

Title	Magnetotransport characteristics and surface effects on fabrication in strained Germanium two-dimensional hole gases
Author(s)	Gulak Maia, Gabriel
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103237
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Gabriel Gulak Maia)

Title	Magnetotransport characteristics and surface effects on fabrication in strained Germanium two-dimensional hole gases (歪みゲルマニウム二次元正孔ガスにおける磁気輸送特性と製造時の表面効果)
<p>Abstract of Thesis</p> <p>Since the theoretical proposals for quantum computers, and the development of quantum algorithms, which emphasised the superiority of such system over their classical counterparts, many candidates for <u>qubits</u> have been proposed, with no universally accepted platform being yet selected. A strong candidate are semiconductor spin <u>qubits</u>, in particular, Ge based quantum dots. Ge presents several advantages, such as strong spin-orbit coupling, fast hole mobility, the possibility for nuclear spin-free isotopic engineering of <u>heterostructures</u> (which improves <u>decoherence</u> times), and a <u>bandgap</u> which lies inside the bandwidth used in telecommunications. This makes Ge quantum well systems specially well-suited as a platform to bridge quantum processing (solid-state <u>qubits</u>) and quantum communication (<u>photonic qubits</u>).</p> <p>The present works addresses micro-fabrication challenges arising from Ge/SiGe <u>heterostructures</u>, and the characterisation of electronic transport under light irradiation. While Ge was at the inception of solid state electronics as we understand it today, with the first point-contact transistor being made out it, it was soon replaced in the industry by Si, due to the higher quality of its native oxide and its natural abundance. As a consequence, while fabrication techniques for Si became well-developed and optimised, such techniques are not all directly transferable to Ge. Ge native oxides are hygroscopic and thermally unstable, forming at normal laboratory conditions, which can compromise the quality of ohmic metal diffusion, and the overall quality of devices. With this concern, we have investigated different acid cleaning protocols and their effect on samples' surfaces. The recipes were based on different concentrations and dipping time on Hydrofluoric acid, with a 10% aqueous solution being the most efficient overall in removing oxides. This, however, comes at a price as this solution is more aggressive on the surface, possibly increasing its roughness, which is also an important aspect to be controlled for proper metal diffusion in the samples.</p> <p>We have also investigated the effect of light irradiation on Hall bar transport measurements. While many devices performed poorly due to gate leakages and high resistance contacts, revealing a very low yield, a few devices were in good conditions enough to allow us to investigate the effect of light irradiation on Hall effect and <u>Shubnikov-de Haas</u> oscillations. Overall, the light experiments show a possible photo-excitation of <u>interfacial</u> trap states, which saturate carrier concentration and mobility after initial irradiation, leading to seemingly stable transport characteristics Ge quantum wells themselves; an interesting result for irradiated quantum dot implementations, indicating a robustness of their characteristics under illumination.</p>	

論文審査の結果の要旨及び担当者

氏名 (Gabriel Gulak Maia)		
論文審査担当者	(職)	氏名
	主査 教授	大岩 順
	副査 教授	松野 丈夫
	副査 教授	越野 幹人
	副査 教授	新見 康洋
	副査 准教授	藤田 高史

論文審査の結果の要旨

半導体量子ドット中のスピニンは半導体産業技術との親和性の高さから大規模集積化が期待され、量子コンピュータの有力な候補である。現在は Si 量子ビットが主流であるが、近年、歪み Ge/SiGe 量子井戸に形成されるゲルマニウム正孔量子ビットが、長いコヒーレンス時間や、強いスピニン軌道相互作用による高速スピニン操作など、高い性能が報告され注目を集めている。さらにバンドギャップが通信波長域にあるという Ge 特有の性質から、量子ネットワークにおいて必要な量子メモリを担う光子偏光—正孔スピニン量子状態変換にも有望な材料系である。

しかし、こうした高い可能性の裏で、これまで Ge 正孔量子ビットの報告はデルフト工科大学にほぼ限られており、その一因は、再現性があり安定して動作する Ge 量子ドットの作製プロセスがまだ広く確立されていないことである。また光子偏光—正孔スピニン量子状態変換の研究では、GaAs 量子ドットで先行研究が報告されているが、GaAs/AlGaAs 特有の複合欠陥 DX 中心による永続的光伝導が光照射下の量子ビットの安定性動作を妨げる要因の一つとされている。一方で、Ge/SiGe 量子井戸での永続的光伝導についてはまだ十分な研究がなされていない。

Gulak Maia 氏は、歪み Ge/SiGe 量子井戸デバイスのデバイス作製プロセスの中でも重要なオーミック電極形成について、オーミック電極金属の均一な拡散を妨げる可能性がある表面酸化物と平坦性を調べ、最適なプロセスの選択を行った。表面 Si キャップ層を反応性イオンエッチングまたは HF 系ウェットエッチングで除去し、Ge 系プロセスで報告がある 4 種の HF 系エッチング液によるクリーニングを行った後の SiGe 表面の GeO₂ や SiO₂ の残留物を X 線光電子分光により比較した。いずれの表面洗浄法でも、完全ではないがこれらの酸化物の除去が確認された。さらに原子間力顕微鏡による平坦性の比較では、エッチング法によらず表面 SiO₂ 層を除去後、平坦性が悪くなることが明らかになった。クリーニングでは比較的緩やかと思われる 2%HF+過酸化水素混合液が酸化物除と平坦性で、比較的良い結果を与えることを示した。

また Gulak Maia 氏は歪 Ge 量子井戸における永続的光伝導を調査した。Ge の直接遷移を起こす波長の光照射下での磁気輸送特性の測定から、光を切った後も、5%程度の正孔濃度の増加が残ることを明らかにした。この増加は長時間光照射を行うと飽和する傾向も観測された。このキャリア濃度の相対変化は大きくないがその原因にはゲート絶縁膜との界面準位や半導体中の捕捉中心などがかかわっている可能性があり、起源の解明や永続的キャリア蓄積の低減には分光学的な手法による関与する状態の同定やプロセスの改善が必要であることを指摘した。

本研究では、Ge 量子ドット作製プロセスにおいて、X 線分光による残留物と平坦性のプロセス依存性を調べるという、従来の量子ドット分野にはなかった解析法の有効性を示した。また永続的光伝導の結果は、光照射下で安定した Ge 量子ドットを実現し、光子偏光—正孔スピニン量子状態変換の研究やより高度な量子技術への応用を進める足掛かりになる成果である。

よって、本論文は博士（理学）の学位論文として価値のあるものと認める。