The 2004
and 2014 datasets were used to evaluate the global exposure datasets and assess
exposure evolution following the 2004 Indian Ocean Tsunami (IOT). Meanwhile, the
2024 datasets were subsequently used to assess exposure estimates for future

hypothetical tsunamigenic events.
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2.5.1 Local Built-Up Area Datasets

To generate the local built-up area datasets, the land cover classification was
performed using satellite imagery as input through Object-Based Image Analysis with
a supervised Random Forest algorithm (OBIA-RF) (Kotaridis & Lazaridou, 2020; Phiri
et al., 2018). Satellite images are optical images which consist of multiple spectral
bands (e.g., visible bands: red, green, blue; near-infrared; shortwave infrared) that
capture electromagnetic radiation across different wavelengths, providing both
radiometric information (reflectance values across these various spectral bands) and
textural information (spatial patterns and relationships between neighbouring pixels)
(Shim, 2014).

OBIA-RF utilizes both radiometric and textural information extracted from the satellite
images, where OBIA first segments the image into homogeneous objects based on
pixel similarity and then RF classifies these objects into different land cover categories
using the combined spectral-textural features (Hermosilla et al., 2022; Sideris et al.,
2020). With adequate prior knowledge, such as labelled ground truth points, OBIA-RF
is regarded as a reliable method for land cover mapping (Gei3 et al., 2017). It is
important to note that a satellite image is released publicly at several different

radiometric levels (Young et al., 2017):

— Digital Number (DN). This level represents the raw, uncalibrated electromagnetic
signal detected by the satellite sensor. As illustrated in Fig. 2.4, solar radiation
from the sun travels through space, reflects off the Earth's surface, and reaches
the satellite sensor. The sensor records these incoming photons as discrete
integer values for each pixel area. These integer values are also referred to as
the raw "counts" or DN values. DN values are unitless and sensor-specific,
representing the fundamental radiometric data before any calibration or
atmospheric processing is applied.

— Top-of-Atmosphere (ToA) radiance. At this level, solar radiation has travelled
from the sun to the Earth's surface and back to the satellite, but the values are
now calibrated to represent physically meaningful radiance units
(W-m™2-sr™*:nm™"). As illustrated in the diagram (Fig. 2.4), the measurement
conceptually occurs at the top of the atmospheric boundary (blue hatched). The

"At-sensor Radiance" represents the total electromagnetic energy detected by
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the satellite sensor, which includes both the target radiance reflected from the
surface (solid arrows from the surface object) and path radiance contributed by
atmospheric scattering events (dotted arrows from the red scattering point). In
simpler terms, radiance (L)) measures the amount of electromagnetic energy
flowing through a unit area (pixel size, m?), into a unit solid angle of the sensor's

view (sr), per unit wavelength (nm), and can be expressed as:

DN
Ll =

Gain

+ Bias 7

where Gain and Bias are calibrating coefficients and are provided in the ancillary
XML metadata files that accompany satellite image downloads from operational
data sources.

Top-of-Atmosphere (ToA) reflectance. This level converts the ToA radiance into
reflectance values by normalizing for solar illumination conditions. As shown in
the diagram (Fig. 2.4), this accounts for the incoming solar radiation (yellow sun)
and geometric factors such as solar zenith angle. ToA reflectance removes the
influence of varying solar irradiance and illumination geometry, making it possible
to compare measurements across different times and locations. ToA reflectance
(o) is dimensionless (typically expressed as a fraction between 0 and 1 or as a
percentage) and represents the proportion of incident solar radiation that is
reflected back to the sensor, expressed as:

ToA __ T[LA

P Tos0Es )

where 17 equals to 3.14, cos(6s) is the cosine of the solar zenith angle, and Es)
is solar irradiance. Both solar zenith angle and irradiance values are provided in
the ancillary XML metadata files that accompany satellite image downloads from
operational data sources. Although satellite images at TOA level still contain
atmospheric effects, they can be used in remote sensing for environmental
monitoring using spectral indices such as Normalized Difference Vegetation
Index (NDVI), Normalized Difference Water Index (NDWI), etc (Roy et al., 2016).
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Fig. 2.4. Diagram illustrates the radiative transfer processes and radiometric measurement levels in
satellite remote sensing. Modified from Fernandez-Pacheco et al. (2018)

Bottom-of-Atmosphere  (BoA) reflectance. This represents the final,
atmospherically corrected surface reflectance values. As illustrated in the
diagram (Fig. 2.4), the atmospheric correction process removes the effects of
atmospheric absorption (where solar radiation is absorbed within the
atmosphere) and scattering (represented by the red scattering point and
associated dotted path radiance arrows) that occur as solar radiation travels

through the atmosphere. The BoA reflectance can be conceptually expressed as:

ToA t
poa _ Pa—pi" 9
A= T/‘ldown + Tlup ©)

where p§™ is atmospheric path reflectance (scattering by air molecules and

aerosols), while T#°*™ and T/{‘p are the total fraction of sunlight reaches the

surface after passing through the atmosphere and then successfully travels back
up to the satellite, respectively. These calibration coefficients are provided in the

ancillary XML metadata files that accompany satellite image downloads from
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operational data sources. It should be noted that the conversion from ToA to BoA
reflectance is complex and typically requires sophisticated atmospheric
correction algorithms such as the 6S algorithm, which account for various
atmospheric parameters including aerosol optical depth, water vapor content,
and atmospheric gases (Yang et al., 2021). BoA reflectance is essential for
accurate land cover classification and mapping applications, as it represents the
true spectral characteristics of Earth's surface objects without the confounding

effects of atmospheric variability (Tu et al., 2022).

2.5.1.a Input Satellite Images

The inputs for the land cover classification were multiresolution satellite images
covering the period of 2004-2024. All images were cloud-free and derived from two
sensors: SPOT 5 for the 2004-2014 period and PlanetScope (PS) for the 2024 period.
The SPOT 5 images consist of four spectral bands at 10 m resolution and one
panchromatic band at 5 m resolution (Table 2.2). These images were obtained from
the SPOT World Heritage (SWH) program and were provided in Level 0 image file
format, which are radiometrically corrected to top-of-atmosphere (ToA) radiance level
but geometrically uncorrected in planar earth coordinates (Nosavan et al., 2020;
Frazier & Hemingway, 2021). Therefore, additional pre-processing steps were
required to prepare these images for analysis, including geometric correction, and
radiometric calibration to obtain surface reflectance values suitable for land cover

classification.

To correct the geometric distortions in the SPOT 5 images, orthorectification was

performed using the SPOT SWH Carto-services (https://swh-2a-carto.fr/), provided by

the French national space agency or Centre National D'études Spatiales (CNES). The
orthorectification process corrects geometric distortions in satellite imagery by
removing perspective effects and transforming the image to an accurate overhead
view with proper map coordinates (Shean et al., 2016). It should be noted that the
orthorectification was performed to both multispectral bands and panchromatic band
(PAN) (see Table 2.2). At this stage, the SPOT 5 images has transformed into level

1—geometrically orthorectified at ToA radiance radiometric level (Crawford et al., 2023).
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Table 2.2. Input datasets for image analysis

Period  Scene ID Acquisition  Sensor Resolution
2004 004-S5-255-339 05/08/2004 SPOT5
005-S5-255-339 Spectral radiometric wavelength (in um):  Spatial:
Near infrared (NIR): 0.78-0.89 NIR: 10 m
2005 004-S5-255-339 29/01/2005 Red: 0.63-0.69 Red: 10 m
006-S5-255-339 Green: 0.52-0.60 Green: 10 m
Short wave infrared (SWIR): 1.55-1.75 SWIR: 10 m
Panch tic (PAN): 0.48-0.71 :
2014 004-S5-255-339 18/05/2014 @ anchromatic (PAN):0.48-0 PAN:10'm
005-S5-255-339
2024 20240629 0326 29/06/2024 Planet Super Dove
04 _67_24af 3B Spectral radiometric wavelength (in um):  Spatial:
NIR: 0.84 — 0.88 NIR: 3 m
Red: 0.65 — 0.680 Red: 3m
Green: 0.55-0.58 Green:3 m
Blue: 0.46-0.52 Blue: 3 m

To obtain images at surface reflectance level, the atmospheric correction was
performed using the 6s algorithm. This process was executed using the Python
extension of Orfeo Toolbox (pyOTB) (Grizonnet et al., 2017). PyOTB sequentially
converted the radiometric values from ToA radiance to ToA reflectance, then to BoA
(surface) reflectance. Fig. 2.5 presents the transformation of SPOT 5 images from
sensor measurements (ToA radiance) to physically meaningful surface reflectance
values. The analysis was performed using a random sample of approximately 1,000
pixels per spectral band, with boxplots illustrating the distribution of digital values
across the green (0.50-0.59 um), red (0.61-0.68 um), NIR (0.78-0.89 uym), and SWIR
(1.58-1.75 pm) spectral ranges. Instead of the 0-1 range, the surface reflectance
values were scaled by 1,000 to reduce quantization error. At this stage, the SPOT 5

images has transformed into level 2.

Fig. 2.6 summarizes the product from each pre-processing steps for the SPOT 5
images. As shown in the illustration, there is a progressive brightening from ToA
radiance to ToA reflectance and then to surface reflectance. The radiance image
appears darkest as it represents the raw digital numbers converted to physical units
of energy measured at the sensor (Fig. 2.6a). The TOA reflectance image shows
increased brightness after normalization for solar illumination conditions and Earth-
Sun distance, eliminating variations due to seasonal and daily solar geometry (Fig.
2.6¢).
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Fig. 2.5. Comparison band-to-band radiometric properties of SPOT 5 image at: (a) ToA radiance, and

(b) BoA (surface) reflectance.
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Fig. 2.6. A visual comparison of the 2004 SPOT 5 image at different radiometric levels.
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The surface reflectance image appears brightest following atmospheric correction,
which removes the effects of atmospheric scattering and absorption that attenuate the
signal during its passage through the atmosphere (Fig. 2.6d). The pansharpening
process resulted the surface reflectance to be more sharped. In addition, the
pansharpening process enhanced the spatial detail of the surface reflectance image
by incorporating the higher resolution information from a panchromatic band (Fig.
2.6b), resulting in improved edge definition and feature clarity while preserving the

spectral characteristics of the multispectral data.

Meanwhile, PS images consist of visible bands (i.e., red, green, and blue) and NIR
band (Planet, 2023). Each band has spatial resolution at 3 m and was obtained from

Planet Explorer (www.planet.com/explorer). The PS data products are delivered as

orthorectified surface reflectance (level 2), having undergone both geometric
correction (orthorectification) and atmospheric correction to remove scattering and
absorption effects, with reflectance values are scaled by 10,000. To match the spatial

resolution of the SPOT 5 images, the PS datasets were resampled at 5 m resolution.
2.5.1.b Harmonization of Multisensor Input Images

Fig. 2.7 presents the false colour band composites of the analysis-ready input images,
which were used for land cover classification (Fig. 2.7a, 2.7c, and 2.7d) and
identification of the 2004 |IOT inundation limit (Fig. 2.7a and 2.7b). The false colour
composites use NIR, red, and green bands instead of the standard red-green-blue
combination (natural colour). This could enhance the contrast between vegetation,
water, and built-up areas, facilitating a better visual comparison between pre- and

post-tsunami conditions within the AOI.

However, as described in Table 2.2, the spectral wavelengths between the SPOT-5
and PS datasets differ significantly. Moreover, while both sensors provide 4-band
multispectral imagery, the SPOT-5 sensor does not include a blue spectral band.
Conversely, PS does not provide an SWIR spectral band. This disparity can affect
downstream products such as land cover maps, leading to inconsistency and
introducing bias in land cover change analysis (Leach et al., 2019). Besides the
radiometric differences, satellite images derived from different sensors potentially
have slight spatial misalignment at the pixel level. Indeed, spatial misalignment can

also occur within the same sensor, especially for images acquired at different periods
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(Behling et al., 2014). It should be noted that spatial misalignment even at the sub-
pixel level can affect the reliability of change detection maps (Sundaresan et al., 2007).

(a) SPOT 5
5 August 2004

(b) SPOT 5
29 January 2005 _

5.60°N+ 5.60°N+

8 5.55°N-
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(c) SPOT 5
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Fig. 2.7. Input images at 5 m resolution for the land cover classification and the 2004 10T inundation
limit detection.

Therefore, spatial and spectral harmonization of the input images prior to land cover
classification is essential. The harmonization was performed in two sequential steps.
First, spatial misalignment between the multisensor images was detected and
minimized through image-to-image co-registration. Second, radiometric
inconsistencies in the spatially aligned images were assessed and corrected through

radiometric normalization.

The image-to-image co-registration was performed using AROSICS, a Python-based,
open-source tool designed for the automatic detection and correction of spatial

misalignments between cross-sensor images at sub-pixel level (Scheffler et al., 2017).
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It could work effectively regardless of the images' resolution, spectral band

characteristics, cloud cover coverage, and temporal land cover dynamics.

AROSICS estimates misalignment by generating a grid of tie points (TPs) across the
image overlap, spaced at a user-defined interval (e.g., 100 pixels). For each tie point
(TP), X/Y offsets at a given geographical position (also known as X/Y displacement)
between target and reference images are calculated within a local window of 256x256.
The method uses phase correlation in the frequency domain to first determine integer
pixel shifts. These integer shifts are then refined to achieve sub-pixel accuracy.
Following displacement calculation, each shift must pass through sequential validation

tests:

1. Reliability Check. This ensures the detected shift is statistically significant and
not caused by noise or ambiguous patterns (Rogass et al., 2013). AROSICS
measures the sharpness of the peak in the cross-power spectrum (Fourier
domain) and calculates a reliability percentage. Tie points (TPs) with reliability
values below 30% are rejected, as they likely represent false matches (e.g., in
cloudy or homogeneous areas).

2. Structural Similarity Index (SSIM) Test. This verifies whether the estimated shift
actually improves local image alignment. AROSICS compares the structural
similarity between the reference and shifted target patch using the Mean SSIM
(MSSIM) metric (Zhou Wang et al., 2004). TPs are discarded if the MSSIM
decreases after applying the shift, indicating poor correction.

3. RANdom SAmple Consensus (RANSAC) detection (Fischler & Bolles, 1981).
This removes globally inconsistent TPs that deviate from the expected
geometric transformation. AROSICS fits an affine transformation model to all
candidate shifts and iteratively flags outliers (e.g., shifts caused by clouds or
terrain distortions). The algorithm automatically adjusts the outlier threshold to

exclude approximately 10% of TPs, ensuring robust results.

Validated TPs and their final X/Y displacement vectors are then used to warp the target
image via affine transformation. Approximately 1,000 TPs were utilized to calculate
and correct the spatial misalignment between PS (reference) and SPOT 5 scenes
(target images). Fig. 2.8 shows TPs distribution and their X/Y calculated shift
displacement for the 2004 SPOT 5 image. Before co-registration, AROSICS detected
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the maximum geolocation offset of 55 m relative to the PS image. The spatial
misalignment was reduced to a maximum of 5 m after the co-registration was applied.
Overall, the geolocation offsets in the multitemporal all input images ranged from a
minimum of 10 m (observed in SPOT 5 2014) to a maximum of 55 m (observed in
SPOT 5 2004) (Table 2.3). The co-registration process effectively reduced the
geolocation misalignment by 85.6%—-92.2%.

5.6°N

65.58°N

5.62°N

9528E 953E 9532E95345953GE 95.38°E 954E

3 T aa— — —
10 20 30 40 50 20 25 35 4.5
Geolocation offset (m) Geo/ocat/on offset (m)
Before co-registration After co-registration

Fig. 2.8. TP distribution used to calculate spatial offset between the 2004 SPOT 5 and 2024 PS images.
The colour bars indicate X/Y offsets in meters for each TP: (a) before and (b) after co-registration.

Table 2.3. Spatial misalignment of input images, relative to the 2024 PS image
Spatial geolocation offset (detected maximum X/Y displacement)

Target image

Before co-registration After co-registration
SPOT 5 2004 55 m 5.0m
SPOT 5 2005 25m 27m
SPOT 52014 10 m 25m

Next, to address the radiometric inconsistency across input co-registered images, the
radiometric normalization was applied using the lterative Reweighted Multivariate
Alteration Detection transformation algorithm (IR-MAD) (Leach et al., 2019). IR-MAD
yields optimal results when the acquisition gap between the reference and target
images is minimal, such as a few months. However, given that the SPOT 5 sensor
ceased operations in 2015 while the PS constellation began producing imagery in
2016, it would be difficult to use either sensor as the radiometric reference for the other.
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Therefore, as an alternative, the Landsat products were selected as the radiometric
reference (Crawford et al., 2023). Landsat produces a long record and consistent time-
series dataset which have been widely used in many studies for normalizing
radiometric differences in multitemporal and inter-sensor datasets (Ju et al., 2025; Tu
et al., 2022; Houborg & McCabe, 2018). The Landsat satellite has been operating
since 1972 (Landsat 1) and most recently launched Landsat 9 in 2021. The U.S.
Geological Survey (USGS) initiated collection-based processing of the entire image
archive, which was processed as collection 1 in 2016. By 2020, the USGS
reprocessed images in collection 1 archive and included additional new images to

create the collection 2.

For this study, the Landsat Collection 2 Level 2 was employed as the radiometric
reference, with selected scenes having narrow temporal gaps with the input datasets
(SPOT 5 and PS images), as detailed in Table 2.4. It should be noted that neither
SPOT 5 nor PS images were spatially co-registered to Landsat products. This is
because the SPOT 5 images have already been co-registered to the PS images, while
the spatial misalignment between PS and Landsat products was approximately 6 m,
which was considered sufficient for change detection analysis (Wegmueller et al.,
2021; Leach et al., 2019).

Table 2.4. Landsat scenes used as references for radiometric normalization

Target images Reference images
Sensor  Acquisition Sensor Acquisition
SPOT5 5August 2004 | Landsat5 TM 21 December 2004

Scene ID: LT51310562004356BKT00

SPOT 5 29 January Landsat 5 TM 21 December 2004
2005 Scene ID: LT51310562004356BKT00
SPOT5 18 May 2014 Landsat 8 OLI 16 February 2014

Scene ID: LC81310562014047LGNO1

PS 29 June 2024 Landsat 9 OLI-2 27 June 2024
Scene ID: LC09 L2SP_131056_20240611_02

The normalized different vegetation index (NDVI) values before and after radiometric
normalization were used as indicator for identifying improvements in radiometric

consistency. The NDVI is a widely used vegetation index that measures the density
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and health of vegetation by calculating the ratio between spectral bands of NIR (ownir)
and red (prep) (equation 10) (Houborg & McCabe, 2016). Its values range from -1 to
+1, where values closer to +1 indicate dense, healthy vegetation, values near 0
represent bare soil or non-vegetated surfaces, and negative values typically indicate
water bodies or clouds. NDVI is particularly useful for radiometric normalization
assessment because vegetation areas should maintain consistent index values across
different sensors and acquisition dates when radiometric differences are properly
corrected (Leach et al., 2019).

The NDVI values were exclusively extracted at invariant pixels between the reference
and target images. IR-MAD transformation identifies invariant pixels, applying a no-
change probability threshold of 95% for invariant pixel selection. These invariant pixels
are subsequently utilized in a regression model to adjust the radiometry of the target
image to align with the reference image. As an example, Fig. 2.9 shows the detected
invariant pixels between the SPOT 5 images before and after the 2004 I0OT event and
the 2004 Landsat 5 TM at 30 m resolution (radiometric reference). Number of invariant
(unchanged) pixels detected (N) was 213 for the 2004 SPOT 5 (Fig. 2.9a). Due to land
cover change caused by the tsunami occurrence, this number reduced to 133 for the
2005 SPOT 5 (Fig. 2.9b). This indicates that invariant pixel detection was precise since
the maijority of unchanged pixels (i.e., yellow coloured markers) were located in areas

not affected by the tsunami event.

The inconsistency in NDVI values between the reference and target images was
measured using root mean squared error (RMSE) (equation 11). Fig. 2.10 shows the
NDVI value distribution before and after radiometric normalization was applied
(derived from invariant pixels in Fig. 2.9). Before normalization, differences in NDVI
values were observed with an RMSE of 0.26 for the 2004 SPOT 5 (Fig. 2.10a) and
0.33 for the 2005 SPOT 5 (Fig. 2.10c). After normalization, the discrepancy in NDVI
values reduced, with an RMSE of 0.02 for both datasets (Fig. 2.10b and 2.10d). Overall,
for all input datasets, the radiometric normalization improved radiometric consistency
by 87.5%-92.3%, as detailed in Table 2.5.
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Fig. 2.9. Distribution of detected invariant pixels (yellow markers) between the reference image (2004
Landsat 5 TM) and SPOT 5 images at: (a) four months before and (b) one month after the 2004 IOT.
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Fig. 2.10. Comparison of NDVI values before and after radiometric normalization, derived from invariant

pixels in Fig. 2.9
NDVI = PNIR-PRED
PNIR+PRED
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1
RMSEy\py; = NZ(Reference image NDVI, — Target image NDVIL.)2 (11)
i=1

Table 2.5. Comparison of NDVI values between input and reference images (in RMSE)

Input datasets Total invariant pixels (N) Before normalization  After normalization
SPOT 5 2004 236 0.26 0.02
SPOT 5 2005 133 0.33 0.02
SPOT 5 2014 200 0.32 0.04
PS 2024 220 0.28 0.01

2.5.1.c The 2004 IOT Inundation Limit

A combination of manual digitization and semi-automated technique were performed
to identify the inundation extent of the 2004 IOT event. The semi-automated approach
involved comparing the normalized difference water index (NDWI) layers from images
taken before (the 2004 SPOT 4; Fig. 2.11a) and after the tsunami (the 2005 SPOT 4;
see Fig. 2.11b). The NDWI is a water detection index that measures the presence and
extent of surface water by calculating the ratio between bands of green (ocreen) and
NIR (onir) (equation 12) and is widely used to define the flood extent (Hese & Heyer,
2016).

