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Preface

The present work is a small contribution to the vibrant and ever­expanding field of

Solid State Physics. While it may arguably rest entirely within this field, it certainly

does so while gazing at the field of Quantum Computation. The idea of quantum

computers has been talked about since the second half of the last century and has

become an independent and enthralling topic in itself in recent decades – fruitful

both theoretically and experimentally. Nevertheless, as it is evident to anyone who

dedicates their time to understanding Nature, no field stands alone. We categorise

and simplify ideas, put them in different boxes for easier accessibility and smoother

pedagogy, but such demarcations eventually become blurred and advancements

towards a particular direction come to demand a variety of knowledge from multiple

domains. This is, I believe, beautifully exemplified in the development of quantum

computers and networks. Theoretical ideas in QuantumMechanics were followed by

suggestions on practical implementations which required knowledge on Chemistry,

Thermodynamics, Electrical Engineering, and beyond. Some enterprises are simply

too vast for a single field to tackle and the scientific effort must be distributed

accordingly.

This thesis was born from such a realisation. From the difficulties that arose

by approaching Ge/SiGe quantum devices fabrication in too broad a fashion. The

similarities between Ge and Si have led, in the past, to attempts at transferring

techniques employed in Si devices to their Ge counterparts. The idiosyncrasies of

Ge, however, made this translation less feasible than one would have hoped. While

Ge/SiGe devices have been experimentally achieved by a few research groups, many

still struggle to master fabrication protocols, improve quality and yield. An obstacle

to be overcome, particularly now, living as we are, in a period of revived interest

in Ge. After all, although Ge inaugurated the field of semiconductor Physics, it

was swiftly replaced in practical applications by Si and in go­to proof of concepts

material by GaAs.

This challenge was certainly present in my own experience. I have initially,

perhaps unwisely, tried to brute force my way through fabrication. Refining each

new batch as a whole instead of understanding and optimising each fabrication step

individually. In hindsight, this was an important aspect of the development of my

mind as a researcher.

This thesis’ focus is on Ge quantum wells. It investigates how the particularities

of such heterostructures are affected by different chemical cleaning processes in

order to produce clean and smooth interfaces. It also looks at how Ge quantum

well structures, made into Hall bar devices, respond to interaction with light. This

is a particularly important consideration as GaAs, for example, displays persistent

photoconductivity phenomena, which makes it harder to operate in this context,

while similar evaluations on Ge/SiGe heterostructures are not, to the best of our

knowledge, yet discussed in the literature.

This thesis has a somewhat dense introduction, laying out the foundations and
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the context for the interest in Ge devices. This is, of course, a deliberate choice as the

thesis was written with accessibility and the struggles of young student­researchers

in mind.

I would like to express my gratitude for the support of Dr Akira Oiwa during

my time in his group, as well as for the support and helpful discussions with many

students and researchers, from our group and others. These are, I’m afraid, too

numerous to list and making any sort of selection would be committing an injustice

to the rest. There are, however, people I would like to thank on a more personal basis.

The friendship of Safnan Muhammad Mardhatillah, Alastair Grace Erfe and Nour

Khalil was a safe haven during this challenging period. I am especially grateful to Dr

Atika Nurani, for the stimulating intellectual exchanges and for the continuous and

generous emotional support which proved to be an essential part of this journey. Just

as no field stands alone, Science itself is not made in a vacuum, separated from other

aspects of life. The foundation these individuals provided helped me push myself

towards my scientific contribution. However small it may be, its shortcomings are

mine alone. The support they gave me was immeasurable.

GABRIEL GULAK MAIA

Minoh
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Abstract

Since the theoretical proposals for quantum computers, and the development of

quantum algorithms, which emphasised the superiority of such system over their

classical counterparts, many candidates for qubits have been proposed, with no uni­

versally accepted platform being yet selected. A strong candidate are semiconductor

spin qubits, in particular, Ge based quantum dots. Ge presents several advantages,

such as strong spin­orbit coupling, fast hole mobility, the possibility for nuclear

spin­free isotopic engineering of heterostructures (which improves decoherence

times), and a bandgap which lies inside the bandwidth used in telecommunications.

This makes Ge quantum well systems specially well­suited as a platform to bridge

quantum processing (solid­state qubits) and quantum communication (photonic

qubits). Efficient quantum networks, however, require also photo­spin platforms

that are stable under light irradiation, free of phenomena such as persistent photocon­

ductivity. Before the implementation of Ge devices as Poincaré interfaces, however,

fabrication recipes must be optimised. While Ge devices have been successfully

fabricated by a few groups, there is still a lack of detailed accounts of the physical

and chemical processes taken during micro­fabrication and many groups struggle

with low yield, gate leakages and similar issues.

The present work addresses both micro­fabrication challenges arising from

Ge/SiGe heterostructures, and the characterisation of electronic transport with light

irradiation. While Ge was at the inception of solid state electronics as we understand

it today, with the first point­contact transistor being made out it, it was soon replaced

in the industry by Si, due to the higher quality of its native oxide and its natural

abundance. As a consequence, while fabrication techniques for Si became well­

developed and optimised, such techniques are not all directly transferable to Ge. Ge

native oxides are hygroscopic and thermally unstable, forming at normal laboratory

conditions, which can compromise the quality of ohmic metal diffusion, and the

overall quality of devices. With this concern, we have investigated different acid

cleaning protocols and their effect on samples’ surfaces. The recipes were based on

different concentrations and dipping time on Hydrofluoric acid, with a 2 minutes

dip in 10% aqueous solution, a standard recipe, being the most damaging to surface

smoothness. While the cleaning power of all the recipes has been shown to be

similar by surface composition analysis via XPS, more gentle approaches, with

reduced concentrations (2%) and shorter dipping times proved to be a balanced

choice between cleanliness and smoothness. This is an important step as native

oxides and organic contaminants can prevent ohmic metals diffusion, compromising

device quality. Smoothness, on the other hand, is an important aspect to consider for

uniform metal diffusion, as well as for avoiding leakage pathways.

We have also investigated the effect of light irradiation on Hall bar transport

measurements. While many devices performed poorly due to gate leakages and high

resistance contacts, revealing a very low yield, a few devices were in good conditions

enough to allow us to investigate the effect of light irradiation on Hall effect and
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Shubnikov­de Haas oscillations. Overall, the light experiments show a possible

photo­excitation of interfacial trap states, which saturate carrier concentration and

mobility after initial irradiation, leading to seemingly stable transport characteristics

Ge quantum wells themselves; an interesting result for irradiated quantum dot

implementations, indicating a robustness of their characteristics under illumination.



Contents

Contents vii

List of Figures viii

1 Introduction 1

1.1 Classical computation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Classical networks . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Quantum networks . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Germanium systems 31

2.1 Material choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Persistent photo­conductivity . . . . . . . . . . . . . . . . 33

2.2 Material properties of Germanium . . . . . . . . . . . . . . . . . 34

2.3 Spin­orbit coupling and g­factor tunability . . . . . . . . . . . . . 37

2.4 Fundamentals of quantum wells . . . . . . . . . . . . . . . . . . 41

2.5 Photo­spin conversion mechanisms . . . . . . . . . . . . . . . . . 42

2.6 Ge quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Germanium devices fabrication 55

3.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Standard fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Recipe summary . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Compositional and surface morphology analysis for different etching

and cleaning recipes . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Etching and cleaning . . . . . . . . . . . . . . . . . . . . 66

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Transport characterisation 75

4.1 Classical transport . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Quantum transport . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Shubnikov­de Haas oscillations . . . . . . . . . . . . . . 77

4.2.2 The Lifshitz­Kosevich formula . . . . . . . . . . . . . . . 80

vii



4.2.3 Quantum Hall effect . . . . . . . . . . . . . . . . . . . . 81

4.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Sample B: Doped sample . . . . . . . . . . . . . . . . . . 83

4.3.2 Sample A: light irradiation (1.55 um) . . . . . . . . . . . 86

4.3.3 Sample C: light irradiation (1.3 um) . . . . . . . . . . . . 89

5 Conclusions 91

5.1 Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 95

List of Figures

1.1 The first Ge transistor . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 MOSFET schematics . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Logic gates from MOSFET . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Moore’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Ge crystal lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 sp3 hybridisation in Ge . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Ge bandstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Quantum well types . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Molecular Beam Epitaxy grown Ge/SiGe heterostructures . . . . . . . 56

3.2 Chemical Vapour Deposition grown Ge/SiGe heterostructure . . . . . 57

3.3 Hall bar design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Position markers deposition process . . . . . . . . . . . . . . . . . . 59

3.5 Finished position marker . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Etching process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Rate comparison between RIE and chemical etching . . . . . . . . . . 62

3.8 Etched wall angle comparison between RIE and chemical etching . . 63

3.9 Chemical etching trenching . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Ge XPS tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.11 Si XPS tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.12 Contaminants­to­Ge ratio . . . . . . . . . . . . . . . . . . . . . . . . 68

3.13 Contaminants­to­Si ratio . . . . . . . . . . . . . . . . . . . . . . . . 68

3.14 O2 XPS tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.15 C XPS tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.16 Pre­treatment AFM imaging . . . . . . . . . . . . . . . . . . . . . . 71

viii



LIST OF FIGURES ix

3.17 Post­treatment AFM imaging for wet etched samples . . . . . . . . . 72

3.18 Post­treatment AFM imaging for plasma etched samples . . . . . . . 73

4.1 Shubnikov­de Haas oscillations and quantum Hall effect curves . . . . 84

4.2 Shubnikov­de Haas oscillations analysis . . . . . . . . . . . . . . . . 85

4.3 Lifshitz­Kosevich fit . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Doped sample’s Shubnikov­de Haas oscillations under light irradiation 87

4.5 Charge carrier concentration and carrier mobility as a function of irradi­

ation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Undoped sample Shubnikov­de Haas oscillations under light irradiation 89

4.7 Undoped sample’s transport characteristics under illumination . . . . 90

4.8 Charge carrier concentration as a function of irradiation time . . . . . 90



Colophon

This document was typeset using the XeLaTeX typesetting system created by

Jonathan Kew and distributed under the X11 free software license (MIT/X Consor­

tium License) and the memoir class created by Peter R. Wilson. Drawings were

typeset using the PSTricks package by Timothy Van Zandt. Editing and compiling

were performed with the Texmaker freeware by Pascal Brachet.



1
Introduction

1.1 Classical computation
Machine assisted computation has a longer history than one may assume. The

principle of rotation transfer between gears with different amounts of teeth was

used over two millennia ago in devices such as the Antikythera mechanism [1, 2],

an astronomical calculating machine, as well as in the famous Pascaline [3], the

addition/subtraction machine devised by French philosopher Blaise Pascal, and in

its improved version, which was also capable of multiplication and division, the

Stepped Reckoner, created by German thinker Gottfried Leibniz [4]. Other methods

have also been employed, such as a combination of Hydraulics and Mechanics in

the Castle Clock, a time­keeping/automaton created by Mesopotamian polymath

Ismail al­Jazari [5].

The early 19th century is, however, the beginning of the era most people would

associate with the birth of computation in our modern understanding of the word,

with designs such as the Differential and the Analytical Engines, both conceptualised

by English polymath Charles Babbage, being the latter one a fully programmable

machine [6]. By the late 19th and early 20th centuries, the history of computation

becomes increasingly complex. Machines operating on different principles and

different combinations of principles were being developed simultaneously, making

it difficult to trace a clear line of technological development. In the first decades of

the last century there were computers based on continuous variables such as shaft

rotation angles (e.g. the Differential Analyser [7]) or currents and voltages (e.g. the

EAI 680 [8]), as well as early binary computing systems such as the Atanasoff–Berry

Computer [9], which used vacuum tubes to implement binary logic via current/no­

current states ­ a foundational principle to the logic gates used in modern computers.

In the 1950s, even al­Jazari’s seemingly exotic approach to computation, using

Hydraulics, made a comeback in the form of theMoniac, a computer designed to

simulate economic systems [10].

Both approaches had their merits and demerits. Analogue computation was made

in real time and was particularly well suited for modelling differential equations, but

was prone to noise and was much less flexible than their digital counterparts. The

binary systems were, on the other hand, robust to noise (as one can make a 0­state as

distant from a 1­state as needed to suppress error introduced by value fluctuations),

1
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but required a discretisation of continuous problems, introducing a resolution issue

in modelling the real world. While discretisation posed a non­trivial challenge,

improvements in memory size and processing speed allowed digital computers to

achieve resolutions sufficient for most practical applications. They were also more

scalable and capable of running different programs, while analogue computers were

hard­wired into solving specific problems. Even though analogue computation is

still used in very niche fields today [11, 12], the last decades of the 20th century saw

digital computation become the norm, in part aided by a technology developed over

30 years before: the transistor.

In 1947, U.S.­American physicists John Bardeen andWalter Brattain constructed

at Bell Laboratories their first working point­contact transistor (PCT) [13]. Their

device consisted of a slab of n­doped Germanium (Ge) mounted on top of a metallic

base plate functioning as an electrical terminal. On top of the Ge slab, metal contacts

placed on opposite sides of a plastic wedge were pressed against the semiconductor

by a spring connected to the wedge, see Figure 1.1. These contacts were referred to

as the emitter and the collector and were kept at fixed distances from one another.

Their voltages were set relative to the base, closing the circuit. In an accompanying

letter published on the same issue of Physical Review as their experimental report,

Bardeen and Brattain theorised that a thin, localised, p­doped layer was formed on

the surface of the Ge, creating a pn­junction, which was crucial for the working of

the device [14]. A forward bias applied between the emitter and the base allowed

current to flow across the pn­junction via hole injection. Meanwhile, a reverse bias

was applied between the collector and the base, which should, ordinarily, block the

passage of current. Due to the proximity of the contacts, however, holes injected by

the emitter were captured by the collector, allowing signal to pass across the device.

Furthermore, they observed that by suitably changing the bias of the emitter and

the collector relative to the base, an amplification of the signal was possible: small

variations of the emitter current generated larger variations of the collector current.

At the opening of their original 1948 paper they already hint at the implications of

their discovery for computation:

A Three­element electronic device which utilizes a newly discovered

principle involving a semiconductor as the basic element is described.

It may be employed as an amplifier, oscillator, and for other purposes

for which vacuum tubes are ordinarily used.

In the following year, the also U.S.­American physicist William Shockley, also

at Bell Laboratories, built upon the achievement of his colleagues by developing

a detailed theory of pn­junctions and conceptualising the first bipolar pn­junction

transistor (BJT) [15]. His concept had an extremely thin n­doped Ge (nGe) layer

at the centre, sandwiched between two p­doped regions connected to metallic con­

tacts. The thinness of the central layer improved carrier transport by minimising

recombinations along the way. The base (the third electrode) was placed in direct
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Figure 1.1: The first Ge transistor: The first Ge point­contact­transistor experi­

mental apparatus (left) and its schematic representation (right).

contact with the nGe and transport was realised by minority carrier conduction across

the junctions. In 1951 Shockley, together with U.S.­American physical chemists

Morgan Sparks and Gordon Teal, constructed the first operating BJT device based

on Shockley’s idea [16].

In the late 1920s and early 1930s, however, an alternative theoretical approach

to the development of current­control devices had been independently proposed by

Austrian­Hungarian physicist Julius Edgar Lilienfeld [17] and German electrical

engineer Oskar Heil [18]. Their idea, which came later to be known as field­effect

transistors (FET), would, once experimentally realised for the first time in 1959

by Egyptian engineer Mohamed Atalla and Korean engineer Dawon Kahng [19],

power the last major development in modern classical computing. Atalla and Kahng

created the first MOSFET, which stands forMetal­Oxide­Semiconductor Field Effect

Transistor, the technology still used in CPUs today.

A MOSFET consists of a lightly p(n)­doped semiconductor body with two

heavily n(p)­doped regions. The two heavily doped regions are connected to metal

electrodes and an oxide layer with a metal gate above it bridges both of these regions.

They are known as the source and the drain, see Figure 1.2. The source is also

connected to a body terminal which keeps them both at the same potential and

prevents leakage currents from the source to the body. A depletion layer is formed at

the borders between each doping type region which isolates source and drain. The

gate terminal is used to create an electric field at the oxide­semiconductor interface,
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p(n)

n(p) n(p)

GateGate
Source Drain

bulk

metal oxide
conducting channel

Figure 1.2: MOSFET schematics: Cross­sectional view of a Metal­Oxide­

Semiconductor Field Effect Transistor.

in the same manner a capacitor would. This electric field can attract or repeal

charges, modulating their density in the region (an electrically controlled doping)

and effectively creating a charge pathway between source and drain. This allows

the passage of an electric current which can be controlled by the voltage applied

to the gate. This three­terminal architecture resembles that of vacuum tubes. The

source and drain in a MOSFET are analogous to a vacuum tube’s cathode and anode,

respectively, while the gate functions similarly to the tube’s control grid ­ regulating

the flow of current. In both devices, current can be modulated purely through electric

fields, enabling the construction of logic gates by interconnecting devices, where

the output of one can serve as the input of another. MOSFETs, however, introduced

significant advantages over vacuum tubes: they contain no moving parts, are highly

scalable, and consume far less power. In contrast, vacuum tubes required heating

the cathode to emit electrons via thermionic emission, which made them bulky

and energy­intensive. These advantages have solidified the MOSFET’s role as the

foundational component of modern processors.

Figure 1.3 shows how MOSFETs work in real processors to built logic gates.

These gates can be used to build a simple Oracle function. This function is designed

to look for a particular entry in a data array in a way that, if the entry is, for example,

a two­bit number 𝑎 = 𝑎0𝑎1 = 10 and the data array is 𝑥 = {00, 01, 10, 11} we have

𝑓(𝑥) = 𝑓(𝑥0𝑥1) =

⎧{{
⎨{{⎩

𝑓(00) = 0
𝑓(01) = 0
𝑓(10) = 1
𝑓(11) = 0

. (1.1)
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OR OR

switch A: (0,1) switch B: (0,1)

output: (0,1)

A

B

A ∨B

p(n)

n(p) n(p)

bulk p(n)

n(p) n(p)

bulk

(a)OR gate: Either switch (gate)

A or B has to be on so a signal is

transmitted to the output.

AND AND

switch A: (0,1) switch B: (0,1)

output: (0,1)

A

B

A ∧B

p(n)

n(p) n(p)

bulk p(n)

n(p) n(p)

bulk

(b) AND gate: The drain of one

MOSFET is connected directly

to the source of another. The

second MOSFET is the only one

connected to the output, so both

switches (gates)Aand Bmust be

on for an output to be present.

NOT

VDD

switch A: (0,1)

output: (1,0)

A ¬A

p(n)

n(p) n(p)

bulk

R

(c) NOT gate: If the switch

(gate) is off, the voltage source

VDD is connected directly to the

output. If the switch is on, the

MOSFET short­circuits the path

to the output.

