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Introduction

Non-Abelian Hodge Correspondence

Let E be a complex vector bundle over a compact Kéhler manifold X. We denote by 0 a holomorphic structure
on E. A Higgs bundle over X is a pair consisting of a holomorphic vector bundle (E,dg) and an End E-valued
holomorphic 1 form 6 satisfying § A @ = 0. The form 6 is called the Higgs field. Let h be a hermitian metric of
E, 0y, be the (1,0)-part of the Chern connection with respect to dg and h, and 9;2 be the formal adjoint of 6
with respect to h. We say h is a harmonic metric if the connection D := 0}, + 0 + 0 + 92 is a flat connection
(i.e. D2 =0). We say that (E,0g,0,h) is a harmonic bundle if 4 is a harmonic metric for (E,dg, ).

The existence of a harmonic metric for a Higgs bundle (E,dg, ) is equivalent to the stability of the Higgs
bundle. This equivalence is called the non-Abelian Hodge Correspondence and stated as follows:

Theorem 0.0.1 ([H, S1]). Suppose X is a compact Kihler manifold. (E,0g,0) admits a harmonic metric if
and only (E,0g,0) is a polystable Higgs bundle and c,(E) = co(E) = 0. If hy and hy are harmonic metrics,
then there exists a decomposition (E,0g,0) = @;(E;,0g,,0;) such that (i) the decomposition is orthonormal
with respect to both hy and he (ii) there exist an a; > 0 such that hy g, for each i.

B, = a;ha

Let (E,0g,0,h) be a harmonic bundle. We have a flat bundle (E, D = ), +0g +9+9,Tl). From a flat bundle,
we obtain a representation p : 1 (X) — GL(r) by the monodromy of the flat bundle. We say that a flat bundle
is reductive if the corresponding representation is semisimple. It was shown in [Co, S4] that a harmonic bundle
(E,0g,0,h) induces a semisimple representation pp : 71 (X) — GL(r). Equivalently, (E, D) is reductive. The
converse was also proved: from a semisimple representation, p : w1 (X) — GL(r), we obtain a harmonic bundle
(E,0g,0,h).

Hence, combining [Co, H, S1, S3, S4], the following three objects are equivalent on a compact Kéhler
manifold.

e Polystable Higgs bundle with vanishing Chern classes.
e Reductive flat bundle.
e Semisimple representation of fundamental group.

This is really surprising and fascinating because the first object is a holomorphic object (or an algebro geometric
object), the second object is a differential geometric object, and the third one is a topological object. Sometimes,
the Non-Abelian Hodge Correspondence also means this equivalence among them.

In this thesis, we focus on the first two objects and discuss some problems related to them.

Hitchin Equation

Since a compact Riemann Surface M is a compact Kéhler manifold, the non-Abelian Hodge Correspondence
holds. To connect a polystable Higgs bundle to a reductive flat bundle, we need an intermediate object which
is the Hitchin equation. Let E be a complex vector bundle, h a hermitian metric, and D be a connection of F.
Then D has the decomposition

D=V, + o,



where Vj, is a metric connection and @ is the self-adjoint 1-form with respect to h. Let Fy, be the curvature
of Vj, and * be the Hodge star of M. Then the Hitchin equation is defined as

Fg, —®AN® =0,
Vi® =0,
Vh*(I):O

If we have a harmonic bundle (E,dg,6,h), then V), := 0, + 0p, ® = 0 + 9}; solve the Hitchin equation.
Conversely, if a metric connection Vj, and self-adjoint 1-form @ solve the Hitchin equation, (E,0g := V%1 6 :=
®1:%) is a Higgs bundle which is polystable with degree 0.

If we have a reductive flat bundle (E, D), then there exists a hermitian metric h such that the metric
connection and self-adjoint 1-form which we obtain from the decomposition of D, satisfy the Hitchin equation.
Conversely, if Vj, and ® satisfy the Hitchin equation, D := V} + @ is a reductive flat bundle.

As a consequence, the moduli of the Hitchin equation Mg+ is equivalent to the moduli of polystable Higgs
bundles, the moduli space of reductive flat bundles, and the moduli space of semisimple representations of
m1(M). This moduli space is often called Hitchin moduli. Since Higgs bundles, flat bundles, and representations
of m (M) appear in a wide range of mathematical fields, many areas of mathematics intersect in this space,
making its geometry especially rich and intricate. In particular, the study of the geometry of the Hitchin moduli
space My;; has become a central and active topic in modern mathematics.

Harmonic Bundles on Non-Compact Manifolds

We now introduce harmonic bundles and Higgs bundles defined over X — H, where X is a smooth projective
variety over C and H C X is a simple normal-crossing divisor. We also have an analog of the non-Abelian
Hodge correspondence for this context. Since the objects are defined on a noncompact space, we need to assume
some conditions on the asymptotic behavior along the divisor H.

Let (E,0g,0,h) be a harmonic bundle on X — H. We say that (E, g, 0, h) is a tame (resp. wild) harmonic
bundle if the Higgs field has logarithmic (resp. meromorphic) eigenvalue along H. The study of tame harmonic
bundles on a non-compact curve was initiated by Simpson in [S2]. He proved that a tame harmonic bundle is
equivalent to a polystable filtered regular Higgs bundle with degree 0. Here tame harmonic bundle is a harmonic
bundle with a tame Higgs field. A filtered bundle is a locally free Ox (xH )-module with a filtration. We review
this notion in Chapter 4. Biquard and Boalch expanded this correspondence to the wild harmonic bundle on
curves. Later, Mochizuki generalized all of this correspondence to the higher-dimensional case [M2, M3]. As a
consequence, we have the following

Theorem 0.0.2 ([BB, M2, M3, S1, S2]). Let X be a smooth projective variety, H be a normal crossing divisor
of X, and L be an ample line bundle of X. Let (E,0g,0,h) be a good wild harmonic bundle on X — H. Then
(PIE,0) is a pur,-polystable good filtered Higgs bundle with pr,(P"E) =0 and [ cha(PPE)ci(L)4mX =2 =0,

Conversely, let (P.V,0) be a pr-polystable good filtered Higgs bundle satisfying the following vanishing con-
dition:

(1) nr(PeV) = 0,/ chy (PuV)ey (L)W ¥ =2 = 0.
X

Let (E,0g,0) be the Higgs bundle which we obtain from the restriction of (P.V,0) to X — H. Then there exists
a pluri-harmonic metric h for (E,0g,0) such that (V,0)|x\u ~ (E,0) estends to (P,V,0) ~ (P'E, ).

Overview of the Thesis

We now explain the content of this thesis. At the beginning of each Chapter, we give a detailed background, so
we give a brief introduction here.

In Chapter 1, we study the geometry of the Kuranishi space of a pair of a compact Ké&hler manifold X and
a polystable Higgs bundle with vanishing Chern classes (£, g, ). We proved that under this assumption, the



Kuranishi space of the pair is isomorphic to the direct product of the Kuranishi space of X and the Kuranishi
space of (E,0g,0). We prove this by studying the Differential Graded Lie Algebra (DGLA) which controls the
deformation of the pair. This Chapter is based on [Onol, Ono2].

In Chapter 2, we study a deformation problem of a certain triple. In Chapter 2, we study the deformation
problem of the triple of two Higgs bundles (E,dg,0g), (F,0r,0Fr) and a Higgs bundle morphism (0g,6) —
(F,0r,0r). We call the triple (f,(E,0g,0.),(F,0r,0r)) Higgs triple. Let L be the DGLA that controls
the deformation of (f,(E,dg,0),(F,0r,0r)). We show that L is formal if both (F,0g,0g), (F,0F,0r) has
harmonic metrics. This Chapter is based on [Ono3].

In Chapter 3, we introduce the basic Hitchin equation on a Sasakian three-fold. Sasakian manifolds are odd-
dimensional manifolds, and they are the odd-dimensional counterpart of Kéhler manifolds. Therefore Sasakian
three-folds are a three-dimensional analog of Riemann surfaces. The non-Abelian Hodge Correspondence on
compact Sasakian manifolds was established in [BH1]. Motivated by this work, the author defined the basic
Hitchin equation on Sasakian three-folds, which is a three-dimensional analog of the Hitchin equation. In
Chapter 3, we construct the moduli space of the solutions of the basic Hitchin equation and prove that the
moduli space is a hyper-Kéhler manifold. This Chapter is based on [Ono4].

In Chapter 4, we study a good wild harmonic bundle with a symplectic structure. Symplectic structure is
a symmetry of a wild harmonic bundle. We show that a wild harmonic bundle with a symplectic structure is
equivalent to a polystable good filtered Higgs bundle with a perfect skew-symmetric pairing. This Chapter is
based on [Ono5).



Chapter 1

Structure of the Kuranishi Spaces of
pairs of Kahler manifolds and
Polystable Higgs bundles

1.1 Abstract of Chapter 1

Let X be a compact Kihler manifold and (E,dg, #) be a Higgs bundle over it. We study the structure of the
Kuranishi space for the pair (X, E, §) when the Higgs bundle admits a harmonic metric or equivalently when the
Higgs bundle is polystable and the Chern classes are 0. Under such assumptions, we show that the Kuranishi
space of the pair (X, E, 6) is isomorphic to the direct product of the Kuranishi space of (E,#) and the Kuranishi
space of X. Moreover, when X is a Riemann surface and (F, 0, ) is stable and the degree is 0, we show that
the deformation of the pair (X, F,#) is unobstructed and calculate the dimension of the Kuranishi space.

1.2 Introduction of Chapter 1

Let X be a complex manifold and (E,0g,#) be a Higgs bundle over X. We call a pair X and (E,0g,0) a
holomoprhic-Higgs triple. In the paper [Onol], we studied the deformation problem of holomorphic-Higgs triple
differential geometrically: we studied the deformation problem when X and (E,dg, ) deform simultaneously.
We constructed the DGLA (L, [, ], dr) which governs the deformation differential geometrically, and constructed
the Kuranishi space Kur x g ). The Kuranishi space is an analytic space such that it contains all information
of small deformations of the given holomorphic-Higgs pair. See section 2.4.1 for the details of the DGLA
(L7 [7]L’dL)'

In this Chapter, we study the structure of the Kuranishi space. We study the structure of the Kuranishi
space when X is a compact Kéhler manifold and the Higgs bundle (E,dg, ) admits a harmonic metric h.
Hence, in other words, we study the Kuranishi space Kur x g ¢ when the Higgs bundle is polystable and its
Chern classes are 0. From now on, we assume X to be a compact Kéhler manifold.

Let Kurx be the Kuranishi space of X, Kur(g g be the Kuranishi space of the Higgs bundle (£,6), and
Kur(g,py be the Kuranishi space of the flat bundle (£, D). The flat bundle D is obtained from the Higgs bundle
and the harmonic metric.

Theorem 1.2.1 (Theorem 1.5.2). Let (X,w) be a compact Kihler manifold, (E,0g,0) be a Higgs bundle over
X and, K be a harmonic metric. Then

(Kur(x,g,0),0) ~ (Kurgg) x Kurx,0),
(Kur(x,g,0),0) ~ (Kurg,py x Kurx,0)

holds as germs of analytic spaces.



We prove this theorem by showing the DGLA (L, [,]1,dr) is quasi-isomorphic to certain DGLA.

Theorem 2.4.1 predicts that once we construct a moduli space of a pair of a compact Kéhler manifold and a
polystable Higgs bundle with vanishing Chern classes, such moduli space should locally decompose to the direct
product of the Kuranishi space of the manifold and the Kuranishi space of the Higgs bundle which we cannot
expect globally. The moduli space of pairs of Kéhler manifolds and stable bundles was considered in [H, ST].
However, the author couldn’t find a work that deals with pairs of K&hler manifolds and stable Higgs bundles.

We have some consequences from Theorem 2.4.1 for specific cases. Let M be a Riemann surface with genus
g > 2 and (E,0g,0) be a stable Higgs bundle of degree 0. Under these assumptions, each deformations of M
and (E, 0, 0) are unobstructed and the dimensions of Kurx is 3g — 3 and Kur (g g is 2 +1r%(2g — 2) [MK, NJ.
Here r is the rank of E. The following is straightforward from Theorem 2.4.1.

Corollary 1.2.1 (Corollary 2.5.1). Let M be a Riemann surface with genus g > 2 and (E,0g,0) be a stable
Higgs bundle of degree 0. Then the deformation of pair (M, E,0) is unobstructed. Moreover, Kury gg) is a
complex manifold and its dimension is g(2r? +3) — 2r? — 1.

The Corollary predicts that the moduli space of a pair of Riemann surfaces and stable Higgs bundles of
degree 0 is smooth in a stable locus and its dimension is g(2r% + 3) — 2r% — 1.

1.2.1 Differential graded Lie algebras

In this section, we review the notion of the Differential graded Lie algebra (DGLA for short). We work over a
field K of characteristic 0. This section is based on [Ma).

Definition 1.2.1. A Differential-Graded vector space (DG vector space) is a pair (L,dr) such that L = &;L"
is a Z-graded vector space and d : L — L is a linear map such that d(L') C L't and dod = 0.

Let (L,dr) be a DG vector space. A sub DG-vector space (W = @;czW?, dy ) of (L,dy) is a DG vector
space such that for each i, W* C L* is a sub vector space and dy is the restriction of d, to W: dp(W) C W
holds and dw = dr|w.

A morphism f : (L1,dr,) = (L2,dr,) of DG vector spaces is a morphism of vector spaces f : L1 — Lo
such that it commutes with the differentials. We note that f induces a morphism H(f) : H*(Ly) — H*(Ls).
Here H(L;)(j = 1,2) is the i-th cohomology of (Lj.dr;). Let (L,dr) be a DG vector space and (W,dw)
be a sub DG vector space of it. Then the inclusion of W* to L' induces a morphism of DG vector spaces
i (VV7 dw) — (L,dL)

Definition 1.2.2. A Differential graded Lie algebra (DGLA) (L, [,],d) is the data of a Z-graded vector space
L = ®;ezL" with a bilinear bracket [,]: Lx L — L and a linear map d: L — L satisfying the following condition.:

1. [,] is homogeneous skewsymmetric: [L*, L7] C L't and [a,b]+ (—1)7[b,a] = 0 for every a,b homogeneous.

2. Every triple of homogeneous elements a,b, ¢ satisfy the Jacobi identity

[a, [b, ] = [la, 0], ¢] + (=1)™[b, [a, c]].
3. d(LY) C L', dod =0 and d[a,b] = [da,b] + (—1)%[a, db] holds. The map d is called the differential of L.
Definition 1.2.3. The Maurer-Cartan equation of a DGLA (L,],],d) is
da + %[a,a] =0,a€ L'

The solutions of the Maurer-Cartan equation are called Maurer-Cartan elements of the DGLA (L, |[,],d).

Let (L, [,],dr) be a DGLA. We can consider (L, dy,) as a DG vector space. We say a DGLA (W, [, |w, dw) is
a sub-DGLA of (L, [,],dp) if (W,dw) is a sub-DG vector space of (L, dr) and the bracket [, ]y is the restriction
of [,] to W: [W,W] C W holds.



Definition 1.2.4. Let (L1, [,]1,dr,) and (La,[,]2,dr,) be DGLAs. A morphism f : (L1,[,]1,dr,) = (L2, [,]2,dL,)
of DGLAs is a morphism of DG vector spaces f : (L1,dr,) — (L2,dr,) such that it commutes with brackets.

Let (L1,dr,) and (L2,dr,) be DG vector spaces. We say that (L1,dr,) and (La,dr,) are quasi-ismorphic if
there exists a morphism of DG vector spaces f : (L1,dr,) — (La,dr,) such that H*(f) is an isomorphism for
each 1.

Let (L1,[,]1,dr,) and (La,[,]2,dL,) be DGLAs. We say that (L1, [,]1,dr,) and (Lo, [,]2,dr,) are quasi-
ismorphic if there exists a family of DGLA {(Wi, [,]w,,dw,)}, and a family of morphism of DGLA {f;}7H}
such that

Ly iy Bywy Lo Dy gy, T g

and each f; is a quasi-isomorphism of DG vector spaces.
Let (L,[,],dr) be a DGLA. Since dy, satisfies the Leibniz rule, (H®*(L) := @&; H(L), [,],0) has the structure
of DGLA.

Definition 1.2.5. Let (L, [,],dr) be a DGLA. (L,[,],dyr) is called formal if it is quasi-isomorphic to (H*(L),[,],0).

Remark 1.2.1. DG vector spaces can be regarded as DGLA with trivial brackets. In this case, the definition of
quasi-isomorphic coincides: when two DG vector spaces are quasi-isomorphic as DGLA then we can show that
it is quasi-isomorphic as DG vector spaces. This is because any DG vector space decomposes to two DG vector
spaces which have the property called minimal and acyclic. See [Ma] for example.

1.2.2 Homotopy invariance of the Kuranishi Space

In this section, we review the homotopy invariance of the Kuranishi spaces based on [GM1, GM2].

Let X be an analytic space and z € X. We denote the germ of X at x as (X,z). We denote by O(x ;)
the corresponding analytic local ring consisting of germs of functions on X which are analytic at z. Let A be
a local ring. We denote the completion of A with respect to its maximal ideal as A: the complete local ring of
(X, l‘) is O(X,:z:)~

Let K be a field. Let R be a local K-algebra, Artg be the category of Artin local K-algebras with residue
field K and Set be the category of sets. We have a naturally defined functor

Hom(R, ") : Artg — Set

which we denote Fr. Let F' : Artg — Set be a functor. We say that an analytic germ (X, x) pro-represents
F if F and Fjg .y AT€ naturally isomorphic. In this chapter, K is often C. Using the results of [A, G], it was

proved in [GMl] that the following four conditions are equivalent:
(1) The analytic germs of (X, z) and (Y, y) are analytic isomorphic.

2) The analytic local rings O(x ;) and O(y,,) are isomorphic.

(2)
(3) The complete local rings (5( X,z) and @(y’y) are isomorphic.
(4)

4) The functor F Oixm and Fz are naturally isomorphic.

(Y,y)

Let (L,[,],dz) be a DGLA. Let C'(L) be a complement of the 1-coboundary B(L) C L'. We define a
functor Y7, : Artg — Set such that for A € Artg

Yr(A) = {77 e CHL)®@myu :dn+ %[77,7]] = O}.

Here, m, is the maximal ideal of the Artin local K-algebra A. It was proved in [GM2] that Yy is pro-
representable: that is, there exists a complete local K-algebra Ry, such that Y7, and Fr, are naturally isomorphic.

Let (L, [,]i,dr,) (i = 1,2) be DGLAs and C*(L;) (i = 1,2) be choices for the complement of the coboundaries
BY(L;). Let f: (L1,[,]1,dr,) = (L2, ][,]2,dL,) be a morphism of DGLA. We assume that

(i) H(f) is an isomorphism.



(ii) H2(f) is an injection.

Then it was proved in [GM2] that, if a morphism f : (L1,[,]1,dr,) = (L2, [,]2,dL,) satisfies (i) and (i), then
R, and Ry, are isomorphic.

We next introduce the notion of analytic DGLA. A normed DGLA (L,[,],dy) is a DGLA such that each L‘
is a normed vector space and with respect to the norms

(1) d, : L* — L*! is continuous.
(2) [,]: L* ® L' — L? is contionous.

We let L to be the completion of L¢ with respect to the norm.
An analytic DGLA is a normed DGLA (L, [,],d) such that it has finite-dimensional cohomology in degrees

0 and 1 and each L' has continuous splitting:
0— Z/(L) —» L' — BI*YL) - 0
and o o o
0— B/(L)— Z’(L) - H'(L) — 0.
It was proved in [GM2, Section 2] that for an analytic DGLA (L, [,],dr), there exists a germ of analytic space
(Kurpg,0) such that FO(KU.TL,O) is naturally isomorphic to Yz. Therefore, Ry, is isomorphic to O(gyr, 0)- See

[Ma, Chapter 3] for more details for the functors of Artin rings.
Based on the above discussions, the following Theorem was proved in [GM2].

Theorem 1.2.2 ([GM2, Theorem 4.8.]). Suppose (L1, |, ]1,dr,) and (L2, [,]2,dr,) are analytic DGLAs which are
quasi-isomorphic as DGLAs. Then the analytic germs (Kury,,0) and (Kurg,,0) are analytically isomorphic.

Remark 1.2.2. The DGLAs that appear in this chapter are analytic DGLAs by the standard Sobolev norms.

Remark 1.2.3. The construction of (Kurr,0) is based on [Ku]. When a DGLA (L,[,],dr) comes from a
differential geometric object, the complement C1(L) can be chosen by the Hodge decomposition of the differential
dr. In this case, Kury, is the standard versal deformation space. For example, when (A*(TX),|,]sn,O0rx) is
the Kodaira-Spencer algebra of a complex manifold X, then Kurs«(rx) is exactly the Kuranishi space of X.

1.3 Deformation of holomorphic-Higgs pairs

In this section, we review our previous work [Onol].

Let X be a complex manifold and (E,Jg,f) be a Higgs bundle over X. We called the pair (X, E,0) a
holomorphic-Higgs pair. In our paper [Onol], we considered the deformation problem of holomorphic-Higgs
pairs and constructed the DGLA that governs the deformation and constructed the Kuranishi space. We give
the definition of the deformation of the holomorphic-Higgs pair (X, E, ).

Definition 1.3.1. Let (X, E,0) be a holomorphic-Higgs pair. A family of deformation of holomorphic-Higgs
pair over a small ball A centered at the origin of C%, a complex manifold X, a proper holomorphic submersion

T: X = A

and a Higgs bundle (€,0) such that, 7=1(0) = X, Elr-1(0), and O|r-1() = 0.

1.3.1 DGLA

In this section, we introduce the DGLA which governs the deformation of holomorphic-Higgs pair based on
[Onol].

Let (X, E,0) be a holomorphic-Higgs pair and TX be the holomorphic tangent bundle of X. We fix a
hermitian metric h on E. Let dp, be the (1,0)-part of the Chern connection with respect to g and h. For
¢ € AC)(TX) and 9y, we define ‘

{6;“ ¢J} = ah(¢J) + (—1)Z¢Jah.



Here, ¢ is the contraction with respect to ¢.
Let L' := P AP9(EndE) @ A (TX) and L := @, L. Let (A,¢) € L* and (B, ) € L7. We define,

pt+g=t

(A, 8), (B,¥)]1 := (=) {0, Y} A — (=1) V{0, ¢} B — [A, Blgads, [0, ¥]sn)-

Here, [,]sn is the standard Schouten-Nijenhuys bracket defined on €; A% (TX).
We define B € A%!(Hom(T'X,EndE)) and a C-linear map C; : A>*(TX) — ALY (EndE) such that they act
on ¢ € AY(TX) as A
B(¢) := (—1)'¢puFy,, Ci(¢) := {Oh, ¢}0.

We define a C-linear map dy, : L* — Lit! as

 (Opnae B 0 C;
dL'_( 0 aTX>+<0 0)'

After some calculations, we obtain the following theorem.
Theorem 1.3.1 ([Onol, Theorem 3.1.]). (L,[,]z,dy) is a DGLA.

This DGLA governs the deformation of (X, FE,0). Actually, let n = (A,¢) € L'. Then n defines a
holomorphic-Higgs pair if and only if n is a Maurer-Cartan element. This was proved in [Onol, Theorem
3.6.].

We assume 1 = (A, ¢) € L* to be a Maurer-Cartan element and let (X, E,,6,) be the holomorphic-Higgs
pair which 7 determines. We briefly recall its construction. Let A9 (resp. A%!) be the (1,0) (resp. (0,1))-part
of A. We define 0 ,, := 0 + {0, do} + A% and 6, := 0+ A0 + ¢,(0 + A1Y). In [Onol], we showed that the
following holds:

e Orxd+ L[, ¢lsn =0,
. (EEJ, + 977)2 =0.

From the first equation, we obtain a new complex structure I, on X. We denote this complex manifold as
X,. We also showed that d , is a (0,1)-type operator and ¢, is a EndE valued (1,0)-form w.r.t X;,. From the
second equation, we obtain a holomorphic bundle E;, := (E, d,) and a Higgs field 6,).

1.3.2 Kuranishi Space

We use the same notation as the previous section. In this section, we introduce the Kuranishi Space and the
Kuranishi family for a given holomorphic-Higgs pair (X, E, #). Briefly, Kuranishi Space is an analytic space and
the Kuranishi family is a family of holomorphic-Higgs pairs parametrized by Kuranishi Space such that every
holomorphic-Higgs pair which comes from a small deformation of (X, E, 6) is isomorphic to a holomorphic-Higgs
pair which is in the Kuranishi family.

Since (L, [,]r,dr) is constructed differential geometrically, we can apply the Kuranishi’s work [Ku] to con-
struct the Kuranishi family. Let dj be the formal adjoint of dj with respect to L2-inner product, Aj :=
drdj, + djdy, be the Laplacian and G, be the Green operator associated to Ar. Let H! := ker(Ayp : Lt — LY)
and H : L' — H’ be the projection. By the classical Hodge theory, we know that dimH’ has a finite di-
mension for each i. Let {n;}".; be an orthogonal bases of H! with respect to L2-inner product. For each
t= (tl, . ,tn) € (Cn7 we set El(t) = Zi tﬂh

Lemma 1.3.1 ([Onol, Proposition 4.1, Proposition 4.2.]). For any t € C" and |t| << 1, there is a €(t) € L'
such that €(t) satisfies the equation

€(t) = en(t) + 5L Gulelt), t)]s

and €(t) depends holomorphically with respect to the variable t.
Moreover, €(t) satisfies the Maurer-Cartan equation if and only if

Hle(t),e(t)] = 0.



Let A C C™ be a small ball such that €(¢) is holomorphic on A. We set,
Kurx pg) = {t € A: H[e(t),e(t)] = 0}.

Since the dimension of H? is finite, Kurx g, is an analytic space. We call Kur(x g ) the Kuranishi space of
(X, E,0). Since a Maurer-Cartan element defines a holomorphic-Higgs pair, we obtain a family of holomorphic-
Higgs pair {(Xc(t), Le(t), Oc(t)) HteKur x p.g)- We call this family the Kuranishi family of (X, E, ). The Kuranishi
space and the Kuranishi family contain all small deformation of (X, E, ). Actually, let |-|; be the k-th Sobolev
norm of L' and let n € L' be a Maurer-Cartan element. If ||, << 1, then there exists a t € Kur(x g,g) such
that

(XU’ E‘,77 9,,7) ~ (Xe(t)7 Eg(t), He(t))

Here (X,, E,,0,) is the holomorphic-Higgs pair which 1 determines. This was proved in [Onol, Theorem 4.2.].

1.4 Harmonic bunldes

1.4.1 Kahler Identities

Let X be a compact Kéhler manifold and (E, 9,0, h) be a harmonic bundle.
Let 9), be the (1,0)-part of the Chern connection associated with 0 and K and 02 be the adjoint of 6 with

respect to h. We set Dj := 0p, + 92 and D" := O + 6. The connection D := Dj, + DY, is flat.

