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Introduction

Non-Abelian Hodge Correspondence

Let E be a complex vector bundle over a compact Kähler manifold X. We denote by ∂E a holomorphic structure
on E. A Higgs bundle over X is a pair consisting of a holomorphic vector bundle (E, ∂E) and an EndE-valued
holomorphic 1 form θ satisfying θ ∧ θ = 0. The form θ is called the Higgs field. Let h be a hermitian metric of
E, ∂h be the (1, 0)-part of the Chern connection with respect to ∂E and h, and θ†h be the formal adjoint of θ

with respect to h. We say h is a harmonic metric if the connection D := ∂h + ∂E + θ + θ†h is a flat connection
(i.e. D2 = 0). We say that (E, ∂E , θ, h) is a harmonic bundle if h is a harmonic metric for (E, ∂E , θ).

The existence of a harmonic metric for a Higgs bundle (E, ∂E , θ) is equivalent to the stability of the Higgs
bundle. This equivalence is called the non-Abelian Hodge Correspondence and stated as follows:

Theorem 0.0.1 ([H, S1]). Suppose X is a compact Kähler manifold. (E, ∂E , θ) admits a harmonic metric if
and only (E, ∂E , θ) is a polystable Higgs bundle and c1(E) = c2(E) = 0. If h1 and h2 are harmonic metrics,
then there exists a decomposition (E, ∂E , θ) = ⊕i(Ei, ∂Ei , θi) such that (i) the decomposition is orthonormal
with respect to both h1 and h2 (ii) there exist an ai > 0 such that h1|Ei

= aih2|Ei
for each i.

Let (E, ∂E , θ, h) be a harmonic bundle. We have a flat bundle (E,D = ∂h+∂E+θ+θ†h). From a flat bundle,
we obtain a representation ρ : π1(X)→ GL(r) by the monodromy of the flat bundle. We say that a flat bundle
is reductive if the corresponding representation is semisimple. It was shown in [Co, S4] that a harmonic bundle
(E, ∂E , θ, h) induces a semisimple representation ρD : π1(X) → GL(r). Equivalently, (E,D) is reductive. The
converse was also proved: from a semisimple representation, ρ : π1(X)→ GL(r), we obtain a harmonic bundle
(E, ∂E , θ, h).

Hence, combining [Co, H, S1, S3, S4], the following three objects are equivalent on a compact Kähler
manifold.

• Polystable Higgs bundle with vanishing Chern classes.

• Reductive flat bundle.

• Semisimple representation of fundamental group.

This is really surprising and fascinating because the first object is a holomorphic object (or an algebro geometric
object), the second object is a differential geometric object, and the third one is a topological object. Sometimes,
the Non-Abelian Hodge Correspondence also means this equivalence among them.

In this thesis, we focus on the first two objects and discuss some problems related to them.

Hitchin Equation

Since a compact Riemann Surface M is a compact Kähler manifold, the non-Abelian Hodge Correspondence
holds. To connect a polystable Higgs bundle to a reductive flat bundle, we need an intermediate object which
is the Hitchin equation. Let E be a complex vector bundle, h a hermitian metric, and D be a connection of E.
Then D has the decomposition

D = ∇h +Φ,
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where ∇h is a metric connection and Φ is the self-adjoint 1-form with respect to h. Let F∇h
be the curvature

of ∇h and ∗ be the Hodge star of M . Then the Hitchin equation is defined as

F∇h
− Φ ∧ Φ = 0,

∇hΦ = 0,

∇h ∗ Φ = 0.

If we have a harmonic bundle (E, ∂E , θ, h), then ∇h := ∂h + ∂E ,Φ := θ + θ†h solve the Hitchin equation.
Conversely, if a metric connection ∇h and self-adjoint 1-form Φ solve the Hitchin equation, (E, ∂E := ∇0,1

n , θ :=
Φ1,0) is a Higgs bundle which is polystable with degree 0.

If we have a reductive flat bundle (E,D), then there exists a hermitian metric h such that the metric
connection and self-adjoint 1-form which we obtain from the decomposition of D, satisfy the Hitchin equation.
Conversely, if ∇h and Φ satisfy the Hitchin equation, D := ∇h +Φ is a reductive flat bundle.

As a consequence, the moduli of the Hitchin equationMHit is equivalent to the moduli of polystable Higgs
bundles, the moduli space of reductive flat bundles, and the moduli space of semisimple representations of
π1(M). This moduli space is often called Hitchin moduli. Since Higgs bundles, flat bundles, and representations
of π1(M) appear in a wide range of mathematical fields, many areas of mathematics intersect in this space,
making its geometry especially rich and intricate. In particular, the study of the geometry of the Hitchin moduli
spaceMHit has become a central and active topic in modern mathematics.

Harmonic Bundles on Non-Compact Manifolds

We now introduce harmonic bundles and Higgs bundles defined over X −H, where X is a smooth projective
variety over C and H ⊂ X is a simple normal-crossing divisor. We also have an analog of the non-Abelian
Hodge correspondence for this context. Since the objects are defined on a noncompact space, we need to assume
some conditions on the asymptotic behavior along the divisor H.

Let (E, ∂E , θ, h) be a harmonic bundle on X −H. We say that (E, ∂E , θ, h) is a tame (resp. wild) harmonic
bundle if the Higgs field has logarithmic (resp. meromorphic) eigenvalue along H. The study of tame harmonic
bundles on a non-compact curve was initiated by Simpson in [S2]. He proved that a tame harmonic bundle is
equivalent to a polystable filtered regular Higgs bundle with degree 0. Here tame harmonic bundle is a harmonic
bundle with a tame Higgs field. A filtered bundle is a locally free OX(∗H)-module with a filtration. We review
this notion in Chapter 4. Biquard and Boalch expanded this correspondence to the wild harmonic bundle on
curves. Later, Mochizuki generalized all of this correspondence to the higher-dimensional case [M2, M3]. As a
consequence, we have the following

Theorem 0.0.2 ([BB, M2, M3, S1, S2]). Let X be a smooth projective variety, H be a normal crossing divisor
of X, and L be an ample line bundle of X. Let (E, ∂E , θ, h) be a good wild harmonic bundle on X −H. Then
(Ph

∗E, θ) is a µL-polystable good filtered Higgs bundle with µL(Ph
∗E) = 0 and

∫
X
ch2(Ph

∗E)c1(L)
dimX−2 = 0.

Conversely, let (P∗V, θ) be a µL-polystable good filtered Higgs bundle satisfying the following vanishing con-
dition:

(1) µL(P∗V) = 0,

∫
X

ch2(P∗V)c1(L)dimX−2 = 0.

Let (E, ∂E , θ) be the Higgs bundle which we obtain from the restriction of (P∗V, θ) to X −H. Then there exists
a pluri-harmonic metric h for (E, ∂E , θ) such that (V, θ)|X\H ' (E, θ) extends to (P∗V, θ) ' (Ph

∗E, θ).

Overview of the Thesis

We now explain the content of this thesis. At the beginning of each Chapter, we give a detailed background, so
we give a brief introduction here.

In Chapter 1, we study the geometry of the Kuranishi space of a pair of a compact Kähler manifold X and
a polystable Higgs bundle with vanishing Chern classes (E, ∂E , θ). We proved that under this assumption, the
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Kuranishi space of the pair is isomorphic to the direct product of the Kuranishi space of X and the Kuranishi
space of (E, ∂E , θ). We prove this by studying the Differential Graded Lie Algebra (DGLA) which controls the
deformation of the pair. This Chapter is based on [Ono1, Ono2].

In Chapter 2, we study a deformation problem of a certain triple. In Chapter 2, we study the deformation
problem of the triple of two Higgs bundles (E, ∂E , θE), (F, ∂F , θF ) and a Higgs bundle morphism (∂E , θ) →
(F, ∂F , θF ). We call the triple (f, (E, ∂E , θe), (F, ∂F , θF )) Higgs triple. Let L be the DGLA that controls
the deformation of (f, (E, ∂E , θ), (F, ∂F , θF )). We show that L is formal if both (E, ∂E , θE), (F, ∂F , θF ) has
harmonic metrics. This Chapter is based on [Ono3].

In Chapter 3, we introduce the basic Hitchin equation on a Sasakian three-fold. Sasakian manifolds are odd-
dimensional manifolds, and they are the odd-dimensional counterpart of Kähler manifolds. Therefore Sasakian
three-folds are a three-dimensional analog of Riemann surfaces. The non-Abelian Hodge Correspondence on
compact Sasakian manifolds was established in [BH1]. Motivated by this work, the author defined the basic
Hitchin equation on Sasakian three-folds, which is a three-dimensional analog of the Hitchin equation. In
Chapter 3, we construct the moduli space of the solutions of the basic Hitchin equation and prove that the
moduli space is a hyper-Kähler manifold. This Chapter is based on [Ono4].

In Chapter 4, we study a good wild harmonic bundle with a symplectic structure. Symplectic structure is
a symmetry of a wild harmonic bundle. We show that a wild harmonic bundle with a symplectic structure is
equivalent to a polystable good filtered Higgs bundle with a perfect skew-symmetric pairing. This Chapter is
based on [Ono5].
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Chapter 1

Structure of the Kuranishi Spaces of
pairs of Kähler manifolds and
Polystable Higgs bundles

1.1 Abstract of Chapter 1

Let X be a compact Kähler manifold and (E, ∂E , θ) be a Higgs bundle over it. We study the structure of the
Kuranishi space for the pair (X,E, θ) when the Higgs bundle admits a harmonic metric or equivalently when the
Higgs bundle is polystable and the Chern classes are 0. Under such assumptions, we show that the Kuranishi
space of the pair (X,E, θ) is isomorphic to the direct product of the Kuranishi space of (E, θ) and the Kuranishi
space of X. Moreover, when X is a Riemann surface and (E, ∂E , θ) is stable and the degree is 0, we show that
the deformation of the pair (X,E, θ) is unobstructed and calculate the dimension of the Kuranishi space.

1.2 Introduction of Chapter 1

Let X be a complex manifold and (E, ∂E , θ) be a Higgs bundle over X. We call a pair X and (E, ∂E , θ) a
holomoprhic-Higgs triple. In the paper [Ono1], we studied the deformation problem of holomorphic-Higgs triple
differential geometrically: we studied the deformation problem when X and (E, ∂E , θ) deform simultaneously.
We constructed the DGLA (L, [, ]L, dL) which governs the deformation differential geometrically, and constructed
the Kuranishi space Kur(X,E,θ). The Kuranishi space is an analytic space such that it contains all information
of small deformations of the given holomorphic-Higgs pair. See section 2.4.1 for the details of the DGLA
(L, [, ]L, dL).

In this Chapter, we study the structure of the Kuranishi space. We study the structure of the Kuranishi
space when X is a compact Kähler manifold and the Higgs bundle (E, ∂E , θ) admits a harmonic metric h.
Hence, in other words, we study the Kuranishi space Kur(X,E,θ) when the Higgs bundle is polystable and its
Chern classes are 0. From now on, we assume X to be a compact Kähler manifold.

Let KurX be the Kuranishi space of X, Kur(E,θ) be the Kuranishi space of the Higgs bundle (E, θ), and
Kur(E,D) be the Kuranishi space of the flat bundle (E,D). The flat bundle D is obtained from the Higgs bundle
and the harmonic metric.

Theorem 1.2.1 (Theorem 1.5.2). Let (X,ω) be a compact Kähler manifold, (E, ∂E , θ) be a Higgs bundle over
X and, K be a harmonic metric. Then

(Kur(X,E,θ), 0) ' (Kur(E,θ) ×KurX , 0),
(Kur(X,E,θ), 0) ' (Kur(E,D) ×KurX , 0)

holds as germs of analytic spaces.
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We prove this theorem by showing the DGLA (L, [, ]L, dL) is quasi-isomorphic to certain DGLA.
Theorem 2.4.1 predicts that once we construct a moduli space of a pair of a compact Kähler manifold and a

polystable Higgs bundle with vanishing Chern classes, such moduli space should locally decompose to the direct
product of the Kuranishi space of the manifold and the Kuranishi space of the Higgs bundle which we cannot
expect globally. The moduli space of pairs of Kähler manifolds and stable bundles was considered in [H, ST].
However, the author couldn’t find a work that deals with pairs of Kähler manifolds and stable Higgs bundles.

We have some consequences from Theorem 2.4.1 for specific cases. Let M be a Riemann surface with genus
g ≥ 2 and (E, ∂E , θ) be a stable Higgs bundle of degree 0. Under these assumptions, each deformations of M
and (E, ∂E , θ) are unobstructed and the dimensions of KurX is 3g− 3 and Kur(E,θ) is 2 + r2(2g− 2) [MK, N].
Here r is the rank of E. The following is straightforward from Theorem 2.4.1.

Corollary 1.2.1 (Corollary 2.5.1). Let M be a Riemann surface with genus g ≥ 2 and (E, ∂E , θ) be a stable
Higgs bundle of degree 0. Then the deformation of pair (M,E, θ) is unobstructed. Moreover, Kur(M,E,θ) is a
complex manifold and its dimension is g(2r2 + 3)− 2r2 − 1.

The Corollary predicts that the moduli space of a pair of Riemann surfaces and stable Higgs bundles of
degree 0 is smooth in a stable locus and its dimension is g(2r2 + 3)− 2r2 − 1.

1.2.1 Differential graded Lie algebras

In this section, we review the notion of the Differential graded Lie algebra (DGLA for short). We work over a
field K of characteristic 0. This section is based on [Ma].

Definition 1.2.1. A Differential-Graded vector space (DG vector space) is a pair (L, dL) such that L = ⊕iL
i

is a Z-graded vector space and d : L→ L is a linear map such that d(Li) ⊂ Li+1 and d ◦ d = 0.

Let (L, dL) be a DG vector space. A sub DG-vector space (W = ⊕i∈ZW
i, dW ) of (L, dL) is a DG vector

space such that for each i, W i ⊂ Li is a sub vector space and dW is the restriction of dL to W : dL(W ) ⊂ W
holds and dW = dL|W .

A morphism f : (L1, dL1
) → (L2, dL2

) of DG vector spaces is a morphism of vector spaces f : L1 → L2

such that it commutes with the differentials. We note that f induces a morphism Hi(f) : Hi(L1) → Hi(L2).
Here Hi(Lj)(j = 1, 2) is the i-th cohomology of (Lj , dLj ). Let (L, dL) be a DG vector space and (W,dW )
be a sub DG vector space of it. Then the inclusion of W i to Li induces a morphism of DG vector spaces
i : (W,dW )→ (L, dL).

Definition 1.2.2. A Differential graded Lie algebra (DGLA) (L, [, ], d) is the data of a Z-graded vector space
L = ⊕i∈ZL

i with a bilinear bracket [, ] : L×L→ L and a linear map d : L→ L satisfying the following condition:

1. [, ] is homogeneous skewsymmetric: [Li, Lj ] ⊂ Li+j and [a, b]+(−1)ab[b, a] = 0 for every a, b homogeneous.

2. Every triple of homogeneous elements a, b, c satisfy the Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)ab[b, [a, c]].

3. d(Li) ⊂ Li+1, d ◦ d = 0 and d[a, b] = [da, b] + (−1)a[a, db] holds. The map d is called the differential of L.

Definition 1.2.3. The Maurer-Cartan equation of a DGLA (L, [, ], d) is

da+
1

2
[a, a] = 0, a ∈ L1.

The solutions of the Maurer-Cartan equation are called Maurer-Cartan elements of the DGLA (L, [, ], d).

Let (L, [, ], dL) be a DGLA. We can consider (L, dL) as a DG vector space. We say a DGLA (W, [, ]W , dW ) is
a sub-DGLA of (L, [, ], dL) if (W,dW ) is a sub-DG vector space of (L, dL) and the bracket [, ]W is the restriction
of [, ] to W : [W,W ] ⊂W holds.

6



Definition 1.2.4. Let (L1, [, ]1, dL1) and (L2, [, ]2, dL2) be DGLAs. A morphism f : (L1, [, ]1, dL1)→ (L2, [, ]2, dL2)
of DGLAs is a morphism of DG vector spaces f : (L1, dL1)→ (L2, dL2) such that it commutes with brackets.

Let (L1, dL1
) and (L2, dL2

) be DG vector spaces. We say that (L1, dL1
) and (L2, dL2

) are quasi-ismorphic if
there exists a morphism of DG vector spaces f : (L1, dL1

) → (L2, dL2
) such that Hi(f) is an isomorphism for

each i.
Let (L1, [, ]1, dL1) and (L2, [, ]2, dL2) be DGLAs. We say that (L1, [, ]1, dL1) and (L2, [, ]2, dL2) are quasi-

ismorphic if there exists a family of DGLA {(Wi, [, ]Wi , dWi)}ni=1 and a family of morphism of DGLA {fi}n+1
i=1

such that

L1
f1←−W1

f2−→W2
f3←− · · · fn−1−−−→Wn−1

fn←−Wn
fn+1−−−→ L2

and each fi is a quasi-isomorphism of DG vector spaces.
Let (L, [, ], dL) be a DGLA. Since dL satisfies the Leibniz rule, (H•(L) := ⊕iH

i(L), [, ], 0) has the structure
of DGLA.

Definition 1.2.5. Let (L, [, ], dL) be a DGLA. (L, [, ], dL) is called formal if it is quasi-isomorphic to (H•(L), [, ], 0).

Remark 1.2.1. DG vector spaces can be regarded as DGLA with trivial brackets. In this case, the definition of
quasi-isomorphic coincides: when two DG vector spaces are quasi-isomorphic as DGLA then we can show that
it is quasi-isomorphic as DG vector spaces. This is because any DG vector space decomposes to two DG vector
spaces which have the property called minimal and acyclic. See [Ma] for example.

1.2.2 Homotopy invariance of the Kuranishi Space

In this section, we review the homotopy invariance of the Kuranishi spaces based on [GM1, GM2].
Let X be an analytic space and x ∈ X. We denote the germ of X at x as (X,x). We denote by O(X,x)

the corresponding analytic local ring consisting of germs of functions on X which are analytic at x. Let A be
a local ring. We denote the completion of A with respect to its maximal ideal as Â: the complete local ring of
(X,x) is Ô(X,x).

Let K be a field. Let R be a local K-algebra, ArtK be the category of Artin local K-algebras with residue
field K and Set be the category of sets. We have a naturally defined functor

Hom(R, ·) : ArtK → Set

which we denote FR. Let F : ArtK → Set be a functor. We say that an analytic germ (X,x) pro-represents
F if F and FÔ(X,x)

are naturally isomorphic. In this chapter, K is often C. Using the results of [A, G], it was

proved in [GM1] that the following four conditions are equivalent:

(1) The analytic germs of (X,x) and (Y, y) are analytic isomorphic.

(2) The analytic local rings O(X,x) and O(Y,y) are isomorphic.

(3) The complete local rings Ô(X,x) and Ô(Y,y) are isomorphic.

(4) The functor FÔ(X,x)
and FÔ(Y,y)

are naturally isomorphic.

Let (L, [, ], dL) be a DGLA. Let C1(L) be a complement of the 1-coboundary B1(L) ⊂ L1. We define a
functor YL : ArtK → Set such that for A ∈ ArtK

YL(A) =

{
η ∈ C1(L)⊗mA : dη +

1

2
[η, η] = 0

}
.

Here, mA is the maximal ideal of the Artin local K-algebra A. It was proved in [GM2] that YL is pro-
representable: that is, there exists a complete local K-algebra RL such that YL and FRL

are naturally isomorphic.
Let (Li, [, ]i, dLi) (i = 1, 2) be DGLAs and C1(Li) (i = 1, 2) be choices for the complement of the coboundaries

B1(Li). Let f : (L1, [, ]1, dL1
)→ (L2, [, ]2, dL2

) be a morphism of DGLA. We assume that

(i) H1(f) is an isomorphism.
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(ii) H2(f) is an injection.

Then it was proved in [GM2] that, if a morphism f : (L1, [, ]1, dL1) → (L2, [, ]2, dL2) satisfies (i) and (ii), then
RL1 and RL2 are isomorphic.

We next introduce the notion of analytic DGLA. A normed DGLA (L, [, ], dL) is a DGLA such that each Li

is a normed vector space and with respect to the norms

(1) dL : Li → Li+1 is continuous.

(2) [, ] : L1 ⊗ L1 → L2 is contionous.

We let L̂i to be the completion of Li with respect to the norm.
An analytic DGLA is a normed DGLA (L, [, ], dL) such that it has finite-dimensional cohomology in degrees

0 and 1 and each L̂i has continuous splitting:

0→ Zj(L̂)→ L̂j → Bj+1(L̂)→ 0

and
0→ Bj(L̂)→ Zj(L̂)→ Hi(L̂)→ 0.

It was proved in [GM2, Section 2] that for an analytic DGLA (L, [, ], dL), there exists a germ of analytic space

(KurL, 0) such that FO(KurL,0)
is naturally isomorphic to YL. Therefore, RL is isomorphic to Ô(KurL,0). See

[Ma, Chapter 3] for more details for the functors of Artin rings.
Based on the above discussions, the following Theorem was proved in [GM2].

Theorem 1.2.2 ([GM2, Theorem 4.8.]). Suppose (L1, [, ]1, dL1
) and (L2, [, ]2, dL2

) are analytic DGLAs which are
quasi-isomorphic as DGLAs. Then the analytic germs (KurL1

, 0) and (KurL2
, 0) are analytically isomorphic.

Remark 1.2.2. The DGLAs that appear in this chapter are analytic DGLAs by the standard Sobolev norms.

Remark 1.2.3. The construction of (KurL, 0) is based on [Ku]. When a DGLA (L, [, ], dL) comes from a
differential geometric object, the complement C1(L) can be chosen by the Hodge decomposition of the differential
dL. In this case, KurL is the standard versal deformation space. For example, when (A∗(TX), [, ]SN , ∂TX) is
the Kodaira-Spencer algebra of a complex manifold X, then KurA∗(TX) is exactly the Kuranishi space of X.

1.3 Deformation of holomorphic-Higgs pairs

In this section, we review our previous work [Ono1].
Let X be a complex manifold and (E, ∂E , θ) be a Higgs bundle over X. We called the pair (X,E, θ) a

holomorphic-Higgs pair. In our paper [Ono1], we considered the deformation problem of holomorphic-Higgs
pairs and constructed the DGLA that governs the deformation and constructed the Kuranishi space. We give
the definition of the deformation of the holomorphic-Higgs pair (X,E, θ).

Definition 1.3.1. Let (X,E, θ) be a holomorphic-Higgs pair. A family of deformation of holomorphic-Higgs
pair over a small ball ∆ centered at the origin of Cd, a complex manifold X , a proper holomorphic submersion

π : X → ∆

and a Higgs bundle (E ,Θ) such that, π−1(0) = X, E|π−1(0), and Θ|π−1(0) = θ.

1.3.1 DGLA

In this section, we introduce the DGLA which governs the deformation of holomorphic-Higgs pair based on
[Ono1].

Let (X,E, θ) be a holomorphic-Higgs pair and TX be the holomorphic tangent bundle of X. We fix a
hermitian metric h on E. Let ∂h be the (1,0)-part of the Chern connection with respect to ∂E and h. For
ϕ ∈ A(0,i)(TX) and ∂h, we define

{∂h, ϕ⌟} := ∂h(ϕ⌟) + (−1)iϕ⌟∂h.
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Here, ϕ⌟ is the contraction with respect to ϕ.
Let Li :=

⊕
p+q=iA

p,q(EndE)
⊕
A0,i(TX) and L :=

⊕
i L

i. Let (A,ϕ) ∈ Li and (B,ψ) ∈ Lj . We define,

[(A,ϕ), (B,ψ)]L := ((−1)i{∂h, ψ⌟}A− (−1)(i+1)j{∂h, ϕ⌟}B − [A,B]EndE , [ϕ, ψ]SN ).

Here, [, ]SN is the standard Schouten-Nijenhuys bracket defined on
⊕

iA
0,i(TX).

We define B ∈ A0,1(Hom(TX,EndE)) and a C-linear map Ci : A
0,i(TX)→ A1,i(EndE) such that they act

on ϕ ∈ A0,i(TX) as
B(ϕ) := (−1)iϕ⌟Fdh

, Ci(ϕ) := {∂h, ϕ⌟}θ.
We define a C-linear map dL : Li → Li+1 as

dL :=

(
∂EndE B

0 ∂TX

)
+

(
θ Ci

0 0

)
.

After some calculations, we obtain the following theorem.

Theorem 1.3.1 ([Ono1, Theorem 3.1.]).
(
L, [, ]L, dL

)
is a DGLA.

This DGLA governs the deformation of (X,E, θ). Actually, let η = (A,ϕ) ∈ L1. Then η defines a
holomorphic-Higgs pair if and only if η is a Maurer-Cartan element. This was proved in [Ono1, Theorem
3.6.].

We assume η = (A,ϕ) ∈ L1 to be a Maurer-Cartan element and let (Xη, Eη, θη) be the holomorphic-Higgs
pair which η determines. We briefly recall its construction. Let A1,0 (resp. A0,1) be the (1,0) (resp. (0,1))-part
of A. We define ∂E,η := ∂E + {∂h, ϕ⌟}+A0,1 and θη := θ+A1,0 + ϕ⌟(θ+A1,0). In [Ono1], we showed that the
following holds:

• ∂TXϕ+ 1
2 [ϕ, ϕ]SN = 0,

• (∂E,η + θη)
2 = 0.

From the first equation, we obtain a new complex structure Iη on X. We denote this complex manifold as
Xη. We also showed that ∂E,η is a (0,1)-type operator and θη is a EndE valued (1,0)-form w.r.t Xη. From the
second equation, we obtain a holomorphic bundle Eη := (E, ∂η) and a Higgs field θη.

1.3.2 Kuranishi Space

We use the same notation as the previous section. In this section, we introduce the Kuranishi Space and the
Kuranishi family for a given holomorphic-Higgs pair (X,E, θ). Briefly, Kuranishi Space is an analytic space and
the Kuranishi family is a family of holomorphic-Higgs pairs parametrized by Kuranishi Space such that every
holomorphic-Higgs pair which comes from a small deformation of (X,E, θ) is isomorphic to a holomorphic-Higgs
pair which is in the Kuranishi family.

Since (L, [, ]L, dL) is constructed differential geometrically, we can apply the Kuranishi’s work [Ku] to con-
struct the Kuranishi family. Let d∗L be the formal adjoint of dL with respect to L2-inner product, ∆L :=
dLd

∗
L + d∗LdL be the Laplacian and GL be the Green operator associated to ∆L. Let Hi := ker(∆L : Li → Li)

and H : Li → Hi be the projection. By the classical Hodge theory, we know that dimHi has a finite di-
mension for each i. Let {ηi}ni=1 be an orthogonal bases of H1 with respect to L2-inner product. For each
t = (t1, . . . , tn) ∈ Cn, we set ϵ1(t) :=

∑
i tiηi.

Lemma 1.3.1 ([Ono1, Proposition 4.1, Proposition 4.2.]). For any t ∈ Cn and |t| << 1, there is a ϵ(t) ∈ L1

such that ϵ(t) satisfies the equation

ϵ(t) = ϵ1(t) +
1

2
d∗LGL[ϵ(t), ϵ(t)]L

and ϵ(t) depends holomorphically with respect to the variable t.
Moreover, ϵ(t) satisfies the Maurer-Cartan equation if and only if

H[ϵ(t), ϵ(t)] = 0.
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Let ∆ ⊂ Cn be a small ball such that ϵ(t) is holomorphic on ∆. We set,

Kur(X,E,θ) := {t ∈ ∆ : H[ϵ(t), ϵ(t)] = 0}.

Since the dimension of H2 is finite, Kur(X,E,θ) is an analytic space. We call Kur(X,E,θ) the Kuranishi space of
(X,E, θ). Since a Maurer-Cartan element defines a holomorphic-Higgs pair, we obtain a family of holomorphic-
Higgs pair {(Xϵ(t), Eϵ(t), θϵ(t))}t∈Kur(X,E,θ)

. We call this family the Kuranishi family of (X,E, θ). The Kuranishi
space and the Kuranishi family contain all small deformation of (X,E, θ). Actually, let | · |k be the k-th Sobolev
norm of L1 and let η ∈ L1 be a Maurer-Cartan element. If |η|k << 1, then there exists a t ∈ Kur(X,E,θ) such
that

(Xη, Eη, θη) ' (Xϵ(t), Eϵ(t), θϵ(t)).

Here (Xη, Eη, θη) is the holomorphic-Higgs pair which η determines. This was proved in [Ono1, Theorem 4.2.].

1.4 Harmonic bunldes

1.4.1 Kähler Identities

Let X be a compact Kähler manifold and (E, ∂E , θ, h) be a harmonic bundle.

Let ∂h be the (1,0)-part of the Chern connection associated with ∂E and K and θ†h be the adjoint of θ with

respect to h. We set D′
h := ∂h + θ†h and D′′ := ∂E + θ. The connection D := D′

h +D′′
E is flat.

We define a L2-metric on Ap(E) by using the Riemannian metric g on X and the Hermitian metric h on E.
Let D∗

E , (D
′
h)

∗ and (D′′
E)

∗ be the formal adjoint of DE , D
′
h and D′′

E with respect to the L2 inner product. Let
Λω be the contraction with respect to the Kahler form ω. The following Kähler identities were proved in [S1,
Lemma 3.1.].

Lemma 1.4.1. Let (X,ω) be a compact Kähler manifold, (E, ∂E , θ) be a Higgs bundle over X and h be a
hermitian metric. Let D′

h, D
′′
E, (D

′
h)

∗ and (D′′
E)

∗ be as above. Then the following equalities hold.

(D′
h)

∗ =
√
−1[ Λω, D

′′
E ] , (D

′′
E)

∗ = −
√
−1[ Λω, D

′
h] .

We define the laplacians as follows,

∆E :=DED
∗
E +D∗

EDE ,

∆′′
E :=D′′

E(D
′′
E)

∗ + (D′′
E)

∗D′′
E ,

∆′
h :=D′

h(D
′
h)

∗ + (D′
h)

∗D′
h.

We assume h to be a harmonic metric. Under this assumption, we have D′′
ED

′
h +D′

hD
′′
E = 0 and by the Kähler

identities, we obtain the following equalities.

∆E = 2∆′′
E = 2∆′

h.

Let GE , G
′′
E and G′

h be the Green operators asscoiated to ∆E ,∆
′′
E and ∆′

h. By the above relations of Laplacians,
we have 2GE = G′′

E = G′
h.We set Hi := ker∆E . By the classical Hodge theory, we have the following orthogonal

decompositions with respect to the L2-inner product.

Ai(E) = Hi ⊕ imDE ⊕ imD∗
E ,

Ai(E) = Hi ⊕ imD′′
E ⊕ im(D′′

E)
∗,

Ai(E) = Hi ⊕ imD′
h ⊕ im(D′

h)
∗.

The next lemma was proved in [S2]. This is an analog of the Kähler case which was proved in [DGMS].

Lemma 1.4.2 ([S2, Lemma 2.1.]). Let (E, ∂E , θ, h) be a harmonic bundle on X. Then

kerD′
h ∩ kerD′′

E ∩ (imD′
h + imD′′

E) = imD′
hD

′′
E .
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Proof. We give the proof for convenience. This lemma was originally proved in [S2].
Let γ ∈ Ai(E). Suppose γ = D′

hα + D′′
Eβ, D

′
hγ = 0 and D′′

Eγ = 0. Let β = β0 + D′
hβ1 + (D′

h)
∗β2 be the

Hodge decomposition with respect to D′
K with β0 harmonic. Since ∆′

h = ∆′′
E , ∆

′′
Eβ0 = 0. Thus we have

D′′
Eβ = D′′

ED
′
hβ1 +D′′

E(D
′
h)

∗β2.

From the Kähler identities, we have D′′
E(D

′
h)

∗ =
√
−1D′′

E [ Λω, D
′′
E ] =

√
−1D′′

EΛωD
′′
E = −

√
−1′[ Λω, D

′′
E ] D

′′ =
−(D′

h)
∗D′′

E . Hence we have
γ = D′

hα+D′′
ED

′
hβ1 − (D′

h)
∗D′′

Eβ2.

Since γ is D′
h−closed, (D′

h)
∗D′′

Eβ2 is also. From the equation(
(D′

h)
∗D′′

Eβ2, (D
′
h)

∗D′′
Eβ2

)
L2 =

(
D′′

Eβ2, D
′
h(D

′
h)

∗D′′
Eβ2

)
L2 = 0,

we obtain (D′
h)

∗D′′
Eβ2 = 0 and therefore, D′′

Eβ = D′′
ED

′
hβ1. Here (, )L2 is the L2-norm. We can show D′

hα =
D′′

ED
′
hα1 by using exactly the same argument as β. Hence the claim is proved.

1.4.2 Formality

Let (X,ω) be a compact Kähler manifold, (E, ∂E , θ, h) be a harmonic bundle on X. We obtain three DG
vector spaces (A∗(E) := ⊕iA

i(E), DE), (A
∗(E), D′′

E), and (A∗(E), D′
h). We define Hi

DR, Hi
Dol, and Hi

D′
h
to be

the i-th cohomology of (A∗(E), DE), (A
∗(E), D′′

E), and (A∗(E), D′
h). These DG vector spaces satisfy formality

conditions.