Figure 1.3: Logic gates from MOSFET: Examples of logic gates built from

MOSFETs.
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In its logical form, 𝑓(𝑥) can be written as

𝑓(𝑥0𝑥1) = 𝑥0 ∧ ¬𝑥1, (1.2)

which makes clear the gates we need to build it: NOT and AND gates. The NOT

gate flips 𝑥1 so if the original entry was 0 it becomes 1, and if it was 1 it becomes

0. This result is then compared to 𝑥0 via an AND gate which returns 0 if any of its

entries is 0 and 1 if both are 1. This function can be generalised to an arbitrarily

long target entry:

𝑓(𝑥) =
𝑛−1
⋀
𝑖=0

{
𝑥𝑖 if 𝑎𝑖 = 1
¬𝑥𝑖 if 𝑎𝑖 = 0

, (1.3)

where 𝑛 is the number of bits of the target entry 𝑎. An operation’s complexity is
calculated by taking into account how many times the Oracle function must be called

in order for the problem to be solved. This is called query complexity. In our case,

the Oracle does not know where the target entry is, so it must check every entry in

the data array until it finds it. Since the target entry has 𝑛 bits, there are 2𝑛 possible

entries to be checked, which is the maximum amount of times the function must be

called. This makes the query complexity of the problem 𝒪(2𝑛).
This is, of course, a very simple example, but it shows how fast computational

problems’ complexity can scale up. The complexity issue can be addressed in many

cases by parallel computation, that is, employing several different computers to

process different parts of the problem simultaneously. Nonetheless, even parallel

computation has its limits [20]. Data processing is not the only use of MOSFETs in

computation. They are also used in RAM (RandomAccess Memory) data storage

and retrieval. The two main types of RAM are DRAM (Dynamic RAM) and SRAM

(Static RAM). DRAM cells are comprised of a MOS capacitor that holds each

bit, accessed and refreshed via a MOSFET transistor (1T1C DRAM cell) [21],

while SRAM typically employs a six­transistor (6T) MOSFET­based latch per bit,

combining two cross­coupled inverters and access transistors to store information

statically [22].

This brief introduction shows us how the positive features of MOSFETs listed

earlier came through over the years, with every new generation of processors granting

users higher computational power due to the miniaturisation of transistors. This

scalability allowed for more transistors to be packed in the same space with every

new generation. In fact, in 1965, in a paper titled Cramming more components

onto integrated circuits [23], U.S.­American engineer Gordon Moore hypothesised

that in 10 years a 1.6 cm2 piece of semiconductor would be able to house 65.000

components. His prediction is often described as

The number of transistors in an Integrated Circuit (IC) board approx­

imately doubles every two years
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and is known as Moore’s law. In mathematical form it can be expressed as

𝑛(𝑡) = 𝑛0 exp( 𝑡
𝑇

) . (1.4)

where 𝑛(𝑡) is the number of transistors as a function of time, 𝑛0 is the number of

transistors at 𝑡 = 0, 𝑡 being the time and 𝑇 the time between generations. This is a

phenomenological observation rather than a law derived from physical principles,

but it has been observed to be a reliable guide when compared to our technological

improvements over the years, see Figure 1.4.

Moore’s law cannot, however, hold forever. Everything discussed so far in­

volves Classical Physics. The bits of information are classical binary states, charge

transport is modelled with classical assumptions and so is the data processing step.

As transistors become ever smaller, however, quantum effects become apparent.

Miniaturisation involves thinning the gate oxide layer as well as the channel length

between source and drain. In the first case, for a thin enough oxide layer charge

tunnelling can happen between the channel and the gate, causing undesired elec­

trical leakage. In the second case, when the channel length becomes comparable

to the de Broglie wavelength of the charges being conducted between source and

drain, the system becomes quantised and transport cannot be modelled with classical

assumptions any longer.

1.2 Classical networks
Data transmission may not be intrinsically related to data processing in theory. In

practice, however, both are strongly connected, as the contemporaneous prevalence

of the Internet may attest. Data transmission, in ways that became foundationally

relevant to its modern relation to data processing, had its origin in the 19th century

with the electric telegraph. After early contributions by Samuel Thomas Soemmering

(1809) and Francis Ronalds (1816), and a few early working devices by Paul Schilling

von Canstatt (1832), Carl Friedrich Gauss and Wilhelm Eduard Weber (1833), and

Karl August Steinheil (1835), U.S.­American inventor Samuel F. B. Morse, in

the United States, and English physicist Charles Wheatstone and inventor William

Fothergill Cooke, in Great Britain, presented, independently, in 1837, the two models

of the technology that would become the standard [24].

Telegraphs worked by sending classically encoded binary information: electric

signals (on/off current pulses) via a conductive wire. This idea was developed

upon by Italian inventor Guglielmo Marconi, who in 1895 made the first public

demonstration of his wireless telegraph, by sending binary encoded messages to

a distance of approximately 2 Km [25]. His radio, as we refer to it today, used

electromagnetic waves to encode data via their presence or absence; what is known

as OOK (on­off keying). In 1899, Brazilian inventor Roberto Landell de Moura

made the public demonstration of his device which delivered voice messages via

radio across 4 to 8 Km distances [26]. His approach moved away from binary
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encoding, introducing the first example of wireless analogue amplitude modulation:

the changing air pressures on the microphone modulated the radio waves amplitudes

as their were sent in a continuum, a similar technique as the one employed in

telephone landlines since the 1870s.

As mentioned in the first section of this chapter, the early and mid 20th century

have a convoluted history of technology, with different methods being employed

concurrently. In the 1920s and 1930s, Teleprinters (teletypewriters, TTY) began

using coded binary data, known as the Baudot code, which later developed into

ASCII [27]. In 1937, Alec Reeves proposes pulse­code modulation (PCM) [28],

which samples voice inputs, discretise them and encode them in binary form. In the

1960s his approach began being employed in telephony, with early modems being

used to decode binary data back into analogue form [29, 30]. Since the 1970s data

has also been transmitted via optical fibres, being encoded in light/no light states

[31].

Nowadays data transmission in telecommunications involve different encoding

techniques and different platforms depending on which level of the network we are

looking at. Modern communication encodes data in binary or non­binary formats and

modern channels can involve copper wires, optical fibres, and wireless transmission.

Notwithstanding the channel, signals are always subject to attenuation and noise

which degrades its fidelity as transmission distances increase. In general, guided

signals lose power continuously with distance [32]. This is modelled by

𝑑𝑃(𝑥)
𝑑𝑥

= −𝛼𝑃(𝑥), (1.5)

where 𝛼 is the media­dependent attenuation constant. Solving this equation leaves

us with an exponential power loss

𝑃out(𝐿) = 𝑃in𝑒−𝛼𝐿, (1.6)

which can be expressed in dB, as it is commonly done by engineers, via the dB­Loss

definition

Loss (dB) = 10 log10 ( 𝑃
𝑃ref

) . (1.7)

Applying it to our case, we have the power loss given by

𝑃out(dB) = 10 log10 (𝑃ref

𝑃0
) + 10 log10(𝑒−𝛼𝐿)

= 𝑃in(dB) − 10𝛼𝐿 log10(𝑒)
= 𝑃in(dB) − 𝛼dB𝐿

(1.8)

with the factor 𝛼dB = (4.343)𝛼. Even for optical fibre transmission, which have ex­
tremely low attenuation constants (0.2­0.4 dB/Km at telecommunicationswavelengths),

attenuation becomes significant over hundreds of kilometres (as in undersea cables).
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In wireless communication, on the other hand, free­space path loss follows an

inverse­square law. For a given wavelength 𝜆 and distance 𝐿 we have that

𝑃FSL = (4𝜋𝐿
𝜆

)
2

, (1.9)

(where FSL stands for Free Space Loss), due to the form of the power flux density

of spherical waves:

𝑆 = 𝑃𝑡
4𝜋𝐿2 , (1.10)

where 𝑃𝑡 is the transmitted power. In both cases, the overall result is a significant

power (or amplitude) decay with distance, a concern for particularly long trans­

mission lines. Besides this expected decay, several other forms of environmental

noise contamination must be taken into account, such as interference from external

electromagnetic fields. To address this issue, repeater stations must be placed along

communication lines. Such stations regenerate the original signal before it becomes

unreadable and then resend it to the intended destination. A repeater can be a linear

amplifier that boosts analogue waveforms, or it can be a digital repeater which

reconstructs a clean copy of a digital bitstream.

1.3 Quantum computation
The introduction of quantum effects due to transistors’ miniaturisation was not,

as one might expect, the initial catalyst for the interest in the field of quantum

computation, but rather a different issue: the scaling up of computational complexity.

In 1980, Soviet mathematician Yuri Manin published a book whose title translates

to Computable and Non­computable [33]. In it, Manin discussed how complex

quantum systems become prohibitively computationally demanding for classical

computers to simulate them. To address the issue, he then puts forward the idea

of a quantum automaton. At the time, Manin was concerned about how Quantum

Mechanics could be used to model such an automaton, without immediate concerns

about physical implementations. In his words,

Квантовый автомат должен быть абстрактным: его ма тематиче­

ская модель должна использовать лишь самые общие квант овые

принципы, не предрешая физических реализаций. Тогда модель эво­

люции есть унитарное вращение в конечномерном гильбертовом

пространстве, а модель виртуального разделения на подсистемы от­

ве чает разложению пространства в тензорное произведение. Гдето

в этой картине должно найти место взаимодействие, описываемое

по тради ции эрмитовыми операторами и вероятностями1.

1A quantum automaton must be abstract: its mathematical model should employ only the most

general quantum principles, without presupposing any specific physical implementation. In this case,
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Two years later, the seminal work by U.S.­American physicist Richard Feynman

titled Simulating Physics with Computers [34], was published. In his paper he

presented a case similar to Manin’s: that quantum computers are necessary to

accurately and efficiently simulate complex quantum systems. However, it soon

became clear that the possibilities opened by quantum computation extended beyond

the simulation of complex quantum systems: it could also be used to address a broad

class of computational problems more efficiently than classical computers could,

as was demonstrated in 1992 by British physicist David Deutsch and Australian

mathematician Richard Jozsa [35]. In 1994 U.S.­American computer scientist Peter

Shor presented his now­famous quantum algorithm for factoring large numbers,

inaugurating the field he termed quantum cryptanalysis [36].

The ideas envisioned by Manin, Feynman, Deutsch, Jozsa, and Shor ­ among

others ­ rested on a fundamentally different approach to understanding information

itself. A classical bit is a one­dimensional binary entity: it exists in either one of

two states, 0 or 1. This is, however, a deliberate choice. There is no fundamental

physical constraint on information which requires it to be modelled by binary rather

than ternary or higher­radix systems. Binary systems are, nonetheless, a robust and

practical choice. Increasing the radix of a system raises the precision requirements

for reliably distinguishing between multiple physical states. If different electric

current values are used to denote different states, such states must be well isolated

and precisely controlled, lest errors due to current fluctuations be introduced in the

system. These stricter requirements make higher­radix systems more vulnerable to

noise and energetically less efficient in most practical settings. Besides, Boolean

algebra, the mathematical structure behind binary logic gates had already been a

well­established idea since the 19th century [37, 38].

A similar argument applies to the quantum bit (qubit). Quantum systems are

not inherently limited to binary states; in fact, many possess larger Hilbert spaces.

Nevertheless, two­level quantum systems are the simplest non­trivial settings in

which the defining features of Quantum Mechanics ­ superposition, interference,

and entanglement ­ can be effectively harnessed for computation.

Let us consider a generic two­level quantum system. Analogously to the classical

case, where the levels are labelled 0 and 1, the quantum levels are expressed as |0⟩
and |1⟩. Contrary to the classical case, however, Quantum Mechanics allows for the

superposition of these levels, that is, |0⟩ and |1⟩ span a basis of possible states of the
form2

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , (1.11)

the model of its evolution is a unitary rotation in a finite­dimensional Hilbert space, and the model

of its virtual division into subsystems corresponds to a decomposition of that space into a tensor

product. Somewhere in this picture, there must also be room for interaction, traditionally described

by Hermitian operators and probabilities. Free translation.
2This chapter’s analysis of basic quantum phenomena is based on Modern Quantum Mechanics

by Sakurai [39] and Quantum Computation and Quantum Information by Nielsen and Chuang [40],

unless otherwise explicitly stated.



12 CHAPTER 1. INTRODUCTION

with 𝛼, 𝛽 ∈ ℂ, such that |𝛼|2 + |𝛽|2 = 1. While there is still debate about how to

interpret the philosophical depth of this simple mathematical expression, for practical

purposes we can see it as the qubit occupying both |0⟩ and |1⟩ states simultaneously.
This is an intrinsically quantum feature which is not directly accessible to us as

classical observers. Once the state is observed, that is, measured, it collapses into

one of the basis states, with probabilities |𝛼|2 and |𝛽|2 of being in the states |0⟩ and
|1⟩, respectively. This is not a statistical statement about our ignorance relative to
an ensemble of states made up of fractions |𝛼|2 and |𝛽|2 of two constituent states.
Equation (1.11) does not describe mixtures inside an ensemble, but rather how

the state |𝜓⟩ inhabits both basis states simultaneously. The evidence towards this
interpretation comes from the fact that such systems present interference, which

would not be the case in simple mixed classical ensembles. When this system is

operated upon by a given unitary operator 𝑈, such that 𝑈†𝑈 = 1, we are left with a
state |𝜓′⟩ given by 𝑈 |𝜓⟩. If then, we want to find the probability of this state being
measured to be in a given state |𝜙⟩, this probability is given by the amplitude of the
projection of |𝜓′⟩ on |𝜙⟩, that is,

𝑃𝜙 = |⟨𝜙|𝜓′⟩|2

= |⟨𝜙|𝑈|𝜓⟩|2

= |𝛼|2|⟨𝜙|𝑈|0⟩|2 + |𝛽|2|⟨𝜙|𝑈|1⟩|2 + (𝛼∗𝛽 + 𝛽∗𝛼)⟨𝜙|𝑈|0⟩⟨𝜙|𝑈|1⟩.
(1.12)

The term depending on 𝛼∗𝛽 + 𝛽∗𝛼 is the interference term, which is not a feature

found in classical ensembles. Ensembles can, however, be treated quantum mechan­

ically via the state densities formalism devised by Hungarian mathematician John

von Neumann [41]. Using his formalism, information on ensembles is encoded on

state density matrices. For an ensemble of particles in the state |𝜓⟩, the associated
density matrix is

𝜌 = |𝜓⟩ ⟨𝜓| = [|𝛼|2 𝛼𝛽∗

𝛼∗𝛽 |𝛽|2] , (1.13)

where the off­diagonal elements are the coherence terms, which express the ability

of the system to exhibit interference. When a system undergoes decoherence,

𝜌 → 𝜌′ = [|𝛼|2 0
0 |𝛽|2] , (1.14)

and it behaves like a probabilistic classical bit. This happens, for example, when the

system interacts with the environment in a way that conserves energy but introduces

phase damping, that is

𝜌(𝑡) = [ |𝛼|2 𝛼𝛽∗𝑒−𝛾𝑡

𝛼∗𝛽𝑒−𝛾𝑡 |𝛽|2 ] , (1.15)

such that

lim
𝑡→∞

𝜌(𝑡) = [|𝛼|2 0
0 |𝛽|2] . (1.16)
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This matrix representation of quantum states is particularly useful for computation,

as operations (quantum gates) can be easily written as matrices. A few important

quantum gates are

Pauli – 𝑋, 𝑌 , 𝑍 = [0 1
1 0] , [0 −𝑖

𝑖 0 ] , [1 0
0 −1] . (1.17a)

Hadamard = 1√
2

[1 1
1 −1] . (1.17b)

Using the Hadamard gate, in particular, we can build a quantum Oracle function

to find a specific entry from a data set, as we did with classical logic gates. The

protocol used in its quantum counterpart is known as Grover’s algorithm [42]: a

single qubit is spanned in a Hilbert quantum space ℋ. The total space for two qubits

is then

ℋ = ℋ1 ⊗ ℋ2. (1.18)

The basis states of this system are denoted as {|00⟩ , |01⟩ , |10⟩ , |11⟩}, being

|00⟩ = |0⟩ ⊗ |0⟩ = [1
0] ⊗ [1

0] =
⎡
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎦

,

|01⟩ = |0⟩ ⊗ |1⟩ = [1
0] ⊗ [0

1] =
⎡
⎢
⎢
⎣

0
1
0
0

⎤
⎥
⎥
⎦

,

|10⟩ = |1⟩ ⊗ |0⟩ = [0
1] ⊗ [1

0] =
⎡
⎢
⎢
⎣

0
0
1
0

⎤
⎥
⎥
⎦

,

|11⟩ = |1⟩ ⊗ |1⟩ = [0
1] ⊗ [0

1] =
⎡
⎢
⎢
⎣

0
0
0
1

⎤
⎥
⎥
⎦

,

(1.19)

where |00⟩ describes the qubits at positions 0 and 1 of the array being in the same
state |0⟩, |01⟩ describes the qubit at position 0 being in state |0⟩ and the qubit at
position 1 being in state |1⟩, and so on. The 2­qubit Hadamard gate is given by

H⊗2 = H ⊗ H = 1
2

[1 1
1 −1] ⊗ [1 1

1 −1] = 1
2

⎡
⎢
⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥
⎥
⎦

. (1.20)
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The initial state is prepared to be |00⟩. The Hadamard gate is then applied on it in
order to produce an equal amplitude superposition of all possible states,

H⊗2 |00⟩ = 1
2

⎡
⎢
⎢
⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
0
0
0

⎤
⎥
⎥
⎦

= 1
2

⎡
⎢
⎢
⎣

1
1
1
1

⎤
⎥
⎥
⎦

. (1.21)

The target entry is hard­wired into the system via the Oracle function:

𝑂𝑓 |𝑥⟩ = (−1)𝑓(𝑥) |𝑥⟩ . (1.22)

In the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, the oracle matrix is diagonal:

𝑂𝑓 =
⎡
⎢
⎢
⎣

(−1)𝑓(0) 0 0 0
0 (−1)𝑓(1) 0 0
0 0 (−1)𝑓(2) 0
0 0 0 (−1)𝑓(3)

⎤
⎥
⎥
⎦

, (1.23)

where

𝑓(𝑥) = {
1 if 𝑥 = 𝑥0,
0 if 𝑥 ≠ 𝑥0.

(1.24)

If, for example, we select the target as 𝑥0 = |10⟩, 𝑂𝑓 becomes

𝑂𝑓 =
⎡
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤
⎥
⎥
⎦

. (1.25)

Finally, the Diffusion gate is defined as

D = 2 |𝜓⟩ ⟨𝜓| − 𝐼, (1.26)

where the projector |𝜓⟩ ⟨𝜓| is built from the post­Hadamard gate quantum state:

|𝜓⟩ ⟨𝜓| = 1
4

⎡
⎢
⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥
⎥
⎦

. (1.27)

We have then that

D =
⎡
⎢
⎢
⎣

−0.5 0.5 0.5 0.5
0.5 −0.5 0.5 0.5
0.5 0.5 −0.5 0.5
0.5 0.5 0.5 −0.5

⎤
⎥
⎥
⎦

. (1.28)
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The Diffusion gate is then applied to the post­Oracle vector, yielding

D ⋅ 1
2

⎡
⎢
⎢
⎣

1
1

−1
1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0.5
0.5
1.5
0.5

⎤
⎥
⎥
⎦

/
√

3. (1.29)

We can see the outputted quantum state has a higher probability of collapsing to the

state |10⟩ when measured, correctly identifying the target entry. This algorithm can

be easily generalised to the 𝑛­qubit case:

Step 1 ­ Initialisation:

|𝜓⟩ = |0⟩⊗𝑛 . (1.30)

|𝜓0⟩ = H⊗𝑛 |𝜓⟩ = 1√
𝑛

𝑛−1
∑
𝑥=0

|𝑥⟩ . (1.31)

Step 2 ­ Oracle application:

𝑂𝑓 |𝜓0⟩ = (−1)𝑓(𝑥) |𝜓0⟩ . (1.32)

where 𝑓(𝑥) flips the phase of the target 𝑥0. Finally, the diffusion operator D, given

in this case by

D = 2 |𝜓0⟩ ⟨𝜓0| − 𝐼. (1.33)

can be more easily implemented by noticing that

D = H⊗𝑛(2 |0⟩ ⟨0| − 𝐼)H⊗𝑛. (1.34)

This gate is applied on the post­oracle vector to give us the output

|𝜓1⟩ = D(𝑂𝑓 |𝜓0⟩). (1.35)

In practice, we want to maximise the probability of wave­function collapse into the

target state. This requires an iterative process where the outputted vector state is fed

back into the circuit, that is,

|𝜓2⟩ = D(𝑂𝑓 |𝜓1⟩). (1.36)

and so on, until we reach sufficiently high probabilities of measuring the target state.