We define a L2-metric on AP(E) by using the Riemannian metric g on X and the Hermitian metric h on E.
Let D}, (Dj)* and (D%)* be the formal adjoint of Dg, D}, and D/, with respect to the L? inner product. Let
A, be the contraction with respect to the Kahler form w. The following Kéhler identities were proved in [S1,
Lemma 3.1.].

Lemma 1.4.1. Let (X,w) be a compact Kihler manifold, (E,0g,0) be a Higgs bundle over X and h be a
hermitian metric. Let Dj, D%, (D;)* and (D)* be as above. Then the following equalities hold.

(D))" =V—1[ Ay, D], (Dg)" = —V—1[ Aw, D} ] .
We define the laplacians as follows,

Ag Z:DEDE + DEDE;

A} =D(DY)" + (DY) D,

A, =D}, (D})* + (D})* D},
We assume h to be a harmonic metric. Under this assumption, we have D%, D} + Dj D}, = 0 and by the Kéhler
identities, we obtain the following equalities.

Ap =20 =27,

Let Gg, G% and Gj, be the Green operators asscoiated to Ag, A% and A} . By the above relations of Laplacians,
we have 2Gg = G, = G},. We set H' := kerAg. By the classical Hodge theory, we have the following orthogonal
decompositions with respect to the L?-inner product.

AYE) =H' @imDg @ imD},
AY(F) =H' @ imD}, @ im(D%)*,
AYE) = H' @ imD}, @ im(D},)*.
The next lemma was proved in [S2]. This is an analog of the Kéahler case which was proved in [DGMS].

Lemma 1.4.2 ([S2, Lemma 2.1.]). Let (E,dg,0,h) be a harmonic bundle on X. Then

kerD;, NkerD'%, N (imDj, +imD%) = im D), D%,.
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Proof. We give the proof for convenience. This lemma was originally proved in [S2].
Let v € AY(E). Suppose v = D)« + DB, D,y =0 and D%y = 0. Let 8 = By + D} 31 + (D})*32 be the
Hodge decomposition with respect to D% with 5y harmonic. Since A} = A%, A5y = 0. Thus we have

DYy = DD} + DD} o

From the Kéhler identities, we have D%, (D})* = V—1D%[ Ay, D% = V—1D%EALDY, = —\/—11[ A,, D%l D" =
—(Dy,)* DY, Hence we have
Y= DhOL+D Dhﬂl ( )*D%ﬂg

Since v is D}, —closed, (Dj},)* D% B2 is also. From the equation

(D))" DEB2, (D},) DEfBs) 2 = (D2, Dy (D))" DEB2) 12 = 0,
we obtain (D})*D’%B2 = 0 and therefore, D%3 = DD} 1. Here (,)r2 is the L*norm. We can show D)« =
DY%.Dj oy by using exactly the same argument as 3. Hence the claim is proved. O

1.4.2 Formality

Let (X,w) be a compact Kihler manifold, (E,dg,6,h) be a harmonic bundle on X. We obtain three DG
vector spaces (A*(E) := @;AY(E), Dg), (A*(E), D)), and (A*(E), D},). We define HY, ,, HY, ,, and HiD;L to be
the i-th cohomology of (A*(E), Dg), (A*(E), D%), and (A*(E), D;,). These DG vector spaces satisfy formality
conditions.

Lemma 1.4.3 ([GM1, P.83.],[S2, Lemma 2.2.]). The natural morphisms induce quasi-isomorphisms of the
following DG wvector spaces.

(kerD},, D) — (A™(E), Dg),
(kerDy,, D) — (A*(E), D),
(kerD;,, D'%) — (H}, g, 0),
(kerDj,, D) — (Hpy,, 0)
(kerDy,, D) — (HB 0).

Proof. We only prove the quasi-isomorphism of ¢ : (kerDj;, D%) — (A*(E), Dg).

H*(i) is surjective: Let o € KerDp. We now consider D}« and show it is D';-closed. Since h is a harmonic
metric, Dj D%, + D%Dj, = 0. Therefore, D}, Dj o = —Dj D},a = D} D} o« = 0. The second equation follows from
the assumption of a. As Dj cv is Dj-closed, we can apply the Dj D% -lemma. Hence there exists a 3 such that

ha_D/D

Moreover
Dia=—D;, D%
Now we consider &« — Dgf. From the equations
Dy (o — DgB) = Dja— D, D3 =0,
Di%(a— DgB) = Do — DD B =0,

We have o — D8 € KerDj NKerD?%,. Hence a — Dg/3 defines a cohomology class of (kerDj,, D). H*(i) maps
the cohomology class of &« — Dgf to the cohomology class of a. Hence H*(4) is surjective.

H* (i) is injective: Let o € KerDj NKerD%, and we assume that there exists a 8 such that o« = Dgf. Under
this assumption, We can apply the D} D%-lemma to Dj 5. Then there exists a -y such that

D}, 8 = D, Dyy.
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Now we consider 8 — Dg~y. From the equations
Dy, (B = Dgv) = Dy, — D}, Dipy = 0,
Dp(B — Dpv) = D — DpDyy = DB+ Dy, = Dpf = o,
we obtain o € D% (KerD},). Hence the cohomology class which « defines in (kerDj, D%) is 0. Therefore H*(7)
is injective. 0

Let E* be the dual of E. For any p,q € Z>o, E*®P @ E®? has a induced harmonic metric from E. Hence,
(A*(E*®P@ E®1), Dg) and (A*(E*®P @ E®?), DY) satisfy formality condition. We now focus on p = ¢ = 1 case.
In this case, E*® E = EndE and A*(EndFE) has a naturally defined bracket [, |gnaz such that for A € A*(EndE)
and B € AY(EndE),

[A, B]EndE =AANB-— (71)7'.].3 AN A.

We give a local description for convenience. Assume that A = A;dz; and B = Bjdz; locally. Here A; and B;
are matrix-valued functions. Then the bracket [A, Blgnag is calculated as

[A, B]EndE = AzB]dZZ A de - (71)”BJAdeJ A dZZ
By some calculation, we can show that (A*(EndE),[,|gnde, D) and (A*(EndE), [, |gnae, D%) are DGLA.
Therefore, by Lemma 1.4.3, we have the following lemma.

Lemma 1.4.4. (A*(EndE),[,]gnag, Dg) and (A*(EndE), [, |gnds, D%) are formal as DGLA.

1.5 Structure of Kuranishi space

In this section, we study the structure of the analytic germ (Kur x g g),0) when (X,w) is a compact Kahler

manifold and the Higgs bundle (E,dg,0) on X has a harmonic metric K. We prove that (Kurx,g,9),0) ~
(Kurg,p x Kurx,0) as analytic germs. We prove that by showing certain DGLAs are quasi-isomorphic and
apply Theorem 1.2.2.

Throughout this section, the DGLA (L, [,]1,dr) is the DGLA in the Theroem 1.3.1.

1.5.1 DGLA

In this section, we study the differential of (L, [,] 1, dr) when (X, w) is a compact Kéhler manifold and (E, dg, 0, h)
is a harmonic bundle.

Proposition 1.5.1. When X is a compact Kihler manifold and (E,0g,0,h) is a harmonic bundle over X,
then the differential dy, of the DGLA (L,|[,]r,dr) acts on (A,¢) € L' as

] (A) - (D;;A + D;(@&))
o)~ Orx ¢ ’

Proof. The second row is from the definition of d;,. From the definition of dj,, the first row of

o (6)

gEndEA + (*1)7;(,254Fdh + [0, A] + {0h, $_}0.
Since h is a harmonic metric, D = D}, + D" is flat. Therefore, the (2,0)-part and the (1, 1)-part of D? is 0. The
(2,0)-part is 9p6 and the (1,1)-part is Fy, + [0, 9;2] Hence we have the equality
OpnapA + (—1)'¢oFy, + [0, Al + {0n, ¢2}0 = DEA — (=1)'¢,(0, 0] ] + Ox (¢0)
= DA+ (0], 0] + Ox (¢0)
= D%A + D;L((b_l@).

is

Hence the claim is proved. O
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1.5.2 Quasi-isomorphisms of DGLAs

In this section, we prove quasi-isomorphisms of certain DGLAs. Let (A*(TX),[,]sny,07x) be the Kodaira-
Spencer algebra. We first state the main result of this section.

Theorem 1.5.1. (L,[,]1,dr) is quasi-isomorphic to (A*(EndE), [,]gnar, D) ® (A*(TX),[,]sn5,07x)-
We first prove the following Proposition.

Proposition 1.5.2. (KerDj & A*(TX),[,|r,dr) is a sub DGLA of (L,[,],dr) and the canonical morphism
i: (KerDj, & A*(TX),[,]e.dr) = (L, [,]1,dr) is a quasi-isomorphism.

Proof. By the definition of dy,, it is easy to see that (KerDj, & A*(T'X), dy,) is a sub DG vector space of (L, dy,).
We show that [,]; preserves KerDj & A*(TX). Let a := (4, ¢), 8 := (B,¢) € KerDj & A*(TX). We have
(71)1{3}“ ¢J}A - (71)(1+1)]{8ha (b—‘}B - [A7 B]
[a7 B}L -
[¢7 ¢]SN
_ ((—1)i{8h, YI}A — (=1)0HDI{, ¢1}B — [A, B])
[¢a ¢]SN

Since A € KerDj,, we have

{Oh, ¥} A = 0n(YoA) + (=1)74u0, A
= Oh(YaA) — (—1) 0] A
= On(aA) + 0l aA
— D} (15A).

Hence we have

(1.1) o, Al = <(—1)iD2(wJA) - (Ebl’)q;jzszZ(mB) 14, B]> .

Hence [a, B]1 € KerDj @& A*(TX). Therefore, (KerD) & A*(TX),[,]r,dr) is a sub DGLA of (L, [,]z,dz).
We show that the natural morphism i : (KerD% & A*(TX),[,]1,dr) — (L, [,],dr) is a quasi-isomorphism.
H* (i) is surjective: Let n:= (A, ¢) € Kerdy,. We want to show that there exist

n = (A, ¢) e <Keng @ A*(TX)) N kerdy,

and v € L such that
n—n =dry.

By Proposition 1.5.1, we have
1 !/
dpn = (DEA+ Dh((thg)) _0.
Orx¢

Let A be the harmonic projection of A with respect to D/;,. The Hodge decomposition of A with respect to D’
is

A=A+ GEA"A= A+ GEDE(DE)"A+ GL(Dg)* DA
= A+ Dp(Dg)"GpA - V=1G[ Ay, D] DA
= A+ D}(D%) GHEA — V-1GhAuD, DA+ V—1G} Dy A, D A
= A+ DL(DY)*GEA+ V1G4 A, D}, D} (¢0) + V/—1D},G'p A, Dy A
= A+ Dg(Dg)* G A+ V-1D,GEA DR A.

The compatibility of D}, and G, follows from the fact that G, = G},.
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We set

- (A + \/—1D;,ZG%AWD3§A> 7

_ ((Dg)"GpA
v 0 .

Since DL(A+ +—1D),G'EA,D}A) = /—1DE Dy GLALDEA = DA and A is the harmonic projection of A,
n € <KerD;1 & A*(TX)) Nkerdy. By direct calculation, we can check n —n’ = dry. Hence, H*(i) is surjective.

H*(i) is injective: Let n := (A, ¢) € <KerD’h e A*(TX)> N kerdy,. We assume that there exsits a 8 :=
(B,v) € L such that o = dr 8. Under this assumption, we have
A DB+ D; (z/u@))
—a=d — B~ h .
<¢> a=dp < Orx

Since A € kerD;, D}, B € kerD; NkerD%, N (imDY%, 4+ imDj ). Hence we can apply Dj D7%-lemma to D%, B. Let
C € A*(EndE) such that D% B = D},D; C. We set,

_ (PnC >
- (710).
Then v € KerD) & A*(TX) and o = dyy stands. Hence we showed that H*(7) is injective. O

For A € A*(E), let [A]p; be the cohomology class in H} ;- Let Q : KerDj — HB;I be the C-linear map such
that Q(A) = [A]p; .

Proposition 1.5.3. The morphism

(()Q Idg){) . (KerD), & A*(TX),[,]1,d1) — ( by @ A*(TX), [ Jonas @ | Jsw (8 a&))

is a morphism of DGLA and it is a quasi-isomorphism.

Proof. We first show that <—OQ IdO > is a morphism of DG vector spaces. Let a := (4,¢) € (KerD’h &)
TX
A*(TX)). We have,

(0 3m) (6 1) (2) =0 30) (57 = ()
(6 tane) o (5) = (5 nane) (P505°7)
_ ([DEA+ Dy(620)]p;,
( Orx ¢ )

Since A € KerDj,, we can apply Dj D%-lemma to D}, A. Hence there is a B € A*(EndFE) such that D}A =
D; D%, B. Therefore

(DA + Diy(66)] oy, = (D} DB + D} (60)] oy, = [Dh(DgB + 66)] oy = 0.

Q
Hence ( 0 Idpx

Let a:= (4, ¢),8 := (B,¢) € KerD; & A*(TX). By (1.1), we have

> is a morphism of DG vector spaces. We next show that it is compatible with the brackets.

(1) Dy (ad) — (~1)EVI DL (poB) — (A, B]
[0"5]“< ' 6, 0sn >
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Hence we have

<—Q 0 )M mL(—Q 0 )<(—1)iDz(wJA)—(—1)““”D§L(¢JB)—[A7B])

0 Idrx 0 Idrx (¢, ¥]sn
_ (Kl)%‘D;(mA) — (~1)I D} (60B) — (4, B}Ean%)
[¢7 d)]SN
_ (HA’B]EndE]D;L> _ ([[A}Dgﬂ [B]D;]EndE)
[0, ¥]sn [0, Y]sn '
Hence <_OQ Id(;)pX> is a morphism of DGLA.
We next show that (_Q 0 ) is a quasi-isomorphism.
0 Idrx

H (( 0 IdTX)) is surjective: Let ([A]DL’@ € (HDiL oA (TX)) N Ker (0 6TX>' We first show

that
—D}%L A+ Dj(¢.0) € KerDy NKerDj, NimDg.

Since A € KerDj,, —DLA + Dj, (¢10) € KerDj,.
Since drx¢ = 0, we have

D(¢0) = Opnap(920) + [0, p0]gnar
= D00 — 6 Bmnazd + 50200, lpuar
=0.
Hence
D (=D A+ Dj,(¢20)) = —D}, Dy (¢0) = 0.

Moreover, we have
Dp(—A+ ¢.0) = DLA+ Dy (¢J0).

Hence we proved —D%4A + D} (¢10) € KerD, N KerDj, NimDpg. Therefore, we can apply Dj D%;-lemma to
—D'Y A+ Dj (¢0). Hence there is a B € A*(EndFE) such that

—D% A+ D} (¢.0) = D}, D}, B.
Equivalently, we have
—D%(A+ Dy B) + Dy, (¢0) = 0.
Therefore
(—A — D} B
¢

<_0Q Id(;X> (_A _¢D;LB> N ([A+ZLB]D;> B GAE?DL) '

 (—@ 0 . —
Hence H ( ( 0 Idpx is surjective.

H*( (Q IdO ) ) is injective: Let (A, ¢) € (KerD;l @ A*(TX) | NnKerdr. We assume that the coho-
TX

) € KerDj, ® A*(TX) N Kerdy,

and

0
mology class of ([4]p;,¢) in (H’b,h ® A(TX), (8 agx) ) is 0. Hence there exsit a B € A*(EndFE) and a
1 € A*(TX) such that
A= D} B,
¢ = Orx.
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We show that
A — Dy (v40) € KerD}, N KerDj, NimDj,.

Since A = D} B and A € KerDj, A— D} (¢.0) € KerD; NimD). We also have
Dip(A = Dy ($40)) = DA + D}, Dip(¢6)

— 1
= D%A + D;L (aTx’(/JJG + 5¢J[9, H}EndE)

= D}_%A + D;Z(¢49)
Since (4, ¢) € Kerdy,, we have
d (A) B <D}§A—|— D§I(¢49)> _o
"o Irx o '

Therefore we have
DY%(A — Dy, (v.0) = DLA+ Dy (¢.0) = 0.

Hence we showed that A — D} (¢10) € KerD% N KerD; NimDj. Therefore we can apply Dj D/-lemma to
A — Dj (¢26). Hence there exists a C' € A*(EndE) such that

A~ D} (¥0) = DILD,C.
We note that (D}, C, ) € KerDj & A*(TX) and

. (D;c) B (D};D;LC+D;l(w40)> B (A)
P\w )7 Drx “\o)”

Therefore the cohomology class of (A, ¢) in (KerD; $A*(T'X),dy) is 0. Hence H* < <_OQ Ido > > is injective.
TX

Proof of Theorem 1.5.1. Combining Lemma 1.4.3, Proposition 1.5.2, and Proposition 1.5.3 we have the following
chain of DGLAs

(L7 [7]L,dL) — (KerD;L (&) A*(TX), [,]L, dL)
— ( *DL, ® A (TX),[,|ende ® [, 1sN, (8 82}() )

Dp 0
- (KerD;L @ AN(TX), [, Jenar @ [,]sn, ( o 3 ) >
TX

= (4 (©na) 0 4°T). Llewaz o Llsw (F 50 ) )
TX
such that each morphism is quasi-isomorphism. Hence the claim is proved. O
Corollary 1.5.1. (L,[,]1,dr) is quasi-isomorphic to (A*(EndE), [, |gnar, D) ® (A*(TX),[,]sN, Orx)-

Let Kurx be the Kuranishi space of X, Kurg,g) be the Kuranishi space of the Higgs bundle (E,#), and
Kurg, py be the Kuranishi space of the flat bundle (£, D).
Combining Theorem 1.2.2 and Theorem 1.5.1, we have the following theorem.

Theorem 1.5.2. Let (X,w) be a compact Kéhler manifold, (E,0g,0) be a Higgs bundle over X and, K be a
harmonic metric. Then

(Kur(x,g,0),0) ~ (Kur(g,g x Kurx,0),
(Kur(x,p,0),0) ~ (Kurg,p) x Kurx,0)

holds as germs of analytic spaces.
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We have some consequences from Theorem 1.5.2 for specific cases. Let M be a Riemann surface with genus
g > 2 and (E, g, 0) be a stable Higgs bundle of degree 0. Under these assumptions, each deformations of M and
(E,0E,0) are unobstruced. Hence Kury and Kur(gg) are complex manifolds. Moreover, the dimensions of

Kury is 3¢ —3 and Kur g g) is 2+r%(29—2) [MK, N]. Here r is the rank of E. The following is straightforward
from Theorem 1.5.2.

Corollary 1.5.2. Let M be a Riemann surface with genus g > 2 and (E,0g,0) be a stable Higgs bundle of

degree 0. Then the deformation of pair (M, E,0) is unobstructed. Moreover, Kur (g, is a complex manifold
and its dimension is g(2r%® +3) — 2r? — 1.
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Chapter 2

Deformation of Higgs Triples

2.1 Abstract of Chapter 2

Let (E,0g,0g), (F,0r,0r) be Higgs bundles and f : (E,0g,0) — (F,0F,0) be a morphism between them. In
this chapter, we study the deformation of the triple (£, (E,dg,0), (F,0r,0)). We call this triple Higgs triples.
We construct the DGLA L which governs the deformation of Higgs triples and study the property of L when
(E,0g,0g) and (F,0F,0F) admit harmonic metrics. In particular, we show that L is formal.

2.2 Introduction of Chapter 2

Let (E,0g,0,h) be a harmonic bundle. We have a Higgs bundle (E,dg, ) and a flat bundle (E, D = 0}, +
I + 0 + 9};) Let Lpoi,g (resp. Lpr k) be the Differential Graded Lie algebra (DGLA) that controls the
deformation of the Higgs bundle (resp. the flat bundle). It was proved in [GM1, S2] that (¢)Lpe,g and Lpr g
are formal, (1) Lpe, g and Lpr g are quasi-isomorphic (See Section 1.2.1 for details). Formality of Lpg g
was used in [GM1] to prove that the deformation space of m1(X) is quadratic at D. The quasi-isomorphism
between Lp, g and Lpgr g was used in [S4] to prove the isosingularity principle: the singularity of the Moduli
space of Higgs bundle Mp,; and the Moduli space of flat bundle Mppg are formally isomorphic at corresponding
points. However, the global homeomorphism between Mp,; and Mpg is not a complex isomorphism, so the
local isomorphism is not directly related to the global map. See the introduction and Section 10 of [S4] for
details.

We say a triple (f, (E,0g,0r), (F,0r,0r)) is a Higgs triple over X if each (F,0g,0g), (F,0F,0F)) is a Higgs
bundle over X and f is a morphism of Higgs bundles (i.e. f is a vector bundle morphism and (9p + 0r) o f =
fo(9r+0g) holds). Note that if 0z = 6 = 0, then the Higgs triple (f, (E,dg,0), (F,dr,0)) is the holomorphic
triples which is deeply studied in [BO, O].

In this chapter, we are interested in the deformation problem of Higgs triples (f, (E,dg,0g), (F,0r,0F)).
We first construct the DGLA which controls the deformation of the Higgs triple.

Let

L' := A(EndF) ® A" (Hom(E, F) @ AY(EndE) (i € Z),
L:=a,L".

We define a linear map 0y : L* — L+ such that for (A,C, B) € L

_ (A _ (OF +0r)A 4 ,
9t | C | = | (Osom(z,F) + Otom(z,r))C + (=1)TAf — (=1)""' fB
B (e +0E)B
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We next a bilinear map [,]1, : L* x L/ — L7 as follows: Let (4;,C;, B;) € L', (A;,C}, B;) € L7 then

N [Ai; AjlEnar ‘
[(Ai, Ci, By), (A;,C5, B = | Ay ANC; — (=1)1U=DC; AB; — (—1)9A; ACy + (—1)7C; A B
[Bi, Bjlendr

Then

Theorem 2.2.1 (Theorem 2.4.1,2.4.2). (L,[,]1,8y) is a DGLA. Moreover (L,[,]1,0y) governs the deformation
of the Higgs triple (f,(E,0k,0F), (F,0r,0F)): v = (A,C,B) € L' defines a Higgs triple (f + C,(FE,0p +

A% 0 + AVO) (F,0F + C%1 0 + CY0)) if and only if x satisfies the Maurer-Cartan equation. Here A0,
BYO s the (1,0)-part of A, B and A%, B%! is the (0,1)-part of A, B.

We are interesed in the property of (L, [,]1, 0¢) when the Higgs bundles (E,dg,0g), (F, O, 0r) has harmonic
metrics hg and hp or equivalently, both Higgs bundles are polystable and ¢1(E) = ¢1(F) = c3(F) = co(F) = 0.
Under this assumption, morphisms of Higgs bundles between E and F' are parameterized by a suitable matrix
space: the space of Higgs bundle morphisms between E and F' is isomorphic to n x m complex-valued matrix
M (n, m, C) as vector space. This is an application of the result that the morphism between stable Higgs bundles
is ald(a € C) or 0. See [Ko] for details. Hence, once we fix (E,dg,0g), (F,dF,0r) with both polystable and
c1(E) = c1(F) = co(E) = ¢a(F) = 0, the deformation of Higgs bundles morphism f : E — F is not complicated.
This observation and the fact the DGLAs Lpe,r and Lpe,r are formal when ' and F' has harmonic metrics,
gives us a hope that (L, [,]1,d;) has some additional property. Actually, we prove the following

Theorem 2.2.2 (Theorem 2.5.2). Let (f,(E,0g,0r),(F,0r,0r)) be a Higgs triple over a compact Kdhler
manifold X. We assume that each E and F' has a harmonic metric hg and hp. Then (L,[,]1,0y) is formal.

We say a triple (f, (E, Dg), (F,Dp)) is a flat triple over X if each (E, Dg), (F, D)) is a flat bundle over X
and f is a morphism of flat bundles (i.e. f is a vector bundle morphism and D o f = f o Dg holds). In this
chapter, we also construct the DGLA (L, [, ], ds) which controls the deformation of (f, (E, Dg), (F,Dr)).

We study the property of (L, [,]1,,d;) when (E, Dg) and (F, D) comes from harmonic bundles (E, 9, 0z, hi),
(F,0r,0r,hr) (ie. Dg =0, +0p +0r + O,TLE, Dp = 0h,. +0p +0p + QILF) By [S2, Corollary 1.3], a Higgs
triples (f, (E,0g,0g), (F,0F,0F)) with harmonic metrics hg, hr, gives a flat triple (f, (E, Dg), (F, Dr)). Con-
versly, a flat triples (f, (E, Dg), (F, Dr)) which both flat bundles comes from harmonic bundles (E, 0g, g, hg),
(F,0p,0p, hr), gives a Higgs triple (f, (F,0g,0g), (F,0F,0F)).

Hence it is natrual to compare (L, [,]r,dy) and (L, [,]r,df) under the assumption of exsitence of harmonic
metrics.

Theorem 2.2.3 (Theorem 2.5.3). Let (f,(E,Dg),(F,Dr)) be a flat triple over a compact Kdhelr manifold
X. Assume that (E,Dg) and (F,Dp) comes form harmonic bundles (E,0g,0r,hg),(F,0r,0p,hr). Let
(L,[,]r,dy) be the DGLA which controls the deformation of (f,(E,Dg), (F,Dr)) and (L,[,]1,0;) be the DGLA
which controls the deformation of (f,(E,0g,0g),(F,0p,0F)).

Then

o (L,[,]1,dy) is formal.
o (L,[,L,dy) is quasi-isomorphic to (L,|,]1,0f).

This is an analog of Lp,, g and Lpr g being quasi-isomorohic for a harmonic bundle F.

Notation

We use the notation of 1.2.1 and 1.4.

For a vector bundle E, we denote the space of smooth sections of E as A(FE). We denote the space of
E-valued smooth p-forms as AP(FE).

Let F be a vector bundle. We freely identify EY ® F and Hom(E, F).
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2.3 Preliminary

2.3.1 Leibniz Rule

Let (E,0g,0r) be Higgs bundles. Then for the dual bundle EV, we have a dual holomorphic structure dgv
and the dual Higgs field ¥ and hence we have a dual Higgs bundle (EY,dpv,0%). The dual Higgs field " is
defined as ¥ = —6*. Here 0" is the transpose of 6. Let hg be a harmonic metric. Then the dual metric h}, is
a harmonic metric for (EV,dgv,0}%).

Let (F,0r,0r, hr) be a harmonic bundle. Then we have a harmonic bundle (EV®F, 0pvgr, 0pvor, h®hg).
We also have associated operators D'y g p, D;%Qahw Dpvgr.

Let A € AY(EndF),B € AYEndE),C € A/(EY ® F),. Then since EV ® F = Hom(E,F), ANC,C AB €
Ai(Hom(E, F)) = AY(EY @ F).

The following result is an application of Leibniz rule and will be used throughout the chapter. We sometimes
use it without mention.