NDWI = PGREEN-PNIR 12)

PGREEN+PNIR

Theoretically, NDWI values ranges from -1 to +1 based on the spectral characteristics
of land surface features. Since water has strong absorption properties in the NIR
spectrum, it produces high NDWI values (Koshimura et al., 2020). The tsunami
inundation extraction analysis is based on the principle that NDWI values will be higher
in flooded areas due to water presence and will show a sharp decline in dry areas at
the inundation boundary. This fundamental concept forms the basis for establishing
NDWI threshold values to delineate tsunami-affected zone (Samela et al., 2022).

The trial-and-error thresholding method was applied and an NDWI threshold of +0.15

was obtained to distinguish wet areas. Subsequently, a post-classification step was
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performed on the post-tsunami NDWI layer (Fig. 2.11b) through manual digitization of
regions that were either missed or incorrectly classified by the semi-automated method.
This integrated approach helps reduce bias in determining the tsunami extent, with the
obtained boundary for the 2004 10T event shown in Fig. 2.11c.

(@)

NDWI value

95.1%0"E$3} 95.q5°E 95.120“ 95.%5“E 95.?=0E
Before the 2004 |IOT After the 2004 10T Obtained inundation limit

Fig. 2.11. NDWI layers before and after 2004 10T event, with the red colour indicating water/wet areas.
The orange line shows inundation limit, derived from manually digitization of post-tsunami NDWI layer.

2.5.1.d Land cover classification

The OBIA-RF for land cover classification process was executed using pyOTB, which
involved image segmentation, zonal statistics, model training, and image classification.
Considering variation in four-bands composition between SPOT 5 and PS sensors
(see Table 2.2), only three of similar spectral bands were used (i.e., NIR, red, and
green). The accuracy of land cover classification is determined by number of bands
from input images (Zeferino et al., 2020; GaSparovi¢ et al., 2018). Given this, four

additional bands from spectral indices were included as environmental features.

These spectral indices included vegetation (NDVI) and water (NDWI) indices which
has been explained in sections 2.5.1.b and 2.5.1.c. The other two spectral indices
were the second modified soil adjusted vegetation index (MSAVI12) and the visible-red
near-infrared built-up index (VrNIRBI). The MSAVI2 was included to better distinguish
vegetation from soil backgrounds, particularly in areas with sparse vegetation cover,
as it reduces soil brightness influences that can affect NDVI measurements (equation
13) (Gholizadeh et al., 2018). Meanwhile, the VrNIRBI was incorporated to enhance
the identification of built-up areas and impervious surfaces (equation 14) (Montero et
al., 2023).
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MSAVI2 = PNIR \/( pNIZR ) (PNIR — PRED) (13)

VrNIRBI = PRED=PNIR (14)

PRED+PNIR

Fig. 2.12 presents the pipeline process for the land cover classification. First, the three
spectral and four environmental indices bands were stacked to form a seven-band
input image. It should be noted that the scale of radiometric value between spectral
and environmental indices bands were different. Given this, all radiometric values were
rescaled to 0 and 1. Next, the image segmentation was performed, resulting in polygon
features with unique identifiers. Each polygon was characterized by its radiometric
properties through zonal statistics, which calculated the mean and standard deviation

values for all seven bands within each segment.

The ground truth labels were then spatially joined with the segmented polygons based
on their location, creating labelled polygon sample datasets with radiometric properties
for each land cover class. To address the uneven sample distribution across land cover
classes (Ma et al., 2017), a proportional class-weighted sampling approach was
implemented by selecting 70% of labelled polygons as training datasets. The

remaining 30% served as validation sets to assess classification accuracy.

Following Teluguntla et al. (2018), the ground truth labels were obtained by manually
annotating very high-resolution historical basemap imagery from Google Earth Pro
using photointerpretation techniques. The basemap imagery was selected to closely
match the acquisition dates of the input satellite images. The ground truth labels
consisted of approximately 3,000 randomly distributed points for each temporal period,
divided into five land cover classes: water, bare land, low-vegetation, high-vegetation,
and built-up areas (Fig. 2.13). To ensure accurate label assignment, the annotated

points were validated using the classification scheme outlined in Table 2.6.
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Fig. 2.12. The pipeline process for land cover classification using OBIA-RF method.
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Fig. 2.13. Distribution of ground truth labelled points (10% subset) for three temporal periods.
Background: Google Earth Pro very high resolution imagery.
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Table 2.6. Classification scheme

Class Description (Montero et al., 2023) Examples

Water o Water is present in image Shallow coastal areas, river, ponds
e Include intertidal zone
e Contain no vegetation
o NDWI value: more than 0

Bare ¢ Contain no vegetation and water Beach, soil, sand, and reclaimed

e Does not include intertidal zone land

¢ Does not include unpaved roads

¢ MSAVI2 value: -1 to 0.2

e Homogeneous green covered area

e Human planted crops

e Less dark than surrounding vegetation

e less dense canopy vegetation

e Small trees in a city park, pedestrian or
highway median.

e NDVI value: 0.2 to 0.7

¢ Dense canopy vegetation

e Darker than surrounding vegetation

¢ High trees in a city park

e Included flooded vegetation

o NDVI value: more than 0.7

¢ All man-made structures

¢ VVNIRBI value: more than 0

Low-vegetation Grass, paddy field, corn, and shrub

High-vegetation Mangrove and forest

Built-Up (BU) Road, building, impervious surface

The land cover model was then trained using the prepared training dataset based on
RF classifier, where each polygon's radiometric features (mean and standard deviation
values from seven bands) served as input variables and the corresponding land cover
labels as target variables. The performance of land cover classification using RF
classifier is highly dependent on its hyperparameters. It should be noted that RF is a

nonparametric ensemble learning algorithm (Breiman, 2001).

The RF model's architecture is depicted in Fig. 2.14. This ensemble method employs
bagging to produce numerous base predictors, with the ultimate prediction determined
by majority voting across all individual models. According to bagging theory, model
accuracy improves with an increasing number of predictors, though this relationship
holds only up to a certain point (Chowdhury, 2024). In RF, the bagging process
generates many decision trees (NT), each trained on a bootstrapped subset of the
original training data (sampled with replacement). The trees are developed to their full
depth (DT)—the maximum possible path length from the root to any leaf node—
enabling them to model intricate data relationships. However, excessively deep trees
may overfit the training data, necessitating careful optimization of the maximum depth

to achieve a trade-off between model complexity and generalization.
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During tree construction, each node split is determined by evaluating a randomly
chosen subset of features, using metrics such as Gini impurity or entropy to identify
the optimal partition. To enhance robustness and prevent overfitting, the minimum
samples required to split a node is imposed (VPS). This parameter defines the
smallest number of data points that a node must contain to be eligible for further
splitting. Lower values permit more granular splits but increase susceptibility to noise,
whereas higher values encourage broader, more generalizable decision boundaries.
The final classification is derived by aggregating the predictions of all trees through
majority voting. A grid search method from Python's Scikit-learn (Version 1.5) was
employed to determine the optimal RF parameters (Liao et al., 2024). Table 2.7 lists

the optimal parameters with respect to the training datasets.

Training Dataset

Decision Tree 3 Decision Tree 2 Decision Tree 3
Classification 1 Classification 2 Classification 3

I
I—> Maijority of Voting/ Averaging 4——,

Fig. 2.14. The model’s architecture of random forest classifier.

Table 2.7. Optimal parameter for random forest classifier

Land cover model Sample sizes DT VPS NT
2004 2219 16 5 200
2014 2229 16 2 300
2024 2240 16 2 100
Parameters Random variable

Maximum depth (DT) 2,4,8,16, 32

Minimum sample to split (VPS) 2,5,10, 25, 50

Number of Trees (NT) 1, 10, 50, 100, 200, 300, 500, 1000
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To minimize potential misclassification between built-up and bare classes owing to
similarities in the spectral characteristics (Geif et al., 2017), a manual post-
classification correction was performed. Additionally, the generated land cover maps

were reviewed by two local experts to ensure their accuracy.

Fig. 2.15 presents the results of land cover classification. The accuracy of land cover
maps was evaluated using a confusion matrix against validation points, represented
by three accuracy indicators: F1 score, overall accuracy, and kappa index (Table 2.8).
The accuracy assessment showed that the generated land cover maps were relatively
accurate, with overall accuracies of 95.2% for the 2004 land cover (LC-04; Fig. 2.15a),
92.7% for the 2014 land cover (LC-14; Fig. 2.15b), and 94.5% for the 2024 land cover
(LC-24; Fig. 2.15c).

Table 2.8. The confusion matrix and land cover classification accuracy
LC-04 (Land cover in 2004, before the 2004 IOT event)

Truth Label Accuracy Metrics (P: Precision; R: Recall)
Land cover* / vV P R F1  Overall Accuracy Kappa Index
I 146 O 0 0 1 [099 0.99 0.99
. 2 38 0 0 16 |0.88 0.68 0.77
Predoled 1o 0 142 2 8 092 093 093 95.2%. 0.92
Iv 0 0 5 62 0 |[097 093 0.95
v 0 5 7 0 523|095 098 0.97
LC-14 (Land cover in 2014, 10 years after the 2004 IOT event)
Truth Label Accuracy Metrics
Land cover | nom vV P R F1  Overall Accuracy Kappa Index
I 127 0 2 0 5 1092 095 0.93
. I 1 26 2 0 15 087 059 0.7
Predoted |72 119 7 10 |088 082 085 92.7% 0.88
Iv 0 0 8 70 1 |091 089 0.9
v 3 2 4 0 537|095 098 0.96
LC-24 (Land cover in 2024, 20 years after the 2004 I0T event)
Truth Label Accuracy Metrics
Land cover | mnuowvov P R F1  Overall Accuracy Kappa Index
/I 130 O 0 0 0 |0.98 1 0.99
. I 2 24 1 0 12 |0.75 0.62 0.68
precold w0 3 120 7 6|09 089 089 94.5% 0.91
v 0 0 3 69 0 09 0.96 0.93
vV 0 5 11 1 524|097 0.97 0.97

* | water; Il: bare; lll: low-vegetation; IV: high-vegetation, and V: built-up areas
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Fig. 2.15. Local land cover map for temporal period of: (a). 2004, (b) 2014, and (c) 2024. The black
dashed line represents the 2004 IOT inundation limit.

Table 2.9 provides the percentage of each land cover type within the total AOI between
2004-2024. The land cover change analysis revealed that the built-up areas have
expanded from 38.73% of the total BNA region in 2004 to 50.9% in 2014 and further
rose to 62.81% in 2024—a total expansion of 1,442.35 ha. This growth corresponded
with decreased coverage of other land cover classes, particularly low-vegetation
regions which declined by nearly 50% from approximately 1,750 ha in 2004 to 910.74
ha by 2024. The high-vegetation and bare areas also showed decreasing trends,
though less dramatically. Notably, bare areas slightly increased by 10 ha compared to
2014, likely due to ongoing reclamation processes, further evidenced by the

concurrent reduction in inland water coverage.

Table 2.9. Land cover class area estimates

Land-class fraction (areas and percentage)

Year Land cover
Water Bare Low-vegetation High-vegetation Built-up areas

2004 LC-04 1174.83 ha 320.54 ha 1750.04 ha 374.61 ha 2288.61 ha
19.88% 5.42% 29.62% 6.34% 38.73%

2014  LC-14 1224.48 ha 137.38 ha 1168.85 ha 370.16 ha 3007.76 ha
20.72% 2.32% 19.78% 6.26% 50.9%

2024 LC-24 866.67 ha 147.52 ha 910.74 ha 272.6 ha 3710.96 ha
14.67% 2.5% 15.41% 4.61% 62.81%
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2.5.2 Local Gridded Population Datasets

To construct the gridded population layers, the binary dasymetric mapping was
adopted (Swanwick et al., 2022). First, the built-up class was extracted from each land
cover map, resulting in built-up layers as shown in Fig. 2.16a-2.16c. These built-up
layers were then intersected with subdistrict polygon boundaries to calculate the total
built-up pixels within each polygon. Next, the population-to-built-up pixel ratio was
calculated for each subdistrict. Finally, these ratio values were assigned to each built-
up pixel, while non-built-up pixels were assigned a value of zero. Table 2.10 presents
the population data for the AOI from 2004-2024, and the generated gridded population
layers are shown in Fig. 2.16d-2.16f.

While some studies narrowly define built-up areas to include only buildings for more
granular exposure assessment (Bonatz et al., 2024; Tiecke et al., 2017), this approach
may oversimplify population distribution during tsunami events, as people are not
always inside buildings. Therefore, this study employed a broader definition
encompassing all man-made surfaces, including roads, buildings, and impervious

areas, to better reflect the distribution of human activity.

2004 2014 2024
(a) BU-04 (b) BU-14 (c) BU-24

M Non Built-up
M Built-up

Built-up layes

[ O —

Am——

(d) POP-04
Population count
per pixel

(e) POP-14

| S,
forlefepulnepitigl

Gridded population

Fig. 2.16. Local exposure datasets for temporal period 2004-2024: (a-c) built-up area and (d-e) gridded
population layers. The black dashed line represents the 2004 IOT inundation limit.
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Table 2.10. Population census data by subdistrict within the AOI (2004-2024).

ID  Subdistrict 2004 2005 2014 2018 2024
1 Kuta Raja 20,217 5,122 12,831 13,632 14,943
2 Syiah Kuala 42,776 35,514 35,702 37,938 34,545
3 Meuraxa 31,218 5,657 18,979 20,561 25,916
4 Kuta Alam 55,062 43,113 49,545 52,645 44,836
5 Baiturrahman 37,449 36,783 35,249 37,445 34,111
6  JayaBaru 22,005 11,348 24,481 26,525 27,239
7 Lueng Bata 18,360 18,254 24,581 26,119 25,802
8 Ulee Kareng 17,510 17,388 25,170 26,745 27,926
9 Banda Raya 19,071 19,015 22,961 24,878 26,651
Total 263,668 192,194 249,499 265,111 261,969
Source JICA (2005) BPS (2024)

See Fig. 1.3 to refer to the subdistrict ID distribution

2.6 Bias Assessment of Global Built-up Area Datasets

Table 2.11 presents the estimation of built-up areas within the AOl and the 2004 10T
inundation limit. By leveraging the local built-up layers as a reference, the analysis
revealed that global built-up area datasets exhibited both overestimation and
underestimation of total built-up areas in 2004 and 2014 (Fig. 2.17a). For the 2004
temporal period, GHS-BUILT demonstrated the most severe overestimation at
2,620.09 ha, exceeding the actual built-up area estimates by twofold. While this
overestimation persisted in 2014, GHS-BUILT's overestimation decreased to 69%
(2,077.14 ha).

Conversely, GLD FCD30D and GAUD underestimated the estimation of built-up areas
in 2004 by 55% and 29%, respectively. By 2014, both datasets exhibited
overestimation patterns. This aligns with the behaviour of other datasets, which
showed increases in total built-up areas between 2004-2014. However, GAIA was an
exception, providing the same estimation of built-up areas in both 2004 and 2014. This

resulted in GAIA underestimating built-up areas in 2014.

The observed biases in the built-up area estimations subsequently influenced the total
built-up area exposed to the tsunami (Fig. 2.17b). The local dataset estimated that
approximately 1,535.71 ha of built-up areas were affected by the 2004 IOT. Meanwhile,
the global datasets overestimated the inundated areas by 6% to 98%. GHS-BUILT
demonstrated the greatest overestimation by projecting about 3,045.3 ha of tsunami-
exposed areas, nearly twice amount projected by the local dataset. Similar to the bias

pattern in estimating total built-up areas, GLD FCD30D and GAUD underestimated

44



tsunami-exposed areas. The tsunami-affected areas were estimated at 976.1 ha by
GLD FCD30D and 850.9 ha by GAUD, which are 37% and 45% lower, respectively,

than the local dataset.

Table 2.11. Estimation of built-up areas derived from global built-up datasets
Built-up areas within Built-up areas within the 2004 10T

Resolution

Dataset the AQI (ha) inundation limit (ha)
(m) 2004 2014 2004 2014
Local (reference) 5 2288.61 3007.76 752.9 1,260.8
GAIA 30 2,729.3 2,729.3 1,101.4 1,101.4
GISA 30 3,440.1 3,960.3 1,308.5 1,564.2
GISD30 30 3,381.5 3,931.3 1,370.2 1,647.2
Glance 30 3,768.8 3,920.6 1,498.7 1,550.8
GLC FCD30D 30 1,627.7 4,088.2 660.5 1,670.2
WSF 30 4,302.5 4,554.2 1,734.9 1,794.3
GHS-BUILT 100 4,908.7 5,084.9 1,863.4 1,869.4
GAUD 1,000 1,021.0 3,403.5 170.2 1,616.7
. 2014 (b) | (G':)
GAUD{ s ° N 2004 1 -a5% 10%
GHSL 14% R o: i é%
WSF 8% I 67 | B2
GLC FCD 30 -37% R N 50"
Glance I s j 4%
GISD30 [ ERRA e
E Baseline: 15%
GISA | R0 2%
GAIA rs% o
-100% 0%  100% -100% 0% 100% 0% 50% 100% 150% 200%

Relative bias 2004 10T exposure bias Exposure evolution bias

Fig. 2.17. Bias assessment for global built-up area datasets: (a) relative bias, (b) bias in the 2004 10T
exposure, and (c) bias in the exposure evolution between 2004-2014. The red line represents the
reference dataset for built-up area expansion within the 2004 10T limit.

These biases in built-up area estimation also influenced projections of built-up area
evolution between 2004-2012 within the 2004 IOT inundated areas (Fig. 2.17c). The

local dataset revealed that built-up areas had expanded within the inundated areas by
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719.15 ha, representing approximately a 15% increase compared to before the 2004
IOT. Although the global built-up datasets captured this post-tsunami expansion trend
(except for GAIA), they largely underestimated the actual expansion rate, particularly
Glance with showing only a 4% expansion rate. In contrast, both GLC FCD30 and
GAUD overestimated the post-tsunami expansion trend by 150% and 110%,
respectively. This is likely related to their behaviour of underestimating total built-up

areas in 2004, which ultimately led to a substantial increase by 2014.
2.7 Bias Assessment of Global Gridded Population Datasets

Table 2.12 presents the estimation of population within the AOI and the 2004 IOT
inundation limit. The local datasets which were developed based on actual census
data showed that the population in 2014 was 5% lower than in 2004. This indicates
that the population did not fully recover to the pre-tsunami level even a decade after
the 2004 10T event. This decreasing pattern was also captured by WorldPop. In
contrast, both GlobPop and LSG demonstrated an increase in population by 10% and
6%, respectively. However, GHS-POP was an exception, as it provided the same

population estimates for both 2004 and 2014.

By using the local datasets as a reference, the analysis revealed that that global
datasets underestimated the actual population, except for LSG (Fig. 2.18a). In 2004,
the underestimation ranged between 29% and 47%, with WordPop exhibiting the
greatest bias, underestimating 123,813 people. Although WorldPop showed a similar
underestimation rate in 2014, its absolute value declined to 117,917. This is related to
the fact that the total population projected by WorldPop also decreased in 2014. In
contrast, LSG demonstrated an overestimation pattern by projecting 16,531 additional
people in 2004, compared to the reference dataset. By 2014, the overestimation
substantially increased to 48,650 people. This is because LSG showed an increase in
the total population during the 2004-2014 period while the reference dataset projected

the opposite.

Ultimately, biases in total population estimates influenced the projections of tsunami-
exposed populations. Consistent behaviours were observed, with LSG exhibiting an
overestimation of 2% and other datasets showing an underestimation ranging from
35% to 51% (Fig. 2.18b). Furthermore, WorldPop exhibited the greatest
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underestimation by capturing only approximately 86,239 people exposed to the 2004

IOT. This estimation was nearly twice lower than the reference dataset.

Table 2.12. Estimation of population derived from global gridded population datasets
Total population within ~ Total population within the 2004 10T

Dataset ?n(]a)solution the AOI inundation limit

2004 2014 2004 2014
Local (reference) 5 263,668 249,499 176,003 144,525
WorldPop 100 139,855 131,582 86,239 75,308
GHS-POP 100 175,242 175,242 98,973 98,973
GlobPop 1,000 187,339 205,787 114,882 112,401
LSG 1,000 280,199 298,149 179,329 166,485

(b) (c)
LSG/ . ] 2% % I

GlobPop+

= | 2%

GHS-POP-

----Baseline: -18% ---------------

WorldPop -51% - 3%
-100% -50% 0% 50% 100% -100% 0% 100% -100 -50 O 50 100
Relative bias 2004 10T exposure bias Exposure evolution bias

Fig. 2.18. Bias assessment for global gridded population datasets: (a) relative bias, (b) bias in the 2004
IOT exposure, and (c) bias in the exposure evolution between 2004-2014. The red line represents the
reference dataset for population dynamics within the 2004 10T limit.