Lemma 1.4.3 ([GM1, P.83.],[S2, Lemma 2.2.]). The natural morphisms induce quasi-isomorphisms of the
following DG vector spaces.

(kerD′
h, D

′′
E)→ (A∗(E), DE),

(kerD′
h, D

′′
E)→ (A∗(E), D′′

E),

(kerD′
h, D

′′
E)→ (H∗

DR, 0),

(kerD′
h, D

′′
E)→ (H∗

Dol, 0)

(kerD′
h, D

′′
E)→ (H∗

D′
h
, 0).

Proof. We only prove the quasi-isomorphism of i : (kerD′
h, D

′′
E)→ (A∗(E), DE).

H∗(i) is surjective: Let α ∈ KerDE . We now consider D′
hα and show it is D′′

E-closed. Since h is a harmonic
metric, D′

hD
′′
E +D′′

ED
′
h = 0. Therefore, D′′

ED
′
hα = −D′

hD
′′
Eα = D′

hD
′
hα = 0. The second equation follows from

the assumption of α. As D′
hα is D′

h-closed, we can apply the D′
hD

′′
E-lemma. Hence there exists a β such that

D′
hα = D′

hD
′′
Eβ.

Moreover
D′′

Eα = −D′
hD

′′
Eβ.

Now we consider α−DEβ. From the equations

D′
h(α−DEβ) = D′

hα−D′
hD

′′
Eβ = 0,

D′′
E(α−DEβ) = D′′

Eα−D′′
ED

′
hβ = 0,

We have α−DEβ ∈ KerD′
h ∩KerD′′

E . Hence α−DEβ defines a cohomology class of (kerD′
h, D

′′
E). H

∗(i) maps
the cohomology class of α−DEβ to the cohomology class of α. Hence H∗(i) is surjective.

H∗(i) is injective: Let α ∈ KerD′
h ∩KerD′′

E and we assume that there exists a β such that α = DEβ. Under
this assumption, We can apply the D′

hD
′′
E-lemma to D′

hβ. Then there exists a γ such that

D′
hβ = D′

hD
′′
Eγ.
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Now we consider β −DEγ. From the equations

D′
h(β −DEγ) = D′

hβ −D′
hD

′′
Eγ = 0,

D′′
E(β −DEγ) = D′′

Eβ −D′′
ED

′
hγ = D′′

Eβ +D′
hβ = DEβ = α,

we obtain α ∈ D′′
E(KerD′

h). Hence the cohomology class which α defines in (kerD′
h, D

′′
E) is 0. Therefore H

∗(i)
is injective.

Let E∗ be the dual of E. For any p, q ∈ Z≥0, E
∗⊗p ⊗ E⊗q has a induced harmonic metric from E. Hence,

(A∗(E∗⊗p⊗E⊗q), DE) and (A∗(E∗⊗p⊗E⊗q), D′′
E) satisfy formality condition. We now focus on p = q = 1 case.

In this case, E∗⊗E = EndE and A∗(EndE) has a naturally defined bracket [, ]EndE such that for A ∈ Ai(EndE)
and B ∈ Aj(EndE),

[A,B]EndE = A ∧B − (−1)ijB ∧A.
We give a local description for convenience. Assume that A = Aidzi and B = Bjdzj locally. Here Ai and Bj

are matrix-valued functions. Then the bracket [A,B]EndE is calculated as

[A,B]EndE = AiBjdzi ∧ dzj − (−1)ijBjAidzj ∧ dzi..

By some calculation, we can show that (A∗(EndE), [, ]EndE , DE) and (A∗(EndE), [, ]EndE , D
′′
E) are DGLA.

Therefore, by Lemma 1.4.3, we have the following lemma.

Lemma 1.4.4. (A∗(EndE), [, ]EndE , DE) and (A∗(EndE), [, ]EndE , D
′′
E) are formal as DGLA.

1.5 Structure of Kuranishi space

In this section, we study the structure of the analytic germ (Kur(X,E,θ), 0) when (X,ω) is a compact Kähler

manifold and the Higgs bundle (E, ∂E , θ) on X has a harmonic metric K. We prove that (Kur(X,E,θ), 0) '
(Kur(E,θ) ×KurX , 0) as analytic germs. We prove that by showing certain DGLAs are quasi-isomorphic and
apply Theorem 1.2.2.

Throughout this section, the DGLA (L, [, ]L, dL) is the DGLA in the Theroem 1.3.1.

1.5.1 DGLA

In this section, we study the differential of (L, [, ]L, dL) when (X,ω) is a compact Kähler manifold and (E, ∂E , θ, h)
is a harmonic bundle.

Proposition 1.5.1. When X is a compact Kähler manifold and (E, ∂E , θ, h) is a harmonic bundle over X,
then the differential dL of the DGLA (L, [, ]L, dL) acts on (A,ϕ) ∈ Li as

dL

(
A
ϕ

)
=

(
D′′

EA+D′
h(ϕ⌟θ)

∂TXϕ

)
.

Proof. The second row is from the definition of dL. From the definition of dL, the first row of

dL

(
A
ϕ

)
is

∂EndEA+ (−1)iϕ⌟Fdh
+ [θ,A] + {∂h, ϕ⌟}θ.

Since h is a harmonic metric, D = D′
h+D

′′ is flat. Therefore, the (2, 0)-part and the (1, 1)-part of D2 is 0. The

(2, 0)-part is ∂hθ and the (1, 1)-part is Fdh
+ [θ, θ†h]. Hence we have the equality

∂EndEA+ (−1)iϕ⌟Fdh
+ [θ,A] + {∂h, ϕ⌟}θ = D′′

EA− (−1)iϕ⌟[θ, θ†h] + ∂K(ϕ⌟θ)
= D′′

EA+ [θ†h, ϕ⌟θ] + ∂K(ϕ⌟θ)
= D′′

EA+D′
h(ϕ⌟θ).

Hence the claim is proved.
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1.5.2 Quasi-isomorphisms of DGLAs

In this section, we prove quasi-isomorphisms of certain DGLAs. Let (A∗(TX), [, ]SN , ∂TX) be the Kodaira-
Spencer algebra. We first state the main result of this section.

Theorem 1.5.1. (L, [, ]L, dL) is quasi-isomorphic to (A∗(EndE), [, ]EndE , D)⊕ (A∗(TX), [, ]SN , ∂TX).

We first prove the following Proposition.

Proposition 1.5.2. (KerD′
h ⊕ A∗(TX), [, ]L, dL) is a sub DGLA of (L, [, ], dL) and the canonical morphism

i : (KerD′
h ⊕A∗(TX), [, ]L, dL)→ (L, [, ]L, dL) is a quasi-isomorphism.

Proof. By the definition of dL, it is easy to see that (KerD′
h⊕A∗(TX), dL) is a sub DG vector space of (L, dL).

We show that [, ]L preserves KerD′
h ⊕A∗(TX). Let α := (A,ϕ), β := (B,ψ) ∈ KerD′

h ⊕A∗(TX). We have

[α, β]L =

(
(−1)i{∂h, ψ⌟}A− (−1)(i+1)j{∂h, ϕ⌟}B − [A,B]

[ϕ, ψ]SN

)
=

(
(−1)i{∂h, ψ⌟}A− (−1)(i+1)j{∂h, ϕ⌟}B − [A,B]

[ϕ, ψ]SN

)
Since A ∈ KerD′

h, we have

{∂h, ψ⌟}A = ∂h(ψ⌟A) + (−1)jψ⌟∂hA
= ∂h(ψ⌟A)− (−1)jψ⌟θ†hA
= ∂h(ψ⌟A) + θ†hψ⌟A
= D′

h(ψ⌟A).

Hence we have

(1.1) [α, β]L =

(
(−1)iD′

h(ψ⌟A)− (−1)(i+1)jD′
h(ϕ⌟B)− [A,B]

[ϕ, ψ]SN

)
.

Hence [α, β]L ∈ KerD′
h ⊕A∗(TX). Therefore, (KerD′

h ⊕A∗(TX), [, ]L, dL) is a sub DGLA of (L, [, ]L, dL).
We show that the natural morphism i : (KerD′

K ⊕A∗(TX), [, ]L, dL)→ (L, [, ], dL) is a quasi-isomorphism.
H∗(i) is surjective: Let η := (A,ϕ) ∈ KerdL. We want to show that there exist

η′ = (A′, ϕ′) ∈
(
KerD′

h ⊕A∗(TX)

)
∩ kerdL

and γ ∈ L such that
η − η′ = dLγ.

By Proposition 1.5.1, we have

dLη =

(
D′′

EA+D′
h(ϕ⌟θ)

∂TXϕ

)
= 0.

Let A be the harmonic projection of A with respect to D′′
E . The Hodge decomposition of A with respect to D′′

E

is

A = A+G′′
E∆

′′A = A+G′′
ED

′′
E(D

′′
E)

∗A+G′′
E(D

′′
E)

∗D′′
EA

= A+D′′
E(D

′′
E)

∗G′′
EA−

√
−1G′′

E [ Λω, D
′
h] D

′′
EA

= A+D′′
E(D

′′
E)

∗G′′
EA−

√
−1G′′

EΛωD
′
hD

′′
EA+

√
−1G′′

ED
′
hΛωD

′′
EA

= A+D′′
E(D

′′
E)

∗G′′
EA+

√
−1G′′

EΛωD
′
hD

′
h(ϕ⌟θ) +

√
−1D′

hG
′′
EΛωD

′′
EA

= A+D′′
E(D

′′
E)

∗G′′
EA+

√
−1D′

hG
′′
EΛωD

′′
EA.

The compatibility of D′
h and G′′

E follows from the fact that G′′
E = G′

h.
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We set

η′ : =

(
A+

√
−1D′

hG
′′
EΛωD

′′
EA

ϕ

)
,

γ : =

(
(D′′

E)
∗G′′

EA
0

)
.

Since D′′
E(A +

√
−1D′

hG
′′
EΛωD

′′
EA) =

√
−1D′′

ED
′
hG

′′
EΛωD

′′
EA = D′′

EA and A is the harmonic projection of A,

η′ ∈
(
KerD′

h⊕A∗(TX)

)
∩kerdL. By direct calculation, we can check η−η′ = dLγ. Hence, H∗(i) is surjective.

H∗(i) is injective: Let η := (A,ϕ) ∈
(
KerD′

h ⊕ A∗(TX)

)
∩ kerdL. We assume that there exsits a β :=

(B,ψ) ∈ L such that α = dLβ. Under this assumption, we have(
A
ϕ

)
= α = dLβ =

(
D′′

EB +D′
h(ψ⌟θ)

∂TXψ

)
.

Since A ∈ kerD′
h, D

′′
EB ∈ kerD′

h ∩ kerD′′
E ∩ (imD′′

E + imD′
h). Hence we can apply D′

hD
′′
E-lemma to D′′

EB. Let
C ∈ A∗(EndE) such that D′′

EB = D′′
ED

′
hC. We set,

γ :=

(
D′

hC
ψ

)
.

Then γ ∈ KerD′
h ⊕A∗(TX) and α = dLγ stands. Hence we showed that H∗(i) is injective.

For A ∈ A∗(E), let [A]D′
h
be the cohomology class in H∗

D′
h
. Let Q : KerD′

h → H∗
D′

h
be the C-linear map such

that Q(A) = [A]D′
h
.

Proposition 1.5.3. The morphism(
−Q 0
0 IdTX

)
: (KerD′

h ⊕A∗(TX), [, ]L, dL)→
(
H∗

D′
h
⊕A∗(TX), [, ]EndE ⊕ [, ]SN ,

(
0 0

0 ∂TX

))
is a morphism of DGLA and it is a quasi-isomorphism.

Proof. We first show that

(
−Q 0
0 IdTX

)
is a morphism of DG vector spaces. Let α := (A,ϕ) ∈

(
KerD′

h ⊕

A∗(TX)
)
. We have, (

0 0

0 ∂TX

)(
−Q 0
0 IdTX

)(
A
ϕ

)
=

(
0 0

0 ∂TX

)(
[A]D′

h

ϕ

)
=

(
0

∂TXϕ

)
,(

−Q 0
0 IdTX

)
◦ dL

(
A
ϕ

)
=

(
−Q 0
0 IdTX

)(
D′′

EA+D′
h(ϕ⌟θ)

∂TXϕ

)
=

(
[D′′

EA+D′
h(ϕ⌟θ)]D′

h

∂TXϕ

)
.

Since A ∈ KerD′
h, we can apply D′

hD
′′
E-lemma to D′′

EA. Hence there is a B ∈ A∗(EndE) such that D′′
EA =

D′
hD

′′
EB. Therefore

[D′′
EA+D′

h(ϕ⌟θ)]D′
h
= [D′

hD
′′
EB +D′

h(ϕ⌟θ)]D′
h
= [D′

h(D
′′
EB + ϕ⌟θ)]D′

h
= 0.

Hence

(
−Q 0
0 IdTX

)
is a morphism of DG vector spaces. We next show that it is compatible with the brackets.

Let α := (A,ϕ), β := (B,ψ) ∈ KerD′
h ⊕A∗(TX). By (1.1), we have

[α, β]L =

(
(−1)iD′

h(ψ⌟A)− (−1)(i+1)jD′
h(ϕ⌟B)− [A,B]

[ϕ, ψ]SN

)
.
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Hence we have(
−Q 0
0 IdTX

)
[α, β]L =

(
−Q 0
0 IdTX

)(
(−1)iD′

h(ψ⌟A)− (−1)(i+1)jD′
h(ϕ⌟B)− [A,B]

[ϕ, ψ]SN

)
=

(
−[(−1)iD′

h(ψ⌟A)− (−1)(i+1)jD′
h(ϕ⌟B)− [A,B]EndE ]D′

h

[ϕ, ψ]SN

)
=

(
[[A,B]EndE ]D′

h

[ϕ, ψ]SN

)
=

(
[[A]D′

h
, [B]D′

h
]EndE

[ϕ, ψ]SN

)
.

Hence

(
−Q 0
0 IdTX

)
is a morphism of DGLA.

We next show that

(
−Q 0
0 IdTX

)
is a quasi-isomorphism.

H∗
((
−Q 0
0 IdTX

))
is surjective: Let ([A]D′

h
, ϕ) ∈

(
H∗

D′
h
⊕ A∗(TX)

)
∩ Ker

(
0 0

0 ∂TX

)
. We first show

that
−D′′

EA+D′
h(ϕ⌟θ) ∈ KerD′′

E ∩KerD′
h ∩ imDE .

Since A ∈ KerD′
h, −D′′

EA+D′
h(ϕ⌟θ) ∈ KerD′

h.
Since ∂TXϕ = 0, we have

D′′
E(ϕ⌟θ) = ∂EndE(ϕ⌟θ) + [θ, ϕ⌟θ]EndE

= ∂TXϕ⌟θ − ϕ⌟∂EndEθ +
1

2
ϕ⌟[θ, θ]EndE

= 0.

Hence

D′′
E(−D′′

EA+D′
h(ϕ⌟θ)) = −D′

hD
′′
E(ϕ⌟θ) = 0.

Moreover, we have
DE(−A+ ϕ⌟θ) = D′′

EA+D′
h(ϕ⌟θ).

Hence we proved −D′′
EA + D′

h(ϕ⌟θ) ∈ KerD′′
E ∩ KerD′

h ∩ imDE . Therefore, we can apply D′
hD

′′
E-lemma to

−D′′
EA+D′

h(ϕ⌟θ). Hence there is a B ∈ A∗(EndE) such that

−D′′
EA+D′

h(ϕ⌟θ) = D′′
ED

′
hB.

Equivalently, we have
−D′′

E(A+D′
hB) +D′

h(ϕ⌟θ) = 0.

Therefore (
−A−D′

hB
ϕ

)
∈ KerD′

h ⊕A∗(TX) ∩KerdL,

and (
−Q 0
0 IdTX

)(
−A−D′

hB
ϕ

)
=

(
[A+D′

hB]D′
h

ϕ

)
=

(
[A]D′

h

ϕ

)
.

Hence H∗
((
−Q 0
0 IdTX

))
is surjective.

H∗
((
−Q 0
0 IdTX

))
is injective: Let (A,ϕ) ∈

(
KerD′

h ⊕ A∗(TX)

)
∩ KerdL. We assume that the coho-

mology class of ([A]D′
h
, ϕ) in

(
H∗

D′
h
⊕ A∗(TX),

(
0 0

0 ∂TX

))
is 0. Hence there exsit a B ∈ A∗(EndE) and a

ψ ∈ A∗(TX) such that

A = D′
hB,

ϕ = ∂TXψ.
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We show that
A−D′

h(ψ⌟θ) ∈ KerD′′
E ∩KerD′

h ∩ imD′
h.

Since A = D′
hB and A ∈ KerD′

h, A−D′
h(ψ⌟θ) ∈ KerD′

h ∩ imD′
h. We also have

D′′
E(A−D′

h(ψ⌟θ)) = D′′
EA+D′

hD
′′
E(ψ⌟θ)

= D′′
EA+D′

h(∂TXψ⌟θ +
1

2
ψ⌟[θ, θ]EndE)

= D′′
EA+D′

h(ϕ⌟θ).

Since (A,ϕ) ∈ KerdL, we have

dL

(
A
ϕ

)
=

(
D′′

EA+D′
h(ϕ⌟θ)

∂TXϕ

)
= 0.

Therefore we have
D′′

E(A−D′
h(ψ⌟θ) = D′′

EA+D′
h(ϕ⌟θ) = 0.

Hence we showed that A − D′
h(ψ⌟θ) ∈ KerD′′

E ∩ KerD′
h ∩ imD′

h. Therefore we can apply D′
hD

′′
E-lemma to

A−D′
h(ψ⌟θ). Hence there exists a C ∈ A∗(EndE) such that

A−D′
h(ψ⌟θ) = D′′

ED
′
hC.

We note that (D′
hC,ψ) ∈ KerD′

h ⊕A∗(TX) and

dL

(
D′

hC
ψ

)
=

(
D′′

ED
′
hC +D′

h(ψ⌟θ)
∂TXψ

)
=

(
A
ϕ

)
.

Therefore the cohomology class of (A,ϕ) in (KerD′
h⊕A∗(TX), dL) is 0. Hence H∗

((
−Q 0
0 IdTX

))
is injective.

Proof of Theorem 1.5.1. Combining Lemma 1.4.3, Proposition 1.5.2, and Proposition 1.5.3 we have the following
chain of DGLAs

(L, [, ]L, dL)← (KerD′
h ⊕A∗(TX), [, ]L, dL)

→
(
H∗

D′
h
⊕A∗(TX), [, ]EndE ⊕ [, ]SN ,

(
0 0

0 ∂TX

))
←

(
KerD′

h ⊕A∗(TX), [, ]EndE ⊕ [, ]SN ,

(
DE 0

0 ∂TX

))
→

(
A∗(EndE)⊕A∗(TX), [, ]EndE ⊕ [, ]SN ,

(
DE 0

0 ∂TX

))
such that each morphism is quasi-isomorphism. Hence the claim is proved.

Corollary 1.5.1. (L, [, ]L, dL) is quasi-isomorphic to (A∗(EndE), [, ]EndE , D
′′
E)⊕ (A∗(TX), [, ]SN , ∂TX).

Let KurX be the Kuranishi space of X, Kur(E,θ) be the Kuranishi space of the Higgs bundle (E, θ), and
Kur(E,D) be the Kuranishi space of the flat bundle (E,D).

Combining Theorem 1.2.2 and Theorem 1.5.1, we have the following theorem.

Theorem 1.5.2. Let (X,ω) be a compact Kähler manifold, (E, ∂E , θ) be a Higgs bundle over X and, K be a
harmonic metric. Then

(Kur(X,E,θ), 0) ' (Kur(E,θ) ×KurX , 0),
(Kur(X,E,θ), 0) ' (Kur(E,D) ×KurX , 0)

holds as germs of analytic spaces.
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We have some consequences from Theorem 1.5.2 for specific cases. Let M be a Riemann surface with genus
g ≥ 2 and (E, ∂E , θ) be a stable Higgs bundle of degree 0. Under these assumptions, each deformations ofM and
(E, ∂E , θ) are unobstruced. Hence KurM and Kur(E,θ) are complex manifolds. Moreover, the dimensions of
KurX is 3g−3 and Kur(E,θ) is 2+r

2(2g−2) [MK, N]. Here r is the rank of E. The following is straightforward
from Theorem 1.5.2.

Corollary 1.5.2. Let M be a Riemann surface with genus g ≥ 2 and (E, ∂E , θ) be a stable Higgs bundle of
degree 0. Then the deformation of pair (M,E, θ) is unobstructed. Moreover, Kur(M,E,θ) is a complex manifold
and its dimension is g(2r2 + 3)− 2r2 − 1.
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Chapter 2

Deformation of Higgs Triples

2.1 Abstract of Chapter 2

Let (E, ∂E , θE), (F, ∂F , θF ) be Higgs bundles and f : (E, ∂E , θ)→ (F, ∂F , θ) be a morphism between them. In
this chapter, we study the deformation of the triple (f, (E, ∂E , θ), (F, ∂F , θ)). We call this triple Higgs triples.
We construct the DGLA L which governs the deformation of Higgs triples and study the property of L when
(E, ∂E , θE) and (F, ∂F , θF ) admit harmonic metrics. In particular, we show that L is formal.

2.2 Introduction of Chapter 2

Let (E, ∂E , θ, h) be a harmonic bundle. We have a Higgs bundle (E, ∂E , θ) and a flat bundle (E,D = ∂h +

∂E + θ + θ†h). Let LDol,E (resp. LDR,E) be the Differential Graded Lie algebra (DGLA) that controls the
deformation of the Higgs bundle (resp. the flat bundle). It was proved in [GM1, S2] that (i)LDol,E and LDR,E

are formal, (ii) LDol,E and LDR,E are quasi-isomorphic (See Section 1.2.1 for details). Formality of LDR,E

was used in [GM1] to prove that the deformation space of π1(X) is quadratic at D. The quasi-isomorphism
between LDol,E and LDR,E was used in [S4] to prove the isosingularity principle : the singularity of the Moduli
space of Higgs bundle MDol and the Moduli space of flat bundle MDR are formally isomorphic at corresponding
points. However, the global homeomorphism between MDol and MDR is not a complex isomorphism, so the
local isomorphism is not directly related to the global map. See the introduction and Section 10 of [S4] for
details.

We say a triple (f, (E, ∂E , θE), (F, ∂F , θF )) is a Higgs triple over X if each (E, ∂E , θE), (F, ∂F , θF )) is a Higgs
bundle over X and f is a morphism of Higgs bundles (i.e. f is a vector bundle morphism and (∂F + θF ) ◦ f =
f ◦(∂E+θE) holds). Note that if θE = θF = 0, then the Higgs triple (f, (E, ∂E , 0), (F, ∂F , 0)) is the holomorphic
triples which is deeply studied in [BO, O].

In this chapter, we are interested in the deformation problem of Higgs triples (f, (E, ∂E , θE), (F, ∂F , θF )).
We first construct the DGLA which controls the deformation of the Higgs triple.

Let

Li := Ai(EndF )⊕Ai−1(Hom(E,F )⊕Ai(EndE) (i ∈ Z),
L := ⊕iL

i.

We define a linear map ∂f : Li → Li+1 such that for (A,C,B) ∈ Li

∂f

AC
B

 :=

 (∂F + θF )A

(∂Hom(E,F ) + θHom(E,F ))C + (−1)i−1Af − (−1)i−1fB

(∂E + θE)B

 .
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We next a bilinear map [, ]L : Li × Lj → Li+j as follows: Let (Ai, Ci, Bi) ∈ Li, (Aj , Cj , Bj) ∈ Lj then

[(Ai, Ci, Bi), (Aj , Cj , Bj)]L :=

 [Ai, Aj ]EndF

Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

[Bi, Bj ]EndE

 .

Then

Theorem 2.2.1 (Theorem 2.4.1, 2.4.2). (L, [, ]L, ∂f ) is a DGLA. Moreover (L, [, ]L, ∂f ) governs the deformation
of the Higgs triple (f, (E, ∂E , θE), (F, ∂F , θF )): x = (A,C,B) ∈ L1 defines a Higgs triple (f + C, (E, ∂E +
A0,1, θE + A1,0), (F, ∂F + C0,1, θF + C1,0)) if and only if x satisfies the Maurer-Cartan equation. Here A1,0,
B1,0 is the (1,0)-part of A, B and A0,1, B0,1 is the (0,1)-part of A, B.

We are interesed in the property of (L, [, ]L, ∂f ) when the Higgs bundles (E, ∂E , θE), (F, ∂F , θF ) has harmonic
metrics hE and hF or equivalently, both Higgs bundles are polystable and c1(E) = c1(F ) = c2(E) = c2(F ) = 0.
Under this assumption, morphisms of Higgs bundles between E and F are parameterized by a suitable matrix
space: the space of Higgs bundle morphisms between E and F is isomorphic to n ×m complex-valued matrix
M(n,m,C) as vector space. This is an application of the result that the morphism between stable Higgs bundles
is aId(a ∈ C) or 0. See [Ko] for details. Hence, once we fix (E, ∂E , θE), (F, ∂F , θF ) with both polystable and
c1(E) = c1(F ) = c2(E) = c2(F ) = 0, the deformation of Higgs bundles morphism f : E → F is not complicated.
This observation and the fact the DGLAs LDol,E and LDol,F are formal when E and F has harmonic metrics,
gives us a hope that (L, [, ]L, ∂f ) has some additional property. Actually, we prove the following

Theorem 2.2.2 (Theorem 2.5.2). Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple over a compact Kähler
manifold X. We assume that each E and F has a harmonic metric hE and hF . Then (L, [, ]L, ∂f ) is formal.

We say a triple (f, (E,DE), (F,DF )) is a flat triple over X if each (E,DE), (F,DF )) is a flat bundle over X
and f is a morphism of flat bundles (i.e. f is a vector bundle morphism and DF ◦ f = f ◦DE holds). In this
chapter, we also construct the DGLA (L, [, ]L, df ) which controls the deformation of (f, (E,DE), (F,DF )).

We study the property of (L, [, ]L, df ) when (E,DE) and (F,DF ) comes from harmonic bundles (E, ∂E , θE , hE),

(F, ∂F , θF , hF ) (i.e. DE = ∂hE
+ ∂E + θE + θ†hE

, DF = ∂hF
+ ∂F + θE + θ†hF

). By [S2, Corollary 1.3], a Higgs

triples (f, (E, ∂E , θE), (F, ∂F , θF )) with harmonic metrics hE , hF , gives a flat triple (f, (E,DE), (F,DF )). Con-
versly, a flat triples (f, (E,DE), (F,DF )) which both flat bundles comes from harmonic bundles (E, ∂E , θE , hE),
(F, ∂F , θF , hF ), gives a Higgs triple (f, (E, ∂E , θE), (F, ∂F , θF )).

Hence it is natrual to compare (L, [, ]L, df ) and (L, [, ]L, ∂f ) under the assumption of exsitence of harmonic
metrics.

Theorem 2.2.3 (Theorem 2.5.3). Let (f, (E,DE), (F,DF )) be a flat triple over a compact Kähelr manifold
X. Assume that (E,DE) and (F,DF ) comes form harmonic bundles (E, ∂E , θE , hE), (F, ∂F , θF , hF ). Let
(L, [, ]L, df ) be the DGLA which controls the deformation of (f, (E,DE), (F,DF )) and (L, [, ]L, ∂f ) be the DGLA
which controls the deformation of (f, (E, ∂E , θE), (F, ∂F , θF )).

Then

• (L, [, ]L, df ) is formal.

• (L, [, ]L, df ) is quasi-isomorphic to (L, [, ]L, ∂f ).

This is an analog of LDol,E and LDR,E being quasi-isomorohic for a harmonic bundle E.

Notation

We use the notation of 1.2.1 and 1.4.
For a vector bundle E, we denote the space of smooth sections of E as A(E). We denote the space of

E-valued smooth p-forms as Ap(E).
Let F be a vector bundle. We freely identify E∨ ⊗ F and Hom(E,F ).
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2.3 Preliminary

2.3.1 Leibniz Rule

Let (E, ∂E , θE) be Higgs bundles. Then for the dual bundle E∨, we have a dual holomorphic structure ∂E∨

and the dual Higgs field θ∨ and hence we have a dual Higgs bundle (E∨, ∂E∨ , θ∨E). The dual Higgs field θ∨ is
defined as θ∨ = −θt. Here θt is the transpose of θ. Let hE be a harmonic metric. Then the dual metric h∨E is
a harmonic metric for (E∨, ∂E∨ , θ∨E).

Let (F, ∂F , θF , hF ) be a harmonic bundle. Then we have a harmonic bundle (E∨⊗F, ∂E∨⊗F , θE∨⊗F , h
∨
E⊗hF ).

We also have associated operators D′′
E∨⊗F , D

′
h∨
E⊗hF

, DE∨⊗F .

Let A ∈ Ai(EndF ), B ∈ Ai(EndE), C ∈ Aj(E∨ ⊗ F ),. Then since E∨ ⊗ F = Hom(E,F ), A ∧ C,C ∧ B ∈
Ai+j(Hom(E,F )) = Ai+j(E∨ ⊗ F ).

The following result is an application of Leibniz rule and will be used throughout the chapter. We sometimes
use it without mention.

Lemma 2.3.1. Let A ∈ Ai(EndF ), C ∈ Aj(E∨ ⊗ F ), B ∈ Ak(EndE). Then

D′′
E∨⊗F (A ∧ C) = (D′′

FA) ∧ C + (−1)iA ∧D′′
E∨⊗F (C),

D′′
E∨⊗F (C ∧B) = D′′

E∨⊗F (C) ∧B + (−1)jC ∧ (D′′
EB).

This also holds for D′
h∨
E⊗hF

, DE∨⊗F .

2.4 Deformation of Higgs Triples

Let X be a compact complex manifold and (E, ∂E , θE), (F, ∂F , θF ) be Higgs bundles over X. We say that
f : E → F is a morphism of Higgs bundles (E, ∂E , θE) and (F, ∂F , θF ) if f is a morphism of vector bundles and
(D′′

F ) ◦ f = f ◦ (∂E + θE) holds.
We say (f, (E, ∂E , θE), (F, ∂F , θF )) is a Higgs tripe over X if (E, ∂E , θE), (F, ∂F , θF ) are Higgs bundles and

f : E → F is a morphism of Higgs bundles over X and a pair if X is clear.
In this section, we study the simultaneous deformation problem of a given Higgs tripe (f, (E, ∂E , θE), (F, ∂F , θF )).

The goal of this section is to construct the DGLA which governs the deformation: We construct a DGLA L such
that A ∈ L1 defines another Higgs triple (fA, (EA, ∂EA

, θEA
), (FA, ∂FA

, θFA
)) if and only if A is a Maurer-Cartan

element.
We now fix a Higgs triper (f, (E, ∂E , θE), (F, ∂F , θF )) and let (f1, (E1, ∂E1 , θE1), (F1, ∂F1 , θF1)) be another

Higgs triple. Let

A := D′′
F1
−D′′

F ,

C := f1 − f,
B := D′′

E1
−D′′

E .

Note that A ∈ A1(EndF ), C ∈ A(Hom(E,F )), B ∈ A1(EndE). Since (D′′
F +A)2 = (D′′

F1
)2 = 0 and (D′′

E+B)2 =
(D′′

E1
)2 = 0 holds, we have

D′′
FA+

1

2
[A,A]EndF = 0,

D′′
EB +

1

2
[B,B]EndE = 0.

The brackets [, ]EndF , [, ]EndE are defined in Section 1.4.2. From now on, we denote [, ]EndF , [, ]EndE as [, ] if there
is no risk of confusion.

Moreover since (D′′
F +A) ◦ (f + C)− (f + C) ◦ (D′′

E +B) = D′′
F1
◦ f1 − f1 ◦D′′

E1
= 0 holds, we have

(D′′
F +A) ◦ (f + C)− (f + C) ◦ (D′′

E +B)

=D′′
F ◦ f +D′′

FC +Af +AC − f ◦D′′
E − fB − CD′′

E + CB

=D′′
E∨⊗FC +Af − fB +AC − CB = 0
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Here E∨ is the dual bundle of E.
Conversely, let A ∈ A1(EndF ), C ∈ A(Hom(E,F )), B ∈ A1(EndE) and assume they satisifes

D′′
FA+

1

2
[A,A] = 0,

D′′
EB +

1

2
[B,B] = 0,

D′′
E∨⊗FC +Af − fB +AC − CB = 0.

Then, it is clear that (f + C, (E, ∂E + A0,1, θE + A1,0), (F, ∂F + B0,1, θF + B1,0)) is a Higgs triple. Here A1,0,
B1,0 is the (1,0)-part of A, B and A0,1, B0,1 is the (0,1)-part of A, B.