Lemma 2.3.1. Let A € AY(EndF),C € AY(EY ® F),B € A¥(EndE). Then
Ever(ANC) = (DEA)AC + (=1)'A A Dy g p(0),
Ever(C A B) = Diygp(C) AB+ (=1C A (DEB).

This also holds for D;L,é@hp’ Dgvgr.

2.4 Deformation of Higgs Triples

Let X be a compact complex manifold and (E,0g,0r), (F,0r,0r) be Higgs bundles over X. We say that
f: E — F is a morphism of Higgs bundles (E, 0, 0g) and (F,dr,0F) if f is a morphism of vector bundles and
(D)o f=fo (EE + 6g) holds.

We say (f, (E,0g,0g), (F,0F,0F)) is a Higgs tripe over X if (E,0g,0g), (F,0r,0r) are Higgs bundles and
f: E — F is a morphism of Higgs bundles over X and a pair if X is clear.

In this section, we study the simultaneous deformation problem of a given Higgs tripe (f, (E,0g,0g), (F,0F,0F)).
The goal of this section is to construct the DGLA which governs the deformation: We construct a DGLA L such
that A € L' defines another Higgs triple (fa, (Ea,0g,,0r, ), (Fa,0F,,0r,)) if and only if A is a Maurer-Cartan
element.

We now fix a Higgs triper (f, (E,9g,0r), (F,0F,0F)) and let (f1, (E1,0g,,08,), (F1,0F,,0F)) be another
Higgs triple. Let

A:= DY, — Dy,
C::fl_f7
B:= D}, — DJ.

Note that A € A'(EndF),C € A(Hom(E, F)), B € AY(EndE). Since (D}, +A)* = (D%,)? = 0 and (D} +B)? =
(D%,)? = 0 holds, we have

1

DA+ 5[14, Algnar =0,
1

DB+ 5[B, Blgaar = 0.

The brackets [, |gndr, [, Jende are defined in Section 1.4.2. From now on, we denote [, |gndr, [, |Endag as [,] if there

is no risk of confusion.
Moreover since (D% + A) o (f +C) — (f +C) o (D + B) = DY, o fi — fi1 o D = 0 holds, we have

(Dp+A) o (f+C) = (f+C)o(Dg+ B)
=D} of+DEC+Af+AC — fo DY, — fB—CD%+CB
=DivgpC+Af — fB+AC—-CB =0
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Here EVY is the dual bundle of F.
Conversely, let A € AL(EndF),C € A(Hom(E, F)), B € A}(EndE) and assume they satisifes

DA+ 54, 4] =0,
D}B + %[B,B] =0,

Then, it is clear that (f + C, (E,0r + A%!,0p + AY0) (F,0p + B%!,0r + B'Y)) is a Higgs triple. Here A0,
BY0 is the (1,0)-part of A, B and A%!, B%! is the (0,1)-part of A, B.
From this observation, we will now construct the DGLA which governs the deformation of a given Higgs

triple (f7 (E55E7 eE)a (Fnga QF))
Let

L' := AY(EndF) @ A" Y(Hom(FE, F)) ® AY(EndE) (i € Z),
L:=q,L".

We define a linear map 9y : L' — Li*! such that for (A4,C, B) € L

_ (A DpA ,
9 [C | = [ DpeorC + (1)1 - (-1 B
B DB

Since A € A'(EndF), B € A'(EndE), Af € A'(Hom(E, F)) and fB € A'(Hom(E, F)). Then since L't =
ATHEndF) & A (Hom(E, F)) & A" (EndE), 97(A, C, B) is indeed an element of LiT1.
We next define the bracket [,]r, : L' x LY — L™ as follows: Let (A;, C;, B;) € L%, (A;,C;, Bj) € L7 then

[Ai, Aj]
[(Ai, Ci, By), (A;,C5, B = | Ay ANC; — (=1)1U=DC; A B — (—1)9A; ACy + (—1)7C; A By
[Biij]

The first result of this chapter is as follows:
Theorem 2.4.1. (L,[,]1,0;) is a DGLA.

Since the proof consists of a lengthy computation, we give it in the next section.

Theorem 2.4.2. Let (f,(E,0g,0g), (F,0r,0r)) be a Higgs triple. Then the DGLA (L,|[,],05) controls the de-
formation of the Higgs triple: x = (A, C, B) € L' defines a Higgs triple (f +C, (E,0p+ A%, 0+ AL0) (F,0r+
B 0r + BY%)) if and only if x is a Maurer-Cartan element.

Proof. Let x = (A,C, B) € L' be a Maurer-Cartan element. Then by definition
— 1
Osx + i[x,m]L =0.

Then, computing each row, we have

DA+ —[A, A] =0,

1
2

DB + %[B,B] —0,
terC+Af — fB+AC —CB=0.

Then x defines a Higgs triple (f+C, (E,0p+ A% 0g+ AY0), (F,0F +B%!, 0+ B%%)) by the above observation.
The converse is also true by the observation above. O
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2.4.1 Proof of Theorem 2.4.1

Let (f,(E,0g,0g), (F,0r,0r)) be a Higgs triple and let (L, [,]1, ;) be the pair of the graded vector space, the
bracket, and the linear map we defined in the previous section. In this section, we prove that it is actually a
DGLA. We first prove that the bracket is graded skew-symmetry.

Proposition 2.4.1. Let v = (4;,C;, B;) € L',y = (4;,C;, B;) € L. Then

[l',y]L + (_l)ij[yax]L =0

holds.
Proof. By the definition of the bracket, we have
y [As, 45] |
[l‘,y]L = Az N Oj — (71)1(‘771)63 N B, — (71)”143‘ A CZ + (—I)JCZ N Bj
[Biij]
and
y y y 45, Al _
(—1)” [y,x]L = (—1)lj Aj NC; — (71)“171)01' A Bj — (7].)”/12' AN Cj + (*1)103' A B;
[ijBi]

3 (=1)¥[A;, Aj] o
(=D)7A; ACi = (=1)77C; A By = Ay A Cj + (1) F1C A By
(=1)"[Bj, Bi

Since the bracket of EndF valued forms is graded skew symmetry

[z,9]L + (=1)¥[y, 2], = 0.

We next prove that the bracket satisfies the graded Jacobi identity.
Proposition 2.4.2. Let x = (A;,C;, B;) € L',y = (A;,C;,B;) € LV, 2 = (Ay, Cy, B) € L*. Then
[z, [y, 2] = ([, 9L, 21 + (=1)7 [y, [2. 2] )L
holds.

Proof. We first calculate each element.

4 . [Aj, Ar]
[.’E, [y, Z]L]L = |C; Aj ANCL — (—1)J(k_1)0k A\ Bj - (—1)]kAk VAN Cj + (—1)’“Cj N By,
B; [Bj,Bk] I

([sz [Ajv Ak”)
Cla,ly, 211
[Biv [Bj7 Bk]]

Cloiyalely =Ai ANA; ACr — (=1)F DA ANCLABj — (—1)7%A; AN A ACy + (=1)FA; ACj A By,

where

— (—1)i(j+k1){x4j ANCp N\ B; — (—1)j(k*1)C’k A Bj NB; — (—1)jkAk A Cj A B; + (—1)ij A Bp A\ Bz}
— (=1)'UTRA;, Ag) A C + (=1)YFC; A B, By
=Ai NA;ACy — (=1)7F DA ACL A By — (=1)7FA; A A ACj 4 (=1)A; ACj A By,
— (=1 0D A A Cp A By — (—1)1 U= DRG0 A B A By — (—1)00 TR DHIR 4 A O A B,
+ (—1)i(j+k_1)+k0j ANBp NA; — (—l)i(j+k) [Aj,Ak] ANC; + (—1)j+k0i N [Bj, Bk]
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Similarly, we have

- [Ai, A5] _ Ay
[[l‘,y}L,Z]L = [A4; A Cj — (71)2(]71)0]' NB; — (71)”Aj NC; + (*I)JOZ' N Bj Cy,
(B, Bj] By]

[[AivAj]’ Ak]
= | Cllay)r.alc
[[Bi, Bjl, B]

Cliayl A =41, Aj] A Cp — (=1)FFDEDCy A [B;, By

where

— (—1)(i+j)k{Ak ANA; A Cj — (—1)14(]4_1)14;c A Cj ANB; — (—1)ijAk AN Aj ANC; + (—1)jA}C ANC; A Bj}

+ (—1)’“{,42- AC; A By, — (—1)"U=DC; AB;yABj — (=1)9A; ACy A By + (—1YC; A B A Bk}

and
) [4 | [Ais Ay
(=1)"[y, [z, 2] = (1) |C;  Ai ACy — (—1))*DCp A B; — (—=1)* A A Ci + (=1)*C; A By,
Bj [BuBk] L
(A [A: Ay
= (D" | Cuy a2

[B]7 [BlaBk]]

where

Clytealns =A5 N A A Cy — (=1)"F DA, ACl A By — (—1) A; A Ap ACy + (=1)¥A; A C; A By,
— (—1)70+k=1) {Ai ACy A Bj — (=1)*=V0y A By A Bj — (=1)* A, AC; A Bj + (=1)*C; A By, A Bj}

— (—1)j(i+k) [Ai, Ak] N Cj + (—1)j+k0j N [Bw Bk]

Since (A*(EndF),[,], D%), (A*(EndF), [, ], D}%) are DGLA, we only need to prove

Claiwzle)e = Cllewln ale + (17 Cly o211,
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Cliinae + (DY Cly o211

=[As, 4] A Cr = (=1)FFDE=VC A [By, By)

—(=1) ’”)k{Ak/\A ANC; — (=1 VAL AC; AB; — (— 1)ijAkAAjACZ-+(—1)J'A,€ACZ-ABJ-}

+ (1)k{A1 A Cj N By — (71)2'(]'71)0]' A B; N\ Bj — (*1)1-]“4]' ANC; N\ By + (*l)jci AN Bj A Bk}
+ (=) A; ANA;ACy — (=1 0TV A A Cp A By — (1)1 A A A A Oy + (—1)74FR A A Ci A By
— (=1)I*=D {AZ- ACy A B — (1) D0y A By ABj — (=1)* A, AC; A Bj + (=1)¥C; A By, A Bj}

— (=1)7*[Ai, A A Cj + (1) TEC; A [By, By
=[Ai, Aj] A Cr + (=19 A; A A A Oy — (1) 5D A, A Oy A By

)

s Aj]
— (=) FDEAL A AN Cy — (1) [Ay, AR A O+ (=1)FA; ACj A By — (=1)UFE=D A A Oy A B;
— (- 1)(1+J)(k 1)0 A [BZ,B ]+ (— )(z+J)(k 1)Ck A B; A B, + (- )(i+j)k+i(j—1)Ak AC; A B;
— (—=1)'UVFRC A By A B + (—1)9HHEC; A By, By

+ (=) DR AL AN A A Cy — (1)U A A Ay A

+ (=1)"**C; A Bj A By, — (=1)7=DHRC A By A B
— (1) DRI AL A Oy A By 4 (—1) %D 44 A Oy A By
— (=1)9FRA; ACy A By + (—1)91*A; ACi A By,

=Ai NA; A Cy — (=1)7¢=D A, A Oy, A By
— ()AL NALAC + (~1D)FA AN Cy A By — (=)D A A CL A B;
— (—1) DR D O A By A By — (—1)UE=DHIR AL A O A By

+ (—=1)IUFR=DHRCE A B A A
— (—1)'URA;, A A Cs

+ (=1)7*5C; A [By, By

=Cla [y 1)

We next prove that the square of Ef is zero.

Proposition 2.4.3. Let z = (A,C,B) € L. Then

holds.

Proof. By the definition of dy, we have

A
gf ng(x) = 5f ng <B)
C

- DA
=0y | DiverC + (-1)''Af = (=1)""'fB

D!\B
D% (D A)
= | C5,09, )
Dy (D B)
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where

03,00, (2) = Diver(DiverC + (=1)TTAf — (=1)"7 fB) + (=1)(DFA) f — (-1)' f(DEB)

= Divor(DivgrC) + (=1) "1 (DEA)f — (1) f(DEB) + (-1)(DRA)f — (1) f(DEB)
= 0.

Moreover, DY, o D} = D', o D, = 0 and thus the claim follows.
We next prove that the 0 + satisfies the Leibniz rule for the brackets.
Proposition 2.4.4. Let v = (4;,C;, B;) € L',y = (4;,C;, B;) € L7. Then
5f [33, y]L = [gf.lf, y]L + (_1)1[33’ 5fy]L
holds.

Proof. We first calculate each element. We have

B _ [4;, 4]
dflw,ylr, =0; | Ai NCj — (—=1)"U=YC; AB; — (=1)7A; ACi + (=1)C; A By
[BiaBj]
Dg‘[AﬁAj]
= Cgf[l’vy]L
D%[B%Bj]
where
Cgf[w,y]L :D%‘V®F (Az A Cj — (—1)i(j_1)0j AN B; — (—1)ijAj ANC; + (—1)jCi AN BJ>

+ (71)i+j71[Aia A]}f - (71)i+j71f[Bia Bj]a

N DA , A;

[Orz,ylL = |DivgrCi+ (=1)'Aif — (1)1 fB; Cj

DY, B; B;
[DFAi, Aj]
= | Coeu
(DB, Byl
where
C@fx,y]L :D};AZ A\ Cj — (*1)(i+1)(j71)0j A\ D%.BZ
— (=1)EVIAG A D g 5 Cy — (= 1) UFTDTITVA A A A f 4 (—1)10FDHI 1A A £ A B,
+ (=1 D} pCi ABj + (=1)"H YA f AB; — (=17~ fB; A By,
and
_ Ai DA |
[z,0pylL = |Ci DivgpCj+ (1) 1A f — (1)) fB;
B; D!}B; .

[Aiv DZ‘A]]
= C[l‘ﬁf@/h
[Bi» D%‘Bj]
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where

=A; NDopCi+ (1) A N A f — (=177 A f A By
— (1) DigvgpCj A By — (1)t A f A B + (—1)" 71 fB; A B;
— (=1)UDDLA; A Ci + (-1)PTCy A DY B;.

C[l’ 05yl

Since (A®*(EndF),[,], D%), (A*(EndF),[,], D}%) are DGLA, we only need to prove

Costale = Cgaty (1 Clgyy, -

For o € {0¢[z,y]L, [0, YL, [x,05y]L}, we denote as Cq o as the sum of the elements where f does not appear
and C, 1 as where f appears. For example, for a = 0s[z, y]L

Gy

f[z’y]L’OzDgV@,F(A AC; — (=1)'U=YC; AB; — (— 1)ijAjACi+(—1)fCiABj),

C

d¢lz,ylL,1

= (1) AL Al f = (1) B, Byl
It is clear that C,, = C, 0 + C4,1 and hence to prove
Cy =C| +(=1)'Cl 5,4,

rlz,yl Orz,ylL

We only have to prove
Cgf[r’y]lmo - C[gfz,y]L,O + (71)ZC[$,5fy]L,O’
Coswaie = C@rawien T (D Clagya

We now prove these two equations. Recall that C; is a EY @ F-valued (i — 1)-form and C} is a (j — 1)-form.

Ciranino + (“1'Clzy, 0 =DEA N Cy = (1)FDU=DC; A DEB;
— (1) IA; A Dl o pCi + (=1) D G A B
+ (=1)"4; A Dy o pCj — (1) DYy o pCj A By
— (=1D)YD}A; ACi + (1) HCy A DYB;
D} A; ACj+ (—1)'A; A D o1 C;

—(~1* (D%v@mcj A B+ (—1)771C; A D%Bl)
—(—1)”(D;£Aj/\ci+( 17 A; A V®FC>
+(—1)j< tvorCi A Bj + (—1)*1C; A D) B>

=Diver <Ai ANC; — (=1 D0 AB; — (—1)9A; ACy + (=1)7C; A Bj>

=Cgs 1w y)e 0"
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Coyayin T (—1)i0[x,5fy]L,1 =— (=)D TIA AN A A f 4+ (1) 0TDRTTA A fAB;

+ (=) A f AB; — (1) B A By
(—)H A ANAf — (1) A f A B

=(—1)"I~1 (Ai NAGF— (1) A; A Aif>
— (=1)I—t (fBZ- AB; — (=1)9fBj A Bi>
+ (=)™ A f ABj — (1) LA f A B

=(—=1)"™ A, Ajlf — (=1 B, B

=5, i1

Hence, the claim is proved. O

It is clear that (L, [,]L,gf) is a DGLA from Proposition 2.4.1, 2.4.2, 2.4.3, and 2.4.4. Hence, Theorem 2.4.1
is proved.

2.5 Formality

We freely use the notation of Section 1.4.

Let X be a compact complex manifold and (f,(E,dg,0g), (F,0r,0F)) be a Higgs triple over X. In the
previous section, we constructed the DGLA (L, [,]r, ;) which governs the deformation of the Higgs triple.

Recall that a DGLA L is called formal if it is quasi-isomorphic to H®(L) as a DGLA. Note that L is always
quasi-isomorphic to H*(L) as a DG vector space. However, they are not always as DGLAs.

From now on, we assume X is a compact Kihler manifold and each (E,dg,0g) and (F,0F,0F) has a
harmonic metric hg and hp.

We show that the DGLA (L, [,]1,0;) is formal under this assumption in the coming sections. Before we
proceed, we prepare some results and notions.

Lemma 2.5.1 ([S2, Lemma 1.2]). Let (E,0p,0) be a Higgs bundle over a compact Kdhler manifold X. Let h
be a harmonic metric of (E,Jg,0). Then

KerD}, N A(E) = KerDj, N A(E) = KerDg N A(E).
Assume that each E and F has a harmonic metric hg and hr. Then hé ® hp is also a harmonic metric for

the Higgs bundlle (EV ® F,0pver,0pver).
The next Lemma is straightforward from Lemma 2.5.1. However, it plays a core role in Section 2.5.2.

Lemma 2.5.2 ([S2, Corollary 1.3]). Let (f,(E,0g,0g),(F,0r,0F)) be a Higgs triple over a compact Kdihler
manifold X. We assume that each E and F has a harmonic metric hg and hp. Then

wehef = Deverf =0.
Proof. We regard f as a section of £V ® F, and since it is a morphism between Higgs bundles, we have
Dijugpf=Djof—foDf=0.

We can now apply Lemma 2.5.1 to f. O
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In order to prove formality, we need a suitable sub-DGLA of (L, [,],8). This idea goes back to [DGMS,
GM1].
For each i € Z, we define the subspace (KerDj,_, )" C L' as

(KerDj, )" = (KerD;LF N A"(EndF)> ® <KerD;LE®hF N A”(Hom(E,F)) @ (KerD;LF N Ai(EndE)).

We define the graded subspace (KerDj, , )* := @ez(KerDj , )*. We denote (KerDj ., )* as KerDj
for simplicity.

Proposition 2.5.1. Let (f,(F,0g,0r), (F,0r,0r)) be a Higgs tripleover a compact Kdihler manifold X. We
assume that each E and F' has a harmonic metric hg and hg. Then (KerDj, ;. [,]1,0f) is a sub DGLA of
(L’ [JLvaf)'

Proof. Since KerDﬁLE b is a graded sub-vector space of L, we only need to check that KerDjE, r is closed under
the bracket [,|z and 0.

Let 2 = (A;, Cy, Bi) € (KerDj, ),y = (4;,Cj, Bj) € (KerDj, . )7, Then since
B [Ai, A;] _
[.T,y][, = Ai/\Cj — (71)2071)0]' AN B; — (7].)”Aj/\ci+(*1)jci/\Bj s
[Bi’ Bj}

it is clear that [z,y]r, € (KerDj,, )"/ by Lemma 2.3.1. Recall

B (A D A; _
Op(x) =05 | Ci | = | DpvgpCi + (=1 YA f — (=1)" 1 fB;
B; DB

Then df(z) € (KerDj, _, )" follows from the compatiblity of D} and D/, (« € {E,EY ® F,F}), Lemma
2.3.1, and Lemma 2.5.1. O

We note that this Proposition holds because of harmonic metrics.

2.5.1 Formality for f=0

In this section, we fix a compact Kihler manifold X. Let (E, 0g, 0g), (F,0r,0r) be Higgs bundles with harmonic
metrics hg and hp. Let 0 : E — F be a trivial morphism (i.e, the zero section of EV @ F'). It is clear that
(0,(E,0g,0F), (F,0r,0F)) is a Higgs triple. Let (L,[,]z,00) be the DGLA which controls the deformation of
0, (F,0g,0r), (F,0F,0F)). B

In this section, we show that (L, [,]r, o) is formal as a DGLA. Although this follows from the result of the
next section, we give a proof since this case immediately follows from Section 1.4.2.

Theorem 2.5.1. (L,[,]1,do) is formal as a DGLA.
Proof. For x = (A;,C;, B;) € L?

. Az l)%~14z
9o [ Ci | = | DpugrCi
B; DB

Recall that (KerD}LE’hF, [,],0o) is sub-DGLA of (L,[,]z,d0) by Propostion 2.5.1. Let i : KerDj,, . — L be
the inclusion map. This map is also a morphism of DGLA. Moreover, by Section 1.4.2, i is a quasi-isomorphism.
Let By the definition of dy, for the i-the cohomology H*(L) of (L, dy), we have
H'(L) = Hpy r @ HiDZiEV@F © Hpol -

Let q, : (KerD}Ia)i — HiDol,a (o € {E,EY @ F, F}) be the natural projection. Then by Section 1.4.2, q, is a
quasi-isomorphism and also a morphism of DGLA.
Hence (L, [,]1,do) is quasi-isomorphic to (H*(L),[,],0) as a DGLA and the claim is proved. O
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We note that this proof only works for f = 0. This is because the cohomology of the DGLA (L, [,]z,do) is
rather simple.

2.5.2 Formality for arbitrarily f

In this section, we fix a compact Kihler manifold X and a Higgs triple (f, (E,05,08), (F, Or,0r)) over it. We
assume that each (E, 0g, 0g), (F, Or,0r) has a harmonic metric hg and hp. Let (L, [,]r,0f) be the DGLA which

controls the deformation of (f, (E,dg,0g), (F,0F,0F)). We show that (L, [,],dy) is formal. The following will
be used in the proof of formality.

Lemma 2.5.3. Let (f,(F,0g,0r),(F,0r,0r)) be a Higgs triple over a compact Kdihler manifold X. We
assume that each E and F has a harmonic metric hg and hp. Then for any A € KerDj N AY(EndF),B €

KerDj N A'(EndE)

fven (AN) = (Gh, A)f.
won (FB) = £(G), B)

holds.

Proof. We only prove the first equation. The second one can be proved by the same argument. Recall that for

C € AY(Hom(E, F)), ;lé(g)hFC’ is the unique element in (H)* that satisfies

Here (H%)* is the L?-orthogonal space of H' and H® is the harmonic projection H' : A*(Hom(E, F) — H'.
Hence to prove the equation, we need to prove (i)(G}, A)f € (H)*, (ii) ;Lg@)hp (G}, A)f) = Af — H'(Af).
We first prove (i). By the Hodge decomposition for G, A, we have

Ghyp A= Dy (Dnp)*(Gh ) A+ (Dhy)* Dip (G )° A
:DhF(DhF)*( /hF)QA—'_V_l[AwVD%]DhF( ;ZF)QA
= Dhp(Dhp)*(Gh,)? A+ V=1(Au D — DEAL) Diy (G, )2 A

We used the Kaher identity in the second equation. Then we have
(Gl A)f = (DhF (D) (Gl A+ VT(Au D}y — DipAu) Dy ( zp>2A>f
= Digans (D) (G4, PA)F ) 4 VTMuDor = Do) ((Dar (Gh 21 )

= Digon, (((Pwe) (G, PA)T ) + (Dhgan, " (D1 (Gh 20 )

The second equation follows from Lemma 2.3.1, Lemma 2.5.1, and f is a section (i.e. f is a O-form). Hence
(@}, A)f € (H)*. |

We next prove (i7). We first prove H*(Af) = 0. Recall that we assumed A € KerD/%, the Hodge decompo-
sition of A is

A= DL (D% GLA.
Hence
Af = (DE(Dg)"GEA)f

_ ngF(((Dg)*G;;A)f).
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Hence Hi(Af) = 0.
To finish the proof, we prove A’}%(@hp((G;LF A)f) = Af. By Kéahler identity and Lemma 2.3.1, we have

tvone (Ghy AVF) = Diy oo (Dhy ) (G V) + Dy ) Dy (Gl AV )
— (D4, D1 G ) £ 4+ (01,104,061, )
= (AhGhp AV S
=Af.
The last equation follows from A € KerD;lF. The claim is proved. O

Proposition 2.5.2. Let (f,(E,0g,0r), (F,0r,0r)) be a Higgs triple over a compact Kihler manifold X. We
assume that each E and F' has a harmonic metric hg and hg. 7 7

Let v : KerDy, ;. — L be the inclusion. Then ¢ : (KerDy, ;. [,]1,9f) — (L,[,]r,0y) is a quasi-
isomorphism.

Proof. By Proposition 2.5.1, ¢ is a morphism of DGLA. Hence, it induces a map between cohomologies H*(¢) :
Hi(KerD;lEJIF) — HY(L)(i € Z). We show that H'(1) is an isomorphism.
(i)H' (1) is surjective: Let z = (A, C, B) € Kerdy N L'. We set as

o= —V—-1A,Dj, Gj A,

’7 =V —1 %‘v@FAWG;L\é@hFD;l\é@hFC?

B :=—vV-1A,Dj, G) B.
Note that y = («,v,8) € Li~'. We show that z — dy € (KerD;lE,hF)i. This proves the surjectivity of H(1).
We first show that A — Do € KerDj, , B — Dy,3 € KerDj, . By the Hodge decomposition, Kéhler idenity,
D; DY + D}%Dj =0, and A € KerD%, we have

=D}, (D},)* Gy, A—V—1D}A, D} Gj A.

hp hp

Then
A~ Do =A— V=IDUALD, G} A

}LF

This proves A — Do € KerD), . B — D33 € KerDj,  follows from the same argument.
Since z = (A,C, B) € Kergf N L?, we have

(2.1) bvorC+ (m1)rAf — (-1)"'fB =0.
Recall that we have to prove

C—Divgpy— (1) ?af +(-1)"?fB € KerDjy o -
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The Hodge decomposition of D;% ohpC 18

D;zé(ghpc =( %V®F)* %\/(@FG/E,'\/@FD;LE@}I,FO + D/E/]V®F(D%\/@F)*G%v@FD;Lé@hFC
== \/jl[AwD;Lg@hF] %V®FG%V®FD;Lg®hFC
_\/TID%\/@F[AUJ?D;Lé@hF] %‘V®FD;LE®’EFC
:\/TID;LE(@hFAWDE'\/@FG/E/‘V@FD;L){:@}LFC

(2.2)
+V—-1DgvgrDhy gn Ao GEvorDhyon,. C
== V—1D}y gn, N Dhygn, GoverDiverC
+ v _1DgV®F /hg@mFAw /1;“V®FD;zg®hpC
= — 71D;LE®hFAWD;Lé®hF %\/@F %V®FC + D%V®F’}/.
We calculate _‘/_1D§1g®hpAwD;L,§®hp verDEverC. By Proposition 2.5.3 and (2.1), we have

Y _1D;L,V5®hFAwD;Lg®hF %V®F %V@)FC
:(*1)1-71 Vv *1D;zy9®hpAwD;LgeahpG/J;“V@F(Af) - (*1)1;1 Vv *1D;Lg®hpAwD;Lg®hp Z“V@F(fB)
1) Do, ((VIADR GR AN ) = (0D, (FV7TA0DE, GEB) )
(1) 2Dy (@f) = (—1)2Dhy g, (£5):
Then by (2.2), we have
hyoheC == V=1Dhven Ao Dhy o1, GiverDiverC + Dpvgry
:(_1)1_2D;~bg®hF (af) - (_1)1_2D;Lg®hF (fﬁ) + D%'\/@F’V'

Hence
DiyvonC = Divepy — (1) 2 Dhv g (@f) + (=1) 2Dy o, (F8) = 0.