That is because the initial probability of measuring the correct state is 1/𝑛 , but

every iteration rotates the state vector in a two­dimensional subspace spanned by

|𝑥0⟩ (target state) and |𝑥𝑖⟩ (superposition of unmarked states). Defining this rotation
angle via

sin
𝜃
2

= 1√
𝑛

, (1.37)
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after 𝑘 iterations the rotation angle becomes (2𝑘 + 1)𝜃/2. If we want the state vector
to be approximately aligned with |𝑥0⟩ this will require that

(2𝑘 + 1)𝜃
2

≈ 𝜋
2

. (1.38)

Solving for 𝑘 we have
𝑘 ≈ 𝜋

4𝜃
− 1

2
. (1.39)

For large enough 𝑛,

sin
𝜃
2

≈ 1√
𝑛

⟹ 𝜃 ≈ 2√
𝑛

. (1.40)

giving us 𝑘 ≈ 𝜋
4
√

𝑛. This means a computational complexity of order 𝒪(
√

𝑛). A
superior result to the classical complexity of 𝒪(2𝑛).

The discussion up to this point has been, following Manin’s advice, based on

abstract quantum mechanical principles, without concern for their physical imple­

mentation. Such implementation, has several challenges on its path, many of which

are unique to the quantum approach to information. Noise and decoherence, for

example, are particularly important given the fragility of quantum states, which are

susceptible to environmental noise such as stray electromagnetic fields, vibrations,

and thermal fluctuations. All of which can introduce decoherence and, as we have

seen, compromise the ability of the system to be in superposed states. As a practical

consequence, computations have short coherence windows on which they can happen

before energy relaxation and dephasing become issues [43–46]. Gate fidelity, is

another important feature. It concerns how close to the gate’s theoretical description

the way they are implemented behave [47]. Small errors can accumulate rapidly

in several iterations, eventually degrading algorithmic precision. Single qubit gate

fidelities today can exceed 99.9% [48], but this success rate can drastically decrease

as the number of qubits increases. This issue is addressed with error correction

techniques, which suppress logical error rates to satisfactory levels. The challenge,

however, posed by their implementation, is the fact that many physical qubits are

required per logical qubit, limiting the quantum circuit’s architecture design. This

issue is referred to as the scalability problem [49, 50]. Increasing the system’s qubit

count increases the components density in the device, which creates other issues

such as crosstalk between qubits and increased wiring complexity.

All these challenges have different weights based on which platform is employed

for qubits implementation. While electric currents became the physical embodiment

of the classical bit, many viable candidates have been proposed for their quantum

counterparts. In 1995, for example, Spanish physicist Juan Ignacio Cirac and Aus­

trian theoretician Peter Zoller presented the concept of using cold trapped­ions

for computational purposes [51]. According to their idea, qubits are formed by

individual ions in electromagnetic traps. The qubit states are modelled as hyper­

fine levels of the ion, and lasers can be used to cool them down or drive coherent
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transitions. Trapped­ions have long coherence times and provide high fidelity, but

have lower gate speeds and are difficult to scale up, requiring complex laser optics

hardware as well.

In 1997, U.S.­American physicist Neil A. Gershenfeld and U.S.­American elec­

trical engineer Isaac L. Chuang proposed using bulk spin resonance for quantum

computation [52]. This method uses molecules’ nuclei spins as quantum states, but

instead of addressing them individually, several molecules (in a solid or liquid, for

example) are prepared in a pseudo­pure ensemble. In an external magnetic field of

amplitude 𝐵0 , the nuclei precess with Larmor frequency 𝜔𝐿 = 𝛾𝐵0, where 𝛾 is the

gyromagnetic ratio of the nuclei. This is set perpendicular to the bulk plane and fixes

the quantisation direction. A small oscillating magnetic field is then set in­plane,

controlled by radio­frequency pulses. When the frequency of the pulses matches the

system’s Larmor frequency, resonant absorption can be used to make the qubit trans­

ition between states. In 1998, Chuang, Gershenfeld and U.S.­American computer

scientist Mark Kubinec implemented Grover’s algorithm on a four­state Nuclear

magnetic resonance (NMR) quantum computer [53]. NMR quantum computers

have long coherence times, which are improved by lower temperatures due to the

suppression of phonon interactions, and rely on well­established NMR technology.

Accurate spin control, however, requires sophisticated techniques. Besides, while

NMR qubits can be densely packed, scaling up qubit count while maintaining control

and coherence are challenging tasks. Finally, the system is sensitive to external

magnetic fields and other decoherence inducing environmental contaminations.

Alternatively, semiconductor spin qubits have been proposed in two fashions:

quantum dots and donor atom bonding. In the first case, the spin of single electrons

(or holes) is confined in gate­defined, tunable quantum dots. The idea was first

proposed in 1998, by Swiss physicist Daniel Loss and U.S.­American physicist

David P. DiVincenzo [54]. In the same year U.S.­American physicist Bruce E.

Kane proposed encoding the qubit information in the nuclear spin of p­donors in Si

substrates [55]. Single spin control and two­qubit gates have been achieved using

semiconductor spin qubits as a platform. This implementation has the advantages

of particularly long coherence times (specially in the case of nuclear spin) and

its compatibility with well­established, industrial grade semiconductor fabrication

techniques. Quantum dots, in particular, also have the advantage of direct electrical

control. This implementation is, however, limited by the short­range coupling of

qubits (requiring them to be a few nm apart for exchange coupling), and by strict

material purity requirements. For quantum dots, for example, fabricated on quantum

well heterostructures, nuclear spin can act as a source of decoherence [56]. This

makes the growth of isotopically purified heterostructures a necessity, adding extra

complexity to the fabrication process [57, 58]. Microfabrication also presents its

challenges, with recipe optimisation being a point of current interest for materials

such as Ge/SiGe [59, 60].

In 1999, Japanese physicist Yasunobu Nakamura and colleagues developed for

the first time superconducting qubits [61]. These are Josephson junctions­based

electrical circuits which display quantised energy levels at cryogenic temperatures.
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Their architecture involves charge qubits, formed by a Cooper pair box, where states

0 and 1 are defined by the different occupancy of Cooper pairs in the box, and

flux qubits, where states 0 and 1 are defined by the super­currents’ direction in the

circuit. Superconducting qubits have fast gate speeds and on chip scalability (with

the ever­present price of increased wiring complexity to pay), but require sub­Kelvin

cryogenic freezers and careful noise shielding.

In the following year, Austrian physicist Dieter Jaksch and his team (notoriously

including Cirac and Zoller) presented the idea of neutral­atom qubits [62]. These

are single atoms (e.g. Rubidium or Cesium) confined in optical traps or tweezer

arrays, with qubit states being typically defined by the hyperfine levels of the atom.

This approach uses a powerful interaction mechanism, the Rydberg blockade, in its

operation: when atoms are excited to high­lying Rydberg states, the strong dipole­

dipole interaction can be used to implement two­qubit gates. Such qubits can be

scaled up by employing multiple tweezers arrays and can be accessed by laser control.

Rydberg states are, however, short­lived, requiring fast gates for proper employment.

Besides, system cooling and managing atoms loss are also challenging tasks.

In 2001, U.S.­American physicist/mathematician Emmanuel Knill, with Cana­

dian physicist Raymond J. Laflamme, and Australian physicist Gerard J. Milburn

showed how quantum computation could be achieved via linear optics and projective

measurements [63]. Such photonic qubits can encode quantum information in

properties of single photons, such as polarisation, path (dual­rail encoding), time­bin,

or orbital angular momentum. Photons have the advantage of light speed travel

and weak environmental coupling, making them particularly useful for communic­

ation. Photonic qubits can be operated at room temperature with inherently low

decoherence and are easily integrated with fibre­optics networks. Photons do not,

however, naturally interact with each other, leading to probabilistic gates. They also

face the common scalability issues besides problems arising from photonic loss,

photo­detectors precision, and from the difficulties in generating single photons.

In 2001, German physicist Jörg Wrachtrup and colleagues proposed the pos­

sibility of using single electron spin in Nitrogen­vacancy centers in diamonds

for computational purposes [64]. In 2004, German physicist Fedor Jelezko’s team

observed coherent oscillations in this system, supporting Wrachtrup’s original claim

[65]. This method consists of using a substitutional Nitrogen atom adjacent to a va­

cancy in the Carbon lattice as a qubit. This system has spin­1 ground state, but qubits

can be built by using only two spin sublevels (0 and 1). One of the main advantages

of this implementation is that there is no requirement for cryogenic operation, which

had been already demonstrated by German physicist A. Gruber and his team in

1997 by manipulating single NV spins at room temperature [66]. Even at such

temperatures, NV centers have long coherence times and are a natural spin­photon

interface. Technical limitations come, however, from creating and positioning the

NV centers with precision. Besides, the system may present inhomogeneities, as the

environment of each center may be slightly different. For these reasons, scaling is

also an issue for NV centers.

These are important candidates, but no single platform has emerged as a uni­
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versal solution. Each of them have their own strengths and challenges, both on

the fabrication and operational ends. The ongoing exploration of different physical

systems reflects both the richness of quantum physics and the practical realities of

engineering scalable, fault­tolerant quantum computers. In parallel to the devel­

opment of platforms for processing quantum information, however, a correlated

question has been raised: how to transmit quantum information?

1.4 Quantum networks
When Peter Shor presented an efficient quantum algorithm for factorising integral

numbers into prime factors [36], he simultaneously created the need for quantum

networks. This is because classical encryption and key distribution protocols, whose

breaking into is a nearly intractable problem for classical computers, is much more

approachable with quantum computers. The solution is then bringing communic­

ation to the same quantum sphere we hope to bring data processing. The idea of

quantum effects on communication, however, pre­dates Shor’s algorithm. It was

first put forward by U.S.­American physicist Stephen Wiesner. In a 1983 paper

titled Conjugate Coding he explained how the uncertainty principle could introduce

limitations on quantum communication in certain channels, while simultaneously

allowing new forms of coding inaccessible to classical physics [67]. Building upon

this foundational work in quantum communication protocols, U.S.­American physi­

cist Charles Bennett and Canadian computer scientist Gilles Brassard presented in

1984 the BB84, the first quantum key distribution protocol [68, 69], a way of using

Quantum Mechanics to securely transmit encryption keys.

If a sender (commonly referred to as Alice) sends a sequence of polarised photons

through a communication channel to a receiver (Bob), and Bob measures the se­

quence in the same basis as Alice prepared them3, by the end of the transmission

they would both have the same sequence. Contrary to classical communication,

quantum communication naturally imposes a barrier for eavesdroppers (usually

referred to as Eve in this context): if the channel is tapped, Eve must make the

measurements on the same basis as Alice generated them so when the information

is retransmitted to Bob, they will have the expected sequence of photons. If Eve

uses a different basis, Alice’s sequence will not match Bob’s and they will know the

data has been spied upon. This still leaves, however, a window for eavesdropping,

as Eve could accurately guess the basis the data is being generated on. The BB84

improves on this by employing random basis data generation and measurements:

in the first step, Alice generates a sequence of photons with a randomised basis for

each photon and Bob makes each measurement with a randomised photo­detector

direction. In the second step they share both their bases publicly. Statistically, their

sequences should match approximately 50% of the time. Eve will know which bases

3Alice’s photon emitter could be vertically aligned, for example, and so could be Bob’s photo­

detector, or both of their apparatuses could be inclined with a 45∘ in relation to each other and so

on.
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were used, but not how each photon that was produced and measured on the same

basis was polarised. If Eve intercepted the channel during the first step, at some

point the eavesdropping basis would not coincide with Alice’s and Bob’s bases that

should be the same, corrupting the key and making sender and receiver aware of the

eavesdropper presence. Mathematically, the information produced by Alice can be

encoded in |𝜓𝑎𝑖𝑏𝑗
⟩ states:

|𝜓00⟩ = |0⟩, (1.41a)

|𝜓10⟩ = |1⟩, (1.41b)

|𝜓01⟩ = |+⟩ = 1√
2

|0⟩ + 1√
2

|1⟩, (1.41c)

|𝜓11⟩ = |−⟩ = 1√
2

|0⟩ − 1√
2

|1⟩, (1.41d)

such that 𝑏𝑗 encodes the basis information. Away for Eve to go around BB84 would

be to copy every qubit sent by Alice, send one copy to Bob and keep another copy

for herself, to be measured after the basis information was publicly shared so that

eavesdropping measurements could be done later in the correct bases. This, however,

is forbidden by the No­cloning theorem, a fundamental result in quantum information

stating the impossibility of copying an unknown quantum state [70, 71]. In other

words, there is no physical operation that takes an arbitrary pure state |𝜓⟩ and a fixed
”blank” state |𝑒⟩ and produces two copies |𝜓⟩ |𝜓⟩.

Theorem 1.4.1 (No­cloning theorem) No quantum operation can perform |𝜓⟩𝐴 ⊗
|𝑒⟩𝐵 ↦ |𝜓⟩𝐴 ⊗ |𝜓⟩𝐵 for every input |𝜓⟩.

Proof 1.4.1 Suppose an unitary operation 𝑈 acting on ℋ𝐴 ⊗ ℋ𝐵 such that, for

any state |𝜓⟩𝐴, we have

𝑈(|𝜓⟩𝐴 ⊗ |𝑒⟩𝐵) = exp𝑖𝛼(𝜓,𝑒) |𝜓⟩𝐴 ⊗ |𝜓⟩𝐵 , (1.42)

exists. For two distinct pure states |𝜓⟩ and |𝜙⟩, since 𝑈 is unitary, that is, 𝑈†𝑈 = 1,
this would imply that

⟨𝜙|𝐴 ⟨𝑒|𝐵 |𝜓⟩𝐴 |𝑒⟩𝐵 = ⟨𝜙|𝐴 ⟨𝑒|𝐵 𝑈†𝑈 |𝜓⟩𝐴 |𝑒⟩𝐵

= ⟨𝜙|𝜓⟩2 ,
(1.43)

where |𝑒⟩ is assumed normalised. This means that

| ⟨𝜙|𝜓⟩ | = | ⟨𝜙|𝜓⟩ |2, (1.44)

which is only the case if ⟨𝜙|𝜓⟩ = 1 or ⟨𝜙|𝜓⟩ = 0. The cloning is, therefore, not

valid for arbitrary states, as originally assumed.
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Amore sophisticated quantum key distribution protocol was proposed by Brit­

ish/Polish physicist Artur Ekert in 1991, being known as E91 [72]. To understand

it, however, we need to be introduced to a new aspect of quantum systems. In the

previous section we stated that three features of quantum physics ­ superposition,

coherence, and entanglement ­ made quantum computation fundamentally different

from its classical counterpart. Nevertheless, we have yet to introduce the concept

of entanglement. While there are quantum gates and algorithms that make use of

this feature, its discussion has been halted so far as it is particularly important for

quantum communication.

In 1935 German physicist Albert Einstein, Russian­U.S.­American physicist

Boris Podolsky and U.S­American physicist Nathan Rosen (commonly referred to, in

conjunct, as EPR) brought up questions about the physical interpretation of quantum

physics based on its mathematical structure [73]. The particular phenomenon they

addressed was termed entanglement by Austrian­Irish physicist Erwin Schrödinger

that same year [74]. The concept of entanglement is based on the idea that the wave

function of a composite­system is not necessarily factorisable, that is, the system’s

state cannot be expressed as the multiplication of the states of each constituent [75,

76].

Consider a composite­system of two particles described by the Hilbert space

ℋ = ℋ𝐴 ⊗ ℋ𝐵. The most general form a state in this system can take is

|𝜓⟩𝐴𝐵 = ∑
𝑖,𝑗

𝑐𝑖,𝑗 |𝑖⟩𝐴 ⊗ |𝑗⟩𝐵 . (1.45)

If 𝑐𝑖,𝑗 can be written as 𝑐𝑖,𝑗 = 𝑐𝐴
𝑖 𝑐𝐵

𝑗 , the pure state |𝜓⟩𝐴𝐵 ∈ ℋ is called separable,

that is, it assumes the form

|𝜓⟩𝐴𝐵 = |𝜓⟩𝐴 ⊗ |𝜓⟩𝐵 , (1.46)

such that |𝜓⟩𝐴 = ∑𝑖 𝑐𝑖 |𝑖⟩ and |𝜓⟩𝐵 = ∑𝑗 𝑐𝑗 |𝑗⟩. Otherwise, the system is said to

be entangled. Mixed states are called entangled if their density matrix 𝜌 is such that

𝜌 ≠ ∑
𝑖

𝑝𝑖 𝜌𝑖
𝐴 ⊗ 𝜌𝑖

𝐵, (1.47)

with 𝑝𝑖 being a probability distribution and 𝜌𝑖
𝐴 and 𝜌𝑖

𝐵 states of the sub­systems. En­

tanglement is then defined as the negation of a property: separability. An alternative

definition of entanglement defines entangled states as those that cannot be simulated

by classical correlations [77].

The four maximally entangled states that span the Hilbert space ℋ = ℋ1 ⊗ ℋ2
of a bipartite system are known as Bell­states and are given by

|𝜓±⟩ = 1√
2

(|0⟩ |1⟩ ± |1⟩ |0⟩) , |𝜙±⟩ = 1√
2

(|0⟩ |0⟩ ± |1⟩ |1⟩). (1.48)

These states illustrate the key feature of entanglement: a measurement on one particle

instantaneously determines the state of the other, regardless of their spatial separation.
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This feature was so striking, even within the quantum mechanical framework, that

Einstein, Podolsky, and Rosen concluded that quantum physics must be incomplete.

Since, in their view, physical reality was ensured by the ability to predict measurement

outcomes with certainty, they argued that the only way to preserve locality4 was

to assume the existence of hidden variables: pre­existing properties within the

entangled pair that determined their states prior to spatial separation, but which were

not accounted for by standard quantum theory.

In 1964, Irish physicist John Bell performed a more rigorous analysis of EPR’s

idea [78]. Suppose an entangled pair of photons is produced and one of them is sent

to Alice and one to Bob. Alice’s measurement (𝐴) will depend on the setting of her
photo­detector (𝑎) and on some hidden variable 𝜆,

𝐴(𝑎, 𝜆) = ±1. (1.49)

Similarly for Bob’s measurement (𝐵),

𝐵(𝑏, 𝜆) = ±1. (1.50)

The locality assumption assumes 𝐴 is independent of 𝑏 and 𝐵 is independent of 𝑎.
Bell then analysed the expectation value of measurements products,

𝑃(𝑎, 𝑏) = ∫ 𝑑𝜆 𝜌(𝜆) 𝐴(𝑎, 𝜆)𝐵(𝑏, 𝜆), (1.51)

for Alice’s and Bob’s measurements for chosen settings 𝑎 and 𝑏, mediated by a
statistical distribution on hidden variables𝜆. 𝜆 is not accessible to the experimentalist,
so its contribution must be included via a probability distribution 𝜌(𝜆). 𝜌(𝜆) is such
that

∫ 𝑑𝜆𝜌(𝜆) = 1. (1.52)

Consider now the cases where Alice has a fixed setting for her photo­detector, 𝑎, but
Bob employs two settings, 𝑏 and 𝑏′. In deterministic local hidden variable models,

each party’s outcome is a deterministic function of the local setting and the shared

hidden variable. When Bob changes his setting, the change in the expectation value

𝑃 is given by

|𝑃 (𝑎, 𝑏) − 𝑃(𝑎, 𝑏′)| = ∣∫ 𝑑𝜆 𝜌(𝜆) 𝐴(𝑎, 𝜆)[𝐵(𝑏, 𝜆) − 𝐵(𝑏′, 𝜆)]∣ . (1.53)

Now, 𝐵(𝑏, 𝜆) = ±1, which bounds |𝐵(𝑏, 𝜆) − 𝐵(𝑏′, 𝜆)| to

|𝐵(𝑏, 𝜆) − 𝐵(𝑏′, 𝜆)| = {
0 if 𝐵(𝑏, 𝜆) = 𝐵(𝑏′, 𝜆),
2 if 𝐵(𝑏, 𝜆) ≠ 𝐵(𝑏′, 𝜆).