By 2014, the reference dataset projected a decrease of 18% in the population living
within the areas affected by the 2004 10T, compared to 2004 (Fig. 2.18c). This aligns
with the total population dynamics after the tsunami within the AOI. Although the global
datasets also captured this decreasing trend (except for GHS-POP), they largely
underestimated the decrease, with GlobPop projecting the lowest decrease of 2,481
people or 28,997 people less than the estimation provided by the reference dataset.
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2.8 Summary of Chapter Il

The reference dataset revealed that before the 2004 IOT, built-up areas were
predominantly concentrated within zones that were later affected by the tsunami. A
decade later, built-up areas expanded in both affected and non-affected areas.
However, the distribution pattern in 2014 remained consistent with that in 2004, with
affected areas still accounting for a larger share of built-up coverage. Notably, between

2004-2014, the greatest increase occurred in the non-affected areas.

The analysis showed that the affected areas increased by 211.25 ha (Fig. 2.19a), while
non-affected areas expanded by 507.9 ha—more than twice as much (Fig. 2.19b).
This finding suggested that greater increases in total built-up areas did not necessarily

correspond to proportional increases in tsunami-exposed areas.

(a) BU dynamic within affected areas

(b) BU dynamic within non-affected areas

WSF

GLC FCD 30

Glance

GISD30

w2004

GAIA . 2014
I 5
0 1000 2000 3000 0 1000 2000 3000
area estimates (ha) area estimates (ha)
(c) POP dynamic within affected areas (d) POP dynamic within non-affected areas
LSG :
GlobPop
GHS-POP
WorldPop :
0 60000 120000 180000 0 60000 120000 180000
Population Count Population Count

Fig. 2.19. The dynamics of built-up area and population estimates within: (a and c) affected areas of
the 2004 10T and (b and d) non-affected areas of the 2004 10T. The blue and dark red dashed-lines
represent the reference estimates for 2004 and 2014, respectively.

Dataset selection significantly influenced these observations. The magnitude of the

built-up area increased considerably depending on the datasets used. Notably, except
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for GISD30 and GAUD, global datasets indicated that the larger built-up increase
between 2004-2014 occurred within affected areas. This pattern directly contradicts

the evolution projected using the reference dataset.

The population distributions exhibited contrasting patterns. Both the local and global
datasets demonstrated comparable trends within the affected areas, showing
population decreases during 2004-2014 (Fig. 2.19c). However, the datasets diverged
regarding non-affected areas: global datasets projected population decreases, while

the local dataset indicated population increases (Fig. 2.19d).

These contrasting patterns have important implications for evaluating mitigation
effectiveness. As mentioned in section 1.3, the AOI implemented spatial land use
planning that designated non-affected areas as new development zones. Evaluation
using global datasets like GHS-BUILT could have led to conclusions of ineffective
planning, since built-up areas in new development zones appeared to grow by only 6

ha over the decade.

In contrast, population data from global datasets (WorldPop, GHS-POP, and GlobPop)
could have suggested effective planning implementation, as these datasets indicated
that most populations resided in new development zones rather than in tsunami-
affected areas. In conclusion, these findings underscore the critical importance of
understanding global dataset properties and selecting appropriate data for specific
applications to minimize analytical errors that could lead to inaccurate tsunami risk

assessments.
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CHAPTERIII:
SENSITIVITY OF DIGITAL ELEVATION AND LAND COVER ROUGHNESS MODELS

3.1. Digital Elevation Models (DEMs) Datasets

This study evaluated 11 digital elevation models (DEMs), consisting of original DEMs
and their improved (error-reduced) versions. These DEMs varied in their creation
methods, acquisition periods, and spatial resolutions, ranging from 30 to 90 m, as
listed in Table 3.1. In addition to the improved versions from SRTM, COP30, and
AW3D30, the TanDEM change elevation data (CRAWDEM) with a 30 m resolution was
also incorporated into the analysis (Lachaise and Schweiphelm, 2023). CRAWDEM
was created by integrating new sensing data from 2017 to 2020 into the 30 m Edit
TanDEM (EDEM) dataset (Gonzalez and Bueso-Bello, 2023). Additionally, the
DEMNAS elevation model, a local DEM with an 8 m resolution introduced in 2018
(tanahair.indonesia.go.id), was also evaluated. DEMNAS employs multisource
datasets, including IFSAR (5 m), TERRASAR-X (95 m), and ALOS PALSAR (11.25 m),

along with additional mass point data derived from a stereo-plotting process. However,

details about the acquisition period of DEMNAS’s input datasets are limited.

Table 3.1. Characteristic of evaluated Digital Elevation Models (DEMs)

DEM (resolution) Datum Sensor Acquisition and improvement
Original DEMs

AW3D30 (30 m) EGM96  Optical stereoscopic 2006 to 2011

COP30 (30 m) EGMO08 SAR interferometry 2010 to 2015

EDEM (30 m) WGS84  SAR interferometry 2011 to 2015

SRTM (30 m) EGM96 SAR interferometry 2000

Error-reduced DEMs

Added new data from 2017-

CRAWDEM (30 m) WGS84  Improved EDEM 2021

DiluviumDEM (30 m) EGMO08 Improved COP30 Reduced vertical bias
Removed building and

FABDEM (30 m) EGM08 Improved COP30 vegetation biases

NASADEM (30 m) EGM96 Improved SRTM Void filling

CoastalDEM (90 m) EGM96 Improved SRTM & NASADEM  Reduced vertical bias
Reduced speckle, stripe, void,

MERIT (90 m) EGM96  Improved SRTM & AW3D30 and vegetation bias
Local DEM
DEMNAS (8 m) EGM08 TERRASAR, IFSAR, and stereo-plotting mass points

Some of these DEMs have been evaluated by numerous studies for various

applications, including ecological terrain assessment (Bielski et al., 2023; Tran et al.,
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2023; Li et al., 2022; Olajubu et al., 2021; Fassoni-Andrade et al., 2020), inundation
modelling (Liu et al., 2021; McClean et al., 2020; Hawker et al., 2019; Hawker et al.,
2018), sea level rise analysis (Seeger et al., 2023; Gesch, 2023; Kulp and Strauss,
2016), and terrain change detection (Chen et al., 2022; Brosens et al., 2022).
Nevertheless, variations in terrain across different locations may lead to

geographically specific error patterns (Hawker et al., 2018).

To address this, an elevation error analysis was performed within the research location
before incorporating these data into the inundation models. Given the topographical
setting of our area of interest (AOI), the error analysis focused on elevations lower
than 10 m, a threshold to delimit the low-elevation coastal zone (Gesch, 2018). Prior
to error analysis, all DEMs were harmonized to the same vertical datum of EGM2008,
as the original datasets used two different datums (EGM1996 and EGM2008). Fig. 3.1
illustrates the spatial distribution of elevations across all evaluated DEMs within the
low-elevation coastal zone, with blue areas representing water bodies (<0 m) and the

colour gradient from green to red indicating increasing elevation from 0 m to 10 m.
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Fig. 3.1. Elevation distribution from evaluated DEMs within the AOI, vertical datum set to EGM2008
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3.2. Elevation Error Analysis

Errors were defined as the discrepancies in elevation between the DEMs and the
ground truth data (Dusseau et al., 2023). To mitigate bias in error interpretation, three
statistical measures were employed: mean error (ME), mean absolute error (MAE),
and root mean square error (RMSE) (equations 15-18). Due to the unavailability of
local LiDAR data, elevation data from the global altimetry dataset ICESat-2 (version
006) were utilized as ground truth reference, sourced from the National Snow and Ice

Data Center (https://nsidc.orq).

The ICESat-2 satellite employs a photon-counting lidar system from Advanced
Topographic Laser Altimeter System (ATLAS) instrument along with supporting
technologies (GPS, star cameras, and ground processing systems) to measure photon
travel time between the instrument and Earth's surface, enabling precise
determination of reflected photon coordinates in terms of geodetic latitude and
longitude (Neumann et al., 2023; Neuenschwander et al., 2023). Fig. 3.2 illustrates the
ATLAS beam configuration, showing how laser pulses create three paired illumination
spots on the surface, resulting in six ground tracks approximately 14 m in width as the
satellite orbits Earth. These ground tracks are designated by their corresponding laser
spot numbers, ranging from the leftmost track (GT1L) to the rightmost track (GT3R),
with left and right tracks within each pair separated by approximately 90 m across-
track and 2.5 km along-track. Additional details of ICESat-2 dataset are provided in
Table 3.2.

The ICESat-2 data products are structured according to ground track organization,
where tracks 1L and 1R constitute the first pair, tracks 2L and 2R form the second pair,
and tracks 3L and 3R comprise the third pair. Each pair is associated with a theoretical
Pair Track, representing the midpoint between the actual left and right beam positions,
with these pair tracks spaced approximately 3 km apart in the across-track direction.
ICESat-2 provides several products, including the geolocated photon data (ATLO03)
(Neumann et al., 2023) and a land and vegetation height product (ATLOS8)
(Neuenschwander et al., 2023), with along-track resolutions of 20 m and 100 m,

respectively.

Ah; = h.DEM; — h. ground reference; (15)
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Fig. 3.2. ATLAS/ICESat-2 beam configuration. Adopted from Neumann et al. (2023)

Table 3.2. Characteristic of ICESat-2 dataset

(16)

(17)

(18)

Parameter Characteristic
Mission ICESat-2
Type Discrete photon

Main objective
Duration

Orbit Inclination
Beam footprint

# tracks

Along track spacing
Across track spacing
Swath width

Beam frequency

Vertical accuracy

Cryosphere monitoring
2018-2024 (ongoing)

92°

11m

6 (in 3 strong/weak pairs)
0.7 m (20 m for ATL08)

3 km/90 m between pair
6.6 km

532 nm (green)

0.91 cm MAE
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The ICESat-2 provided 40 photon laser tracks encompassing the AOI from December
2018 to June 2023 (Fig. 3.3). Using the Python implementations of the Photon
Research and Engineering Analysis Library (PhoReal) (Neuenschwander and
Magruder, 2023), the photon signals were converted into elevation values. PhoReal
can classify ATLO3 photon signals into noise, canopy, and ground elevation data by

utilising labelled information from ATL0O8 products.

The conversion of 40 photon laser tracks resulted in 460,000 ICESat-2 ground
elevation points, which were used to analyse the elevation errors. Fig. 3.4 illustrates
the detailed workflow of the elevation error analysis. Using information from the local
land cover map in 2014 (LC-14; see Fig. 2.15), the analysis was conducted across
various land cover types: all classes (excluding water), built-up areas, and highly

vegetated regions (forest).
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Fig. 3.3. (a) ICESat-2 track covered the AOI from 2018 to 2023. Sample of ATLO3 photon classification
for (b) Right ground track on 10 December 2019, and (c) Left ground track on 15 December 2020.
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Table 3.3 summarises the error metrics for each DEMs at elevations below 10 m
across various land cover types. The enhanced versions of COP30, namely FABDEM
and DiluviumDEM, consistently demonstrated superior RMSE and MAE values
compared to other DEM datasets. On average, FABDEM exhibited a slightly better
performance than DiluviumDEM, with elevation errors being nearly normally
distributed (ME = 2 cm) (Fig. 3.5). The error distributions further indicated that
DiluviumDEM had a higher incidence of negative errors than FABDEM in built-up
areas. However, when evaluated using an alternative error metric, DiluviumDEM
surpassed FABDEM, achieving an RMSE of 1.02 m in built-up areas and 1.25 m in
highly vegetated regions.

Furthermore, among the improved SRTM variants, CoastalDEM outperformed MERIT
and NASADEM, particularly in built-up areas (RMSE: 1.27 m and MAE: 1 m) and highly
vegetated regions (RMSE: 1.4 m and MAE: 1.07 m). However, CoastalDEM still
exhibited significant negative biases, with an average of 1 m, resulting in an
underestimation of the elevation of coastal low-lying areas when compared to ground
truth data.

Table 3.3. Calculated statistical elevation error metrics

Metric (m): RMSE ME MAE

DEM [Resolution] AVG BU HV AVG BU HV AVG BU HV
AW3D30 [30 m] 3.13 412 4.27 1.66 3.43 3.54 2.54 3.46 3.63
COP30 [30 m] 1.64 2.1 2.85 0.37 1.41 1.83 0.94 1.63 1.97
CRAWDEM [30 m] 2.06 2.39 3.14 0.83 1.73 2.16 1.26 1.90 2.29
CoastalDEM [90 m] 1.53 1.27 140 -098 -0.34 -0.73 1.30 1.00 1.07
DEMNAS [8 m] 2.35 1.94 316 -0.32 0.72 212 1.78 1.40 2.42
DiluviumDEM [30 m] 1.18 1.02 1.25 -0.36 -0.21 0.10 0.70 0.71 0.81
EDEM [30 m] 1.78 1.97 3.00 0.48 1.30 2.02 1.01 1.53 219
FABDEM [30 m] 1.09 1.1 1.38 0.02 0.43 0.65 0.59 0.81 0.97
MERIT [90 m] 2.74 3.30 3.57 1.58 2.80 3.00 2.29 2.86 3.13
NASADEM [30 m] 2.14 2.49 3.70 0.07 1.20 2.31 1.60 1.91 2.73
SRTM [30 m] 3.13 3.87 5.21 1.56 3.06 4.25 2.45 3.17 4.32

AVG: Average errors. All land cover classes, except water; BU: built-up area; HV: High-vegetation

Notably, the average accuracy of the 8 m resolution local DEMNAS was lower than
that of certain global DEMs with coarser resolutions, such as FABDEM, DiluviumDEM,
CoastalDEM, COP30, and NASADEM. Nevertheless, DEMNAS demonstrated
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superior performance compared to MERIT across various land cover types. It also
exhibited greater accuracy than COP30 and NASADEM in built-up areas.

L.C Maps: - Original DEMs ICESAT-2 Altimetry:
LC04-30, LC04-10, - Error Reduced DEMs ATLO3 and ATLOS
LC04-5, & 1L.C14-5 - Local DEM (2018-2023)
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Fig. 3.4. Workflow for the DEMs error analysis and seamless topo-bathymetric model generation

In general, the accuracy of the error-reduced DEMs consistently surpassed the original
DEMs, with the exception of CRAWDEM. This exception likely stems from insufficient
calibration of newly added data (Lachaise and Schweif3helm, 2023). Consequently,
EDEM performed better than CRAWDEM in nine separate comparisons, despite
CRAWDEM being designed as an improved version of EDEM.

Among the error-reduced DEMs, MERIT was observed to be the least accurate
elevation model, with ME reaching 1.58 m. Similarly, its original datasets, AW3D30
and SRTM, showed the highest overestimation compared to other original datasets of
EDEM and COP30. Specifically, positive errors within built-up areas reached 4.12 m
for AW3D30 and 3.87 m for SRTM. For SRTM, these errors increased significantly up

to 5 min highly vegetated regions.
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Fig. 3.5. The error distributions of evaluated DEMs, with red line indicates built-up areas and black line
represents all land cover type (except water class).

3.3. Land Cover Roughness (LCR) Models

To develop the LCR model, a Manning's n value was assigned to each land-cover
class, utilizing coefficients as listed in Table 3.4. Bricker et al. (2015) observed that
commonly employed Manning coefficients tend to underestimate the dampening effect
of dense vegetation and are inadequate for modelling tsunami flow in urban
environments. Therefore, this study adopted Manning coefficients derived from

extensive experiments and field measurements.

To address the impact of variations in roughness coefficients on tsunami estimates,
two distinct sets of roughness coefficients were employed based on Bunya et al.
(2010) and Koshimura et al. (2009). Both studies provide density-based Manning
coefficients for built-up areas. The density of built-up areas was determined by
calculating the ratio of built-up pixels to total pixels within a 1-hectare area.
Subsequently, built-up area density was classified into three categories: low (ratio

<30%), moderate (ratio 30-70%), and high (ratio >70%).
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Table 3.4. Manning roughness coefficient values

Class Manning’s n value Manning’s n value
(s/m3) (s/m™3)

Water 0.013 0.013

Bare 0.025 0.020

Low vegetation 0.020 0.040

High vegetation 0.030 0.180

Low-density built-up (BU). Ratio: < 30%* 0.053 0.050

Moderate-density built-up (BU). Ratio: 30% -60% 0.094 0.120

High-density built-up (BU). Ratio: > 30% 0.172 0.150

Source Koshimura et al. (2009) Bunya et al. (2010)

* Ratio of built-up area

To investigate how spatial resolution affects inundation modelling accuracy,
multiresolution LCR models representing terrain features in the BNA region before the
2004 Indian Ocean Tsunami (IOT) were developed at three different resolutions: 30 m,

10 m, and 5 m. The development process involved:

1. Using the 2004 land cover map (LC-04) to generate a 5 m resolution LCR-04
model.

2. Resampling the LC-04 map to create a 10 m resolution LCR-04 model.

3. Developing a 30 m resolution LCR-04 model by following the land cover
classification method described in section 2.5.4 (Chapter-1l), using 30 m

Landsat 5 TM imagery from 2004 as input (see Table 2.4)

To assess how land cover changes affect inundation properties, inundation models
using the 2004 and 2014 LCR models were compared. In total, eight LCR models
were developed, encompassing three spatial resolutions (30 m, 10 m, and 5 m), two
temporal periods (2004 and 2014), and two different roughness coefficient sources,

as shown in Fig. 3.6.
3.4. Relationship Between DEMs, LCR Models, and Inundation Accuracy

To evaluate how combinations of global DEMs and LCR models might influence
inundation accuracy, the Mw 9.2 2004 Indian Ocean Tsunami (IOT) inundation was
reproduced using various combinations of global DEMs and LCR models. The
inversion fault model developed by Koshimura et al. (2009) was employed as the
tsunami source model. This inversion model has been widely used to reproduce the
2004 10T impact within BNA region (Jihad et al., 2023; Tursina et al., 2021; Syamsidik
et al., 2019).
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Fig. 3.6. Multiresolution LCR models, covering the computational region of Layer 4 (see Fig. 3.7).

To generate tsunami wave based on the inversion fault model input, the Cornell
multigrid coupled tsunami model (COMCOT) was employed (Wang and Power, 2011).
This model solves both the linear and nonlinear two-dimensional shallow water
equations (2D-SWE). 2D-SWE consists of the continuity equation (equation 19) and
momentum equation in both the x- (equation 20) and y-directions (equation 21). The

governing equations are expressed as:

6n (6P+6Q)_ 6h'H_ Th 19
ot "\ax Tay)” "o T (19
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where h is water depth or land elevation; n represents water surface fluctuation; P and
Q represent flux in the x- and y- directions, respectively; t is time; g is gravity; Fx and
Fy represent bottom friction in the x- and y- directions, respectively; and n denotes the

Manning’s coefficient values, which are represented by the LCR models.

COMCOT assumes that the seafloor displacement would instantaneously occur after
an earthquake event (Wang and Power, 2011). Using the elastic finite fault theory
proposed by Okada (1985), COMCOT computes the initial sea surface deformation.
The elastic fault theory models earthquake-induced deformation by conceptualizing a
rectangular fault surface embedded within an elastic half-space medium. The fault
surface serves as an approximation of the fracture zone between converging tectonic

plates, where sudden slip movement generates seismic events.

When displacement occurs along this fault surface, it generates stress distributions
throughout the surrounding elastic medium, resulting in surface deformation that
manifests as vertical and horizontal seafloor movements. As illustrated in Fig. 3.7, the
COMCOT model requires both focal fault geometry parameters and focal mechanism
to compute the initial sea surface deformation. The focal mechanisms include fault's
azimuthal orientation (strike angle, 6), inclination from horizontal (dip angle, ), and
direction of slip movement (rake angle, A). Meanwhile, the fault geometry parameters
include depth to the fault's upper edge (focal depth, h), and the fault's physical
dimensions (length, L, and width, W).
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Fig. 3.7. Schematic illustration of fault plane geometry and associated parameters for initial sea surface
deformation calculations. Colour-coded surfaces indicate the reference earth surface (light grey), the
fault plane (green), and the projected fault area onto the earth's surface (light red). Modified from Wang
and Power (2011).

For earthquakes involving complex rupture patterns, the source region can be
discretized into multiple fault patches or segments. The cumulative deformation field
is obtained through linear superposition of individual segment contributions, each
computed using the elastic dislocation theory. This segmented approach allows for
heterogeneous slip distribution across the rupture zone, producing more realistic

spatial patterns of seafloor deformation.

The employed inversion fault model to generate the Mw 9.2 2004 10T consisted of six

segments, as illustrated in Fig. 3.8a. The detailed parameters of fault geometry and
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focal mechanism are provided in Table 3.5. The initial sea surface deformation served
as the initial condition for tsunami wave propagation in the numerical domains. To
simulate the tsunami propagation from the Sunda-Andaman segment to the AOI, a
four nested-grid configuration was employed as the numerical domain, as illustrated
in Fig. 3.8b.