Hence C - Divery— (1)2af + (-1)2fB € KerD;%@hF .7We proved H'(1) is surjective.

' (i)H" (1) is injecti:ze: Let z = (4, B,C) € KerDy,, ,, NKerdy. We assume that there e)iists ay=(w7,0B)€
Li=1 such that = dyy. We prove that there exists a z € (KerDj,  ,,.)" such that z = 9yz. This proves the
injectivity of H*(:). By the assumption, we have

A = DYa,
B = DB
Then since A € KerD), , DDj, o = Dj Dj o = 0 holds. Then by Lemma 1.4.2, we have a o’ such that
D} a = D D%d. Define o := a — D}a’. Then o’ € KerD; N A'"?(EndF) and Do/ = A. By the
same argument, we can construct ' € A*"?(EndFE) such that 8" := 8 — D}t3’ € KerD, N A*"!'(EndE) and
DB = B. :
We set as 2’ := (@, + (=1)i72a/ f — (—1)*=2fB', 8"). Since z = dsy, we have

Dioor (7 T (—1)ialf - (1)”1‘5’) - (—1)2f — (~1)2f8"
=Dl oy + (—1) 2Dl + ) f — (—1) 2 (D + A7)

=Divery + (1) af = (=1)72f8
=C.
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Hence
Dipvor (14 (-1 2T = ()25 = € = (-1 2]+ (12"

Since C' € KerD;LE o € KerDy, , 3 € KerDj, , we have

®hr?

Bver (’y + (=12 f — (—1)i—2fﬁ’) € KerDyy o, NKerDv g p.

Then we can apply Lemma 1.4.2 to D%v@)F <fy + (1) 20/ f — (_1)i2f5/> and show that there exsits a +/
such that

%V@F (’y + (—1)i_204/f - (_1)2_2fﬁl> = D%\/@FD;LE@}IF,}/

We set z := (o’ D}%@thy’, B"). Then it is clear that z € (KerDj, _, )" and z = Oyz. This proves the injectivity

of H%(1). Hence ¢ is quasi-isomorphic. O

We next prove (KerDﬁlE’hF, [,]r,0¢) is quasi-isomorphic to (H*(L),[,]r,0).

Before, we recall standard results from elliptic operator theory. See [Wells, Chapter 4] for details. For each
i € Z we define the L%-metric for L’. The complex (L,d;) is obviously an elliptic complex. Let (97)* be the
L*-adjoint of dy. Then for each 9y : L' — L'™! we set

Ai:=04(05)" +(97)"(0y);
H : = Ker(A;).
Then _ .
Hi(L) ~ H'.
Let H' : L' — H* be the projection and ¢ : L — H*(L) be the map such that q(z) = [H*(z)]. Here [H(x)] is
the cohomology class of H'(x) in H*(L).

Proposition 2.5.3. Let (f,(E,0g,0r), (F,0r,0r)) be a Higgs triple over a compact Kihler manifold X. We
assume that each E and F' has a harmonic metric hg and hg. B
Then the map q : L — H*(L) induces a quasi-isomorphism q : (KerDy, . [,]r,0¢) — (H*(L),[,]1,0).

Proof. This is clear from Proposition 2.5.2. O

Theorem 2.5.2. Let (f,(E,0g,08),(F,0p,0r)) be a Higgs triple over a_compact Kdihler manifold X. We
assume that each E and F' has a harmonic metric hg and hg. Let (L,[,]1,0¢) be the DGLA which controls the
deformation of (f,(E,0g,0r), (F,0r,0r)). Then (L,[,]1,0y) is formal.

Proof. Combine Proposition 2.5.2 and 2.5.3. O

2.5.3 Relation to Deformation of Flat Triples

Let X be a compact smooth manifold. We say a pair (f, (E, Dg), (F, Dr)) is a flat triple over X if (E, Dg), (F, Dp)
are flat bundles over X and f: F — F is a vector bundle morphism such that Dg o f = f o Dg. Then by the
same argument as in Section 2.4, we can show that the DGLA which controls the deformation of the flat triples
(f,(E,Dg),(F,Dr)) is (L,[,]1,ds) where the graded vector space L and the bracket [, ], is same as in Section
2.4 and dy is defined as

A DrA , .
di(e)=d; | C| = | DpearC + (-1~ Af — (~1)"'fB | (x € L').
B DB

We can show that (L, [,]r,dy) is actually a DGLA by a little modification of the proof of Theorem 2.4.1.
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From now on, we assume X is a compact Kahler manifold and (E, Dg) and (F, Dr) comes form harmonic
bundles (E,dg, 05, he), (F,0p,0r, hr) (ie. Dp =D}, + D}, Dp =D}, _+ DY).

Then by Lemma 2.5.1 and 4.4.2, the flat triple (f, (E, Dg), (F, Dr)) induces a Higgs triples (f, (E, g, 0g), (F,0r,0F)).
If we have a Higgs triple (f, (E, 9, 0g), (F,0F,0r)) and each Higgs bundle has harmonic metric, then it induces
a flat triple (f, (£, Dgp = D}, + D%), (F,Dr = D} _+ D})).

By a similar proof of Proposition 2.5.1, we have

Proposition 2.5.4. Let (f,(E,Dg),(F,DFr)) be a flat triple over a compact Kdhelr manifold X. Assume
that (E, Dg) and (F, Dp) comes form harmonic bundles (E,0g,0g, hg), (F,0p,0r,hp). Let (L,],]1,ds) be the
DGLA which controls the deformation of (f,(E,Dg), (F, Dr)).

Then (KerDj, []r,0¢) is a sub DGLA of (L,[,]1,dys). Moreover, the inclusion ¢ : KerDj . — Lisa
quasi-isomorphism.

Moreover, by a similar proof of Theorem 2.5.2, we have

Theorem 2.5.3. Let (f,(E,Dg),(F,Dr)) be a flat triple over a compact Kihelr manifold X. Assume that
(E,Dg) and (F,Dg) comes form harmonic bundles (E,0g,05,hg), (F,0r,0F, hr). Let (L,[,]L,ds) be the
DGLA which controls the deformation of (f,(E, Dg), (F, Dr)) and (L,|,]1,0;) be the DGLA which controls the
deformation of (f,(E,0g,0g), (F,0r,0r)).

Then

hd (Lv [7]L, df) 18 formal.
o (L,[,]z,dy) is quasi-isomorphic to (L, [,]L,Ef),

Proof. (KerDy, 1, [ ]r, dy) is quasi-isomoporhic to (L, [,]1,0;) by Proposition 2.5.2 and also quasi-isomorphic
to (L, [,]r,dy) by the last Proposition. Hence (L, [,]z,dy) is quasi-isomorphic to (L,[,],d7). O

Hence the deformation problems of (f, (E, Dg), (F,Dr)) and (f, (E,9g,0r), (F,0F,0r)) are same.
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Chapter 3

Moduli Spaces of the Basic Hitchin
equations on Sasakian three-folds

3.1 Abstract of Chapter 3

In this Chapter, we introduce an equation which we call the Basic Hitchin equation. This is an equation
defined on Sasakian three-folds and is a three-dimensional analog of the Hitchin equation which is defined on
Riemann Surfaces. We construct the moduli space of the basic Hitchin equation and show such space admits a
hyperKahler metric. This also shows that the moduli space of flat bundles over Sasakian three-folds admits a
hyperKahelr metric. We also calculate the dimension of the moduli space under certain assumptions.

3.2 Introduction of Chapter 3

Let X be a compact Riemann surface of a genus bigger than two. Let E be a complex vector bundle over X
and h be a Hermitian metric. Let (Vj, ®) be a pair of a h-unitary connection and a skew-symmetric 1-form
w.r.t. h. As we introduced in the Introduction the Hitchin equation is

Fg, —®AN® =0,
Vy,® =0,
Vh*(D:O.

Here Fy, is the curvature of Vj, and « is the hodge star. We say (Vj,, ®) is a Hitchin pair if it satisfies the
Hitchin equation and irreducible if the connection D := V}, + v/—1® is irreducible. In [H], he also constructed
the moduli space My of irreducible Hitchin pair by infinite-dimensional hyperKéhler reduction.

Let M be a compact Sasakian manifold. Sasakian manifolds are odd-dimension analogs of Kahler manifolds.
See [BG] for more details about Sasakian manifolds. In this Chapter, we focus on the case of dimM = 3. We
call such M a Sasakian three-fold. In this case, M is a three-dimensional analog of the Riemann surface.

We introduce the Sasakian analog of the Hitchin equation which we call the basic Hitchin equation. Let E
be a basic complex vector bundle and h be a basic hermitian metric (See Section 3.4.1 for definitions about basic
vector bundles and metrics). Let (Vj, @) is a pair of basic h-unitary connection and ® be a basic skew-symmetric
1-form w.r.t. h. Then the basic Hitchin equation is the following equations:

Fg, —®oN® =0,
V,® =0,
Vh*gszﬂ.

Here ¢ is the basic Hodge star (See Section 3.3.2). We call a pair (V},, ®) a basic Hitchin pair if the pair
satisfies the basic Hitchin equation. The main result of this chapter is the construction of the moduli space

irr

Bomie of irreducible basic Hitchin pairs. Moreover, we have
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Theorem 3.2.1 (Theorem 3.5.1). M. is an empty set or a smooth hyperKdihler manifold.

As like the Riemann surface case, the basic Hitchin equation is related to flat bundles and Higgs bundles.
Since Higgs bundles are holomorphic objects, we need basic Higgs bundles. Hence we can regard M .. as a
moduli space of simple flat bundles with a fixed basic structure and stable basic Higgs bundles of degree 0.

We also calculate the dimension of M. under the some assumptions.

Theorem 3.2.2 (Theorem 3.5.2). Let (M, (T*°,S,1),(n,£)) be a reqular Sasakian threefold (See Section 8.3.1
for the definition of regular). Let E be a reqular basic bundle (See Section 3.5.4) and h be a basic Hermitian
metric. Let g be the genus of M/S'. We assume g > 2. Then

dimp M 1 = 4(0kE)? (g — 1) + 4.

Relation to other works

For the higher dimensional case, there is a work by Kasuya [K]. He studied the moduli of the flat bundle over
general Sasakian manifolds and showed that the moduli have stratification by the basic structure.

3.3 Sasakian manifolds

3.3.1 Sasakian manifolds

Let M be a (2n+1)-dimensional real smooth manifold. Let TM ® C be the complexified tangent bundle of T'M.
A CR-structure on M is a rank n complex sub-bundle T™° of TM ® C such that 710 NT10 = 0 and TP is
integrable. We denote T1.0 as T%!. For a CR-structure T1° on M, there is an unique sub-bundle of rank 2n
of real tangent bundle T'M with a vector bundle homomorphism I : S — S such that the following properties
holds:

o I? = —Idg,
o T ig the v/—1-eigen bundle of I.

A (2n+1)-dimensional manifold M is equipped with a triple (719 S, I) is called a CR-manifold. A contact
1-form n of M is a non-degenerate 1-form of M (i.e. n A (dn)™ is everywhere non-zero). By the non-degeneracy
of n, there exists a vector field £ called Reeb vector field such that it satisfies

() = 1,84(dn)" = 0.

A contact CR manifold is a CR-manifold M with a contact 1-form n such that Ker(n) = S. For a contact
CR-manifold, the above I : S — S extends to the entire T'M by setting I(£) = 0. Here £ is the Reeb vector
field of 7.

Definition 3.3.1. A contact CR-manifold (M, (T*°, S, 1), (n,€)) is a strongly pseudo-convexr CR-manifold if
the Hermitian form L, on S, defined by L,(X,Y) = dn(X,IY), XY € S, is positive definite for every point
ze M.

For a strongly pseudo-convex CR-manifold (M, (T*°,S,1),(n,£)), we have a canonical Riemann metric g,
on M which is defined by
G(X,Y) i= Ly(X,Y) +9(X)n(Y), X, Y € T.M.

Definition 3.3.2. A Sasakian manifold is a strongly pseudo-conver CR-manifold
(M, (T"°,S,1), (n,£))

such that for any section ¢ of T'°, [¢,(] is also a section of T*°. For a Sasakian manifold, we call g, as Sasaki
metric.
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For a Sasakian manifold (M, (T*°,S,1),(n,€)), the metric cone of (M, g,) is a Kéahler manifold. We can
also define a Sasakian manifold as a contact metric manifold whose metric cone is Kéhler.

Let M be a Sasakian manifold. If the orbits of the Reeb vector field £ are all closed, and hence it is a circle,
then ¢ induces a S'-action on M. Since ¢ is nowhere zero, then the action is locally free. We say that M is
reqular if the S'-action is free and quasi-reqular if it is locally free. When the orbit of ¢ is not all closed, then
we say M is irregular.

3.3.2 Basic Differential forms

Thoughrout this section, let (M, (T1°, S, 1), (n,€)) be a 2n + 1-dimensional compact Sasakian manifold.

The Reeb vector field ¢ defines a 1-dimensional foliation F¢ on M. It is known the map I : TM — TM
associated with the CR-structure 7Y defines a transversely complex structure on the foliated manifold (M, F).
Furthermore, the closed 2-form dn is a transversely Kéahler structure with respect to this transversely complex
structure.

A differential form w of M is called a basic diffrential form if

igw = 0, ng =0.

For simplicity, we call a differential form basic if it is a basic differential form. We note that 7 is not basic

but dn is basic. We denote A% (M) as the space of real basic differential forms. We note that A% (M) forms a

sub-complex of deRham complex A*(M). We denote as Hi(M) to be the i-th cohomology of (A% (M), d).
Corresponding to the decomposition S¢c = T1° @ T%!, we have the bigrading

Ap(M)e = €@ AB"(M)
ptq=r
as well as the decomposition of the exterior differential
d\A;‘S(M)C = 0 + O¢
on A% (M)c, so that
¢ : ALI(M) — AHI(M),
De : ABI(M) — AL (1),
We also have the transverse Hodge theory ([EKA, KTJ). Let
%1 AT(M) — AT
be the usual Hodge star operator associated with the Sasaki metric g,, and let
§:=—xdx: A"(M) = A" (M)

be the formal adjoint of the exterior derivative with respect to the L?-norm.
We define the linear operator
s+ AR (M) — A T(M)

such that *¢ acts on w € A (M) as
*ew = *(n Aw).

We also define a few more operators:

Se 1= — xe die + ATy(M) — A% L(M),

Of 1= — % Dgxe « ABI(M) — AL HI(M),
De 1= — xg Dexg + ABI(M) — ABI(M),
A = —*585 *5 .
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They are the formal adjoints of d, [“)5,55 and dnA with respect to the pairing

(3.1) AL (M) x A%(M) : (a, B)5 — /Mn A A xeB.

The following Proposition might be well-known for specialists, however, we give its detailed proof since it is
crucial to define the hyperKahelr metric for the moduli spaces.

Proposition 3.3.1. Assume dimM = 3. Then
*e 0 *elay ) = —1day, (-

Proof. To show the equation holds, it is enough to show it holds pointwise. Let p € M and (U, z,y,z) be a

local coordinate around p. We assume
0 0
T/ p Y/p

0 0
(2) (8)

and

Under the assumption we have

Hence we have

Hence the claim is proved. O

3.4 Basic bundles

3.4.1 Basic vector bundles

Throughout this section, let (M, (T, S, 1), (n,£)) be a compact Sasakian manifold.

Let E be a rank r complex vector bundle over M. We say that FE is basic if there exists a local trivialization
{Ua}aca of E such that the associated transition function gag : Uy NUs — GL,(C) is basic (i.e. i¢dgas = 0).

Let E be a basic bundle. A E-valued differential form w is called basic if for every a € A, w|y, € AL (Uy)QE.
This is well-defined since E is basic. We denote the space of basic E-valued p-form as AL (E). Let D be a
connenction of E. We call D basic if for all « € A, D|y, = d+ An, Aa € AR(EndE). If D is basic, we have a
homomorphism D : A% (E) — A% (E). If D is a flat connection, we regard it as a basic connection because of
the flat frame ([Ko]).

Let h be a Hermitian metric of E. Note that h € A(EY ® Ev). Here EV is the dual of E. We say the

h is basic if h € Ag(EY ® Ev). Although hermitian metric always exists, basic hermitian metric might not
exist. The next section shows that E admits a basic hermitian metric when a flat connection D satisfies certain
conditions.

We now fix a basic bundle E, a basic connection D, and a basic hermitian metric hA. As it is well-known D
has a decomposition

(3.2) D=V, +V-1®
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such that V, is a metric connection and & is skew-symmetric w.r.t. h. Since D and h are basic, V;, and ® are
also. We say the (E, D) is irreducible if there does not exist a basic sub-bundle F of E with D(F) C AL(F).
We say (E, D) is reductive if (F, D) is a direct sum of irreducible ones.

We define some notations. Let

AWE)) : = {f € A(EndE) : h(fu,v) + h(u, fv) =0},
A(E)) : = {f € A(B)) - /M tr(f) = 0},
Ai(u(E)) : = A @ A(u(E)),
AL(E)) = A ® A, ()
Ay(u(B)) : = Aly ® Au(E)),
L (E)) = Ay ® A, (u(E)).

We say A, (u(E)) (resp. Ap,(u(E))) as (basic) reduced section. We note that we have the following L2-
decomposition.

A(u(E)) = A.(w(F)) ® vV—1RIdg,
Ap(u(E)) = Ap ,(u(E)) & V-1RIdg.

The following result is used for the calculation of the dimension of the moduli space.
Proposition 3.4.1. The following are equivalent.

e (E,D) is irreduicible.

o We define a differential operator Dy : Ag(uw(E)) — AL(u(E)) & AL (u(E)) as follows:

Di(f) == (Vrf,[®, f]).
Then Ker(D;) = v/—1RIdg.

Proof. Assume (FE, D) is irreducible. Suppose we have a f € Ag(u(E))\v/—1RIdg such that D;f = 0. By the
definition of Dy, we have Vj f = 0. From [LT, p.25, Proposition 1.1.17], we have the eigendecomposition of E

with respect to f:
E = EB E,.
A

Since f is basic, each E) is basic. The decomposition is h-othogonal and D;(E\) C AL(E)). Since each E)
is eigen bundle of f and ®f — f® = [®, f] = 0, we have ®(E)) C AL(E)). Hence we have D(E)) C AL(E)).
This contradicts the assumption.

Assume Ker(D;) = /—1RIdg. Suppose (E, D) is reducible. We have a following h-othogonal decomposition:

(E, D) = (EmDa) S3) (EﬁvDﬁ)~

Let pr, and prg be the orthogonal projection to E, and Eg. By definition, v/—1pry,v—1prg € Ag(u(E)). I
is straight forward to check /—1pro — v —1prg € Ap(u(E))\v—1RIldg and D(v/—1pre —+/—1prg) =0 nd
hence Dy (v/—1pro — v/ —1prg) = 0. Hence contradicts. O

Remark 3.4.1. In [BHe2], the authors defined a h-unitary basic connection Vy, is irreducible if Ker(Vi)|a,we)) =
v —1RIdg. Proposition 3.4.1 tells us that the definition of our irreducibility and their irreducibility coincide when
$ =0.

Let Ag(GL(E)) be the automorphism group of the basic bundle E. We define the gauge group

Gp:={f € Ap(GL(E)) : h(fu, fv) = h(u,v)}.
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We moreover define the reduced gauge group as
G, =Gp/S'1dg.

The Lie algebra of Gp is A(u(E)) and Gp,, is A, (u(E)).
Let Aj, g be the space of the h-unitary basic connection. This is an affine space that is modeled on AL (u(E)).
We define

.AB = Ah,B X A}g(u(E))
Since any basic connection D has the decomposition (4.5.1), we regard Ap as the space of connections. Gg(E)
acts on A% as
G X Ap — Ap

(3.3) ~1 —1
(97Vh7(b) — (g th,g q)g)

Degree of basic bundles

Let E be a basic bundle and D be a basic connection. Let Fp be the curvature of D. Since F and D are basic,
Fp € A%(EndE). For any 0 < i < n, we define ¢; g(E, D) € A% (M) by

2n

Fp
det|ldg — ———) =1 i B(E, D).
e( s 27rﬁ) +1§=1:C,B( )

Then, as the case of the usual Chern-Weil theory, the cohomology class,
Ci7B(E) € H%Z(M)

of each ¢; p(FE, D) is independent of the choice of a basic connection D.

We define the degree of E as
1

271'\/ -1 M

deg(E) := Tr(AFp).

We also have
deg(E) = / eLp(M) A (dn)™* A,
M

Hence deg(FE) only depends on E.

L?-metric, Adjoints, and Brackets

In this section, we review some operations around A% (u(E)). The results in this section are nothing new.
However, we write this section for completeness.

Let (E, h) be a basic vector bundle with a basic Hermitian metric on a Sasakian manifold M. Let A, B €
AY(EndE). Recall that the L2-inner product (A, B)y: is defined as

(A,B) 2 = /M Tr(A A +B}).

Here recall that B,Tl is the formal adjoint of B w.r.t. h and * is the ordinary Hodge star. Hence if we assume
B € A'(u(E)), we have
(A,B)p2 :/ Tr(AA*B)) = _/ Tr(A A #B).
M M
We study the L?-metric restricted to A% (u(E)). Let o € A*(M). The usual Hodge star x and the basic Hodge

star x¢ have the following relation ([KT]):
*Q = ke A\ 7).
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Hence if A, B € A%z (u(E)), we have

(A, B)p2 = — /TrA/\*B /TrA/\*gB)
Let V, € Ay p and ® € AL(u(E)). Let V; and ®* be the formal adjoints of V), and ® w.r.t. the L*-inner
product i.e. for A € Al(End(E)) and B € A"} (End(E)), the following holds

(VaA, B2 = (A, ViB) L2,
([(va]’B)L2 = (Av [(b 7B])L2

We give the explicit formula of V} and ®* when we restrict the L?-inner product to A% (u(E)). Since the
Sasakian manifold has no basic 2n + 1-form, for A € A (u(E)) and B € A (u(E)), we have

(VhA, B)Lz = (A, VZB)Lz = —(A,*gvh *¢ B)Lz7
([®, A], B) 2 = (A, [®*, B]) 2 = (A, %¢[®] , %¢ B]) 12 = — (A, %¢[®, ¢ B]) 2
Hence we have

Lemma 3.4.1. When we restrict the action of Vj, and ® to Aj(u(E)), those formal adjoints V5, ®* w.r.t. the
L2-inner product has the form

VZ:—*fvh*g,
D" = — xg O xe .

This can be shown by a standard calculation. We emphasize that this equality holds since M is Sasakian
and we restricted the L2-inner product to A% (u(E)). We cannot expect this equality to hold for general foliated
manifolds or for general sections.

We state one more result which we use later. From now on we assume dimM = 3.

Lemma 3.4.2. Let A,B € AL(EndE). Then
[*EAvB] = 7["47*53]
holds.

Proof. We only have to prove it pointwisely. Let p € M. We use the coordinate which we used in Proposition
3.3.1.

[x¢ A, By = [%¢(Ax(dz)p + Ay(dy)p), Bx(dx)p + By(dy),)
=[A (dy) —A ( ) 7B:c(dx)p+By(dy)p]

= (140 Bl + 4,5, ) a0y A (),
[A,*¢Bl, = [A x( ) + Ay (dy)p, x¢(Bz(dz)p + By (dy)p)]
= [Ax( + Ay (dy)p, Bz (dy)p — By (dx),]

= (1n Bl + 14,5, ) (@), A ),

Hence the Lemma is proved. O

3.5 The Moduli space of Basic Hitchin equations

Throughout this section, we assume (M, (T1°,S, 1), (n,£)) to be a compact Sasakian manifold of dimsension
three. We also fix a basic bundle E and a basic metric h.
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3.5.1 Basic Hitchin equation

Recall that we defined Aj, g to be the set of basic h-unitary connection and AL (u(E)) be End E-valued skew-
hermitian 1-form (See section 3.4.1). Note that Aj_p is an affine space modeled on AL (u(E)).
Let (Vh,®) € Ap = Anp x AL (u(E)). We say that (Vj, ®) satisfies the basic Hitchin equation if

Fg, —®AD =0,
(3.4) Vi® =0,
Vh *¢ d =0.

Here Fy, is the curvature of V. If (Vj, ®) satisfies the Hitchin equation we call (Vj, ®) a basic Hitchin pair.
We set as
Apanit := {(Vh, ®) € Ap g x A5(W(E)) : (Vj, ®) is a basic Hitchin pair}.

We say that (Vp,, ®) is irreducible if the connection D = Vj, + +/—1® is irreducible (See section 3.4.1). We set
as
e = {(Vn, ®) € Aganit : (Vi, ®) is irreducible}.
Note that the action of the gauge groups Gp and Gp,, preserves Apanit and Al .. Moreover, G - acts freely
on AR it
Let (Vj, ®) € Aganit. Considering the linearization of the action of the gauge group Gg and the linearization
of the Basic Hitchin equation (3.4), we obtain a complex

(3.5) 0 — Ap(u(E)) 25 AL(E)®* 22 A% u(E)® — 0

where

DlA = (VhA, [(Da A])7

(3.6) Dy(A,B) := (V4 A—[®,B], V4B + [A,®], V), x¢ B+ [A, ¢P]).

Note that D, is exactly the same operator we introduced in Proposition 3.4.1. Considering the highest-order
part of the differential operators D; and Do, we see that the complex (3.5) is transverse elliptic complex (See
[Wa]). We denote the i-th cohomology of the complex (3.5) as H!. These cohomology are finite dimensions since
they are the kernel of transverse elliptic operators [EKA]. The dimension of H' is expected to be the dimension
of the moduli space.

We now consider the case (Vj, ®) € AL ... In this case, KerD; = /—1RIdg (See Proposition 3.4.1) and
hence dimpHC = 1. We later use the following result to show the moduli space is smooth and to calculate the
dimension of the moduli space.

Proposition 3.5.1. Assume (Vj, ®) € Al ... Then dimgH? = 3. In particular each row of H? is spanned by
the multiplication of /—1dn and Idg i.e.