(1.54)

4The idea that no influence or signal can propagate faster than the speed of light.
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We have then that

1 − 𝐵(𝑏, 𝜆)𝐵(𝑏′, 𝜆) = |𝐵(𝑏, 𝜆) − 𝐵(𝑏′, 𝜆)|, (1.55)

and, multiplying it by 𝜌(𝜆) and integrating over 𝜆, we have

|𝑃 (𝑎, 𝑏) − 𝑃(𝑎, 𝑏′)| ≤ ∫ 𝑑𝜆 𝜌(𝜆) |𝐵(𝑏, 𝜆) − 𝐵(𝑏′, 𝜆)|

= ∫ 𝑑𝜆 𝜌(𝜆) [1 − 𝐵(𝑏, 𝜆)𝐵(𝑏′, 𝜆)]

= 1 − 𝑃(𝑏, 𝑏′). (1.56)

Thus,

|𝑃 (𝑎, 𝑏) − 𝑃(𝑎, 𝑏′)| ≤ 1 − 𝑃(𝑏, 𝑏′), (1.57)

or, equivalently,

1 + 𝑃(𝑏, 𝑏′) ≥ |𝑃 (𝑎, 𝑏) − 𝑃(𝑎, 𝑏′)|. (1.58)

The difference between 𝑃(𝑎, 𝑏) and 𝑃(𝑎, 𝑏′) measures how much the correlations

change when Bob switches settings, whileAlice stays fixed. The correlation 𝑃(𝑏, 𝑏′)
tells us how similar Bob’s outcomes are between 𝑏 and 𝑏′. If Bob’s outcomes at 𝑏
and 𝑏′ are very similar (i.e., 𝑃(𝑏, 𝑏′) close to 1), then changing from 𝑏 to 𝑏′ shouldn’t

affectAlice’s correlation very much and |𝑃 (𝑎, 𝑏)−𝑃(𝑎, 𝑏′)|must be small. If, on the
other hand, Bob’s outcomes are maximally different (i.e., 𝑃(𝑏, 𝑏′) = −1), then the
difference can be as large as possible. This inequality imposes a constraint on local

realism: it says you cannot have both strong correlations with two Bob settings and

a large difference in Alice’s correlations without violating locality. Experimentally,

if the inequality is held, this means hidden variables are still a possible element at

play. It’s violation, however, rules out their presence.

In 1969, U.S.­American physicist John Clauser and colleagues refined Bell’s

theory in a framework more suitable for actual experiments in what is known as the

CHSH inequality [79]. In their work they propose the parameter

𝑆 = 𝑃(𝑎, 𝑏) − 𝑃(𝑎, 𝑏′) + 𝑃(𝑎′, 𝑏) + 𝑃(𝑎′, 𝑏′), (1.59)

and show that the inequality

|𝑆| ≤ 2 (1.60)

is violated in the absence of hidden variables. A year later, Soviet physicist Boris

Tsirelson calculated the upper bound on 𝑆 to be 2
√

2 in the case of maximally

entangled pairs of particles, as described by equation (1.48), [80].

Experiments in 1972 by U.S.­American physicist Stuart Freedman and Clauser

[81], and by French physicists Alain Aspect, Philippe Grangier, and Gérard Roger in

1981 [82], and again byAspect and Roger nowwith French physicist Jean Dalibard in

1982 [83], have shown clear violations of Bell’s and CHSH inequalities, ruling out the

possibility of hidden variables in entangled systems and establishing entanglement

as a genuine, albeit counter­intuitive, feature of quantum particles.
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We may now return to Ekert’s quantum key distribution protocol, E91. In this

protocol, Alice can choose between three possible measurement bases (𝑎1, 𝑎2, 𝑎3)
and Bob between two possible bases (𝑏1, 𝑏2), giving a total of six possible com­
binations. After the transmission they both share their measurement bases publicly

and, when their bases coincide, they obtain perfectly anti­correlated outcomes. By

agreeing on one of them to flip their measurement values they can establish the

key. Of the remaining measurements, the expectation values 𝑃(𝑎2, 𝑏1), 𝑃(𝑎2, 𝑏2),
𝑃(𝑎3, 𝑏1), and 𝑃(𝑎3, 𝑏2) are used to calculate the correlation parameter 𝑆 from

the CHSH inequality and determine if the qubits used in the key distribution were

maximally entangled or not. This allows them to estimate how much information

an eavesdropper (Eve) might have gained, as any intervention would degrade the

maximal entanglement expected by Alice and Bob.

With an understanding of how quantum information operates in the context of

quantum communication, we can now revisit a familiar challenge from classical

communication networks: information degradation during transmission. The same

vulnerabilities that afflict classical bits transmitted through long channels exist

for qubits; that is, environmental noise contamination and data loss due to signal

attenuation. For qubits, however, the situation becomes more intricate, as classical

repeaters cannot be used to restore quantum information. Using a classical repeater

requires measuring the qubit state, collapsing its wave function and destroying the

quantum properties ­ such as superposition and entanglement ­ that are essential

for quantum communication. For this reason, quantum repeaters are necessary

for the implementation of quantum networks [84–87]. As we saw, the no­cloning

theorem prevents the copying of an arbitrary quantum state into a blank state. A

quantum repeater must then perform local entanglement generation and entanglement

swapping5 to effectively extend the range of entangled pairs. In the case of a single

repeater, two pairs of entangled qubits are generated at the repeater station:

|Ψ+⟩𝐴𝐵 = 1√
2

(|00⟩𝐴𝐵 + |11⟩𝐴𝐵). (1.61a)

|Ψ+⟩𝐶𝐷 = 1√
2

(|00⟩𝐶𝐷 + |11⟩𝐶𝐷). (1.61b)

The total state is given by

|Ψ+⟩𝐴𝐵 ⊗ |Ψ+⟩𝐶𝐷 = 1
2

( |00⟩𝐴𝐵 |00⟩𝐶𝐷 + |00⟩𝐴𝐵 |11⟩𝐶𝐷

+ |11⟩𝐴𝐵 |00⟩𝐶𝐷 + |11⟩𝐴𝐵 |11⟩𝐶𝐷).
(1.62)

State 𝐴 is meant to be sent to Alice and state 𝐷 to Bob. These are not, however,

entangled yet and must become so without direct interaction. Expressing qubits 𝐵
5Entanglement purification is also needed from a pragmatic point of view, but its technical

complexity lies outside of the scope of this discussion.
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and 𝐶 and 𝐴 and 𝐷 in the above expression as Bell states (see equation (1.48)), we

have

|0⟩𝐵 |0⟩𝐶 = 1√
2

(|𝜙+⟩𝐵𝐶 + |𝜙−⟩𝐵𝐶), (1.63a)

|0⟩𝐵 |1⟩𝐶 = 1√
2

(|𝜓+⟩𝐵𝐶 + |𝜓−⟩𝐵𝐶), (1.63b)

|1⟩𝐵 |0⟩𝐶 = 1√
2

(|𝜓+⟩𝐵𝐶 − |𝜓−⟩𝐵𝐶), (1.63c)

|1⟩𝐵 |1⟩𝐶 = 1√
2

(|𝜙+⟩𝐵𝐶 − |𝜙−⟩𝐵𝐶). (1.63d)

and

|0⟩𝐴 |0⟩𝐷 = 1√
2

(|𝜙+⟩𝐴𝐷 + |𝜙−⟩𝐴𝐷), (1.64a)

|0⟩𝐴 |1⟩𝐷 = 1√
2

(|𝜓+⟩𝐴𝐷 + |𝜓−⟩𝐴𝐷), (1.64b)

|1⟩𝐴 |0⟩𝐷 = 1√
2

(|𝜓+⟩𝐴𝐷 − |𝜓−⟩𝐴𝐷), (1.64c)

|1⟩𝐴 |1⟩𝐷 = 1√
2

(|𝜙+⟩𝐴𝐷 − |𝜙−⟩𝐴𝐷). (1.64d)

The total state is then, in the Bell basis,

|Ψ+⟩𝐴𝐵𝐶𝐷 = 1
2

[|𝜙+⟩𝐵𝐶 |𝜙+⟩𝐴𝐷 + |𝜙−⟩𝐵𝐶 |𝜙−⟩𝐴𝐷

+ |𝜓+⟩𝐵𝐶 |𝜓+⟩𝐴𝐷 + |𝜓−⟩𝐵𝐶 |𝜓−⟩𝐴𝐷].
(1.65)

At the repeater, a Bell measurement6 is then performed on qubits𝐵 and𝐶, collapsing
them and generating an entangled state between 𝐴 and 𝐷, which is then sent toAlice

and Bob.

This process can be extended when additional repeater stations are needed. In

the case of two repeaters, 𝑅1 and 𝑅2, for example, 𝑅1 first generates an entangled

pair betweenAlice and itself: particle 𝐴 is sent toAlice, while particle 𝐶1 is retained

by 𝑅1,

|Φ+⟩𝐴𝐶1
= 1√

2
(|0⟩𝐴 |0⟩𝐶1

+ |1⟩𝐴 |1⟩𝐶1
). (1.66)

Meanwhile, 𝑅2 generates another entangled pair, consisting of 𝐶2, which is sent to

𝑅1, and 𝐷1, which is kept by 𝑅2:

|Φ+⟩𝐶2𝐷1
= 1√

2
(|0⟩𝐶2

|0⟩𝐷1
+ |1⟩𝐶2

|1⟩𝐷1
). (1.67)

6That is, a joint quantum measurement on two qubits in the basis of maximally entangled states,

see equation (1.48).
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𝑅2 also creates a second entangled pair, keeping 𝐷2 and sending 𝐵 to Bob,

|Φ+⟩𝐷2𝐵 = 1√
2

(|0⟩𝐷2
|0⟩𝐵 + |1⟩𝐷2

|1⟩𝐵). (1.68)

𝑅1 then performs a Bell­state measurement on 𝐶1 and 𝐶2, which entangles 𝐴 and

𝐷1. Subsequently, 𝑅2 performs a Bell­state measurement on 𝐷1 and 𝐷2, thereby

finally entangling 𝐴 and 𝐵:

|Φ+⟩𝐴𝐶1
⊗ |Φ+⟩𝐶2𝐷1

⊗ |Φ+⟩𝐷2𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Initial

Bell(𝐶1,𝐶2)
⟶ |Φ+⟩𝐴𝐷1

⊗ |Φ+⟩𝐷2𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟
After 𝑅1

Bell(𝐷1,𝐷2)
⟶ |Φ+⟩𝐴𝐵 .

(1.69)

After these successive entanglement swapping steps, Alice and Bob share an en­

tangled pair over a distance for which direct transmission of entangled particles

would be otherwise impractical.

Different approaches have been proposed for implementing quantum repeaters.

One promising route involves fully optical networks [88]. Unlike matter­based

quantum memories (such as spins in quantum dots, trapped ions, or NV centers),

purely optical networks do not require long­lived stationary qubits, which are often

challenging to realise and suffer from decoherence. Optical networks are also

potentially simpler to build, relying primarily on light sources, beam splitters, and

detectors, while avoiding the need for cryogenic equipment and magnetic control

systems necessary for operating solid­state spins. Furthermore, these networks are

naturally compatible with existing optical fibre infrastructure, enabling, in principle,

higher speeds since they do not require stationary memories to wait for feedback.

Photon loss can also be addressed probabilistically through loss­tolerant coding

strategies, providing robustness without the need for memory purification [89].

On the other hand, fully optical networks face significant challenges. They

require large photonic cluster states to achieve tolerance to loss and errors, which

can be experimentally demanding to generate and control [90, 91]. These networks

also rely heavily on multi­photon interference, making photon indistinguishability

and precise synchronisation technically challenging. Additionally, deterministic

entanglement generation remains difficult: the current method, parametric down­

conversion [92, 93], is inherently probabilistic [94, 95], although recent advances

in source engineering have shown improvements [96, 97]. They also require high­

purity single­photon sources and efficient, low­noise detectors, which are still areas

of active development [98].

In contrast, light–matter interaction–based repeaters rely on converting photonic

qubits into matter qubits, enabling the quantum state to be effectively ”paused” in a

quantum memory. This is crucial for synchronising probabilistic events across long

distances [86]. Once stored as matter qubits, local gate operations can be performed

with high fidelity, which is essential for entanglement swapping and purification

[84, 99]. Many purification protocols require ensembles of locally controlled qubits,
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which is straightforward to achieve in matter­based systems. As proposed by Rutger

Vrijen and Eli Yablonovitch, photons are ideal carriers for transmitting quantum

information, while solid­state systems are optimal for processing it; thus, light–matter

interfaces act as a crucial bridge between communication and computation [100].

Despite these advantages, light–matter interaction approaches also present chal­

lenges. Memory decoherence remains a fundamental limitation, as matter qubits

have finite coherence times, restricting their effective storage time [101]. These sys­

tems generally require higher technical complexity, including operation at cryogenic

temperatures, high­fidelity gates, and precise coherent optical interfaces. Efficient

photon–matter coupling is also challenging to achieve [102]. Finally, heralded en­

tanglement generation and local gate operations are typically slower compared to

purely optical systems, potentially limiting overall communication rates.

Of particular interest for the present work is the implementation of quantum

dots for repeater technologies. In 2012 Belgian electrical engineer Kristiaan De

Greve and his team proposed the use of quantum dot spin­photon entanglement

as a quantum communication platform [103]. In the same year W. B. Gao’s team

achieved entanglement between a quantum dot and a single photon [104]. In 2016

and 2017, Aymeric Delteil’s team [105] and R. Stockill’s team [106], respectively,

achieved the photo­generated entanglement of two spatially­separated quantum dots,

with Delteil’s team using quantum dot­confined electron holes.

The implementation of quantum dots as a platform for photon­spin conversion

rests on the aforementioned seminal work by Vrijen and Yablonovitch [100]. Their

idea was to design a photo­detector that could coherently transfer the photon polar­

isation state to an electron spin state in a semiconductor. In this scenario, the photon

excites an electron from the valence band to the conduction band in a quantum dot,

creating an exciton ­ an electron­hole pair. The conservation of angular momentum

creates selection rules correlating the photon’s polarisation to the electron’s (hole’s)

spin, which can be used as a qubit.

In their work, they consider electronic states in Gallium Arsenide (GaAs). In

GaAs, the valence band states are described by 𝑝­orbitals with orbital angular mo­
mentum 𝑙 = 1, giving electrons a total angular momentum of

𝐽 = 𝐿 + 𝑆 = 3
2

. (1.70)

The 𝑗 = 3/2 quadruplet splits into:

• Heavy­holes (HH): 𝑚𝑗 = ±3
2

• Light­holes (LH): 𝑚𝑗 = ±1
2 ,

while 𝑗 = 1/2 corresponds to the split­off (SO) band. As for the conduction

band, electrons arise from 𝑠­like orbitals with 𝑙 = 0, being described solely by
their spin 𝑚𝑠 = ±1/2. A right­handed circularly polarised photon 𝜎+ has an

angular momentum 𝑚𝑗 = 1. We have, therefore, that right­handed photons couple

𝑚𝑗 = −3/2 valence states to 𝑚𝑗 = −1/2 conduction band states. Left­handed
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photons 𝜎−, on their turn, have angular momentum 𝑚𝑗 = −1 and couple 𝑚𝑗 = 3/2
valence states to 𝑚𝑗 = 1/2 conduction band states:

𝜎+(𝑚𝑗 = +1) → ∣𝑚𝑗 = −3
2

⟩
𝑣

⟶ ∣𝑚𝑗 = −1
2

⟩
𝑐𝑏

. (1.71a)

𝜎−(𝑚𝑗 = −1) → ∣𝑚𝑗 = +3
2

⟩
𝑣

⟶ ∣𝑚𝑗 = +1
2

⟩
𝑐𝑏

. (1.71b)

For a superposed photon state

|𝜙⟩𝑝ℎ = 𝛼 |𝜎+⟩ + 𝛽 |𝜎−⟩ , (1.72)

each polarisation state couples to a different valence band state, entangling the

photo­generated electrons to their holes, that is,

|𝜓⟩𝑒ℎ = 𝛼 ∣𝑚𝑗 = −3
2

⟩
ℎ

∣𝑚𝑗 = −1
2

⟩
𝑒

+ 𝛽 ∣𝑚𝑗 = +3
2

⟩
ℎ

∣𝑚𝑗 = +1
2

⟩
𝑒

.
(1.73)

This is not, however, an appropriate qubit as it requires the coherence of both the

electron and the hole to be kept, lest the interaction of one of them with the rest of

the system collapses the whole state. To avoid this issue, both conduction states

must be excited from a single valence state. In bulk materials there is a degeneracy

between the heavy­holes (𝑚𝑗 = ±3/2) and the light­holes (𝑚𝑗 = ±1/2) valence
bands at Γ point. This degeneracy can, however, be lifted by straining quantum wells.

Tensile­strained quantum wells lift the light­holes band, while compressive­strained

quantum wells lift the heavy­holes band. As for the remaining spin degeneracy, it

can be removed by the application of a magnetic field.

By applying a magnetic field perpendicularly to the crystal’s growth direction,

that is, an in­plane magnetic field, the quantisation axis is changed. In the new basis

defined by 𝑚𝑗, 𝐽𝑧 is no longer diagonal, and the Hamiltonian of the system must be

diagonalised in accordance with the new magnetic field orientation (e. g. 𝑥). The
system’s Hamiltonian becomes

𝐻𝑧 ∝ 𝐽𝑥. (1.74)

|𝑚𝑗⟩ are, however, eigenstates of 𝐽𝑧, not of 𝐽𝑥. By defining the ladder operators

𝐽+ |𝑚𝑗⟩ = √(𝐽 − 𝑚𝑗)(𝐽 + 𝑚𝑗 + 1) |𝑚𝑗 + 1⟩ , (1.75a)

𝐽− |𝑚𝑗⟩ = √(𝐽 + 𝑚𝑗)(𝐽 − 𝑚𝑗 + 1) |𝑚𝑗 − 1⟩ , (1.75b)

we can write 𝐽𝑥 as

𝐽𝑥 = 1
2

(𝐽+ + 𝐽−). (1.76)
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Ignoring the heavy holes contribution, for 𝑚𝑗 = ±1
2 , 𝐽𝑥 can be written in this

two­dimensional subspace as

𝐽𝑥 = (⟨+1
2 ∣ 𝐽𝑥 ∣ +1

2⟩ ⟨+1
2 ∣ 𝐽𝑥 ∣ −1

2⟩
⟨−1

2 ∣ 𝐽𝑥 ∣ +1
2⟩ ⟨−1

2 ∣ 𝐽𝑥 ∣ −1
2⟩) ∼ 1

2
(0 1

1 0) . (1.77)

Diagonalising this matrix gives us the eigenstates

|𝜓+⟩ = 1√
2

{∣𝑚𝑗 = −1
2

⟩ + ∣𝑚𝑗 = +1
2

⟩}, (1.78a)

|𝜓−⟩ = 1√
2

{∣𝑚𝑗 = −1
2

⟩ − ∣𝑚𝑗 = +1
2

⟩}, (1.78b)

to which photons can couple to with the same amplitude in each case. Considering

|𝜓+⟩ as the initial state we have that

𝜎+(𝑚𝑗 = +1) → ∣𝑚𝑗 = −1
2

⟩
𝑣

⟶ ∣𝑚𝑠 = +1
2

⟩
𝑐𝑏

. (1.79a)

𝜎−(𝑚𝑗 = −1) → ∣𝑚𝑗 = +1
2

⟩
𝑣

⟶ ∣𝑚𝑠 = −1
2

⟩
𝑐𝑏

. (1.79b)

Conduction band states can be written (in the logical qubit notation) as

|0⟩ = √1
2

{∣𝑚𝑠 = −1
2

⟩ − ∣𝑚𝑠 = 1
2

⟩}. (1.80a)

|1⟩ = √1
2

{∣𝑚𝑠 = −1
2

⟩ + ∣𝑚𝑠 = 1
2

⟩}. (1.80b)

A photonic state like (1.72) produces then qubits given by

|𝜓⟩𝑒ℎ = |𝜓+⟩ℎ { 𝛼√
2

(|0⟩ + |1⟩) + 𝛽√
2

(|0⟩ − |1⟩)}
𝑒
. (1.81)

We can see their protocol successfully excites a superposition of qubits in the

conduction band, while simultaneously factoring out a hole state, which is free to

recombine without compromising the coherence of the qubit.