Table 3.5. Inversion fault model properties based on Koshimura et al. (2009)

Segment Focal depth  Length Width Strike Dip Rake Slip
(km) (km) (km) ) ) ) (m)
1 10 200 150 323 15 90 14.0
2 10 125 150 335 15 90 12.6
3 10 180 150 340 15 90 15.1
4 10 145 150 340 15 90 7.0
5 10 125 150 345 15 90 7.0
6 10 380 150 7 15 90 7.0
i ing: b i ing:
) ANett:ferg :Isteg;eng ] Layer 3 [] Layer 4 i ANettae;;rg ;Itlj:lseLtg;lg'Z [ ] Layer 3 [] Layer 4
j . N P 4
o Subfaunis;?uﬁon_ — . &
/ - ?
e i
- 12.0°N / < L5 Jeo L
It
F9.0°N \
\t\
Q
-6.0°N . %Q
Sea surface ;
deformation
5m 10m
F3.0°N =
0 100 200 km
87.0°E 90.0°E 93.0°E 9BOE X\ 39 0°E

Fig. 3.8. (a) Subfault setting of inversion fault model and the initial sea surface deformation. Details of
subfault properties are provided in Table 3.5. (b) Nested-grid layer setting and topo-bathymetric
configuration for each layer.

Table 3.6 lists the details of the numerical domain configurations. The outermost
domain (Layer 1), with a grid resolution of 1080 m, utilized the initial sea surface
deformation as the initial condition, while the inner layers incorporated the wave
heights and wave fluxes in the horizontal directions (x and y) along their nesting
boundaries. The GEBCO 2023 Grid, with a resolution of 15 s (~450 m), served as the
topo-bathymetric input for Layer 1 (GEBCO Bathymetric Compilation Group, 2023).
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Layers 2 and 3 with grid resolutions of 216 m and 43.2 m, respectively, employed the
Indonesian National Bathymetric Chart (BATNAS) with a resolution of 6 s (~180 m)

(tanahair.indonesia.go.id). The topo-bathymetric input data for the innermost domain

(Layer 4) integrated depth information from local bathymetric measurements and

elevation data from the examined DEMSs.

All topographic and bathymetric inputs were resampled to align them with the
resolution of each numerical layer using a regular point-based sampling approach in
GIS applications. To produce seamless topo-bathymetric input for Layer 4,
multiresolution water masks derived from multiresolution land cover maps in Fig. 3.6
were used to identify land and water areas, including small water bodies such as ponds
and rivers that may not be captured by local bathymetric data. As illustrated in Fig. 3.9,
to adjust the water bodies detected by the masks but absent from the bathymetric data,

a uniform depth of —-0.5 m was assigned.

Table 3.6. Configuration of numerical domains

Domain Layer 1 Layer 2 Layer 3 Layer 4
Ymin-Ymax (deg) 2-14 3-6 54-5.74 5.52 -5.62
Xmin-Xmax (deg) 90 - 100 94 - 97 95.2-9545  95.27-95.38
Grid size (m) 1080 216 43.2 10.8

Time step (s) 1.2 0.24 0.048 0.012

Layer ratio 1 5 5 4

Initial condition Fault Model Layer-1 Layer-2 Layer-3

Input depth GEBCO_2023 Grid BATNAS BATNAS Local bathymetry
Input elevation GEBCO_2023 Grid BATNAS BATNAS DEMs

Friction model None None None Uniform and 8 LCR
SWE type Linear Linear Linear Non-linear
Boundary condition Radiation Interpolated  Interpolated Interpolated

The linear SWE scheme was implemented for Layers 1 to 3, while Layer 4 used the
nonlinear SWE scheme. The outputs from Layer 4 were then used to develop
inundation maps and evaluate inundation model performance. To evaluate the impact
of DEMs on inundation model performance, DEMs were integrated with a uniform
Manning's friction coefficient (Manning's n = 0.025). Concurrently, to assess the
performance of DEMs coupled with variable Mannings, DEMs were incorporated with
multiresolution LCR models as another scenario. In total, 99 inundation models were

simulated, comprising 11 DEMs, 8 LCR models, and one uniform Manning model. All
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computational topo-bathymetric grids were automatically updated at the start of each
simulation to account for changes in seafloor and land deformation. Each scenario

simulated tsunami propagation at a duration of 2 hours.

Original Adapted to LC-04 30m Adapted to LC-04 10m Adapted to LC-04 5m

Elevation

om
* Water bodies < 0 m

10m

CoastalDEM

FABDEM

DAL

- Y = % i s o / /4
Fig. 3.9. lllustration of topo-bathymetric adjustment using water masks from land cover maps for
CoastalDEM (top panel) and FABDEM (bottom panel).

3.5. Performance of Inundation Models

The performance of the inundation models was evaluated based on the simulated
inundation maps. To evaluate the uncertainty of inundation performance, this study
proposed three sequential assessments, incorporating historical data and the
confidence level associated with inherent DEM error characteristics. First, the
simulated inundation extents were compared against the 2004 10T satellite-derived
inundation limit (see section 2.5.3). A threshold of 25% difference was set as a
benchmark for acceptable model performance. This accounts for the inherent
challenges to accurately reproduce the 2004 IOT inundation due to limitations in pre-
tsunami bathymetric dataset and constraints in the tsunami source model (Ocean
Networks Canada et al., 2023; Sugawara, 2021).

Second, the simulated flow depth estimates were validated against field measurement
data. The measured data were collected from various sources, including Tsuji et al.
(2006), Borrero (2005), and Sugimoto et al., (2010) (Fig. 3.10a). The agreement
between the simulated and observed flow depths was evaluated using Aida’s functions,

expressed as the geometric mean (K) and standard deviation (k) (Aida, 1978):
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where M; and S; are the observed and simulated flow depths, respectively. The
simulation results were considered to be in good agreement when Aida’s parameters
were: 0.8 < K< 1.2 and k < 1.60 (Takeuchi et al., 2005).

(a) Distribution of field measument points (b) RMSE values for the third reliabilty criteria
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Fig. 3.10. (a) The 2004 IOT post-tsunami field measurement points. Details of observed points were
provided in Appendix. Black dashed line indicated the inundation limit.(b). DEMs’ RMSE values used
for equations 29 and 30. These values were obtained from elevation errors analysis (see Table 3.3).

The uncertainties associated with mapping coastal flooding are affected by the
characteristics of elevation data errors (Hinkel et al., 2021). To address this issue, a
third criterion was introduced to assess the confidence level of any inundation model
by quantifying the relationship between flood depth predictions and underlying
elevation data uncertainties. Following Dusseau et al. (2023), an inundation model
should achieve at least a 68% confidence level to be considered reliable for coastal

flood exposure assessments, including tsunami inundation.
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The confidence level can be determined by evaluating the relationship between the
median of the maximum inundation height in terrestrial areas (ground elevation >0 m)
derived from inundation simulations (MIH) and the root-mean-square error (RMSE) of
the DEM used as the input for the inundation model (Fig. 3.10b) (Gesch, 2018). By
assuming unbiased DEM errors (mean elevation errors = 0), the confidence level is
derived from the standardized normal distribution of the ratio of MIH to DEM error. The

standardized inundation height, Z, is computed as:

MIH

~ RMSE (29)

The confidence level, CL, is then calculated as the probability that the true inundation
height lies within £ Z/2 standard deviations of the mean. This is expressed using the

cumulative distribution function (CDF) of the standard normal distribution, ®:

CL = (p(E)_q,(_E) (30)

For example, an inundation model using an elevation dataset with an RMSE of 2 m
achieved a minimum of 68% confidence level when the simulated MIH was 4 m (twice
the RMSE value of the used DEM). Conversely, inundation models with lower MIH
values yielded lower confidence levels. The minimum MIH values required to achieve

68% (MIHes%) and 95% (MIHgs%) confidence level can be computed as:

MIHggy, = RMSE x 2 (31)

MIHgsy, = (RMSE x 1.96)x 2 (32)

3.5.1 Performance of Inundation Models: Influence of DEMs

Fig. 3.11 presents the simulated inundation maps for the scenario that exclusively
evaluated the influence of DEMs on inundation model performance. The inundation
maps revealed varying degrees of agreement between the simulated and observed
inundation extents across different DEMs. CoastalDEM demonstrates the closest
agreement to the observed inundation extent, with an inundation extent difference of

only 1.25%. FABDEM and DiluviumDEM also showed relatively good agreement, with
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inundation extent differences of 4.89% and 5.90%, respectively. Based on the first
reliability criterion (the difference between simulated and observed inundation extent
must be less than 25%), six DEMs satisfied the given threshold: CoastalDEM,
FABDEM, DiluviumDEM, COP30, EDEM, and local DEMNAS.

Flow depth (m)
I .

0 9

O Observed flowdepth
=== Shoreline
= The 2004 IOT limit

Fig. 3.11. The maximum flow depth distributions for DEMs coupled with uniform roughness Manning.
The black dashed line indicates shoreline in 2004, and red line represents the 2004 10T inundation limit.

The relationship between the DEM error characteristics and inundation bias was
observed to be nonlinear (Fig. 3.12). Although DEMs with lower vertical elevation
errors generally exhibited lower inundation bias, statistical testing revealed that this
relationship is better represented by a quadratic function (Fig. 3.12a). Furthermore,
MAE proved to be a superior indicator compared to RMSE for characterizing the
relationship between DEMSs’ error characteristics and inundation accuracy (Fig. 3.12b).

Next, the inundation models that satisfied the first reliability criterion were then
validated against observed inundation depth. As illustrated in Fig. 3.13, the results
showed that none of these models met the second reliability criterion (i.e., Aida's

parameters: 0.8 < K< 1.2 and k < 1.6). Consequently, the third reliability criterion was
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not examined, and it was concluded that inundation models coupled with uniform
Manning coefficients were not reliable for reproducing the historical 2004 10T event.
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extent differences.
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Fig. 3.13. Simulated vs. observed inundation depths for the scenario using DEMs coupled with uniform
Manning coefficients, with K and k representing the geometric mean and standard deviation of Aida’s

parameters, respectively.
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It is important to note that this conclusion stems from the proposed sequential
evaluation approach, which requires models to satisfy all reliability criteria in sequence.
If these criteria were applied independently, different conclusions might emerge. For
instance, CRAWDEM could be considered reliable based solely on its confidence level
estimate exceeding 68% (Table 3.7), while MERIT and SRTM might be assumed
reliable based solely on Aida’s parameters, despite their inundation extents covering
less than 20% of validation points. These discrepancies underscore the importance of
using sequential criteria when determining reliable elevation model inputs for tsunami

simulation.

Table 3.7. Sequential validation assessment for DEMs coupled with uniform Manning

Validation-1 Validation-2 Validation-3
Input DEM '”‘(‘e’)‘(?::to” N K . M::es)s% M::g)s% M(|r|:;im (%/(I)_)

difference (%)
AWD30D 32.87 23 0.90 1.63 6.26 1227 474 55.09
CoastalDEM 1.25 133 0.63 1.67 3.28 6.43 4.18 79.73
COP30 22.92 57 0.77 1.69 4.12 8.08 4.41 71.57
CRAWDEM 31.38 37 0.93 1.55 3.06 6.00 4.34 84.41
DEMNAS 19.11 71 0.79 1.67 4.70 9.21 4.16 62.39
DiluviumDEM 5.9 127 0.70 1.70 2.36 4.63 3.91 90.23
EDEM 22.99 56 0.78 1.69 3.56 6.98 4.43 78.64
FABDEM 4.89 130 0.62 1.74 2.18 4.27 4.32 95.24
MERIT 32.41 23 1.01 1.56 5.48 10.74  4.41 57.93
NASADEM 29.25 41 1.00 1.61 4.28 8.39 3.90 63.84
SRTM 36.68 17 1.16 1.58 6.26 1227 4.25 50.32

N: number of observation points covered by inundation extent; CL: confidence level.

3.5.2 Performance of Inundation Models: Influence of DEMs and LCR Models

Figs. 3.14—3.16 present the simulated inundation maps for scenarios where DEMs
were coupled with LCR models at resolutions of 30 m, 10 m, and 5 m, respectively.
The first reliability assessment indicated that DEMs coupled with LCR models led to
greater underestimation compared to when DEMs were combined with a uniform
Manning's coefficient (Fig. 3.17). Given the acceptable threshold for the first reliability
criterion, only four DEMs satisfied the given threshold: DEMNAS, FABDEM,
CoastalDEM, and DiluviumDEM.
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Fig. 3.14. The maximum flow depth distributions for DEMs coupled with LCR model at 30 m resolution.
The black dashed line indicates shoreline in 2004, and red line represents the 2004 10T inundation limit.
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Fig. 3.15. The maximum flow depth distributions for DEMs coupled with LCR model at 10 m resolution.
The black dashed line indicates shoreline in 2004, and red line represents the 2004 10T inundation limit.
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Fig. 3.16. The maximum flow depth distributions for DEMs coupled with LCR model at 5 m resolution.
The black dashed line indicates shoreline in 2004, and red line represents the 2004 10T inundation limit.

The effect of LCR model spatial resolution on inundation extent was observed to be
minimal, with differences of less than 5%. Similar to the scenario using uniform
Manning coefficients, the integration of DEMs and LCR models showed that DEMs
with lower vertical errors tend to produce less inundation bias. Here, the relationship
between DEM error characteristics and inundation bias was better represented by a

logarithmic function rather than a quadratic function (see Fig. 3.17).

The inundation models that met the first reliability criterion were further evaluated
using a second reliability assessment. The assessment revealed that combinations of
DEMs with uniform Manning coefficients did not satisfy the AIDA parameters (Fig.
3.18). Interestingly, when coupled with LCR models, only CoastalDEM and
DiluviumDEM satisfied the given thresholds. Again, the effect of the spatial resolution

of the LCR model remained minimal.

For the combinations of CoastalDEM and DiluviumDEM with LCR models that satisfied
both reliability criteria, confidence levels were then calculated. First, maximum flow

depth distributions were examined to estimate the median inundation height (MIH).
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The results indicated non-normal distributions with positive skewness (Fig. 3.19). The
analysis showed that LCR models with finer resolution produced lower MIH estimates,
likely because finer-resolution models better represent drainage systems (small rivers
and ponds), which ultimately influence simulated flow depth (Koyama and Yamada,
2022). Additionally, CoastalDEM exhibited higher tsunami MIH estimates than

DiluviumDEM, probably due to CoastalDEM's larger negative bias (averaging -1 m).
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Fig. 3.17. First validation assessment for scenarios where DEMs coupled with: (a) a uniform Manning’s
coefficient, (b) LCR model at 30 m resolution, (c) LCR model at 10 m resolution, and (d) LCR model at
5 m resolution. The light blue shaded area indicate threshold region for acceptable model performance.

Given the skewed flow depth distributions, a log-normal distribution was employed to
compute the fitted-median values, which served as MIH estimates for confidence level
calculation (Glimsdal et al., 2019). The computed confidence levels revealed that both
CoastalDEM and DiluviumDEM exceeded the minimum threshold (confidence level
268%), with DiluviumDEM achieving higher confidence level estimates (88.6% on

average). This superior performance is related to DiluviumDEM's better vertical
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accuracy compared to CoastalDEM (Table 3.8). The effect of LCR model resolution on

confidence levels was minimal, with differences of less than 5%.
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Fig. 3.18. Second validation assessment — Calculated Aida’s parameters for inundation models that
satisfy the first reliability criteria: (a) geometric mean (K), and (b) variance (k). The black dashed line
indicates the acceptable threshold.
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Fig. 3.19. Histograms of simulated flow depths for inundation models that satisfied the second reliability
criterion.
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Table 3.8. Confidence level (CL) assessment for models satisfied second reliability criterion

Minimum MIH to reach: | Computed MIH relative to LCR models:
DEM RMSE

Cles% CLos% LCR:30m LCR:10m LCR:5m
CoastalDEM 1.53 m 3.06 m 6.00 m 81.97 81.97 80.89
DiluviumDEM 1.18 m 2.36m 4.63 m 89.26 88.31 88.31

It is important to note that finer-resolution LCR models generally yield slightly lower
confidence levels. This is associated with their MIH estimates, as the finer models
produce lower inundation depths due to more precise mapping of drainage systems
(see Fig. 3.19). Furthermore, coarser LCR models, which rely on lower-resolution land
cover maps, identified more built-up areas (see Fig. 3.6). The larger proportions of the
built-up areas likely enhance flow resistance, decrease flow infiltration capacity, and
result in greater flow depths. In conclusion, after assessing all reliability criteria,
inundation models that incorporate LCR models with either CoastalDEM or

DiluviumDEM have proven to be more reliable choices for tsunami modelling.
3.5.3 Performance of Inundation Models: Influence of Manning Coefficients

It should be noted that, all the results discussed in sections 3.5.2 were derived from
inundation models using Manning coefficients from Bunya et al. (2010). To evaluate
how variations in Manning coefficients affect flood inundation performance, simulated
inundation maps from models using the coefficients from Bunya et al. (2010) and
Koshimura et al. (2009) were compared. For simplicity, the comparison was limited to
inundation models using CoastalDEM and DiluviumDEM, as these were the only
DEMs that met all reliability criteria in the previous assessment. Additionally, since
spatial resolution showed minimal effect on outcomes, only the finest 5 m resolution

LCR model was used for this comparison.

The analysis revealed that models using Manning coefficients from Koshimura et al.
(2009) produced larger inundation extents, resulting in smaller differences between
simulated areas and the observed inundation limit (Table 3.9). These models also
generated higher inundation depths, as indicated by the higher MIH estimates
compared with models using coefficients from Bunya et al. (2010). Furthermore, the
simulated flow depths showed better agreement with the observational data, as
represented by lower RMSE values. These patterns were exhibited by both

CoastalDEM and DiluviumDEM and can be attributed to the lower Manning
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coefficients for vegetated areas provided by Koshimura et al. (2009) compared with
Bunya et al. (2010) (see Table 3.4). The lower Manning coefficients might reduce
vegetation's damping effect and consequently lead to larger inundation extents and

deeper inundation depths.

Despite these differences, the reliability parameters exhibited an average variation of
less than 5% between the two coefficient sources, indicating a minimal overall impact
on model performance. Nevertheless, these minor differences warrant careful
interpretation, particularly when evaluating inundation extent. For instance, COP30
with LCR models utilizing Manning coefficients from Bunya et al. (2010) demonstrated
inundation differences averaging 26% against the actual 2004 10T event—1% above
the acceptable threshold (see section 3.5.2). Employing Manning coefficients from
Koshimura et al. (2009) may increase inundation extent and enable COP30 to meet
the first reliability criterion. However, this adjustment does not ensure compliance with

the other two reliability criteria.

Table 3.9. Validation assessments comparison from different source of Manning coefficients
CoastalDEM & LCR 5 m. DiluviumDEM & LCR 5 m.

Manning coefficient source: Manning coefficient source:

Reliability Parameter

Bunyaetal. Koshimuraetal. Bunyaetal. Koshimura et al.

(2010) (2009) (2010) (2009)
First reliability criteria
LB?;:@L%Z??SS& on) 16.94% 11.05% 17.10% 12.94%
Second reliability criteria
Flow depth agreement:
RMSE 1.72m 1.64 m 1.74 m 1.60 m
Aida’s K 0.87 0.80 0.98 0.90
Aida’s k 1.57 1.55 1.56 1.55
Third reliability criteria
MIH 40m 42m 3.7m 39m
Confidence level 80.89% 83.01% 88.31% 90.16%

3.5.4 Performance of Inundation Models: Effect of Land Cover Change

To evaluate the sensitivity of inundation models to land cover change effects,

simulation results from models using LCR derived from land cover maps of 2004 (LC-

75



04) and 2014 (LC-14) were compared, as shown in Fig. 3.20. Both LCR models were
at 5 m resolution and employed Manning coefficients from Bunya et al. (2010). The
results revealed that land cover change had minimal impact on variations in total
inundated areas. Additionally, land cover changes also had a minimal impact on

inundation depth, as shown in Fig. 3.21.

Despite this, the differences would still influence exposure assessments, particularly
in high-density urban areas. Furthermore, contrasting patterns were observed for
these two DEMs. CoastalDEM showed an increase in total inundated areas, from
2389.44 ha in 2004 to 2397.22 ha in 2014. Conversely, DiluviumDEM projected a
decrease of approximately 3 ha over the same period. Additionally, the flow depth

distributions exhibited slightly different skewness rates
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Fig. 3.20. Comparison of total inundated areas (land and inland water) due to land cover changes
between 2004-2014 period.
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Fig. 3.21. Comparison of flow depth distributions (land and inland water) due to land cover changes.

3.6. Summary of Chapter lll

In summary, the results indicate that two global error-reduced DEMs—CoastalDEM
and DiluviumDEM—are more reliable elevation inputs for inundation modelling when
coupled with LCR models, with DiluviumDEM demonstrating a higher confidence level
than CoastalDEM. The effect of the LCR model spatial resolution on the inundation

model accuracy was observed less significant.