H? = [(vV=1dnIdg)g?].

Here
V—Ldnldg 0 0
(V=1dnldg)&® =R 0 +R [ v=Tdgldp | +R 0 :
0 0 V—1ldnldg

and [(v/—1dnldg)$?] is the R-vector space which is spanned by the cohomology class of the basis of (v/—1dnldg)g>.

Proof. Tt is enough to show
KerDj = (v/—1dnldg)s?

Let (A, B,C) € A4(u(E))®3. By direct calculation, we have

D3(A,B,C) = (V;,A+ [(%®)", B] + [@*,C], —[®*, A] — xV; B+ V};,C).
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Here V; is the formal adjoint of V), w.r.t. L?-inner product. ®*, (x¢®)* are also.
Hence D3 (A, B,C) = 0 is equivalent to

(3.7) {V}‘;A + [(+e®)*, B] + [@%,C] = 0,

_[8*,A] - % VB + ViC =
Recall that from Lemma 3.4.1, we have the explicit formula of Vj, ®*, and (®1:0)*:
Vi = —x¢ Vi,
(@) = xe(®)} ke = — *e e,
(ke®)" = #g(xe®)fxe = — ke (xcD) %
The operator *¢ induces an isomorphism
*e : AR (W(E)) — Ap(u(E)).

,C) € AL (u(E))®3 which satisfies the equation (3.7) is equivalent to consider
which satisfies the following equations

Hence to consider the pair (

A7
the pair (o, 3,7) € Ag(u(E))®?

(3.8)

Via+ [x®, 5]+ [®,7] = 0,
[@,a] +%VpB — Vipy =0.

Let (,)r2 be the L%inner product. Assume (o, 3,7) € Ap(u(E))®?3 satisfies the equation (3.8). Then we have

IVhalz = (Vha, Via) L
= (—#*¢ Vi *¢ Vo, a) 2
= (e Vi *¢ [x¢ @, B] + % Vi *¢ [2,7],a)
(— *e Vi[®, 8] + *¢ Vi [*e @, 7], ) 12 (. Lemma 3.4.2.)
= (x¢[®, Vi f] = xlke®, Vil @) 12
= (%¢[®, VBl + %[, % Vir), ) 12
= (x|
( [

*¢ [P, xe(— *¢ Vi B+ Vi), a) 2

*5 0] *5[(1) Oé]] )Lz
—((®)"[®,al, @)L
—([®, 0], [®, 0]) >

—[l[®, a]1Z-.

Hence we obtain Via = [®,a] = 0. This is equivalent to o € KerDs. Since (Vj,,®) € Al = /—1laldg
for some a € R. Then § and -~y satisfies

(39) {[*fq)’ﬁ] + [(I)’ﬂ =0,

* VB —Vyy=0.
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We first calculate ||V, y]|%..

IViyllZ2 = (Viy, Vi) e
= —(%eVn*¢ Vay,v) 12
—(x¢ Vi xe x¢ VB, 7) 12
= (x¢VViB,7) 2
= (%eFv,B,7)L2
= (x¢[@, [@, B]],7) 2
—(xe [P, x¢ *e [®, B]],7) L2
= ((®)" *¢ [®, B],7)r>

= ([x®, 8], [®,7]) >
7([*E®36]7[*§@76])L2
= —||[x®, Al[7--

Hence we obtain V7 = [*¢®,8] = 0. Since § and v satisfies the equation (3.9), we also obtain x¢V;,5 =
[®,7] = 0. Since x¢ is an isomorphism, V;,® = [®, 3] = 0. Hence 3,7 € KerD;, and therefore 8 = /—1bldg
and v = v/—1cldg for some b, c € R.

Let (A,B,C) € KerD3. Then (o, 3,7) = (%¢A, *¢ B, *¢C) satisfies the equation (3.8). By the discussion
above, (a,3,7) = (v —1laldg,v/—1bldg,/—1cldg) for some a,b,c € R. Since we have x¢1 = dn, A,B,C €
(v/=1dnldg)r. Hence kerD3 C (v/—1dnldg)s?.

Since *¢dn = 1, (v/—1dnldg)2® C kerDj. Hence we have

kerDj = (v/—1ldnldg)$?.
O

We now construct the moduli space of the irreducible basic Hitchin pair. To construct the moduli space, we
introduce || - |52 the LZ-Sobolev norm. Let LZ(AL(u(E))) to be the completion of AL (u(E)) with respect to
the L?-norm. We denote as AZ’ 5 to be the space of h-unitary basic L2- connection. We set

Al = A} g x Li(Ap(u(E))).

We may regard A as the space of basic Lk -connection. Let G% & to be the L2 basic gauge group and gr B =

G /Sdg to be the reduced L2-basic gauge group. We take k large enough so that the basic Sobolev embedding
holds [BHe2, KLW]. Then one can show as in [DK], that G% and gfi g are Hilbert Lie groups. By basic Sobolev

multiplication [BHeQ, KLW], G and G)'' acts smoothly on A% and we can show that B* := A% /Gl an
BE = Ak /gf are Hausdorff spaces in the quotient topology. Let AE. .. C A% be the space of Lk—basm
Hitchin pair. We define the moduli space of L2-basic Hitchin equation M&_ .. as

. k+1
MBaHlt = ABaHlt/g

Since ME_ iy C BF, M& 1. is a Hausdorff space. We define A’Bi” C A% to be the space irreducible basic L2-

connection and Ag’:}?it = AR i N Agi” to be the space of irreducible basic L;-Hitchin pairs. Note that GF 5!
acts freely on A" and AR . We define B .= A"/ g’f“ We finally define the moduli of irreducible

Li—basic Hitchin pairs as
kjirr gk kt1
Mg = Apani/9r 5
Since BX' < BY and M%;ﬁlt C ME 1., they are Hausdorff spaces. The topology of M]@En do depend on k.
However, we can apply the argument in [DK, LT] and show the following.
Proposition 3.5.2. Assume that k is large enough. Then the natural map /\/llé;ré’iit” — Mg;ﬁlt is a homeo-
morphism.
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Since we have this Proposition, we omit the subscription & from now.
We now turn our interest to the local structure of the moduli space. Let [(V}, ®)] € B*. We define a slice

(3.10) S(vnye = {a € AW(E)® : [lal; < e, Dia =0},

We can apply the argument of [DK, LT, Pa] and show that S(v, &), gives a coordinate patch for Birr,

From now on, we assume [(Vj, ®)] € MBhy;. We show that Mgy N Siv, @), is diffeomorphic to the
neighborhood of H'. Before we proceed, we prepare some notations. We set Ajv,.e) = DiDf+Df D10 =
0,1,2) to be the Laplacians. We set as D_; = D3 = 0. Let Gy, ¢) be the Green operators and H(vy, ) be the
Harmonic projections. We denote as A;, G, H if there is no confusion.

Let a = (A, B) € S(y,,0).. Then a € Mt if and only if

ANA—-—BAB ANA—-—BAB
(3.11) Dsa + (4, B] = Dy(A,B) + [A, B] = 0.
[A,*gB] [A,*gB]

This can be checked by direct computation. To simplify the notation, we set

o ANA—-BAB
aNa:= [A, B]
[A, % B]

Note that & A « is not an ordinary wedge product.
Hence we have .
MBimic N Sv,,a).e = {a € Stv,, @), : Doa+a Aa =0},

By the Hodge decomposition, the equation (3.11) is equivalent to

Do+ DaDEG(a A o) = 0,
(3.12) { ? 2D G )

H(aAa)=0.

We define the Kuranishi map kv, o) : Ag(u(E))®?* — AL (u(E))®? as
(3.13) kv, o (a) =a+ D3G(aNa).
Let oo € ME ;N S(w,,0),e. Then by (3.12),

Di(k(v,.e)(@)) = Dia+ DiDyGlaha) =0,
Dg(k;(vh@)(a)) = Dya+ Dy D3G(a A a) = 0.

Hence '
k(v @) (MBamie N S(v,.@).) C H.
The next proposition shows that M. is smooth.
Proposition 3.5.3. Let U be a neighborhood of the origin of H'. If we take a U small enough, then there exists
a € such that kv, @) induces a homeomorphism

k() ¢ Mpamie N S(v,,0),e = U.

Proof. The proof is quite standard (See [Ko]). The point of this proposition is that we do not need any
assumption to show ME: ;. is smooth.

Let L (AL(u(E))) be the completion of AL (u(E)) with respect to the L2-norm. We extend the Kuranishi
map to

kwna) t Li(Ap(u(E))** — Li(Ap(u(E)))*.
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Since the derivative of the Kuranishi map at the origin is the identity, we can apply the inverse function
theorem of Banach spaces and show that there exist neighborhoods of origin V3 and Va2 such that kv, o)
induces a homeomorphism

k(v,“@) : V1 — ‘/2

Let 8 € VanH!. Let o := k~1(83). We show that o € V; NKerDj N Mg’;git. Once this is shown, shrink V; and
we prove the proposition.
First, from the definition of a, we have

B=a+DiG(ana)
Act the Laplacian A; and we have
0=A18=Ara+ D3AG(a A a)
= Ao+ D3AG(a A )
= Aja+Di(aAha)—DiH(aAa)
= Aja+ Di(a A a).
Hence by the transverse elliptic regularity, « is smooth. We also have
0= Dyf = Dya + Dy DiG(a A av),
0= Dig = Dja.

We now showed that a € V4 NKerDj. To show o € M .., we need to show H(a A a) =0 (See (3.12)). To
show this, we use Proposition 3.5.1. Recall that

o ANA—-BAB
aNa= [A, B]
[Av*ﬁB]

From Proposition 3.5.1, there exists a, b, ¢ € R such that

ANA—-BAB a
H (4, B] =v=1|b | dnldg.
[A,*&B] C

We would like to show a = b = c¢ = 0. First, let
Ap(su(E)) = {f € Ap(u(E)) : Te(f) = 0}.
Then the complex
0 — Ap(su(E)) 2% AL (su(E))®2 2% AL (su(E)® — 0

forms a sub complex of (3.5). Since

ANA—-BAB
A, B] € Aj(su(E))®?,
[Aa*éB]
we have
ANA—-BAB
H [A, B] € H? N A% (su(E))®3.
[A, *iB}
Hence Tr(a - dnldg) = Tr(b - dnldg) = Tr(c - dnldg)=0. We obtain a = b=c¢ = 0. O
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In particular, we have the following

Corollary 3.5.1. MUt . is an empty set or a smooth manifold. If not empty, the dimension of MEL . around
[(Vh, ®)] € M, is H'.

We give a sufficient condition for MI! .. not to be empty. Recall that T is the CR structure on M. If
c1,5(TH?) = —C[dn] for some positive constant C, then there exists a basic stable Higgs bundle due to [BH2,
Example 3.6]. Hence if ¢; 5(T1°) = —C[dn],C > 0, then ML .. is not empty (See Section 3.6.1).

irr

3.5.2 Riemannian Structure on Mgy,

We use the same notation of the previous section. We assume that M. is not an empty set.
We show that the moduli space Mg} y;, of irreducible Basic Hitchin pair on a compact Sasakian three-fold
M is a hyperKéhler manifold. We first define a Riemannian metric g on M, y;,. Let [(Vi, ®)] € MBLy;, and

o= (a1, 2), 8= (B1, B2) € H' ~ Ty(v, oy MBiiyy. We define g as

(3.14) 9((wn.a) (e, B) = — /M Tr(on A *ef1 + az AxefBz) A
To show g is well-defined, we need to check that g does not depend on the gauge-equivalence class of [V, ®)] €

- Under a gauge transformation (Vy,, ®) — h=*(Vj, ®)h, the infinitesimal deformations «, 3 maps to
h~tah, h=1Bh which are the corresponding harmonic repsentative (See [I] for details.). Since (3.14), the metric
g is equivalent to the gauge transformation. Hence g is well-defined.

We now prove the distinguished coordinate of the moduli MY .. induced by the Kuranishi map and the
slice is a normal coordinate with respect to (M., g). This result will be used later to show that M . is
hyperkahler.

Let [(Vy, ®)] € MLy, . Then from the previous section we have the Kuranishi map kv, ¢, Slice Sy, ).c,
and a open subset 0 € U C H! such that

k(v,.@) t Mg N S(w,.0).c = U
is a homeomorphism. The derivative of the Kuranishi map at o € AL (u(E))%? as follows
Ay ) Ta AL G(E)® 5 T oy Ab(u(E)?2,
d(k(Vh@))a(ﬂ) = ﬂ + D;G([OL, ﬂ])

—

Here for a = (a1, a2), 8 = (b1, B2) € A5 (u(E))®? we defined [a, ] as

(3.15)

. [o1, B1] — [a2, 2]
(3.16) [, B] := [ov1, B2 + [B1, az]
a1, e B2] + [Br, *e ]

Note that [«, 8] is not the ordinary bracket. We call this bracket as the modified bracket.
Using the modified bracket, we can characterize the tangent space of a € Mgy N S(v, ), as follows

—~—

(3.17) To(Mianic N S(vi,0),c) = {8 € Ap(w(E))®* : DI = 0, D2 + [a, f] = Da,o8 = 0}.

Here D, is the operator of (3.6) defined for (Vj,,®)+a = (Vi +a1, @+ as) € AL From (3.15) and (3.17),
the restriction of dk(v, &) to To(MEE N S(v,.@),e) has the following form.

Proposition 3.5.4. The differential of the Kuranishi map
d(k(vh,fb))oz (T (MggHit N S(Vm‘b),E) - Tk(vh,<1>>(a)U =H

has the form
d(k(w,.))a(B) = Hv, )8

Here Hiy, o) : Ap(u(E))®? — H' is the harmonic projection.
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Proof. Since D} commutes with the Green operator, and we have (3.15) and (3.17), we have

—~—

d(k(v,.2))a(B) = 8+ D3G([o, B])

=B —D3;GDf3
=B - D3D>Gp
= H(v, )b

O

In the previous section, we denoted H(y, ) just as H. We denoted as H(v, ¢) because later, we use the
harmonic projection induced by different basic Hitchin pairs.

We now solve conversely an equation d(k(v, a))a(8) = v for a given v € Tk(V} a@U = H! and o €
MBE e N S(w,,0),c With respect to 8 € To(MBL i N S(v,,0),c)- We decompose 3 as

B = D1y + 71 + D372,

where 79 € Ap(W(E)), 1 € H!, and 2 € A% (u(E))®3. By Proposition 3.5.4, 1 = 7. Moreover, since Dif3 = 0,
we have Df D179 = 0 and hence D179 = 0. Hence we obtain

=7+ D3v.

From (3.17), 7 satisfies the equation

—_~—

Dy D3z + [,y 4 D3y2] = 0.

By the definition of the modified bracket, it is a bilinear map. Hence

—

(3.18) DoD3vz + [, Diya] = —[a, 7).
As a consequence we have

Proposition 3.5.5. For a given v € H', the inverse image 8 = (d(k(v, 0))a) ' (7) € Ta(MBimi N S(v,.0).c)
is represented by
B =7+ Dy
where v5 € A% (W(E))®3 is a solution of (5.18).
We note that at the origin, To(Mhyi N S(v,,0).c) = H' and d(k(v, #))o = Idg: holds.
Let X,Y,Z € Ty( ggHit N Sv,.,).e) = H'. Since H! is affine, these vectors also define vector fields on U
canonically. We define a vector field X on ML N S(v, o). as

Xo = d((kw,,8) ke, o) (X)s @ € MEi 1S9, ).
We define Y, Z in the same manner. From Proposition 3.5.5, X, has the form

Xo=X+Diy(a,X)

where v(a, X) € A4 (u(E))®? and it satisfies the following equation

(3.19) DyD5y(a, X) + [, Diy(eov, X)] = —[e, X].

We note that at « =0, Xo = X and D3v(0,X) = 0.
Let ¢(t) be a curve on ME: . N Siy, @) defined by ¢(t) := (kv o))" (tX). Then we have ¢(0) = 0 and
Gc®li=o = X € To(Migim N S(v,,.0).0) = H.

47



irr

Proposition 3.5.6. The Riemannian metric g on ML .. satisfies at a = 0 in a slice neighborhood MEL 1. N

S(V;,,,@),e
Xg1vn,enY,Z)=0

for every XY, Z € To(ME e N S(w,,0),c) = H
We remark that this Proposition shows that the coordinate obtained by the Kuranishi map is normal.

Proof. By the definition of the metric

d
Xgiv,,oY,Z) = 9T @) ()] Yoy, Zewy)

d X —
= a (H(vh,‘b)+6(t)yc(t)7 H(Vh,‘I’)+C(t) Zc(t))

t=0

L21t=0

d _ d _
= (dt(H<vh,<1>>+c<t)Yc<t>)t—o, Z) + <Ya Gt Hwwa) e Zew)
L2

t_0> L2
t—O)

Differentiating H(Vh,@)Jrc(t)?c(t) at t =0, we get

d _
T (H(V;L@)-i-c(t)yc(t))

d
)Y + Hv, o) <thc(t)

d
= | 7 Hw.0)+et
t=0 <dt " ) t=0

Before we proceed, we prepare two Lemmas.

Lemma 3.5.1.

)-o
t=0

= S0V + Dy (el), V)

= D3 G(e.)

d_
Hev),®) <thc<t)
Proof. From Proposition 3.5.5, we have

—Y
dt c(t)

t=0 t=0

»

—_~ —_—~—

Dy D3y(e(t),Y) + [e(t), D3(c(t), V)] = —[e(t), Y].

From (3.19), v(c(t),Y) satisfies the equation

We differential this equation at ¢ = 0 and we obtain

D3 (2 (e(0).)

By Proposition 3.5.1 and the Hodge decomposition, we have a,b,c € R such that

d N d
0.V )a = V=T () i+ GD2D; (). Vo
&
a —_
V=T b ]y X, Y]
C
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Then we have

:D;(ﬁ Z dn—G[X,Y]>

—_~—

= -D3iG[X,Y].
Then the Lemma is obtained by the Hodge decomposition.

Lemma 3.5.2.

d ——
<dtH(Vh7‘1>)+C(t)|t=0>Y = —G[X, DTY]l - D1G[X, Y]2 - D3G[X, Y] - G[X, DQY]B

—_~

= -D1G[X,Y]? - D;G[X,Y].
Here

o= (55

[X7 Y]2 ‘= [XT7Y1] + [X;7Y2]7
[Xl, VhY1 — [q),YQ]] —+ [*§X§, Vh}/g =+ D/la (I)]] + [X;, Vh * Y2 —+ [Yl, *(I)]]
(X5, VaYa + V1, O] — [k X5, VY1 — [@, V3] + [X5, Vi xe Yz + [Vi,%¢®]])
Proof. The second equality follows from the harmonicity of Y. We prove the first equality.

By the Hodge decomposition, we have

[X, DoY) - = (

d
>Y = a(H(vh,@Hc(t)Y)
t=0

d
—H(v, &)tct
(dt (V1 ®)+c(t) .

d
= _%(Gc(t)Al,(Vh,(bH»c(t)Y)
t=0

d d
=0 (Gc(t) )Al,(vh,d>)y + G%(Al,(vh,fb)+c(t)y)
t=0 t=0
adia Y)
= —G—(A1(V,,®)+c(t)
dt ¥ t=0
We now calculate 4 (Ay (v, &)+e(t)Y)|i=o-
d d * *
%(Al,(vh@)Jrc(t)Y) = %(Dl,(Vh,‘P)Jrc(t)Dl,(VhﬁI))Jrc(t)Y + Dz,(vh,¢)+c(t)D2,(Vh,<I>)+c(t)Y)
— t=0

— [X,DiY]' + Di[X, Y] + Di[X, Y] + [X, D Y]?

= Di[X,Y]? + D;[X,Y].
Hence the claim is proved.

We now prove the Proposition. From the two Lemmas above, we have

d — d _
Xgiv,onY,2) = <dt(H(V;L,d))-i-c(t)Yc(t))‘t_oa Z) L + (Y, %(H(V,L,@)Jrc(t)zc(t))

t=0> L2

- ( ~ DiG[X,Y), — DiGIX, Y], Z) + (Y, ~D\GIX, Z); — DiG[X, Z])
L2 L2

0.

The last follows from the harmonicity of Y and Z.
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3.5.3 HyperKihler Structure on M ..

We use the same notation as the previous section. We assume that M3}y, is not an empty set.
We define almost complex structures Z, J, K on M§hy,,. We first fix a (Vy,, ®) € Apanis. First, we show
that AL (u(E))®? has the structure of the quaternion vector space. Next, we show that they induce a quaternion

structure to H*.
Let a = (a1, an) € AL(u(E))®P2. We define I, J, K € End(AL(u(E))®?) as follows

I (o751 L *,5011
Qa9 B - *¢ Qg ’
(o) = (2
a2 aq
w(o) = ()
Qg — ke ]
By Proposition 3.3.1 and definition of I, J, and, K we can check that

P=J=K=-1d, K=1J

and hence I, J, K defines a quaternion structure of AL(u(E))®2. To show that I,J, K induces a quaternion
structure to H!, we only need to check that I,J, K preserves KerDi N KerDy. This can be shown by direct

computation. Note that for a = (a1, a2) € AL (u(E))®2, we have
Dia= V5o + ®*«

(3.20) ! e ?
= — k¢ Vh *e 01 — *g[q),*gag}.

Hence by (3.6) and (3.20), o € KerDf N KerDs if and only if the following equations hold

Vi *e a1 + [Q,%¢0) = 0,
Viar — [P, a0] =0,
Viag + [a1,®] =0,
Vi *e ag + [a1, %¢P] = 0.

(3.21)

Then it is easy to check that if & € KerDiNKerDsy, then I, Ja, and K« satisfies (3.21) and hence Ia, Ja, Ko €
KerDiNKerDy. Hence (H', I, J, K) is a quaternion vector space. These I, J, K induce almost complex structures
to Mphm and we denote as Z, 7, K for the corresponding almost complex structures. It is clear that Z, 7, K
satisfies the quaternion relationship.
To compatibility of g with Z,7,K can be shown by using the following equality: Let A, B € AL(u(E)).
Then we have
Tr(A A *¢B) = Tr(A" A% BOY) + Tr(A%! A% BY0)

= V-1Tr(4"° A B®') — V/=1Tr(A%' A B'?)

= —Tr(x¢ A" A BY1) — Tr(x A% A BYY)

= —TI‘(*&A A B)
We now show (/\/lgleit,g,I, J,K) is a hyperKéaher manifold. Let wr,wy,wx be the corresponding Kéhler

forms. We give the explicit form of wzr,ws,wk for [(Vi, ®)] € ME L and a = (a1, 2), 8 = (B, B2) € H! ~
T[(vh@)]MiB“;Hit for convinience.

wz,[(vy,0)) (@, B) = / Tr(on A B1 — aa A B2) A,
M

w7 [(Vh,®) (@ B) = / Tr(ag Axefla — g A*¢fr) A,
M

wic (V@) (v, B) = — /M Tr(ay A B2 + g A B1) A,
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Proposition 3.5.7. The Kihler form wz on MU .. satisfies at « = 0 in a slice neighborhood Mg;Hith(vm),E
Xwzv,en(Y;2) =0
for every XY, Z € To(MBhmie N S(v,,0),) = H

Proof. We give the proof by direct computation.

d _
Xwrv,0)(Y:Z) =20z (wne)ree) (Ve Zew)

t=0
d _ _
=918y +e] (Y et ZZ (1))
t=0
d _ _
=£/ Tf((H(Vh,<1>>+c(t)Yc(t))1 A (H(Vh,¢)+c(t)Zc(t))1> An
M t=0
d _
o Tr<(H(Vh,<I>)+c(t)Yc(t))2 AN(H(w, @) +et) Zet))2 )
M t=0

)
t=0

) A.
t=0

Here (H(VhE)Jrc(t)?C(t))i (resp. (H(Vh@)ﬂ(t)?c(t))i) is the i-th componet of the H(vh,@)ﬂ(t)?c(t) (resp.

d — d
=/ Tr| —(Hv, o) rew)Yew)i| ANZ1 /\77+/ Tr( Y1 A —(Hiv, @) +e) Zew)
M dt t=0 M dt

d _
— / Tr (C#(H(vh,,cp)ﬂ(t)yc(t))z
M

d _
A Z3) — / Tr <Y2 N —(Hv, o)+ct)Ze(t))2
o " dt

H(w, @) tet)Ze(t))-
The following Claim will give us the proof of the Proposition.

Claim 3.5.1.

d _
/ TY<dt(H<vh,<1>>+c<t>Yc<t>)1
M

Proof. By Lemma 3.5.1 and 3.5.2, we have

d
/Tr(dt( (V@) 4e®) Y c(t)) _ 0/\Z1>
d
= MTI' dtH(vh,q:,)_;'_(\ NZ 1

/M Tr(< — D1G[X,Y]? - DiG[X, Y]> 1 A Z1>

-/ Tr(( ~VAGIX, Y - V3 (GIX.Y)), — (@) ) (GIX, V), — [(r6®)] (GIX. Y]),) Azl) A

d _
N Z1) /\n—/ Tr((H<vh,<1>>+c<t>Yc<t))2 N Zz) An=0.
t=0 M dt t=0
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Here [X,Y]? is the map we defined in Lemma 3.5.2. We also have

d
/ Tr(dt(Hm B)+e(t)Y e(t))2
M t=

d
=L (ool ), ) 1o
M 2

:/MTr<(—D1G[X,Y] DQG[X,Y]> /\Zg)
= [ (= @GIX Y]+ 0 GV, + 5V (GRT]), — VA(GRCTI),) A Zs) A

/\Zz)/\T]
0

_ <G[X,Y]2,[‘I>*7*£Z2> + < GX,Y ,[@ *5Z2}>

— /M Tr(v;;(G[X, Y]), /\*ng> AN — <(G[X, Y1) Vi xe ZQ) .

[X, Y])l’ [(I),*§Z2]>

— (G[X, Y2, [@*7*5220

L2 L2

a
- <(G[X,/\?])2,Vh xe *5ZQ>L2 - <(G[X,/\?])3,Vh x¢ ZQ>L2.

Hence we have

d _
/Tf<ch(H(vh,<1>>+c(t)Yc<t))1

d _
A Z1> A — / Tr<dt(H(Vh,d>)+c(t)Yc(t))2 A Zz> An
t=0 M t=0

GIX, Y]? vh*gzl> <(G[X,/7])l,vh*le>
L2

L2

-

( - ((G[‘X’/—\_ﬁ)g’[q)’*le]>
+ (G X, Y]%, *EZQ]>L2 - ((G[X,/\?])l, [@,*EZQ]>L2

( e~

(

L2

GIX,Y)), vh*g*fzz) +<(G[X,/\)7])3,vh*fzg>
L2

(G[X,Y]),, D; IZ>L2 _ ((Gm)l, (D212)1>L2 _ ((G[?(T?])Q, (DQIZ)S)L2 _ ((Gﬁ)s, (D212),

The last equation holds since I preserves H!. O
The Proposition follows immediately from the Claim. O

Integrability of Z follows from Proposition 3.5.6 and 3.5.7: These two Propositions show that Z is flat with
respect to the Levi-Civita connection of g and hence 7 is integrable. Although we only proved for Z, we are
able to show the integrability of 7 and K in the same way as Z. Hence we omit the proof. From the discussion
above, we have

Theorem 3.5.1. (M. 9,7, 7,K) is a smooth hyperKdhler manifold.