From this observation, we will now construct the DGLA which governs the deformation of a given Higgs
triple (f, (E, ∂E , θE), (F, ∂F , θF )).

Let

Li := Ai(EndF )⊕Ai−1(Hom(E,F ))⊕Ai(EndE) (i ∈ Z),
L := ⊕iL

i.

We define a linear map ∂f : Li → Li+1 such that for (A,C,B) ∈ Li

∂f

AC
B

 :=

 D′′
FA

D′′
E∨⊗FC + (−1)i−1Af − (−1)i−1fB

D′′
EB

 .

Since A ∈ Ai(EndF ), B ∈ Ai(EndE), Af ∈ Ai(Hom(E,F )) and fB ∈ Ai(Hom(E,F )). Then since Li+1 =
Ai+1(EndF )⊕Ai(Hom(E,F ))⊕Ai+1(EndE), ∂f (A,C,B) is indeed an element of Li+1.

We next define the bracket [, ]L : Li × Lj → Li+j as follows: Let (Ai, Ci, Bi) ∈ Li, (Aj , Cj , Bj) ∈ Lj then

[(Ai, Ci, Bi), (Aj , Cj , Bj)]L :=

 [Ai, Aj ]
Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

[Bi, Bj ]

 .

The first result of this chapter is as follows:

Theorem 2.4.1. (L, [, ]L, ∂f ) is a DGLA.

Since the proof consists of a lengthy computation, we give it in the next section.

Theorem 2.4.2. Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple. Then the DGLA (L, [, ]L, ∂f ) controls the de-
formation of the Higgs triple: x = (A,C,B) ∈ L1 defines a Higgs triple (f+C, (E, ∂E+A0,1, θE+A1,0), (F, ∂F +
B0,1, θF +B1,0)) if and only if x is a Maurer-Cartan element.

Proof. Let x = (A,C,B) ∈ L1 be a Maurer-Cartan element. Then by definition

∂fx+
1

2
[x, x]L = 0.

Then, computing each row, we have

D′′
FA+

1

2
[A,A] = 0,

D′′
EB +

1

2
[B,B] = 0,

D′′
E∨⊗FC +Af − fB +AC − CB = 0.

Then x defines a Higgs triple (f+C, (E, ∂E+A0,1, θE+A1,0), (F, ∂F +B0,1, θF +B1,0)) by the above observation.
The converse is also true by the observation above.
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2.4.1 Proof of Theorem 2.4.1

Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple and let (L, [, ]L, ∂f ) be the pair of the graded vector space, the
bracket, and the linear map we defined in the previous section. In this section, we prove that it is actually a
DGLA. We first prove that the bracket is graded skew-symmetry.

Proposition 2.4.1. Let x = (Ai, Ci, Bi) ∈ Li, y = (Aj , Cj , Bj) ∈ Lj. Then

[x, y]L + (−1)ij [y, x]L = 0

holds.

Proof. By the definition of the bracket, we have

[x, y]L =

 [Ai, Aj ]
Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

[Bi, Bj ]


and

(−1)ij [y, x]L = (−1)ij
 [Aj , Ai]
Aj ∧ Ci − (−1)j(i−1)Ci ∧Bj − (−1)ijAi ∧ Cj + (−1)iCj ∧Bi

[Bj , Bi]


=

 (−1)ij [Aj , Ai]
(−1)ijAj ∧ Ci − (−1)−jCi ∧Bj −Ai ∧ Cj + (−1)ij+iCj ∧Bi

(−1)ij [Bj , Bi]

 .

Since the bracket of EndF valued forms is graded skew symmetry

[x, y]L + (−1)ij [y, x]L = 0.

We next prove that the bracket satisfies the graded Jacobi identity.

Proposition 2.4.2. Let x = (Ai, Ci, Bi) ∈ Li, y = (Aj , Cj , Bj) ∈ Lj , z = (Ak, Ck, Bk) ∈ Lk. Then

[x, [y, z]L]L = [[x, y]L, z]L + (−1)ij [y, [x, z]L]L

holds.

Proof. We first calculate each element.

[x, [y, z]L]L =

Ai [Aj , Ak]
Ci Aj ∧ Ck − (−1)j(k−1)Ck ∧Bj − (−1)jkAk ∧ Cj + (−1)kCj ∧Bk

Bi [Bj , Bk]


L

=

[Ai, [Aj , Ak]]
C[x,[y,z]L]L

[Bi, [Bj , Bk]]


where

C[x,[y,z]L]L =Ai ∧Aj ∧ Ck − (−1)j(k−1)Ai ∧ Ck ∧Bj − (−1)jkAi ∧Ak ∧ Cj + (−1)kAi ∧ Cj ∧Bk

− (−1)i(j+k−1)

{
Aj ∧ Ck ∧Bi − (−1)j(k−1)Ck ∧Bj ∧Bi − (−1)jkAk ∧ Cj ∧Bi + (−1)kCj ∧Bk ∧Bi

}
− (−1)i(j+k)[Aj , Ak] ∧ Ci + (−1)j+kCi ∧ [Bj , Bk]

=Ai ∧Aj ∧ Ck − (−1)j(k−1)Ai ∧ Ck ∧Bj − (−1)jkAi ∧Ak ∧ Cj + (−1)kAi ∧ Cj ∧Bk

− (−1)i(j+k−1)Aj ∧ Ck ∧Bi − (−1)i(j+k−1)+j(k−1)Ck ∧Bj ∧Bi − (−1)i(j+k−1)+jkAk ∧ Cj ∧Bi

+ (−1)i(j+k−1)+kCj ∧Bk ∧Ai − (−1)i(j+k)[Aj , Ak] ∧ Ci + (−1)j+kCi ∧ [Bj , Bk].
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Similarly, we have

[[x, y]L, z]L =

 [Ai, Aj ] Ak

Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj Ck

[Bi, Bj ] Bk


L

=

[[Ai, Aj ], Ak]
C[[x,y]L,z]L

[[Bi, Bj ], Bk]


where

C[[x,y]L,z]L =[Ai, Aj ] ∧ Ck − (−1)(i+j)(k−1)Ck ∧ [Bi, Bj ]

− (−1)(i+j)k

{
Ak ∧Ai ∧ Cj − (−1)i(j−1)Ak ∧ Cj ∧Bi − (−1)ijAk ∧Aj ∧ Ci + (−1)jAk ∧ Ci ∧Bj

}
+ (−1)k

{
Ai ∧ Cj ∧Bk − (−1)i(j−1)Cj ∧Bi ∧Bj − (−1)ijAj ∧ Ci ∧Bk + (−1)jCi ∧Bj ∧Bk

}

and

(−1)ij [y, [x, z]L]L = (−1)ij
Aj [Ai, Ak]
Cj Ai ∧ Ck − (−1)i(k−1)Ck ∧Bi − (−1)ikAk ∧ Ci + (−1)kCi ∧Bk

Bj [Bi, Bk]


L

= (−1)ij
[Aj , [Ai, Ak]]

C[y,[x,z]L]L

[Bj , [Bi, Bk]]


where

C[y,[x,z]L]L =Aj ∧Ai ∧ Ck − (−1)i(k−1)Aj ∧ Ck ∧Bi − (−1)ikAj ∧Ak ∧ Ci + (−1)kAj ∧ Ci ∧Bk

− (−1)j(i+k−1))

{
Ai ∧ Ck ∧Bj − (−1)i(k−1)Ck ∧Bi ∧Bj − (−1)ikAk ∧ Ci ∧Bj + (−1)kCi ∧Bk ∧Bj

}
− (−1)j(i+k)[Ai, Ak] ∧ Cj + (−1)j+kCj ∧ [Bi, Bk]

Since (A•(EndF ), [, ], D′′
F ), (A

•(EndF ), [, ], D′′
F ) are DGLA, we only need to prove

C[x,[y,z]L]L = C[[x,y]L,z]L + (−1)ijC[y,[x,z]L]L
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C[[x,y]L,z]L + (−1)ijC[y,[x,z]L]L

=[Ai, Aj ] ∧ Ck − (−1)(i+j)(k−1)Ck ∧ [Bi, Bj ]

− (−1)(i+j)k

{
Ak ∧Ai ∧ Cj − (−1)i(j−1)Ak ∧ Cj ∧Bi − (−1)ijAk ∧Aj ∧ Ci + (−1)jAk ∧ Ci ∧Bj

}
+ (−1)k

{
Ai ∧ Cj ∧Bk − (−1)i(j−1)Cj ∧Bi ∧Bj − (−1)ijAj ∧ Ci ∧Bk + (−1)jCi ∧Bj ∧Bk

}
+ (−1)ijAj ∧Ai ∧ Ck − (−1)i(j+k−1)Aj ∧ Ck ∧Bi − (−1)i(j+k)Aj ∧Ak ∧ Ci + (−1)ij+kAj ∧ Ci ∧Bk

− (−1)j(k−1)

{
Ai ∧ Ck ∧Bj − (−1)i(k−1)Ck ∧Bi ∧Bj − (−1)ikAk ∧ Ci ∧Bj + (−1)kCi ∧Bk ∧Bj

}
− (−1)jk[Ai, Ak] ∧ Cj + (−1)ij+j+kCj ∧ [Bi, Bk]

=[Ai, Aj ] ∧ Ck + (−1)ijAj ∧Ai ∧ Ck − (−1)j(k−1))Ai ∧ Ck ∧Bj

− (−1)(i+j)kAk ∧Ai ∧ Cj − (−1)jk[Ai, Ak] ∧ Cj + (−1)kAi ∧ Cj ∧Bk − (−1)i(j+k−1)Aj ∧ Ck ∧Bi

− (−1)(i+j)(k−1)Ck ∧ [Bi, Bj ] + (−1)(i+j)(k−1)Ck ∧Bi ∧Bj + (−1)(i+j)k+i(j−1)Ak ∧ Cj ∧Bi

− (−1)i(j−1)+kCj ∧Bi ∧Bj + (−1)ij+j+kCj ∧ [Bi, Bk]

+ (−1)(i+j)k+ijAk ∧Aj ∧ Ci − (−1)i(j+k)Aj ∧Ak ∧ Ci

+ (−1)j+kCi ∧Bj ∧Bk − (−1)j(k−1)+kCi ∧Bk ∧Bj

− (−1)(i+j)k+jAk ∧ Ci ∧Bj + (−1)ik+j(k−1)Ak ∧ Ci ∧Bj

− (−1)ij+kAj ∧ Ci ∧Bk + (−1)ij+kAj ∧ Ci ∧Bk

=Ai ∧Aj ∧ Ck − (−1)j(k−1)Ai ∧ Ck ∧Bj

− (−1)jkAi ∧Ak ∧ Cj + (−1)kAi ∧ Cj ∧Bk − (−1)i(j+k−1)Aj ∧ Ck ∧Bi

− (−1)i(j+k−1)+j(k−1)Ck ∧Bj ∧Bi − (−1)i(j+k−1)+jkAk ∧ Cj ∧Bi

+ (−1)i(j+k−1)+kCj ∧Bk ∧Ai

− (−1)i(j+k)[Aj , Ak] ∧ Ci

+ (−1)j+kCi ∧ [Bj , Bk]

=C[x,[y,z]L]L .

We next prove that the square of ∂f is zero.

Proposition 2.4.3. Let x = (A,C,B) ∈ Li. Then

∂f ◦ ∂f (x) = 0

holds.

Proof. By the definition of df , we have

∂f ◦ ∂f (x) = ∂f ◦ ∂f

AB
C


= ∂f

 D′′
FA

D′′
E∨⊗FC + (−1)i−1Af − (−1)i−1fB

D′′
EB


=

D′′
F (D

′′
FA)

C∂f◦∂f (x)

D′′
E(D

′′
EB)


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where

C∂f◦∂f (x)
= D′′

E∨⊗F (D
′′
E∨⊗FC + (−1)i−1Af − (−1)i−1fB) + (−1)i(D′′

FA)f − (−1)if(D′′
EB)

= D′′
E∨⊗F (D

′′
E∨⊗FC) + (−1)i−1(D′′

FA)f − (−1)i−1f(D′′
EB) + (−1)i(D′′

FA)f − (−1)if(D′′
EB)

= 0.

Moreover, D′′
F ◦D′′

F = D′′
E ◦D′′

E = 0 and thus the claim follows.

We next prove that the ∂f satisfies the Leibniz rule for the brackets.

Proposition 2.4.4. Let x = (Ai, Ci, Bi) ∈ Li, y = (Aj , Cj , Bj) ∈ Lj. Then

∂f [x, y]L = [∂fx, y]L + (−1)i[x, ∂fy]L

holds.

Proof. We first calculate each element. We have

∂f [x, y]L =∂f

 [Ai, Aj ]
Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

[Bi, Bj ]


=

D′′
F [Ai, Aj ]
C∂f [x,y]L

D′′
E [Bi, Bj ]


where

C∂f [x,y]L
=D′′

E∨⊗F

(
Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

)
+ (−1)i+j−1[Ai, Aj ]f − (−1)i+j−1f [Bi, Bj ],

[∂fx, y]L =

 D′′
FAi Aj

D′′
E∨⊗FCi + (−1)i−1Aif − (−1)i−1fBi Cj

D′′
EBi Bj


L

=

[D′′
FAi, Aj ]
C[∂fx,y]L

[D′′
EBi, Bj ]


where

C[∂fx,y]L
=D′′

FAi ∧ Cj − (−1)(i+1)(j−1)Cj ∧D′′
EBi

− (−1)(i+1)jAj ∧D′′
E∨⊗FCi − (−1)i(j+1)+j−1Aj ∧Ai ∧ f + (−1)i(j+1)+j−1Aj ∧ f ∧Bi

+ (−1)jD′′
E∨⊗FCi ∧Bj + (−1)i+j−1Aif ∧Bj − (−1)i+j−1fBi ∧Bj ,

and

[x, ∂fy]L =

Ai D′′
FAj

Ci D′′
E∨⊗FCj + (−1)j−1Ajf − (−1)j−1fBj

Bi D′′
EBj


L

=

[Ai, D
′′
FAj ]

C[x,∂fy]L

[Bi, D
′′
EBj ]


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where

C[x,∂fy]L
=Ai ∧D′′

E∨⊗FCj + (−1)j−1Ai ∧Ajf − (−1)j−1Aif ∧Bj

− (−1)ijD′′
E∨⊗FCj ∧Bi − (−1)ij+j−1Ajf ∧Bi + (−1)ij+j−1fBj ∧Bi

− (−1)i(j+1)D′′
FAj ∧ Ci + (−1)j+1Ci ∧D′′

EBj .

Since (A•(EndF ), [, ], D′′
F ), (A

•(EndF ), [, ], D′′
F ) are DGLA, we only need to prove

C∂f [x,y]L
= C[∂fx,y]L

+ (−1)iC[x,∂fy]L
.

For α ∈ {∂f [x, y]L, [∂fx, y]L, [x, ∂fy]L}, we denote as Cα,0 as the sum of the elements where f does not appear
and Cα,1 as where f appears. For example, for α = ∂f [x, y]L

C∂f [x,y]L,0 = D′′
E∨⊗F

(
Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

)
,

C∂f [x,y]L,1 = (−1)i+j−1[Ai, Aj ]f − (−1)i+j−1f [Bi, Bj ].

It is clear that Cα = Cα,0 + Cα,1 and hence to prove

C∂f [x,y]L
= C[∂fx,y]L

+ (−1)iC[x,∂fy]L
,

We only have to prove

C∂f [x,y]L,0 = C[∂fx,y]L,0 + (−1)iC[x,∂fy]L,0,

C∂f [x,y]L,1 = C[∂fx,y]L,1 + (−1)iC[x,∂fy]L,1.

We now prove these two equations. Recall that Ci is a E
∨ ⊗ F -valued (i− 1)-form and Cj is a (j − 1)-form.

C[∂fx,y]L,0 + (−1)iC[x,∂fy]L,0 =D′′
FAi ∧ Cj − (−1)(i+1)(j−1)Cj ∧D′′

EBi

− (−1)(i+1)jAj ∧D′′
E∨⊗FCi + (−1)jD′′

E∨⊗FCi ∧Bj

+ (−1)iAi ∧D′′
E∨⊗FCj − (−1)ij+iD′′

E∨⊗FCj ∧Bi

− (−1)ijD′′
FAj ∧ Ci + (−1)i+j+1Ci ∧D′′

EBj

=D′′
FAi ∧ Cj + (−1)iAi ∧D′′

E∨⊗FCj

− (−1)ij+i

(
D′′

E∨⊗FCj ∧Bi + (−1)j−1Cj ∧D′′
EBi

)
− (−1)ij

(
D′′

FAj ∧ Ci + (−1)jAj ∧D′′
E∨⊗FCi

)
+ (−1)j

(
D′′

E∨⊗FCi ∧Bj + (−1)i+1Ci ∧D′′
EBj

)
=D′′

E∨⊗F

(
Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

)
=C∂f [x,y]L,0.
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C[∂fx,y]L,1 + (−1)iC[x,∂fy]L,1 =− (−1)i(j+1)+j−1Aj ∧Ai ∧ f + (−1)i(j+1)+j−1Aj ∧ f ∧Bi

+ (−1)i+j−1Aif ∧Bj − (−1)i+j−1fBi ∧Bj

(−1)i+j−1Ai ∧Ajf − (−1)i+j−1Aif ∧Bj

− (−1)ij+i+j−1Ajf ∧Bi + (−1)ij+i+j−1fBj ∧Bi

=(−1)i+j−1

(
Ai ∧Ajf − (−1)ijAj ∧Aif

)
− (−1)i+j−1

(
fBi ∧Bj − (−1)ijfBj ∧Bi

)
+ (−1)i+j−1Aif ∧Bj − (−1)i+j−1Aif ∧Bj

+ (−1)i(j+1)+j−1Aj ∧ f ∧Bi − (−1)i(j+1)+j−1Aj ∧ f ∧Bi

=(−1)i+j−1[Ai, Aj ]f − (−1)i+j−1f [Bi, Bj ]

=C∂f [x,y]L,1.

Hence, the claim is proved.

It is clear that (L, [, ]L, ∂f ) is a DGLA from Proposition 2.4.1, 2.4.2, 2.4.3, and 2.4.4. Hence, Theorem 2.4.1
is proved.

2.5 Formality

We freely use the notation of Section 1.4.
Let X be a compact complex manifold and (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple over X. In the

previous section, we constructed the DGLA (L, [, ]L, ∂f ) which governs the deformation of the Higgs triple.
Recall that a DGLA L is called formal if it is quasi-isomorphic to H•(L) as a DGLA. Note that L is always

quasi-isomorphic to H•(L) as a DG vector space. However, they are not always as DGLAs.
From now on, we assume X is a compact Kähler manifold and each (E, ∂E , θE) and (F, ∂F , θF ) has a

harmonic metric hE and hF .
We show that the DGLA (L, [, ]L, ∂f ) is formal under this assumption in the coming sections. Before we

proceed, we prepare some results and notions.

Lemma 2.5.1 ([S2, Lemma 1.2]). Let (E, ∂E , θ) be a Higgs bundle over a compact Kähler manifold X. Let h
be a harmonic metric of (E, ∂E , θ). Then

KerD′′
E ∩A(E) = KerD′

h ∩A(E) = KerDE ∩A(E).

Assume that each E and F has a harmonic metric hE and hF . Then h
∨
E ⊗ hF is also a harmonic metric for

the Higgs bundlle (E∨ ⊗ F, ∂E∨⊗F , θE∨⊗F ).
The next Lemma is straightforward from Lemma 2.5.1. However, it plays a core role in Section 2.5.2.

Lemma 2.5.2 ([S2, Corollary 1.3]). Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple over a compact Kähler
manifold X. We assume that each E and F has a harmonic metric hE and hF . Then

D′
h∨
E⊗hF

f = DE∨⊗F f = 0.

Proof. We regard f as a section of E∨ ⊗ F , and since it is a morphism between Higgs bundles, we have

D′′
E∨⊗F f = D′′

F ◦ f − f ◦D′′
E = 0.

We can now apply Lemma 2.5.1 to f .
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In order to prove formality, we need a suitable sub-DGLA of (L, [, ]L, ∂f ). This idea goes back to [DGMS,
GM1].

For each i ∈ Z, we define the subspace (KerD′
hE ,hF

)i ⊂ Li as

(KerD′
hE ,hF

)i :=

(
KerD′

hF
∩Ai(EndF )

)
⊕
(
KerD′

h∨
E⊗hF

∩Ai−1(Hom(E,F )

)
⊕

(
KerD′

hF
∩Ai(EndE)

)
.

We define the graded subspace (KerD′
hE ,hF

)• := ⊕i∈Z(KerD′
hE ,hF

)i. We denote (KerD′
hE ,hF

)• as KerD′
hE ,hF

for simplicity.

Proposition 2.5.1. Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs tripleover a compact Kähler manifold X. We
assume that each E and F has a harmonic metric hE and hF . Then (KerD′

hE ,hF
, [, ]L, ∂f ) is a sub DGLA of

(L, [, ]L, ∂f ).

Proof. Since KerD′
hE ,hF

is a graded sub-vector space of L, we only need to check that KerD′
E,F is closed under

the bracket [, ]L and ∂f .
Let x = (Ai, Ci, Bi) ∈ (KerD′

hE ,hF
)i, y = (Aj , Cj , Bj) ∈ (KerD′

hE ,hF
)j . Then since

[x, y]L =

 [Ai, Aj ]
Ai ∧ Cj − (−1)i(j−1)Cj ∧Bi − (−1)ijAj ∧ Ci + (−1)jCi ∧Bj

[Bi, Bj ]

 ,

it is clear that [x, y]L ∈ (KerD′
hE ,hF

)i+j by Lemma 2.3.1. Recall

∂f (x) = ∂f

Ai

Ci

Bi

 =

 D′′
FAi

D′′
E∨⊗FCi + (−1)i−1Aif − (−1)i−1fBi

D′′
EBi

 .

Then ∂f (x) ∈ (KerD′
hE ,hF

)i+1 follows from the compatiblity of D′
hα

and D′′
α (α ∈ {E,E∨ ⊗ F, F}), Lemma

2.3.1, and Lemma 2.5.1.

We note that this Proposition holds because of harmonic metrics.

2.5.1 Formality for f=0

In this section, we fix a compact Kähler manifold X. Let (E, ∂E , θE), (F, ∂F , θF ) be Higgs bundles with harmonic
metrics hE and hF . Let 0 : E → F be a trivial morphism (i.e, the zero section of E∨ ⊗ F ). It is clear that
(0, (E, ∂E , θE), (F, ∂F , θF )) is a Higgs triple. Let (L, [, ]L, ∂0) be the DGLA which controls the deformation of
(0, (E, ∂E , θE), (F, ∂F , θF )).

In this section, we show that (L, [, ]L, ∂0) is formal as a DGLA. Although this follows from the result of the
next section, we give a proof since this case immediately follows from Section 1.4.2.

Theorem 2.5.1. (L, [, ]L, ∂0) is formal as a DGLA.

Proof. For x = (Ai, Ci, Bi) ∈ Li

∂0

Ai

Ci

Bi

 =

 D′′
FAi

D′′
E∨⊗FCi

D′′
EBi

 .

Recall that (KerD′
hE ,hF

, [, ]L, ∂0) is sub-DGLA of (L, [, ]L, ∂0) by Propostion 2.5.1. Let i : KerD′
hE ,hF

→ L be
the inclusion map. This map is also a morphism of DGLA. Moreover, by Section 1.4.2, i is a quasi-isomorphism.

Let By the definition of ∂0, for the i-the cohomology Hi(L) of (L, ∂0), we have

Hi(L) = Hi
Dol,F ⊕Hi−1

Dol,E∨⊗F ⊕H
i
Dol,E .

Let qα : (KerD′
hα

)i → Hi
Dol,α (α ∈ {E,E∨ ⊗ F, F}) be the natural projection. Then by Section 1.4.2, qα is a

quasi-isomorphism and also a morphism of DGLA.
Hence (L, [, ]L, ∂0) is quasi-isomorphic to (H•(L), [, ], 0) as a DGLA and the claim is proved.
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We note that this proof only works for f = 0. This is because the cohomology of the DGLA (L, [, ]L, ∂0) is
rather simple.

2.5.2 Formality for arbitrarily f

In this section, we fix a compact Kähler manifold X and a Higgs triple (f, (E, ∂E , θE), (F, ∂F , θF )) over it. We
assume that each (E, ∂E , θE), (F, ∂F , θF ) has a harmonic metric hE and hF . Let (L, [, ]L, ∂f ) be the DGLA which
controls the deformation of (f, (E, ∂E , θE), (F, ∂F , θF )). We show that (L, [, ]L, ∂f ) is formal. The following will
be used in the proof of formality.

Lemma 2.5.3. Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple over a compact Kähler manifold X. We
assume that each E and F has a harmonic metric hE and hF . Then for any A ∈ KerD′

hF
∩ Ai(EndF ), B ∈

KerD′
hE
∩Ai(EndE)

G′
h∨
E⊗hF

(Af) = (G′
hF
A)f,

G′
h∨
E⊗hF

(fB) = f(G′
hE
B)

holds.

Proof. We only prove the first equation. The second one can be proved by the same argument. Recall that for
C ∈ Ai(Hom(E,F )), G′

h∨
E⊗hF

C is the unique element in (Hi)⊥ that satisfies

∆′
h∨
E⊗hF

G′
h∨
E⊗hF

C = C −Hi(C).

Here (Hi)⊥ is the L2-orthogonal space of Hi and Hi is the harmonic projection Hi : Ai(Hom(E,F )→ Hi.
Hence to prove the equation, we need to prove (i)(G′

hF
A)f ∈ (Hi)⊥, (ii)∆′

h∨
E⊗hF

((G′
hF
A)f) = Af −Hi(Af).

We first prove (i). By the Hodge decomposition for G′
hF
A, we have

G′
hF
A = DhF

(DhF
)∗(G′

hF
)2A+ (DhF

)∗DhF
(G′

hF
)2A

= DhF
(DhF

)∗(G′
hF

)2A+
√
−1[ Λω, D

′′
E ]DhF

(G′
hF

)2A

= DhF
(DhF

)∗(G′
hF

)2A+
√
−1(ΛωD

′′
E −D′′

EΛω)DhF
(G′

hF
)2A.

We used the Käher identity in the second equation. Then we have

(G′
hF
A)f =

(
DhF

(DhF
)∗(G′

hF
)2A+

√
−1(ΛωD

′′
E −D′′

EΛω)DhF
(G′

hF
)2A

)
f

= D′
h∨
E⊗hF

((
(DhF

)∗(G′
hF

)2A
)
f

)
+
√
−1(ΛωD

′′
E∨⊗F −D′′

E∨⊗FΛω)

(
(DhF

(G′
hF

)2A)f

)
= D′

h∨
E⊗hF

((
(DhF

)∗(G′
hF

)2A
)
f

)
+ (D′

h∨
E⊗hF

)∗
(
(DhF

(G′
hF

)2A)f

)
.

The second equation follows from Lemma 2.3.1, Lemma 2.5.1, and f is a section (i.e. f is a 0-form). Hence
(G′

hF
A)f ∈ (Hi)⊥.

We next prove (ii). We first prove Hi(Af) = 0. Recall that we assumed A ∈ KerD′′
E , the Hodge decompo-

sition of A is

A = D′′
E(D

′′
E)

∗G′′
EA.

Hence

Af = (D′′
E(D

′′
E)

∗G′′
EA)f

= D′′
E∨⊗F

(
((D′′

E)
∗G′′

EA)f

)
.
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Hence Hi(Af) = 0.
To finish the proof, we prove ∆′

h∨
E⊗hF

((G′
hF
A)f) = Af . By Kähler identity and Lemma 2.3.1, we have

∆′
h∨
E⊗hF

((G′
hF
A)f) = D′

h∨
E⊗hF

(D′
h∨
E⊗hF

)∗((G′
hF
A)f) + (D′

h∨
E⊗hF

)∗(D′
h∨
E⊗hF

)((G′
hF
A)f)

=

(
D′

hF
(D′

hF
)∗G′

hF
A

)
f +

(
(D′

hF
)∗(D′

hF
)G′

hF
A

)
f

= (∆′
hF
G′

hF
A)f

= Af.

The last equation follows from A ∈ KerD′
hF

. The claim is proved.

Proposition 2.5.2. Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple over a compact Kähler manifold X. We
assume that each E and F has a harmonic metric hE and hF .

Let ι : KerD′
hE ,hF

→ L be the inclusion. Then ι : (KerD′
hE ,hF

, [, ]L, ∂f ) → (L, [, ]L, ∂f ) is a quasi-
isomorphism.

Proof. By Proposition 2.5.1, ι is a morphism of DGLA. Hence, it induces a map between cohomologies Hi(ι) :
Hi(KerD′

hE ,hF
)→ Hi(L)(i ∈ Z). We show that Hi(ι) is an isomorphism.

(i)Hi(ι) is surjective: Let x = (A,C,B) ∈ Kerdf ∩ Li. We set as

α := −
√
−1ΛωD

′
hF
G′

hF
A,

γ :=
√
−1D′′

E∨⊗FΛωG
′
h∨
E⊗hF

D′
h∨
E⊗hF

C,

β := −
√
−1ΛωD

′
hE
G′

hE
B.

Note that y = (α, γ, β) ∈ Li−1. We show that x − ∂fy ∈ (KerD′
hE ,hF

)i. This proves the surjectivity of Hi(ι).
We first show that A − D′′

Fα ∈ KerD′
hF
, B − D′′

Eβ ∈ KerD′
hE

. By the Hodge decomposition, Kähler idenity,
D′

hD
′′
F +D′′

FD
′
h = 0, and A ∈ KerD′′

F , we have

A =D′
hF

(D′
hF

)∗G′
hF
A+ (D′

hF
)∗D′

hF
G′

hF
A

=D′
hF

(D′
hF

)∗G′
hF
A−
√
−1D′′

FΛωD
′
hF
G′

hF
A.

Then

A−D′′
Fα =A−

√
−1D′′

FΛωD
′
hF
G′

hF
A

=D′
hF

(D′
hF

)∗G′
hF
A.

This proves A−D′′
Fα ∈ KerD′

hF
. B −D′′

Eβ ∈ KerD′
hE

follows from the same argument.

Since x = (A,C,B) ∈ Ker∂f ∩ Li, we have

(2.1) D′′
E∨⊗FC + (−1)i−1Af − (−1)i−1fB = 0.

Recall that we have to prove

C −D′′
E∨⊗F γ − (−1)i−2αf + (−1)i−2fβ ∈ KerD′

h∨
E⊗hF

.
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The Hodge decomposition of D′
h∨
E⊗hF

C is

D′
h∨
E⊗hF

C =(D′′
E∨⊗F )

∗D′′
E∨⊗FG

′′
E∨⊗FD

′
h∨
E⊗hF

C +D′′
E∨⊗F (D

′′
E∨⊗F )

∗G′′
E∨⊗FD

′
h∨
E⊗hF

C

=−
√
−1[Λω, D

′
h∨
E⊗hF

]D′′
E∨⊗FG

′′
E∨⊗FD

′
h∨
E⊗hF

C

−
√
−1D′′

E∨⊗F [Λω, D
′
h∨
E⊗hF

]G′′
E∨⊗FD

′
h∨
E⊗hF

C

=
√
−1D′

h∨
E⊗hF

ΛωD
′′
E∨⊗FG

′′
E∨⊗FD

′
h∨
E⊗hF

C

+
√
−1D′′

E∨⊗FD
′
h∨
E⊗hF

ΛωG
′′
E∨⊗FD

′
h∨
E⊗hF

C

=−
√
−1D′

h∨
E⊗hF

ΛωD
′
h∨
E⊗hF

G′′
E∨⊗FD

′′
E∨⊗FC

+
√
−1D′′

E∨⊗FD
′
h∨
E⊗hF

ΛωG
′′
E∨⊗FD

′
h∨
E⊗hF

C

=−
√
−1D′

h∨
E⊗hF

ΛωD
′
h∨
E⊗hF

G′′
E∨⊗FD

′′
E∨⊗FC +D′′

E∨⊗F γ.

(2.2)

We calculate −
√
−1D′

h∨
E⊗hF

ΛωD
′
h∨
E⊗hF

G′′
E∨⊗FD

′′
E∨⊗FC. By Proposition 2.5.3 and (2.1), we have

−
√
−1D′

h∨
E⊗hF

ΛωD
′
h∨
E⊗hF

G′′
E∨⊗FD

′′
E∨⊗FC

=(−1)i−1
√
−1D′

h∨
E⊗hF

ΛωD
′
h∨
E⊗hF

G′′
E∨⊗F (Af)− (−1)i−1

√
−1D′

h∨
E⊗hF

ΛωD
′
h∨
E⊗hF

G′′
E∨⊗F (fB)

=(−1)i−1D′
h∨
E⊗hF

(
(
√
−1ΛωD

′
hF
G′′

FA)f

)
− (−1)i−1D′

h∨
E⊗hF

(
f(
√
−1ΛωD

′
hE
G′′

EB)

)
=(−1)i−2D′

h∨
E⊗hF

(αf)− (−1)i−2D′
h∨
E⊗hF

(fβ).