Nevertheless, finer-resolution LCR models are recommended, as they provide a
superior representation of terrain features. Given that most DEMs were developed
after the 2004 IOT event, and land cover changes demonstrated minimal effects on
tsunami inundation patterns, the findings suggest that DEMs exert a more dominant

influence than LCR models in determining tsunami intensity measurements.
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CHAPTERIIV:
COMPOUNDING BIAS AND CROSS-UNCERTAINTY EXPOSURE ASSESSMENT

4.1. Compounding Bias Assessment

As discussed in the previous chapters, both DEMs and exposure datasets introduce
bias into tsunami exposure assessments. To examine the effects of these
compounding biases, exposure estimates derived from global datasets were
compared against local reference datasets. The satellite-derived 2004 Indian Ocean
Tsunami (IOT) inundation limit served as the hazard reference, while local datasets

provided the exposure reference.

The simulated hazard was derived from the scenario using the 2004 LCR model at 5
m resolution coupled with DiluviumDEM. DiluviumDEM was selected based on its
superior confidence level compared to CoastalDEM, as detailed in chapter 3. For the
simulated exposure estimates, the least biased datasets were selected. Based on the
relative bias assessment for 2004 period, the 30 m GAIA and 1 km GlobPop were

chosen as built-up areas and gridded population datasets, respectively.

The results revealed that DEMs introduced larger biases than exposure datasets
(Table 4.1). For built-up areas, GAIA caused a 6% overestimation, while DiluviumDEM
introduced a 52% underestimation. Integrating both datasets reduced the
underestimation to 34.7%, although this remained nearly six times larger than the bias

introduced by GAIA alone.

Table 4.1. Estimation of built-up areas and populations exposed to the 2004 |OT.

Tsunami inundation limit
Exposure dataset

Observed Simulation (DiluviumDEM)
Exposed built-up areas
Reference (BU-04) 1535.71 ha 736.58 ha
Global dataset (GAIA) 1627.80 ha 1002.11 ha
Exposed population
Reference (POP-04) 176,003 104,189
Global dataset (GlobPop) 114,882 65,416
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A consistent bias trend was observed in population exposure estimates. GlobPop
alone caused a 35% underestimation, whereas the DEM increased the
underestimation to 40.8%. The combination of GlobPop and DiluviumDEM further
increased the underestimation rate to 62.8%. This indicates that compounding biases
are substantially larger than individual biases, particularly those from exposure

datasets.

4.2. Modelling Expected Future Tsunamigenic Event

Previous research by Jihad et al. (2020) suggested that an Mw 8.7 earthquake could
potentially occur within the Sunda-Andaman segment due to the seismic gap.
Earthquakes with this typical magnitude can generate tsunamis within the area of
interest (AOI), as reported by Horspool et al. (2014). To forecast the tsunami risk from
future tsunamigenic events, the probabilistic tsunami models were employed (Grezio
et al., 2017). To date, probabilistic models, also known as probabilistic tsunami hazard
assessments (PTHA), are predominantly used for pre-disaster risk assessments.
Briefly, PTHA quantifies the relationship between tsunami heights and their

exceedance probabilities over a specified period (Behrens et al., 2021).

PTHA addresses the uncertainty caused by variations in earthquake properties
(seismic source, fault segmentation, slip distribution, and maximum magnitude) by
simulating a set of random hypothetical tsunamigenic scenarios that pose a threat to
the site of interest. One of the outputs of PTHA is the hazard curve (Fig. 4.1), which
depicts the annual rate of tsunamigenic events (i.e., events per year) affecting specific

locations exceeding a certain wave height.

P(R>Ro) \

-
Ro

Fig. 4.1. Schematic illustration of the tsunami hazard curve. Modified from Geist and Lynett (2014)
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An often-implicit assumption in numerous probabilistic analyses of tsunamis and other
natural hazards is that these events occur randomly over time and are independent of
one another, a concept known as the Poisson process. In this process, the interval
between tsunami occurrences follows an exponential distribution. Consequently, the
hazard curve illustrates the probability that one or more tsunamis will reach or surpass
the specified wave height on the horizontal axis within a given exposure time (7), as
expressed by P(R =2 R0) = 1 — exp(—-AT), where A represents the constant rate of
occurrence of these tsunamis over time, as depicted in Fig. 4.1 (Geist and Lynett,
2014).

Recently, numerous PTHA have been conducted, including local, regional, and global
scale assessments. These assessments have resulted in synthetic earthquake
databases. One of them is the PTHA18 database, which is publicly accessible and
consists of hundreds of thousands of synthetic earthquake scenarios, developed from
both uniform and heterogeneous slip models (Davies and Griffin, 2018). Synthetic
earthquake scenarios in the PTHA18 database have been validated against several

historical tsunamis (Davies and Giriffin, 2020; Davies, 2019).

PTHA18 modelled earthquake-tsunami scenarios and their frequencies at a global
scale. These scenarios were modelled using several seismic sources (Fig. 4.2a),
including the Sunda Subduction zone, which is the closest earthquake source zone to
our area of interest (AOI). On each source zone, a large suite of hypothetical
earthquake scenarios was created, with earthquake magnitudes ranging from Mw 7.2
to Mw 9.6. All earthquakes are represented as linear combinations of slip on the unit
sources, with the dimension of each unit source being 50x50 km? (Fig. 4.2b). The
moment magnitude values are related to the earthquake’s slip and area by the

following definitions:

M, = ZjEunitsources SjAj.“j (33)

My, == (log1o(Mo) — 9.05) (34)

where My is the seismic moment (kg m?/s?), My is the moment magnitude, S;is the slip
(m) on the j'th unit-source, A; is the j'th unit-source area (m?), and y; is the j'th unit-

source shear modulus (kg/ms?).
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The optimal method for translating an offshore PTHA scenario into an onshore hazard
at a specific site involves simulating inundation for each scenario e € E, where E
represents the set of all offshore PTHA scenarios or a subset of interest, such as all
scenarios within a particular source zone (Power et al., 2017; Davies & Griffin, 2020;
Basili et al., 2021). For each individual earthquake scenario, PTHA18 estimates the
frequency at which earthquake-tsunami waves exceeding a specified "size" occur at
thousands of observation points, also referred to as hazard points. These observation
points are distributed globally and are located offshore at a depth of approximately 100
m (Fig. 4.2a and 4.2b). Therefore, the estimated tsunami heights at these offshore

hazard points cannot be directly used to represent onshore tsunami conditions.

Assuming that the offshore PTHA18 accounts for hazard uncertainties through
multiple scenario-frequency models i € I, where | denotes the set of all alternative
scenario-frequency models, the exceedance rate (Ai) for each scenario-frequency

model can be quantified as

A,(Q >QT) = Z ri(e) 1(ge)>om) (35)

eEeE

In this context, Ai(Q>QT) represents the exceedance rate, defined as the average
number of events per year, for which a specific quantity of interest Q, such as tsunami
height, surpasses a given threshold QT, under the scenario-frequency model i. Each
scenario e possesses its own quantity of interest Q(e), which is determined through
high-resolution inundation modelling. The offshore PTHA specifies the long-term
occurrence rate of each scenario e, denoted as ri(e) (events/year), contingent upon
the scenario-frequency model i. The indicator function 7.q) > o) assumes a value of 1
if Q(e)>QT and 0 if otherwise. The uncertainty in the exceedance rate, characterized
by variation with i € I, can be summarized using the mean and percentiles, as

illustrated in Fig. 4.2c.
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Fig. 4.2. (a) Distribution of offshore hazard points and seismic unit sources in PTHA18. (b) The relevant
hazard points near the AOI. (c). The corresponding exceedance-rate for hazard points near the AOI.

4.3 Defining Relevant Offshore Hazard Points

The PTHA18 database has been used for tsunami hazard assessments in Samoa
(Giblin and Damlamian, 2022) and Tonga (Davies et al., 2022). To select the relevant
scenarios for design earthquakes in PTHA18, a relevant hazard point must first be
defined (Giblin et al., 2022). Four hazard points surround the AOI (Fig. 4.2b), of which
two were considered most relevant, given their proximity to the Sunda subduction zone
and perpendicular orientation to the AOI (Fig. 4.3a). To select the most relevant hazard

point, the following steps were applied:

The 2004 IOT was reproduced using PTHA18 hypothetical scenarios.
The best-fitting scenario was selected.
The simulated wave profile from the best-fitting scenario at the hazard points

was compared with reference data.

To reproduce the 2004 |OT, the return-period method based on Giblin et al. (2022) was
followed. Codes to apply this method are provided in the Appendix. The synthetic

earthquake scenarios of PTHA18 were filtered at a certain magnitude and specified
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return periods. This produced a small scenario subset and reduced computational time,
although it cannot explicitly quantify uncertainty. Given the objective of selecting the
most relevant hazard point, uncertainty was initially neglected. To define the best-fitting
scenario, the simulated wave profiles at two onshore points (Fig. 4.3b) were compared
with the simulated wave profile from the inversion fault model by Koshimura et al.

(2009) (see Section 3.4). The inversion fault model was assumed as the reference.

Mw 9.2 was set as the defined magnitude to represent the 2004 10T and 758 years as
the annual recurrence interval (return period) for the 2004 IOT. Both values were
obtained from Davies (2019). Based on Fuijii et al. (2021), the slip rate for Mw 9.2
scenarios was defined as ranging from 5 to 20 m. Given these criteria, 36 hypothetical
earthquake scenarios based on the uniform slip model and 93 scenarios based on the
heterogeneous slip model were identified. A list of the selected scenarios is provided

in the appendix.
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Fig. 4.3. The location of: (a) offshore hazard points (OH) and onshore control points (OSH)

Because the focus was on the Sunda-Andaman segment, the analysis was further
limited to earthquake scenarios whose centroids (epicentres) were located within the
Sunda-Andaman region, yielding 12 scenarios. The focal mechanism for all scenarios
is thrust, which is also referred to as the reverse fault (Fig. 4.4). The details of the focal
mechanism are listed in Table 4.2. PTHA18 provides the initial sea surface

deformation files for each scenario in its database. Using the initial sea surface
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information (Fig. 4.5), tsunami simulations were performed. The same numerical
model configuration as in Section 3.4 was employed. However, the focus was only on
tsunami wave profiles at offshore and onshore locations, whereas the inundation

assessments were neglected.

North
o Strike

/g SiP l
N Baké 1

Dip

P

Strike-slip fault Normal fault Reverse fault

Fig. 4.4. lllustration of earthquake focal mechanisms and notation definition for parameters in Table 4.2

Table 4.2. Earthquake focal mechanism with slip model — HS: Heterogeneous; U: Uniform
No.  Scenario ID Slip model Depth of epicentre (km) Dip (°) Rake (°)  Strike (°)

1 104248 HS 10 10 90 273
2 104390 HS 40 21 90 270
3 104433 HS 9 9 90 275
4 107452 u 22 16 90 272
5 105933 HS 9 9 90 276
6 106012 HS 40 22 90 277
7 106036 HS 9 10 90 277
8 107580 u 39 24 90 283
9 107469 HS 9 10 90 277
10 107487 HS 23 19 90 275
11 107606 HS 10 11 90 277
12 107661 HS 24 20 90 275

The comparison of wave profiles at onshore points indicated that most synthetic
scenarios had similar waveforms, consisting of a leading depression followed by an

elevated wave, as shown in Fig. 4.6. However, compared to the reference model, the
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wave peak positions of all scenarios were not perfectly aligned, particularly at OSH-1.
Scenarios 104433 and 107469 showed better alignment, especially for the leading
depression wave. Additionally, these scenario produced the wavelength which
resembles that of the reference model. However, they exhibited a slimmer shape in
OHS-2.

Fig. 4.5. Initial sea surface deformation for the Mw 9.2 selected scenarios. ID represents the scenario
identification in the PTHA18 database. The black-gridded box shows Sunda subduction.

Although the reliability of PTHA18 has been validated by previous research (Davies
and Griffin, 2020; Davies, 2019), the similarity in wave profiles from scenarios 104433
and 107469 also indicates that synthetic earthquake models from PTHA18 are
capable of reproducing historical tsunamis within our AOI. Both scenarios were based
on a heterogeneous slip model. This confirms that the actual slip distribution is

heterogeneous rather than uniform, as observed by Fuijita et al. (2024). Furthermore,
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the onshore wave profile comparison indicated that scenario 104433 provided a better
fit than scenario 107469. The evaluation of wave profiles at offshore hazard points was
then based on the output from scenario 104433.

E-107580 E-107452 E-107661 E-107487
| Onshore Point 1 | Onshore Point 1 Onshore Point 1 ] Onshore Point 1
5m | Leading—>
elevati

[ Leading
-5m | depresion

[ Onshore Point 2~

0 30min 60min 0 30min 60min 0 30min 60min 0 30min 60min
E-107606 E-107469 E-106036 E-105933
| Onshore Point 1 | Onshore Point 1 Onshore Point 1 ] Onshore Point 1

5m
0
-5m
0 30min 60min 0 30min 60min 0 30min 60min 0 30min 60min
E-104433 E-104390 E-1 04_248 o E'.106012. _
Onshore Point 1 | Onshore Point 1 Onshore Point 1 | Onshore Point 1

Onshore Point 2 Onshore Point 2 | Onshore Point 2

5m

0

-5m

0 30min 60min 0 30min 60min 0 30min 60min 0 30min 60min

Fig. 4.6. Surface wave profiles at onshore points (OSH). The black and red lines represent the inversion
fault model (reference) and the PTHA18 scenarios, respectively, while E indicates event or scenario.

Two key metrics were used to evaluate the accuracy of the tsunami offshore wave

profile comparisons. The first is the normalized root-mean-square error (NRMSE). This

metric measures the differences in water surface elevation between the reference and
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scenario 104433, with lower values (0-1 scale) indicating better agreement in tsunami

amplitude, expressed as:

1
N Z§\1=1(eref (t) — N10a433(t:))?

NRMSE =
max(nref) - min(nref)

(36)

where nrer () and n1o4433 () are water surface elevation at time ¢ from the reference

and scenario 104433, respectively.

Second, the cross-correlation maximum. The cross-correlation analysis was
performed to assess waveform similarity and timing alignment between two time series
(i.e., the reference and scenario 104433) as a function of time lag. The time lag, T,
reveals whether the hypothetical scenario predicted tsunami wave arrivals too early or
too late, while the cross-correlation maximum represents the highest correlation value
across all time lags and value closer to 1 signify nearly identical waveform patterns.

The cross-correlation, CC(t), can be expressed as:

CC(r) = Zgv:l(nﬂff(t") N104433(L + 1)) .

\/ éil(nfef(ti)- \/Zg\lzl(n%mﬂgg (ti)

The results showed that scenario 104433 showed a strong agreement in tsunami
amplitude, with NRMSE values of 0.16 at offshore point 1 (OH-1) and 0.17 at point 2
(OH-2) (Fig. 4.7; see also Fig. 4.3). In terms of waveform shape, OH-1 exhibited better
similarity than OH-2, with cross-correlation maximum values of 0.9 and 0.72,
respectively. Considering all metrics, OHS-1 —with ID 6638.3 in the PTHA18
database— was selected as the most relevant hazard point and used as the reference

for sampling Mw 8.7 scenarios from the database.
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Offshore Hazard Point (OH) 1 Offshore Hazard Point (OH) 2

5.0 5.0
— Inversion Fault Model
-- PTHA18: 104433

Water surface elevation (m)

-5.0 -5.0
30 60 90 0 30 60 90
Time (in minute) Time (in minute)
Accuracy Metric OH-1 OH-2
NRMSE (0-1; 0~ perfect; <0.5~ good agreement) 0.16 0.17
CC maximum (0-1; 1~ perfect; >0.5~ good agreement) 0.90 0.72

Fig. 4.7. Wave profiles at two offshore hazard points (OH). The black line represents the inversion fault
model (reference). The red lines indicate PTHA18 scenario 104433.

4.4 Sampling Mw 8.7 Earthquake Scenarios from PTHA18 Database

As mentioned in the previous sections, an ideal approach to solve the hazard
uncertainty is by simulating all scenarios from the design earthquake magnitude.
However, this approach requires an intensive number of inundation simulations and is
ultimately computationally infeasible. Therefore, this study adopted the stratified
random importance sampling approach developed by Davies et al. (2022). This
approach focuses on a subset of scenarios that potentially generate large inundation.
As with stratified sampling, the set of all scenarios E is split into multiple bins Eb
corresponding to magnitude ranges Mw,b. Then, a fixed number of scenarios, N(Mw,b),
were randomly sampled from each bin based on their importance, /(e), using weighted

random sampling. The sampling weight is expressed as

SIS _ I(e)rx(e)
Whi (€)= 5 or® (38)

where rx(e) should be non-zero for all scenarios that have ri(e) > 0. If only one scenario
frequency model i €/ is used, the natural choice is rx(e) = ri(e). Using this weighting
sampling method, then the ‘all scenarios’ exceedance-rate curve of all scenarios

(equation 35) may be represented by a random scenario by:
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Q>N = Y (0> Q"I Myy) (39)

My pEmagnitue bins

275(Q > Q" I My,p) = 4:(My ) qour "

3i(Myp) = ) 1i(e) (41)

eeE

(Zeegglf B (e) 1(Q(e)>QT))

— = 42

Qb, T N(Mw,b) ( )

B3I (e) :< ri(e) > / wiS(e) (43)
b,i Ai(Mw,b) b,i

The application of equation 39 results in the exceedance rate curve shown in Fig. 4.2c.
The variance, denoted as 02, can be computed analytically as follows if the tsunami

height Q(e) at hazard points is known:

o (5Q>eN) = > (e >0" I M) (44)
M, pEmagnitue bins
Ai(My,p)

(350 > Q" 1 Mup)) = %Z (I1ewmen @@ - P Wi @) 45)
w,b

P - YeceTi(e) 1gee)>om)
bLT ZeEE T (e)

(46)

The central argument is that if numerous independent estimates of the Monte Carlo
exceedance rate (equation 39) are generated through repeated sampling, the variance
of these estimates will converge to that described by equation 44 as the number of
repetitions increases. Given that equation 39 is unbiased, the variance of the Monte
Carlo exceedance rates is equivalent to the variance of the Monte Carlo error, which

has a mean of zero.
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The variance of the Monte Carlo exceedance rate (equation 44) can be calculated to
determine whether E represents the entire set of scenarios in the PTHA or a specific
subset, such as a particular source zone. When the results are computed separately
for distinct subsets, the variance of their combined results can be determined by
summing the individual variances. It is relatively straightforward to compute equation

44 at a selected offshore hazard point, as exemplified by Davies and Griffin (2018).

To select the relevant subset scenarios for Mw 8.7, the 1 m wave height was set as
the defined threshold, QT, following the minimum wave category set in the Indonesian
Tsunami Early Warning System (InaTEWS) to trigger an evacuation warning (Jihad et
al., 2023). Finally, to ensure that the selected samples sufficiently represent variability
across all scenarios, the exceedance rate curves from equation 39 were compared
with the median exceedance rate from all scenarios. To quantify the accuracy of this
comparison, Davies et al. (2022) suggested that the confidence interval should be

~95%. The confidence interval can be approximated by:

A5 > Q7 £ 1.96 [02(43°(Q > @) (47)

Initially, all magnitudes available in the PTHA18 database were sampled and trial and
error was used to determine the optimal number of scenarios. Repetitive sampling was
performed, with 10,000 repetitions for the sample sizes of 300, 600, and 1200
scenarios. The approximated confidence interval improved from 93.71% (300
samples) to 94.21% (600 samples) and further increased to 94.59% (1200 samples).
Fig. 4.8 illustrates the comparison of exceedance rates computed by equation 39

against the median of all scenarios.
4.5 Optimal Sample for Mw 8.7 Hypothetical Scenarios

A total of 600 scenarios, Ntot, were selected for the sampling strategy because the
computed confidence levels for the total scenarios of 600 and 1,200 were nearly
similar. This decision also considered computational limitations. It should be noted that
this total of 600 scenarios was to sample all magnitudes, ranging from Mw 7.2 to Mw
9.6. The main difference between stratification by magnitude and stratification by
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importance is that the sample size for each magnitude bin is not identical (Davies et
al., 2022).
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Fig. 4.8. Stratified importance sampling and their corresponding confidence intervals, with total
scenarios of (top panel) 300, (middle panel) 600, and (bottom panel) 1200, respectively.

The optimal sample size for each magnitude bin, N;, which can minimize the variance
of the Monte Carlo errors (equation 39)—for any given N, scenario-frequency model

i, and threshold QT—can be computed by:

Newe= > N(Myy) (48)

My, pEmagnitue bins
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Ntot /ai(Mw,b I QT)

N;(My,, 1QT) = (49)
ZMW,bEmagnitue bins /ai(Mw,b | QT)
2
ai(Mup 107) = (M) (Zect ([ Lowermon 055 (@) = Poir] wili (@) (50)

The calculated optimal sample for each magnitude bin is shown in Fig. 4.9, with 40
scenarios selected for the Mw 8.7. Fig. 4.10 shows the initial sea surface deformation
for the selected scenarios. The stratified importance sampling and extraction of initial
sea surface deformation from the selected scenarios were performed using codes

provided by Davies et al. (2022). Alink to access the codes is provided in the Appendix.
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Fig. 4.9. Optimal sample for each magnitude bin. The black bars indicate equal sample sizes for each
magnitude bin, given a total scenario of 600. The coloured bars show optimal sample sizes calculated
for two different tsunami height thresholds, QT, demonstrating the variation in sampling strategy based
on threshold selection. The analysis focused on a threshold of 1 m.