3.5.4 Dimention of ggHit

In this section, we calculate the dimension of g;Hit. We calculate it under the assumption of M being regular
and F being regular. We recall the notion of regular for bundles later. We first prove the following proposition.
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I:roposition 3.5.8. Let E be a basic bundle over M with a basic metric h. Let (Vp,®) € Apamis and let
(0R,0) be the associated basic Higgs bundle (See Section 3.6.1). Then the map

f: ALw(E)®? —  AL(EndE)
w w
(a1, a3) — a1+ vV-—las
induces an isomorphism
f : Hl — H]13aD01'

Here H' is the first cohomology of the complex (3.5) and Hy, ., is the first cohomology of the following complex:

0 —s Ap(EndE) 225 AL(EndE) 22% A2 (EndE) — 0.

Proof. Tt is enough to show that f induces an isomorphism
f : KerD; N KerDy — Ker(0g + 0)* NKer(0g + ).

Here (O + 0)* is the L? adjoint of O + 6.
Let (o1, 2) € Ap(u(E))®?. We assume that (a,az) € KerD} NKerD,. We first show that f(aq,a0) =
a1 +vV—1lag € Ker(0p + 6)* NKer(0g + 6). By (3.6) and (3.20), we have

(3.22) Viar — [@,a2] =0,
(3.23) Vias + [a1, @] =0,
(3.24) Vi, *¢ o + [061,*5(1)] =0,
(3.25) Vh *¢ 0 + [q),*gag] =0.
Note that from Lemma 3.4.2, (3.24) is equivalent to

(326) Vh *¢ Qg — [*5041, (I’] =0.

Since ¢l 410007 = _\/deAgO(M) and ¢l 01y = \/—711dA(;3,1(M), by calculating (3.22) + /—1(3.25) and
(3.23) 4+ /—1(3.26) we have

Viloy? — (@10, 65" =0,

VOlal0 1 (o0, 319 = 0.
Since dp = V' and § = /—10"C (See Section 3.6.1), they show a; + v—1lay € Ker(dg + 6). By using a

similar argument, we can also show that ay + v/—1ay € Ker(9g + 6)*. Hence f(KerDj NKerD;) C Ker(dg +
0)* NKer(9g + 0) holds. We now construct the inverse of f and prove the claim. Let

g: AL(EndE) — AL (u(E))®?
w w '
AT T
A R (A 2Ah7_ TlAgAh)

Here A}: is the formal adjoint of A with respect to h. It is straightforward to check that f-g =1Id and g- f = Id
holds. Hence, it is enough to show that g(Ker(0g + 6)* N Ker(dg + 0)) C KerDi N KerDs to prove the claim.

Let A € Ker(9g +60)* NKer(9g 4 6). From [BH1], we have (9 +6)* = (V' +/—1010)* = /—1[A, V" +
V=181, Since A%’ (M) = A}*(M) = 0, A satisfies the following equations

(3.27) VOTALY 4 /ZT[@10, 401 = 0,
(328) A(V;L’OAOJ 4 \/_71[@0,1’ ALO]) —0.

We wedge dnldg to the second equation and we obtain

(3.29) V040t 4 /2100 AL = 0.
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We take the formal adjoint of (3.27) and (3.29) with respect to h and obtain

(3.30) VRO (AMO)] = V=T, (A%h)]]
(3:31) Vil (AMD] - VL@t (41)])

0,
0.

At T
We now prove that g(A) € KerDj N KerD;. We only prove that g(A4) = (A 2Ah , —\/—1%) satisfies (3.22).
The other can be proved by using the same argument below.

— Al 1
Vh(A 2Ah>+ Tl{@’/HAh}

2
AO0L _ (AL0 1 ALO _ (401 T A0.1 ALO T ALO A0.1 1
:v}l,()( 2( )h) n v%l( 2( )h) I \/_*1[@1,07 +2( )h] n \/_*1{@0,1’ +2( )h
=0.
The last equation follows from (3.27), (3.29), (3.30) and (3.31). O

From now on, we assume that (M, (T1°,S, 1), (n,€)) is regular.
Let
0:Rx M— M, (t,z) = p(x)

be the flow generated by the Reeb vector field. Let E be a basic vector bundle of rank r. Then by [BH2|, we
can define a natural action
O :Rx E— E, (t,e) — Py(e)

such that they are compatible with the natural projection pg : E — M (i.e. pg o ®; = ;). Since M is regular,
the flow ¢ : R x M — M induces a free smooth action ¢ : S* x M — M. This is equivalent to the existence of
a positive number r € R such that ¢,(z) = 1 for all z € M. The minimum of all such ryz;, is called the period
of M. We assume 77, = 1 for simplicity. We say that E is quasiregular if ® : R x E — E induces a S'-action
¥ : S! x E — E. This is equivalent to the existence of a positive integer m such that ®,, = Idg. We say that
E is regular if it is quasi-regular and m = 1.

Let (E,dg,0) be a basic Higgs bundle. We say that it is a regular basic Higgs bundle if E is regular. We
recall that there is a one-on-one correspondence between a regular basic Higgs bundle on M and a Higgs bundle
over M /S following [BH2]. Note that since M is regular, M/S! is a Riemann surface. From now on we assume
the genus of M/S! is bigger than 2.

We first review the construction of a regular basic Higgs bundle over M from a Higgs bundle over M/S*.
Let (E,gg, 6) be a Higgs bundle over M/S'. Let {Us}aca be a open covering of M/S*. We assume that E is
trivialized over each U,. Then we have a family of holomorphic transition function gag : Uy NUg — GL(r,C)
such that it satisfies the 1-cocycle condition. Since M is the total space of a S'-bundle over M/S!, we can
regard {U, x S'},ca as an open covering of M. We define a family of maps gap : Uy x STNUz x ST — GL(r,C)
as gag(z,t) == gop(x). This family defines a vector bundle E over M since it satisfies the 1-cocycle condition.
Since E is trivialized over each U, x S', E is regular and since the transition function is constant along the
Sl-action, E is basic and finally, since gog is holomorphic, E is basic holomorphic. We can also show that 55
induces a basic holomorphic structure 9 as follows: We assume that 9z|u, = 0+ A, where A, € A% (gl(r,C)).
Then Ag = 5;511&@&[3 + g;gégaﬁ holds. We define A, € A% (gl(r,C)) as Ay(z,t) := A, (z). This satisfies
Ag = g;éAaga[g + g;égggag. Here ¢ is the (0, 1)-part of d|as,(ar)- Hence {Aq }aea defines a (0, 1)-differential
operator O and hence a basic holomorphic structure on £. We can also show that 6 induces a basic Higgs field
0 by using a similar argument.

We next review the converse construction. Let (E,dg, ) be a regular basic Higgs bundle over M. Since M is
the total space of a S*-bundle over M/S?! there exist an open cover of {U, }aea of M /S such that {Uy x S'}aea
is an open cover of M. Since E is regular, we may assume E is trivialized over each {U, x S'},e4 after shrinking
U, appropriately. Since E is basic, the transition function gag : Uy x S*NUg x S' — GL(r,C) of E is constant
along S'. Hence g, reduces to the function on U, N Us and defines a vector bundle E on M/S'. We can use

54



a similar argument above to show that Oz and 6 reduces to E and define a holomorphic structure 5@ and a

Higgs field 0 on E.

We now assume FE is regular. We show that there exists a one-on-one correspondence between the space of
basic sections Ap(E) over M and smooth sections A(E) over M/S*.

Let s € Ag(E). Then s, = s|lu, = (Sa,1s---55a,r) : Uy x S* — C" is a basic function. Hence s, reduces
to a function s, : U, — C". We can glue {5,}aca and define a smooth section s over E. Conversely, let
se A(E) Then 5, = 3|y, = (Sa.1,--»8as) : Uy — C" is a smooth function. We define s, : U, x St — C as
Sa(T,t) := 54 (x). We can glue {s4}aca and define a smooth section s over E. Since s, is constant along S, s
is basic. We define linear maps

p:Ap(E) — A(E),
q: A(E) — Ap(E)

as p(s) := 5 and ¢(5) :=s. poq=qop=1Idis clear from the construction.

Proposition 3.5.9. Let (E,0,0) be a reqular basic Higgs bundle over M and (E,gg,g) be the induced Higgs
bundle over M/S. Then p,q induces a morphism between complexes

p:(A%(E),0p +0) — (A(E), 5 +0),
q: (A(E), 05 +0) = (AR(E),0p + 0).

Since poq = qop = Id, p and q induce an isomorphism between the cohomologies. In particular, the dimensions
of the cohomologies of the two complexes are the same.

Proof. This is clear from the construction of p,q and (E,gﬁ, 5) O

Let h be a basic hermitian metric and let (V,®) € AR .. Then (E,0p = VOI 0 := /—1010) is a
regular stable nggs bundle (See Section 3.6.1). Since h is basic and FE is regular, we can show that h induces

a metric h on E by using the trivialization above. It is clear from the construction that h is a harmonic metric
for (E, 0z .6). Hence (E, 0z ,0) is polystable and degree 0. Assume that (E 05 9) is not stable. Then by [Sl

Proposition 3.3], there exists a sub Higgs bundle V C E such that (E, 0z .0) = (V, 95, 0y) @ (VJ‘ Oy, 0p.)

holds and both Higgs bundles are stable and degree 0. Here V4 is the orthogonal bundle of V. By applying
the above procedure to V we obtain a sub Higgs bundle V' C E. The harmonic metric h|V of V induces a

harmonic metric hy on V. Hence (V,dy,60y) is degree 0. This contradicts to the stability of (E,dg,#) and
hence (E, 93, 0) is stable.
Let H, be the first cohomology of the folllowing complex
0 —> A(EndE) =225 41(EndB) 257 42(EndE) —s 0.

Since E is regular, the dual EVY is also regular, and so is EndE. We can apply Proposition 3.5.9 to EndE and
obtain HL o, ~ Hy . By [N], dimcH} , = 2(tkE)?(g — 1) + 2. Then combining Corollary Proposition 3.5.8
and 3.5.9, we obtain

Theorem 3.5.2. Let (M, (T1°,S,1),(n,&)) be a reqular Sasakian threefold. Let E be a regular basic bundle
and h be a basic Hermitian metric. Let g be the genus of M/S. Then

dimp MET o = 4(tkE)? (g — 1) + 4.

3.6 Appendix

3.6.1 Basic Higgs bundle
Throughout this section, let (M, (T, S, T),(n,£)) be a compact Sasakian manifold.
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Let E be a basic vector bundle over M. We say that F is transverse holomorphic if there exists a local
trivialization {U, }aea of E such that the associated transition function g,s : Uy NUg — GL,(C) is basic and
holomorphic (i.e. igdges = 0 and gggag = 0). For a transversely holomorphic vector bundle E over M, we
define the Dolbeult operator

95 : Ap(E) — A% (E)
8E|Ua = 35.

This is well defined since the transition function is holomorphic and satisfies Op0p = 0. It is canonically
extended to 9 : ABY(E) — A% (E) and satisfies the Leibniz rule:

Op(wAs)=0wAs+ (—1)PTw A dgs.

Conversely, if we have an operator dg : ALY (E) — ARITY(E) such that it satisfies 9gdp = 0 and the Leibniz
rule, Op defines a transverse holomorphic structure by the Frobenius theorem ([Ko]).

Definition 3.6.1. Let (M, (T*°, S, 1), (n,€)) be a compact Sasakian manifold. A basic Higgs bundle (E, g, 0)
over X is a pair such that

o E is basic and (E,0g) is a transverse holomorphic bundle.
e 0 c AL°(EndE), 96 =0, and 6 A9 = 0.
We call 0 a Higgs fields.

Let (E,0g,0) be a basic Higgs bundle on M and h be a basic hermitian metric.
We define a connection V), : A(E) — A (E) as follows: Let €1 4, - .. ,€rq be a local holomorphic frame of F
on U, and Hy := (h(€ja,€j.a)1<ij<r). We define

Vh|Ua =d+ H;lagHa.

This is well defined and since h is basic, Vj, is a basic connection. Vy, is also a h-unitary connection. Note that
1=

Vil =0p.
Let 9}: be the formal adjoint of #: For every section u,v € A(E),

h(Qu,v) = h(u, 9;21))

holds. We define a connection Dy, := V}, + 60 + 02. This is a basic connection. Let Fp, be the curvature of Dj,.
We say that h is Hermitie-Finstein if

AFp, =0.
Here AFﬁh is the trace-free part of Fp, .

The existence of Hermitie-Einstein metric is related to the stability of the Higgs bundle. We now recall the
them following [BHe2, BS].

Let (E,0g, 0) be a basic Higgs bundle on M. Let Op be the sheaf of basic holomorphic functions and O (E)
be the sheaf of basic holomorphic sections of E. A sub Higgs sheaf of (E,0g,0) is a coherent Op-subsheaf V of
Op(E) such that (V) C V ® QL. Here Q} is the sheaf of basic holomorphic 1-form. By [BHe2], if tkV < rkE
and Op(E)/V is torsion-free, then there is a transversely analytic sub-variety S C M of complex co-dimension
at least 2 such that V| g is a transverse holomorphic bundle on M\S. We define the degree of V as the degree
of VlM\S

Definition 3.6.2. A basic Higgs bundle (E,0g,0) is stable if
o F admits a basic hermitian metric h.
o For every sub-Higgs sheaf V C Op(E) such that tkV < rkE and Op(E)/V is torsion-free,

deg(V) _ deg(E)
rkV tkE

holds.
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We say that (E,0g,0) is polystable if

(E,08,0) = (B, 0., 6:)

where each (E;,0g,,0;) is stable and
deg(E)  deg(Ey)
tkE 1kE;

Proposition 3.6.1 ([BH1, Theorem 5.2, Proposition 5.3.]). For a stable basic Higgs bundle (E,0g,0) over a
compact Sasakian manifold (M, (T*°,S,1),(n,&)), there exsit a basic hermitian metric h such that Dy, satisfies

AFp, =0.
Note that h 1s a Hermite-FEinstein metric.
Moreover, if c1,5(E) = c2,(E) =0, then Dy, is flat (i.e. Fp, =0).
If we assume some conditions for the degree of the bundle, we have the converse.

Proposition 3.6.2 ([BHe2, Theorem 4.7.],[BH1, Proposition 7.1.]). Let (E,0g,0) be a basic Higgs bundle over
a compact Sasakian manifold (M, (T'°,S,I),(n,&)) with a deg(E) = 0. Suppose that h is a basic Hermitian
metric on E with AFp, = 0. Then (E,0g,0) is a direct sum of stable basic Higgs bundles of degree zero.

Basic Higgs bundles and Basic Hitchin equation

In this section, we clarify the relation between a stable basic Higgs bundle and an irreducible basic Hitchin pair.
Let (Vh, @) € A . (B, V', v/—1810) is a basic Higgs bundle. We show that this Higgs bundle is stable
with degree 0. Since ® € AL(u(E)), we have

0,1 _ 1,0

0! = —(10)I

Here (@1*0);2 is the formal adjoint of ®1:°. Since V}, is a metric connection and Vg’lfbl’o = 0, we have
v, 000 = —v, 0 (@) =o.

Hence D = V), ++/—1® is a flat bundle and deg(FE) = 0. Stability of (E, Vz’l, v/—1819) follows form Proposition
3.6.2 and irreducibilty of (Vj, ®@).

Let (E,0g,0) be a stable basic Higgs bundle of degree 0. Then by Proposition 3.6.1, there exists a basic
hermitian metric h such that the connection D = Vj 4+ 6 + 02 is flat. Let ® := —/—1(6 + 0;) Then (Vy, @) is
an irreducible Hitchin pair.
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Chapter 4

Harmonic Bundles with Symplectic
Structures

4.1 Abstract of Chapter 4

We study harmonic bundles with an additional structure called symplectic structure. We study them for the
case of the base manifold is compact and non-compact. For the compact case, we show that a harmonic bundle
with a symplectic structure is equivalent to principle Sp(2n, C)-bundle with a reductive flat connection. For the
non-compact case, we show that a polystable good filtered Higgs bundle with a perfect skew-symmetric pairing
is equivalent to a good wild harmonic bundle with a symplectic structure.

4.2 Introduction of Chapter 4

4.2.1 Harmonic bundles on non-compact manifolds

As we explained in the introduction, the study of harmonic bundles for the non-compact case was initiated
in [S1, S2]. Simpson studied them on curves and when the Higgs field has the singularity called tame. He
established the non-Abeian Hodge Correspondence (or Kobayashi-Hitchin correspondence) in this case. In
[BB], Biquard-Boalch studied the harmonic bundles on curves when the Higgs field admits a singularity called
wild and proved the correspondence. In [M2, M3], Mochizuki fully generalized the correspondence for the higher
dimensional case.

Theorem 4.2.1 ([BB, M2, M3, S1, S2]). Let X be a smooth projective variety, H be a normal crossing divisor
of X, and L be an ample line bundle of X. Let (E,0g,0,h) be a good wild harmonic bundle on X — H. Then
(PIE, ) is a pr-polystable good filtered Higgs bundle with ur(PPE) =0 and [y chy(PFE)cy(L)H™¥=2 = 0.

Conversely, let (P.V,0) be a pr-polystable good filtered Higgs bundle satisfying the following vanishing con-
dition:

(11) pa(PV) =0, [ cha(P.)er (L) —o,
X

Let (E,0g,0) be the Higgs bundle which we obtain from the restriction of (P.V,0) to X — H. Then there exists
a pluri-harmonic metric h for (E,dg,0) such that (V,0)|x\n ~ (E,0) estends to (P.V,6) ~ (PIE, ).

4.2.2 Harmonic Bundles with Symplectic Structures

Results

We first state the main results of this chapter. Let X be a smooth projective variety over C and H C X be a
normal crossing divisor.
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Theorem 4.2.2 (Theorem 4.5.1). The following objects are equivalent on (X, H)
o Good wild harmonic bundles with a symplectic structure.

e Good filtered polystable Higgs bundles equipped with a perfect skew-symmetric pairing satisfying the van-
ishing condition (4.1).

Symplectic structures for harmonic bundles are defined in Section 4.3. Roughly speaking, it is a skew-
symmetric pairing of a vector bundle and is compatible with the Higgs field and the metric. Notions of filtered
bundles and pairings of them are recalled in Section 4.4 and 4.5.

We explain the outline of the proof of Theorem 4.2.2 in the next section. We can regard this result as a
Kobayashi-Hitchin correspondence with skew-symmetry.

Outline of proof

The contents here are written in Section 4.4 and 4.5.

Let X be a smooth projective variety and H be a normal crossing divisor. Let (F,dg,0,h) be a good
wild harmonic bundle on X — H and (P.V, ) be a good filtered Higgs bundle on (X, H). In the latter half
of this chapter, we study the good wild harmonic bundles and good filtered Higgs bundles when they admit a
symplectic structure and a perfect skew-symmetric pairing.

A perfect skew-symmetric pairing w on (P,V, 0) is a morphism of filtered bundle

w: PV PV — PO(Ox(+H))

such that it is skew-symmetric and induces an isomorphism ¥, : (P.V,0) — (P.VY,—6Y). See Section 4 for
more details on the pairing of filtered bundles.

In section 4.5.2, we show that when the good wild harmonic bundle admits a symplectic structure, then the
good filtered Higgs bundle obtained by prolongation admits a perfect skew-symmetric pairing:

Proposition 4.2.1 (Proposition 4.5.1). Let (E,0g,0,h) be a good wild harmonic bundle equipped with sym-
plectic structure w. Then (PPE,0) is a pr-polystable good filtered Higgs bundle equipped with a perfect skew-
symmetric pairing w and satisfies the vanishing condition (4.1).

We show that the converse also holds. In section 4.5.3, we study the structure of a good filtered Higgs
bundle with a perfect skew-symmetric pairing and show that it admits a pluri-harmonic metric compatible with
pairings. This completes the proof of Theorem 4.2.2.

Proposition 4.2.2 (Proposition 4.5.2 and 4.5.3). Let (P«V,0) be a pp-polystable good filtered Higgs bundle
equipped with perfect skew-symmetic pairing w and satisfies the vanishing condition (4.1). Then there exist stable
Higgs bundles (P,V?,0(7) (i =1,...,p(0)), (P.VM,6) (i =1,...,p(1)) and (P.VZ,0) (i =1,...,p(2))
of degree 0 on X such that the following holds.

o (PVO 9

?

( )
M
(

is equipped with a symmetric pairing Pi(0 .
o (P.V, -1)) s equipped with a skew-symmetric pairing Pl-(l).

o PVP,07) 2 PV, -017)Y,

o There exists positive integers l(a,i) and an isomorphism

p(0) p(1)
(PV,0) =~ @(P*Vi(())? 91(0)) @ C20.0) g @(P*Vi(l), 01(1)) & ClLD)
=1 i=1

p(2)
a@P (((P*Vi@), 6)  C') g (PP, —0) @ (Cl(“))v)).
=1

Under this isomorphism, w is identified with the direct sum OfPi(O)@)w(cm(o,q,) , Pi(1)®0@(1,i) and @(E@) 9@)@
C([:l(2,i) ' '
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o PV, 6) & PV 69 (i # j) for a=0,1,2, and (PV,67) & (PP, 6P\ for any i, j.

Moreover, there exists a harmonic metric h on (V,0)|x\p such that (i) h is adapted to PV, (i) it is compatible
with w.

We give more details on the harmonic metric in Proposition 4.5.3. Theorem 4.2.2 is proved by combining
Proposition 4.2.1 and 4.2.2.

Relation to other works

In [LM1], Li and Mochizuki studied harmonic bundles with an additional structure called real structure. A real
structure is a holomorphic non-degenerate pairing of the given bundle such that the Higgs field is symmetric
with it and the harmonic metric is compatible. Although they focused on the study of generically regular
semisimple Higgs bundle, they also obtained the Kobayashi-Hitchin correspondence with symmetry.

Theorem 4.2.3 ([LM1, Theorem 3.28]). Let X be a compact Riemann surface and D C X be a divisor. Then
the following objects are equivalent on (X, D).

o Wild harmonic bundles on (X, D) with a real structure.
e Polystable good filtered Higgs bundles of degree 0 equipped with a perfect symmetric pairing.

Although they only proved for the Riemann surface case, generalization to higher dimensions is straightfor-
ward.

In Section 4.3, we study the compact case. In [S3], Simpson established the one-on-one correspondence for
reductive flat principal G-bundle and semistable G-Higgs bundle. Here, we assume G to be a complex reductive
algebraic Lie group. Hence Section 4.3 is a detailed version for G = Sp(2n, C).

4.3 Harmonic bundles with symplectic structure

4.3.1 Skew-symmetric pairings of vector spaces

Let V be a complex vector space of dimension n. We fix a hermitian metric h on V. Let V'V be the dual of V.
From a hermitian metric h we have an anti-linear map:

Uy V=V

defined as Up,(u)(v) := h(v,u) for u,v € V.
We have an induced hermitian metric Y on V'V defined as

BY (0¥, 0") = B (o), 7 ().
Let w be a non-degenerate skew-symmetric bilinear form on V. We obtain a linear map,
U,: V-V

defined as U, (u)(v) := w(u,v).
We have an induced skew-symmetric bilinear form w" on V'V defined as,
W' (u’,0Y) == w(T5 (u”), U5 (0Y)).

w

Definition 4.3.1. Let (V, h) be a vector space with hermitian metric. Let w be a non-degenerate skew-symmetric
bilinear form on V. w is compatible with (V, h) if

U, : (V,h) — (VY. 1Y)

s an isometry.
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The following Lemma was proved in [LM1] without proof. We give the proof for convenience.
Lemma 4.3.1. The following conditions are equivalent
e h is compatible with w.

o UyvoW, =0T, oWy

o w(u,v) =wY(Vp(u), ¥y(v)) for any u,v € V.

Proof. For amatrix A, we denote the transpose of it as AT. Let < ej,...,e, >beabasisof Vand <eY,... e’ >
be the dual basis of VV. Let H := (h(e;, €;))1<ij<n, & := (w(es, €j))1<i j<n- The representation matrix of ¥y,
is H, Upv is (H~HT, ¥, is QT and ¥ v is QL.

When h is compatible with w, then (H~1)T = Q‘lHFT stands. ¥pv o ¥, = ¥, v o ¥}, is equivalent
to (H~1)TQT = Q~'H. The third condition is equivalent to the equality Q7 = HTQ-1H. Hence the three
conditions are equivalent. O

4.3.2 Harmonic bundles with symplectic structure
Let X be a complex manifold and (F, dg, 0) be a Higgs bundle on X.

Definition 4.3.2. Let (EV,0gv) be the dual holomorphic bundle of (E,0g). A skew-symmetric pairing w of
E is a global holomorphic section of EY @ EV such that w(u,v) = —w(v,u) holds for any section u,v of E. We
say that w is perfect if the induced morphism ¥, : E — EV is an isomorphism.

We note that when a holomorphic bundle has a perfect symplectic pairing, the rank of it is even.

Definition 4.3.3. A skew-symmetric pairing w of the Higgs bundle (E,0g,0) is a skew-symmetric pairing of
(E,0E) such that w(f ® 1d) = —w(Id ® 0) holds. We call w perfect if it is a perfect skew-symmetric pairing of
(E,0g).

A skew-symmetric pairing w for (E,dg,6) induces a morphism ¥, : (E,6) — (EV,—6V). Here 0V is the
Higgs field of EV induced from 6.

Remark 4.3.1. A Higgs bundle with a skew-symmetric pairing is called Sp(2n, C)-Higgs bundle in [GGM].
Definition 4.3.4. A symplectic structure w of the harmonic bundle (E,0p,0,h) is a perfect skew-symmetric
pairing of (E,0g,0) such that hjp is compatible with wp for any P € X.

4.3.3 Harmonic metrics on Principal G-bundles

Let G be a Lie group. In this section, we briefly review harmonic metrics on the principal G-bundle. Let X be
a Riemannian manifold.

Definition 4.3.5. Let P — X be a principal G-bundle and V be a flat connection on it. V is called reductive
if the corresponding representation p : w1 (M) — G is semisimple.

Let K C G be a maximal compact subgroup and let Px be a K-reduction of P. When P admits a flat
connection V, to give a K-reduction Pk is equivalent to give a m; (X )-equivalent smooth map

f:X = G/K.

Here X is the universal covering of X.

The following result was proved by Donaldson [Do] (when X is a compact Riemann surface and G =
SL(2,C)), Corlette [Co] (when X is compact and for semisimple Lie groups) and Simpson [S4] (when X is
compact and for algebraic reductive groups).