2
Germanium systems

2.1 Material choices
Gate­defined semiconductor quantum dots have been implemented in many different

material systems, notably GaAs/AlGaAs (groups III­V) and Si/SiGe and Ge/SiGe

(group­IV) heterostructures. Each of these platforms offers distinct physical char­

acteristics which affect quantum dot operation and qubit performance. Below, we

compare these systems in terms of their band gaps, and their relation to the telecom­

munication waveband, their charge carrier mobility, effective masses, spin coherence

times, and nuclear spin environments.

Telecommunication waveband compatibility is an important aspect from a prac­

tical point of view: the wide implementation of quantum networks is more easily

achieved if we can keep the light signal transmission infrastructure we already have

in place. GaAs is a direct­bandgap semiconductor, and a ∼870 nm wavelength

photon is needed to bridge its gap. This value is, however, outside the desired win­

dow, which ranges from 1260 nm to 1565 nm. Si has an indirect bandgap requiring

∼1100 nm wavelength photons, which also falls short of the telecomm. waveband

requirements. Its direct gap is even higher in energy, corresponding to a ∼360–380

nm wavelength. Ge is also an indirect bandgap semiconductor, bridged by ∼1870
nm photons, but its direct bandgap corresponds to a ∼1550 nm wavelength, which

lies inside the telecomm. waveband.

Regarding transport characteristics, high carrier mobility in a 2D quantum well

is indicative of low disorder and high­quality quantum dots with well­controlled

tunnel couplings and charge stability. It also affects the ease of forming large arrays

of dots. Below we compare typical low­temperature mobilities of electrons and

holes in these heterostructures.

GaAs/AlGaAs quantum wells display extremely high electron mobilities. In

modulation­doped GaAs/AlGaAs heterostructures, electron mobilities can exceed

107 cm2/𝑉 ⋅s at low temperatures. This also reflects its low effective mass (𝑚∗
𝑒 ≈

0.067 𝑚𝑒) and the maturity of GaAs growth techniques. Hole mobilities in GaAs,

however, are lower, due to holes’ higher effective mass (𝑚∗
ℎ ≈ 0.35 ∼ 0.40 𝑚𝑒)

and stronger scattering. It can achieve orders of magnitude of 104 ∼ 105 cm2/𝑉 ⋅s.
Si/SiGe devices have achieved high mobilities as well, albeit not to the same

extent as GaAs/AlGaAs systems. Electrons in clean Si/SiGe 2DEGs can typically

31
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achieve mobilities of 105 ∼ 106 cm2/𝑉 ⋅s at low temperatures. It’s worth noticing

that Si 2DEGmobility is often limited by interface roughness and residual impurities,

not necessarily by phonons, at cryogenic temperatures. Hole mobilities in Si, on the

other hand, are much lower, having typical values of 104 cm2/𝑉 ⋅s. The electronic
effective mass in such systems is ∼0.19 𝑚𝑒 while holes have an effective mass of

0.25 ∼ 0.30 𝑚𝑒.

Contrary to both GaAs/AlGaAs and Si/SiGe heterostructures, Ge/SiGe quantum

wells have shown exceptionally high hole mobilities. Holes in Ge have light effective

mass (0.05 ∼ 0.10 𝑚𝑒), which, despite the still improvable chemical purity of the

crystal, has allowed mobilities of 105 ∼ 106 cm2/𝑉 ⋅s. This is the highest hole
mobility in any semiconductor system, rivalling that of electron mobility in Si and

GaAs. In contrast, electrons in Ge quantum wells have very low mobilities: 104

cm2/𝑉 𝑐𝑑𝑜𝑡s with an effective mass of ∼ 0.12 𝑚𝑒.

Finally, let us discuss what is perhaps the most critical characteristic for devices

concerned with spin qubits: the spin lifetime. The spin lifetime depends on the

materials hyperfine environment, which is governed by nuclei spins, as well as on

spin­orbit coupling, which can couple spin to charge noise and phonons, and on

valley degeneracies.

Relatively long lifetimes, between 1 and 100 ns, have been achieved for GaAs

electrons, despite the presence of nuclear spin: both Ga andAs isotopes have nuclear

spin 3/2. For holes in GaAs, the spin lifetime is even shorter. Despite not suffering
from hyperfine interactions due to the p­like nature of their wave functions, they

have a strong spin­orbit coupling and spin lifetimes peaking at 100 ps.

Si/SiGe quantum wells have exceptionally long coherence times when enriched

with spin­zero isotopes. 28Si and 30Si have 0 nuclear spin, and even 28Si, which

has nuclear spin 1/2, provides a better landscape than GaAs. For electrons the spin

lifetime has been measured to range between 1 and 10 𝜇s, while for holes it peaks at
10 ns, due to strong spin­orbit interaction.

Ge/SiGe quantum wells have emerged as a promising host option for hole spin

qubits, precisely because it offers strong spin­orbit coupling and a quiet nuclear

environment. Of all the five naturally occurring isotopes of Ge, only 73Ge has a

nuclear spin of 9/2, while 70Ge, 72Ge, 74Ge, and 76Ge have zero nuclear spin. This

makes the hyperfine noise in the environment weak. Additionally, heavy holes in

Ge have a predominantly 𝑝­orbital character at atomic sites, further suppressing
Fermi­contact hyperfine interactions. The spin coherence is then limited, primarily

by charge noise and device imperfections. The spin lifetimes for Ge holes can range

from 100 to 500 ns.

In summary, while GaAs/AlGaAs served as a crucial ”learning ground” for spin

qubits, its intrinsic limitations (omnipresent nuclear spins, not telecomm.­friendly)

make it less suitable for large­scale quantum computers and networks. Si/SiGe has

become a front­runner for spin qubits that prioritise long coherence and integration

with classical electronics, which is ideal for dense quantum processors with error

correction. On the other hand, Ge/SiGe is emerging as a compelling alternative with

potentially faster qubit gates and native photonic interfacing while still retaining
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long coherence through nuclear­spin­free isotopes. These results are summarised in

Table 2.1.

Properties GaAs/AlGaAs Si/SiGe Ge/SiGe

Bandgap ∼870 nm 1100 nm (indirect)

365 nm (direct)

1875 nm (indirect)

1550 nm (direct)

Mobility

(cm2/𝑉 ⋅s)
107 (𝑒−)

104 ∼ 105 (ℎ+)
105 ∼ 106 (𝑒−)

104 (ℎ+)
104 (𝑒−)

105 ∼ 106 (ℎ+)

Effective mass

(𝑚𝑒)
𝑚∗

𝑒 ≈ 0.067
𝑚∗

ℎ ≈ 0.35 ∼ 0.40
𝑚∗

𝑒 ≈ 0.19
𝑚∗

ℎ ≈ 0.25 ∼ 0.30
𝑚∗

𝑒 ≈ 0.12
𝑚∗

ℎ ≈ 0.05 ∼ 0.10

Spin lifetime
1 ∼ 100 ns (𝑒−)
0 ∼ 100 ps (ℎ+)

1 ∼ 10 𝜇s (𝑒−)
0 ∼ 10 ns (ℎ+)

1 ∼ 10 ns (𝑒−)
100 ∼ 500 ns (ℎ+)

Nuclear spin
Every stable isotope

has nuclear spin

0 for 28,30Si

1/2 for 29Si

0 for 70,72,74,76Ge

9/2 for 73Ge

Table 2.1: Comparison between material properties for different quantum well

systems.

2.1.1 Persistent photo-conductivity
From the previous section we can draw the conclusion that Ge is the best suited ma­

terial candidate for photon­spin interface technologies. There is, however, one more

important characteristic involving light­matter interactions which must be checked:

Persistent photo­conductivity (PPC). This phenomenon, observed primarily in

GaAs/AlGaAs, refers to a long­lived photo­induced increase in charge carriers, which

persists long after the illumination source has been turned off. In GaAs quantum

wells, PPC comes from photo­induced carrier de­trapping at certain defect states.

The two main contributors are DX centres in the AlGaAs barrier (associated with

donor impurities like Si), and deep­level traps in the GaAs (such as Arsenic­antisite

defects). These defects can trap charge carriers and have metastable configurations

that lead to PPC.

DX centres are deep donor states in AlGaAs that form when a donor atom under­

goes lattice relaxation. It acquires, in the process, a negative charge by capturing an

electron. At low temperatures, many donors become neutral or negatively charged,
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reducing the free electron density. Illumination can excite these trapped electrons

into the conduction band, suddenly increasing the free carrier density. Crucially,

once emptied by light, a DX centre has a large capture barrier and cannot easily

recapture an electron at low temperature. In essence, the donor remains ionized and

the liberated electron stays in the 2DEG, so the photo­conductivity persists until

thermal energy is supplied. This behavior – carrier freeze­out in the dark and persist­

ent ionisation under illumination – is the hallmark of DX centres. Deep­level traps,

on their turn, have been experimentally detected in the GaAs layer itself (as well as

at the interface with AlGaAs) and cause similar metastable states which are shielded

against charge recombination. This is contrastive with ordinary photo­conductivity

where the exciton pair quickly recombine once illumination ceases. Quantitatively,

studies have shown that short light irradiation times can nearly double the carrier

density in modulation­doped GaAs quantum wells. This order of magnitude remains

typical – the sheet density is boosted by a factor of ∼2–3 in many cases. The effect

tends to saturate after ionising the available traps: once most DX centres or deep

traps have been emptied by light, further illumination yields diminishing increments

in carrier density. Notably, the persistent fraction of photo­generated carriers can

depend on specifics like dopant concentration and illumination history.

The consequences of this phenomenon, in particular for device operation are

of great importance. Particularly for quantum dots, the increase in the background

carrier concentration raises the Fermi level of the 2DEG, shifting threshold values of

the gates. In relation to dot occupancy, after illumination, a given quantum dot will

hold more electrons at the same gate voltages, requiring frequent adjustments. In

essence, the device’s whole band structure is affected and thermal cycling is required

to reset it. Typically, quantum dot qubits or Coulomb blockade measurements are

performed in the dark (after an initial illumination) to avoid photon­induced noise.

Continuous above­band gap illumination would generate non­equilibrium electrons

and holes that could tunnel into the dot or screen the gates unpredictably.

While photo­spin conversion has been successfully performed in GaAs/AlGaAs

quantum dots, PPC is another reason for looking for a different material for scal­

able quantum photo­spin conversion interfaces. As Ge checks many of the other

boxes for efficient implementation of such interfaces, it is important to look for this

phenomenon in Ge as well.

2.2 Material properties of Germanium
Germanium is a period 4 semiconductor of the Carbon group (group 14), with atomic

number 𝑍 = 32. It has five stable isotopes: 70Ge, 72Ge, 73Ge, 74Ge, and 76Ge. It

crystallises in the diamond­cubic structure, identical to that of Silicon and diamonds,

see Figure 2.1. This structure can also be described as two inter­penetrating face­

centred cubic (FCC) sublattices, displaced by one quarter of the body diagonal vector.

At room temperature, Ge has a lattice constant 𝑎 of approximately 5.658Å, which is

about 4.2% larger than that of Si. The FCC lattice primitive vectors can be expressed
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Figure 2.1: Ge crystal lattice: (a) Diamond­cubic crystal structure. (b) Closest

neighbours tetrahedron structure. (c) Bird­eye view of the structure. Source: [107]

as

a1 = 𝑎
2

(0, 1, 1), a2 = 𝑎
2

(1, 0, 1), a3 = 𝑎
2

(1, 1, 0). (2.1)

Each lattice point has a two­atom basis, with basis vectors given by

0 = (0, 0, 0), d = (1
4

, 1
4

, 1
4

) 𝑎. (2.2)

The atomic positions in the crystal are given by

R = 𝑛1a1 + 𝑛2a2 + 𝑛3a3 + d, (2.3)

where 𝑛𝑖 are integers running over all lattice points, and d takes the values 0 and

(1
4 , 1

4 , 1
4) 𝑎. Each atom in the lattice is tetrahedrally coordinated, meaning they have

four nearest neighbours at a distance

𝑑 =
√

3
4

𝑎. (2.4)

For Ge, 𝑑 ≈ 2.45 Å. These neighbours’ bonds are formed via an 𝑠𝑝3­hybridised

tetrahedral network, resulting in strong covalent bonding throughout the crystal, see

Figure 2.2. The lattice exhibits a highly symmetrical crystal structure, belonging

to space group 𝐹𝑑3𝑚 (No. 227) and to point group 𝑂ℎ
1. It presents, amongst

its symmetries, inversion, mirror planes, and roto­inversion. Its centre­symmetry,

in particular, prohibits certain optical and electrical effects in the bulk, such as

piezoelectricity and second­order nonlinear optical phenomena. Its reciprocal lattice

1Octahedral symmetry



36 CHAPTER 2. GERMANIUM SYSTEMS

Figure 2.2: 𝑠𝑝3 hybridisation in Ge: Tetrahedral bonding network characteristic

of the diamond­cubic structure.

is body­centred cubic (BCC), with primitive reciprocal lattice vectors given by

b1 = 2𝜋
𝑎

(−1, 1, 1), b2 = 2𝜋
𝑎

(1, −1, 1), b3 = 2𝜋
𝑎

(1, 1, −1). (2.5)

Figure 2.3 shows Ge’s band­structure. We can see the valence maximum is located at

Γ point, while the conduction minimum is located at L point, making Ge an indirect

band­gap semiconductor. At L point, the band­gap is approximately 0.66 eV, while

the direct gap at Γ point is approximately 0.80 eV. At Γ point, degenerate valence

Heavy­hole (HH) and Light­hole (LH) subbands can be found, as well as the Split­off

(SO) subband, which is separated from the others by a spin­orbit splitting energy of

approximately 0.29 eV. The strong spin­orbit coupling in the valence band plays an

important role in defining spin dynamics and optical selection rules.

Ge has a Debye temperature of approximately 374K. This temperature indicates

the capping at which all vibrational modes are excited. Its thermal conductivity is

relatively low compared to Si, due to its heavier atomic mass and lower phonon

group velocities. Due to having two atoms per primitive cell, Ge exhibits three

acoustic and three optical phonon branches. The optical phonon frequency at the

Γ point is approximately 300 cm−1 (around 37 meV). Due to its cubic symmetry,

longitudinal optical (LO) and transverse optical (TO) phonons are degenerate at Γ.
From an optical perspective, the absorption edge corresponds to the indirect

band gap. Ge possesses a high refractive index, approximately 4.0 around 1.5 𝜇m.
It absorbs much of the visible spectrum but remains transparent in the mid­infrared,

making it attractive for infrared optics.
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Figure 2.3: Ge bandstructure. Bandstructure of bulk Ge.

Mechanically, Ge is more brittle than Si and tends to form point defects such

as vacancies, interstitials, and antisites. Self­interstitials and vacancies in Ge can

readily migrate at elevated temperatures, impacting diffusion processes. It can be

n­type doped by Sb or P, and p­type doped by B or Ga. Due to its small band gap, it

exhibits a high intrinsic carrier concentration.

Finally, Ge’s electronic band­structure is highly sensitive to strain. Tensile strain

reduces the Γ­L conduction band energy separation, enhancing direct­gap transitions.
Conversely, compressive strain can elevate the heavy­hole band above the light­hole

band, thus modifying optical transition probabilities.

2.3 Spin-orbit coupling and g-factor tunability
Spin­orbit coupling (SOC) arises from the relativistic interaction between an elec­

tron’s spin and its orbital motion. In the electron’s rest frame, electric fields E

transform into an effective magnetic field B′ given by

B′ = −v × E

𝑐2 , (2.6)

where v is the velocity of the lab frame in relation to the electron’s rest frame, and 𝑐
is the speed of light. The electron’s magnetic moment 𝜇𝑠 couples to this field via

the spin­orbit (SO) Hamitonian

𝐻SO = −𝜇𝑠 ⋅ B′. (2.7)

For an electron in a single atom, the electric field is given by the central Coulomb

potential 𝑉 (r) through
E = −∇𝑉 (r). (2.8)
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Writing then v in terms of the momentum p, v = p

𝑚0
, where 𝑚0 is the electron’s

mass, we have the effective magnetic field as

B′ = −v × E

𝑐2 = − 1
𝑚0𝑐2 p × (−∇𝑉 ) = 1

𝑚0𝑐2 (∇𝑉 × p). (2.9)

The magnetic moment operator is given by

𝜇𝑠 = −𝑔𝑠𝜇𝐵
ℏ

S = − 𝑒ℏ
2𝑚0𝑐

𝜎, (2.10)

where 𝜇𝐵 is Bohr’s magneton, 𝑒 is the electronic charge and 𝜎 are the Pauli matrices.

Since the orbital angular momentum operator is defined as L = r × p, we can write,

for a central potential,

∇𝑉 × p = 1
𝑟

𝑑𝑉
𝑑𝑟

L. (2.11)

Finally, replacing equations (2.9) through (2.11) in equation (2.7), the atomic SO

Hamiltonian can be written as

𝐻SO = ℏ
4𝑚2

0𝑐2
1
𝑟

𝑑𝑉
𝑑𝑟

L ⋅ 𝜎. (2.12)

As the name suggests, this phenomenon couples the spin angular momentum S with

the orbital angular momentum L, resulting in the total angular momentum J,

J = L + S, (2.13)

which becomes the relevant quantum number, with allowed eigenstates labelled by

𝑗 = 𝑙 ± 1
2 .

Using first­order perturbation theory, the energy correction due to SOC is,

Δ𝐸SO = ℏ2

2𝑚2
0𝑐2 ⟨1

𝑟
𝑑𝑉
𝑑𝑟

⟩ ⟨L ⋅ S⟩, (2.14)

where

⟨L ⋅ S⟩ = ℏ2

2
[𝑗(𝑗 + 1) − 𝑙(𝑙 + 1) − 𝑠(𝑠 + 1)]. (2.15)

The same formalism can be used for crystals, with the difference that now the

effective magnetic field B′ is created by periodic potentials 𝑉 (r) = 𝑉 (r+R). Such
potentials are not central, and, rigorously, the crystal SOC Hamiltonian is given by

𝐻SO = ℏ
4𝑚2

0𝑐2 (∇𝑉 (r) × p) ⋅ 𝜎. (2.16)

Near atomic sites, however, and at Γ point, the potential can be approximated to a

nearly central one, and 𝐻𝑆𝑂 can be written as

𝐻SO ≈ 𝜆L ⋅ S, (2.17)
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where

𝜆 = ℏ
4𝑚2

0𝑐2 ⟨1
𝑟

𝑑𝑉
𝑑𝑟

⟩ . (2.18)

This makes clear how this Hamiltonian acts on angular momentum states. It also

explains how the HH­LH degeneracy is lifted at Γ point. For k = 0, the periodic
potential Hamiltonian (excluding SOC) 𝐻0 yields 𝑝­like orbitals with 𝑙 = 1. Ac­
counting for spin, this results in six degenerate states. By incorporating SOC, 𝑙 and
𝑠 must be combined via

𝑗 = 𝑙 ± 𝑠 → 𝑗 = 3
2

and 𝑗 = 1
2

, (2.19)

yielding

𝑚𝑗 = ±3
2

, ±1
2

. (2.20)

For 𝑗 = 3
2 , four states are possible, |𝑚𝑗 = ±3/2⟩ (HH) and |𝑚𝑗 = ±1/2⟩ (LH). For

𝑗 = 1
2 , two states are possible, |𝑚𝑗 = ±1/2⟩ (SO). The energies associated with

these states are given by

𝐸3/2 = 𝜆
2

ℏ2, 𝐸1/2 = −𝜆ℏ2, (2.21)

with the spin­orbit splitting energy given then by

ΔSO = 𝐸(1/2) − 𝐸(3/2). (2.22)

The strength of the SOC scales strongly with the atomic number 𝑍 as 𝜆 ∝ 𝑍4. For

Ge (𝑍 = 32), this results in a spin­orbit splitting energy of ∼ 0.29 eV2.