4.6 Tsunami Inundation Simulation for Mw 8.7 Scenarios

Inundation simulations were performed using the initial sea surface deformation
information from the selected scenarios. The same numerical model configuration
used to reproduce the 2004 IOT was employed (see Fig. 3.8). DiluviumDEM was set
as the elevation model and the LCR model at 5 m resolution was used for the
roughness model. To represent current terrain features, the LCR model was derived
from the 2024 land cover map (see Fig. 2.15c¢), with Manning coefficients based on
Bunya et al. (2010). In total, 40 scenarios were simulated, each representing two hours

of tsunami conditions.
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Fig. 4.10. Initial sea surface deformation for selected scenarios of Mw 8.7. The colour bar indicates the
water surface elevation (in m).

The numerical simulation resulted in 40 inundation maps at 10 m resolution. To

quantify the uncertainty in inundation extent generated by Mw 8.7 earthquakes, a

percentile-based aggregation approach was applied. Each inundation map was

stacked into a spatial ensemble, and the inundation values at each grid cell were

statistically analysed. For every pixel location across the study area, the 16th, 50th
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(median), and 84th percentiles of inundation depth were computed from the
distribution of the 40 simulations. The 16th percentile provides a conservative estimate,
indicating inundation depths that exceed 84% of the scenarios, which is useful for
lower-bound hazard assessments. The 50th percentile (median) represents the central
tendency and offers a typical expected inundation extent. The 84th percentile, in
contrast, reflects an upper-bound estimate, indicating that inundation depths
exceeded in only 16% of the scenarios, which helps identify worst-case conditions for

risk planning.

This method accounts for variability across simulations while avoiding assumptions
about underlying probability distributions, making it robust for decision-making in
tsunami hazard mitigation. The resulting probabilistic maps allowed for spatially
explicit hazard quantification, supporting differentiated risk assessments across

coastal zones (Fig. 4.11).

16th percentile 50th percentile 84th percentile

0 1 2km L b

—— G887 5.60°N+ e 5.60°N-

g 5 550N 0 e 8 555N, L 5 55°N

95.30°E 95.35°E 95.30°E M 95.35°E 95.30°EW 95.35°E

Fig. 4.11. Probabilistic tsunami inundation maps of Mw 8.7 scenarios showing the 16th, 50th, and 84th
percentiles of maximum inundation depth.

4.7. Cross-uncertainty Population Exposure Estimates

The resulting probabilistic maps only account for uncertainty owing to variability in the
tsunami sources (Grezio et al., 2017). However, the bias introduced by the elevation
model has not been explicitly addressed. Given this, the probabilistic inundation maps
were integrated with confidence levels derived from the elevation model used (see
Section 3.5). First, the median inundation depth for each raster map was calculated
(Fig. 4.12a-4.12c). Using the RMSE of DiluviumDEM (i.e., 1.18 m), the confidence
level for each raster pixel was computed (Fig. 4.12d-4.12f). Subsequently, the raster
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pixels with confidence levels higher than 68% and 95% were selected. Alternatively,
using equations 31 and 32, the raster pixels with inundation depths less than 2.36 m
for the 68% confidence level and less than 4.63 m for the 95% confidence level could
be directly excluded. This process resulted in cross-uncertainty inundation maps, as
illustrated in Fig. 4.12g to 4.12I.

Probabilistic Inundation Confidence Level 68% Confidence 95% Confidence
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Fig. 4.12. (a-c) Probabilistic inundation maps. (d-f) Computed confidence levels for corresponding
probabilistic inundation maps. (g-1). Cross-uncertainty inundation maps show the 16th, 50th, and 84th
percentiles of the maximum inundation depth, with confidence levels of 68% and 95%, respectively.

Using the cross-uncertainty inundation maps and generated gridded population for
2024 (POP-24; see Fig. 2.16), the estimated number of Banda Aceh's population
affected by the Mw 8.7 tsunami was calculated. The exposure assessment projected
that the population potentially exposed to a tsunami of Mw 8.7 tsunami would range
from a minimum of 563 people to a maximum of 36,306 people—14% of the total
population (Fig. 4.13). Because the inundation maps with 95% confidence resulted in
less inundation, they ultimately projected lower exposure estimates of 0.2% to 1.6%
of the total population. In contrast, the inundation maps with 68% confidence projected
much higher exposure estimates of 6—14% of the total population. For disaster risk

preparedness, the median percentile (50th percentile) with a 95% confidence level
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served as the lower-bound credible exposure estimates (i.e. 1,998 people) and the

68% confidence level as the upper-bound credible exposure estimates (i.e. 24,696

people).
40,000 Mw 8.7 exposure estimates
DEMs' Confidence level: 3%’506
® 68%
0,
< 30,000 ® 9%
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0 s ' |
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Fig. 4.13. The projection of Banda Aceh’s population exposed to the Mw 8.7 tsunami. The red line
serves as a lower-bound credible estimates and the blue line indicates an upper-bound credible

estimates.

4.8. Summary of Chapter IV

In summary, this chapter's analysis revealed that combining global elevation models

with exposure datasets led to larger bias to the exposure assessment. The results

showed that elevation models introduced a larger bias than exposure datasets alone.

Additionally, the cross-uncertainty inundation assessment for a Mw 8.7 tsunami

scenario demonstrated that approximately 10% of the current population of Banda

Aceh faces potential tsunami exposure.
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CHAPTER V:
EXPOSURE AND MITIGATION SYSTEM

5.1. Evacuation System: Tsunami Shelter Capacity Vs. Exposed Population

The area of interest (AOI) is not equipped with tsunami coastal defense structure, such
as sea wall (Syamsidik et al., 2019). As a result, this city relies on evacuation system
to mitigate the tsunami risk. Five tsunami escape buildings were located in coastal-
front region, as shown in Fig. 5.1. Murao et al. (2025) found that the effective capacity

of these shelters are 5,560. This already included the use of space at roof.

95.30°E 95.35°E

Fig. 5.1. Location of tsunami escape buildings (yellow circles) and their capacity.

Using the median lower-bound credible population exposure estimates, the analysis
indicates that if the Mw 8.7 tsunami occurred in AOI, then the existing shelters could
accommodate all 1,998 evacuees. The evacuees only occupied 36% of total shelters
capacity. In contrast, when using the median upper-bound credible estimates, the
existing shelters could only accommodate 23% of total evacuees, leaving 19,136

people unsheltered.
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Nevertheless, it should be noted that these results merely compare projected exposed
populations and shelter capacity. This study did not account for influence of evacuation
behaviour, tsunami time arrival, route choice, and disaster knowledge. Despite these
limitations, the analysis suggests that evacuation shelter capacity requires significant

expansion to adequately serve the population under worst-case tsunami scenarios.
5.2. Spatial Planning: Spatial Land use Vs. Building Dynamics

As discussed in section 1.3, following the 2004 Indian Ocean Tsunami (IOT), local
authority introduced a physical zoning system to regulate urban development in
tsunami-prone areas (Fig. 5.2a). This zonation framework was subsequently
integrated into spatial land use planning, incorporating historical hazard data while
maintaining flexibility for controlled urban development (Fig. 5.2b). The land use
planning itself was introduced in 2009 and later experienced some minor modification
in 2017 (Banda Aceh Municipality, 2018). This study classified the land use planning

into building and non-building areas.

The land use planning is also designed as a soft-mitigation strategy for tsunami
disaster in the AOI. This such strategy is also highlighted in the Sendai Framework for
Disaster Risk Reduction 2015-2030, especially for tsunami-prone regions with
significant financial constraints, such as Indonesia and Chile (Takabatake, 2022;
UNDDR, 2015). The integration of land-use planning with tsunami hazard mapping
results in strategic urban spatial planning, assisting the planners in developing coastal
cities while minimizing exposure to coastal hazards (Geil3 et al., 2024; Rafliana et al.,
2022; Vicuia et al., 2022).

In this context, monitoring urban evolution is essential to ensure the implementation
of land-use planning, particularly where urban expansion cannot be regulated (Ledn
et al., 2022). Spatiotemporal building data are one of the key elements to characterize
the evolution of built environments (Fuchs et al., 2015). To understand the degree to
which the land use planning and temporal urban evolution have been consistent, the
designated land use planning was compared with building evolution from 2018-2024,

since the land use map was last modified in 2017.

However, the availability of authoritative spatiotemporal building data remains limited
to high-income countries (Chamberlain et al., 2024). As an alternative, urban analysis

in data-scarce regions largely relies on globally open building datasets, including the
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volunteered geographic information (VGI) of OpenStreetMap (OSM) and published
data from commercial companies, such as Microsoft’s Global ML Building footprints
(Microsoft, 2024) and Google Open Buildings Polygons (Sirko et al., 2021). While open
building footprints could fill the gap where authoritative data are unavailable or
incomplete, several issues regarding the quality of these datasets prevail (Herfort et
al., 2023; Zhou et al., 2022).

(a) Physical zoning after IOT 2004 (b) Spatial Planning for 2009-2029

Zonation: Spatial Planning: Buildings' area Non-Buildings' area
[l I: Coastal and buffer zone M Public services M Heritage sites | Aquatic area
(Restricted for settlement) i
. _ | Settlement ] Offices | Green Space
[ Il: Partial resettlement zone
(Limited development) B Commercial Il Amusement B Manggrove
[ Il: Commercial and settlement Il Road M Fishery _| Open Space
(Limited development) M Port "l Riparian

[l IV: Promotion zone (New development)

Fig. 5.2. (a) Physical zoning, and (b) Spatial land use planning map of 2009-2029 (Basemap: ESRI
Light Gray).

OSM dataset is produced and edited through manual digitization performed by
thousands of individual volunteered mappers and contributing organizations.
Consequently, its accuracy and completeness are geographically varied (equation 53)
(Chamberlain et al., 2024). Europe and North America regions have relatively higher
levels of completeness (Herfort et al., 2023), while tsunami-prone regions, such as
Chile and Indonesia, demonstrated lower levels of completeness by 32% and 26%,

respectively (Zhou et al., 2022).
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The temporal information of OSM building footprints can be derived using the
OpenStreetMap History Database (OSHDB) framework (Raifer et al., 2019). OSHDB
analysed the OSM’s full database using object modification attribute information, e.g.,
added, removed, or modified. Given this, it may not completely record the building
inventory for certain periods due to insufficient volunteered building mapping activity.
For example, the addition of building footprints into OSM database stagnated in 2019
and resumed an increase in 2021 after the COVID-19 pandemic (Herfort et al., 2023).
It should be noted that incomplete spatiotemporal datasets might mislead the risk
evolution assessment (Fuchs et al., 2015). Meanwhile, both Microsoft and Google
building datasets —derived from automated feature identification based on machine-
learning techniques— are not accompanied by temporal attributes. This could limit their

applicability to risk evolution analyses.

To develop spatiotemporal building data for the 2018-2024 period within the AOI, a
simple backdating technique was applied. The 2024 building dataset served as the
foundation for this analysis, compiled from OSM and Microsoft's Global ML Building
footprints (Table 5.1), yielding 82,563 and 59,290 building footprints respectively. The
Google Open Building dataset was excluded due to its limited coverage within the AOI

region.

The backdating technique, also referred to as rapid backdating footprints generation
(RBF), operates on the assumption that buildings are located within built-up areas.
Built-up masks derived from satellite imagery were therefore used to identify which
buildings from the 2024 dataset would have existed in 2018 and 2021, enabling the

reconstruction of historical building distributions for these earlier time periods.

To evaluate the backdating performance, the backdating-generated footprints were
compared against ground truth (GT) polygons. These GT polygons were derived from
on-screen digitization of three historical images in Google Earth Pro (see Table 5.1).
Several accuracy metrics were employed, including intersection over union (/oU),
agreement rate, and completeness (equations 51-53) (see Fig. 5.3 for symbol
denotations). Conversely, the building count was not included as an accuracy indicator
because of inconsistent feature representations across datasets. For example,
structures such as terraced housing can be mapped as either single or multiple
polygon features (Herfort et al., 2023).
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Fig. 5.3. (a) Overlayer of all building datasets. (b and c). lllustrations of true positive (TP), false positive
(FP) and false negative (FN) relative to GT polygons. Background: Google Earth Pro Imagery.

Table 5.1. Input for built-up areas and backdating building footprint generation

Date Type Description

12 June 2018 Optical image Dove Classic PS2, scene’s ID:
20180612_033219_1015_3B
20180612_033220_1015_3B
20180612_033221_1015_3B

08 August 2021 SuperDove PSB.SD, scene’s ID:
20210807_031345_46_2450_3B

15 June 2018 Building footprints OSM-OSHDB, polygon counts:
AOI: 66,951; ROI: 33,716

10 August 2021 AOI: 68,087; ROI: 33,880

01 July 2024 AOI: 82,563; ROI: 41,050

2016 — 2020 Microsoft's Global ML Buildings (MS)
AOI: 59,290; ROI: 28,612

August 2018 Ground truth polygons (GT) Google Earth Pro Imagery, counts:
Building polygons: 44,144 (ROI)

September 2021 Building polygons: 48,402 (ROI)

March 2024 Building polygons: 50,939 (ROI)
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5.2.1 Spatiotemporal Built-up Masks (2018-2024)

Given that built-up area information was already available for 2024 (see Fig. 2.16),
built-up area maps were only developed for 2018 and 2021 periods. To obtain this
information, the land cover classification was re-performed using the OBIA-RF method
as described in section 2.5.1.d. Multitemporal four-band imagery of PlanetScope with
3 m geometric resolution was used (Table 5.1), retrieved via Planet Explorer

(www.planet.com/explorer). All scenes were cloud-free and corresponded to

orthorectified analytic surface reflectance products.

To increase the radiometric consistency of PlanetScope images from two different
sensors (i.e., Dove Classic-PS2 and SuperDove-PSB.SD), all scenes were
normalized to match Sentinel-2 spectral response. Spectral normalization was
performed using the harmonize operation available in Planet Explorer (Planet, 2024).

Fig. 5.4 shows the input image datasets and ground truth labelled data.

The spatial misalignment between PlanetScope multitemporal images was less than
10 m (Planet, 2023), with Leach et al. (2019) consistently finding that the spatial error
was approximately 6 m. Given this accuracy, spatial co-registration was not performed
because the geolocation accuracy was already considered sufficient for change

detection analysis (Wegmueller et al., 2021).

The land cover classification for 2018 and 2021 achieved overall accuracies of 92.80%
and 92.10%, respectively, with an average F1 score of 0.99 (Table 5.2). The lowest F1
score was observed in the bare class, with scores below 0.7 across all temporal
variations. This lower accuracy might be attributed to misclassification between bare
and built-up area pixels (Ettehadi Osgouei et al., 2019). Meanwhile, the classification
accuracy of built-up areas was excellent, with F1 scores of 0.97 for 2018 and 0.96 for
2021. The 2018 and 2021 land cover maps were resampled to 5 m spatial resolution

to ensure consistency with the 2024 land cover map (Fig. 5.5).

The land cover class-area estimates revealed that built-up areas were the dominant
land cover type in BNA, covering approximately 62.89% (37.08 km?) of the BNA region.
Built-up areas demonstrated a clear expansion trend between 2018-2024 (2018: 28.91
km?; 2021: 32.70 km?). This expansion subsequently caused a decline in other land

classes, with a significant 44% decrease observed in the vegetation class. The
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vegetation area estimate was 16.6 km? in 2018, decreased to 14.36 km? in 2021, and
dropped to 9.30 km? by 2024.
Spectral Indices 2018

Optical image 2018 ) Labelled point 2018: 5% Sample

-5.60°N

95 3N 95.35°E Qs 95.35°E
Labelled point 2021: 5% Sample

-5.60°N

Optical image 2021 Spectral indices 2021

-5.60°N -5.60°N

95.§5°E

Labelled Point: ® Water ® Bare O Low-vegetation O High-vegetation @ Built-up areas

Fig. 5.4. Input datasets for land cover classification in 2018 and 2021.

Table 5.2. Land cover fraction, confusion matrix and classification accuracy

LC-18. Class-area estimates (in km?)—I: 9.46; II: 0.81; Ill: 16.60; IV: 3.17; V:28.91

Truth Label Accuracy Metrics

Land class* I n - Iv v P R F1  Overall Accuracy Kappa Index

I 128 0 1 0 17 1099 0.98 0.99
nmo 11 1 0 8 |069 055 0.61
1 1 129 20 10 |0.87 0.8 0.83 92.80% 0.88
Iv 0 0 10 43 0 |0.68 0.81 0.74
vV 0 4 7 0 510|096 098 0.97

Predicted
Label

LC-21. Class-area estimates (in km2)—I: 9.07; II: 0.53; Ill: 14.36; IV: 2.29; V: 32.70

Truth Label Accuracy Metrics

Land class I i v v P R F1  Overall Accuracy Kappa Index

1121 1 2 0 0 |098 098 0.98
nm o 22 3 0 15079 055 0.65
m 3 2 113 9 17 |0.84 0.78 0.81 92.10% 0.87
Iv 0 0 12 57 0 |086 0.83 0.84
V. 0 3 4 0 519|094 099 0.96

Predicted
Label

* | water; Il: bare; Ill: low-vegetation; IV: high-vegetation, and V: built-up areas
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Although less pronounced compared to vegetation, the inland water class also
exhibited a declining pattern by approximately 1% every three years (2018: 9.46 km?,
2021: 9.07 km?, and 2024: 8.31 km?). The decline may be associated with land
reclamation for urban development, which simultaneously increasing the bare class
estimates (see Fig. 5.5). By 2024, the bare areas rose to 128 ha, increased about 47
ha than in 2018. Meanwhile, the forestry areas (high-vegetation) exhibited a fluctuating
trend: a decrease of 88 ha from 2018-2021, then succeeded by a 70 ha increase
between 2021-2024. These temporal variations may be attributed to two factors. First,
misclassification of forestry land cover in 2018, as indicated by a low F1 score of 0.74.
Second, the observed expansion between 2021-2024 might result from mangrove

development in wetland areas.

Forestry dynamic
Planetscope image 4

S Land cover classification Bare dynamics
% Land Class: i 75 ‘ - \
| TRRIN AY ' \

v

2018

2021

2024

Fig. 5.5. Land cover maps of 2018-2024 and subsets showing dynamics of bare and forestry areas.

104



5.2.2 Spatiotemporal Building Footprints (2018-2024)

More than 50,000 GT polygons were digitized, covering an area of 5.54 km? for 2018,
5.99 km?for 2021, and 6.21 km? for 2024. Given the labor-intensive process of manual
digitization, GT polygons only covered four subdistricts (subdistric ID: 1-4). These
areas were designated as the region of interest (ROI). To ensure consistency with GT
polygons, the backdating technique was initially performed exclusively within the ROI
coverage. Three inputs served as contemporary building datasets: OSHDB 2024
(OSM), Microsoft's Global ML Buildings (MS), and a combination of both (OSMMS).
To develop the OSMMS dataset, MS polygons that did not intersect with OSHDB 2024
were inspected. The non-intersecting polygons were then added to the OSHDB 2024

dataset.

All datasets were clipped to the region of interest (ROI) using administrative polygons

retrieved from the Global Administrative Area Database (GADM) (https://gadm.org).

To examine the impact of input data quality on the backdating method, GT 2024 was
included as an additional input dataset. Based on accuracy assessment within the ROI,
the most accurate dataset for each epoch was selected and the backdating approach
was reapplied within the entire BNA region. The accuracy of backdating-generated
buildings was also compared with spatiotemporal datasets derived from the OSHDB

framework (see Table 5.1). The detailed workflow is illustrated in Fig. 5.6.

Object-Based Image Contemgorary Buildi.ng
Ground truth GTdata: Analysis: Footprint Datasets:
2018, 2021 and 2024 Multi-temporal 2 Ohfé\ﬂ
OSMMS

Y

Land Cover Map:
2018, 2021 and 2024
. !

Built-up Mask Layer:
2018 Contemporary buildings

2021 removing and trimming
2024

v \ 4

Rasterized: RBF building:
2018
2021

2024

Accuracy
Assessment:

ol P,R, F1, loU, TPrate

2018, 2021 and 2024

Fig. 5.6. Detailed pipeline of building backdating technique or also referred to as rapid backdating
footprints generation (RBF)
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The accuracy assessments showed that the agreement between validation polygons
and OSM footprints was less than 60% for 2018 and 2021, with completeness levels
of 80.12% and 75.24%, respectively (Table 5.3). However, completeness reached
90.19% by 2024, followed by an increase in agreement levels (74.85%) and loU (0.65).
The fluctuating level of completeness (i.e., decreasing in 2021 and a substantial rise
in 2024) might reflect the volunteered mapping activity during and after the COVID-19
pandemic, as also reported by Herfort et al. (2023).

The increasing coverage of validation polygons aligned with built-up expansion within
the ROI (Fig. 5.7). Overall, the 2018 and 2021 backdating generated buildings showed
a better agreement with validation data than those in 2024. This suggests that the
backdating approach is more effective in reconstructing historical data than the

contemporary dataset.