Then by (2.2), we have

D′
h∨
E⊗hF

C =−
√
−1D′

h∨
E⊗hF

ΛωD
′
h∨
E⊗hF

G′′
E∨⊗FD

′′
E∨⊗FC +D′′

E∨⊗F γ

=(−1)i−2D′
h∨
E⊗hF

(αf)− (−1)i−2D′
h∨
E⊗hF

(fβ) +D′′
E∨⊗F γ.

Hence

D′
h∨
E⊗hF

C −D′′
E∨⊗F γ − (−1)i−2D′

h∨
E⊗hF

(αf) + (−1)i−2D′
h∨
E⊗hF

(fβ) = 0.

Hence C −D′′
E∨⊗F γ − (−1)i−2αf + (−1)i−2fβ ∈ KerD′

h∨
E⊗hF

. We proved Hi(ι) is surjective.

(ii)Hi(ι) is injective: Let x = (A,B,C) ∈ KerD′
hE ,hF

∩Ker∂f . We assume that there exists a y = (α, γ, β) ∈
Li−1 such that x = ∂fy. We prove that there exists a z ∈ (KerD′

hE ,hF
)i such that x = ∂fz. This proves the

injectivity of Hi(ι). By the assumption, we have

A = D′′
Fα,

B = D′′
Eβ.

Then since A ∈ KerD′
hF

, D′′
FD

′
hF
α = D′

hF
D′

hF
α = 0 holds. Then by Lemma 1.4.2, we have a α′ such that

D′
hF
α = D′

hF
D′′

Fα
′. Define α′′ := α − D′′

Fα
′. Then α′′ ∈ KerD′

hF
∩ Ai−2(EndF ) and D′′

Fα
′′ = A. By the

same argument, we can construct β′ ∈ Ai−2(EndE) such that β′′ := β −D′′
Eβ

′ ∈ KerD′
hE
∩ Ai−1(EndE) and

D′′
Fβ

′′ = B.
We set as z′ := (α′′, γ + (−1)i−2α′f − (−1)i−2fβ′, β′′). Since x = ∂fy, we have

D′′
E∨⊗F

(
γ + (−1)i−2α′f − (−1)i−2fβ′

)
+ (−1)i−2α′′f − (−1)i−2fβ′′

=D′′
E∨⊗F γ + (−1)i−2(D′′

Eα
′ + α′′)f − (−1)i−2f(D′′

Fβ
′ + β′′)

=D′′
E∨⊗F γ + (−1)i−2αf − (−1)i−2fβ

=C.
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Hence

D′′
E∨⊗F

(
γ + (−1)i−2α′f − (−1)i−2fβ′

)
= C − (−1)i−2α′′f + (−1)i−2fβ′′

Since C ∈ KerD′
h∨
E⊗hF

, α′′ ∈ KerD′
hF
, β ∈ KerD′

hE
, we have

D′′
E∨⊗F

(
γ + (−1)i−2α′f − (−1)i−2fβ′

)
∈ KerD′

h∨
E⊗hF

∩KerD′′
E∨⊗F .

Then we can apply Lemma 1.4.2 to D′′
E∨⊗F

(
γ + (−1)i−2α′f − (−1)i−2fβ′

)
and show that there exsits a γ′

such that

D′′
E∨⊗F

(
γ + (−1)i−2α′f − (−1)i−2fβ′

)
= D′′

E∨⊗FD
′
h∨
E⊗hF

γ′.

We set z := (α′′, D′
h∨
E⊗hF

γ′, β′′). Then it is clear that z ∈ (KerD′
hE ,hF

)i and x = ∂fz. This proves the injectivity

of Hi(ι). Hence ι is quasi-isomorphic.

We next prove (KerD′
hE ,hF

, [, ]L, ∂f ) is quasi-isomorphic to (H•(L), [, ]L, 0).
Before, we recall standard results from elliptic operator theory. See [Wells, Chapter 4] for details. For each

i ∈ Z we define the L2-metric for Li. The complex (L, ∂f ) is obviously an elliptic complex. Let (∂f )
∗ be the

L2-adjoint of ∂f . Then for each ∂f : Li → Li+1 we set

∆i : = ∂f (∂f )
∗ + (∂f )

∗(∂f ),

Hi : = Ker(∆i).

Then
Hi(L) ' Hi.

Let Hi : Li → Hi be the projection and q : Li → Hi(L) be the map such that q(x) = [Hi(x)]. Here [Hi(x)] is
the cohomology class of Hi(x) in Hi(L).

Proposition 2.5.3. Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple over a compact Kähler manifold X. We
assume that each E and F has a harmonic metric hE and hF .

Then the map q : L→ H•(L) induces a quasi-isomorphism q : (KerD′
hE ,hF

, [, ]L, ∂f )→ (H•(L), [, ]L, 0).

Proof. This is clear from Proposition 2.5.2.

Theorem 2.5.2. Let (f, (E, ∂E , θE), (F, ∂F , θF )) be a Higgs triple over a compact Kähler manifold X. We
assume that each E and F has a harmonic metric hE and hF . Let (L, [, ]L, ∂f ) be the DGLA which controls the
deformation of (f, (E, ∂E , θE), (F, ∂F , θF )). Then (L, [, ]L, ∂f ) is formal.

Proof. Combine Proposition 2.5.2 and 2.5.3.

2.5.3 Relation to Deformation of Flat Triples

LetX be a compact smooth manifold. We say a pair (f, (E,DE), (F,DF )) is a flat triple over X if (E,DE), (F,DF )
are flat bundles over X and f : E → F is a vector bundle morphism such that DF ◦ f = f ◦DE . Then by the
same argument as in Section 2.4, we can show that the DGLA which controls the deformation of the flat triples
(f, (E,DE), (F,DF )) is (L, [, ]L, df ) where the graded vector space L and the bracket [, ]L is same as in Section
2.4 and df is defined as

df (x) = df

AC
B

 =

 DFA
DE∨⊗FC + (−1)i−1Af − (−1)i−1fB

D′′
EB

 (x ∈ Li).

We can show that (L, [, ]L, df ) is actually a DGLA by a little modification of the proof of Theorem 2.4.1.
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From now on, we assume X is a compact Kähler manifold and (E,DE) and (F,DF ) comes form harmonic
bundles (E, ∂E , θE , hE), (F, ∂F , θF , hF ) (i.e. DE = D′

hE
+D′′

E , DF = D′
hF

+D′′
F ).

Then by Lemma 2.5.1 and 4.4.2, the flat triple (f, (E,DE), (F,DF )) induces a Higgs triples (f, (E, ∂E , θE), (F, ∂F , θF )).
If we have a Higgs triple (f, (E, ∂E , θE), (F, ∂F , θF )) and each Higgs bundle has harmonic metric, then it induces
a flat triple (f, (E,DE = D′

hE
+D′′

E), (F,DF = D′
hF

+D′′
F )).

By a similar proof of Proposition 2.5.1, we have

Proposition 2.5.4. Let (f, (E,DE), (F,DF )) be a flat triple over a compact Kähelr manifold X. Assume
that (E,DE) and (F,DF ) comes form harmonic bundles (E, ∂E , θE , hE), (F, ∂F , θF , hF ). Let (L, [, ]L, df ) be the
DGLA which controls the deformation of (f, (E,DE), (F,DF )).

Then (KerD′
hE ,hF

, [, ]L, ∂f ) is a sub DGLA of (L, [, ]L, df ). Moreover, the inclusion ι : KerD′
hE ,hF

→ L is a
quasi-isomorphism.

Moreover, by a similar proof of Theorem 2.5.2, we have

Theorem 2.5.3. Let (f, (E,DE), (F,DF )) be a flat triple over a compact Kähelr manifold X. Assume that
(E,DE) and (F,DF ) comes form harmonic bundles (E, ∂E , θE , hE), (F, ∂F , θF , hF ). Let (L, [, ]L, df ) be the
DGLA which controls the deformation of (f, (E,DE), (F,DF )) and (L, [, ]L, ∂f ) be the DGLA which controls the
deformation of (f, (E, ∂E , θE), (F, ∂F , θF )).

Then

• (L, [, ]L, df ) is formal.

• (L, [, ]L, df ) is quasi-isomorphic to (L, [, ]L, ∂f ).

Proof. (KerD′
hE ,hF

, [, ]L, ∂f ) is quasi-isomoporhic to (L, [, ]L, ∂f ) by Proposition 2.5.2 and also quasi-isomorphic

to (L, [, ]L, df ) by the last Proposition. Hence (L, [, ]L, df ) is quasi-isomorphic to (L, [, ]L, ∂f ).

Hence the deformation problems of (f, (E,DE), (F,DF )) and (f, (E, ∂E , θE), (F, ∂F , θF )) are same.
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Chapter 3

Moduli Spaces of the Basic Hitchin
equations on Sasakian three-folds

3.1 Abstract of Chapter 3

In this Chapter, we introduce an equation which we call the Basic Hitchin equation. This is an equation
defined on Sasakian three-folds and is a three-dimensional analog of the Hitchin equation which is defined on
Riemann Surfaces. We construct the moduli space of the basic Hitchin equation and show such space admits a
hyperKähler metric. This also shows that the moduli space of flat bundles over Sasakian three-folds admits a
hyperKähelr metric. We also calculate the dimension of the moduli space under certain assumptions.

3.2 Introduction of Chapter 3

Let X be a compact Riemann surface of a genus bigger than two. Let E be a complex vector bundle over X
and h be a Hermitian metric. Let (∇h,Φ) be a pair of a h-unitary connection and a skew-symmetric 1-form
w.r.t. h. As we introduced in the Introduction the Hitchin equation is

F∇h
− Φ ∧ Φ = 0,

∇hΦ = 0,

∇h ∗ Φ = 0.

Here F∇h
is the curvature of ∇h and ∗ is the hodge star. We say (∇h,Φ) is a Hitchin pair if it satisfies the

Hitchin equation and irreducible if the connection D := ∇h +
√
−1Φ is irreducible. In [H], he also constructed

the moduli spaceMHit of irreducible Hitchin pair by infinite-dimensional hyperKähler reduction.
LetM be a compact Sasakian manifold. Sasakian manifolds are odd-dimension analogs of Kähler manifolds.

See [BG] for more details about Sasakian manifolds. In this Chapter, we focus on the case of dimM = 3. We
call such M a Sasakian three-fold. In this case, M is a three-dimensional analog of the Riemann surface.

We introduce the Sasakian analog of the Hitchin equation which we call the basic Hitchin equation. Let E
be a basic complex vector bundle and h be a basic hermitian metric (See Section 3.4.1 for definitions about basic
vector bundles and metrics). Let (∇h,Φ) is a pair of basic h-unitary connection and Φ be a basic skew-symmetric
1-form w.r.t. h. Then the basic Hitchin equation is the following equations:

F∇h
− Φ ∧ Φ = 0,

∇hΦ = 0,

∇h ⋆ξ Φ = 0.

Here ⋆ξ is the basic Hodge star (See Section 3.3.2). We call a pair (∇h,Φ) a basic Hitchin pair if the pair
satisfies the basic Hitchin equation. The main result of this chapter is the construction of the moduli space
Mirr

BaHit of irreducible basic Hitchin pairs. Moreover, we have
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Theorem 3.2.1 (Theorem 3.5.1). Mirr
BaHit is an empty set or a smooth hyperKähler manifold.

As like the Riemann surface case, the basic Hitchin equation is related to flat bundles and Higgs bundles.
Since Higgs bundles are holomorphic objects, we need basic Higgs bundles. Hence we can regard Mirr

BaHit as a
moduli space of simple flat bundles with a fixed basic structure and stable basic Higgs bundles of degree 0.

We also calculate the dimension ofMirr
BaHit under the some assumptions.

Theorem 3.2.2 (Theorem 3.5.2). Let (M, (T 1,0, S, I), (η, ξ)) be a regular Sasakian threefold (See Section 3.3.1
for the definition of regular). Let E be a regular basic bundle (See Section 3.5.4) and h be a basic Hermitian
metric. Let g be the genus of M/S1. We assume g ≥ 2. Then

dimRMirr
BaHit = 4(rkE)2(g − 1) + 4.

Relation to other works

For the higher dimensional case, there is a work by Kasuya [K]. He studied the moduli of the flat bundle over
general Sasakian manifolds and showed that the moduli have stratification by the basic structure.

3.3 Sasakian manifolds

3.3.1 Sasakian manifolds

Let M be a (2n+1)-dimensional real smooth manifold. Let TM ⊗C be the complexified tangent bundle of TM .
A CR-structure on M is a rank n complex sub-bundle T 1,0 of TM ⊗ C such that T 1,0 ∩ T 1,0 = 0 and T 1,0 is
integrable. We denote T 1,0 as T 0,1. For a CR-structure T 1,0 on M , there is an unique sub-bundle of rank 2n
of real tangent bundle TM with a vector bundle homomorphism I : S → S such that the following properties
holds:

• I2 = −IdS ,

• T 1,0 is the
√
−1-eigen bundle of I.

A (2n+1)-dimensional manifold M is equipped with a triple (T 1,0, S, I) is called a CR-manifold. A contact
1-form η of M is a non-degenerate 1-form of M (i.e. η ∧ (dη)n is everywhere non-zero). By the non-degeneracy
of η, there exists a vector field ξ called Reeb vector field such that it satisfies

η(ξ) = 1, ξ⌟(dη)n = 0.

A contact CR manifold is a CR-manifold M with a contact 1-form η such that Ker(η) = S. For a contact
CR-manifold, the above I : S → S extends to the entire TM by setting I(ξ) = 0. Here ξ is the Reeb vector
field of η.

Definition 3.3.1. A contact CR-manifold (M, (T 1,0, S, I), (η, ξ)) is a strongly pseudo-convex CR-manifold if
the Hermitian form Lη on Sx defined by Lη(X,Y ) = dη(X, IY ), X, Y ∈ Sx is positive definite for every point
x ∈M .

For a strongly pseudo-convex CR-manifold (M, (T 1,0, S, I), (η, ξ)), we have a canonical Riemann metric gη
on M which is defined by

gη(X,Y ) := Lη(X,Y ) + η(X)η(Y ), X, Y ∈ TxM.

Definition 3.3.2. A Sasakian manifold is a strongly pseudo-convex CR-manifold

(M, (T 1,0, S, I), (η, ξ))

such that for any section ζ of T 1,0, [ξ, ζ] is also a section of T 1,0. For a Sasakian manifold, we call gη as Sasaki
metric.
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For a Sasakian manifold (M, (T 1,0, S, I), (η, ξ)), the metric cone of (M, gη) is a Kähler manifold. We can
also define a Sasakian manifold as a contact metric manifold whose metric cone is Kähler.

Let M be a Sasakian manifold. If the orbits of the Reeb vector field ξ are all closed, and hence it is a circle,
then ξ induces a S1-action on M . Since ξ is nowhere zero, then the action is locally free. We say that M is
regular if the S1-action is free and quasi-regular if it is locally free. When the orbit of ξ is not all closed, then
we say M is irregular.

3.3.2 Basic Differential forms

Thoughrout this section, let (M, (T 1,0, S, I), (η, ξ)) be a 2n+ 1-dimensional compact Sasakian manifold.
The Reeb vector field ξ defines a 1-dimensional foliation Fξ on M . It is known the map I : TM → TM

associated with the CR-structure T 1,0 defines a transversely complex structure on the foliated manifold (M,Fξ).
Furthermore, the closed 2-form dη is a transversely Kähler structure with respect to this transversely complex
structure.

A differential form ω of M is called a basic diffrential form if

iξω = 0,Lξω = 0.

For simplicity, we call a differential form basic if it is a basic differential form. We note that η is not basic
but dη is basic. We denote A∗

B(M) as the space of real basic differential forms. We note that A∗
B(M) forms a

sub-complex of deRham complex A∗(M). We denote as Hi
B(M) to be the i-th cohomology of (A∗

B(M), d).
Corresponding to the decomposition SC = T 1,0 ⊕ T 0,1, we have the bigrading

Ar
B(M)C =

⊕
p+q=r

Ap,q
B (M)

as well as the decomposition of the exterior differential

d|Ar
B(M)C = ∂ξ + ∂ξ

on Ar
B(M)C, so that

∂ξ : Ap,q
B (M)→ Ap+1,q

B (M),

∂ξ : Ap,q
B (M)→ Ap,q+1

B (M).

We also have the transverse Hodge theory ([EKA, KT]). Let

∗ : Ar(M)→ A2n+1−r(M)

be the usual Hodge star operator associated with the Sasaki metric gη and let

δ := − ∗ d∗ : Ar(M)→ Ar−1(M)

be the formal adjoint of the exterior derivative with respect to the L2-norm.
We define the linear operator

⋆ξ : Ar
B(M)→ A2n−r

B (M)

such that ⋆ξ acts on ω ∈ Ar
B(M) as

⋆ξω = ∗(η ∧ ω).

We also define a few more operators:

δξ := − ⋆ξ d⋆ξ : Ar
B(M)→ Ar−1

B (M),

∂∗ξ := − ⋆ξ ∂ξ⋆ξ : Ap,q
B (M)→ Ap−1,q

B (M),

∂
∗
ξ := − ⋆ξ ∂ξ⋆ξ : Ap,q

B (M)→ Ap,q−1
B (M),

Λ := −⋆ξ∂ξ ⋆ξ .
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They are the formal adjoints of d, ∂ξ, ∂ξ and dη∧ with respect to the pairing

(3.1) Ar
B(M)×Ar

B(M) : (α, β)B →
∫
M

η ∧ α ∧ ⋆ξβ.

The following Proposition might be well-known for specialists, however, we give its detailed proof since it is
crucial to define the hyperKähelr metric for the moduli spaces.

Proposition 3.3.1. Assume dimM = 3. Then

⋆ξ ◦ ⋆ξ|A1
B(M) = −IdA1

B(M).

Proof. To show the equation holds, it is enough to show it holds pointwise. Let p ∈ M and (U, x, y, z) be a
local coordinate around p. We assume

Sp = R
(
∂

∂x

)
p

⊕ R
(
∂

∂y

)
p

and (
∂

∂x

)
p

⊥gη

(
∂

∂y

)
p

⊥gηξp.

Under the assumption we have

A1(M)p = R(dx)p ⊕ R(dy)p ⊕ Rηp,
A1

B(M)p = R(dx)p ⊕ R(dy)p,
volp = ηp ∧ (dx)p ∧ (dy)p.

Hence we have

⋆ξ(dx)p = ∗(ηp ∧ (dx)p) = (dy)p,

⋆ξ(dy)p = ∗(ηp ∧ (dy)p) = −(dx)p.

Hence the claim is proved.

3.4 Basic bundles

3.4.1 Basic vector bundles

Throughout this section, let (M, (T 1,0, S, I), (η, ξ)) be a compact Sasakian manifold.
Let E be a rank r complex vector bundle over M . We say that E is basic if there exists a local trivialization

{Uα}α∈A of E such that the associated transition function gαβ : Uα ∩ Uβ → GLr(C) is basic (i.e. iξdgαβ = 0).
Let E be a basic bundle. A E-valued differential form ω is called basic if for every α ∈ A, ω|Uα

∈ Ap
B(Uα)⊗E.

This is well-defined since E is basic. We denote the space of basic E-valued p-form as Ap
B(E). Let D be a

connenction of E. We call D basic if for all α ∈ A, D|Uα
= d+ Aα, Aα ∈ A1

B(EndE). If D is basic, we have a
homomorphism D : A∗

B(E)→ A∗+1
B (E). If D is a flat connection, we regard it as a basic connection because of

the flat frame ([Ko]).

Let h be a Hermitian metric of E. Note that h ∈ A(E∨ ⊗ E∨
). Here E∨ is the dual of E. We say the

h is basic if h ∈ AB(E
∨ ⊗ E∨

). Although hermitian metric always exists, basic hermitian metric might not
exist. The next section shows that E admits a basic hermitian metric when a flat connection D satisfies certain
conditions.

We now fix a basic bundle E, a basic connection D, and a basic hermitian metric h. As it is well-known D
has a decomposition

(3.2) D = ∇h +
√
−1Φ
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such that ∇h is a metric connection and Φ is skew-symmetric w.r.t. h. Since D and h are basic, ∇h and Φ are
also. We say the (E,D) is irreducible if there does not exist a basic sub-bundle F of E with D(F ) ⊂ A1

B(F ).
We say (E,D) is reductive if (E,D) is a direct sum of irreducible ones.

We define some notations. Let

A(u(E)) : = {f ∈ A(EndE) : h(fu, v) + h(u, fv) = 0},

Ar(u(E)) : = {f ∈ A(u(E)) :

∫
M

tr(f) = 0},

Ai(u(E)) : = Ai ⊗A(u(E)),

Ai
r(u(E)) : = Ai ⊗Ar(u(E)),

Ai
B(u(E)) : = Ai

B ⊗A(u(E)),

Ai
B,r(u(E)) : = Ai

B ⊗Ar(u(E)).

We say Ar(u(E)) (resp. AB,r(u(E))) as (basic) reduced section. We note that we have the following L2-
decomposition.

A(u(E)) = Ar(u(E))⊕
√
−1RIdE ,

AB(u(E)) = AB,r(u(E))⊕
√
−1RIdE .

The following result is used for the calculation of the dimension of the moduli space.

Proposition 3.4.1. The following are equivalent.

• (E,D) is irreduicible.

• We define a differential operator D1 : AB(u(E))→ A1
B(u(E))⊕A1

B(u(E)) as follows:

D1(f) := (∇hf, [Φ, f ]).

Then Ker(D1) =
√
−1RIdE.

Proof. Assume (E,D) is irreducible. Suppose we have a f ∈ AB(u(E))\
√
−1RIdE such that D1f = 0. By the

definition of D1, we have ∇hf = 0. From [LT, p.25, Proposition 1.1.17], we have the eigendecomposition of E
with respect to f :

E =
⊕
λ

Eλ.

Since f is basic, each Eλ is basic. The decomposition is h-othogonal and D1(Eλ) ⊂ A1
B(Eλ). Since each Eλ

is eigen bundle of f and Φf − fΦ = [Φ, f ] = 0, we have Φ(Eλ) ⊂ A1
B(Eλ). Hence we have D(Eλ) ⊂ A1

B(Eλ).
This contradicts the assumption.

Assume Ker(D1) =
√
−1RIdE . Suppose (E,D) is reducible. We have a following h-othogonal decomposition:

(E,D) = (Eα, Dα)⊕ (Eβ , Dβ).

Let prα and prβ be the orthogonal projection to Eα and Eβ . By definition,
√
−1prα,

√
−1prβ ∈ AB(u(E)). It

is straight forward to check
√
−1prα −

√
−1prβ ∈ AB(u(E))\

√
−1RIdE and D(

√
−1prα −

√
−1prβ) = 0 and

hence D1(
√
−1prα −

√
−1prβ) = 0. Hence contradicts.

Remark 3.4.1. In [BHe2], the authors defined a h-unitary basic connection ∇h is irreducible if Ker(∇h)|AB(u(E)) =√
−1RIdE. Proposition 3.4.1 tells us that the definition of our irreducibility and their irreducibility coincide when

Φ = 0.

Let AB(GL(E)) be the automorphism group of the basic bundle E. We define the gauge group

GB := {f ∈ AB(GL(E)) : h(fu, fv) = h(u, v)}.
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We moreover define the reduced gauge group as

GB,r := GB
/
S1IdE .

The Lie algebra of GB is A(u(E)) and GB,r is Ar(u(E)).
Let Ah,B be the space of the h-unitary basic connection. This is an affine space that is modeled on A1

B(u(E)).
We define

AB := Ah,B ×A1
B(u(E)).

Since any basic connection D has the decomposition (4.5.1), we regard AB as the space of connections. GB(E)
acts on Ak

B as

GB ×AB −→ AB

(g,∇h,Φ) 7−→ (g−1∇hg, g
−1Φg).

(3.3)

Degree of basic bundles

Let E be a basic bundle and D be a basic connection. Let FD be the curvature of D. Since E and D are basic,
FD ∈ A2

B(EndE). For any 0 ⩽ i ⩽ n, we define ci,B(E,D) ∈ A2i
B (M) by

det

(
IdE −

FD

2π
√
−1

)
= 1 +

2n∑
i=1

ci,B(E,D).

Then, as the case of the usual Chern-Weil theory, the cohomology class,

ci,B(E) ∈ H2i
B (M)

of each ci,B(E,D) is independent of the choice of a basic connection D.
We define the degree of E as

deg(E) :=
1

2π
√
−1

∫
M

Tr(ΛFD).

We also have

deg(E) =

∫
M

c1,B(M) ∧ (dη)n−1 ∧ η.

Hence deg(E) only depends on E.

L2-metric, Adjoints, and Brackets

In this section, we review some operations around Ai
B(u(E)). The results in this section are nothing new.

However, we write this section for completeness.
Let (E, h) be a basic vector bundle with a basic Hermitian metric on a Sasakian manifold M . Let A,B ∈

Ai(EndE). Recall that the L2-inner product (A,B)L2 is defined as

(A,B)L2 =

∫
M

Tr(A ∧ ∗B†
h).

Here recall that B†
h is the formal adjoint of B w.r.t. h and ∗ is the ordinary Hodge star. Hence if we assume

B ∈ Ai(u(E)), we have

(A,B)L2 =

∫
M

Tr(A ∧ ∗B†
h) = −

∫
M

Tr(A ∧ ∗B).

We study the L2-metric restricted to Ai
B(u(E)). Let α ∈ Ai(M). The usual Hodge star ∗ and the basic Hodge

star ⋆ξ have the following relation ([KT]):
∗α = ⋆ξα ∧ η.
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Hence if A,B ∈ Ai
B(u(E)), we have

(A,B)L2 = −
∫
M

Tr(A ∧ ∗B) = −
∫
M

Tr(A ∧ ⋆ξB) ∧ η.

Let ∇h ∈ Ah,B and Φ ∈ A1
B(u(E)). Let ∇∗

h and Φ∗ be the formal adjoints of ∇h and Φ w.r.t. the L2-inner
product i.e. for A ∈ Ai(End(E)) and B ∈ Ai+1(End(E)), the following holds

(∇hA,B)L2 = (A,∇∗
hB)L2 ,

([Φ, A], B)L2 = (A, [Φ∗, B])L2 .

We give the explicit formula of ∇∗
h and Φ∗ when we restrict the L2-inner product to A∗

B(u(E)). Since the
Sasakian manifold has no basic 2n+ 1-form, for A ∈ Ai

B(u(E)) and B ∈ Ai+1
B (u(E)), we have

(∇hA,B)L2 = (A,∇∗
hB)L2 = −(A, ⋆ξ∇h ⋆ξ B)L2 ,

([Φ, A], B)L2 = (A, [Φ∗, B])L2 = (A, ⋆ξ[Φ
†
h, ⋆ξB])L2 = −(A, ⋆ξ[Φ, ⋆ξB])L2 .

Hence we have

Lemma 3.4.1. When we restrict the action of ∇h and Φ to A∗
B(u(E)), those formal adjoints ∇∗

h,Φ
∗ w.r.t. the

L2-inner product has the form

∇∗
h = − ⋆ξ ∇h⋆ξ,

Φ∗ = − ⋆ξ Φ ⋆ξ .

This can be shown by a standard calculation. We emphasize that this equality holds since M is Sasakian
and we restricted the L2-inner product to A∗

B(u(E)). We cannot expect this equality to hold for general foliated
manifolds or for general sections.

We state one more result which we use later. From now on we assume dimM = 3.

Lemma 3.4.2. Let A,B ∈ A1
B(EndE). Then

[⋆ξA,B] = −[A, ⋆ξB]

holds.

Proof. We only have to prove it pointwisely. Let p ∈ M . We use the coordinate which we used in Proposition
3.3.1.

[⋆ξA,B]p = [⋆ξ(Ax(dx)p +Ay(dy)p), Bx(dx)p +By(dy)p]

= [Ax(dy)p −Ay(dx)p, Bx(dx)p +By(dy)p]

= −
(
[Ax, Bx] + [Ay, By]

)
(dx)p ∧ (dy)p.

[A, ⋆ξB]p = [Ax(dx)p +Ay(dy)p, ⋆ξ(Bx(dx)p +By(dy)p)]

= [Ax(dx)p +Ay(dy)p, Bx(dy)p −By(dx)p]

=

(
[Ax, Bx] + [Ay, By]

)
(dx)p ∧ (dy)p.

Hence the Lemma is proved.

3.5 The Moduli space of Basic Hitchin equations

Throughout this section, we assume (M, (T 1,0, S, I), (η, ξ)) to be a compact Sasakian manifold of dimsension
three. We also fix a basic bundle E and a basic metric h.
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3.5.1 Basic Hitchin equation

Recall that we defined Ah,B to be the set of basic h-unitary connection and A1
B(u(E)) be EndE-valued skew-

hermitian 1-form (See section 3.4.1). Note that Ah,B is an affine space modeled on A1
B(u(E)).

Let (∇h,Φ) ∈ AB = Ah,B ×A1
B(u(E)). We say that (∇h,Φ) satisfies the basic Hitchin equation if

(3.4)


F∇h

− Φ ∧ Φ = 0,

∇hΦ = 0,

∇h ⋆ξ Φ = 0.

Here F∇h
is the curvature of ∇h. If (∇h,Φ) satisfies the Hitchin equation we call (∇h,Φ) a basic Hitchin pair.

We set as
ABaHit := {(∇h,Φ) ∈ Ah,B ×A1

B(u(E)) : (∇h,Φ) is a basic Hitchin pair}.

We say that (∇h,Φ) is irreducible if the connection D = ∇h +
√
−1Φ is irreducible (See section 3.4.1). We set

as
Airr

BaHit := {(∇h,Φ) ∈ ABaHit : (∇h,Φ) is irreducible}.

Note that the action of the gauge groups GB and GB,r preserves ABaHit and Airr
BaHit. Moreover, GB,r acts freely

on Airr
BaHit.

Let (∇h,Φ) ∈ ABaHit. Considering the linearization of the action of the gauge group GB and the linearization
of the Basic Hitchin equation (3.4), we obtain a complex

0 −→ AB(u(E))
D1−→ A1

B(u(E))⊕2 D2−→ A2
B(u(E))⊕3 −→ 0(3.5)

where

D1A := (∇hA, [Φ, A]),

D2(A,B) := (∇hA− [Φ, B],∇hB + [A,Φ],∇h ⋆ξ B + [A, ⋆ξΦ]).
(3.6)

Note that D1 is exactly the same operator we introduced in Proposition 3.4.1. Considering the highest-order
part of the differential operators D1 and D2, we see that the complex (3.5) is transverse elliptic complex (See
[Wa]). We denote the i-th cohomology of the complex (3.5) as Hi. These cohomology are finite dimensions since
they are the kernel of transverse elliptic operators [EKA]. The dimension of H1 is expected to be the dimension
of the moduli space.

We now consider the case (∇h,Φ) ∈ Airr
BaHit. In this case, KerD1 =

√
−1RIdE (See Proposition 3.4.1) and

hence dimRH0 = 1. We later use the following result to show the moduli space is smooth and to calculate the
dimension of the moduli space.

Proposition 3.5.1. Assume (∇h,Φ) ∈ Airr
BaHit. Then dimRH2 = 3. In particular each row of H2 is spanned by

the multiplication of
√
−1dη and IdE i.e.

H2 = [〈
√
−1dηIdE〉⊕3

R ].

Here

〈
√
−1dηIdE〉⊕3

R := R

√−1dηIdE0
0

+ R

 0√
−1dηIdE

0

+ R

 0
0√

−1dηIdE

 ,

and [〈
√
−1dηIdE〉⊕3

R ] is the R-vector space which is spanned by the cohomology class of the basis of 〈
√
−1dηIdE〉⊕3

R .

Proof. It is enough to show
KerD∗

2 = 〈
√
−1dηIdE〉⊕3

R

Let (A,B,C) ∈ A2
B(u(E))⊕3. By direct calculation, we have

D∗
2(A,B,C) = (∇∗

hA+ [(⋆ξΦ)
∗, B] + [Φ∗, C],−[Φ∗, A]− ⋆ξ∇∗

hB +∇∗
hC).
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Here ∇∗
h is the formal adjoint of ∇h w.r.t. L2-inner product. Φ∗, (⋆ξΦ)

∗ are also.
Hence D∗

2(A,B,C) = 0 is equivalent to

(3.7)

{
∇∗

hA+ [(⋆ξΦ)
∗, B] + [Φ∗, C] = 0,

−[Φ∗, A]− ⋆ξ∇∗
hB +∇∗

hC = 0.

Recall that from Lemma 3.4.1, we have the explicit formula of ∇∗
h, Φ

∗, and (Φ1,0)∗:

∇∗
h = − ⋆ξ ∇h⋆ξ,

(Φ)∗ = ⋆ξ(Φ)
†
h⋆ξ = − ⋆ξ Φ⋆ξ,

(⋆ξΦ)
∗ = ⋆ξ(⋆ξΦ)

†
h⋆ξ = − ⋆ξ (⋆ξΦ) ⋆ξ .