Theorem 4.3.1 ([Co, Do, S4]). Suppose X to be compact. Let P — X be a principal G-bundle with a flat
connection V. Then there exists a m1(X)-equivalent harmonic map f : X — G/K if and only if V is reductive.
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From now on, we assume X to be a compact Kéhler manifold. Let 7 : G — GL(V) be a linear representation.
We briefly recall how to induce a Higgs bundle structure to E := P x™ V from a principle G-bundle with a
reductive flat connection V. See [S4] for details. Let D be the induced flat connection of E. The harmonic map
f induces a metric h on E. Let D = Dy, + ¢ be the decomposition such that Dj, is the metric connection and
¢ is self-adjoint w.r.t. h. Let D?L’l be the (0,1)-part of Dy, and 0 be the (1,0)-part of ¢. The harmonicity of f
implies that Dg’l o Dg’l =0 and D2’19 = 0. Hence we obtain a harmonic bundle (E, Dg’l, 0,h).

4.3.4 Harmonic bundles and Principal Sp(2n,C)-Bundles
Throughout this section, we assume X to be a compact Kahler manifold. In this section, we prove the following:
Proposition 4.3.1. Let X be a compact Kdihler manifold. The following objects are equivalent on X.

o Polystable Higgs bundle of rank 2n with vanishing Chern classes equipped with a perfect skew-symmetric
PaIring.

o Harmonic bundle of rank 2n equipped with a symplectic structure.
e Principal Sp(2n, C)-bundle with a reductive flat connection.

Proof. The equivalence of the first two objects is a consequence of Corollary 4.5.1. We give the proof of the
equivalence of the last two objects in the end of the section. O

To prove Proposition 4.3.1, we prepare some Propositions.

Lemma 4.3.2. Let (E,0g) be a holomorphic bundle of rank 2n on X and w be a perfect skew-symmetric pairing
of it. Let Pp — X be the principal GL(2n, C)-bundle associated to E. Then Pg has a reduction to Pg gp2n,c)
such that Pg gpon,c) — X is a principal Sp(2n, C)-bundle.

Proof. To prove the claim, it is enough to prove that there exists an open covering {U;};ca and a family of
section {(ex.;)?", }iea of E such that

o (exi)3, is a frame of E on U;,
e The family of transition function {g;;}: jea associated to {(e)3™,}ica takes value in Sp(2n, C).

To show such an open covering and frames exists, we only have to show that there exists an open covering
{U;}ien of X and on each U;, we have a frame (e ;)7 of E such that w.r.t (e;)?",, w|y, has the form

n

_ \ \ \Y Vv
wly, = E (ek,i ® Ctnyi ~ Chtn,i @ ek,i)'
k=1

Here, e%)i is the dual frame of ej ;. We note that

w

v,(eriers) .. wlu(eriean)

o I
= Jn = (In 0)'

Here I, is the n x n identity matrix. Once we showed such frames exist, then the transition functions obiously
take value in Sp(2n, C).

We now prove that such frames exist around any P € X. Let Up be an open neighborhood of P and (ey )™,
be a frame of E on Up. Since w is perfect, there exists a e (k # 1) such that w(ey, ex)|p # 0. We may shrink

Up so that w(eq, ex) does not take 0 in Up. We may also permute (ej)3™, so we can assume w(eq, e,4+1) does
n

Ui( 2n,i» 62n,i)

v, (eani,€1i) .. w

w

not take 0 in Up. Under this assumption, we construct a new frame (eﬁc)izl as
I
€1 = €1,
¢ L €1
n+1-— )
wler, ent1)

ey = er —w(ep, e q)el +wleg,e)el, (k: otherwise).
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By direct calculation, we can check w(e,e;, 1) =1 and w(e},e}) = w(ey, e, ;) = 0(k # 1,n+1). It is easy to
see that (e},)3", is actually a frame.
By the same argument as above for ej, we can assume that w(e), e, 5) does not take 0 in Up. We construct
a new frame (e, )2, as
e, =el,

" ’

6n—&-l T 6n+1a
Y
62 D 627
" 6/2
Cny2 = — 7 )
w(€s, €, 0)

1" " 1"

ey = e}, — w(el, e;;”)e;' + w(e, e5)e, 4ok : otherwise).

" 1" 1" "

By direct calculation, we can check w(e; e, ;) = 1(i = 1,2) and wle,,e;) = w(e;,enJri) =00 = 1,2,k #
1,2,n+ 1,n+ 2). Continuing this procedure, we finally obtain a frame (€)%, on Up such that

wlup(€r,e1) ... w|up(€1,€2,)
: : : = In-
wlup(€an,€1) ... w|up(€2n,€an)
We can construct such a frame around for arbitrary P € X. Hence we proved the claim. O

We set Sp(2n) := Sp(2n,C)NU(2n). Here U(2n) is the set of unitary matrices. Sp(2n) is a maximal compact
subgroup of Sp(2n, C).

Lemma 4.3.3. Let (E,0g,0,h) be a harmonic bundle of rank 2n on X and w be a symplectic structure of it.
Then the associated principal Sp(2n, C)-bundle Pg gpon,c)y admits a reductive flat connection V.

Proof. Since h is a pluri-harmonic metric, the connection Vj, = 9y +5E+9+9IL is a flat connection. Let {U;}ieca
and {(ex,)3%, }ica be the open cover and the frame which we constructed in Proposition 4.3.2. Let sp(2n,C) be
the Lie algebra of Sp(2n, C). To prove the claim, first, we show that the connection form of Vj, w.r.t (eg ;)" is
a sp(2n, C)-valued 1-form on U;. Once this is shown, since the transition functions of {(ex;)3™, }ica take value
in Sp(2n, C), we obtain a connection form on Pg gp(2,,c) and hence it induces a connection V. The flatness
of V follows from the flatness of Vj. Reductiveness of V follows from h: From Lemma 4.3.4, we know that h
defines a Sp(2n)-reduction of Pg gp(2n,c). Since V is flat, h induces a map fi, : X — Sp(2n,C)/Sp(2n). f is
harmonic since h is a pluri-harmonic metric. Reductiveness of V follows immediately.
Let A; be the connection form of V), w.r.t. (ek,i)%’gl. Let h; be a n x n matrix such that

hlu,(erise1i) .- hlu,(e1i,e2n.i)

hlu,(e2n,ire1:) .- hlu,(€2n,ie2n,i)
From the standard argument of the connections, we have

A = b7 0h; + 0y, + 0} lu, = hy Oh; + 0|y, + hi 6T

U M.

We show that A; takes value in sp(2n,C). First, we show that 0|y, takes value in sp(2n,C). Recall that the
local description of w w.r.t. (eg;)3", is Jy. Since w(f @ Id) = —w(Id ® 6) holds,

GT Uijn = _jne

U;

holds. Hence we showed it. L

We next prove h; takes value in Sp(2n,C). Once this is shown, then it is obvious that QL‘UQ: = h; 10T |y, hy
takes value in sp(2n, C). We also can show that h; '0h; takes value in it: Suppose h; takes value in Sp(2n, C).
Then we have the following
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Then we have

Wi = —=Fah; ' T,
hi = =Tn(hi )" T,
OhY Jnhi + bl J,0h; = 0.

Hence we have

0 = Onl Jhi + hT J,,0h;
= OhY T (=T (BT Tn) + (= Tnhi  Tn) TnOh
= ohy (hy )T T + Tnh; 'Oh;.

Since (h; *0h;)T = 0rT (h; )T, h;'0h; takes value in sp(2n,C). We now prove h; takes value in Sp(2n,C). Let
(e) )3~y be the dual frame of (e i)7™,, h" be the dual metric of h, and w” be the dual of w. Then the matrix

realizations of h" w.r.t to (e}éi)iil is (h; 1T, Since w is compatible with h we can use Lemma 4.3.1 and hence

we have
(h; " = TuhiT,
Hence we have
Tn = hl Tuhi.

This shows that h; takes value in Sp(2n,C). O

Let M (2n,C) be the set of 2n X 2n-matrix, p C M(2n, C) be the set of hermitian matrix, and p; C p be the
set of positive definite ones. As it is well known the standard exponential map

eXp:p = py

is a real analytic isomorphism. We set log := (exp)~!.

Although the following Lemma might be well known to experts, we give the proof for convenience.

Lemma 4.3.4. Let E be a complex vector bundle, h be a hermitian metric, and w be a smooth perfect skew-
symmetric structure. We assume h is compatible with w. Under this assumption, h defines a Sp(2n)-reduction

PE,Sp(2n) Of PE,Sp(2n,(C)'

Proof. In Proposition 4.3.2, we constructed an open cover {U; };ca and a family of frame { (e, ;)?" , }ica such that
its transition functions {gi;}: jea takes value in Sp(2n,C). We recall that {g;;}: jea constructs Pg gpian,c). To
prove h induces a Sp(2n)-reduction, it is enough to show that on each U;, h defines a function s; : U; — Sp(2n, C)
such that if U; NU; # 0

57 (2)gij(z)s;(x) € Sp(2n),x € U; N U;

holds. Actually, if we set g;; = 57 gijs;, then it is easy to check that {9i;}i.jen defines a principal Sp(2n)-bundle
which is a reduction of Pg gp2n,c)-

We now construct s;. Let h; be the matrix realization of h w.r.t. (ey;)i", as in Proposition 4.3.3. We
showed that h; takes value in Sp(2n,C). We set

logh;
S; 1= exp( Oi Z).

logh; makes sense since h; is a positive definite hermitian matrix. Since h; takes value in Sp(2n, C), logh; takes
value in sp(2n, C). Hence s; is a Sp(2n, C)-valued smooth function on U;.
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We next show that s; ! 9ij5; € U(n). We show this by direct calculation. Before going to the calculation we
note that if U; N U; # 0, then h; = gijhjgfj.

— T
-1 -1 T -1 -1
8; 9ijS; S8; 9ijSj = 8j9i5 S; 8; YijSj

— loghi loghi
= 8595 OXP\ T T JOXPL T Ty )9S

=505 Ny 9ijS;
1

= th; Sj

o S‘GXI)( _ lOgh]‘)eXp( _ loghj)s‘
- 7 9 9 J
=1,.

The first equation holds since h; is hermitian. Since s; is Sp(2n, C)-valued, si_lgijsj takes value in Sp(2n). The
claim is proved. O

Let i : Sp(2n, C) — GL(2n,C) be the standard representaion of C?".

Lemma 4.3.5. Let P — X be a principal Sp(2n, C)-bundle. Then the associated bundle E := P x* C?" admits
a smooth perfect skew-symmetric pairing w.

Proof. By the definition of E, we have an open covering {U; };ea of X and on each U;, we have a frame (e ;)27
of E such that the associated tranisition functions {g;;}; jea takes value in Sp(2n,C). We define a section w;
of EY ® EV|y, as
n
Wi 1= Z (% ® e)c/Jrn,i - e)c/+n,i ® e%,i)'
k=1
Here, ez’i is the dual frame of e ;. We note that

wi(ei,er) - wilel ezn,)
: . : = Jn.
wi(e2n,i7 61,i) cee wi(eZn,i; €2n,i)
Since the transition function {g;;}i jea takes value in Sp(2n,C), w;i|y,nu, = wj|v,nv, holds. Hence we can glue

them and construct a global section w of EV ® EV such that w|y, = w;. By the local description of w, it is a
smooth perfect skew-symmetric pairing. O

Lemma 4.3.6. Let P — X a principle Sp(2n, C)-bundle with a reductive flat connection V. Then we obtain a
harmonic bundle (E,0g,0,h) and it has a symplectic structure w.

Proof. By the previous proposition, we have a smooth bundle £ with a smooth perfect skew-symmetric pairing
w. Since V is a reductive a flat bundle, we have a 71 (X)-equivalent harmonic map f : X — Sp(2n,C)/Sp(2n).
f induces a hermitian metric h on E and by construction, it is compatible with w.

Let Dy be the flat bundle of FE induced by V. We have a decomposition Dy = Dy, + ¢ such that Dy, is a
metric connection and ¢ is self-adjoint w.r.t. h. Let 8 be the (1,0)-part of ¢. Since ¢ is self-adjoint we have
the decomposition ¢ = 0 + 9;2. As we recalled in the previous section, the reductiveness of V implies that
Dz’l o Dg’l =0 and D2’10 = 0. Hence (E, D?L’l, 0, h) is a harmonic bundle.

Next, we show that 6 is compatible with w. Let (ekﬂ-)zzl be the frame that we used in the last proposition,
and let A; be the connection matrix of Dy w.r.t. (e )", (i.e. Dy = d+ A; locally). Note that A; takes value
in sp(2n,C). We briefly recall how we obtain the decomposition Dy = Dy, + ¢. Let D9 (resp. D%1!) be the
(1,0) (resp. (0,1))-part of Dy. Let 60 (resp. d%!) be the (1,0) (resp. (0,1))-type of the differential operator
which makes D0 + §%! and D%! + §:% metric connections. Dj, and ¢ were defined as follows

D10 4 DOl 4 §1.0 4 §0,1 DLO 4 pO1 _ §1.0 _ 0.1
= QS P .

Dy : :
h 2 ’ 2
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We note that 61:° and 6%!do exsits and locally they are expressed as

§10 =9 — (APN] + hiton,,
§O1 =9 — (AX) + b 1on,.

Hence 0 has the form

CAPY — (ADPDE bt on,
_ : ,

Hence 6 takes value in sp(2n, C) and therefore it is compatible with w.
We next prove w is holomorphic and hence it is a symplectic structure of (F, Dg’l, 6,h). We have to show

0

Dg’lw = 0. By the construction of Dj, we have

DO1 4 §0.1

D0,1 _
h 2

Let B; be the connection matrix of Dg’l. From the local description of §%!, B; is a (0,1)-form which takes value
in sp(2n,C). Hence we have

DY'w =387, — BY J,, — J.B; = 0.

The first equality follows from the standard argument of connection (See [Ko], for example). Therefore we
proved the claim. O

Proof of Proposition 4.3.1. Lemma 4.3.2 and 4.3.3 gives a path from a harmonic bundle with a symplectic
structure to a principal Sp(2n, C)-bundle with a reductive flat connection. The inverse path is given by Lemma
4.3.5 and 4.3.6. O

4.4 Good filtered Higgs bundles and Good Wild Harmonic bunldes
4.4.1 Filtered sheaves

Let X be a complex manifold and H be a simple normal crossing hypersurface of X. Let H := J,., Hx be the
decomposition such that each H; is smooth.

Filtered sheaves

For any P € H, a holomorphic coordinate neighborhood (Up, z1, ..., 2,) around P is called admissible if Hp :=
HnUp = U{(:Pi){zi = 0}. For admissible coordinate neighborhood, we obtain a map pp : {1,...,I(P)} — A

such that Hp;(n NU, = {z = 0}. We also obtain a map rp : R* = R by kp(a) = (a,0), - . S Ap(PY))-
Let Ox (xH) be the sheaf of meromorphic function on X which may have poles along H. Let V be a torsion
free Ox(xH)-module. A filtered sheaf over V is defined to be a tuple of coherent Ox-submodules P,V C V

(a € R") such that

e P,ECPyEifa<b,ie a; <b; for any i € A.

Po€ @ Ox(xH) = & for any a € R™.

PatnE = Pa€ @ Ox (3 ;cp niH;) for any a € RA and for any n € ZA.

e For any a € R?, there exists € € R;‘O such that Py & = P,E.

For any P € H, let (Up,z1,...,%,) be an admissible coordinate of P. Then P,&|y, depends only on
kp(a) for any a € RA.
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For any coherent Ox (xH)-submodule & C £, we obtain a filtered sheaf P&’ over £ by P&’ =P, ENE. UV
is saturated, i.e. £ := £/’ is torsion-free, then we obtain a filtered sheaf P.E"” over £” by Po&” := Im(PE —
g//).

A morphism of filtered sheaves f : P.E1 — P& is a morphism of Ox (xH)-modules such that f(P,&1) C
P&, for any a € RA.

Let P.E be a flltered sheaf on X. For every open subset U C X, we can induce a filtered sheaf over |y
from P,E. We denote this filtered sheaf P.E|y. Conversely, let X = UZ-e A Ui be an open covering. Let P,V
be a filtered sheaf on U;. If P*&|UmUj = 7)*51‘|UmUj7 we have a unique filtered sheaf P.£ on X such that
P.Elu, = Pi&;. See [M3, Section 2.1.2] for details of this paragraph.

Filtered Higgs sheaves

Let € be a torsion-free coherent Oy (*H)-module. A Higgs field 0 : V — Q% ® V is a Ox-linear morphism
of sheaves such that § A 0 = 0. When V is equipped with a Higgs field, a sub-Higgs sheaf of V' is a coherent
Ox (xH)-submodule V' C V such that (V') C Q% ® V'. A pair of a filtered sheaf P,V over V and a Higgs field
0 of V is called a filtered Higgs bundle.

4.4.2 - stability condition for filtered Higgs sheaves

Throughout this section, we assume X to be a smooth projective variety, H = | J,., H; to be a normal crossing

divisor of it, and L to be an ample line bundle.

i€EA

Slope of filtered sheaves

Let P.& be a filtered sheaf on (X, H). We recall the definition of the first Chern class ¢;(P.&). Let a € RA.
Let 7; be a generic point on H;. The Ox ,,-module (P,E),, only depends on a; which we denote as Pg, (E,,).
We obtain a Oy, ,,-module Gr7, (&,,) == Pa,(Ey.)/ Y b <a; Poi(Eny). c1(PLE) is defined as

a(P.E)=c1(Pa€) =Y > a-rankGrl (&) - [Hi].

€N a;—1<a<a;

Here, [H;] € H?(X,R) is the cohomology class induced by H;.
The slope pr(P.E) of a filtered sheaf P.E with respect to L is defined as

pur(PLE) =

1 dimX —1
— /X 1 (PuE) - er(L) .

wr-stablity condition

Let (P.£,0) be a filtered Higgs bundle over (X, H). We say that (P.E,0) is ur-stable (resp. pr-semistable) if for
every sub Higgs sheaf & C & such that 0 < rankE’ < rank&, ur(PiE) < pp(P«E) (resp. pur(PE') < pur(PiE)
) holds.

We say that (P.&,0) is pp-polystable if the following two conditions are satisfied

o (P.E,0) is pur-semistable.
e We have a decomposition (P.E,0) = €, (P«E;, 0;) such that each (P.E&;, 0;) is pr-stable and pur (P.E) =
pr(P+&;) holds.
Canonical decomposition

Let (P.&1,01) and (P.&Es, 62) be filtered Higgs bundle on (X, H). We use the following result frequently without
mention.

Proposition 4.4.1 ([M2, Lemma 3.10]). Let (P.&;,0;)(i = 1,2) be ur-semistable reflexive satrated Higgs
sheaves such that pr(E1) = pr(E2). Assume either one of the following:
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o One of (P.&;,0;) is pup-stable and rank&; = rank& holds.
e Both (P.&;,0;) are py-stable.

If there is a non-trivial map f : (P«€1,01) = (Pu&a,02), then f is an isomorphism.
The following is straightforward from the above result.

Corollary 4.4.1. Let (P.£,0) be a pr-polystable reflexive satrated Higgs sheaves. Then there exists an unique
decomposition (P.&,0) = @,;(Ps&i,0;) @ C™9) such that (i) (P.&i,0;) are pur-stable, (ii) pr(Pe) = ur(P&:),
(iii) (P.&;,0:) % (P.&;,0;) (i # §). We call the decomposition (P.E,0) = @,(Ps&i,0;) ® C™) the canonical
decomposition.

4.4.3 Filtered bundles
Local case

Let U be an open neighborhood of 0 € C". Let Hy, :== U N {z; =0} and Hy := Ui:l Hy,. Let V be a locally
free Oy (*H)-module. A filtered bundle P,V is a family of locally free Op-modules P,V indexed by a € R! such
that

o PV C PV for a < b.

o There exists a frame (vy,...,v,) of V and tuples a(v;) € R (j =1,...,1) such that

oy = @oy(i[m - a<vj>]HUi>vj-

Here for ¢ € R, [¢] := max{a < c|a € Z}.

Hence locally, a filtered bundle is a filtered sheaf that is locally free and has a frame compatible with filtration.

Pullback of filtered bundles

We use the same notation as in the previous section. Let ¢ : C* — C™ be a map given by ¢(&1,...,&,) =
€8 Gy, 6n). Weset U := o~ 1(U) and Hyr; == ¢ ' (Hy,;). We denote the induced ramified
covering U’ — U as ¢.

For any b € R!, we set ¢*(b) = (m;b;) € R. Let P,V be a filtered bundle on (U, Hy;).

Global case

In this section, we assume X to be a complex manifold and H = |J;., H; to be a normal crossing divisor of it.
Let V be a locally free Ox (xH)-module. A filtered bundle P,V over V is a filtered sheaf over V such that it
is locally written as in Section 4.4.3. We give some examples of filtered bundles.
Let P,V and P,V, be filtered bundles. For P € H, we take an admiisble coordinate neighborhood
(Up, z1,. .., 2n) such that each and any P,V;|y, only depends on xp(a). We define filtered bundles P,(V1|v, ®
Valup), PiVilup @ PWalu, and Po(Hom(Vi|up, Valu,)) on Up as,

PaWilve © Valuy) 1 = PaVilup © PaValup,
PaWVilve @ Valvp) i = Y. PeVilup @ Pe,Valug,

c1+c2<a

Pa(Hom(V1|UP7V2‘UP)) = {f € Hom(V1|Up7V2|UP) | f(PbV1|Up) - f(Pa+bV2|UP)(Vb S RI(P))}.

Here a € R'P). We construct filtered bundles as above around for each P € H. After taking a suitable
covering of X, we can glue the filtered bundles and obtain unique filtered bundles P, (V1 @ Va), P.(V1 @ Vo)
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and P.(Hom(V1,Vs)) such that P.(V1 & Vo)|lu, = PcWVilup © Valup), Pe(V1 @ Vo)lup = PcVilup @ Valup)
and P, (Hom(V1,V2)|up) = Pu(Hom(Vilup, V2lu,)) holds for any P € H. We denote these filtered bundles
PV1 @ PV, P V1 ® PuVs and Hom(P V1, PVs).

Let P,V be a filtered bundle and let V' C V be a locally free sub Ox (xH )-module of rank)’ < rank). We
obtain a filtered bundle P.V’ (See section 4.4.1).

Remark 4.4.1. Let V', V" C V be locally free subsheaves. We note that even if V = V' @ V" holds, P,V =
PV @ PV does not always hold. Here P, V', P, V" is the induced filtration from P,V. We say that the P,V
s compatible with decomposition if P,V = P,V @ P.V"holds.

We give a very easy example of a filtered bundle that is not compatible with decomposition. Let U be an open
neighborhood of 0 € C. Let V := Oy (x0)e; ® Oy (x0)es. For every a € R, we set

PoV = Oy ([a]0)er @ Ou<[a + ﬂ 0)62.

We set V1 := Oy (x0)(e1 + e2) and Vs := Oy (x0)(e1 — ez). It is easy to see that ¥V = Vi & Vo holds. Let PV
and P,V be the induced filtered bundle. The decomposition V = V1 ® Vs is not compatible with filtration. For
example, take a = % Then

P}V = Oper @02,
P%Vl = Op(x0)(e1 +e2) N P%V = Oy(er + e2),
P%VQ = OU(*O)(@l — 62) n 'P%V = OU(el — 62).

Hence the decomposition is not compatible with the filtration. Obuviously, if we set Vi = Oy (x0)(e1) and
Vi = Oy (x0)(ez), then the decomposition is compatible with the filtration.

Let rank) = r and P,V be a filtered bundle over it. We obtain a filtered bundle P, V®" over V¥" as above.
We obtain a filtered bundle det(P,)) over detV C V®" by the canonical way.

We construct a filtered bundle over ”P,EO)(OX(*H)) over Ox(xH). Let P € H and (Up, 21,...,2,) be the
admissible coordinate of P. For a € R*, we define

1(P)

POOx (), = Ox ( Ylnta) it

i=1

here k(a); is the i-th component of x(a) and for a € R, [a] := max{n € Z|n < a}. We then glue the filtered
bundle above and obtain the filtered bundle P\ (Ox (+H)). Let P,V be a filtered bundle over V. We have a
filtered bundle P,V" := Hom(P.V, P\” (Ox (xH)).

Induced bundles and filtrations

We use the same notation as the previous section.

Let I C A be any subset and §; € R* be the element such that the j-th component is 0 if j € A\I and 1 if
je€A. Let Hy :=(),c; H; and OH := HI\(UZ‘eAHi)-

Let P,V be filtered bundle over (X, H). In this section, we introduce some subsheaves of P,V|x,(a € R}).
We use these subsheaves to define Chern characters for P,V in the next section.

Leti € A. Let @ € R* and for a; — 1 < b < a;, let a(b,i) := a+ (b—a;)d;. We want to introduce a filtration
on PoV|g,. First, we define ‘Fy(P,V|g,) as

Hi/,Pa(a,ﬂ,—l,i)V

This is a locally free Op,-module and it is a subbundle of P,V|y,. Hence *F, gives a increasing filtration on
PaV|H, indexed by (a; — 1, a;].

Fy(P.V

H;) = Pap,i)V

H;-
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For general I C A, we introduce a family of subbundle of P,V|g,. Let a; be the image of a of the natural
projection R* — R!. Let (a; — 1, a;] := [I;c;(ai —1,a;]. For any b € (ar — &7, as], we set

"Fy(PaVlny) = () 'Foi (PaVln,)-
i€l

From the local description of filtered bundles, for any P € Hj, there exists a neighborhood Xp of P in X and
a non-canonical decomposition

PVlxpnm, = € Gre

b€(a1761,a1]

such that the following holds for any ¢ € (a; — 81, aj]

"Fe(PaVIxpnn,) = P Gro-

b<c

Hence for any ¢ € (ay — 61, az], we obtain the following locally free Op,-modules:

TFe(PaVH,)
'Grf (PaV) = S
l“c( ) ZbchFb(Pasz)

Here (b;) = b < ¢ = (¢;) means that b; < ¢; for any i and b # ¢. We note that Gr% (P,V) forms a subbundle
of PgV|m, on the irreducible component of Hj.

First Chern class and Second Chern class for filtered bundles

We use the same notation as in the previous section.

In this section, we recall the definition of the first Chern class and the second Chern character for filtered
bundles. Let P,V be a filtered bundle over (X, H). In Section 4.4.2, we recalled the definition of the first Chren
class for filtered sheaves. Since filtered bundles are filtered sheaves, the first Chern class of filtered bundles is
defined as follows.

a(PV)=c(PaV) =Y Y b-rank'Gr) (PaVln,) - [Hi] € H*(X,R).