By using k ⋅ p perturbation theory, the full Hamiltonian (taking into account

SOC and k ≠ 0 effects), can be written as an effective, semi­empiric Luttinger­Kohl

Hamiltonian:

𝐻𝑣 = − ℏ2

2𝑚0
[(𝛾1 + 5

2
𝛾2) 𝑘2 − 2𝛾2 ∑

𝑖
𝑘2

𝑖 𝐽2
𝑖 − 4𝛾3 ∑

𝑖≠𝑗
𝑘𝑖𝑘𝑗{𝐽𝑖, 𝐽𝑗}], (2.23)

where 𝛾1, 𝛾2, and 𝛾3 are Luttinger parameters, which represent second­order perturb­

ative corrections in k ⋅ p theory involving virtual coupling to remote bands. These
parameters are usually determined experimentally.

SOC can also play a part in spin relaxation. In crystals, it causes Bloch states to

no longer be pure spin eigenstates. Instead, each eigenstate becomes a mixture of

spin up and down,

|𝜓𝑛(k)⟩ = 𝑎𝑛(k)|↑⟩ + 𝑏𝑛(k)|↓⟩, (2.24)

2Strong SOC is also responsible for phenomena like topological insulators, where spin­

momentum locking occurs at surfaces.
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with coefficients 𝑎𝑛(k) and 𝑏𝑛(k) depending on the crystal momentum k and on the

strength of the coupling. In the presence of SOC, even if the scattering potential

is spin­independent, the Bloch eigenstates have a mixed spin character. When an

electron scatters (off phonons or impurities, for example), its total wave­function

changes, and because of the mixed spin content, spin flips can occur indirectly.

The so­called Yafet correction accounts for explicit spin­flip terms in the scat­

tering matrix elements, such as contributions from the spin­dependent part of the

potential or additional SOC effects during scattering. This correction is particularly

important at lower temperatures or in materials with strong SOC. Furthermore, at

higher temperatures, the increased number of phonons enhances scattering events

and reduces the momentum relaxation time, thereby accelerating spin relaxation.

So far, the 𝑔­factor has been introduced in a subtle manner, but it is of crucial
importance for the discussion. The 𝑔­factor quantifies the coupling between a charge
carrier’s angular momentum and external magnetic fields B. A free electron, for

example, has no orbital angular momentum contribution to its magnetic moment, so

it couples to B via its spin. In a crystal, however, this coupling involves the total

angular momentum, which depends on the crystalline structure itself. For this reason,

since crystals are not necessarily isotropic, the coupling can change depending on

the direction of B in relation to the lattice. This leads to anisotropic 𝑔­tensors, as we
can see from the Zeeman Hamiltonian

ℋ𝑍 = 𝜇𝐵B ⋅ g ⋅ S = 𝜇𝐵 [𝐵𝑥 𝐵𝑦 𝐵𝑧] ⎡⎢
⎣

𝑔𝑥𝑥 𝑔𝑥𝑦 𝑔𝑥𝑧
𝑔𝑦𝑥 𝑔𝑦𝑦 𝑔𝑦𝑧
𝑔𝑧𝑥 𝑔𝑧𝑦 𝑔𝑧𝑧

⎤⎥
⎦

⎡⎢
⎣

𝑆𝑥
𝑆𝑦
𝑆𝑧

⎤⎥
⎦

. (2.25)

In Ge, the conduction band has 𝑠­like orbitals with 𝑙 = 0, and so, their effective
𝑔­factor is nearly isotropic. Holes in the valence band, however, have strongly
anisotropic 𝑔­tensors, since they have significant angular momenta with different
projections along different directions.

This dependency of the 𝑔­factor (tensor) on the structure of its environment is
what allows for its tuning. Low­dimensional systems, such as quantum wells (2D),

quantum wires (1D), and quantum dots (0D), break the bulk symmetries and modify

the energy bands, directly influencing how charge carriers couple to magnetic fields.

Anisotropic strain (either tensile or compressive) on the crystal also influences the

𝑔­tensor for the same reason: it modifies the environment, breaking symmetries and
altering the energy band.

This effect can also be controllably achieved via the application of an electric

field along the growth direction of the crystal. This is known as the Rashba effect.

For an electric field given by

∇𝑉 ≈ 𝑒𝐸𝑧 ̂𝑧, (2.26)

and by noticing that, for a 2D system, p = ℏk, we have, from equation (2.16), the

Rashba Hamiltonian as

𝐻𝑅 = 𝛼𝑅(k × E) ⋅ J, (2.27)
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Figure 2.4: Quantum well types: Type I : Both electrons and holes are confined

in the same material. The conduction band minimum (CBM) and valence band

maximum (VBM) of the well material lie within those of the barrier material. Type

II𝑐:Electrons are confined in the well, while holes are in the barrier. Type II𝑣: Holes

are confined in the well, while electrons are in the barrier. Source: [108]

where

𝛼𝑅 = 𝑒ℏ2⟨𝐸𝑧⟩
4𝑚2

0𝑐2 , (2.28)

is the Rashba coefficient. As we can see, this Hamiltonian depends on the total

angular momentum, as 𝑙 and 𝑠 have already been coupled by the intrinsic spin­orbit
Hamiltonian. The Rashba Hamiltonian modifies these states, however, changing the

expectation value of J and, consequently, changing the 𝑔­tensor as well.

2.4 Fundamentals of quantum wells

Quantum wells (QW) are perhaps one of simplest non­trivial quantum systems

Quantum Mechanics’ students are introduced to. While introductory textbooks

usually treat them as an almost abstract system, without mention of real world imple­

mentations, in practice, quantum wells are built from thin layers of semiconductor

materials with a lower band gap, sandwiched between two layers of materials with

higher band gaps. This band off­set confines charge carriers, serving as barriers. Ge

quantum wells are, for example, usually placed in between SiGe barriers.

When two semiconductors are joined, their conduction and valence band edges

form discontinuities known as band offsets. In type­I wells, both electrons and holes

are confined in the well. In type­II, electrons and holes are confined in different layers,

see Figure 2.4. In a thin well (usually of a few nm), charge carriers are confined

along the growth direction, but remain free to move in­plane. This confinement

leads to quantised energy levels, similar to the familiar particle­in­a­box problems.

In a simple one­dimensional infinite barrier approximation,
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𝐸𝑛 = ℏ2𝜋2𝑛2

2𝑚∗L2
𝑧

, (2.29)

where 𝑛 is the quantised energy level, 𝑚∗ is the effective mass in the confinement

direction and L𝑧 is the width of the well. In the two­dimensional case,

𝐸𝑛(𝑘𝑥, 𝑘𝑦) = 𝐸𝑛 +
ℏ2(𝑘2

𝑥 + 𝑘2
𝑦)

2𝑚∗ . (2.30)

In bulk semiconductors, the conduction band edge 𝐸𝑐 defines the minimum

energy for free electrons. In a quantum well,

𝐸𝑐,𝑛 = 𝐸bulk
𝑐 + 𝐸𝑛, (2.31)

where 𝐸𝑛 is the quantised confinement energy. Similarly, for holes in the valence

band,

𝐸𝑣,𝑛 = 𝐸bulk
𝑣 − 𝐸′

𝑛, (2.32)

where 𝐸bulk
𝑣 is the valence band edge and 𝐸′

𝑛 is the confinement energy for holes,

which depends on the hole effective mass 𝑚∗
ℎ. Assuming the confinement happens

along the 𝑧­axis, carriers are still free to move in the 𝑥, 𝑦 directions. Their total

energy is then

𝐸(k∥) = 𝐸𝑛 +
ℏ2k2

∥

2𝑚∗ , (2.33)

where k∥ is the in­plane wave vector. We see then that each discrete 𝑛­level forms a
two­dimensional subband dispersion. Because of the confinement energies 𝐸𝑛 and

𝐸′
𝑛, the effective band­gap of the well increases:

𝐸QW
𝑔 = 𝐸bulk

𝑐 − 𝐸bulk
𝑣 + 𝐸𝑛 + 𝐸′

𝑛. (2.34)

This is the reason why quantum wells often exhibit blue­shifted photo­luminescence

when compared to the bulk material.

2.5 Photo-spin conversion mechanisms
We have already seen in the Introduction a little about how photo­spin conversions

work based on Vrijen’s and Yablonovitch’s work [100]. Nevertheless, let us now, for

the sake of completeness, discuss photo­spin conversion mechanism in more detail.

In particular in relation to Ge quantum wells.

Photons can be polarised linearly or elliptically. From a classical perspective, this

corresponds to the oscillation direction of the electric field. If it oscillates along the ̂e

direction, light is said to be ̂e­polarised. If the oscillation direction changes, however,

such that the oscillation maxima trace an ellipse on the plane perpendicular to the

propagation direction, light is said to be elliptically­polarised. In the special case

where the ellipse has its semi­major axis in equal length to its semi­minor axis, light
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is said to be circularly­polarised. A circularly polarised photon carries an angular

momentum of ±ℏ, where 𝜎+ = +ℏ is called a right­hand circular polarisation and

𝜎− = −ℏ a left­hand circular polarisation.

The interaction of electromagnetic radiation with charge carriers is described by

the coupling Hamiltonian

𝐻 = 1
2𝑚

(p + 𝑒A(r, 𝑡))2 + 𝑉 (r), (2.35)

whereA(r, 𝑡) is the vector potential, which is connected to the electromagnetic fields
via

E = −∇𝜙 − 𝜕A
𝜕𝑡

, B = ∇ × A, (2.36)

being 𝜙 the scalar potential. These potentials are not uniquely defined and can be

transformed via gauge transformations,

A′ = A + ∇Λ, 𝜙′ = 𝜙 − 𝜕Λ
𝜕𝑡

, (2.37)

without affecting the physical fields E and B. Expanding the interaction term in the

Hamiltonian we obtain

1
2𝑚

(p + 𝑒A)2 = p2

2𝑚
+ 𝑒

2𝑚
(p ⋅ A + A ⋅ p) + 𝑒2A2

2𝑚
. (2.38)

By considering weak electromagnetic fields, A2 can be ignored. If the wavelength

of the incident light is much larger than the relevant atomic scale (e.g. the lattice

constant 𝑎), the spatial part of its plane­wave description can be approximated to

𝑒𝑖k⋅r ≈ 1 + 𝑖k ⋅ r + … . (2.39)

This means the spatial variation of the field over the electronic wave­functions is

negligible and we can approximate the field as being spatially uniform (over the unit

cell):

A(r, 𝑡) ≈ A(𝑡). (2.40)

In the Coulomb gauge (∇ ⋅ A, 𝜙 = 0), we have then that

E(𝑡) = −𝜕A(𝑡)
𝜕𝑡

, (2.41)

which is independent of r, making p andA commutable. The interaction Hamiltonian

is then:

𝐻′ = 𝑒
𝑚
p ⋅ A. (2.42)

Now, this is not the total Hamiltonian, which is given by

𝐻 = 𝐻0 + 𝐻′ , 𝐻0 = 1
2𝑚

p2 + 𝑉 (r). (2.43)
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The light interaction is, however, being treated perturbatively, meaning the actual

eigenstates are small deviations of the eigenstates of 𝐻0. For 𝐻0, the following

relation is valid:

p = 𝑖𝑚
ℏ

[𝐻0, r]. (2.44)

Assuming then its approximate validity, and assuming an harmonic field of angular

frequency 𝜔, 𝐴(𝑡) = 𝐴0𝑒−𝑖𝜔𝑡, such that

A(𝑡) = −𝑖
𝜔
E(𝑡), (2.45)

where equation (2.41) was used, we have

𝐻′ = 𝑒
ℏ𝜔

[𝐻0, r] ⋅ E. (2.46)

Using this Hamiltonian to connect a valence eigenstate |𝑣⟩ to a conduction eigenstate
|𝑐⟩ of 𝐻0 we have

⟨𝑐| [𝐻0, r] ⋅ E |𝑣⟩ = (𝐸𝑐 − 𝐸𝑣) ⟨𝑐| r ⋅ E |𝑣⟩ . (2.47)

Now, energy conservation demands the photon’s energy is equal to the gap the charge

must bridge to go from |𝑣⟩ to |𝑐⟩, that is,

ℏ𝜔 = 𝐸𝑐 − 𝐸𝑣. (2.48)

The interaction Hamiltonian in the electric dipole approximation is then

𝐻′ = d ⋅ E, (2.49)

where

d = 𝑒r. (2.50)

This first order coupling of d and E is what gives this perturbative approach the

electric dipole approximation name. For Ge, the band­gap lies in the telecommunic­

ation waveband ­ 1.3𝜇m ∼ 1.6𝜇m ­ which is from over 2000 to nearly 3000 times

longer than the lattice constant. The electric dipole approximation is then valid on

this case.

Transition probability amplitudes are given by the transition matrix elements

𝑀𝑐𝑣 = ⟨𝑐|𝐻′|𝑣⟩ = 𝑒⟨𝑐|E ⋅ r|𝑣⟩. (2.51)

The photon polarisation is usually incorporated via the polarisation vector e, giving

us

𝑀𝑐𝑣 ∝ ⟨𝑐|e ⋅ r|𝑣⟩. (2.52)

For circularly polarised light propagating along the 𝑧­direction, polarisation vectors
are defined as

𝜎+ = 1√
2

(e𝑥 + 𝑖e𝑦) (right­handed), (2.53a)

𝜎− = 1√
2

(e𝑥 − 𝑖e𝑦) (left­handed). (2.53b)
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By adding 𝜎0 = e𝑧 to these equations, we have a complete spherical basis for

describing photonic polarisation: 𝜎±,0 = {𝜎+, 𝜎0, 𝜎−}. In this spherical basis 𝜎±,0

forms a rank­1 spherical tensor, with the right­handed polarisation being simply

𝜎+ = (1, 0, 0), and the left­handed polarisation 𝜎− = (0, 0, 1). The spatial operator
r can be rewritten in a similar fashion,

𝑟+ = 1√
2

(𝑥 + 𝑖𝑦), 𝑟− = 1√
2

(𝑥 − 𝑖𝑦), 𝑟0 = 𝑧. (2.54)

forming another rank­1 spherical tensor r±,0 = 𝑟𝑞. This allows us to use theWigner­

Eckart theorem to calculate the optical transition selection rules.

Theorem 2.5.1 (Wigner­Eckart theorem) Thematrix elements of a spherical tensor

operator 𝑇 (𝑘)
𝑞 between angular momentum eigenstates can be factorized as

⟨𝑗′, 𝑚′|𝑇 (𝑘)
𝑞 |𝑗, 𝑚⟩ = ⟨𝑗, 𝑚; 𝑘, 𝑞|𝑗′, 𝑚′⟩⟨𝑗′||T(𝑘)||𝑗⟩, (2.55)

where ⟨𝑗, 𝑚; 𝑘, 𝑞|𝑗′, 𝑚′⟩ is a Clebsch–Gordan coefficient and ⟨𝑗′||𝑇 (𝑘)||𝑗⟩ is the
reduced matrix element, which is independent of 𝑚 and 𝑞.

The Clebsch­Gordan coefficients are given by

⟨𝑗, 𝑚; 𝑘, 𝑞|𝑗′, 𝑚′⟩ = 𝛿𝑚′,𝑚+𝑞√(2𝑗′ + 1)(𝑗′ + 𝑗 − 𝑘)!(𝑗′ − 𝑗 + 𝑘)!(𝑗 − 𝑗′ + 𝑘)!
(𝑗 + 𝑘 + 𝑗′ + 1)!

× √(𝑗′ + 𝑚′)!(𝑗′ − 𝑚′)!(𝑗 − 𝑚)!(𝑗 + 𝑚)!(𝑘 − 𝑞)!(𝑘 + 𝑞)!

× ∑
𝑡

(−1)𝑡

𝑡!(𝑗 + 𝑘 − 𝑗′ − 𝑡)!(𝑗 − 𝑚 − 𝑡)!(𝑘 + 𝑞 − 𝑡)!

× 1
(𝑗′ − 𝑘 + 𝑚 + 𝑡)!(𝑗′ − 𝑗 − 𝑞 + 𝑡)!

.

(2.56)

The Wigner­Eckart theorem addresses the components of a spherical tensor operator.

In our case this is r±,0, as
±,0 is not an operator, but a rank­1 spherical tensor

characterising the photon’s circular polarisation. Considering that, for two tensors

T(𝑘) and U(𝑘),

T(𝑘) ⋅ U(𝑘) = ∑
𝑞

(−1)𝑞 𝑇 (𝑘)
−𝑞 𝑈 (𝑘)

𝑞 , with 𝑞 = 0, ±1, (2.57)

we have that

⟨𝑗2, 𝑚2|𝜎±,0 ⋅ r±,0|𝑗1, 𝑚1⟩ = ∑
𝑞

(−1)𝑞𝜎−𝑞 ⟨𝑗2, 𝑚2|𝑟𝑞|𝑗1, 𝑚1⟩

= ∑
𝑞

(−1)𝑞𝜎−𝑞 ⟨𝑗1, 𝑚1; 1, 𝑞|𝑗2, 𝑚2⟩ ⟨𝑗2||r±,0||𝑗1⟩

(2.58)
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From equation (2.56) we can readily observe the first optical transition selection

rule:

𝑚2 = 𝑚1 + 𝑞 (2.59)

From the numerator of the first square­rooted term in equation (2.56) we have the

term

(𝑗2 + 𝑗1 − 1)! (𝑗2 − 𝑗1 + 1)! (𝑗1 − 𝑗2 + 1)!.