The operator ⋆ξ induces an isomorphism

⋆ξ : A2
B(u(E))→ AB(u(E)).

Hence to consider the pair (A,B,C) ∈ A2
B(u(E))⊕3 which satisfies the equation (3.7) is equivalent to consider

the pair (α, β, γ) ∈ AB(u(E))⊕3 which satisfies the following equations

(3.8)

{
∇hα+ [⋆ξΦ, β] + [Φ, γ] = 0,

[Φ, α] + ⋆ξ∇hβ −∇hγ = 0.

Let (, )L2 be the L2-inner product. Assume (α, β, γ) ∈ AB(u(E))⊕3 satisfies the equation (3.8). Then we have

‖∇hα‖2L2 = (∇hα,∇hα)L2

= (− ⋆ξ ∇h ⋆ξ ∇hα, α)L2

= (⋆ξ∇h ⋆ξ [⋆ξΦ, β] + ⋆ξ∇h ⋆ξ [Φ, γ], α)

= (− ⋆ξ ∇h[Φ, β] + ⋆ξ∇h[⋆ξΦ, γ], α)L2 (∵ Lemma 3.4.2.)

= (⋆ξ[Φ,∇hβ]− ⋆ξ[⋆ξΦ,∇hγ], α)L2

= (⋆ξ[Φ,∇hβ] + ⋆ξ[Φ, ⋆ξ∇hγ], α)L2

= (⋆ξ[Φ, ⋆ξ(− ⋆ξ ∇hβ +∇hγ)], α)L2

= (⋆ξ[Φ, ⋆ξ[Φ, α]], α)L2

= −((Φ)∗[Φ, α], α)L2

= −([Φ, α], [Φ, α])L2

= −‖[Φ, α]‖2L2 .

Hence we obtain ∇hα = [Φ, α] = 0. This is equivalent to α ∈ KerD1. Since (∇h,Φ) ∈ Airr
BaHit, α =

√
−1aIdE

for some a ∈ R. Then β and γ satisfies

(3.9)

{
[⋆ξΦ, β] + [Φ, γ] = 0,

⋆ξ∇hβ −∇hγ = 0.
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We first calculate ‖∇hγ‖2L2 .

‖∇hγ‖2L2 = (∇hγ,∇hγ)L2

= −(⋆ξ∇h ⋆ξ ∇hγ, γ)L2

= −(⋆ξ∇h ⋆ξ ⋆ξ∇hβ, γ)L2

= (⋆ξ∇h∇hβ, γ)L2

= (⋆ξF∇h
β, γ)L2

= (⋆ξ[Φ, [Φ, β]], γ)L2

= −(⋆ξ[Φ, ⋆ξ ⋆ξ [Φ, β]], γ)L2

= ((Φ)∗ ⋆ξ [Φ, β], γ)L2

= ([⋆ξΦ, β], [Φ, γ])L2

= −([⋆ξΦ, β], [⋆ξΦ, β])L2

= −‖[⋆ξΦ, β]‖2L2 .

Hence we obtain ∇hγ = [⋆ξΦ, β] = 0. Since β and γ satisfies the equation (3.9), we also obtain ⋆ξ∇hβ =
[Φ, γ] = 0. Since ⋆ξ is an isomorphism, ∇hΦ = [Φ, β] = 0. Hence β, γ ∈ KerD1, and therefore β =

√
−1bIdE

and γ =
√
−1cIdE for some b, c ∈ R.

Let (A,B,C) ∈ KerD∗
2 . Then (α, β, γ) := (⋆ξA, ⋆ξB, ⋆ξC) satisfies the equation (3.8). By the discussion

above, (α, β, γ) = (
√
−1aIdE ,

√
−1bIdE ,

√
−1cIdE) for some a, b, c ∈ R. Since we have ⋆ξ1 = dη, A,B,C ∈

〈
√
−1dηIdE〉R. Hence kerD∗

2 ⊂ 〈
√
−1dηIdE〉⊕3

R .
Since ⋆ξdη = 1, 〈

√
−1dηIdE〉⊕3

R ⊂ kerD∗
2 . Hence we have

kerD∗
2 = 〈

√
−1dηIdE〉⊕3

R .

We now construct the moduli space of the irreducible basic Hitchin pair. To construct the moduli space, we
introduce ‖ · ‖k,2 the L2

k-Sobolev norm. Let L2
k(A

1
B(u(E))) to be the completion of A1

B(u(E)) with respect to
the L2

k-norm. We denote as Ak
h,B to be the space of h-unitary basic L2

k- connection. We set

Ak
B := Ak

h,B × L2
k(A

1
B(u(E))).

We may regard Ak
B as the space of basic L2

k-connection. Let GkB to be the L2
k-basic gauge group and Gkr,B :=

GkB/S1IdE to be the reduced L2
k-basic gauge group. We take k large enough so that the basic Sobolev embedding

holds [BHe2, KLW]. Then one can show as in [DK], that GkB and Gkr,B are Hilbert Lie groups. By basic Sobolev

multiplication [BHe2, KLW], Gk+1
B and Gk+1

r,B acts smoothly on Ak
B and we can show that Bk := Ak

B/G
k+1
B and

Bkr := Ak
B/G

k+1
r,B are Hausdorff spaces in the quotient topology. Let Ak

BaHit ⊂ Ak
B be the space of L2

k-basic

Hitchin pair. We define the moduli space of L2
k-basic Hitchin equationMk

BaHit as

Mk
BaHit := Ak

BaHit/Gk+1
r,B .

SinceMk
BaHit ⊂ Bk

r ,Mk
BaHit is a Hausdorff space. We define Ak,irr

B ⊂ Ak
B to be the space irreducible basic L2

k-

connection and Ak,irr
BaHit := Ak

BaHit ∩A
k,irr
B to be the space of irreducible basic L2

k-Hitchin pairs. Note that Gk+1
r,B

acts freely on Ak,irr
B and Ak,irr

BaHit. We define Bk,irrr := Ak,irr
B /Gk+1

r,B . We finally define the moduli of irreducible

L2
k-basic Hitchin pairs as

Mk,irr
BaHit := A

k,irr
BaHit/G

k+1
r,B .

Since Bk,irrr ⊂ Bk
r andMk,irr

BaHit ⊂Mk
BaHit, they are Hausdorff spaces. The topology ofMk,irr

BaHit do depend on k.
However, we can apply the argument in [DK, LT] and show the following.

Proposition 3.5.2. Assume that k is large enough. Then the natural map Mk+1,irr
BaHit → M

k,irr
BaHit is a homeo-

morphism.
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Since we have this Proposition, we omit the subscription k from now.
We now turn our interest to the local structure of the moduli space. Let [(∇h,Φ)] ∈ Birr

r . We define a slice

(3.10) S(∇h,Φ),ϵ := {α ∈ A1
B(u(E))⊕2 : ‖α‖L2

k
< ϵ,D∗

1α = 0}.

We can apply the argument of [DK, LT, Pa] and show that S(∇h,Φ),ϵ gives a coordinate patch for Birrr .
From now on, we assume [(∇h,Φ)] ∈ Mirr

BaHit. We show that Mirr
BaHit ∩ S(∇h,Φ),ϵ is diffeomorphic to the

neighborhood of H1. Before we proceed, we prepare some notations. We set ∆i,(∇h,Φ) := DiD
∗
i +D

∗
i+1Di+1(i =

0, 1, 2) to be the Laplacians. We set as D−1 = D3 = 0. Let G(∇h,Φ) be the Green operators and H(∇h,Φ) be the
Harmonic projections. We denote as ∆i, G,H if there is no confusion.

Let α = (A,B) ∈ S(∇h,Φ),ϵ. Then α ∈Mirr
BaHit if and only if

D2α+

A ∧A−B ∧B[A,B]
[A, ⋆ξB]

 = D2(A,B) +

A ∧A−B ∧B[A,B]
[A, ⋆ξB]

 = 0.(3.11)

This can be checked by direct computation. To simplify the notation, we set

α̃ ∧ α :=

A ∧A−B ∧B[A,B]
[A, ⋆ξB]

 .

Note that α̃ ∧ α is not an ordinary wedge product.
Hence we have

Mirr
BaHit ∩ S(∇h,Φ),ϵ = {α ∈ S(∇h,Φ),ϵ : D2α+ α ∧ α = 0}.

By the Hodge decomposition, the equation (3.11) is equivalent to

(3.12)

{
D2α+D2D

∗
2G(α̃ ∧ α) = 0,

H(α̃ ∧ α) = 0.

We define the Kuranishi map k(∇h,Φ) : A
1
B(u(E))⊕2 → A1

B(u(E))⊕2 as

(3.13) k(∇h,Φ)(α) = α+D∗
2G(α ∧ α).

Let α ∈Mirr
BaHit ∩ S(∇h,Φ),ϵ. Then by (3.12),

D∗
1(k(∇h,Φ)(α)) = D∗

1α+D∗
1D

∗
2G(α ∧ α) = 0,

D2(k(∇h,Φ)(α)) = D2α+D2D
∗
2G(α ∧ α) = 0.

Hence
k(∇h,Φ)(Mirr

BaHit ∩ S(∇h,Φ),ϵ) ⊂ H1.

The next proposition shows thatMirr
BaHit is smooth.

Proposition 3.5.3. Let U be a neighborhood of the origin of H1. If we take a U small enough, then there exists
a ϵ such that k(∇h,Φ) induces a homeomorphism

k(∇h,Φ) :Mirr
BaHit ∩ S(∇h,Φ),ϵ → U.

Proof. The proof is quite standard (See [Ko]). The point of this proposition is that we do not need any
assumption to showMirr

BaHit is smooth.
Let L2

k(A
1
B(u(E))) be the completion of A1

B(u(E)) with respect to the L2
k-norm. We extend the Kuranishi

map to
k(∇h,Φ) : L

2
k(A

1
B(u(E)))⊕2 → L2

k(A
1
B(u(E)))⊕2.
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Since the derivative of the Kuranishi map at the origin is the identity, we can apply the inverse function
theorem of Banach spaces and show that there exist neighborhoods of origin V1 and V2 such that k(∇h,Φ)

induces a homeomorphism
k(∇h,Φ) : V1 → V2.

Let β ∈ V2 ∩H1. Let α := k−1(β). We show that α ∈ V1 ∩KerD∗
1 ∩M

k,irr
BaHit. Once this is shown, shrink V1 and

we prove the proposition.
First, from the definition of α, we have

β = α+D∗
2G(α̃ ∧ α).

Act the Laplacian ∆1 and we have

0 = ∆1β = ∆1α+D∗
2∆2G(α̃ ∧ α)

= ∆1α+D∗
2∆2G(α̃ ∧ α)

= ∆1α+D∗
2(α̃ ∧ α)−D∗

2H(α̃ ∧ α)

= ∆1α+D∗
2(α̃ ∧ α).

Hence by the transverse elliptic regularity, α is smooth. We also have

0 = D2β = D2α+D2D
∗
2G(α̃ ∧ α),

0 = D∗
1β = D∗

1α.

We now showed that α ∈ V1 ∩ KerD∗
1 . To show α ∈ Mirr

BaHit, we need to show H(α ∧ α) = 0 (See (3.12)). To
show this, we use Proposition 3.5.1. Recall that

α̃ ∧ α =

A ∧A−B ∧B[A,B]
[A, ⋆ξB]

 .

From Proposition 3.5.1, there exists a, b, c ∈ R such that

H

A ∧A−B ∧B[A,B]
[A, ⋆ξB]

 =
√
−1

ab
c

 dηIdE .

We would like to show a = b = c = 0. First, let

Ai
B(su(E)) := {f ∈ Ai

B(u(E)) : Tr(f) = 0}.

Then the complex

0 −→ AB(su(E))
D1−→ A1

B(su(E))⊕2 D2−→ A2
B(su(E))⊕3 −→ 0

forms a sub complex of (3.5). Since A ∧A−B ∧B[A,B]
[A, ⋆ξB]

 ∈ A2
B(su(E))⊕3,

we have

H

A ∧A−B ∧B[A,B]
[A, ⋆ξB]

 ∈ H2 ∩A2
B(su(E))⊕3.

Hence Tr(a · dηIdE) = Tr(b · dηIdE) = Tr(c · dηIdE)=0. We obtain a = b = c = 0.
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In particular, we have the following

Corollary 3.5.1. Mirr
BaHit is an empty set or a smooth manifold. If not empty, the dimension ofMirr

BaHit around
[(∇h,Φ)] ∈Mirr

BaHit is H1.

We give a sufficient condition for Mirr
BaHit not to be empty. Recall that T 1,0 is the CR structure on M . If

c1,B(T
1,0) = −C[dη] for some positive constant C, then there exists a basic stable Higgs bundle due to [BH2,

Example 3.6]. Hence if c1,B(T
1,0) = −C[dη], C > 0, thenMirr

BaHit is not empty (See Section 3.6.1).

3.5.2 Riemannian Structure on Mirr
BaHit

We use the same notation of the previous section. We assume thatMirr
BaHit is not an empty set.

We show that the moduli spaceMirr
BaHit of irreducible Basic Hitchin pair on a compact Sasakian three-fold

M is a hyperKähler manifold. We first define a Riemannian metric g onMirr
BaHit. Let [(∇h,Φ)] ∈ Mirr

BaHit and
α = (α1, α2), β = (β1, β2) ∈ H1 ' T[(∇h,Φ)]Mirr

BaHit. We define g as

(3.14) g[(∇h,Φ)](α, β) := −
∫
M

Tr(α1 ∧ ⋆ξβ1 + α2 ∧ ⋆ξβ2) ∧ η.

To show g is well-defined, we need to check that g does not depend on the gauge-equivalence class of [(∇h,Φ)] ∈
Mirr

BaHit. Under a gauge transformation (∇h,Φ) → h−1(∇h,Φ)h, the infinitesimal deformations α, β maps to
h−1αh, h−1βh which are the corresponding harmonic repsentative (See [I] for details.). Since (3.14), the metric
g is equivalent to the gauge transformation. Hence g is well-defined.

We now prove the distinguished coordinate of the moduli Mirr
BaHit induced by the Kuranishi map and the

slice is a normal coordinate with respect to (Mirr
BaHit, g). This result will be used later to show that Mirr

BaHit is
hyperkähler.

Let [(∇h,Φ)] ∈Mirr
BaHit. Then from the previous section we have the Kuranishi map k(∇h,Φ), Slice S(∇h,Φ),ϵ,

and a open subset 0 ∈ U ⊂ H1 such that

k(∇h,Φ) :Mirr
BaHit ∩ S(∇h,Φ),ϵ → U

is a homeomorphism. The derivative of the Kuranishi map at α ∈ A1
B(u(E))⊕2 as follows

d(k(∇h,Φ))α : TαA
1
B(u(E))⊕2 → Tk(∇h,Φ)(α)A

1
B(u(E))⊕2,

d(k(∇h,Φ))α(β) = β +D∗
2G([̃α, β]).

(3.15)

Here for α = (α1, α2), β = (β1, β2) ∈ A1
B(u(E))⊕2 we defined [̃α, β] as

(3.16) [̃α, β] :=

 [α1, β1]− [α2, β2]
[α1, β2] + [β1, α2]

[α1, ⋆ξβ2] + [β1, ⋆ξα2]

 .

Note that [̃α, β] is not the ordinary bracket. We call this bracket as the modified bracket.
Using the modified bracket, we can characterize the tangent space of α ∈Mirr

BaHit ∩ S(∇h,Φ),ϵ as follows

(3.17) Tα(Mirr
BaHit ∩ S(∇h,Φ),ϵ) = {β ∈ A1

B(u(E))⊕2 : D∗
1β = 0, D2β + [̃α, β] = D2,αβ = 0}.

Here D2,α is the operator of (3.6) defined for (∇h,Φ)+α = (∇h+α1,Φ+α2) ∈ Airr
BaHit. From (3.15) and (3.17),

the restriction of dk(∇h,Φ) to Tα(Mirr
BaHit ∩ S(∇h,Φ),ϵ) has the following form.

Proposition 3.5.4. The differential of the Kuranishi map

d(k(∇h,Φ))α : Tα(Mirr
BaHit ∩ S(∇h,Φ),ϵ)→ Tk(∇h,Φ)(α)U = H1

has the form
d(k(∇h,Φ))α(β) = H(∇h,Φ)β.

Here H(∇h,Φ) : A
1
B(u(E))⊕2 → H1 is the harmonic projection.
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Proof. Since D∗
2 commutes with the Green operator, and we have (3.15) and (3.17), we have

d(k(∇h,Φ))α(β) = β +D∗
2G([̃α, β])

= β −D∗
2GD2β

= β −D∗
2D2Gβ

= H(∇h,Φ)β.

In the previous section, we denoted H(∇h,Φ) just as H. We denoted as H(∇h,Φ) because later, we use the
harmonic projection induced by different basic Hitchin pairs.

We now solve conversely an equation d(k(∇h,Φ))α(β) = γ for a given γ ∈ Tk(∇h,Φ)(α)U = H1 and α ∈
Mirr

BaHit ∩ S(∇h,Φ),ϵ with respect to β ∈ Tα(Mirr
BaHit ∩ S(∇h,Φ),ϵ). We decompose β as

β = D1γ0 + γ1 +D∗
2γ2,

where γ0 ∈ AB(u(E)), γ1 ∈ H1, and γ2 ∈ A2
B(u(E))⊕3. By Proposition 3.5.4, γ1 = γ. Moreover, since D∗

1β = 0,
we have D∗

1D1γ0 = 0 and hence D1γ0 = 0. Hence we obtain

β = γ +D∗
2γ2.

From (3.17), γ2 satisfies the equation

D2D
∗
2γ2 +

˜[α, γ +D∗
2γ2] = 0.

By the definition of the modified bracket, it is a bilinear map. Hence

(3.18) D2D
∗
2γ2 +

˜[α,D∗
2γ2] = −[̃α, γ].

As a consequence we have

Proposition 3.5.5. For a given γ ∈ H1, the inverse image β = (d(k(∇h,Φ))α)
−1(γ) ∈ Tα(Mirr

BaHit ∩ S(∇h,Φ),ϵ)
is represented by

β = γ +D∗
2γ2

where γ2 ∈ A2
B(u(E))⊕3 is a solution of (3.18).

We note that at the origin, T0(Mirr
BaHit ∩ S(∇h,Φ),ϵ) = H1 and d(k(∇h,Φ))0 = IdH1 holds.

Let X,Y, Z ∈ T0(Mirr
BaHit ∩ S(∇h,Φ),ϵ) = H1. Since H1 is affine, these vectors also define vector fields on U

canonically. We define a vector field X onMirr
BaHit ∩ S(∇h,Φ),ϵ as

Xα := d((k(∇h,Φ))
−1)k(∇h,Φ)(α)(X), α ∈Mirr

BaHit ∩ S(∇h,Φ),ϵ.

We define Y , Z in the same manner. From Proposition 3.5.5, Xα has the form

Xα = X +D∗
2γ(α,X)

where γ(α,X) ∈ A2
B(u(E))⊕3 and it satisfies the following equation

(3.19) D2D
∗
2γ(α,X) + ˜[α,D∗

2γ(α,X)] = −[̃α,X].

We note that at α = 0, X0 = X and D∗
2γ(0, X) = 0.

Let c(t) be a curve on Mirr
BaHit ∩ S(∇h,Φ),ϵ defined by c(t) := (k(∇h,Φ))

−1(tX). Then we have c(0) = 0 and
d
dtc(t)|t=0 = X ∈ T0(Mirr

BaHit ∩ S(∇h,Φ),ϵ) = H1.
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Proposition 3.5.6. The Riemannian metric g onMirr
BaHit satisfies at α = 0 in a slice neighborhoodMirr

BaHit ∩
S(∇h,Φ),ϵ

Xg[(∇h,Φ)](Y, Z) = 0

for every X,Y, Z ∈ T0(Mirr
BaHit ∩ S(∇h,Φ),ϵ) = H1.

We remark that this Proposition shows that the coordinate obtained by the Kuranishi map is normal.

Proof. By the definition of the metric

Xg[(∇h,Φ)](Y, Z) =
d

dt
g[(∇h,Φ)+c(t)](Y c(t), Zc(t))

∣∣∣∣
t=0

=
d

dt

(
H(∇h,Φ)+c(t)Y c(t),H(∇h,Φ)+c(t)Zc(t)

)
L2

∣∣∣∣
t=0

=

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))|t=0, Z

)
L2

+

(
Y,

d

dt
(H(∇h,Φ)+c(t)Zc(t))

∣∣∣∣
t=0

)
L2

.

Differentiating H(∇h,Φ)+c(t)Y c(t) at t = 0, we get

d

dt

(
H(∇h,Φ)+c(t)Y c(t)

)∣∣∣∣
t=0

=

(
d

dt
H(∇h,Φ)+c(t)

∣∣∣∣
t=0

)
Y +H(∇h,Φ)

(
d

dt
Y c(t)

∣∣∣∣
t=0

)
.

Before we proceed, we prepare two Lemmas.

Lemma 3.5.1.

H(∇h,Φ)

(
d

dt
Y c(t)

∣∣∣∣
t=0

)
= 0.

Proof. From Proposition 3.5.5, we have

d

dt
Y c(t)

∣∣∣∣
t=0

=
d

dt
(Y +D∗

2γ(c(t), Y ))

∣∣∣∣
t=0

= D∗
2

(
d

dt
γ(c(t), Y )

∣∣∣∣
t=0

)
.

From (3.19), γ(c(t), Y ) satisfies the equation

D2D
∗
2γ(c(t), Y ) + ˜[c(t), D∗

2γ(c(t), Y )] = − ˜[c(t), Y ].

We differential this equation at t = 0 and we obtain

D2D
∗
2

(
d

dt
γ(c(t), Y )

∣∣∣∣
t=0

)
= −[̃X,Y ].

By Proposition 3.5.1 and the Hodge decomposition, we have a, b, c ∈ R such that

d

dt
γ(c(t), Y )|t=0 =

√
−1

ab
c

 dη +GD2D
∗
2

(
d

dt
γ(c(t), Y )|t=0

)

=
√
−1

ab
c

 dη − [̃X,Y ].
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Then we have

d

dt
Y c(t)|t=0 = D∗

2

(
d

dt
γ(c(t), Y )

∣∣∣∣
t=0

)

= D∗
2

(√
−1

ab
c

 dη −G[̃X,Y ]

)
= −D∗

2G[̃X,Y ].

Then the Lemma is obtained by the Hodge decomposition.

Lemma 3.5.2.(
d

dt
H(∇h,Φ)+c(t)|t=0

)
Y = −G[X,D∗

1Y ]1 −D1G[X,Y ]2 −D∗
2G[̃X,Y ]−G[X,D2Y ]3

= −D1G[X,Y ]2 −D∗
2G[̃X,Y ].

Here

[X,D∗
1Y ]1 : =

(
[X1, D

∗
1Y ]

[X2, D
∗
1Y ]

)
,

[X,Y ]2 : = [X∗
1 , Y1] + [X∗

2 , Y2],

[X,D2Y ]3 : =

(
[X1,∇hY1 − [Φ, Y2]] + [⋆ξX

∗
2 ,∇hY2 + [Y1,Φ]] + [X∗

2 ,∇h ∗ Y2 + [Y1, ∗Φ]]
−[X∗

2 ,∇hY2 + [Y1,Φ]]− [⋆ξX
∗
2 ,∇hY1 − [Φ, Y2]] + [X∗

2 ,∇h ⋆ξ Y2 + [Y1, ⋆ξΦ]]

)
.

Proof. The second equality follows from the harmonicity of Y . We prove the first equality.
By the Hodge decomposition, we have(

d

dt
H(∇h,Φ)+c(t)

∣∣∣∣
t=0

)
Y =

d

dt
(H(∇h,Φ)+c(t)Y )

∣∣∣∣
t=0

= − d

dt
(Gc(t)∆1,(∇h,Φ)+c(t)Y )

∣∣∣∣
t=0

= − d

dt

(
Gc(t)

∣∣∣∣
t=0

)
∆1,(∇h,Φ)Y +G

d

dt
(∆1,(∇h,Φ)+c(t)Y )

∣∣∣∣
t=0

= −G d

dt
(∆1,(∇h,Φ)+c(t)Y )

∣∣∣∣
t=0

.

We now calculate d
dt (∆1,(∇h,Φ)+c(t)Y )|t=0.

d

dt
(∆1,(∇h,Φ)+c(t)Y )

∣∣∣∣
t=0

=
d

dt
(D1,(∇h,Φ)+c(t)D

∗
1,(∇h,Φ)+c(t)Y +D∗

2,(∇h,Φ)+c(t)D2,(∇h,Φ)+c(t)Y )

∣∣∣∣
t=0

= [X,D∗
1Y ]1 +D1[X,Y ]2 +D∗

2 [̃X,Y ] + [X,D2Y ]3

= D1[X,Y ]2 +D∗
2 [̃X,Y ].

Hence the claim is proved.

We now prove the Proposition. From the two Lemmas above, we have

Xg[(∇h,Φ)](Y, Z) =

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))

∣∣∣∣
t=0

, Z

)
L2

+

(
Y,

d

dt
(H(∇h,Φ)+c(t)Zc(t))

∣∣∣∣
t=0

)
L2

=

(
−D1G[X,Y ]2 −D∗

2G[̃X,Y ], Z

)
L2

+

(
Y,−D1G[X,Z]2 −D∗

2G[̃X,Z]

)
L2

= 0.

The last follows from the harmonicity of Y and Z.
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3.5.3 HyperKähler Structure on Mirr
BaHit

We use the same notation as the previous section. We assume thatMirr
BaHit is not an empty set.

We define almost complex structures I,J ,K on Mirr
BaHit. We first fix a (∇h,Φ) ∈ ABaHit. First, we show

that A1
B(u(E))⊕2 has the structure of the quaternion vector space. Next, we show that they induce a quaternion

structure to H1.
Let α = (α1, α2) ∈ A1

B(u(E))⊕2. We define I, J,K ∈ End(A1
B(u(E))⊕2) as follows

I

(
α1

α2

)
:=

(
⋆ξα1

− ⋆ξ α2

)
,

J

(
α1

α2

)
:=

(
−α2

α1

)
,

K

(
α1

α2

)
:=

(
− ⋆ξ α2

− ⋆ξ α1

)
.

By Proposition 3.3.1 and definition of I, J, and, K we can check that

I2 = J2 = K2 = −Id, K = IJ

and hence I, J,K defines a quaternion structure of A1
B(u(E))⊕2. To show that I, J,K induces a quaternion

structure to H1, we only need to check that I, J,K preserves KerD∗
1 ∩ KerD2. This can be shown by direct

computation. Note that for α = (α1, α2) ∈ A1
B(u(E))⊕2, we have

D∗
1α = ∇∗

hα1 +Φ∗α2

= − ⋆ξ ∇h ⋆ξ α1 − ⋆ξ[Φ, ⋆ξα2].
(3.20)

Hence by (3.6) and (3.20), α ∈ KerD∗
1 ∩KerD2 if and only if the following equations hold

∇h ⋆ξ α1 + [Φ, ⋆ξα2] = 0,

∇hα1 − [Φ, α2] = 0,

∇hα2 + [α1,Φ] = 0,

∇h ⋆ξ α2 + [α1, ⋆ξΦ] = 0.

(3.21)

Then it is easy to check that if α ∈ KerD∗
1∩KerD2, then Iα, Jα, andKα satisfies (3.21) and hence Iα, Jα,Kα ∈

KerD∗
1∩KerD2. Hence (H1, I, J,K) is a quaternion vector space. These I, J,K induce almost complex structures

toMirr
BaHit and we denote as I,J ,K for the corresponding almost complex structures. It is clear that I,J ,K

satisfies the quaternion relationship.
To compatibility of g with I,J ,K can be shown by using the following equality: Let A,B ∈ A1

B(u(E)).
Then we have

Tr(A ∧ ⋆ξB) = Tr(A1,0 ∧ ⋆ξB0,1) + Tr(A0,1 ∧ ⋆ξB1,0)

=
√
−1Tr(A1,0 ∧B0,1)−

√
−1Tr(A0,1 ∧B1,0)

= −Tr(⋆ξA1,0 ∧B0,1)− Tr(⋆ξA
0,1 ∧B1,0)

= −Tr(⋆ξA ∧B).

We now show (Mirr
BaHit, g, I,J ,K) is a hyperKäher manifold. Let ωI , ωJ , ωK be the corresponding Kähler

forms. We give the explicit form of ωI , ωJ , ωK for [(∇h,Φ)] ∈ Mirr
BaHit and α = (α1, α2), β = (β1, β2) ∈ H1 '

T[(∇h,Φ)]Mirr
BaHit for convinience.

ωI,[(∇h,Φ)](α, β) =

∫
M

Tr(α1 ∧ β1 − α2 ∧ β2) ∧ η,

ωJ ,[(∇h,Φ)](α, β) =

∫
M

Tr(α1 ∧ ⋆ξβ2 − α2 ∧ ⋆ξβ1) ∧ η,

ωK,[(∇h,Φ)](α, β) = −
∫
M

Tr(α1 ∧ β2 + α2 ∧ β1) ∧ η.
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Proposition 3.5.7. The Kähler form ωI onMirr
BaHit satisfies at α = 0 in a slice neighborhoodMirr

BaHit∩S(∇h,Φ),ϵ

XωI,[(∇h,Φ)](Y, Z) = 0

for every X,Y, Z ∈ T0(Mirr
BaHit ∩ S(∇h,Φ),ϵ) = H1.

Proof. We give the proof by direct computation.

XωI,[(∇h,Φ)](Y, Z) =
d

dt
ωI,[(∇h,Φ)+c(t)](Y c(t), Zc(t))

∣∣∣∣
t=0

=
d

dt
g[(∇h,Φ)+c(t)](Y c(t), IZc(t))

∣∣∣∣
t=0

=
d

dt

∫
M

Tr

(
(H(∇h,Φ)+c(t)Y c(t))1 ∧ (H(∇h,Φ)+c(t)Zc(t))1

)
∧ η

∣∣∣∣
t=0

− d

dt

∫
M

Tr

(
(H(∇h,Φ)+c(t)Y c(t))2 ∧ (H(∇h,Φ)+c(t)Zc(t))2

)
∧ η

∣∣∣∣
t=0

=

∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))1

∣∣∣∣
t=0

∧ Z1

)
∧ η +

∫
M

Tr

(
Y1 ∧

d

dt
(H(∇h,Φ)+c(t)Zc(t))1

∣∣∣∣
t=0

)
∧ η

−
∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))2

∣∣∣∣
t=0

∧ Z2)−
∫
M

Tr

(
Y2 ∧

d

dt
(H(∇h,Φ)+c(t)Zc(t))2

∣∣∣∣
t=0

)
∧ η.

Here (H(∇h,Φ)+c(t)Y c(t))i (resp. (H(∇h,Φ)+c(t)Zc(t))i) is the i-th componet of the H(∇h,Φ)+c(t)Y c(t) (resp.

H(∇h,Φ)+c(t)Zc(t)).
The following Claim will give us the proof of the Proposition.

Claim 3.5.1.∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))1

∣∣∣∣
t=0

∧ Z1) ∧ η −
∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))2

∣∣∣∣
t=0

∧ Z2) ∧ η = 0.

Proof. By Lemma 3.5.1 and 3.5.2, we have∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))1

∣∣∣∣
t=0

∧ Z1

)
∧ η

=

∫
M

Tr

(((
d

dt
H(∇h,Φ)+c(t)

∣∣∣∣
t=0

)
Y

)
1

∧ Z1

)
∧ η

=

∫
M

Tr

((
−D1G[X,Y ]2 −D∗

2G[̃X,Y ]

)
1

∧ Z1

)
∧ η

=

∫
M

Tr

((
−∇hG[X,Y ]2 −∇∗

h

(
G[̃X,Y ]

)
1
− [(⋆ξΦ)

∗]
(
G[̃X,Y ]

)
2
− [(⋆ξΦ)]

(
G[̃X,Y ]

)
3

)
∧ Z1

)
∧ η

=

(
−∇hG[X,Y ]2 −∇∗

h

(
G[̃X,Y ]

)
1
− [(⋆ξΦ)

∗,
(
G[̃X,Y ]

)
2
]− [Φ∗,

(
G[̃X,Y ]

)
3
], ⋆ξZ1

)
L2

=−
(
∇hG[X,Y ]2, ⋆ξZ1

)
L2

−
(
∇∗

h

(
G[̃X,Y ]

)
1
, ⋆ξZ1

)
L2

−
(
[(⋆ξΦ)

∗,
(
G[̃X,Y ]

)
2
], ⋆ξZ1

)
L2

−
(
[Φ∗,

(
G[̃X,Y ]

)
3
], ⋆ξZ1

)
L2

=−
(
G[X,Y ]2,∇∗

h ⋆ξ Z1

)
L2

−
((
G[̃X,Y ]

)
1
,∇h ⋆ξ Z1

)
L2

−
((
G[̃X,Y ]

)
2
, [⋆ξΦ, ⋆ξZ1]

)
L2

−
((
G[̃X,Y ]

)
3
, [Φ, ⋆ξZ1]

)
L2

.
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Here [X,Y ]2 is the map we defined in Lemma 3.5.2. We also have∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))2

∣∣∣∣
t=0

∧ Z2) ∧ η

=

∫
M

Tr

(((
d

dt
H(∇h,Φ)+c(t)

∣∣∣∣
t=0

)
Y

)
2

∧ Z2

)
∧ η

=

∫
M

Tr

((
−D1G[X,Y ]2 −D∗

2G[̃X,Y ]

)
2

∧ Z2

)
∧ η

=

∫
M

Tr

((
− [Φ, G[X,Y ]2] + [Φ∗,

(
G[̃X,Y ]

)
1
] + ⋆ξ∇∗

h

(
G[̃X,Y ]

)
2
−∇∗

h

(
G[̃X,Y ]

)
3

)
∧ Z2

)
∧ η

=−
(
G[X,Y ]2, [Φ∗, ⋆ξZ2]

)
L2

+

((
G[̃X,Y ]

)
1
, [Φ, ⋆ξZ2]

)
L2

−
∫
M

Tr

(
∇∗

h

(
G[̃X,Y ]

)
2
∧ ⋆ξZ2

)
∧ η −

((
G[̃X,Y ]

)
3
,∇h ⋆ξ Z2

)
L2

=−
(
G[X,Y ]2, [Φ∗, ⋆ξZ2]

)
L2

+

((
G[̃X,Y ]

)
1
, [Φ, ⋆ξZ2]

)
L2

−
((
G[̃X,Y ]

)
2
,∇h ⋆ξ ⋆ξZ2

)
L2

−
((
G[̃X,Y ]

)
3
,∇h ⋆ξ Z2

)
L2

.