Table 5.3. Accuracy assessment for generated building footprints. BU: Built-up area layer

Input Mask Output Validation loU Agreement Completeness
OSHDB 2018 - OSM 2018 GT 2018 0.46 57.16% 80.12%
OSHDB 2021 - OSM 2021 GT 2021 0.46 55.80% 75.34%
OSHDB 2024 - OSM 2024 GT 2024 0.65 74.85% 90.19%
BU-18 RBF-GT 2018 GT 2018 0.88 91.79% 95.98%
GT 2024 BU-21 RBF-GT 2018 GT 2021 0.94 96.19% 98.16%
BU-24 RBF-GT 2024 GT 2024 0.98 97.58% 97.52%
BU-18 RBF-OSM 2018 GT 2018 0.65 74.45% 89.69%
(C())Sus?)Bzoz , BU21  RBFOSM2021  GT2021 066  74.86% 88.96%
BU-24 RBF-OSM 2024 GT 2024 0.64 73.23% 87.09%
BU-18 RBF-MS 2018 GT 2018  0.61 70.10% 84.44%
MS BU-21 RBF-MS 2021 GT 2021 0.60 67.66% 81.15%
BU-24 RBF-MS 2024 GT 2024 0.58 66.14% 79.26%
BU-18 RBF-OSMMS 2018 GT 2018 0.64 75.29% 92.49%
OSMMS BU-21 RBF-OSMMS 2021 GT 2021  0.65 75.27% 90.93%
BU-24 RBF-OSMMS 2024 GT 2024 0.63 72.74% 88.96%

The completeness of backdating-generated buildings for 2018 and 2021 was higher
than that of OSM footprints (i.e., OSHDB 2018 and 2021). Furthermore, Microsoft-
based datasets (RBF-MS) had lower completeness than OSM-based data (RBF-
OSM) (Fig. 5.8). This could be associated with the research location, as Microsoft's
building data typically have better coverage for major cities (Chamberlain et al., 2024).
The combination of OSM and Microsoft datasets (RBF-OSMMS) did not significantly
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improve the completeness level of generated datasets (e.g., RBF-OSM 2018: 74.45%;
RBF-OSMMS 2018: 75.29%). In addition, the performance of the backdating approach
was observed to be influenced by the quality of the input dataset, as RBF-GT
demonstrated more than 90% agreement across all periods. Given the accuracy
assessment, OSMMS was selected as the input dataset. The backdating approach
was then performed for the entire AOI region. For 2024, rather than using backdating-
generated buildings, the original OSM 2024 data was used because of its high

completeness level.

Built-up mask 2021 Built-up mask 2024

Ground truth footprint 2018 rund truth footprint 2021 Ground truth footprint 2024

.8 h - Py 56T
umbpber rea
50 (@) % th) g Legend:
< m 2018 %6 Laz3
@ 401 2021 = 3
Q o 9 2 B No-data
[
1 © <«
£ 5 29
7] =3 —_ - o
o 204 8 5 B Built-up pixels
@ z L =
z ol £ 2 14§
S 4 1 Building pixels
0 o 02
Water  Bare VegetationForestry Built-up 2018 2021 2024
Land cover dynamic Ground truth footprint property

Fig. 5.7. (a-c) Multitemporal built-up masks. (d-f) Spatial distribution of GT polygons. (g) Land cover
fraction within the ROI. (h) Properties of GT datasets.

Results showed that the building coverage reached 11.60 km? by 2024, increased from
11.40 km? in 2021 and 10.56 km? in 2018 (Fig. 5.9). This increase was consistent with
the expansion of built-up areas. This highlights that built-up evolution could serve as
an indicator for building dynamic behaviour. However, while built-up areas increased
steadily at an average rate of 13% per three-year interval, building growth rates varied
between intervals (2018-2021: 1.8%; 2021-2024: 8%).
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Fig. 5.8. Subset comparison of GT, OSM, and backdating building footprints within the ROI coverage.
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Fig. 5.9. The land cover maps and generated building footprints, respectively, within the AQI for periods:
(aand d) 2018, (b and e) 2021, and (c and f) 2024.

5.2.3 Building Dynamics Assessment

Building dynamics were evaluated within three regions: the 2004 10T inundation limit,
physical zoning areas, and designated non-building zones based on land use planning.

The Mw 8.7 tsunami inundation limit was not incorporated as an evaluation criterion
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since the land use planning was designed for the worst-case tsunami scenario, which
is the Mw 9.2 2004 IOT.

The analysis revealed that 56.77% of building stock in 2018 was located within the
area affected by the 2004 IOT, with building coverage reaching nearly 6 km? or 600 ha
(Fig. 5.10a). This estimate increased substantially by 44.72 ha in 2021 and followed
by a modest expansion of 9.96 ha by 2024. A lower increase of 38.77 ha was observed
in non-inundated areas by 2021. In contrast, by 2024, building development within this
zone was slightly higher than that in former inundated areas (i.e., 10.03 ha). Despite
this, building distribution from 2018 to 2024 exhibited a relatively similar pattern, where

most buildings were concentrated within the 2004 IOT affected zone.

15 15 35
(a) (b) (c)
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Dynamic within the 2004 10T limit Dynamic within the zonation Dynamic in non-building zone

Fig. 5.10. Evolution assessment of building dynamics in the AOI within: (a) the 2004 IOT inundation
limit, (b) physical zoning areas, and (c) non-building zones based on land use planning.

The 2004 IOT inundation extent encompassed entire restricted development area
(Zone-l) and covered approximately 81% of limited development zone (Zone-Il and IlI).
Zone-l comprised a small number of buildings, approximately 3% of total buildings for
each period. The building dynamics within this region were minimal, with building
coverage increased by only 2.55 ha and 1.64 ha for 2021 and 2024, respectively.
Meanwhile, Zone-ll and Il accounted for 63% of total buildings in 2018, or
approximately 663.5 ha (Fig. 5.10b) . This number increased by 48.22 ha in 2021 and
a slight of 12 ha in 2024. Likewise, a substantial building increase of 32.73 ha was
observed by 2021 within the newly promoted zone (Zone-IV), followed by a limited
expansion of 6 ha in 2024. However, Zone-IV only hosted approximately 35% of the
total buildings in 2024.
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A comparison between land-use planning and building dynamics revealed an upward
trend of building encroachment into the non-building zone (2018: 29.39 ha; 2021:
32.42 ha, and 2024: 33.83 ha). A dominant encroachment was observed in green
spaces with an incline of 1.65 ha between 2018 and 2024, accounting for an average

of 37% of the total footprints in non-building zone (Fig. 5.10c).

Meanwhile, number of buildings in open spaces and mangrove areas by 2024
increased by 1.2 ha and 0.9 ha, respectively, compared to 2018. A relatively lower
dynamics encroachment was observed in riverine (riparian) and aquatic areas, with
3.23 ha and 3.78 ha in 2018, respectively. A slight increase was observed by 3.55 ha
and 4.2 ha by 2024 for both zones, respectively.

Given the results, the existing land use planning appears to have not fully incorporated
the initial physical zoning scheme. This is confirmed by the newly promoted zone
containing only an average of 35% of the building stock, with a cumulative increase of
only 38.95 ha from 2018 to 2024. In contrast, the limited development zone
experienced a nearly twofold increase, totalling 64.64 ha. This pattern resulted in

building development being largely concentrated within the 2004 |OT inundation extent.
5.3. Summary of Chapter V

The analysis revealed that the existing capacity of tsunami shelter are not sufficient to
accommodate the population which potentially exposed by Mw 8.7 tsunami.
Additionally, building dynamic assessment showed that the city development does not
fully comply with land-use planning. Furthermore, the rising trend in building
encroachment, especially in green and open spaces, emphasizes deviations in urban

planning implementation.
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CHAPTER VI:
DISCUSSION AND CONCLUSION

6.1. Error-reduced DEMs, LCR model resolutions and Simulated Inundation

Given these results, the improved variants of global DEMs have fewer inherent errors
in coastal low-lying areas than their original datasets. Some of these DEMs, with
spatial resolutions ranging from 30 m to 90 m, outperformed the local DEMNAS at
resolution of 8 m. This highlights that spatial resolution should not be used as a sole
indicator to define the performance of elevation data, as it is influenced by various
factors, including generation techniques and geographical settings (Liu et al., 2021;
Hawker et al., 2018).

Despite having better accuracy, inundation models using error-reduced DEMs still
underestimated the actual inundation extent of the 2004 Indian Ocean Tsunami (IOT).
The underestimations likely correlate with several factors, such as the acquisition
period of these DEMs (e.g., most data were collected between 2006 and 2020 or after
the 2004 10T) and limitations on the onshore bathymetric data used. As highlighted by
Sugawara (2021), the evolution of coastal morphology and land cover changes after
a tsunami disaster might present a significant challenge for accurately reconstructing

historical tsunami estimates.

This underestimation may also correlate with the accuracy of the tsunami source
model. It should be noted that the simulated inundations were constrained to the Mw
9.2 fault inversion model from Koshimura et al. (2009). Using alternative tsunami
source models to reproduce the 2004 |OT inundation in the Banda Aceh region, such
as the one proposed by Yanagisawa et al. (2010), may yield different simulation results

and potentially lead to different agreement with the actual inundation.

Results from combining DEMs with roughness models demonstrated that uniform
Manning coefficients consistently produced larger inundation extents compared to
variable Manning or Land Cover Roughness (LCR) models. Consequently, the uniform
Manning approach showed better agreement with the historical inundation limits. This
phenomenon can be attributed to the enhanced flow resistance provided by the LCR

models, which incorporate spatially variable damping effects from different land cover
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types, particularly vegetation and built-up areas. The increased resistance reduces the

flow velocities and limits tsunami propagation.

The sensitivity of the Manning coefficient values within the LCR models further
illustrates this mechanism. The larger inundation extents produced when applying the
coefficients from Koshimura et al. (2009) can be attributed to the lower resistance
values assigned to vegetated areas compared with the coefficients from Bunya et al.
(2010). Because vegetation covered approximately 30% of the area of interest (AOI)
by 2004, this coefficient difference significantly influenced the overall flow dynamics

and energy dissipation patterns across the simulation domain.

The sensitivity of the Manning coefficient values within the LCR models further
illustrates this mechanism. The larger inundation extents produced when applying the
coefficients from Koshimura et al. (2009) can be attributed to the lower resistance
values assigned to vegetated areas compared with the coefficients from Bunya et al.
(2010). Because vegetation covered approximately 30% of the area of interest (AOI)
by 2004, this coefficient difference significantly influenced the overall flow dynamics

and energy dissipation patterns across the simulation domain.

Furthermore, the analysis showed that CoastalDEM coupled with uniform Manning
values resulted in the largest inundation extent. This is likely attributed to CoastalDEM
having a larger negative bias than other error-reduced DEMs at nearly -1 m. This large
negative bias underestimates ground elevation and eventually leads to greater
inundation (Liu et al., 2021). However, when paired with LCR models at 10 m and 30
m resolutions, CoastalDEM resulted in lower inundation extents than DiluviumDEM.
These findings suggest that the interaction between inundation and parameterization
of surface friction is unique to each DEM. When focusing on overland inundation,
CoastalDEM showed less overland inundation than FABDEM and DiluviumDEM did.

This might be because CoastalDEM has more water pixels than the other two DEMs.

The analysis consistently showed that the spatial resolution of the LCR models did not
significantly affect either inundation extent or flow depth. Although not statistically
significant, a contrasting pattern was observed: LCR models with finer resolution
produced larger inundation extents but smaller median maximum inundation heights

(MIH). This contradiction can be explained by several interrelated mechanisms.
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First, the relationship between the resolution and built-up area representation creates
differential flow resistance patterns. Finer-resolution LCR models derived from higher-
resolution land cover maps tend to classify fewer areas as built-up than coarser LCR
models. Because built-up areas provide greater flow resistance than other land cover
types, their lower representation in finer models decreases the overall flow impedance.
This reduced resistance allows water to spread more widely across the landscape,
resulting in larger inundation extents but correspondingly shallower depths. This

typical phenomenon was also observed by Koyama & Yamada (2022).

Second, the inverse relationship between inundation extent and depth explains the
lower MIH estimates. When floods spread over larger areas with reduced resistance,
the same volume of water is distributed across a greater surface area, naturally
resulting in smaller median depths. Third, finer-resolution LCR models provide a better
representation of drainage systems (i.e., small rivers and ponds), which can influence
the simulated flow depth. This was consistent with the inundation model setting, in
which small water bodies were incorporated by adjusting the topo-bathymetric inputs

based on the chosen land cover maps.

Finally, the proposed sequential validation assessment identified that the combination
of CoastalDEM and DiluviumDEM with LCR models was the most reliable input for
tsunami modelling. Based on the elevation error analysis, these two DEMs
consistently exhibited lower errors, particularly within the built-up areas. This suggests
that elevation error distributions within built-up areas might be an alternative indicator
in selecting global DEMs for inundation modelling, especially in locations dominated
by built-up areas. Additionally, considering the relationship between inundation bias
and vertical errors of DEMs, MAE could be an alternative elevation error metric in

selecting global DEMs rather than RMSE, especially for flood modelling applications.

6.2. Selecting Global Exposure Datasets for Local-scale Application

Evaluation of global exposure datasets showed an underestimation pattern for
population and an overestimation pattern for built-up area estimates. The analysis
revealed that intrinsic biases from each dataset will ultimately introduce bias into the
exposure analysis. In addition, the calculated intrinsic biases showed temporal
variation, with differences between 2004 and 2014 varying according to the dataset.
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Therefore, data selection should be guided by specific analytical objectives. For
instance, GAIA was selected to analyse the compounding bias given that its intrinsic
bias in 2004 was lower compared to other datasets. It should be noted that the bias in
2004 was used as an indicator since the 2004 |IOT inundation limit served as the
hazard reference. While GAIA also showed a lower relative bias by 2014, it should not
be used to evaluate the exposure evolution within the areas affected by the 2004 10T.
This is because GAIA showed no change in built-up area evolution, whereas the
reference dataset suggested that exposed built-up areas increased by 15% compared
to 2004. As for built-up exposure evolution between 2004-2014, GISD30

demonstrated a relatively better accuracy.

Beyond the bias assessment, understanding the properties of global exposure
datasets is also essential before selecting data that fits the specific purposes. For
instance, the generated local population datasets projected an increase of 8,805
people living within the area affected by the 2004 10T between 2014-2024. While
global datasets such as LandScan Global (LSG) do not provide population data for
2024, combining gridded population data from the 2024 local dataset and 2014 LSG
to analyse the exposure evolution resulted in a decrease of 13,875 people. This
discrepancy could lead to substantially different conclusions regarding risk evolution.
Further analysis revealed that this discrepancy is potentially attributable to population

overestimation by LSG in 2014.

Overall, this discrepancy underscores the importance of maintaining consistent
datasets for tsunami exposure assessments. Where feasible, identical datasets
should be employed to evaluate the temporal exposure evolution. When different
datasets are utilized, their respective biases should be systematically characterized
beforehand. Failure to account for these biases may introduce systematic errors,

potentially resulting in misinterpretation of risk evolution patterns.

6.3. Tsunami Risk and Mitigation Strategy

The ratio of tsunami shelters and populations that are potentially exposed to the Mw
8.7 tsunami revealed that the existing shelter capacity is insufficient. Additionally,
following the 2004 10T, the newly promoted region was designed as a new city center.
However, building dynamics assessment demonstrated that this region comprised

only 35% of the total building inventory, suggesting that the maijority of buildings were
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concentrated in tsunami-prone areas. Moreover, the rising trend in building
encroachment, especially in green and open spaces, emphasizes deviations in land

use planning implementation in Banda Aceh.

The observed deviations in land use planning may be attributed to multiple factors,
including inadequate enforcement of land use policies (luchi et al., 2023). The absence
of periodic monitoring further exacerbates these deviations. While the analysis
revealed poor implementation of land use planning based on building dynamics
between 2014 and 2024, Takabatake (2022) found that these issues had already

emerged during the reconstruction period beginning in 2005.

The initial master plan proposed relocation of populations from the most affected areas
to safer zones. However, residential construction in new designated locations failed to
achieve significant progress due to difficulties the local government encountered in

acquiring land within the constrained timeframe.

Consequently, the urgent need for coastal residents to restore their livelihoods
compelled the government to approve resettlement plans permitting their return to
original residential areas. This finding is corroborated by Syamsidik et al. (2017), who
identified rental costs and land prices as key determinants influencing Banda Aceh
residents’ continued coastal habitation despite their awareness of the devastating
2004 tsunami. Given these results, it is clear that the community remained as

vulnerable as it was in 2004.
6.4. Limitations in Reported Results

Although the results of this study can provide valuable insights for tsunami exposure
assessment in data-scarce regions, it should be noted that certain limitations still exist.

These limitations are comprehensively discussed in the following sub-sections.
6.4.1 Limitations in Proposed Sequential Validation Approach

Although the proposed sequential validation approach could illuminate the sensitivity
of input datasets to inundation model performance, several limitations warrant further
consideration. First, the evaluation of DEMs and surface roughness parameterizations
is highly sensitive to the established threshold. For example, given the agreement
between the simulated and observed inundation extents, changing the acceptable
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threshold for the inundation difference from 25% to 10% could suggest that the
application of the LCR models results in unreliable inundation estimates. Likewise,
reducing the threshold by 10% would make SRTM and AW3D30 classified as “reliable”

despite their elevation error characteristics.

Second, while resulting in a less accurate prediction of inundation depths, the use of
a uniform Manning’s coefficient has better agreement with the observed inundation
extent. This suggests that the application of uniform Manning is still reliable to some
extent. It is also crucial to highlight that uncertainties in reliability assessment may
persist because of inaccurate records of tsunami measurements and potential

geolocation offsets between the simulated and measured flow depth points.

Third, the reported results were constrained to a specific historical tsunami event and
the flat coastal plain characteristics of the research location. For example, given its
intrinsic elevation errors within the Banda Aceh region, DiluviumDEM and CoastalDEM
would achieve the minimum confidence level when the simulated MIH were at 2.36 m
and 3.06 m, respectively. This is strongly correlated to their elevation errors with RMSE
of 1.18 m for DiluviumDEM and 1.53 m for CoastalDEM. It should be highlighted that
those RMSE values are geographically specific elevation error values for the Banda
Aceh area. Consequently, changing the research location might yield different
elevation error values and yield different confidence level estimates. Thus, the results
should not be used to provide an absolute indication of the accuracy of different input
data choices, but rather to illuminate how different input data choices can modify the

simulated inundation extent.

Finally, these limitations suggest that the relationships observed between model
resolution, land cover representation, and inundation patterns may not be directly
transferable to areas with different topographic characteristics or coastal
configurations. The sensitivity patterns observed in the flat study area may differ
significantly in regions with steeper topographies. Similarly, caution should be
exercised when comparing the results of this study with other studies employing
different hazard modelling approaches or different tsunami sources. Nevertheless,
instead of independent individual assessment, these limitations should encourage the
modeller to adopt the sequential validation approach to reduce uncertainty in

evaluating inundation model performance.
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6.4.2 Limitations in Exposed Population Projection

The analysis has estimated that nearly 2,000 up to 24,696 people in Banda Aceh by
2024 would be potentially exposed to an Mw 8.7 tsunami, depending on the exposure
limit used. However, these exposure estimates should be interpreted cautiously, as
they are constrained to the generated gridded population dataset (i.e., POP-24), which

inherits uncertainties from the built-up area definitions used in land cover mapping.

As highlighted by Bonatz et al. (2024), variations in built-up area definitions can lead
to discrepancies in population estimates. Because roads and all impervious surfaces
were included as built-up areas, using other local datasets at a more granular building
level may vyield different exposure estimates. Additionally, the gridded population
datasets may underestimate settlement-associated properties, including settlement
density, number of building stories, and type of settlement (e.g., residential, schools,

or offices).

Bias in the reported exposed population may also result from daily mobility patterns,
particularly those related to work and school (Lloyd et al., 2019). This mobility
potentially results in an unregistered or floating population (Wu and Zhang, 2021). For
Banda Aceh, the floating population is reflected by local census data, which reported
a population decline of 3000 people between 2018 and 2023 (BPS, 2024). In contrast,
the same report revealed that the number of university students in Banda Aceh

increased by 27,142 during the same period.

These contrasting records may also explain the contrasting pattern in Banda Aceh's
evolution from 2004 to 2014: built-up areas increased by close to 720 ha, but the total
population declined by nearly 15,000. Given its administrative role as the capital city
of Aceh Province, Banda Aceh hosts many universities and government offices that
could attract people from other districts and provinces (Meilianda et al., 2019). This
influx potentially leads to the development of built-up areas (e.g., student apartments),
even though the city's population may not be significantly increasing.

6.4.3 Limitations in Evacuation System Assessment

The analysis projected that more than 19,000 people, or 77% of the total exposed

population, were potentially unsheltered from the Mw 8.7 tsunami. While these findings
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can provide valuable insight for disaster preparedness in Banda Aceh, they should be

interpreted with caution due to several limitations.

First, the population exposure estimates did not consider evacuation behaviour,
evacuation time, routes, or tsunami time arrival. The exposed population could be
minimized if unsheltered evacuees are able to evacuate to higher grounds away from
the coastal areas. Obviously, this scenario would be possible if rigorous early warning
systems are available, including alert information, evacuation routes, and disaster
knowledge, such as where and how to evacuate. Future research should address

these variables systematically.

Second, the exposure estimates assumed that existing shelters remained structurally
intact during the earthquake and subsequent tsunami waves. However, the 2018 Palu
tsunami showed that designated shelters may not survive earthquake damage (Koul
and Mulchandani, 2021). If shelters are compromised by an earthquake, exposure
estimates would increase accordingly. Therefore, future research should incorporate

shelter damage assessments to address this limitation.