Since factorials are not defined for negative integers, only transitions respecting

𝑗2 + 𝑗1 − 1 ≥ 0 → 𝑗2 ≥ 1 − 𝑗1, (2.60a)

𝑗2 − 𝑗1 + 1 ≥ 0 → 𝑗2 ≥ 𝑗1 − 1, (2.60b)

𝑗1 − 𝑗2 + 1 ≥ 0 → 𝑗2 ≤ 1 + 𝑗1 (2.60c)

can occur. This can be summarised in the second optical transition selection rule:

|𝑗1 − 1| ≤ 𝑗2 ≤ 𝑗1 + 1. (2.61)

The final optical transition selection rule is not derived from equation (2.56), but

rather from parity considerations about the spatial operator r. Since r is odd under

parity transformations 𝜋, it cannot connect orbitals of the same parity. We have then

that

𝜋𝑓 = −𝜋𝑖. (2.62)

This condition is connected to the wave­functions of charges in the valence and

conduction band, and so, is material dependent. Let us now analyse how different

valence bands can be connected to the conduction band. In Ge, at Γ point, the

valence bands can be approximate to 𝑝­orbitals and the conduction band to 𝑠­orbitals.
At conduction L point the orbitals are a mixture of 𝑝­ and 𝑑­orbitals, but with a
predominant odd parity profile. This does not mean, however, transitions from

valence Γ to conduction L do not happen. Ge is, after all, an indirect band­gap semi­

conductor. Such transitions are, however, phonon assisted, in order for momentum

and symmetry to be conserved. Nevertheless, in either case, the conduction band

angular momentum is dictated by electronic spin. Let us consider direct transitions

using the first selection rule:
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Heavy­holes: |𝑗1, 𝑚1⟩ = ∣3
2 , ±3

2⟩ , 𝑚2 = ±1
2

𝑞 = 𝑚2 ∓ 3
2

= {±1, ±2}. (2.63)

Notice the selection rule does not impose restrictions on 𝑞 itself, but it is limited by
the rank of the spherical tensor operator; in this case 𝑘 = 1 → 𝑞 = {+1, 0, −1}.
The physical transitions are then:

∣𝑚1 = −3
2

⟩ → 𝜎+ → ∣𝑚2 = −1
2

⟩ (2.64a)

∣𝑚1 = +3
2

⟩ → 𝜎− → ∣𝑚2 = +1
2

⟩ (2.64b)

Light­holes: |𝑗1, 𝑚1⟩ = ∣3
2 , ±1

2⟩ , 𝑚2 = ±1
2

𝑞 = 𝑚2 − ∓1
2

= {0, ±1}. (2.65)

We can see that transitions that preserve the sign of 𝑚 are only possible for 𝑞 = 0:

∣𝑚1 = ±1
2

⟩ → 𝜎0 → ∣𝑚2 = ±1
2

⟩ . (2.66)

On the other hand, circularly polarised light flips 𝑚:

∣𝑚1 = −1
2

⟩ → 𝜎+ → ∣𝑚2 = +1
2

⟩ (2.67a)

∣𝑚1 = +1
2

⟩ → 𝜎− → ∣𝑚2 = −1
2

⟩ (2.67b)

Split­orbit: |𝑗1, 𝑚1⟩ = ∣1
2 , ±1

2⟩ , 𝑚2 = ±1
2

𝑞 = ±1
2

− 𝑚2 = {0, ±1}. (2.68)

Similarly as for the light­holes case we have that

∣𝑚1 = ±1
2

⟩ → 𝜎0 → ∣𝑚2 = ±1
2

⟩ (2.69a)

∣𝑚1 = +1
2

⟩ → 𝜎+ → ∣𝑚2 = −1
2

⟩ (2.69b)

∣𝑚1 = −1
2

⟩ → 𝜎− → ∣𝑚2 = +1
2

⟩ (2.69c)

It is important to notice that all of these transitions are allowed by the selection rule

on 𝑗. The bounds of the second selection rule also allow transitions to states with, for

example, 𝑗 = 5/2 in some cases, but such states are not present in the conduction
band at Γ point.
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2.6 Ge quantum dots
Quantum dots are nanoscale quantum devices that confine charge carriers within

small, well­defined regions of a semiconductor quantum well. This strong confine­

ment discretizes the energy levels, giving rise to an artificial­atom­like spectrum. In

gate­defined quantum dots, confinement is achieved electrostatically using metallic

surface gates. By applying appropriate voltages, these gates change the potential

landscape of the underlying quantum well. Applying negative voltages locally, for

example, depletes the electron gas beneath the gates, allowing the creation of isolated

charge carrier islands through careful gate design and tuning3.

Typically, quantum dot architectures employ several types of gates. Plunger

gates tune the chemical potential inside the dot, effectively controlling its charge oc­

cupancy. Barrier gates define tunnel barriers, regulating coupling between quantum

dots and source/drain reservoirs or between multiple dots. Lead gates provide

connections to external charge reservoirs. Additionally, screening gates can help

stabilize and shape the overall potential landscape. This confinement potential can,

near its minimum, be approximated by an anisotropic two­dimensional harmonic

potential:

𝑉 (𝑥, 𝑦) = 1
2

𝑚∗𝜔2(𝛿𝑥2 + 𝑦2

𝛿
), (2.70)

where 𝑚∗ is the effective mass, and 𝛿 = 𝜔𝑥/𝜔𝑦 is the ratio of the confinement

strength (frequency) in each direction. This is a good approximation for finite

quantum systems of fermions with no unresolved degeneracies at the Fermi surface.

In other words, this is valid for a certain number of fermions in the quantum dot

for which a large energy is required for the addition of an extra fermion. Under

this assumption the fermions are considered to move independently. The energy

spectrum of this system is given by

𝜀𝑛𝑥,𝑛𝑦
(𝛿) = ℏ𝜔 [(𝑛𝑥 + 1

2
)

√
𝛿 + (𝑛𝑦 + 1

2
) /

√
𝛿] . (2.71)

Alternatively, in the case of a perfectly symmetric dot, we can take advantage of

the quantum dot’s circular symmetry and use polar coordinates to write the energy

spectrum as

𝜀𝑛,𝑚 = ℏ𝜔(2𝑛 + |𝑙| + 1), (2.72)

with 𝑛 = 0, 1, 2, … (radial quantum number) and 𝑙 = 0, ±1, ±2, … (angular mo­

mentum quantum number).

When a charge is added to the quantum dot it occupies the lowest possible energy

state available. Electrostatic repulsion prevents a second charge from entering the

dot unless it is supplied with sufficient energy. This phenomenon is called Coulomb

blockade and results in the characteristic Coulomb diamond features in transport

3This section’s discussion on the fundamentals of quantum dots is based on references [56,

109–111]
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measurements. In the Constant­interaction model, which assumes the Coulomb

interaction between charges does not depend on the number 𝑁 of charges, the

charging energy, that is, electrostatic energy cost to add an additional charge to the

dot is given by

𝐸𝐶 = 𝑒2

2𝐶
, (2.73)

where 𝐶 is the total capacitance of the dot. By manipulating the gate voltage above

the dot, its energy can be controlled and occupancy changed. For 𝑁 charges, the

quantum dot total energy is

𝐸(𝑁) =
[𝑒(𝑁 − 𝑁0) − 𝐶𝑔𝑉𝑔]2

2𝐶
+ ∑

𝑁
𝜀𝑛,𝑙, (2.74)

where 𝑁0 represents the background (neutralizing) charge, or the effective offset

charge in the quantum dot, 𝐶𝑔 is the capacitance between the quantum dot and the

gate and 𝑉𝑔 is the gate voltage. The last term is a sum over all the occupied states

given by equation (2.72). The dependency of quantum dots on the gate voltage 𝑉𝑔
makes their sensitiveness to electric field fluctuations (due, for example, to nearby

charge traps) clear.

Asingle quantum dot is directly connected to the source and drain leads. Charging

or depleting the dot involves tunneling charges from source to dot and from dot to

drain, respectively. This is modelled by the tunneling Hamiltonian ℋ𝑡:

ℋ𝑡 = ∑
𝑟=𝑆,𝐷

∑
𝑘,𝑛,𝜎

𝑇 𝑟
𝑘𝑛 𝑎†

𝑛,𝜎𝑟 𝑎𝑙,𝜎dot + h.c., (2.75)

where 𝑟 is the lead index (𝑆 for source and 𝐷 from drain), 𝑘 is the lead single­particle
energy, 𝑛 is the dot energy label, and 𝜎 is the spin label. 𝑇 𝑟

𝑘𝑛 are tunneling amplitudes,

𝑎†
𝑛,𝜎𝑟 is the creation operator at the leads and 𝑎𝑙,𝜎dot the annihilation operator in the

dot. The creation operator in the dot and annihilation operator in the leads are taken

into account by the Hermitian conjugate term. The tunneling matrix elements are

given by Fermi’s golden rule:

Γ𝑟(𝐸) = ℏ
2𝜋

∑
𝑘

|𝑇 𝑟
𝑘𝑛|2𝛿(𝐸 − 𝜖𝑘𝑟) = ℏ

2𝜋
|𝑇 𝑟|2𝜌𝑟(𝐸), (2.76)

where

𝜌𝑟(𝐸) = ∑
𝑘

𝛿(𝐸 − 𝜖𝑘𝑟), (2.77)

is the lead density of states (DOS). Explicitly, the tunneling amplitudes are give by

𝑇 𝑟
𝑘𝑛 = ∫ 𝑑r𝜓∗

𝑘,𝑟(r) 𝑉𝑇(r) 𝜓𝑛,dot(r), (2.78)

where 𝑉𝑇 describes the barrier potential connecting the states 𝜓∗
𝑘,𝑟(r) in the leads

and 𝜓𝑛,dot(r) in the dot. When charges tunnel through the quantum dot, from one
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lead to another, a conductance can be calculated for the quantum dot:

𝐺𝑟𝑟′(𝜇) = −2𝑒2 Γ Γ𝑟 Γ𝑟′

Γ
1

1 + 𝑓(Δ − 𝜇)
𝑓 ′(Δ − 𝜇), (2.79)

where

Γ = Γ𝑆 + Γ𝐷, (2.80)

𝑓(Δ − 𝜇) is the Fermi­Dirac distribution, Δ is the energy change in the dot when

another particle is added to it, and 𝜇 is the dot’s chemical potential.

In 2018, the first gate­defined Ge quantum dot was realised by Nico Hendrickx

and his team [112]. Their device employed a shallow Ge well between SiGe layers,

with superconducting Aluminium leads. The team demonstrated Coulomb blockade

and gate­tunability of the quantum dot, establishing it as a promising qubit platform.

In 2020, Hendrickx’s team realised a single­hole spin qubit in a quadruple quantum

dot, with single­shot readout and coherent Rabi control of the confined hole [113].

A long spin relaxation time of over 1 ms was measured and universal single­qubit

operations demonstrated. In the same year, fast two­qubit logic was established in

this system [114]. Via strong spin­orbit coupling, a Rabi frequency > 100MHz was

achieved, with single­qubit gates achieving 99.3% fidelity. These results showed that

Ge qubits can satisfy the DiVincenzo criteria4 with ultrafast, high­fidelity operations.

In 2021, Zhanning Wang and collaborators developed a theory of optimal opera­

tion points for Ge hole spin qubits [115]. By analysing electric field tunability and

spin­orbit effects, they identified ”sweet spots” where fast electric dipole spin reson­

ance coincides with vanishing dephasing from charge noise. This work predicts that

Ge hole qubits can simultaneously achieve high driving speeds and long coherence

time, overturning the speed–decoherence trade­off.

In the same year, Daniel Jirovec and collaborators demonstrated a low field

(10  mT) hole singlet–triplet qubit in a planar Ge double dot by exploiting large

out­of­plane g­factors in the system [116]. A two­axis control was achieved: rotation

by exchange energy manipulation (the energy difference between singlet and triplet

states) and by the 𝑔­factor difference. Gate­driven rotations with frequencies >100

MHz were achieved with dephasing times of ∼ 1 𝜇s. This showed Ge qubits with
coherence times comparable to GaAs/Si qubits, but operated at much lower magnetic

fields.

Also in 2021, Hendrickx’s team built a 2×2 array of Ge hole spin qubits, fully
coupled and controllable [117]. Four gate­controlled quantum dots were defined in

a planar device, coupled to neighbours via gate voltages, and implemented in one­,

4The DiVincenzo criteria are experimental conditions required for quantum computation and

communication establishement, according to David P. DiVincenzo. They are: 1 The physical system

must be scalable, with well defined qubits. 2 The system must allow the initialisation of qubits to a

fiducial state. 3 Quantum coherence times must be sufficiently long. 4 It must employ a universal

set of quantum gates. 5 It must be able to realise qubit­specific measurements. 6 It must be able

to convert between stationary and flying qubits. 7 It must transmit flying qubits between specific

locations faithfully.
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two­, three­, and four­qubit gate sequences. Dynamical decoupling was employed to

preserve coherence. This is the first demonstration of a small Ge quantum processor,

showing all­electrical multi­qubit operations.

In 2021, Stefano Bosco and collaborators proposed a new quantum dot design

based on asymmetric potentials that strongly squeeze the quantum dot in one direc­

tion, improving electric control via spin­orbit coupling [118]. Their design allows for

low­power ultra­fast operations in the GHz range by dramatically enhancing Rashba

spin­orbit coupling in heavy­hole qubits. The design relies on device geometry

rather than strain, suggesting a path to ultrafast hole qubit gates in standard Ge

heterostructures.

In 2022, Ke Wang’s team achieved ultra­fast coherent control of a hole spin

in a Ge nanowire double dot (hut wire) [119]. The strong spin­orbit coupling in

Ge enabled record Rabi oscillation frequencies (>540 MHz at 𝐵 = 100 mT) with
heavy­hole spins, corresponding to a spin­orbit length of only ∼ 1.5 nm. This work

solidified the potential of Ge hole spins for very high­speed control, satisfying the

fast gate criterion.

In the same year, He Liu and his team achieved gate­tunable spin–orbit coupling

in a Ge hut­wire double dot [120]. By electrically adjusting interdot tunneling, the

effective spin­orbit was controlled. Spin­blockade leakage measurements showed

that the spin­orbit length could be tuned from ∼ 2 nm up to ∼ 49 nm. This tunability

implies that Ge qubits’ electric dipole spin resonance strength can be electrically

controlled.

In 2023, Abhikbrata Sarkar and collaborators presented a theory of planar Ge

hole spin qubits with an in­plane magnetic field [121]. Analysing realistic quantum

dot confinements, they found highly anisotropic Rabi frequencies: Electron Dipole

Spin Resonance (EDSR) is maximal when the driving electric field is parallel to the

magnetic field 𝐵, and weaker for a perpendicular field. In­plane 𝑔­factors are also
shown to be strongly anisotropic for squeezed dots. Crucially, they show there is no

field orientation that completely nullifies dephasing, due to orbital spin­orbit effects.

The paper provides design rules (field orientation, quantum dot size) for optimized

Ge qubit operation.

In the same year Hanifa Tidjani and collaborators departed from planar Ge

quantum dots and proposed vertical stacks of strained Ge quantum wells double

quantum dot realisation [122]. Their system consists of vertically stacked quantum

dots separated by barriers; each barrier containing one quantum dot, with both

coupled to reservoirs. Transport was measured through each dot in parallel, con­

firming its well­controlled behaviour. This device architecture enables vertically

coupled qubits or multi­layer qubit designs.

Also in 2023, Patrick Del Vecchio and Oussama Moutanabbir proposed a ”light­

hole” gate­defined spin qubit in highly tensile­strained Ge quantum wells [123]. The

theory shows that squeezing the dot (low­dimensional confinement) can produce

light­hole states with spin­orbit dipole moments 100–1000× larger than heavy holes,

yielding ultrafast electrical control. They calculate that such light­hole qubits could

enable GHz gates (via strong combined Rashba effects) at low power, offering a
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new all­Ge hybrid qubit platform.

In the same year, Chien­An Wang’s team developed quantum simulations with

a Ge hole­qubit array [124]. The team used a linear array of four gate­defined Ge

QDs (four holes) to simulate resonating­valence­bond physics. They coherently

initialized singlet­product states and observed coherent oscillations between different

multi­spin states. By pulsing exchange couplings, they produced four­spin ”s­wave”

and ”d­wave” singlet states. The hole spins remained coherent over many oscillation

periods, demonstrating control of multi­qubit entangled states in Ge

In 2024, Arianna Nigro and collaborators achieved the integration of coplanar­

waveguide resonators with Ge/SiGe heterostructures [125]. They were able to

fabricate high­quality superconducting resonators and gate­defined double quantum

dots on the same reverse­graded Ge/SiGe wafer. The charge stability of the quantum

dots coupled to the resonator was measured and determined to be well­controlled.

This work shows the compatibility of planar Ge qubit devices with Quantum Electro­

Dynamics (QED) circuit, opening paths to long­range coupling and readout of Ge

spin qubits.

In the same year, Floor van Riggelen­Doelman and her team demonstrated spin­

qubit shuttling in a linear array of Ge quantum dots [126]. The team moved a

hole spin­qubit through multiple tunnel­coupled Ge quantum dots while preserving

coherence. Spin basis states were shuttled over effective lengths >300 𝜇m, and
superposition states over 9 𝜇m (extendable to 49 𝜇m via dynamical coupling). This

demonstrates the feasibility of moving hole qubits with strong Spin­Orbit Interaction

in Ge, enabling routing of qubits between registers.

In 2024, Hendrickx’s team demonstrated the ”sweet­spot” operation of a Ge hole

spin­qubit [127]. They studied a single­qubit’s in­plane 𝑔­tensor, revealing extreme
anisotropy and how electrical control affects it. Operating at the symmetry point

(zero first­order Zeeman dependence), they achieved coherence times ≈ 17.6, 𝜇s,
which is limited by 1/𝑓 noise, and demonstrated single­qubit gate fidelity >99%
even at relatively high temperatures of 𝑇 = 1 K. This work uncovers anisotropic
noise sensitivity in Ge and identifies qubit working points for long coherence.

In 2024 Yuan Kang and collaborators coupled a QED­circuit to a Ge hole double

quantum dot. The qubit pair was coupled to a superconducting microwave cavity and

and the hole­photon interaction measured. Using a calibrated virtual­gate method,

they fitted the charge stability and extracted a hole­cavity coupling rate of 𝑔/2𝜋 =
21.7 MHz. This is the first demonstrated integration of a Ge double quantum dot

with QED­circuit, paving the way for long­range qubit coupling and readout of Ge

spin qubits.

In 2024, Lazar Lakic and collaborators presented a superconducting lead­quantum

dot­superconducting lead junction in Ge/SiGe [128]. The superconducting leads

were made of a PtSiGe alloy. The Sc­QD­Sc Josephson junction strongly coupled

the dot to the two superconductors. By electrostratic gating, they were able to tune

the ratio of the charging energy 𝐸𝐶 to the induced gap, observing parity switches

(even­odd ground­state transitions) and Yu­Shiba­Rusinov bound states. A relevant

study for hybrid qubits systems.
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Finally, in 2025, John Rooney’s team demonstrated the gate­voltage tuning of a

hole singlet­triplet qubit frequency in Ge [129]. They observed that small changes in

the interdot barrier voltage can change the qubit resonance by an order of magnitude.

The effect is attributed to the position­dependent variation of the quantum well strain,

which can alter the hole’s 𝑔­factor. The variation in strain is believed to yield a
heavy­hole­light­hole bands mixing. The result highlights the highly tunnable nature

of 𝑔­tensors and frequency by electrostatic gates in Ge double quantum dots.

Such remarkable contributions collectively establish Ge quantum dots as a ver­

satile and promising solid­state qubit platform. They have strong and electrically

tunable spin­orbit coupling, large and anisotropic 𝑔­factors, and can display high­
fidelity control; important features for coherent spin manipulation. These properties

are also promising for Ge hole quantum dots as a platform for photo­spin conversion:

the large spin­orbit interaction facilitates spin generation via optical transitions,

enabling direct interfacing with photons for spin initialisation, manipulation, and

readout. These capabilities open a path for hybrid quantum architectures, where

stationary Ge spin­qubits can be coherently linked via photonic channels, satisfying

the demanding DiVincenzo criteria for quantum communication and distributed

quantum computing. Ge quantum dots are an important tool to bridge solid­state

quantum processors with photonic networks.

Despite these promising features, several significant challenges remain before

Ge quantum dots can realise their full potential in scalable quantum technologies.

There are, for example, fabrication complexities, such low fabrication yielding

and achieving uniform and precisely controlled quantum dot geometries, strain

profiles, and barrier heights. High­quality heterostructures with precise interface

smoothness and minimal disorder are important to ensure reproducible devices,

but understanding how surface roughness, traps, and non­uniform strain affect

performance is also important. Another challenge is engineering robust coupling

to photonic structures for efficient photo­spin conversion. Thermal management

and operation at higher temperatures, though recently improved, still require careful

optimisation. Addressing these issues is crucial in bridging laboratory demonstrations

into reliable building blocks of real networks.