Hence we have∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))1

∣∣∣∣
t=0

∧ Z1

)
∧ η −

∫
M

Tr

(
d

dt
(H(∇h,Φ)+c(t)Y c(t))2

∣∣∣∣
t=0

∧ Z2

)
∧ η

=−
(
G[X,Y ]2,∇∗

h ⋆ξ Z1

)
L2

−
((
G[̃X,Y ]

)
1
,∇h ⋆ξ Z1

)
L2

−
((
G[̃X,Y ]

)
2
, [⋆ξΦ, ⋆ξZ1]

)
L2

−
((
G[̃X,Y ]

)
3
, [Φ, ⋆ξZ1]

)
L2

+

(
G[X,Y ]2, [Φ∗, ⋆ξZ2]

)
L2

−
((
G[̃X,Y ]

)
1
, [Φ, ⋆ξZ2]

)
L2

−
((
G[̃X,Y ]

)
2
,∇h ⋆ξ ⋆ξZ2

)
L2

+

((
G[̃X,Y ]

)
3
,∇h ⋆ξ Z2

)
L2

=−
((
G[̃X,Y ]

)
2
, D∗

1IZ

)
L2

−
((
G[̃X,Y ]

)
1
,
(
D2IZ

)
1

)
L2

−
((
G[̃X,Y ]

)
2
,
(
D2IZ

)
3

)
L2

−
((
G[̃X,Y ]

)
3
,
(
D2IZ

)
2

)
L2

=0.

The last equation holds since I preserves H1.

The Proposition follows immediately from the Claim.

Integrability of I follows from Proposition 3.5.6 and 3.5.7: These two Propositions show that I is flat with
respect to the Levi-Civita connection of g and hence I is integrable. Although we only proved for I, we are
able to show the integrability of J and K in the same way as I. Hence we omit the proof. From the discussion
above, we have

Theorem 3.5.1. (Mirr
BaHit, g, I,J ,K) is a smooth hyperKähler manifold.

3.5.4 Dimention of Mirr
BaHit

In this section, we calculate the dimension ofMirr
BaHit. We calculate it under the assumption of M being regular

and E being regular. We recall the notion of regular for bundles later. We first prove the following proposition.

52



Proposition 3.5.8. Let E be a basic bundle over M with a basic metric h. Let (∇h,Φ) ∈ ABaHit and let
(∂E , θ) be the associated basic Higgs bundle (See Section 3.6.1). Then the map

f : A1
B(u(E))⊕2 −→ A1

B(EndE)

∈ ∈

(α1, α2) 7−→ α1 +
√
−1α2

induces an isomorphism
f : H1 → H1

BaDol.

Here H1 is the first cohomology of the complex (3.5) and H1
BaDol is the first cohomology of the following complex:

0 −→ AB(EndE)
∂E+θ−→ A1

B(EndE)
∂E+θ−→ A2

B(EndE) −→ 0.

Proof. It is enough to show that f induces an isomorphism

f : KerD∗
1 ∩KerD2 → Ker(∂E + θ)∗ ∩Ker(∂E + θ).

Here (∂E + θ)∗ is the L2 adjoint of ∂E + θ.
Let (α1, α2) ∈ A1

B(u(E))⊕2. We assume that (α1, α2) ∈ KerD∗
1 ∩ KerD2. We first show that f(α1, α2) =

α1 +
√
−1α2 ∈ Ker(∂E + θ)∗ ∩Ker(∂E + θ). By (3.6) and (3.20), we have

∇hα1 − [Φ, α2] = 0,(3.22)

∇hα2 + [α1,Φ] = 0,(3.23)

∇h ⋆ξ α2 + [α1, ⋆ξΦ] = 0,(3.24)

∇h ⋆ξ α1 + [Φ, ⋆ξα2] = 0.(3.25)

Note that from Lemma 3.4.2, (3.24) is equivalent to

(3.26) ∇h ⋆ξ α2 − [⋆ξα1,Φ] = 0.

Since ⋆ξ|A1,0
B (M) = −

√
−1IdA1,0

B (M) and ⋆ξ|A0,1
B (M) =

√
−1IdA0,1

B (M), by calculating (3.22) +
√
−1(3.25) and

(3.23) +
√
−1(3.26) we have

∇0,1
h α1,0

1 − [Φ1,0, α0,1
2 ] = 0,

∇0,1
h α1,0

2 + [α0,1
1 ,Φ1,0] = 0.

Since ∂E = ∇0,1
h and θ =

√
−1Φ1,0 (See Section 3.6.1), they show α1 +

√
−1α2 ∈ Ker(∂E + θ). By using a

similar argument, we can also show that α1 +
√
−1α2 ∈ Ker(∂E + θ)∗. Hence f(KerD∗

1 ∩KerD2) ⊂ Ker(∂E +
θ)∗ ∩Ker(∂E + θ) holds. We now construct the inverse of f and prove the claim. Let

g : A1
B(EndE) −→ A1

B(u(E))⊕2

∈ ∈

A 7−→ (
A−A†

h

2 ,−
√
−1A+A†

h

2 )

.

Here A†
h is the formal adjoint of A with respect to h. It is straightforward to check that f · g = Id and g · f = Id

holds. Hence, it is enough to show that g(Ker(∂E + θ)∗ ∩Ker(∂E + θ)) ⊂ KerD∗
1 ∩KerD2 to prove the claim.

Let A ∈ Ker(∂E + θ)∗∩Ker(∂E + θ). From [BH1], we have (∂E + θ)∗ = (∇0,1
h +

√
−1Φ1,0)∗ =

√
−1[Λ,∇1,0

h +√
−1Φ0,1]. Since A2,0

B (M) = A0,2
B (M) = 0, A satisfies the following equations

∇0,1
h A1,0 +

√
−1[Φ1,0, A0,1] = 0,(3.27)

Λ(∇1,0
h A0,1 +

√
−1[Φ0,1, A1,0]) = 0.(3.28)

We wedge dηIdE to the second equation and we obtain

(3.29) ∇1,0
h A0,1 +

√
−1[Φ0,1, A1,0] = 0.
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We take the formal adjoint of (3.27) and (3.29) with respect to h and obtain

∇1,0
h (A1,0)†h −

√
−1[Φ0,1, (A0,1)†h] = 0,(3.30)

∇0,1
h (A0,1)†h −

√
−1[Φ1,0, (A1,0)†h] = 0.(3.31)

We now prove that g(A) ∈ KerD∗
1 ∩ KerD2. We only prove that g(A) = (

A−A†
h

2 ,−
√
−1A+A†

h

2 ) satisfies (3.22).
The other can be proved by using the same argument below.

∇h

(
A−A†

h

2

)
+
√
−1

[
Φ,
A+A†

h

2

]
=∇1,0

h

(
A0,1 − (A1,0)†h

2

)
+∇0,1

h

(
A1,0 − (A0,1)†h

2

)
+
√
−1

[
Φ1,0,

A0,1 + (A1,0)†h
2

]
+
√
−1

[
Φ0,1,

A1,0 + (A0,1)†h
2

]
=0.

The last equation follows from (3.27), (3.29), (3.30) and (3.31).

From now on, we assume that (M, (T 1,0, S, I), (η, ξ)) is regular.
Let

φ : R×M →M, (t, x) 7→ φt(x)

be the flow generated by the Reeb vector field. Let E be a basic vector bundle of rank r. Then by [BH2], we
can define a natural action

Φ : R× E → E, (t, e) 7→ Φt(e)

such that they are compatible with the natural projection pE : E →M (i.e. pE ◦Φt = φt). Since M is regular,
the flow φ : R×M →M induces a free smooth action ψ : S1 ×M →M . This is equivalent to the existence of
a positive number r ∈ R such that φr(x) = 1 for all x ∈M . The minimum of all such rMin is called the period
of M . We assume rMin = 1 for simplicity. We say that E is quasiregular if Φ : R×E → E induces a S1-action
Ψ : S1 × E → E. This is equivalent to the existence of a positive integer m such that Φm = IdE . We say that
E is regular if it is quasi-regular and m = 1.

Let (E, ∂E , θ) be a basic Higgs bundle. We say that it is a regular basic Higgs bundle if E is regular. We
recall that there is a one-on-one correspondence between a regular basic Higgs bundle on M and a Higgs bundle
overM/S1 following [BH2]. Note that since M is regular, M/S1 is a Riemann surface. From now on we assume
the genus of M/S1 is bigger than 2.

We first review the construction of a regular basic Higgs bundle over M from a Higgs bundle over M/S1.

Let (Ẽ, ∂Ẽ , θ̃) be a Higgs bundle over M/S1. Let {Uα}α∈A be a open covering of M/S1. We assume that Ẽ is
trivialized over each Uα. Then we have a family of holomorphic transition function g̃αβ : Uα ∩ Uβ → GL(r,C)
such that it satisfies the 1-cocycle condition. Since M is the total space of a S1-bundle over M/S1, we can
regard {Uα×S1}α∈A as an open covering ofM . We define a family of maps gαβ : Uα×S1∩Uβ×S1 → GL(r,C)
as gαβ(x, t) := g̃αβ(x). This family defines a vector bundle E over M since it satisfies the 1-cocycle condition.
Since E is trivialized over each Uα × S1, E is regular and since the transition function is constant along the
S1-action, E is basic and finally, since g̃αβ is holomorphic, E is basic holomorphic. We can also show that ∂Ẽ
induces a basic holomorphic structure ∂E as follows: We assume that ∂Ẽ |Uα

= ∂+Ãα where Ãα ∈ A0,1(gl(r,C)).
Then Ãβ = g̃−1

αβ Ãαg̃αβ + g̃−1
αβ∂g̃αβ holds. We define Aα ∈ A0,1

B (gl(r,C)) as Aα(x, t) := Ãα(x). This satisfies

Aβ = g−1
αβAαgαβ + g−1

αβ∂ξgαβ . Here ∂ξ is the (0, 1)-part of d|A•
B(M). Hence {Aα}α∈A defines a (0, 1)-differential

operator ∂E and hence a basic holomorphic structure on E. We can also show that θ̃ induces a basic Higgs field
θ by using a similar argument.

We next review the converse construction. Let (E, ∂E , θ) be a regular basic Higgs bundle overM . SinceM is
the total space of a S1-bundle overM/S1 there exist an open cover of {Uα}α∈A ofM/S1 such that {Uα×S1}α∈A

is an open cover ofM . Since E is regular, we may assume E is trivialized over each {Uα×S1}α∈A after shrinking
Uα appropriately. Since E is basic, the transition function gαβ : Uα×S1 ∩Uβ ×S1 → GL(r,C) of E is constant

along S1. Hence gαβ reduces to the function on Uα ∩ Uβ and defines a vector bundle Ẽ on M/S1. We can use
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a similar argument above to show that ∂E and θ reduces to Ẽ and define a holomorphic structure ∂Ẽ and a

Higgs field θ̃ on Ẽ.
We now assume E is regular. We show that there exists a one-on-one correspondence between the space of

basic sections AB(E) over M and smooth sections A(Ẽ) over M/S1.
Let s ∈ AB(E). Then sα := s|Uα = (sα,1, . . . , sα,r) : Uα × S1 → Cr is a basic function. Hence sα reduces

to a function s̃α : Uα → Cr. We can glue {s̃α}α∈A and define a smooth section s over Ẽ. Conversely, let

s̃ ∈ A(Ẽ). Then s̃α := s̃|Uα
= (s̃α,1, . . . , s̃α,r) : Uα → Cr is a smooth function. We define sα : Uα × S1 → Cr as

sα(x, t) := s̃α(x). We can glue {sα}α∈A and define a smooth section s over E. Since sα is constant along S1, s
is basic. We define linear maps

p : AB(E)→ A(Ẽ),

q : A(Ẽ)→ AB(E)

as p(s) := s̃ and q(s̃) := s. p ◦ q = q ◦ p = Id is clear from the construction.

Proposition 3.5.9. Let (E, ∂E , θ) be a regular basic Higgs bundle over M and (Ẽ, ∂Ẽ , θ̃) be the induced Higgs
bundle over M/S1. Then p,q induces a morphism between complexes

p : (A•
B(E), ∂E + θ)→ (A(Ẽ), ∂Ẽ + θ̃),

q : (A(Ẽ), ∂Ẽ + θ̃)→ (A•
B(E), ∂E + θ).

Since p◦q = q ◦p = Id, p and q induce an isomorphism between the cohomologies. In particular, the dimensions
of the cohomologies of the two complexes are the same.

Proof. This is clear from the construction of p, q and (Ẽ, ∂Ẽ , θ̃).

Let h be a basic hermitian metric and let (∇h,Φ) ∈ Airr
BaHit. Then (E, ∂E := ∇0,1

h , θ :=
√
−1Φ1,0) is a

regular stable Higgs bundle (See Section 3.6.1). Since h is basic and E is regular, we can show that h induces

a metric h̃ on Ẽ by using the trivialization above. It is clear from the construction that h̃ is a harmonic metric
for (Ẽ, ∂Ẽ , θ̃). Hence (Ẽ, ∂Ẽ , θ̃) is polystable and degree 0. Assume that (Ẽ, ∂Ẽ , θ̃) is not stable. Then by [S1,

Proposition 3.3], there exists a sub Higgs bundle Ṽ ⊂ Ẽ such that (Ẽ, ∂Ẽ , θ̃) = (Ṽ , ∂Ṽ , θ̃V ) ⊕ (Ṽ ⊥, ∂Ṽ ⊥ , θ̃Ṽ ⊥)

holds and both Higgs bundles are stable and degree 0. Here Ṽ ⊥ is the orthogonal bundle of Ṽ . By applying
the above procedure to Ṽ , we obtain a sub Higgs bundle V ⊂ E. The harmonic metric h̃|Ṽ of Ṽ induces a

harmonic metric hV on V . Hence (V, ∂V , θV ) is degree 0. This contradicts to the stability of (E, ∂E , θ) and

hence (Ẽ, ∂Ẽ , θ̃) is stable.
Let H1

Dol be the first cohomology of the folllowing complex

0 −→ A(EndẼ)
∂EndẼ+θ̃
−→ A1(EndẼ)

∂EndẼ+θ̃
−→ A2(EndẼ) −→ 0.

Since E is regular, the dual E∨ is also regular, and so is EndE. We can apply Proposition 3.5.9 to EndE and
obtain H1

BaDol ' H1
Dol. By [N], dimCH1

Dol = 2(rkẼ)2(g − 1) + 2. Then combining Corollary Proposition 3.5.8
and 3.5.9, we obtain

Theorem 3.5.2. Let (M, (T 1,0, S, I), (η, ξ)) be a regular Sasakian threefold. Let E be a regular basic bundle
and h be a basic Hermitian metric. Let g be the genus of M/S1. Then

dimRMirr
BaHit = 4(rkE)2(g − 1) + 4.

3.6 Appendix

3.6.1 Basic Higgs bundle

Throughout this section, let (M, (T 1,0, S, I), (η, ξ)) be a compact Sasakian manifold.
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Let E be a basic vector bundle over M . We say that E is transverse holomorphic if there exists a local
trivialization {Uα}α∈A of E such that the associated transition function gαβ : Uα ∩ Uβ → GLr(C) is basic and
holomorphic (i.e. iξdgαβ = 0 and ∂ξgαβ = 0). For a transversely holomorphic vector bundle E over M , we
define the Dolbeult operator

∂E : AB(E)→ A0,1
B (E)

∂E |Uα
:= ∂ξ.

This is well defined since the transition function is holomorphic and satisfies ∂E∂E = 0. It is canonically
extended to ∂E : Ap,q

B (E)→ Ap,q+1
B (E) and satisfies the Leibniz rule:

∂E(ω ∧ s) = ∂ξω ∧ s+ (−1)p+qω ∧ ∂Es.

Conversely, if we have an operator ∂E : Ap,q
B (E) → Ap,q+1

B (E) such that it satisfies ∂E∂E = 0 and the Leibniz
rule, ∂E defines a transverse holomorphic structure by the Frobenius theorem ([Ko]).

Definition 3.6.1. Let (M, (T 1,0, S, I), (η, ξ)) be a compact Sasakian manifold. A basic Higgs bundle (E, ∂E , θ)
over X is a pair such that

• E is basic and (E, ∂E) is a transverse holomorphic bundle.

• θ ∈ A1,0
B (EndE), ∂Eθ = 0, and θ ∧ θ = 0.

We call θ a Higgs fields.

Let (E, ∂E , θ) be a basic Higgs bundle on M and h be a basic hermitian metric.
We define a connection ∇h : A(E)→ A1(E) as follows: Let e1,α, . . . , er,α be a local holomorphic frame of E

on Uα and Hα := (h(ei,α, ej,α)1⩽i,j⩽r). We define

∇h|Uα
:= d+H−1

α ∂ξHα.

This is well defined and since h is basic, ∇h is a basic connection. ∇h is also a h-unitary connection. Note that
∇0,1

h = ∂E .

Let θ†h be the formal adjoint of θ: For every section u, v ∈ A(E),

h(θu, v) = h(u, θ†hv)

holds. We define a connection Dh := ∇h + θ+ θ†h. This is a basic connection. Let FDh
be the curvature of Dh.

We say that h is Hermitie-Einstein if
ΛF⊥

Dh
= 0.

Here ΛF⊥
Dh

is the trace-free part of FDh
.

The existence of Hermitie-Einstein metric is related to the stability of the Higgs bundle. We now recall the
them following [BHe2, BS].

Let (E, ∂E , θ) be a basic Higgs bundle onM . Let OB be the sheaf of basic holomorphic functions and OB(E)
be the sheaf of basic holomorphic sections of E. A sub Higgs sheaf of (E, ∂E , θ) is a coherent OB-subsheaf V of
OB(E) such that θ(V) ⊂ V ⊗ Ω1

B . Here Ω1
B is the sheaf of basic holomorphic 1-form. By [BHe2], if rkV < rkE

and OB(E)/V is torsion-free, then there is a transversely analytic sub-variety S ⊂M of complex co-dimension
at least 2 such that V|M\S is a transverse holomorphic bundle on M\S. We define the degree of V as the degree
of V|M\S .

Definition 3.6.2. A basic Higgs bundle (E, ∂E , θ) is stable if

• E admits a basic hermitian metric h.

• For every sub-Higgs sheaf V ⊂ OB(E) such that rkV < rkE and OB(E)/V is torsion-free,

deg(V)
rkV

<
deg(E)

rkE
.

holds.
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We say that (E, ∂E , θ) is polystable if

(E, ∂E , θ) =
⊕
i

(Ei, ∂Ei
, θi)

where each (Ei, ∂Ei , θi) is stable and
deg(E)

rkE
=

deg(Ei)

rkEi
.

Proposition 3.6.1 ([BH1, Theorem 5.2, Proposition 5.3.]). For a stable basic Higgs bundle (E, ∂E , θ) over a
compact Sasakian manifold (M, (T 1,0, S, I), (η, ξ)), there exsit a basic hermitian metric h such that Dh satisfies

ΛF⊥
Dh

= 0.

Note that h is a Hermite-Einstein metric.
Moreover, if c1,B(E) = c2,B(E) = 0, then Dh is flat (i.e. FDh

= 0).

If we assume some conditions for the degree of the bundle, we have the converse.

Proposition 3.6.2 ([BHe2, Theorem 4.7.],[BH1, Proposition 7.1.]). Let (E, ∂E , θ) be a basic Higgs bundle over
a compact Sasakian manifold (M, (T 1,0, S, I), (η, ξ)) with a deg(E) = 0. Suppose that h is a basic Hermitian
metric on E with ΛFDh

= 0. Then (E, ∂E , θ) is a direct sum of stable basic Higgs bundles of degree zero.

Basic Higgs bundles and Basic Hitchin equation

In this section, we clarify the relation between a stable basic Higgs bundle and an irreducible basic Hitchin pair.
Let (∇h,Φ) ∈ Airr

BaHit. (E,∇
0,1
h ,
√
−1Φ1,0) is a basic Higgs bundle. We show that this Higgs bundle is stable

with degree 0. Since Φ ∈ A1
B(u(E)), we have

Φ0,1 = −(Φ1,0)†h.

Here (Φ1,0)†h is the formal adjoint of Φ1,0. Since ∇h is a metric connection and ∇0,1
h Φ1,0 = 0, we have

∇1,0
h Φ0,1 = −∇1,0

h (Φ1,0)†h = 0.

HenceD = ∇h+
√
−1Φ is a flat bundle and deg(E) = 0. Stability of (E,∇0,1

h ,
√
−1Φ1,0) follows form Proposition

3.6.2 and irreducibilty of (∇h,Φ).
Let (E, ∂E , θ) be a stable basic Higgs bundle of degree 0. Then by Proposition 3.6.1, there exists a basic

hermitian metric h such that the connection D = ∇h + θ+ θ†h is flat. Let Φ := −
√
−1(θ+ θ†h). Then (∇h,Φ) is

an irreducible Hitchin pair.
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Chapter 4

Harmonic Bundles with Symplectic
Structures

4.1 Abstract of Chapter 4

We study harmonic bundles with an additional structure called symplectic structure. We study them for the
case of the base manifold is compact and non-compact. For the compact case, we show that a harmonic bundle
with a symplectic structure is equivalent to principle Sp(2n,C)-bundle with a reductive flat connection. For the
non-compact case, we show that a polystable good filtered Higgs bundle with a perfect skew-symmetric pairing
is equivalent to a good wild harmonic bundle with a symplectic structure.

4.2 Introduction of Chapter 4

4.2.1 Harmonic bundles on non-compact manifolds

As we explained in the introduction, the study of harmonic bundles for the non-compact case was initiated
in [S1, S2]. Simpson studied them on curves and when the Higgs field has the singularity called tame. He
established the non-Abeian Hodge Correspondence (or Kobayashi-Hitchin correspondence) in this case. In
[BB], Biquard-Boalch studied the harmonic bundles on curves when the Higgs field admits a singularity called
wild and proved the correspondence. In [M2, M3], Mochizuki fully generalized the correspondence for the higher
dimensional case.

Theorem 4.2.1 ([BB, M2, M3, S1, S2]). Let X be a smooth projective variety, H be a normal crossing divisor
of X, and L be an ample line bundle of X. Let (E, ∂E , θ, h) be a good wild harmonic bundle on X −H. Then
(Ph

∗E, θ) is a µL-polystable good filtered Higgs bundle with µL(Ph
∗E) = 0 and

∫
X
ch2(Ph

∗E)c1(L)
dimX−2 = 0.

Conversely, let (P∗V, θ) be a µL-polystable good filtered Higgs bundle satisfying the following vanishing con-
dition:

(4.1) µL(P∗V) = 0,

∫
X

ch2(P∗V)c1(L)dimX−2 = 0.

Let (E, ∂E , θ) be the Higgs bundle which we obtain from the restriction of (P∗V, θ) to X −H. Then there exists
a pluri-harmonic metric h for (E, ∂E , θ) such that (V, θ)|X\H ' (E, θ) extends to (P∗V, θ) ' (Ph

∗E, θ).

4.2.2 Harmonic Bundles with Symplectic Structures

Results

We first state the main results of this chapter. Let X be a smooth projective variety over C and H ⊂ X be a
normal crossing divisor.
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Theorem 4.2.2 (Theorem 4.5.1). The following objects are equivalent on (X,H)

• Good wild harmonic bundles with a symplectic structure.

• Good filtered polystable Higgs bundles equipped with a perfect skew-symmetric pairing satisfying the van-
ishing condition (4.1).

Symplectic structures for harmonic bundles are defined in Section 4.3. Roughly speaking, it is a skew-
symmetric pairing of a vector bundle and is compatible with the Higgs field and the metric. Notions of filtered
bundles and pairings of them are recalled in Section 4.4 and 4.5.

We explain the outline of the proof of Theorem 4.2.2 in the next section. We can regard this result as a
Kobayashi-Hitchin correspondence with skew-symmetry.

Outline of proof

The contents here are written in Section 4.4 and 4.5.
Let X be a smooth projective variety and H be a normal crossing divisor. Let (E, ∂E , θ, h) be a good

wild harmonic bundle on X − H and (P∗V, θ) be a good filtered Higgs bundle on (X,H). In the latter half
of this chapter, we study the good wild harmonic bundles and good filtered Higgs bundles when they admit a
symplectic structure and a perfect skew-symmetric pairing.

A perfect skew-symmetric pairing ω on (P∗V, θ) is a morphism of filtered bundle

ω : P∗V ⊗ P∗V → P(0)
∗ (OX(∗H))

such that it is skew-symmetric and induces an isomorphism Ψω : (P∗V, θ) → (P∗V∨,−θ∨). See Section 4 for
more details on the pairing of filtered bundles.

In section 4.5.2, we show that when the good wild harmonic bundle admits a symplectic structure, then the
good filtered Higgs bundle obtained by prolongation admits a perfect skew-symmetric pairing:

Proposition 4.2.1 (Proposition 4.5.1). Let (E, ∂E , θ, h) be a good wild harmonic bundle equipped with sym-
plectic structure ω. Then (Ph

∗E, θ) is a µL-polystable good filtered Higgs bundle equipped with a perfect skew-
symmetric pairing ω and satisfies the vanishing condition (4.1).

We show that the converse also holds. In section 4.5.3, we study the structure of a good filtered Higgs
bundle with a perfect skew-symmetric pairing and show that it admits a pluri-harmonic metric compatible with
pairings. This completes the proof of Theorem 4.2.2.

Proposition 4.2.2 (Proposition 4.5.2 and 4.5.3). Let (P∗V, θ) be a µL-polystable good filtered Higgs bundle
equipped with perfect skew-symmetic pairing ω and satisfies the vanishing condition (4.1). Then there exist stable

Higgs bundles (P∗V(0)
i , θ

(0)
i ) (i = 1, . . . , p(0)), (P∗V(1)

i , θ
(1)
i ) (i = 1, . . . , p(1)) and (P∗V(2)

i , θ
(2)
i ) (i = 1, . . . , p(2))

of degree 0 on X such that the following holds.

• (P∗V(0)
i , θ

(0)
i ) is equipped with a symmetric pairing P

(0)
i .

• (P∗V(1)
i , θ

(1)
i ) is equipped with a skew-symmetric pairing P

(1)
i .

• (P∗V(2)
i , θ

(2)
i ) 6' (P∗V(2)

i ,−θ(2)i )∨.

• There exists positive integers l(a, i) and an isomorphism

(P∗V , θ) '
p(0)⊕
i=1

(P∗V(0)
i , θ

(0)
i )⊗ C2l(0,i)⊕

p(1)⊕
i=1

(P∗V(1)
i , θ

(1)
i )⊗ Cl(1,i)

⊕
p(2)⊕
i=1

((
(P∗V(2)

i , θ
(2)
i )⊗ Cl(2,i)

)
⊕

(
(P∗V(2)

i ,−θ(2)i )∨ ⊗ (Cl(2,i))∨
))
.

Under this isomorphism, ω is identified with the direct sum of P
(0)
i ⊗ωC2l(0,i) , P

(1)
i ⊗CCl(1,i) and ω̃

(E
(2)
i ,θ

(2)
i )
⊗

CCl(2,i)
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• (P∗V(a)
i , θ

(a)
i ) 6' (P∗V(a)

j , θ
(a)
j ) (i 6= j) for a=0,1,2, and (P∗V(2)

i , θ
(2)
i ) 6' (P∗V(2)

j ,−θ(2)j )∨ for any i, j.

Moreover, there exists a harmonic metric h on (V, θ)|X\D such that (i) h is adapted to P∗V, (ii) it is compatible
with ω.

We give more details on the harmonic metric in Proposition 4.5.3. Theorem 4.2.2 is proved by combining
Proposition 4.2.1 and 4.2.2.

Relation to other works

In [LM1], Li and Mochizuki studied harmonic bundles with an additional structure called real structure. A real
structure is a holomorphic non-degenerate pairing of the given bundle such that the Higgs field is symmetric
with it and the harmonic metric is compatible. Although they focused on the study of generically regular
semisimple Higgs bundle, they also obtained the Kobayashi-Hitchin correspondence with symmetry.

Theorem 4.2.3 ([LM1, Theorem 3.28]). Let X be a compact Riemann surface and D ⊂ X be a divisor. Then
the following objects are equivalent on (X,D).

• Wild harmonic bundles on (X,D) with a real structure.

• Polystable good filtered Higgs bundles of degree 0 equipped with a perfect symmetric pairing.

Although they only proved for the Riemann surface case, generalization to higher dimensions is straightfor-
ward.

In Section 4.3, we study the compact case. In [S3], Simpson established the one-on-one correspondence for
reductive flat principal G-bundle and semistable G-Higgs bundle. Here, we assume G to be a complex reductive
algebraic Lie group. Hence Section 4.3 is a detailed version for G = Sp(2n,C).

4.3 Harmonic bundles with symplectic structure

4.3.1 Skew-symmetric pairings of vector spaces

Let V be a complex vector space of dimension n. We fix a hermitian metric h on V . Let V ∨ be the dual of V .
From a hermitian metric h we have an anti-linear map:

Ψh : V → V ∨

defined as Ψh(u)(v) := h(v, u) for u, v ∈ V.
We have an induced hermitian metric h∨ on V ∨ defined as

h∨(u∨, v∨) := h(Ψ−1
h (v∨),Ψ−1

h (u∨)).

Let ω be a non-degenerate skew-symmetric bilinear form on V . We obtain a linear map,

Ψω : V → V ∨

defined as Ψω(u)(v) := ω(u, v).
We have an induced skew-symmetric bilinear form ω∨ on V ∨ defined as,

ω∨(u∨, v∨) := ω(Ψ−1
ω (u∨),Ψ−1

ω (v∨)).

Definition 4.3.1. Let (V, h) be a vector space with hermitian metric. Let ω be a non-degenerate skew-symmetric
bilinear form on V . ω is compatible with (V, h) if

Ψω : (V, h)→ (V ∨, h∨)

is an isometry.
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The following Lemma was proved in [LM1] without proof. We give the proof for convenience.

Lemma 4.3.1. The following conditions are equivalent

• h is compatible with ω.

• Ψh∨ ◦Ψω = Ψω∨ ◦Ψh.

• ω(u, v) = ω∨(Ψh(u),Ψh(v)) for any u, v ∈ V .

Proof. For a matrix A, we denote the transpose of it as AT . Let< e1, . . . , en > be a basis of V and< e∨1 , . . . , e
∨
n >

be the dual basis of V ∨. Let H := (h(ei, ej))1≤i,j≤n, Ω := (ω(ei, ej))1≤i,j≤n. The representation matrix of Ψh

is H, Ψh∨ is (H−1)T , Ψω is ΩT and Ψω∨ is Ω−1.

When h is compatible with ω, then (H−1)T = Ω−1HΩ−1
T

stands. Ψh∨ ◦ Ψω = Ψω∨ ◦ Ψh is equivalent

to (H−1)TΩT = Ω−1H. The third condition is equivalent to the equality ΩT = HTΩ−1H. Hence the three
conditions are equivalent.

4.3.2 Harmonic bundles with symplectic structure

Let X be a complex manifold and (E, ∂E , θ) be a Higgs bundle on X.

Definition 4.3.2. Let (E∨, ∂E∨) be the dual holomorphic bundle of (E, ∂E). A skew-symmetric pairing ω of
E is a global holomorphic section of E∨ ⊗E∨ such that ω(u, v) = −ω(v, u) holds for any section u, v of E. We
say that ω is perfect if the induced morphism Ψω : E → E∨ is an isomorphism.