Third, the exposure assessment did not include alternative shelters to accommodate
unsheltered evacuees. Jihad et al. (2023) and Murao et al. (2025) proposed using
public buildings such as schools, government offices, and mosques as co-benefit
structures for tsunami evacuation sites. Including these alternative shelters would
ultimately reduce exposure projections. However, the analysis assumed that because
these co-benefit structures are not officially designated for evacuation purposes,
evacuees may not recognize them as evacuation sites. Therefore, future research
should assess the public knowledge of these alternative shelters. Alternatively, the
Banda Aceh municipality should officially designate these structures by installing

shelter signage.
6.4.4 Limitations in Building Dynamics Assessment

The evaluation of building dynamics was conducted using spatiotemporal building data
generated using a simple backdating method. However, this method has several
limitations that warrant further investigation. First, the reported accuracies were
strongly influenced by the quality of the contemporary building footprints and validation
datasets. Because the validation polygons did not fully cover the Banda Aceh region,

employing more complete validation data may yield different accuracy results.
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Similarly, the performance of the backdating approach in other regions may differ due
to variations in OSM and Microsoft's Global ML Buildings data quality. Hence,
assessing the quality of the building input data prior to applying this method is

recommended.

Second, the properties of built-up masks, including their resolution, definition of built-
up areas, and collection techniques, determine the number of filtered building features.
Built-up masks with a high resolution of 5 m were employed. Using built-up masks
from global datasets with resolutions ranging from 30 m to 90 m potentially leads to
different results. Considering that the effect of the built-up mask resolution was not
discussed in this study, further research is strongly recommended to comprehensively

address this issue.

Third, while the analysis revealed a substantial increase in building expansion within
the inundation extent of the historical 2004 10T, further research is required to evaluate
its impact on human exposure. This is because the analysis did not classify the
building categories (e.g., residential, public buildings, permanent buildings, or informal

and temporary structures).

6.5. Recommendation

Given the obtained results and their limitations, this study offers some
recommendations to address methodological gaps and improve tsunami disaster

preparedness strategies:

1. It is highly recommended that future studies reproduce other historical tsunami
events and apply sequential validation assessments to evaluate the global DEMs
and LCR model performance. By doing so, the robustness of the sequential
validation approach could be evaluated. This could additionally characterize the
performance of error-reduced DEMs and LCR models across varying terrain
characteristics (e.g., slope gradients and land cover configurations).

2. To evaluate population exposure assessment, future research should integrate
evacuation modelling that accounts for tsunami arrival times and human
behavioural responses during evacuation.

3. To evaluate building exposure assessment, future research should integrate

official building cadastral data to identify building structures (e.g., timber-framed
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buildings, confined masonry infill brick walls, or reinforced concrete structures).
By doing so, the modeller could integrate the inundation depth with the building
fragility function and finally result in building damage probability (Lahcene et al.,
2021). Using building category information, modellers can develop more detailed
and dynamic population exposure models by incorporating temporal population
distribution patterns. For instance, populations can be allocated exclusively to
residential buildings to model night-time exposure scenarios. Using appropriate
weighting coefficients, the modeller could also proportionally distribute
populations across all building types to develop exposure models for specific
temporal scenarios, including office hours, lunch periods, and commuting times
(i.e., travel to and from workplaces) (Dabbeek et al., 2025).

. In case measured ground elevation data are not available, it is recommended
that modellers conducting coastal flood risk assessments within the Banda Aceh
region should employ error-reduced DEMs—either DiluviumDEM or
CoastalDEM-rather than the local DEMNAS model, which introduces larger
elevation errors.

. For tsunami disaster risk reduction and preparedness, it is recommended that
Banda Aceh's municipal government implement incentive programs targeting
young residents and first-time homebuyers to promote residential development
in designated low-risk areas or promoted zones. Additionally, constructing more
evacuation shelters could facilitate evacuation processes and accommodate
more residents in coastal areas.

. It is strongly recommended that modellers conducting coastal flood risk
assessments in data-scarce regions should perform sequential bias
assessments prior to data utilization. The inclusion of cross-uncertainty
assessments in inundation map products based on the elevation models
employed is also encouraged. This approach would enable disaster managers
and decision-makers in low- and middle-income countries to understand the
accuracy of risk information provided, facilitating the formulation of appropriate
risk reduction strategies within budget constraints, without overestimating or
underestimating the tsunami risk levels

. Finally, the transferability of the results and methods from this study to other

locations requires careful consideration. Future research employing or adapting
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the methodological framework of this study should carefully evaluate the above

limitations within their specific contexts.

6.6. Summary and Conclusion

This research evaluated the applicability of global datasets—including 11 elevation
models and 12 exposure datasets—for tsunami exposure assessment at the local scale.
To evaluate these datasets, this study proposed a sequential validation framework to
reduce the bias caused by individual reliability assessments. This study also proposed
a cross-uncertainty inundation map concept, integrating probabilistic inundation with

the confidence level from elevation data.

The results of this study indicated that the error-reduced variant of global elevation
models has better elevation accuracy and is relevant for utilization in coastal flood risk
assessment, especially CoastalDEM and DiluviumDEM. Additionally, this study proved
that integrating land cover roughness (LCR) models with elevation models could
improve inundation model accuracy to a certain extent. While the effect of spatial
resolution of LCR models seems minimal, it is advised that using finer resolution LCR

models can represent better terrain features.

This research has developed high-resolution local exposure datasets as a reference
for reviewing applications of global exposure datasets at the local scale. Overall, global
exposure datasets exhibit biases by overestimating the built-up environment and
underestimating population estimates. Notably, elevation models introduced a larger
bias in tsunami exposure estimates than exposure datasets. When both elevation
models and exposure datasets were integrated, compounding bias occurred, which

nearly doubled the error in exposure estimation.

In conclusion, global elevation models and exposure datasets represent viable
resources for local tsunami exposure assessments when their limitations are
appropriately acknowledged. A comprehensive understanding of the inherent biases
within these datasets is essential to ensure the credibility of tsunami risk assessments.

6.7. Data Availability

Link to access all materials and codes used in this study are provided in the Appendix

section.
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APPENDIX

APPENDIX 1: Observed inundation depths from the 2004 Indian Ocean Tsunami

No | Latitude | Longitude H (m)
1 5.56529 95.3190 0.60
2 | 55529 95.3189 1.00
3 | 5.5603 95.3304 1.00
4 | 5.5354 95.3053 1.00
5 | 5.5547 95.3178 1.35
6 | 5.5625 95.3282 1.50
7 | 5.5626 95.3286 1.50
8 | 5.5549 95.3176 1.80
9 | 5.5576 95.3176 2.00
10 | 5.5737 95.3453 2.40
11 | 5.5303 95.2936 240
12 | 5.5615 95.3204 2.60
13 | 5.5620 95.3221 2.80
14 | 5.5280 95.2871 2.80
15 | 5.5603 95.3162 3.00
16 | 5.5623 95.3166 3.00
17 | 5.5612 95.3199 3.40
18 | 5.5781 95.3224 3.40
19 | 5.5716 95.3294 3.50

20 | 5.5781 95.3271 4.00
21 | 5.5361 95.2827 4.00
22 | 5.5316 95.2822 4.20
23 | 5.5597 95.3161 4.50
24 | 5.5649 95.3217 4.50
25 | 5.5330 95.2775 4.50
26 | 5.5624 95.3151 5.00
27 | 5.5637 95.3031 5.00
28 | 5.5583 95.3107 5.00
29 | 5.5533 95.2972 5.00
30 | 5.5752 95.3248 5.00
31 | 5.5590 95.3154 5.50
32 | 5.5769 95.3226 6.00
33 | 5.5615 95.3125 6.20
34 | 5.5613 95.3113 6.20
35 | 5.5612 95.3096 7.00
36 | 5.5548 95.2857 7.00
37 | 5.5561 95.2838 9.00
38 | 5.5573 95.2843 9.00
39 | 5.5624 95.3296 1.40

40 | 5.5685 95.3355 1.95
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No | Latitude | Longitude H (m)
41 | 5.5657 95.3350 1.39
42 | 5.5675 95.3387 1.84
43 | 5.5738 95.3461 2.60
44 | 55717 95.3433 2.60
45 | 5.5655 95.3428 1.55
46 | 5.5634 95.3244 3.20
47 | 5.5621 95.3233 2.70
48 | 5.5621 95.3200 3.50
49 | 5.5505 95.3186 2.57
50 | 5.5614 95.3278 1.52
41 | 5.5657 95.3350 1.39
42 | 5.5675 95.3387 1.84
43 | 5.5738 95.3461 2.60
44 | 5.5717 95.3433 2.60
45 | 5.5655 95.3428 1.55
46 | 5.5634 95.3244 3.20
47 | 5.5621 95.3233 2.70
48 | 5.5621 95.3200 3.50
49 | 5.5505 95.3186 2.57
50 | 5.5614 95.3278 1.52
51 | 5.5610 95.3298 0.89
52 | 5.5628 95.3316 1.52
53 | 5.5750 95.3560 1.91
54 | 5.5701 95.3551 1.80
55 | 5.5699 95.3536 1.40
56 | 5.5684 95.3521 1.00
57 | 5.5766 95.3657 1.30
58 | 5.5792 95.3624 1.75
59 | 5.5790 95.3682 1.45
60 | 5.5812 95.3636 2.00
61 | 5.5659 95.3444 1.00
62 | 5.5679 95.3436 1.80
63 | 5.5625 95.3431 0.90
64 | 5.5700 95.3374 2.45
65 | 5.5705 95.3367 2.65
66 | 5.5666 95.3390 1.00
67 | 5.5662 95.3392 1.80
68 | 5.5683 95.3365 2.00
69 | 5.5839 95.3687 1.80
70 | 5.5757 95.3660 1.20




No Latitude | Longitude | H (m)
71 5.5649 95.3245 3.40
72 5.5652 95.3233 3.50
73 5.5676 95.3187 4.60
74 5.5649 95.3171 4.50
75 5.5721 95.3197 7.00
76 5.5624 95.3143 6.00
77 5.5604 95.3105 8.00
78 5.5545 95.3136 2.70
79 5.5565 95.3172 2.30
80 5.5507 95.3167 2.00
81 5.5514 95.3125 3.40
82 5.5485 95.3138 1.80
83 5.5523 95.3113 3.80
84 5.5535 95.2974 5.80
85 5.5460 95.2942 3.90
86 5.5459 95.2997 3.70
87 5.5471 95.3098 2.20
88 5.5442 95.3077 2.20
89 5.5415 95.3010 3.40
90 5.5399 95.3051 2.30
91 5.5306 95.2975 2.00
92 5.5309 95.2955 2.35
93 5.5389 95.2874 3.80
94 5.5807 95.3491 3.70
95 5.5730 95.3627 3.20
96 5.5340 95.2807 5.70
97 5.5971 95.3748 5.50
98 5.5587 95.3021 4.80
99 5.5591 95.3134 3.41
100 5.5592 95.3131 3.24
101 5.5562 95.3065 4.49
102 5.5587 95.3148 2.31
103 5.5589 95.3147 242
104 5.5590 95.3138 3.1
105 5.5591 95.3136 3.00
106 5.5587 95.3158 2.03
107 5.5586 95.3155 2.07
108 5.5585 95.3154 2.18
109 5.5547 95.3096 3.43
110 5.5547 95.3096 2.06
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No | Latitude | Longitude | H (m)
111 | 5.5553 95.3048 3.82
112 | 5.5575 95.3013 3.31
113 | 5.5575 95.3013 1.60
114 | 5.5563 95.3051 3.75
115 | 5.5573 95.3021 419
116 | 5.5573 95.3021 1.49
117 | 5.5573 95.3021 0.67
118 | 5.5565 95.3056 3.02
119 | 5.5572 95.3020 3.39
120 | 5.5589 95.3143 2.57
121 | 5.5589 95.3143 1.72
122 | 5.5589 95.3143 1.04
123 | 5.5559 95.3050 3.48
124 | 5.5545 95.3104 2.41
125 | 5.5545 95.3104 1.45
126 | 5.5539 95.3126 2.18
127 | 5.5552 95.3093 2.57
128 | 5.5545 95.3147 1.03
129 | 5.5543 95.3117 1.91
130 | 5.5529 95.3150 0.64
131 | 5.5550 95.3089 2.32
132 | 5.5603 95.3174 1.13
133 | 5.5554 95.3088 2.56
134 | 5.5420 95.2809 3.85




APPENDIX 2: List of Mw 9.2 hypothetical scenarios in PTHA18, obtained from return-

period based method.

No. Scenario ID in PHTA18 database Slip model
1 71078 Heterogeneous
2 76250 Heterogeneous
3 76256 Heterogeneous
4 76281 Heterogeneous
5 81293 Heterogeneous
6 81324 Heterogeneous
7 81379 Heterogeneous
8 81471 Heterogeneous
9 81475 Heterogeneous
10 81515 Heterogeneous
11 81564 Heterogeneous
12 86451 Heterogeneous
13 86541 Heterogeneous
14 86604 Heterogeneous
15 86701 Heterogeneous
16 86719 Heterogeneous
17 90392 Heterogeneous
18 90512 Uniform
19 90520 Uniform
20 90561 Heterogeneous
21 90567 Heterogeneous
22 90589 Heterogeneous
23 90605 Heterogeneous
24 90617 Heterogeneous
25 90663 Heterogeneous
26 93888 Heterogeneous
27 94119 Heterogeneous
28 94127 Heterogeneous
29 97142 Uniform
30 97244 Heterogeneous
31 97284 Heterogeneous
32 97291 Uniform
33 97356 Uniform
34 97360 Uniform
35 97380 Uniform
36 97397 Uniform
37 97466 Heterogeneous
38 97492 Heterogeneous
39 100559 Heterogeneous
40 100589 Uniform
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No. Scenario ID in PHTA18 database Slip model
41 100612 Heterogeneous
42 100626 Heterogeneous
43 100666 Heterogeneous
44 100772 Heterogeneous
45 100791 Uniform

46 100792 Heterogeneous
47 102661 Heterogeneous
48 102799 Uniform

49 102802 Heterogeneous
50 102840 Uniform

51 102853 Heterogeneous
52 102903 Heterogeneous
53 102906 Heterogeneous
54 102946 Uniform

55 104297 Uniform

56 104390 Heterogeneous
57 104403 Heterogeneous
58 104428 Uniform

59 104433 Heterogeneous
60 104512 Heterogeneous
61 104536 Heterogeneous
62 105828 Heterogeneous
63 105933 Heterogeneous
64 105953 Uniform

65 105968 Heterogeneous
66 105974 Uniform

67 105978 Uniform

68 106012 Heterogeneous
69 106021 Heterogeneous
70 106033 Uniform

71 106036 Heterogeneous
72 106143 Heterogeneous
73 106238 Heterogeneous
74 107272 Heterogeneous
75 107441 Uniform

76 107452 Uniform

77 107469 Heterogeneous
78 107487 Heterogeneous
79 107491 Heterogeneous
80 107563 Heterogeneous
81 107580 Uniform

82 107606 Heterogeneous
83 107661 Heterogeneous

145




No. Scenario ID in PHTA18 database Slip model
84 107718 Heterogeneous
85 108490 Uniform

86 108641 Heterogeneous
87 108742 Heterogeneous
88 108744 Uniform

89 108764 Uniform

90 108878 Heterogeneous
91 108921 Heterogeneous
92 108925 Heterogeneous
93 108963 Heterogeneous
94 109015 Uniform

95 109015 Heterogeneous
96 109029 Uniform

97 109041 Heterogeneous
98 109063 Heterogeneous
99 109130 Uniform
100 109153 Heterogeneous
101 109214 Heterogeneous
102 109224 Uniform
103 109256 Heterogeneous
104 109280 Heterogeneous
105 109313 Heterogeneous
106 109990 Heterogeneous
107 110180 Uniform
108 110219 Heterogeneous
109 110326 Heterogeneous
110 110346 Heterogeneous
111 110357 Uniform
112 110410 Heterogeneous
113 110417 Heterogeneous
114 110479 Heterogeneous
115 110514 Heterogeneous
116 110539 Heterogeneous
117 110564 Uniform
118 110590 Uniform
119 110596 Heterogeneous
120 110627 Uniform
121 110808 Heterogeneous
122 111044 Heterogeneous
123 111293 Heterogeneous
124 111508 Heterogeneous
125 111559 Uniform
126 111594 Heterogeneous
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APPENDIX 3: Link to access codes applied in this study

1. PTHA18 scenario selection —  Return-period based method:

https://github.com/GeoscienceAustralia/ptha/blob/master/ptha access/example

event access scripts/multi site scenario selection/example usage.md

2. PTHA18 scenario selection — Centroid-based filter:

https://qithub.com/GeoscienceAustralia/ptha/tree/nearshore testing ptha/misc/

nearshore testing ptha 2025/ptha18 scenarios random/set range of mw a

nd_centroid
3. PTHA18 scenario selection — Stratified-importance sampling:

https://qithub.com/GeoscienceAustralia/ptha/blob/nearshore testing ptha/ptha

access/example event access scripts/random scenarios non uniform and

importance_sampling/random_scenario_sampling.md
4.  Orfeo Toolbox (OTB):
https://www.orfeo-toolbox.org/
https://zenodo.org/doi/10.5281/zenodo.3522154
5.  Python implementation of Orfeo Toolbox (PyOTB):
https://pyotb.readthedocs.io/en/stable/

https://qithub.com/orfeotoolbox/pyotb/tree/develop/pyotb
PhoREAL: https://qgithub.com/icesat-2UT/PhoREAL

AROSICS: https://zenodo.org/doi/10.5281/zenodo.3742909

IR-MAD: https://github.com/latmperkmol/ts-norm?tab=readme-ov-file
OBIA-RF: https://github.com/yahcut/OBIA-RF

0. Backdating Building Approach: https://github.com/yahcut/RBF
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APPENDIX 4: Link to access the elevation models

1.

SRTM v.3.0 1 Arc-Second Global: https://doi.org/10.5066/F7PR7TFT
NASADEM Merged DEM Global 1 arc-second V001:
https://doi.org/10.5069/G93T9FD9

CoastalDEM 3 arc-second v2.1 non-commercial:
https://go.climatecentral.org/coastaldem/

Copernicus GLO-30: https://doi.org/10.5069/G9028PQB

FABDEM V1-2: https://doi.org/10.5523/bris.s5hgmjcdj8yo2ibzi9b4ew3sn
DiluviumDEM V.1.0: https://zenodo.org/doi/10.5281/zenodo.8329293
EDEM: https://download.geoservice.dIr.de/TDM30 EDEM/
CRAWDEM: https://download.geoservice.dlr.de/TDM30 DCM/
AW3D30V.4.1:
https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30 e.htm

. MERIT 3 arc second: https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT DEM/
. GEBCO 2023 Grid 15 arc-second: https://download.gebco.net/
. DEMNAS 0.27 arc-second and BATNAS 6 arc-second:

https://tanahair.indonesia.go.id/demnas/

. ATLO3 and ATLO8 V.006 IceSAT-2: https://nsidc.org/datal/icesat-2/data

APPENDIX 5: Link to access input satellite images

w

Landsat 5 TM and Landsat 8 OLI, Collection 2 Level-2: https://www.usgs.gov/ee
SPOT 5 images were acquired from Spot World Heritage Data Center (under
CNES's Spot World Heritage Programme. Access:
https://regards.cnes.fr/user/swh/modules/58

Orthorectification of SPOT 5 images: https://swh-2a-carto.fr/

The PlanetScope images were accessed from Planet Explorer under Planet’s
Program for Education and Research (E&R). Access:
https://www.planet.com/industries/education-and-research/

APPENDIX 6: Link to access spatiotemporal building datasets

1.

2.

Microsoft Building: https://github.com/microsoft/GlobalMLBuildingFootprint

OSM building polygon were retrieved from OSHDB and processed using Python’s

Ohsome-py. Access: https://github.com/GlScience/ohsome-py/tree/master
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APPENDIX 7: Link to access built-up area datasets

GHS-BUILT: https://human-settlement.emergency.copernicus.eu/download.php
GISD30: https://doi.org/10.5281/zen0do.5220816

GAIA: https://data-starcloud.pcl.ac.cn/data-nav/remote-sensing

GAUD: https://doi.org/10.6084/m9.figshare.16602224 .v1

GLC FCD30: https://doi.org/10.5281/zenodo.8239305

Glance: https://Ipdaac.usgs.gov/products/glance30v001/

WSF Evolution: https://geoservice.dlr.de/web/maps/eoc:wsfevolution
GISA v.2: https://doi.org/10.5281/zen0d0.647666 1

Our generated local dataset:
https://qgithub.com/yahcut/OBIA-RF/tree/main/Land%20cover%20map
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APPENDIX 8: Link to access gridded population datasets

GHS-POP: https://human-settliement.emergency.copernicus.eu/download.php

WorldPop: https://hub.worldpop.org/geodatallisting?id=16

LSG: https://landscan.ornl.gov/

GlobPop: https://doi.org/10.5281/zenodo.10088105

Our generated local dataset:
https://qgithub.com/yahcut/OBIA-RF/tree/main/Gridded%20Population
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