€N a;—1<b<a;

Let Irr(H; N H;) be the set of irreducible components of H; N H;. For C € Irr(H; N Hy), let [C] € H*(X,R)
be the induced cohomology class and let CGrfci)cj)(PaV) be the restriction of (i’j)Gr{c’i’cj)(PaV) to C. Let

- » H*(H;,R) — H*(X,R) be the Gysin map induced by ¢; : H; — X. The second Chern character for filtered
bundles is defined as follows.

chy(P.V) i=cha(PaV) = > > b-sis(cr(‘Grf (PaV

€N a;—1<b<a;

+ % Z Z b? - rank(‘Gry (P, V))[H;]?

i€AN a;—1<b<a;

Z Z Z i cjrankcGréi’C_j)(PaV) -[C].

1,j€A2 iz Celrr(H;NH;) a;—1<c;<a;,a;—1<c;<a;

H;)))

+

N

4.4.4 Prolongation of vector bundles

Let X be a complex manifold and H = U;cx H; be a normal crossing hypersurface. Let (E, dg) be a holomorphic
vector bundle over X\ H and h be a hermitian metric of E. We define a presheaf P?FE on X such that for

an open set U of X, P*E(U) is a set of holomorphic section of E on U which satisfies the following growing
condition along U N H:
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e Let P € H and (Up, z1,...,2,) be an admissible neighborhood of P such that Up C U. Let ¢ := rp(a).
A holomorphic section s of E on U is s € P?E(U) when s satisfies the following estimate on Up

sin < O TT )
=1

for any € € Ryg.

We denote the sheafification of 7% as PE. We obtain a Ox-module P*E and we obtain a Ox (*H)-module
PIE =, cpr PRE.

Definition 4.4.1. Let P,V be a filtered bundle over (X, H). Let (E,dg) be a holomorphic bundle obtained from
the restriction of V to X — H. Let h be a hermitian metric of E. h is called adapted if PP E = P,V stands.

We remark that in general, we do not know whether P*FE is locally free or not. However, it was proved in
[M3, Theorem 21.3.1] that when the metric h is acceptable and det(E, O, h) is flat, P*E is locally free. We say
that h is acceptable when the following condition holds:

e Let P € H and let (Up, 21,...,2,) be an admissible neighborhood of P. We regard as Up = []I"_{|2] <
1}. Let gp be a Poincaré like metric on Up\Up N H. The metric h is called acceptable around P when
the curvature of the Chern connection is bounded with respect to gp and h. h is called acceptable if it is
acceptable around any P € H.

4.4.5 Good filtered Higgs bundle

Throughout this section, we assume X to be a complex manifold and H = (J,c, H; to be a simple normal
crossing hypersurface of it.

Good set of Irregular values

Let P € H. Let (Up,z1,...,2,) be an admissible coordinate around P. We denote the stalk of Ox(xH) at
P as Ox(xH)p. Let f € Ox(xH)p. If Ox p, we set ord(f) = (0,...0) € RUP)If there exsits a g € Ox.p,

g(P)#0and amn € Zléé)) such that g = f ]z, ", we set ord(f) = n. Otherwise, ord(f) is not defined. Note
that when dimX = 1 and when f has at least a simple pole at P, then ord(f) is the usual order.

For any a € Ox(xH)p/Ox p, we take a lift a € Ox(xH)p. If ord(a) is defined, we set ord(a) := ord(a).
Otherwise ord(a) is not defined. ord(a) does not depend on the lift.

Let Zp C Ox(xH)p/Ox, p be finite subset. We say that Zp is called a good set of irregular values if

e ord(a) is defined for any ord(a) € Zp
e ord(a — b) is defined for any ord(a),ord(b) € Zp
e {ord(a—b)|a,b € Zp} is totally orded with respect to the order <zi(r).
Note that when dimX = 1, then any finite subset of Ox (xH)p/Ox p is a good set of irregular values.

Good filtered Higgs bundle

Let (P.V,0) be a filtered Higgs bundle. Let P € X and let Ox,ﬁ be the completion of the local ring Ox p with
respect to its maximal ideal.

We say that (P,V,0) is called unramifiedly good at P if there exisits a good set of irregular values Zp and
exsits a decomposition of Higgs bunlde

(PV,0) @0y 5= €P (PVa,ba)

a€lp

such that (0, — daldy, )PaVa C PaVe @ Q% (logH) for evey a € RA. Here a is the lift of a.

(PV,0) is called good at P if there exists a neighborhood Up and a covering map ¢p : Up — Up ramified
over H N Up such that ¢%(P,V,0) is unramified good at o' (P).

(P.V,0) is called good (resp. unramifiedly good) if it is good (resp. unramfiedly good) at any point of H.
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4.4.6 Good Wild Harmonic Bundles
Local condition for Higgs fields

Let U := I, {|z:| <1} and Hy, := U N {z = 0} and Hy := Ué:l Hy,. Let (E,dg,0) be a Higgs bundle on
U — Hy. The Higgs field 6 has an expression

l

i=1 7" i=l+1
Let T be a formal variable. We have characteristic polynomials
det(T — Fi(2)) = Y _ Ain(2)T*,det(T — Gi(2)) = Y Bin(2)T*
k k
where A; ;(z), B; k(%) are holomorphic functions on U — Hy.

Definition 4.4.2. We say that 0 is tame if A; x(2), B; x(2) are holomorphic functions on U and if the restriction
of Ai i to Hy, are constant for any j and k.

Definition 4.4.3.

o We say that 0 is unramfiedly good if there exists a good set of irreqular value Irr(6) C M (U, HU)/H(X)
and a decomposition

(E,9)= @ (Emea)

aclrr(6)

such that each 0, — da - Idg, is tame. Here @ is the lift of a.
e Fore € Zso, we define the covering map ¢ : U — U as ¢(z1,...,2n) = (21, 2], 21415+ - 2n). We say
that 0 is good if there exists a e € Z~qo and the pullback of (E,0g,0) by ¢ is unramifiedly good.
Global condition of Higgs fields and Good Wild Harmonic bundles

Let X be a complex manifold and H be a normal crossing hypersurface. Let (E,Jg,#) be a Higgs bundle on
X —H.

Definition 4.4.4.

o We say that 6 is (unramifiedly) good at P € H if it is (unramifiedly) good on an admissible coordinate
neighborhood of P.

o We say that 0 is (unramifiedly) good on (X, H) if it is (unramifiedly) good for any P € H.

We next recall good wild harmonic bundles. Let h be a pluri-harmonic metric of (E,dg, ) (i.e. (E,0g,0,h)
is a harmonic bundle on X — H).

Definition 4.4.5. We say that (E,0g,0,h) is a (unramifiedly) good wild harmonic bundle on (X, H) if 0 is
(unramifiedly) good on (X, H).

4.4.7 Kobayashi-Hitchin Correspondence

Let X be a connected smooth projective variety and H be a simple normal crossing divisor. Let L be any ample
line bundle.

In [M2, M3] Mochizuki proved that there is a one-on-one correspondence between pp-polystable good filtered
Higgs bundles with vanishing Chern classes and good wild harmonic bundles. This correspondence is called
Kobayashi-Hitchin Correspondence.

Proposition 4.4.2 ([M2, Proposition 13.6.1 and 13.6.4]). Let (E,0,h) be a good wild harmonic bundle on
(X, H).
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e (PIE,0) is pur-polystable with ur,(PPE) = 0.
e ¢i(P'"E) =0 and [, cha(P.V)cy (L)X =2 =0 holds.

e Let h' be another pluri-harmonic metric of (E,0,h) such that Pf/E = PrE. Then there exists a decom-
position of the Higgs bundle (E,0) = ®;(E;,0;) such that (i) the decomposition is orthogonal with respect
to both h and I, (ii) h|g, = a;h'|g, for some a; > 0.

Theorem 4.4.1 ([M3, Theorem 2.23.]). Let (P.V,0) be a good filtered Higgs bundle on (X, H) and (E,0g,0)
be the Higgs bundle on X\ H which is the restriction of (P.V,0).
Suppose that (P.V,0) is pr-polystable and satisfies the following vanishing condition:

(4.2) L (P.V) =0, / chy (P, V)er (L)Am¥ 2 —

X

Then there exists a pluri-harmonic metric h for (E,0g,0) such that (V, 0)|x\a =~ (E,0) extends to (P.V,0) ~
(PLE,0).

Remark 4.4.2. We note that Theorem 4.4.1 was proved not only for the Higgs bundles but for all A-flat bundles.
The A =1 case was established in [M2].

4.5 Good filtered Higgs bundles with skew-symmetric pairings

4.5.1 Pairings of filtered bundle

Throughout this section, we assume X to be a smooth projective variety and let H = J;c, H; be a normal
crossing divisor of it, and L to be an ample line bundle on X. However, we only use this assumption in Section
4.1.4. The results in other sections can generalized for any complex manifold and normal crossing hypersurfaces.

Pairings of locally free Ox (xH)-modules

Let Ox (xH) be the sheaf of meromorphic function on X whose poles are contained in H. We recall the pairings
of Ox (xH)-modules following [LM1].
Let V be a locally free Ox (+H)-module of finite rank. Let VY := Homo (i) (V, Ox (xH)) be the dual of V.

The determinant bundle of V is denoted by det(V) := A" V. There exists a natural isomorphism det(V") ~
det(V)V. For a morphism f : V; — Vs of locally free Ox (xH )-modules, we have the dual f¥ : VY — VY. If
rank(V;)=rank(V:), then we have the induced morphism det(f) : det(V1) — det(Vs).

A pairing P of a pair of locally free Ox (xH)-modules V; and Vs, is a morphism P : V; ® Vo — Ox(xD).
It induces a morphism ¥p : V; — VY by Up(u)(v) := P(u,v). Let ex : V1 ® Vo ~ V5 ® V; be the morphism
defined by ex(u ® v) = v ® u. We obtain a pairing Poex: Vo, ® Vi — Ox (xH). We have U}, = Upoey. If rank
Vi=rank V,, we obtain the induced pairing detP : det(V1) ® det(V2) — Ox (xH). We have det(¥p) = Wqeq(py-

A pairing P is called non-degenerate if ¥ p is an isomorphism. It is equivalent to that Poex is non-degenerate.
It is also equivalent to be detP is non-degenerate. If P is non-degenerate, we obtain a pairing PV of V) and
VY defined by Po (U5' @ Upeex).

A pairing P of locally free Ox(xH)-module V is a morphism P : V ® V — Ox(xH). It is called skew-
symmetric if Poex = —P. Note that det(P) is natural defined in this case. If P is non-degenerate, then rank: V
must be even and we have induced pairing PV of VV.

Pairings of filtered bundles

Let P.V; (i = 1,2) be a filtered bundle on (X, H). A pairing P of P.V; and P.Vs is a morphism between
filtered bunlde
PPV @ PV — PO (Ox(xH)).

We obtain a pairing P o ex of P, Vs and P, V.
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From the pairing P, we also obtain the following morphism
\I/p : P*Vl — 'P*Vg/
Definition 4.5.1. P is called perfect if the morphism Vp is an isomorphism of filtered bundles.

Let V! C V; be a locally free Ox («H)-submodules. We also assume V] are saturated i.e. V;/V/ are locally
free. From a pairing P of P,V; and P.Vs, we have the induced pairing P’ for P,V and P.V. We have a
sequence of sheaves:

Vi 5 v S )Y

where 47 is the canonical inclusion and i3 is the dual of the canonical inclusion. Note that ¥pr =iy o Up o 1.
Let Uy :=ker(iy o ¥p). It is a subsheaf of V;.

Lemma 4.5.1. If P and P’ are perfect, then we have the decomposition Vi = V] ® U, .
Proof. We have the following short exact sequence of sheaves:
0— V) —V — V/V] — 0.
Since P and P’ are non-degenerate, we have another short exact sequence of sheaves:
0—V, — WV, — U —0.

By the standard argument of sheaves, we have U; ~ V; /V]. Hence we have V; = V| & U;. O

Skew-symmetric pairings of filtered bundles
Let w be a skew-symmetric pairing of a filtered bundle P,V on (X, H). Let V' C V be a saturated locally free
Ox (xH)-submodule. Let (V')** be the kernel of the following composition:
v, Vi iV AV
V—=V"—V
where 7V is the dual of the canonical inclusion. Let w’ be the induced skew-symmetric pairing of P,)’. The

next Lemma is the special case of Lemma 4.5.1.

Lemma 4.5.2. Ifw and w' are perfect, then we have the decomposition V = V' @ (V')*<.

4.5.2 Skew-symmetric pairings of good filtered Higgs bundle

Throughout this section, we assume X to be a smooth projective variety and let H = |J;c, H; be a normal
crossing divisor of it, and L to be an ample line bundle on X.

Skew-symmetric pairings of Higgs bundle

Definition 4.5.2. A skew-symmetric pairing w on a good filtered Higgs bundle (P.V,0) over (X, H) is a skew-
symmetric pairing w of PV such that w(d @ Id) = —w(Id ® 0).

When (P,V, ) has a skew-symmetric pairing w, we have an induced morphism ¥, : (P,V,0) — (P, VY, —0")
between good filtered Higgs bundles. We also obtain a symmetric pairing det(w) of (det(P.V), trf).

Harmonic bundles with skew-symmetric structure

We use the same notation as the last section. Let (E, @;, 0, h) be a good wild harmonic bundle on (X, H). Let w
be a symplectic structure of the harmonic bundle (E, dg, 0, h). By Proposition 4.4.2, we obtain a ur-polystable
good filtered Higgs bundle (P E, #) with vanishing Chern classes.

Lemma 4.5.3. w induces a perfect skew-symmetric pairing for the Higgs bundle (P"E, ).
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Proof. Since w is compatible with A, it induces an isomorphism ¥, : P"E — va EV. Since va EVY is naturally
isomorphic to (P"E)Y, w induces a perfect pairing for P E. O

As a consequence, we have the following.

Proposition 4.5.1. Let (E,0p,0,h) be a good wild harmonic bundle equipped with symplectic structure w.
Then (PME,0) is a ur-polystable good filtered Higgs bundle equipped with a perfect skew-symmetric pairing w
and satisfies the vanishing condition (4.2).

4.5.3 Kobayashi-Hitchin correspondence with skew-symmetry

Throughout this section, we assume X to be a smooth projective variety and let H = J;c, H; be a normal
crossing divisor of it, and L to be an ample line bundle on X.

Basic polystable object (1)

Let (P.V,0) be a stable good filtered Higgs bundle of degree 0 such that (P.V,0) ~ (P, VY, —0Y). Let P be a
pairing of a filtered bundle

P:PYV®RPY - POOx(+H))

such that it induces an isomorphism ¥p : (P,V,0) — (P, VY, —0Y). If there is another pairing P’ which induces
an isomorphism W p,, then since a stable bundle is simple there exists an a € C such that P’ = aP.

Lemma 4.5.4. Either one of Poex = P or Poex = —P holds.

Proof. This was proved in [LM1, Lemma 3.19]. The claim follows from the fact that there exists a a € C such
that U), = aVUp, (U})Y = Up, Upoex = V). O

Let Cgi be a symmetric pairing of C! defined by C(zx,y) = > iy, for @y € Cl. Let wear be a skew-
symmetric pairing of C?* defined by wear (z, y) := Yo i(@2i-1Yy2i — T2;—1y2;). If Pi is a symmetric pairing then
Py @wcek is a skew-symmetric pairing for (E, ) @C2k. If Py is skew-symmetric then Py @ Ce is a skew-symmetric
pairing for (P.V,0) ® C..

Lemma 4.5.5. Suppose that (P.V,0) @ C! is equipped with a perfect skew-symmetric pairing w.

o If Py is symmetric, then 1 is an even number 2k and there exists an automorphism 1 for C* such that
(Id®7')*w = P1 ®WC2k.

o If Py is skew-symmetric then there exists an automorphism T for C! such that (Id ® 7)*w = P ® Cgr.

Proof. We only give the outline of the proof for the case when P is symmetric. The other case can be proved
similarly.

Let {e;}._; be the canonical base of C'. Since w is a perfect skew-symmetric pairing of (P.V,0) ® C!, it
induces an isomorphism ¥, : (P.V,0) ® C! — (P.VY,—0") ® C'. Let ¥y, ;; be the composition of

(PV.0) @ e; = (PV,0) @ C' 225 (P,VY,—0Y) @ C' 22 (PVY, —0Y) @ ¢;

where 7 is the inclusion and pr; is the projection. Either one ¥, ;; = 0 or ¥, ;; = a;; ¥ p, for a a;; € C holds.
Since w is a perfect pairing, (o;); ; is non-degenerate matrix and since w is skew-symmetric and P is symmetric,
(cij)i,; is a skew-symmetric matrix. Hence [ is an even number 2k and there is an automorphism 7 which we
want. O

Lemma 4.5.6. There is an unique harmonic metric ho on V|x,p such that (1) it is adapted to P,V and (2)
Up, is isometric with respect to hg and hy.

Proof. By Theorem 4.2.1, we have a harmonic metric h on V|x,p which is adapted to P.V. Let h" be the
induced harmonic metric of V¥|x\p by h, which is also adapted to P, VY. Since ¥p : (P.V,0) — (P.VY,—0")
is an isomorphism, ¥%(hY) is also a harmonic metric which is adapted to P,V. Since the adapted harmonic
metric for a stable Higgs bundle is unique up to positive constant, we have an a > 0 such that U5 (h") = a2h.
Set hg := ah then we obtain the desired metric. The uniqueness is clear. O
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Lemma 4.5.7.

e For any hermitian metric hei of C', hg ® het is a harmonic metric of VIx/p ® C! which is adapted to
P,V ® CL. Conversely, for any harmonic metric h on VIx/p ® C! which is adapted to P,V @ C!, there is
a hermitian metric he of Ct such that h = ho ® hei.

o If Py is symmetric (resp. skew-symmetric), a harmonic metric ho ® hei of V|x/p @ C! is compatible with
P, @ wer (resp. Py ® Ceu) if and only if het is compatible with wee (resp. Cgi).
Proof. The first claim follows from the uniqueness of the harmonic metric to a parabolic structure. See [M3,
Corollary 13.6.2].

The second claim follows from the following argument: Let F;(i = 1,2) be complex vector bundles and
hi(i = 1,2) be hermitian metrics for F;. Let P;(i = 1,2) be pairings for E; (i.e. P; is a section of EY ® E)’)
and ¥p, : E;, — EIV be the indued morphisms. Let hy ® hy be the hermitian metric of F; ® Fy induced
by h; and Py ® P> be the pairing of E; ® E5 induced by P;. Let u; ® v;(i = 1,2) be sections of E; ® Es.
h; ® ho and P; ® P, are defined as h; ® ha(u; ® v1,us ® va) = hy(ug, uz)ha(v1,vs) and Py @ Pa(u; @ v1,us ®
’U2) = P1(U1,U2)P2(1)1,’02). Hence \I/p1®p2 = \I/pl ® \I/p2 and (h1 ® hg)v(\llpl(g)pz (ul ® ’Ul)7 \Pp1®p2(U2 (9 ’02)) =
hY (U p, (u1), Up, (u2))hy (¥p,(v1), ¥p,(ve)) holds. Once we apply this discussion to hg ® her and Py @ wer or
P; ® Cet, the second claim follows. O

Basic polystable objects (2)

Let (P.V,0) be a stable good filtered Higgs bundle that satisfies the vanishing condition (4.2) and (P.V,0) i
(P.VY,—6Y). We set P,V :=P, V@ P,V and set 6 := 0 & —6". Then we obtain a Higgs bundle (P,V,6). W
have a naturally defined perfect skew-symmetric pairing of (P*V, 9),

Bpve : (PYV,0) @ (PYV,0) —» PO (Ox(xH))

such that &ep,y gy ((u1,vY), (u2,v5)) = vy (u2)—v5 (u1) for any local section (u1,vy'), (uz,vy) of P.YV. (P.V,0, Op,v.0))
forms a Higgs bundle with a perfect skew-symmetric pairing.

Lemma 4.5.8. Suppose ((’P V,0)® (Cll) ((77 VW, —0V)® (CZQ) 18 equipped with a perfect skew-symmetric pairing

w. Then we have Iy = ly and there exists an isomorphism (P.V,0) ® Clt ~ (P,V,0) @ Ch & (P, VY, —6Y) @ Cl

such that under the isomorphism, wp, v ) ® Cct, = w holds.

Proof. We have one-dimensional subspaces L1 C C'* and L, C C'2 such that the restriction of w to ((P.V,6) ®
Li) @ ((P.VY,—60") ® Ly) is not identically zero. We define W, 12 to be the composition of

(PuV,0) @ L1 — ((P.V,0) © Ly) @ (P.VY, —6Y) @ Ly)
Lo (PVY,=0Y) @ LY) @ ((P.V,0) @ LY) 23 (P.V,0) @ LY

where i and pry are the canonical inclusion and the canonical projection. We define W, 11,¥,, 21 and ¥, 22 in the
same manner. Since (P,V,0) # (P.VY,—60"), we obtain W, 11 = 0,V 90 = 0 and ¥, 12 = odd(p.y gy, Yo 21 =
Bld¢p,y,g) for some o, 8 € C. Since w is a skew-symmetric pairing, we have 8 = —a. Hence w = aw(p,y g)-
In particular the restriction of w to ((P.V,6) @ L1) @ ((P«VY,—0") @ Ls) induces a perfect skew-symmetric
pairing on it. Hence we obtain an orthonormal decomposition with respect to w:

(PV@CH @ (P.V ®@CR2) = (P.V® L)@ (PVY @ L) @ PV,

It is preserved by the Higgs field and the induced Higgs field to P,)’ is isomorphic to ((P*V,H) ® (Cll_l) &)
(P.VY,—6Y) @ C'271). We obtain the claim by induction. O

By using Cgt, we can identify C! and it’s dual (C')Y. Then we can induce a perfect skew-symmetric pairing
w(p*vﬁ) ® Cri on
(P.V,0) @ C = (P.V,0) @ C) @ (P.VY,—6Y) @ (CH)Y)
by the canonical way.
We obtain the induced harmonic metric hg on VY|x,p which is adapted to P, VY.

76



Lemma 4.5.9.

o Let hei be any hermitian metric on C'. Let hi. denote the induced hermitian metric on (CHV. Then,
(ho®@het) @ (b @ h,) is a harmonic metric of (P.V,0)®C! such that it is compatible with &(p,y g @ Cgr.

o (Conversely, let h be any harmonic metric of (73*)7, (3) ® C! which is compatible with Wp,v,0) @ Cei. Then
there exists a hermitian metric her of C' such that h = (ho @ het) @ (hy @ hiy).

Proof. The compatibility of (ho ®hct) ® (hy @ h,) with Gep, v ) ® Cer follows from the argument in the second
claim of Lemma 4.5.7. The second claim follows from [LM1, Lemma 3.25]. O

Polystable objects

Let (P.V, 0) be a polystable good filtered Higgs bundle of degree 0 on X equipped with a perfect skew-symmetric
pairing w. Let
(P.V,6) =Y (P.Vi,6;) @ C")

K2

be the canonical decomposition. Since the perfect skew-symmetric pairing w induces an isomorophism (P, V), 6) ~
(P, VY, —6Y), each (P,V;,6;) ®C™ is a basic polystable object we observed above. Hence the next proposition
is deduced from previous sections.

Proposition 4.5.2. There exist stable Higgs bundles (P*V-(O), 050)) (i=1,...,p(0)), (P*V-(l), 051)) (i=1,...,p(1))

K2 K2

and (P.V,02) (i = 1,...,p(2)) of degree 0 on X such that the following holds,
. (P*VZ,(O)ﬁZ(O)) is equipped with a symmetric pairing pi(O).
° (’P*Vi(l)ﬁl(l)) 18 equipped with a skew-symmetric pairing ‘Pi(l)-
o PV, 2 P, D)

o There exists positive integers l(a,i) and an isomorphism

p(0) p(1)
(PV,0) ~ @(P*Vi(0)7 91(0)) ® C210:0) g @(P*Vi(l), 951)) & CLLD)
i=1 i=1
p(2)

® @ (((P*VZ-(Q),GEZ)) ® (Cl(Z,i)) ® ((p*vz_@)’ _91(2))\/ ® (Cl(Z,i))V))_
=1

Under this isomorphism, w is identified with the direct sum ofPi(O)@)wsz(o,i) , Pi(1)®CCl(1,i) and G(E_(z) 0@)@
C(CI,(?,i,) ' '

o (PY0) # (PVI,00") (6 # ) for a=0.1,2, and (P.V,617) 2 PV, ~6)" for any i, j.
Proof. 1t follows from Lemma 4.5.5 and Lemma 4.5.8. O

a))\X\D such that (i) A'” is adapted to

?

Let A\ (a = 0,1) be the unique harmonic metrics of (V\*), 6!
Vo007, (1 (a) 18 1somoteric with respect to h; 7 an ; . Let ¢ any harmonic metrics o
) Vz(a) ez(a) . ‘llpv .. . ith hEa) d hga) VoL h(2) b h . . f

(VP 0@ ¢\ p which is adapted to (P.V,0/?).

?

Proposition 4.5.3. There exists a harmonic metric h of (V,0)|x\p such that (i) h is adapted to P,V, (ii) it
is compatible with w. Moreover, we have the following.

7



o Let hezio) be a hermitian metric of C209) compatible with wezi0, - Let heiaiy be a hermitian metric of
(eUEH) compatible with Ccia,iy. Let houeiy be any hermitian metric on (eUtIDN Then,

p(0) p(1) p(2)
(4.3) P 1 @ hezon & P Y @ hean & <((h§-2> ® heen) @ (W)Y @ (hcum)v)>
=1 =1 =1

is a harmonic metric which satisfies the condition (i), (ii).

o Conversely, if h is a harmonic metric of (V,0)|x\p which satisfies the condition (i) and (ii), then it has
the form of (4.3).
Proof. The first claim follows from Proposition 4.5.2. The second claim follows from Lemma 4.5.7 and Lemma

4.5.9. O

An equivalence

In this section, we state the Kobayashi-Hitchin correspondence with skew symmetry. Let (E, g, 6, h) be a good
wild harmonic bundle with symplectic structure w. From section 4.5.2, we obtain a good filtered Higgs bundle
(PM'E, 0) satisfying the vanishing condition (4.2) equipped with a perfect skew-symmetric pairing. From section
4.5.3, we also have the converse. As a result, we have the following.

Theorem 4.5.1. Let X be a smooth projective variety and H be a normal crossing divisor of X.
The following objects are equivalent on (X, H)

o Good wild harmonic bundles with a symplectic structure.

e Good filtered polystable Higgs bundles with a perfect skew-symmetric pairing satisfying the vanishing con-
dition (4.2).

Proof. In section 4.5.2, we proved that from a good wild harmonic bundle with a symplectic structure we obtain
a good filtered Higgs bundle satisfying the vanishing condition (4.2) equipped with a perfect skew-symmetric
pairing. We have the opposite side from section 4.5.3. O

The compact case is straightforward from Theorem 4.5.1. However, for the compact case, we do not have
to assume X to be projective. In particular, the statement holds for arbitrary Kéhler manifolds.

Corollary 4.5.1. Let X be a compact Kidhler manifold. The following objects are equivalent on X .
e Harmonic bundles with a symplectic structure.

e Polystable Higgs bundles with vanishing Chern classes with a perfect skew-symmetric pairing.
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