We note that when a holomorphic bundle has a perfect symplectic pairing, the rank of it is even.

Definition 4.3.3. A skew-symmetric pairing ω of the Higgs bundle (E, ∂E , θ) is a skew-symmetric pairing of
(E, ∂E) such that ω(θ ⊗ Id) = −ω(Id ⊗ θ) holds. We call ω perfect if it is a perfect skew-symmetric pairing of
(E, ∂E).

A skew-symmetric pairing ω for (E, ∂E , θ) induces a morphism Ψω : (E, θ) → (E∨,−θ∨). Here θ∨ is the
Higgs field of E∨ induced from θ.

Remark 4.3.1. A Higgs bundle with a skew-symmetric pairing is called Sp(2n,C)-Higgs bundle in [GGM].

Definition 4.3.4. A symplectic structure ω of the harmonic bundle (E, ∂E , θ, h) is a perfect skew-symmetric
pairing of (E, ∂E , θ) such that h|P is compatible with ω|P for any P ∈ X.

4.3.3 Harmonic metrics on Principal G-bundles

Let G be a Lie group. In this section, we briefly review harmonic metrics on the principal G-bundle. Let X be
a Riemannian manifold.

Definition 4.3.5. Let P → X be a principal G-bundle and ∇ be a flat connection on it. ∇ is called reductive
if the corresponding representation ρ : π1(M)→ G is semisimple.

Let K ⊂ G be a maximal compact subgroup and let PK be a K-reduction of P . When P admits a flat
connection ∇, to give a K-reduction PK is equivalent to give a π1(X)-equivalent smooth map

f : X̃ → G/K.

Here X̃ is the universal covering of X.
The following result was proved by Donaldson [Do] (when X is a compact Riemann surface and G =

SL(2,C)), Corlette [Co] (when X is compact and for semisimple Lie groups) and Simpson [S4] (when X is
compact and for algebraic reductive groups).

Theorem 4.3.1 ([Co, Do, S4]). Suppose X to be compact. Let P → X be a principal G-bundle with a flat

connection ∇. Then there exists a π1(X)-equivalent harmonic map f : X̃ → G/K if and only if ∇ is reductive.
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From now on, we assume X to be a compact Kähler manifold. Let π : G→ GL(V ) be a linear representation.
We briefly recall how to induce a Higgs bundle structure to E := P ×π V from a principle G-bundle with a
reductive flat connection ∇. See [S4] for details. Let D be the induced flat connection of E. The harmonic map
f induces a metric h on E. Let D = Dh + ϕ be the decomposition such that Dh is the metric connection and
ϕ is self-adjoint w.r.t. h. Let D0,1

h be the (0,1)-part of Dh and θ be the (1,0)-part of ϕ. The harmonicity of f

implies that D0,1
h ◦D

0,1
h = 0 and D0,1

h θ = 0. Hence we obtain a harmonic bundle (E,D0,1
h , θ, h).

4.3.4 Harmonic bundles and Principal Sp(2n,C)-Bundles

Throughout this section, we assume X to be a compact Kähler manifold. In this section, we prove the following:

Proposition 4.3.1. Let X be a compact Kähler manifold. The following objects are equivalent on X.

• Polystable Higgs bundle of rank 2n with vanishing Chern classes equipped with a perfect skew-symmetric
pairing.

• Harmonic bundle of rank 2n equipped with a symplectic structure.

• Principal Sp(2n,C)-bundle with a reductive flat connection.

Proof. The equivalence of the first two objects is a consequence of Corollary 4.5.1. We give the proof of the
equivalence of the last two objects in the end of the section.

To prove Proposition 4.3.1, we prepare some Propositions.

Lemma 4.3.2. Let (E, ∂E) be a holomorphic bundle of rank 2n on X and ω be a perfect skew-symmetric pairing
of it. Let PE → X be the principal GL(2n,C)-bundle associated to E. Then PE has a reduction to PE,Sp(2n,C)
such that PE,Sp(2n,C) → X is a principal Sp(2n,C)-bundle.

Proof. To prove the claim, it is enough to prove that there exists an open covering {Ui}i∈Λ and a family of
section {(ek,i)2nk=1}i∈Λ of E such that

• (ek,i)
2n
k=1 is a frame of E on Ui,

• The family of transition function {gij}i,j∈Λ associated to {(ek,i)2nk=1}i∈Λ takes value in Sp(2n,C).

To show such an open covering and frames exists, we only have to show that there exists an open covering
{Ui}i∈Λ of X and on each Ui, we have a frame (ek,i)

2n
k=1 of E such that w.r.t (ek,i)

2n
k=1, ω|Ui

has the form

ω|Ui =

n∑
k=1

(
e∨k,i ⊗ e∨k+n,i − e∨k+n,i ⊗ e∨k,i

)
.

Here, e∨k,i is the dual frame of ek,i. We note that ω|Ui(e1,i, e1,i) . . . ω|Ui(e1,i, e2n,i)
...

. . .
...

ω|Ui(e2n,i, e1,i) . . . ω|Ui(e2n,i, e2n,i)

 = Jn :=

(
O In
−In O

)
.

Here In is the n× n identity matrix. Once we showed such frames exist, then the transition functions obiously
take value in Sp(2n,C).

We now prove that such frames exist around any P ∈ X. Let UP be an open neighborhood of P and (ek)
2n
k=1

be a frame of E on UP . Since ω is perfect, there exists a ek(k 6= 1) such that ω(e1, ek)|P 6= 0. We may shrink
UP so that ω(e1, ek) does not take 0 in UP . We may also permute (ek)

2n
k=1 so we can assume ω(e1, en+1) does

not take 0 in UP . Under this assumption, we construct a new frame (e′k)
2n
k=1 as

e′1 := e1,

e′n+1 := − e1
ω(e1, en+1)

,

e′k := ek − ω(ek, e′n+1)e
′
1 + ω(ek, e

′
1)e

′
n+1(k : otherwise).
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By direct calculation, we can check ω(e′1, e
′
n+1) = 1 and ω(e′k, e

′
1) = ω(e′k, e

′
n+1) = 0(k 6= 1, n+ 1). It is easy to

see that (e′k)
2n
k=1 is actually a frame.

By the same argument as above for e′2, we can assume that ω(e′2, e
′
n+2) does not take 0 in UP . We construct

a new frame (e
′′

k)
2n
k=1 as

e
′′

1 := e′1,

e
′′

n+1 := e
′

n+1,

e
′′

2 := e′2,

e
′′

n+2 := − e′2
ω(e′2, e

′
n+2)

,

e
′′

k := e′k − ω(e′k, e
′′

n+2)e
′′

2 + ω(e′k, e
′′

2 )e
′′

n+2(k : otherwise).

By direct calculation, we can check ω(e
′′

i , e
′′

n+i) = 1(i = 1, 2) and ω(e
′′

k , e
′′

i ) = ω(e
′′

k , e
′′

n+i) = 0(i = 1, 2, k 6=
1, 2, n+ 1, n+ 2). Continuing this procedure, we finally obtain a frame (ẽk)

2n
k=1 on UP such that ω|UP

(ẽ1, ẽ1) . . . ω|UP
(ẽ1, ẽ2n)

...
. . .

...
ω|UP

(ẽ2n, ẽ1) . . . ω|UP
(ẽ2n, ẽ2n)

 = Jn.

We can construct such a frame around for arbitrary P ∈ X. Hence we proved the claim.

We set Sp(2n) := Sp(2n,C)∩U(2n). Here U(2n) is the set of unitary matrices. Sp(2n) is a maximal compact
subgroup of Sp(2n,C).

Lemma 4.3.3. Let (E, ∂E , θ, h) be a harmonic bundle of rank 2n on X and ω be a symplectic structure of it.
Then the associated principal Sp(2n,C)-bundle PE,Sp(2n,C) admits a reductive flat connection ∇.

Proof. Since h is a pluri-harmonic metric, the connection ∇h = ∂h+∂E+θ+θ†h is a flat connection. Let {Ui}i∈Λ

and {(ek,i)2nk=1}i∈Λ be the open cover and the frame which we constructed in Proposition 4.3.2. Let sp(2n,C) be
the Lie algebra of Sp(2n,C). To prove the claim, first, we show that the connection form of ∇h w.r.t (ek,i)

2n
k=1 is

a sp(2n,C)-valued 1-form on Ui. Once this is shown, since the transition functions of {(ek,i)2nk=1}i∈Λ take value
in Sp(2n,C), we obtain a connection form on PE,Sp(2n,C) and hence it induces a connection ∇. The flatness
of ∇ follows from the flatness of ∇h. Reductiveness of ∇ follows from h: From Lemma 4.3.4, we know that h
defines a Sp(2n)-reduction of PE,Sp(2n,C). Since ∇ is flat, h induces a map fh : X̃ → Sp(2n,C)/Sp(2n). fh is
harmonic since h is a pluri-harmonic metric. Reductiveness of ∇ follows immediately.

Let Ai be the connection form of ∇h w.r.t. (ek,i)
2n
k=1. Let hi be a n× n matrix such that

hi :=

 h|Ui
(e1,i, e1,i) . . . h|Ui

(e1,i, e2n,i)
...

. . .
...

h|Ui
(e2n,i, e1,i) . . . h|Ui

(e2n,i, e2n,i)

 .

From the standard argument of the connections, we have

Ai = h−1
i ∂hi + θ|Ui

+ θ†h|Ui
= h−1

i ∂hi + θ|Ui
+ h−1

i θT |Ui
hi.

We show that Ai takes value in sp(2n,C). First, we show that θ|Ui
takes value in sp(2n,C). Recall that the

local description of ω w.r.t. (ek,i)
2n
k=1 is Jn. Since ω(θ ⊗ Id) = −ω(Id⊗ θ) holds,

θT |UiJn = −Jnθ|Ui

holds. Hence we showed it.
We next prove hi takes value in Sp(2n,C). Once this is shown, then it is obvious that θ†h|Ui = h−1

i θT |Uihi
takes value in sp(2n,C). We also can show that h−1

i ∂hi takes value in it: Suppose hi takes value in Sp(2n,C).
Then we have the following

hTi Jnhi = Jn.
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Then we have

hTi = −Jnh−1
i Jn,

hi = −Jn(h−1
i )TJn,

∂hTi Jnhi + hTi Jn∂hi = 0.

Hence we have

0 = ∂hTi Jnhi + hTi Jn∂hi
= ∂hTi Jn(−Jn(h−1

i )TJn) + (−Jnh−1
i Jn)Jn∂hi

= ∂hTi (h
−1
i )TJn + Jnh−1

i ∂hi.

Since (h−1
i ∂hi)

T = ∂hTi (h
−1
i )T , h−1

i ∂hi takes value in sp(2n,C). We now prove hi takes value in Sp(2n,C). Let
(e∨k,i)

2n
k=1 be the dual frame of (ek,i)

2n
k=1, h

∨ be the dual metric of h, and ω∨ be the dual of ω. Then the matrix

realizations of h∨ w.r.t to (e∨k,i)
2n
k=1 is (h−1

i )T . Since ω is compatible with h we can use Lemma 4.3.1 and hence
we have

(h−1
i )T = JnhiJ T

n .

Hence we have
Jn = hTi Jnhi.

This shows that hi takes value in Sp(2n,C).

Let M(2n,C) be the set of 2n× 2n-matrix, p ⊂M(2n,C) be the set of hermitian matrix, and p+ ⊂ p be the
set of positive definite ones. As it is well known the standard exponential map

exp : p→ p+

is a real analytic isomorphism. We set log := (exp)−1.
Although the following Lemma might be well known to experts, we give the proof for convenience.

Lemma 4.3.4. Let E be a complex vector bundle, h be a hermitian metric, and ω be a smooth perfect skew-
symmetric structure. We assume h is compatible with ω. Under this assumption, h defines a Sp(2n)-reduction
PE,Sp(2n) of PE,Sp(2n,C).

Proof. In Proposition 4.3.2, we constructed an open cover {Ui}i∈Λ and a family of frame {(ek,i)2nk=1}i∈Λ such that
its transition functions {gij}i,j∈Λ takes value in Sp(2n,C). We recall that {gij}i,j∈Λ constructs PE,Sp(2n,C). To
prove h induces a Sp(2n)-reduction, it is enough to show that on each Ui, h defines a function si : Ui → Sp(2n,C)
such that if Ui ∩ Uj 6= ∅

s−1
i (x)gij(x)sj(x) ∈ Sp(2n), x ∈ Ui ∩ Uj

holds. Actually, if we set g′ij = s−1
i gijsj , then it is easy to check that {g′ij}i,j∈Λ defines a principal Sp(2n)-bundle

which is a reduction of PE,Sp(2n,C).
We now construct si. Let hi be the matrix realization of h w.r.t. (ek,i)

2n
k=1 as in Proposition 4.3.3. We

showed that hi takes value in Sp(2n,C). We set

si := exp

(
loghi
2

)
.

loghi makes sense since hi is a positive definite hermitian matrix. Since hi takes value in Sp(2n,C), loghi takes
value in sp(2n,C). Hence si is a Sp(2n,C)-valued smooth function on Ui.
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We next show that s−1
i gijsj ∈ U(n). We show this by direct calculation. Before going to the calculation we

note that if Ui ∩ Ui 6= ∅, then hi = gijhjg
T
ij .

s−1
i gijsj

T
s−1
i gijsj = sjgij

T s−1
i s−1

i gijsj

= sjgij
T exp

(
− loghi

2

)
exp

(
− loghi

2

)
gijsj

= sjgij
Th−1

i gijsj

= sjh
−1
j sj

= sjexp

(
− loghj

2

)
exp

(
− loghj

2

)
sj

= In.

The first equation holds since hi is hermitian. Since si is Sp(2n,C)-valued, s−1
i gijsj takes value in Sp(2n). The

claim is proved.

Let i : Sp(2n,C)→ GL(2n,C) be the standard representaion of C2n.

Lemma 4.3.5. Let P → X be a principal Sp(2n,C)-bundle. Then the associated bundle E := P ×i C2n admits
a smooth perfect skew-symmetric pairing ω.

Proof. By the definition of E, we have an open covering {Ui}i∈Λ of X and on each Ui, we have a frame (ek,i)
2n
k=1

of E such that the associated tranisition functions {gij}i,j∈Λ takes value in Sp(2n,C). We define a section ωi

of E∨ ⊗ E∨|Ui
as

ωi :=

n∑
k=1

(
e∨k,i ⊗ e∨k+n,i − e∨k+n,i ⊗ e∨k,i

)
.

Here, e∨k,i is the dual frame of ek,i. We note that ωi(e1,i, e1,i) . . . ωi(e1,i, e2n,i)
...

. . .
...

ωi(e2n,i, e1,i) . . . ωi(e2n,i, e2n,i)

 = Jn.

Since the transition function {gij}i,j∈Λ takes value in Sp(2n,C), ωi|Ui∩Uj
= ωj |Ui∩Uj

holds. Hence we can glue
them and construct a global section ω of E∨ ⊗ E∨ such that ω|Ui = ωi. By the local description of ω, it is a
smooth perfect skew-symmetric pairing.

Lemma 4.3.6. Let P → X a principle Sp(2n,C)-bundle with a reductive flat connection ∇. Then we obtain a
harmonic bundle (E, ∂E , θ, h) and it has a symplectic structure ω.

Proof. By the previous proposition, we have a smooth bundle E with a smooth perfect skew-symmetric pairing
ω. Since ∇ is a reductive a flat bundle, we have a π1(X)-equivalent harmonic map f : X̃ → Sp(2n,C)/Sp(2n).
f induces a hermitian metric h on E and by construction, it is compatible with ω.

Let D∇ be the flat bundle of E induced by ∇. We have a decomposition D∇ = Dh + ϕ such that Dh is a
metric connection and ϕ is self-adjoint w.r.t. h. Let θ be the (1, 0)-part of ϕ. Since ϕ is self-adjoint we have

the decomposition ϕ = θ + θ†h. As we recalled in the previous section, the reductiveness of ∇ implies that

D0,1
h ◦D

0,1
h = 0 and D0,1

h θ = 0. Hence (E,D0,1
h , θ, h) is a harmonic bundle.

Next, we show that θ is compatible with ω. Let (ek,i)
2n
k=1 be the frame that we used in the last proposition,

and let Ai be the connection matrix of D∇ w.r.t. (ek,i)
2n
k=1 (i.e. D∇ = d+Ai locally). Note that Ai takes value

in sp(2n,C). We briefly recall how we obtain the decomposition D∇ = Dh + ϕ. Let D1,0 (resp. D0,1) be the
(1,0) (resp. (0,1))-part of D∇. Let δ1,0 (resp. δ0,1) be the (1,0) (resp. (0,1))-type of the differential operator
which makes D1,0 + δ0,1 and D0,1 + δ1,0 metric connections. Dh and ϕ were defined as follows

Dh :=
D1,0 +D0,1 + δ1,0 + δ0,1

2
, ϕ :=

D1,0 +D0,1 − δ1,0 − δ0,1

2
.
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We note that δ1,0 and δ0,1do exsits and locally they are expressed as

δ1,0 = ∂ − (A0,1
i )†h + h−1

i ∂hi,

δ0,1 = ∂ − (A1,0
i )†h + h−1

i ∂hi.

Hence θ has the form

θ =
A1,0

i − (A0,1
i )†h + h−1

i ∂hi
2

.

Hence θ takes value in sp(2n,C) and therefore it is compatible with ω.
We next prove ω is holomorphic and hence it is a symplectic structure of (E,D0,1

h , θ, h). We have to show

D0,1
h ω = 0. By the construction of Dh we have

D0,1
h =

D0,1 + δ0,1

2
.

Let Bi be the connection matrix of D0,1
h . From the local description of δ0,1, Bi is a (0,1)-form which takes value

in sp(2n,C). Hence we have

D0,1
h ω = ∂Jn −BT

i Jn − JnBj = 0.

The first equality follows from the standard argument of connection (See [Ko], for example). Therefore we
proved the claim.

Proof of Proposition 4.3.1. Lemma 4.3.2 and 4.3.3 gives a path from a harmonic bundle with a symplectic
structure to a principal Sp(2n,C)-bundle with a reductive flat connection. The inverse path is given by Lemma
4.3.5 and 4.3.6.

4.4 Good filtered Higgs bundles and Good Wild Harmonic bunldes

4.4.1 Filtered sheaves

Let X be a complex manifold and H be a simple normal crossing hypersurface of X. Let H :=
⋃

i∈ΛHλ be the
decomposition such that each Hi is smooth.

Filtered sheaves

For any P ∈ H, a holomorphic coordinate neighborhood (UP , z1, . . . , zn) around P is called admissible if HP :=

H ∩ UP =
⋃l(P )

i=1 {zi = 0}. For admissible coordinate neighborhood, we obtain a map ρP : {1, . . . , l(P )} → Λ
such that HρP (i)

∩ Up = {zi = 0}. We also obtain a map κP : RΛ → Rl(P ) by κP (a) = (aρ(1), . . . , aρ(l(P ))).
Let OX(∗H) be the sheaf of meromorphic function on X which may have poles along H. Let V be a torsion

free OX(∗H)-module. A filtered sheaf over V is defined to be a tuple of coherent OX -submodules PaV ⊂ V
(a ∈ RΛ) such that

• PaE ⊂ PbE if a ≤ b, i.e. ai ≤ bi for any i ∈ Λ.

• PaE ⊗ OX(∗H) = E for any a ∈ RΛ.

• Pa+nE = PaE ⊗ OX(
∑

i∈Λ niHi) for any a ∈ RΛ and for any n ∈ ZΛ.

• For any a ∈ RΛ, there exists ϵ ∈ RΛ
>0 such that Pa+ϵE = PaE .

• For any P ∈ H, let (UP , z1, . . . , zn) be an admissible coordinate of P . Then PaE|UP
depends only on

κP (a) for any a ∈ RΛ.
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For any coherent OX(∗H)-submodule E ′ ⊂ E , we obtain a filtered sheaf P∗E ′ over E ′ by PaE ′ = PaE ∩ E ′. If V ′

is saturated, i.e. E ′′ := E/E ′ is torsion-free, then we obtain a filtered sheaf P∗E ′′ over E ′′ by PaE ′′ := Im(PaE →
E ′′).

A morphism of filtered sheaves f : P∗E1 → P∗E2 is a morphism of OX(∗H)-modules such that f(PaE1) ⊂
PaE2 for any a ∈ RΛ.

Let P∗E be a flltered sheaf on X. For every open subset U ⊂ X, we can induce a filtered sheaf over E|U
from P∗E . We denote this filtered sheaf P∗E|U . Conversely, let X =

⋃
i∈Λ Ui be an open covering. Let P∗Vi

be a filtered sheaf on Ui. If P∗Ei|Ui∩Uj = P∗Ei|Ui∩Uj , we have a unique filtered sheaf P∗E on X such that
P∗E|Ui

= P∗Ei. See [M3, Section 2.1.2] for details of this paragraph.

Filtered Higgs sheaves

Let E be a torsion-free coherent OX(∗H)-module. A Higgs field θ : V → Ω1
X ⊗ V is a OX -linear morphism

of sheaves such that θ ∧ θ = 0. When V is equipped with a Higgs field, a sub-Higgs sheaf of V ′ is a coherent
OX(∗H)-submodule V ′ ⊂ V such that θ(V ′) ⊂ Ω1

X ⊗V ′. A pair of a filtered sheaf P∗V over V and a Higgs field
θ of V is called a filtered Higgs bundle.

4.4.2 µL- stability condition for filtered Higgs sheaves

Throughout this section, we assume X to be a smooth projective variety, H =
⋃

i∈ΛHi to be a normal crossing
divisor of it, and L to be an ample line bundle.

Slope of filtered sheaves

Let P∗E be a filtered sheaf on (X,H). We recall the definition of the first Chern class c1(P∗E). Let a ∈ RΛ.
Let ηi be a generic point on Hi. The OX,ηi

-module (PaE)ηi
only depends on ai which we denote as Pai

(Eηi
).

We obtain a OHi,ηi
-module GrPai

(Eηi
) := Pai

(Eηi
)/

∑
bi<ai

Pbi(Eηi
). c1(P∗E) is defined as

c1(P∗E) := c1(PaE)−
∑
i∈Λ

∑
ai−1<a≤ai

a · rankGrPa (Eηi) · [Hi].

Here, [Hi] ∈ H2(X,R) is the cohomology class induced by Hi.
The slope µL(P∗E) of a filtered sheaf P∗E with respect to L is defined as

µL(P∗E) =
1

rankE

∫
X

c1(P∗E) · c1(L)dimX−1.

µL-stablity condition

Let (P∗E , θ) be a filtered Higgs bundle over (X,H). We say that (P∗E , θ) is µL-stable (resp. µL-semistable) if for
every sub Higgs sheaf E ′ ⊂ E such that 0 < rankE ′ < rankE , µL(P∗E ′) < µL(P∗E) (resp. µL(P∗E ′) ≤ µL(P∗E)
) holds.

We say that (P∗E , θ) is µL-polystable if the following two conditions are satisfied

• (P∗E , θ) is µL-semistable.

• We have a decomposition (P∗E , θ) =
⊕

i(P∗Ei, θi) such that each (P∗Ei, θi) is µL-stable and µL(P∗E) =
µL(P∗Ei) holds.

Canonical decomposition

Let (P∗E1, θ1) and (P∗E2, θ2) be filtered Higgs bundle on (X,H). We use the following result frequently without
mention.

Proposition 4.4.1 ([M2, Lemma 3.10]). Let (P∗Ei, θi)(i = 1, 2) be µL-semistable reflexive satrated Higgs
sheaves such that µL(E1) = µL(E2). Assume either one of the following:

67



• One of (P∗Ei, θi) is µL-stable and rankE1 = rankE2 holds.

• Both (P∗Ei, θi) are µL-stable.

If there is a non-trivial map f : (P∗E1, θ1)→ (P∗E2, θ2), then f is an isomorphism.

The following is straightforward from the above result.

Corollary 4.4.1. Let (P∗E , θ) be a µL-polystable reflexive satrated Higgs sheaves. Then there exists an unique
decomposition (P∗E , θ) =

⊕
i(P∗Ei, θi)⊗Cm(i) such that (i) (P∗Ei, θi) are µL-stable, (ii) µL(P∗E) = µL(P∗Ei),

(iii) (P∗Ei, θi) 6' (P∗Ej , θj) (i 6= j). We call the decomposition (P∗E , θ) =
⊕

i(P∗Ei, θi) ⊗ Cm(i) the canonical
decomposition.

4.4.3 Filtered bundles

Local case

Let U be an open neighborhood of 0 ∈ Cn. Let HUi
:= U ∩ {zi = 0} and HU :=

⋃l
i=1HUi

. Let V be a locally
free OU (∗H)-module. A filtered bundle P∗V is a family of locally free OU -modules PaV indexed by a ∈ Rl such
that

• PaV ⊂ PbV for a ≤ b.

• There exists a frame (v1, . . . , vr) of V and tuples a(vj) ∈ R (j = 1, . . . , l) such that

PbV =

r⊕
j=1

OU

( l∑
i=1

[bi − a(vj)]HUi

)
vj .

Here for c ∈ R, [c] := max{a ≤ c|a ∈ Z}.

Hence locally, a filtered bundle is a filtered sheaf that is locally free and has a frame compatible with filtration.

Pullback of filtered bundles

We use the same notation as in the previous section. Let φ : Cn → Cn be a map given by φ(ξ1, . . . , ξn) =
(ξm1

1 , . . . , ξml

l , ξl+1, . . . , ξn). We set U ′ := φ−1(U) and HU ′,i := φ−1(HU,i). We denote the induced ramified
covering U ′ → U as φ.

For any b ∈ Rl, we set φ∗(b) = (mibi) ∈ Rl. Let P∗V be a filtered bundle on (U,HU ).

Global case

In this section, we assume X to be a complex manifold and H =
⋃

i∈ΛHi to be a normal crossing divisor of it.
Let V be a locally free OX(∗H)-module. A filtered bundle P∗V over V is a filtered sheaf over V such that it

is locally written as in Section 4.4.3. We give some examples of filtered bundles.
Let P∗V1 and P∗V2 be filtered bundles. For P ∈ H, we take an admiisble coordinate neighborhood

(UP , z1, . . . , zn) such that each and any PaVi|UP
only depends on κP (a). We define filtered bundles P∗(V1|UP

⊕
V2|UP

), P∗V1|UP
⊗ P∗V2|UP

and P∗(Hom(V1|UP
,V2|UP

)) on UP as,

Pa(V1|UP
⊕ V2|UP

) : = PaV1|UP
⊕ PaV2|UP

,

Pa(V1|UP
⊗ V2|UP

) : =
∑

c1+c2≤a

Pc1V1|UP
⊗ Pc2V2|UP

,

Pa(Hom(V1|UP
,V2|UP

)) :=

{
f ∈ Hom(V1|UP

,V2|UP
) | f(PbV1|UP

) ⊂ f(Pa+bV2|UP
)(∀b ∈ Rl(P ))

}
.

Here a ∈ Rl(P ). We construct filtered bundles as above around for each P ∈ H. After taking a suitable
covering of X, we can glue the filtered bundles and obtain unique filtered bundles P∗(V1 ⊕ V2), P∗(V1 ⊗ V2)
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and P∗(Hom(V1,V2)) such that P∗(V1 ⊕ V2)|UP
= P∗(V1|UP

⊕ V2|UP
), P∗(V1 ⊗ V2)|UP

= P∗(V1|UP
⊗ V2|UP

)
and P∗(Hom(V1,V2)|UP

) = P∗(Hom(V1|UP
,V2|UP

)) holds for any P ∈ H. We denote these filtered bundles
P∗V1 ⊕ P∗V2, P∗V1 ⊗ P∗V2 and Hom(P∗V1,P∗V2).

Let P∗V be a filtered bundle and let V ′ ⊂ V be a locally free sub OX(∗H)-module of rankV ′ < rankV. We
obtain a filtered bundle P∗V ′ (See section 4.4.1).

Remark 4.4.1. Let V ′,V ′′ ⊂ V be locally free subsheaves. We note that even if V = V ′ ⊕ V ′′ holds, P∗V =
P∗V ′ ⊕ P∗V ′′ does not always hold. Here P∗V ′,P∗V ′′ is the induced filtration from P∗V. We say that the P∗V
is compatible with decomposition if P∗V = P∗V ′ ⊕ P∗V ′′holds.

We give a very easy example of a filtered bundle that is not compatible with decomposition. Let U be an open
neighborhood of 0 ∈ C. Let V := OU (∗0)e1 ⊕OU (∗0)e2. For every a ∈ R, we set

PaV := OU

(
[a]0

)
e1 ⊕OU

([
a+

1

2

]
0

)
e2.

We set V1 := OU (∗0)(e1 + e2) and V2 := OU (∗0)(e1 − e2). It is easy to see that V = V1 ⊕ V2 holds. Let P∗V1
and P∗V2 be the induced filtered bundle. The decomposition V = V1 ⊕ V2 is not compatible with filtration. For
example, take a = 1

2 . Then

P 1
2
V = OUe1 ⊕OU

e2
z
,

P 1
2
V1 = OU (∗0)(e1 + e2) ∩ P 1

2
V = OU (e1 + e2),

P 1
2
V2 = OU (∗0)(e1 − e2) ∩ P 1

2
V = OU (e1 − e2).

Hence the decomposition is not compatible with the filtration. Obviously, if we set V ′
1 := OU (∗0)(e1) and

V ′
2 := OU (∗0)(e2), then the decomposition is compatible with the filtration.

Let rankV = r and P∗V be a filtered bundle over it. We obtain a filtered bundle P∗V⊗r over V⊗r as above.
We obtain a filtered bundle det(P∗V) over detV ⊂ V⊗r by the canonical way.

We construct a filtered bundle over P(0)
∗ (OX(∗H)) over OX(∗H). Let P ∈ H and (UP , z1, . . . , zn) be the

admissible coordinate of P . For a ∈ RΛ, we define

P(0)
a (OX(∗H))|UP

:= OX

( l(P )∑
i=1

[κ(a)i]Hi

)
here κ(a)i is the i-th component of κ(a) and for a ∈ R, [a] := max{n ∈ Z|n ≤ a}. We then glue the filtered

bundle above and obtain the filtered bundle P(0)
∗ (OX(∗H)). Let P∗V be a filtered bundle over V. We have a

filtered bundle P∗V∨ := Hom(P∗V,P(0)
∗ (OX(∗H)).

Induced bundles and filtrations

We use the same notation as the previous section.
Let I ⊂ Λ be any subset and δI ∈ RΛ be the element such that the j-th component is 0 if j ∈ Λ\I and 1 if

j ∈ Λ. Let HI :=
⋂

i∈I Hi and ∂HI := HI\
(⋃

i∈ΛHi

)
.

Let P∗V be filtered bundle over (X,H). In this section, we introduce some subsheaves of PaV|HI
(a ∈ RΛ).

We use these subsheaves to define Chern characters for P∗V in the next section.
Let i ∈ Λ. Let a ∈ RΛ and for ai−1 < b ≤ ai, let a(b, i) := a +(b−ai)δi. We want to introduce a filtration

on PaV|Hi . First, we define iFb(PaV|Hi) as

iFb(PaV|Hi
) := Pa(b,i)V|Hi

/
Pa(ai−1,i)V|Hi

.

This is a locally free OHi -module and it is a subbundle of PaV|Hi . Hence iF∗ gives a increasing filtration on
PaV|Hi indexed by (ai − 1, ai].
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For general I ⊂ Λ, we introduce a family of subbundle of PaV|HI
. Let aI be the image of a of the natural

projection RΛ → RI . Let (aI − δI ,aI ] :=
∏

i∈I(ai − 1, ai]. For any b ∈ (aI − δI ,aI ], we set

IFb(PaV|HI
) :=

⋂
i∈I

iFbi

(
PaV|Hi

)
.

From the local description of filtered bundles, for any P ∈ HI , there exists a neighborhood XP of P in X and
a non-canonical decomposition

PaV|XP∩HI
=

⊕
b∈(aI−δI ,aI ]

GP,b

such that the following holds for any c ∈ (aI − δI ,aI ]

IFc(PaV|XP∩HI
) =

⊕
b≤c

GP,b .

Hence for any c ∈ (aI − δI ,aI ], we obtain the following locally free OHI
-modules:

IGrFc (PaV) :=
IFc(PaV|HI

)∑
b⪇c

IFb(PaV|HI
)
.

Here (bi) = b � c = (ci) means that bi ≤ ci for any i and b 6= c. We note that IGrFc (PaV) forms a subbundle
of PaV|HI

on the irreducible component of HI .

First Chern class and Second Chern class for filtered bundles

We use the same notation as in the previous section.
In this section, we recall the definition of the first Chern class and the second Chern character for filtered

bundles. Let P∗V be a filtered bundle over (X,H). In Section 4.4.2, we recalled the definition of the first Chren
class for filtered sheaves. Since filtered bundles are filtered sheaves, the first Chern class of filtered bundles is
defined as follows.

c1(P∗V) = c1(PaV)−
∑
i∈λ

∑
ai−1<b≤ai

b · rankiGrFb (PaV|Hi
) · [Hi] ∈ H2(X,R).

Let Irr(Hi ∩ Hj) be the set of irreducible components of Hi ∩ Hj . For C ∈ Irr(Hi ∩ Hj), let [C] ∈ H4(X,R)
be the induced cohomology class and let CGrF(ci,cj)(PaV) be the restriction of (i,j)GrF(ci,cj)(PaV) to C. Let

ιi∗ : H2(Hi,R)→ H4(X,R) be the Gysin map induced by ιi : Hi → X. The second Chern character for filtered
bundles is defined as follows.

ch2(P∗V) :=ch2(PaV)−
∑
i∈Λ

∑
ai−1<b≤ai

b · ιi∗(c1(iGrFb (PaV|Hi)))

+
1

2

∑
i∈Λ

∑
ai−1<b≤ai

b2 · rank(iGrFb (PaV))[Hi]
2

+
1

2

∑
i,j∈Λ2,i ̸=j

∑
C∈Irr(Hi∩Hj)

∑
ai−1<ci≤ai,aj−1<cj≤aj

ci · cjrankCGrF(ci,cj)(PaV) · [C].

4.4.4 Prolongation of vector bundles

Let X be a complex manifold and H = ∪i∈ΛHi be a normal crossing hypersurface. Let (E, ∂E) be a holomorphic

vector bundle over X\H and h be a hermitian metric of E. We define a presheaf P̃h
aE on X such that for

an open set U of X, P̃h
aE(U) is a set of holomorphic section of E on U which satisfies the following growing

condition along U ∩H:
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• Let P ∈ H and (UP , z1, . . . , zn) be an admissible neighborhood of P such that UP ⊂ U . Let c := κP (a).
A holomorphic section s of E on U is s ∈ Ph

aE(U) when s satisfies the following estimate on UP

|s|h ≤ O
( c∏

i=1

|zi|−ci−ϵ

)
for any ϵ ∈ R>0.

We denote the sheafification of P̃h
aE as Ph

aE. We obtain a OX -module Ph
aE and we obtain a OX(∗H)-module

Ph
∗E :=

⋃
a∈RΛ Ph

aE.

Definition 4.4.1. Let P∗V be a filtered bundle over (X,H). Let (E, ∂E) be a holomorphic bundle obtained from
the restriction of V to X −H. Let h be a hermitian metric of E. h is called adapted if Ph

∗E = P∗V stands.

We remark that in general, we do not know whether Ph
∗E is locally free or not. However, it was proved in

[M3, Theorem 21.3.1] that when the metric h is acceptable and det(E, ∂E , h) is flat, Ph
∗E is locally free. We say

that h is acceptable when the following condition holds:

• Let P ∈ H and let (UP , z1, . . . , zn) be an admissible neighborhood of P . We regard as UP =
∏n

i=1{|zi| <
1}. Let gP be a Poincaré like metric on UP \UP ∩H. The metric h is called acceptable around P when
the curvature of the Chern connection is bounded with respect to gP and h. h is called acceptable if it is
acceptable around any P ∈ H.

4.4.5 Good filtered Higgs bundle

Throughout this section, we assume X to be a complex manifold and H =
⋃

i∈ΛHi to be a simple normal
crossing hypersurface of it.

Good set of Irregular values

Let P ∈ H. Let (UP , z1, . . . , zn) be an admissible coordinate around P . We denote the stalk of OX(∗H) at
P as OX(∗H)P . Let f ∈ OX(∗H)P . If OX,P , we set ord(f) = (0, . . . 0) ∈ Rl(P ). If there exsits a g ∈ OX,P ,

g(P ) 6= 0 and a n ∈ Zl(P )
<0 such that g = f

∏
z−ni
i , we set ord(f) = n . Otherwise, ord(f) is not defined. Note

that when dimX = 1 and when f has at least a simple pole at P , then ord(f) is the usual order.
For any a ∈ OX(∗H)P /OX,P , we take a lift ã ∈ OX(∗H)P . If ord(a) is defined, we set ord(a) := ord(ã).

Otherwise ord(a) is not defined. ord(a) does not depend on the lift.
Let IP ⊂ OX(∗H)P /OX,P be finite subset. We say that IP is called a good set of irregular values if

• ord(a) is defined for any ord(a) ∈ IP
• ord(a− b) is defined for any ord(a), ord(b) ∈ IP
• {ord(a− b)|a, b ∈ IP } is totally orded with respect to the order ≤Zl(P ) .

Note that when dimX = 1, then any finite subset of OX(∗H)P /OX,P is a good set of irregular values.

Good filtered Higgs bundle

Let (P∗V, θ) be a filtered Higgs bundle. Let P ∈ X and let OX,P̂ be the completion of the local ring OX,P with
respect to its maximal ideal.

We say that (P∗V, θ) is called unramifiedly good at P if there exisits a good set of irregular values IP and
exsits a decomposition of Higgs bunlde

(P∗V, θ)⊗OX,P̂ =
⊕
a∈IP

(P∗Va, θa)

such that (θa − dãIdVa
)PaVa ⊂ PaVa ⊗ Ω1

X(logH) for evey a ∈ RΛ. Here ã is the lift of a.
(P∗V, θ) is called good at P if there exists a neighborhood UP and a covering map φP : U ′

P → UP ramified
over H ∩ UP such that φ∗

P (P∗V, θ) is unramified good at φ−1
P (P ).

(P∗V, θ) is called good (resp. unramifiedly good) if it is good (resp. unramfiedly good) at any point of H.
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4.4.6 Good Wild Harmonic Bundles

Local condition for Higgs fields

Let U :=
∏n

i=1

{
|zi| < 1

}
and HUi

:= U ∩ {zi = 0} and HU :=
⋃l

i=1HUi
. Let (E, ∂E , θ) be a Higgs bundle on

U −HU . The Higgs field θ has an expression

θ =

l∑
i=1

Fi

zi
dzi +

n∑
i=l+1

Gidzi.

Let T be a formal variable. We have characteristic polynomials

det(T − Fi(z)) =
∑
k

Ai,k(z)T
k, det(T −Gi(z)) =

∑
k

Bi,k(z)T
k

where Ai,k(z), Bi,k(z) are holomorphic functions on U −HU .

Definition 4.4.2. We say that θ is tame if Ai,k(z), Bi,k(z) are holomorphic functions on U and if the restriction
of Ai,k to HUi

are constant for any j and k.

Definition 4.4.3.

• We say that θ is unramfiedly good if there exists a good set of irregular value Irr(θ) ⊂ M(U,HU )
/
H(X)

and a decomposition

(E, θ) =
⊕

a∈Irr(θ)

(Ea, θa)

such that each θa − dã · IdEa
is tame. Here ã is the lift of a.

• For e ∈ Z>0, we define the covering map ϕe : U → U as ϕ(z1, . . . , zn) = (ze1, . . . , z
e
l , zl+1, . . . , zn). We say

that θ is good if there exists a e ∈ Z>0 and the pullback of (E, ∂E , θ) by ϕe is unramifiedly good.

Global condition of Higgs fields and Good Wild Harmonic bundles

Let X be a complex manifold and H be a normal crossing hypersurface. Let (E, ∂E , θ) be a Higgs bundle on
X −H.

Definition 4.4.4.

• We say that θ is (unramifiedly) good at P ∈ H if it is (unramifiedly) good on an admissible coordinate
neighborhood of P .

• We say that θ is (unramifiedly) good on (X,H) if it is (unramifiedly) good for any P ∈ H.

We next recall good wild harmonic bundles. Let h be a pluri-harmonic metric of (E, ∂E , θ) (i.e. (E, ∂E , θ, h)
is a harmonic bundle on X −H).

Definition 4.4.5. We say that (E, ∂E , θ, h) is a (unramifiedly) good wild harmonic bundle on (X,H) if θ is
(unramifiedly) good on (X,H).

4.4.7 Kobayashi-Hitchin Correspondence

Let X be a connected smooth projective variety and H be a simple normal crossing divisor. Let L be any ample
line bundle.

In [M2, M3] Mochizuki proved that there is a one-on-one correspondence between µL-polystable good filtered
Higgs bundles with vanishing Chern classes and good wild harmonic bundles. This correspondence is called
Kobayashi-Hitchin Correspondence.

Proposition 4.4.2 ([M2, Proposition 13.6.1 and 13.6.4]). Let (E, θ, h) be a good wild harmonic bundle on
(X,H).
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• (Ph
∗E, θ) is µL-polystable with µL(Ph

∗E) = 0.

• c1(Ph
∗E) = 0 and

∫
X
ch2(P∗V)c1(L)dimX−2 = 0 holds.

• Let h′ be another pluri-harmonic metric of (E, θ, h) such that Ph′

∗ E = Ph
∗E. Then there exists a decom-

position of the Higgs bundle (E, θ) = ⊕i(Ei, θi) such that (i) the decomposition is orthogonal with respect
to both h and h′, (ii) h|Ei

= aih
′|Ei

for some ai > 0.

Theorem 4.4.1 ([M3, Theorem 2.23.]). Let (P∗V, θ) be a good filtered Higgs bundle on (X,H) and (E, ∂E , θ)
be the Higgs bundle on X\H which is the restriction of (P∗V, θ).

Suppose that (P∗V, θ) is µL-polystable and satisfies the following vanishing condition:

(4.2) µL(P∗V) = 0,

∫
X

ch2(P∗V)c1(L)dimX−2 = 0.

Then there exists a pluri-harmonic metric h for (E, ∂E , θ) such that (V, θ)|X\H ' (E, θ) extends to (P∗V, θ) '
(Ph

∗E, θ).

Remark 4.4.2. We note that Theorem 4.4.1 was proved not only for the Higgs bundles but for all λ-flat bundles.
The λ = 1 case was established in [M2].

4.5 Good filtered Higgs bundles with skew-symmetric pairings

4.5.1 Pairings of filtered bundle

Throughout this section, we assume X to be a smooth projective variety and let H =
⋃

i∈ΛHi be a normal
crossing divisor of it, and L to be an ample line bundle on X. However, we only use this assumption in Section
4.1.4. The results in other sections can generalized for any complex manifold and normal crossing hypersurfaces.

Pairings of locally free OX(∗H)-modules

Let OX(∗H) be the sheaf of meromorphic function on X whose poles are contained in H. We recall the pairings
of OX(∗H)-modules following [LM1].

Let V be a locally free OX(∗H)-module of finite rank. Let V∨ := HomOX(∗H)(V,OX(∗H)) be the dual of V.
The determinant bundle of V is denoted by det(V) :=

∧rankV V. There exists a natural isomorphism det(V∨) '
det(V)∨. For a morphism f : V1 → V2 of locally free OX(∗H)-modules, we have the dual f∨ : V∨

2 → V∨
1 . If

rank(V1)=rank(V2), then we have the induced morphism det(f) : det(V1)→ det(V2).
A pairing P of a pair of locally free OX(∗H)-modules V1 and V2 is a morphism P : V1 ⊗ V2 → OX(∗D).

It induces a morphism ΨP : V1 → V∨
2 by ΨP (u)(v) := P (u, v). Let ex : V1 ⊗ V2 ' V2 ⊗ V1 be the morphism

defined by ex(u⊗ v) = v ⊗ u. We obtain a pairing P ◦ ex : V2 ⊗ V1 → OX(∗H). We have Ψ∨
P = ΨP◦ex. If rank

V1=rank V2, we obtain the induced pairing detP : det(V1)⊗ det(V2)→ OX(∗H). We have det(ΨP ) = Ψdet(P ).
A pairing P is called non-degenerate if ΨP is an isomorphism. It is equivalent to that P ◦ex is non-degenerate.

It is also equivalent to be detP is non-degenerate. If P is non-degenerate, we obtain a pairing P∨ of V∨
2 and

V∨
1 defined by P ◦ (Ψ−1

P ⊗ΨP◦ex).
A pairing P of locally free OX(∗H)-module V is a morphism P : V ⊗ V → OX(∗H). It is called skew-

symmetric if P ◦ ex = −P. Note that det(P ) is natural defined in this case. If P is non-degenerate, then rank: V
must be even and we have induced pairing P∨ of V∨.

Pairings of filtered bundles

Let P∗Vi (i = 1, 2) be a filtered bundle on (X,H). A pairing P of P∗V1 and P∗V2 is a morphism between
filtered bunlde

P : P∗V1 ⊗ P∗V2 → P(0)
∗ (OX(∗H)).

We obtain a pairing P ◦ ex of P∗V2 and P∗V1.
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From the pairing P , we also obtain the following morphism

ΨP : P∗V1 → P∗V∨
2 .

Definition 4.5.1. P is called perfect if the morphism ΨP is an isomorphism of filtered bundles.

Let V ′
i ⊂ Vi be a locally free OX(∗H)-submodules. We also assume V ′

i are saturated i.e. Vi/V ′
i are locally

free. From a pairing P of P∗V1 and P∗V2, we have the induced pairing P ′ for P∗V ′
1 and P∗V ′

2. We have a
sequence of sheaves:

V ′
1

i1−→ V1
ΨP−→ V∨

2

i∨2−→ V
′∨
2

where i1 is the canonical inclusion and i∨2 is the dual of the canonical inclusion. Note that ΨP ′ = i∨2 ◦ΨP ◦ i1.
Let U1 := ker(i∨2 ◦ΨP ). It is a subsheaf of V1.

Lemma 4.5.1. If P and P ′ are perfect, then we have the decomposition V1 = V ′
1 ⊕ U1.

Proof. We have the following short exact sequence of sheaves:

0 −→ V ′
1 −→ V1 −→ V1/V ′

1 −→ 0.

Since P and P ′ are non-degenerate, we have another short exact sequence of sheaves:

0 −→ V ′
1 −→ V1 −→ U1 −→ 0.

By the standard argument of sheaves, we have U1 ' V1/V ′
1. Hence we have V1 = V ′

1 ⊕ U1.

Skew-symmetric pairings of filtered bundles

Let ω be a skew-symmetric pairing of a filtered bundle P∗V on (X,H). Let V ′ ⊂ V be a saturated locally free
OX(∗H)-submodule. Let (V ′)⊥ω be the kernel of the following composition:

V Ψω−→ V∨ i∨−→ V
′∨

where i∨ is the dual of the canonical inclusion. Let ω′ be the induced skew-symmetric pairing of P∗V ′. The
next Lemma is the special case of Lemma 4.5.1.

Lemma 4.5.2. If ω and ω′ are perfect, then we have the decomposition V = V ′ ⊕ (V ′)⊥ω.

4.5.2 Skew-symmetric pairings of good filtered Higgs bundle

Throughout this section, we assume X to be a smooth projective variety and let H =
⋃

i∈ΛHi be a normal
crossing divisor of it, and L to be an ample line bundle on X.

Skew-symmetric pairings of Higgs bundle

Definition 4.5.2. A skew-symmetric pairing ω on a good filtered Higgs bundle (P∗V, θ) over (X,H) is a skew-
symmetric pairing ω of P∗V such that ω(θ ⊗ Id) = −ω(Id⊗ θ).

When (P∗V, θ) has a skew-symmetric pairing ω, we have an induced morphism Ψω : (P∗V, θ)→ (P∗V∨,−θ∨)
between good filtered Higgs bundles. We also obtain a symmetric pairing det(ω) of (det(P∗V), trθ).

Harmonic bundles with skew-symmetric structure

We use the same notation as the last section. Let (E, ∂E , θ, h) be a good wild harmonic bundle on (X,H). Let ω
be a symplectic structure of the harmonic bundle (E, ∂E , θ, h). By Proposition 4.4.2, we obtain a µL-polystable
good filtered Higgs bundle (Ph

∗E, θ) with vanishing Chern classes.

Lemma 4.5.3. ω induces a perfect skew-symmetric pairing for the Higgs bundle (Ph
∗E, θ).
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Proof. Since ω is compatible with h, it induces an isomorphism Ψω : Ph
∗E → Ph∨

∗ E∨. Since Ph∨

∗ E∨ is naturally
isomorphic to (Ph

∗E)∨, ω induces a perfect pairing for Ph
∗E.

As a consequence, we have the following.

Proposition 4.5.1. Let (E, ∂E , θ, h) be a good wild harmonic bundle equipped with symplectic structure ω.
Then (Ph

∗E, θ) is a µL-polystable good filtered Higgs bundle equipped with a perfect skew-symmetric pairing ω
and satisfies the vanishing condition (4.2).

4.5.3 Kobayashi-Hitchin correspondence with skew-symmetry

Throughout this section, we assume X to be a smooth projective variety and let H =
⋃

i∈ΛHi be a normal
crossing divisor of it, and L to be an ample line bundle on X.

Basic polystable object (1)

Let (P∗V, θ) be a stable good filtered Higgs bundle of degree 0 such that (P∗V, θ) ' (P∗V∨,−θ∨). Let P be a
pairing of a filtered bundle

P : P∗V ⊗ P∗V → P(0)
∗ (OX(∗H))

such that it induces an isomorphism ΨP : (P∗V, θ)→ (P∗V∨,−θ∨). If there is another pairing P ′ which induces
an isomorphism ΨP ′ , then since a stable bundle is simple there exists an α ∈ C such that P ′ = αP .

Lemma 4.5.4. Either one of P ◦ ex = P or P ◦ ex = −P holds.

Proof. This was proved in [LM1, Lemma 3.19]. The claim follows from the fact that there exists a α ∈ C such
that Ψ∨

P = αΨP , (Ψ
∨
P )

∨ = ΨP , ΨP◦ex = Ψ∨
P .

Let CCl be a symmetric pairing of Cl defined by C(x,y) :=
∑

i xiyi for x,y ∈ Cl. Let ωC2k be a skew-
symmetric pairing of C2k defined by ωC2k(x,y) :=

∑
i(x2i−1y2i − x2i−1y2i). If P1 is a symmetric pairing then

P1⊗ωC2k is a skew-symmetric pairing for (E, θ)⊗C2k. If P1 is skew-symmetric then P1⊗CCl is a skew-symmetric
pairing for (P∗V, θ)⊗ Cl.

Lemma 4.5.5. Suppose that (P∗V, θ)⊗ Cl is equipped with a perfect skew-symmetric pairing ω.

• If P1 is symmetric, then l is an even number 2k and there exists an automorphism τ for C2k such that
(Id⊗ τ)∗ω = P1 ⊗ ωC2k .

• If P1 is skew-symmetric then there exists an automorphism τ for Cl such that (Id⊗ τ)∗ω = P1 ⊗ CCl .

Proof. We only give the outline of the proof for the case when P is symmetric. The other case can be proved
similarly.

Let {ei}li=1 be the canonical base of Cl. Since ω is a perfect skew-symmetric pairing of (P∗V, θ) ⊗ Cl, it
induces an isomorphism Ψω : (P∗V, θ)⊗ Cl → (P∗V∨,−θ∨)⊗ Cl. Let Ψω,ij be the composition of

(P∗V, θ)⊗ ei
i−→ (P∗V, θ)⊗ Cl Ψω−→ (P∗V∨,−θ∨)⊗ Cl prj−→ (P∗V∨,−θ∨)⊗ ej

where i is the inclusion and prj is the projection. Either one Ψω,ij = 0 or Ψω,ij = αijΨP1
for a αij ∈ C holds.

Since ω is a perfect pairing, (αij)i,j is non-degenerate matrix and since ω is skew-symmetric and P is symmetric,
(αij)i,j is a skew-symmetric matrix. Hence l is an even number 2k and there is an automorphism τ which we
want.

Lemma 4.5.6. There is an unique harmonic metric h0 on V|X/D such that (1) it is adapted to P∗V and (2)
ΨP1

is isometric with respect to h0 and h∨0 .

Proof. By Theorem 4.2.1, we have a harmonic metric h on V|X/D which is adapted to P∗V. Let h∨ be the
induced harmonic metric of V∨|X\D by h, which is also adapted to P∗V∨. Since ΨP : (P∗V, θ)→ (P∗V∨,−θ∨)
is an isomorphism, Ψ∗

P (h
∨) is also a harmonic metric which is adapted to P∗V. Since the adapted harmonic

metric for a stable Higgs bundle is unique up to positive constant, we have an a > 0 such that Ψ∗
P (h

∨) = a2h.
Set h0 := ah then we obtain the desired metric. The uniqueness is clear.
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Lemma 4.5.7.

• For any hermitian metric hCl of Cl, h0 ⊗ hCl is a harmonic metric of V|X/D ⊗ Cl which is adapted to

P∗V ⊗ Cl. Conversely, for any harmonic metric h on V|X/D ⊗ Cl which is adapted to P∗V ⊗ Cl, there is

a hermitian metric hCl of Cl such that h = h0 ⊗ hCl .

• If P1 is symmetric (resp. skew-symmetric), a harmonic metric h0 ⊗ hCl of V|X/D ⊗Cl is compatible with
P1 ⊗ ωCl (resp. P1 ⊗ CCl) if and only if hCl is compatible with ωCl (resp. CCl).

Proof. The first claim follows from the uniqueness of the harmonic metric to a parabolic structure. See [M3,
Corollary 13.6.2].

The second claim follows from the following argument: Let Ei(i = 1, 2) be complex vector bundles and
hi(i = 1, 2) be hermitian metrics for Ei. Let Pi(i = 1, 2) be pairings for Ei (i.e. Pi is a section of E∨

i ⊗ E∨
i )

and ΨPi
: Ei → E∨

i be the indued morphisms. Let h1 ⊗ h2 be the hermitian metric of E1 ⊗ E2 induced
by hi and P1 ⊗ P2 be the pairing of E1 ⊗ E2 induced by Pi. Let ui ⊗ vi(i = 1, 2) be sections of E1 ⊗ E2.
hi ⊗ h2 and P1 ⊗ P2 are defined as hi ⊗ h2(u1 ⊗ v1, u2 ⊗ v2) = h1(u1, u2)h2(v1, v2) and P1 ⊗ P2(u1 ⊗ v1, u2 ⊗
v2) = P1(u1, u2)P2(v1, v2). Hence ΨP1⊗P2 = ΨP1 ⊗ ΨP2 and (h1 ⊗ h2)∨(ΨP1⊗P2(u1 ⊗ v1),ΨP1⊗P2(u2 ⊗ v2)) =
h∨1 (ΨP1(u1),ΨP1(u2))h

∨
2 (ΨP2(v1),ΨP2(v2)) holds. Once we apply this discussion to h0 ⊗ hCl and P1 ⊗ ωCl or

P1 ⊗ CCl , the second claim follows.

Basic polystable objects (2)

Let (P∗V, θ) be a stable good filtered Higgs bundle that satisfies the vanishing condition (4.2) and (P∗V, θ) 6'
(P∗V∨,−θ∨). We set P∗Ṽ := P∗V ⊕ P∗V∨ and set θ̃ := θ ⊕−θ∨. Then we obtain a Higgs bundle (P∗Ṽ, θ̃). We

have a naturally defined perfect skew-symmetric pairing of (P∗Ṽ, θ̃),

ω̃(P∗V,θ) : (P∗Ṽ, θ̃)⊗ (P∗Ṽ, θ̃)→ P(0)
∗ (OX(∗H))

such that ω̃(P∗V,θ)((u1, v
∨
1 ), (u2, v

∨
2 )) = v∨1 (u2)−v∨2 (u1) for any local section (u1, v

∨
1 ), (u2, v

∨
2 ) of P∗Ṽ. (P∗Ṽ, θ̃, ω̃(P∗V,θ))

forms a Higgs bundle with a perfect skew-symmetric pairing.

Lemma 4.5.8. Suppose
(
(P∗V, θ)⊗Cl1

)
⊕
(
(P∗V∨,−θ∨)⊗Cl2

)
is equipped with a perfect skew-symmetric pairing

ω. Then we have l1 = l2 and there exists an isomorphism (P∗Ṽ, θ̃)⊗Cl1 ' (P∗V, θ)⊗Cl1 ⊕ (P∗V∨,−θ∨)⊗Cl2

such that under the isomorphism, ω̃(P∗V,θ) ⊗ CCl1 = ω holds.

Proof. We have one-dimensional subspaces L1 ⊂ Cl1 and L2 ⊂ Cl2 such that the restriction of ω to
(
(P∗V, θ)⊗

L1

)
⊕

(
(P∗V∨,−θ∨)⊗ L2

)
is not identically zero. We define Ψω,12 to be the composition of

(P∗V, θ)⊗ L1
i−→

(
(P∗V, θ)⊗ L1

)
⊕
(
(P∗V∨,−θ∨)⊗ L2

)
Ψω−→

(
(P∗V∨,−θ∨)⊗ L∨

1

)
⊕
(
(P∗V, θ)⊗ L∨

2

) pr2−→ (P∗V, θ)⊗ L∨
2

where i and pr2 are the canonical inclusion and the canonical projection. We define Ψω,11,Ψω,21 and Ψω,22 in the
same manner. Since (P∗V, θ) 6' (P∗V∨,−θ∨), we obtain Ψω,11 = 0,Ψω,22 = 0 and Ψω,12 = αId(P∗V,θ),Ψω,21 =
βId(P∗V,θ) for some α, β ∈ C. Since ω is a skew-symmetric pairing, we have β = −α. Hence ω = αω̃(P∗V,θ).

In particular the restriction of ω to
(
(P∗V, θ) ⊗ L1

)
⊕

(
(P∗V∨,−θ∨) ⊗ L2

)
induces a perfect skew-symmetric

pairing on it. Hence we obtain an orthonormal decomposition with respect to ω:

(P∗V ⊗ Cl1)⊕
(
P∗V∨ ⊗ Cl2

)
'

(
P∗V ⊗ L1

)
⊕
(
P∗V∨ ⊗ L2

)
⊕ P∗V ′.

It is preserved by the Higgs field and the induced Higgs field to P∗V ′ is isomorphic to
(
(P∗V, θ) ⊗ Cl1−1

)
⊕(

(P∗V∨,−θ∨)⊗ Cl2−1
)
. We obtain the claim by induction.

By using CCl , we can identify Cl and it’s dual (Cl)∨. Then we can induce a perfect skew-symmetric pairing
ω̃(P∗V,θ) ⊗ CCl on

(P∗Ṽ, θ̃)⊗ Cl =
(
(P∗V, θ)⊗ Cl

)
⊕
(
(P∗V∨,−θ∨)⊗ (Cl)∨

)
by the canonical way.

We obtain the induced harmonic metric h∨0 on V∨|X/D which is adapted to P∗V∨.
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Lemma 4.5.9.

• Let hCl be any hermitian metric on Cl. Let h∨Cl denote the induced hermitian metric on (Cl)∨. Then,

(h0⊗hCl)⊕ (h∨0 ⊗h∨Cl) is a harmonic metric of (P∗Ṽ, θ̃)⊗Cl such that it is compatible with ω̃(P∗V,θ)⊗CCl .

• Conversely, let h be any harmonic metric of (P∗Ṽ, θ̃)⊗Cl which is compatible with ω̃(P∗V,θ) ⊗CCl . Then

there exists a hermitian metric hCl of Cl such that h = (h0 ⊗ hCl)⊕ (h∨0 ⊗ h∨Cl).

Proof. The compatibility of (h0⊗hCl)⊕ (h∨0 ⊗h∨Cl) with ω̃(P∗V,θ)⊗CCl follows from the argument in the second
claim of Lemma 4.5.7. The second claim follows from [LM1, Lemma 3.25].

Polystable objects

Let (P∗V, θ) be a polystable good filtered Higgs bundle of degree 0 on X equipped with a perfect skew-symmetric
pairing ω. Let

(P∗V, θ) =
∑
i

(P∗Vi, θi)⊗ Cn(i)

be the canonical decomposition. Since the perfect skew-symmetric pairing ω induces an isomorophism (P∗V, θ) '
(P∗V∨,−θ∨), each (P∗Vi, θi)⊗Cn(i) is a basic polystable object we observed above. Hence the next proposition
is deduced from previous sections.

Proposition 4.5.2. There exist stable Higgs bundles (P∗V(0)
i , θ

(0)
i ) (i = 1, . . . , p(0)), (P∗V(1)

i , θ
(1)
i ) (i = 1, . . . , p(1))

and (P∗V(2)
i , θ

(2)
i ) (i = 1, . . . , p(2)) of degree 0 on X such that the following holds.

• (P∗V(0)
i , θ

(0)
i ) is equipped with a symmetric pairing P

(0)
i .

• (P∗V(1)
i , θ

(1)
i ) is equipped with a skew-symmetric pairing P

(1)
i .

• (P∗V(2)
i , θ

(2)
i ) 6' (P∗V(2)

i ,−θ(2)i )∨.

• There exists positive integers l(a, i) and an isomorphism

(P∗V , θ) '
p(0)⊕
i=1

(P∗V(0)
i , θ

(0)
i )⊗ C2l(0,i)⊕

p(1)⊕
i=1

(P∗V(1)
i , θ

(1)
i )⊗ Cl(1,i)

⊕
p(2)⊕
i=1

((
(P∗V(2)

i , θ
(2)
i )⊗ Cl(2,i)

)
⊕

(
(P∗V(2)

i ,−θ(2)i )∨ ⊗ (Cl(2,i))∨
))
.

Under this isomorphism, ω is identified with the direct sum of P
(0)
i ⊗ωC2l(0,i) , P

(1)
i ⊗CCl(1,i) and ω̃

(E
(2)
i ,θ

(2)
i )
⊗

CCl(2,i)

• (P∗V(a)
i , θ

(a)
i ) 6' (P∗V(a)

j , θ
(a)
j ) (i 6= j) for a=0,1,2, and (P∗V(2)

i , θ
(2)
i ) 6' (P∗V(2)

j ,−θ(2)j )∨ for any i, j.

Proof. It follows from Lemma 4.5.5 and Lemma 4.5.8.

Let h
(a)
i (a = 0, 1) be the unique harmonic metrics of (V(a)

i , θ
(a)
i )|X\D such that (i) h

(a)
i is adapted to

(P∗V(a)
i , θ

(a)
i ), (ii) Ψ

P
(a)
i

is isomoteric with respect to h
(a)
i and (h

(a)
i )∨. Let h

(2)
i be any harmonic metrics of

(V(2)
i , θ

(2)
i )|X\D which is adapted to (P∗V(2)

i , θ
(2)
i ).

Proposition 4.5.3. There exists a harmonic metric h of (V, θ)|X\D such that (i) h is adapted to P∗V, (ii) it
is compatible with ω. Moreover, we have the following.
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• Let hC2l(0,i) be a hermitian metric of C2l(0,i) compatible with ωC2l(0,i) . Let hCl(1,i) be a hermitian metric of
Cl(1,i) compatible with CCl(1,i) . Let hCl(2,i) be any hermitian metric on Cl(2,i). Then,

(4.3)

p(0)⊕
i=1

h
(0)
i ⊗ hC2l(0,i) ⊕

p(1)⊕
i=1

h
(1)
i ⊗ hCl(1,i) ⊕

p(2)⊕
i=1

((
(h

(2)
i ⊗ hCl(2,i))⊕

(
(h

(2)
i )∨ ⊗ (hCl(2,i))∨

))
is a harmonic metric which satisfies the condition (i), (ii).

• Conversely, if h is a harmonic metric of (V, θ)|X\D which satisfies the condition (i) and (ii), then it has
the form of (4.3).

Proof. The first claim follows from Proposition 4.5.2. The second claim follows from Lemma 4.5.7 and Lemma
4.5.9.

An equivalence

In this section, we state the Kobayashi-Hitchin correspondence with skew symmetry. Let (E, ∂E , θ, h) be a good
wild harmonic bundle with symplectic structure ω. From section 4.5.2, we obtain a good filtered Higgs bundle
(Ph

∗E, θ) satisfying the vanishing condition (4.2) equipped with a perfect skew-symmetric pairing. From section
4.5.3, we also have the converse. As a result, we have the following.

Theorem 4.5.1. Let X be a smooth projective variety and H be a normal crossing divisor of X.
The following objects are equivalent on (X,H)

• Good wild harmonic bundles with a symplectic structure.

• Good filtered polystable Higgs bundles with a perfect skew-symmetric pairing satisfying the vanishing con-
dition (4.2).

Proof. In section 4.5.2, we proved that from a good wild harmonic bundle with a symplectic structure we obtain
a good filtered Higgs bundle satisfying the vanishing condition (4.2) equipped with a perfect skew-symmetric
pairing. We have the opposite side from section 4.5.3.

The compact case is straightforward from Theorem 4.5.1. However, for the compact case, we do not have
to assume X to be projective. In particular, the statement holds for arbitrary Kähler manifolds.

Corollary 4.5.1. Let X be a compact Kähler manifold. The following objects are equivalent on X.

• Harmonic bundles with a symplectic structure.

• Polystable Higgs bundles with vanishing Chern classes with a perfect skew-symmetric pairing.
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[EKA] A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applica-
tions. Compositio Math. 73 (1990), no. 1, 57-106.

[G] R. C. Gunning, Lectures on complex analytic varieties: The local parametrization theorem, Mathematical
Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970.
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