2.7 Outline of this thesis
We have so far introduced fundamental concepts of classical and quantum inform­

ation processing and transmission. We have also, briefly outlined various qubit

candidates and discussed the challenges quantum networks must overcome. In par­

ticular, we introduced the concept of quantum repeaters and the Vrijen–Yablonovitch

protocol for photo­spin conversion. We have also discussed the advantages and

disadvantages of different material choices for photon­spin conversion platforms,

presenting Ge as a strong candidate. We discussed valence band degeneracies and

described how confinement effects, achieved through quantum well engineering,

can lift these degeneracies. We also derived the optical transition selection rules.
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Finally, we described recent achievements in Ge/SiGe heterostructure quantum well

devices, notably quantum dots.

While these discussions present Ge as an interesting platform for photo­spin

conversion, still, a few issues must be addressed, which is the goal of the present

work. For one, while a few groups have successfully developed Ge­based devices,

still many groups struggle with reproducibility and device yield due to gate leakages

caused by interfacial trap states and defects and to high ohmic contact resistances

due to poor diffusion conditions. So, optimising fabrication recipes is a crucial

step in developing reliable and reproducible devices. With this goal in mind, in

Chapter 3, we discuss fabrication methods and the specific challenges associated

with Ge­based systems. We present different surface cleaning protocols and evaluate

their performance via X­ray photo­electron spectroscopy (XPS) and Atomic Force

Microscopy (AFM) analysis.

Besides recipe optimisation, a second issue is relevant for employing Ge devices

as photo­spin platforms. The original proposal for the Vrijen­Yablonovitch protocol

considered GaAs as a platform. GaAs presents, however, a phenomenon which

makes its employment in photon­spin conversion devices less stable: persistent

photo­conductivity, [130, 131]. Persistent photo­conductivity in GaAs quantum

wells is verified when photons with energy above the bandgap energy generates

electron­hole pairs, which are preserved, to some extent, after illumination is stopped.

Verifying the stability of transport properties of Ge quantum wells with light irra­

diation is then an important task, as the presence of such phenomenon must be

ruled­out if Ge­devices are to proceed as photo­spin interfaces. Chapter 4 focuses

then on transport characterisation with light irradiation, discussing charge carrier

concentration increment factors, in­dark relaxation and possible mechanisms for

the measured photo­conductivity. Finally, in Chapter 5, we summarise our conclu­

sions on the viability of Ge/SiGe quantum well heterostructures as a platform for

photo­spin conversion technologies.
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Germanium devices fabrication

Ge was at the inception of solid­state electronics. It was, however, quickly

replaced in the industry by Si, due to its natural abundance and the higher quality

of its native oxide. On the other hand, on the purely scientific end of research,

GaAs became a go­to platform for proof of concepts and basic solid­state physics’

phenomena investigation due to the high quality of GaAs/AlGaAs heterostructures,

which can be made flat with atomic precision via advanced techniques in Molecular

Beam Epitaxy, allowing for minimal impurity scattering. This creates ultra­clean 2D

electron gases (2DEG), which are essential for quantum transport measurements, for

example. Many canonical devices and phenomena have been demonstrated first in

GaAs­based samples, such as the quantum Hall effect, measured in 1980 by Klaus

von Klitzing [132], the fractional quantum Hall effect, measured in 1982 by D. C.

Tsui’s team [133], the first measurement of Coulomb blockade phenomenon by T. A.

Fulton and G. J. Dolan in 1987 [134], and the first quantum point contact in 1988,

devised by David A. Wharam’s team in the Netherlands [135] and, independently,

by Bart J. van Wees’ team in Germany [136].

In the last decades, however, Ge has re­emerged as a topic of interest, in particular

due to its potential in computation and telecommunication industries. Ge’s band­gap

lies inside the telecommwaveband, and its compatibility with Si makes its integration

with the existing infrastructure natural. This renewed interest has also motivated

investigations on micro­fabrication techniques, as the similarities with Si are not

enough to warrant a simple transfer of methods from one material to the other. In

this chapter we will discuss the fabrication recipes tested and the corresponding

challenges faced, with particular focus to etching and cleaning effects on surface

composition and roughness, as clean, smooth surfaces are essential for ohmic metals

diffusion.

The samples discussed in this work were provided by Professor Kentarou Sawano,

from Tokyo City University, and by Delft. Tokyo City University’s samples are

grown by Molecular Beam Epitaxy and are labelled Sample A and Sample B.

Sample A is nominally undoped, but has some unintentional p­type contamination

which makes it conductive even with no gate voltage applied. Sample B, on the

other hand, has a B­doped layer bellow the quantum well. These heterostructures’

profiles can be seen in Figure 3.1.

55
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Delft’s sample was grown by Chemical Vapour Deposition and is nominally

undoped. It is labelled Sample C and its profile can be seen in Figure 3.2.

(a) Sample A: Undoped sample. (b) sample B: Doped sample.

Figure 3.1: Molecular Beam Epitaxy grown Ge/SiGe heterostructures: The

samples were provided by professor Kentarou Sawano from Tokyo City University.

Sample A is nominally undoped, but unintentional p­type contamination makes it

conductive even at 0V top gate voltages.

3.1 Device design
The devices fabricated for this study were conventional 6­terminals Hall bars (with

the addition of the contacts connected to top gates). The overall design consists of a

mesa structure on top of which the conduction channel is defined by top gates. These

gates are separated from the sample by anAluminium oxide (Al2O3) insulating layer.

The electrical contact with the channel is established via Al ohmic contacts, which

were connected to contact pads linking them to the wiring pads. Such pads were

made of a thin layer of Ti (10nm) followed by a thick layer of Au (200nm). The Hall

bar design can be seen in Figure 3.3.
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Figure 3.2: Chemical Vapour Deposition grown Ge/SiGe heterostructures:

Sample C ­ undoped sample provided by Delft [112].

3.2 Standard fabrication

In this section we will detail the standard steps for Hall bars fabrication, many of

which are shared with different types of devices fabrication such as quantum dots.

Standard cleaning:

The standard cleaning of the sample is done by Acetone (CH3COCH3) dip and

sonication, with the process being repeated once with a clean beaker and fresh

Acetone, followed by Isopropyl alcohol (C3H8O) dip and sonication. This process

is carried out in­between fabrication steps and before storing the sample.

Acetone is a powerful solvent for organic materials, but it has a relatively low

boiling point, ∼56∘C. Its vapour pressure at room temperature is, however, relatively

high, ∼30.6 kPa, which accounts for its fast evaporation in normal laboratory condi­

tions. Isopropyl alcohol (IPA), on the other hand, is less aggressive than Acetone,

but has a higher boiling point, ∼82.6∘C, and a lower vapour pressure, ∼4.4 kPa. It
cleans light organic residues and displaces water and Acetone molecules, allowing

the sample to dry cleanly. IPA is used as a final cleaner because the quick evaporation

of Acetone may leave patches of contaminant solutes behind, which can be observed

in samples as blackish spots. After this last dipping step, the sample is blown dry by
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Figure 3.3: Hall bar design: This design consists of two 6­terminals hall bars

fabricated on perpendicular directions, sharing one source/drain terminal. The

effective channel length is 300 nm, and the effective width is 60 nm.

a N2 gun and finally baked in a hot plate at 110
∘C for 3 minutes.

1. Position markers:

Accurate alignment of lithographic layers requires position markers, which are

metallic reference points deposited near the active regions of the sample. The process

begins by coating the sample in a positive photoresist; a photosensitive polymer that

has its chemical structure altered when irradiated by light of appropriate wavelengths.

The resist used was an LOR/S1813 bilayer resist. LOR is solidified by baking the

sample at 180∘C for 5 minutes. The S1813 layer is baked at 110∘C for 3 minutes. A

digital mask is used to expose pre­selected areas in an LED­lithography machine.

Such areas become then soluble in TMAH­based aqueous developers. They are

removed by dipping the sample for 2 minutes in MF CD­26 followed by a 2 minutes
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Figure 3.4: Position markers deposition process: A photoresist coating polymer

is applied on top of the sample. The polymer becomes soluble in TMAH­based

developer when exposed to light of appropriate wavelengths. The exposed areas

are removed and metal markers are deposited by electron­beam evaporation of Ti

(10nm) followed by Au (200nm).

dip in de­ionised water (DIW), see Figure 3.4. This procedure is repeated for every

subsequent lithographic layer.

The sample is then placed in an electron­beam evaporator, where a thin adhesion

layer of Ti (10 nm) is deposited, followed by a thicker Au layer (200 nm). Ti ensures

a stronger adhesion between the Au and the underlying semiconductor surface, as

Au alone has poor adherence to oxides. After the evaporation is complete, a lift­off

process is performed in Acetone (at 110∘C for 60 minutes), removing the remaining

resist and excess metal, leaving only the aligned position marks, see Figure 3.5. All

metal deposition steps follow this procedure.

2. Mesa etching:

Since several devices are fabricated on the same chip, it is important to cut commu­

nication channels between devices. This means isolating the quantum well regions

belonging to each device by etching mesas: small elevated regions where the gates
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Figure 3.5: Finished position marker: ATi (10nm) ­ Au (200nm) bilayer position

marker for lithographic layers alignment.

are placed. Mesas can be etched either by Reactive Ion Etching (RIE) or by chemical

etching. RIE is done in a plasma chamber with the following conditions:

SF6/CHF3/O2 35/10/19 cc/min atmosphere

Power = 60W

Frequency = 13.6MHz

Pressure = 1.5 Pa

In this process, the active etching component is the SF6 gas. An oscillatory radio

frequency electric field is applied between the electrodes of the chamber, ionising

the gas into a plasma. When the plasma is formed the following reaction happens:

SF6 ⟶ SF𝑥 + (6 − 𝑥) F + e−. (3.1)

Cations are then accelerated towards the sample surface causing two kinds of effects:

some atoms are physically sputtered from the surface by ionic bombardment, while

others have their reactivity enhanced. While the SF𝑥 fragments remain mostly inert,

fluorine radicals react with the SiO2 capping layer molecules according to

SiO2 (s) + 4 F → SiF4 (g) + O2 (g), (3.2)
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exposing the SiGe alloy layer underneath it. Once exposed, the Si and Ge atoms are

combined with the fluorine radicals via the following reactions

Si + 4F → SiF4 (g) (3.3)

Ge + 4F → GeF4 (g). (3.4)

The gaseous phases are then pumped out of the system.

The chemical etching is performed with a buffered oxidising etchant solution of

Acetic acid (CH3COOH), Hydrogen peroxide (H2O2), and Hydrofluoric acid (HF):

CH3COOH ∶ H2O2 ∶ HF = 3 ∶ 2 ∶ 1. (3.5)

 The chemical reaction happens according to the following steps:

Step 1: Etching of native SiO2 by hydrofluoric acid (HF):

SiO2 (s) + 6HF (aq) → H2SiF6 (aq) + 2H2O (l) (3.6)

Step 2: Oxidation of elemental Si and Ge by hydrogen peroxide:

Si (s) + H2O2 (𝑎𝑞) → SiO2 (𝑠) + H2O (𝑙) (3.7a)

Ge (s) + H2O2 (𝑎𝑞) → GeO2 (𝑠) + H2O (𝑙) (3.7b)

Step 3: Dissolution of the oxides by HF:

GeO2 (𝑠) + 4HF → GeF4 (𝑎𝑞) + 2H2O (3.8a)

GeF4 (𝑎𝑞) + 𝑥H2O → [GeF4(H2O)𝑥] (𝑎𝑞) (3.8b)

SiO2 (𝑠) + 6HF → H2SiF6 (𝑎𝑞) + 2H2O (3.9a)

H2SiF6 (𝑎𝑞) → SiF2−
6 (𝑎𝑞) + 2H+ (3.9b)

GeO2 is a water­soluble oxide that forms readily at laboratory conditions. It is

also more soluble in HF, increasing its etching rate. By comparison, the Si­based

reactions have higher activation energies and more stable native oxides, further

slowing the Si etching rate and making the solution highly Ge­selective. In both of

these processes theAcetic acid serves as a diluent, buffering and moderating the total

etching rate and stabilising the Hydrogen peroxide, improving reaction uniformity.

Figure 3.7 shows the comparison of etched depth as a function of time for both

methods. From Figure 3.7.a we can see the RIE process is faster and attacks Si and

Ge at a similar rate. From Figure 3.7.b, however, we notice the chemical etching

is selective towards Ge. The angle of the mesa walls is also a function of time and

varies with the method, see Figure 3.8. Chemical etching, in particular, was shown
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Figure 3.6: Etching process: The sample is covered by a photoresist polymer,

selected areas are exposed to light in an LED­lithography machine and dissolved

by an aqueous developer solution. After that, chemical or RIE etching is performed

until the mesa is etched below the quantum well.

Figure 3.7: Rate comparison between RIE and chemical etching: Etched depth

as a function of time for a) Reactive Ion Etching and b) chemical etching. The blue

curves correspond to bulk Si while the yellow curves correspond to the undoped

Ge/SiGe heterostructure.
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Figure 3.8: Etched wall angle comparison between RIE and chemical etching:

Etched mesa walls angle as a function of time for a) Reactive Ion Etching and

b) chemical etching. The blue curves correspond to bulk Si. The yellow curves

correspond to the undoped Ge/SiGe heterostructure.

Figure 3.9: Chemical etching trenching: Profilometer images of chemically

etched samples showing trenching effect: an over­etching of random areas, typically

surrounding the mesa walls.

to be prone to trenching, that is, the over­etching of random regions, typically around

the walls, see Figure 3.9.

3. Ohmic contacts

Ohmic contacts were fabricated by depositing Al via electron­beam evaporation.

The ohmic contacts connect to the quantum well from the top via annealing­induced

diffusion. Diffusion does not happen, however, through oxides unless temperatures

much higher than the allowed thermal budget are reached. Such oxides, as well as

organic contaminants, must then be removed. The SiO2 is chemically removed with

a 1:10 HF:H2O acid solution. The sample is dipped in this solution for 2 minutes

and then rinsed in de­ionised water. After that, the sample must be quickly moved

into the electron­beam evaporator chamber, which has to be promptly evacuated.

This is due to the fact the native oxides on the SiGe layer start to regrow immediately.



64 CHAPTER 3. GERMANIUM DEVICES FABRICATION

The samples are then annealed at 300∘C for 90 minutes. The process is carried out

in forming gas atmosphere (H2 + N2).

4. Dielectric layer deposition

For top­gated devices, after the ohmic contacts, an insulating Al2O3 layer (30nm) is

deposited via Atomic Layer Deposition (ALD). The ALD is done at 300∘C and so,

this step can be used as the annealing step for Al as well.

5. Top gate deposition

Finally, for top­gated devices, a thin gate is deposited, consisting of a 5 nm Ti layer,

followed by a 15 nm Pd layer.

3.2.1 Recipe summary
Lithographic layers:

resist:LOR/S1813

Developer: MF CD­26 for 2 minutes, de­ionised water 2 minutes

1. Position markers

Material: Ti/Au 20/200 nm

2. Mesa etching

a.1. RIE: SF6, 60W, 13.6MHz

a.2. chemical etching: CH3COOH ∶ H2O2 ∶ HF = 3 ∶ 2 ∶ 1

3. Ohmic contacts

a. SiO2 removal: HF:H2O 1:10 2 minutes

b. Materials: Al 30 nm

c. Anneal: 300∘C for 90 minutes in forming gas

4. ALD insulation layer

a. Dielectric: Al2O3, 30 nm

6. Window etching for bonding pads

a. Transene D 50∘C, 5 minutes and 30 seconds

7. Bonding pads

a. Material: Ti/Au 20/200 nm
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3.3 Compositional and surface morphology ana-
lysis for different etching and cleaning recipes

The fabrication steps described in the previous section configure the standard recipe

used to fabricate Hall bars, based on the literature. The device yield following such

steps was, however, notably low, mostly due to excessive gate leakage currents and

high­resistance ohmic contacts. A few potential causes were considered. For gate

leakage, the first possible issue is wafer contamination by environmental particulates,

which can create leakage paths. Alternatively, mechanical stress from wire bonding

may damage delicate structures such as thin insulators, as we have observed samples

from the same batch displaying leakage currents after wire bonding, but not after dye

bonding. In more recent recipes, thick Si2N4 pads were added under the bonding

pads to minimise the wire bonding damage to the wafer.

Regarding the high resistance and dead contacts, poor ohmic metal diffusion is

likely the cause, which is due to poor interfacial conditions. As previously explained,

metal diffusion in semiconductors such as SiGe happens at lower temperatures than

in their oxides. If a semiconductor surface has patches of unclean native oxides,

the annealing process produces uneven diffusion. If such patches are widespread

enough, the diffusion may be notably compromised. A similar effect is observed for

organic contamination. Besides the effects of surface composition, surface roughness

also plays a role in diffusion. Smooth surfaces allow even metallic diffusion, while

rough surfaces create preferred diffusion paths or barriers which hinder uniform

metallisation.

Surface roughness has also another effect, which may be related to the observed

gate leakage currents. The ohmic metal must be deposited in a thin layer to avoid

non­uniformities on its surface which may pierce the insulating layer that is deposited

on top of it. This non­uniformity can, however, propagate from the semiconductor

surface as atomic layers are deposited on top of atomic layers during the electron

beam evaporation process.

For these reasons it is important to guarantee the surface on which the ohmic

metal will be deposited is both clean (free of native oxides and organic contaminants)

and smooth. To better understand the surface conditions in Ge/SiGe, we prepared

specially etched samples and tested different cleaning recipes. We then performed

XPS analysis of the surfaces to investigate how each recipe influences native oxide

cleaning and regrowth, as well as organic contaminants. The samples were etched

to expose the SiGe layer; a process which in the standard recipe was done solely

by a 10% HF solution. In what follows, however, two different etching methods

were tested, which are similar to the etching methods employed for mesa etching

in the standard recipe: Reactive Ion Etching and chemical etching. The reason for

this is two­fold. Firstly, we wanted to test how different etching methods affect

surface roughness. Secondly, for particularly deep quantum wells, thin ohmic metal

layers may not be enough to reach the Ge layer, in which case the SiGe layer must

be pre­etched before metal deposition in order to shorten the distance to the well. In
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either case the motivation is to compare and look for methods that can expose the

SiGe layer that are gentler and more efficient than the standard HF concentration.

3.3.1 Etching and cleaning
The Reactive Ion Etching process was carried out at the following conditions:

SF6/CHF3/O2 35/10/19 cc/min

Power = 60W

Frequency = 13.6MHz

Pressure = 1.5 Pa

Time = 33s

As for the chemical etch, the recipe used was:

2.3% HF solution for 1 min 30 s (SiO2 removal)

30% H2O2 for 2 min (SiGe etching)

(de­ionised water rinse after each step)

The cleaning recipes employed were:

• Recipe 1: 10% HF (2 minutes)

• Recipe 2: 2% HF (2 minutes)

• Recipe 3: 2% HF (15s) → DIW rinse (The cycle is repeated 5 times)

• Recipe 4: 2% HF (2 minutes) + H2O2 (1 minute)

3.3.2 Results
Figures 3.10 and 3.11 show the Ge and Si tracings by XPS analysis of surface

composition after each cleaning method. Figures 3.12 and 3.13 show the ratio of

contaminant peaks to elemental peaks for each recipe. We can see that, as expected,

the etched but unclean samples have high peaks for Si, Ge, and their native oxides.

We can also see that GeO2 is dominant over the atomic Ge species, while the Si,

on the other hand, has not been fully oxidised, indicating the irregular formation

of native oxides. All the cleaning solutions perform similarly to each other, with

Recipe 3 and Recipe 4 being slightly more efficient. No recipe completely removes

the Ge oxide, which can be attributed to its fast re­growth rate. The exposure to

air in between processing steps is enough for the regrowth to occur, explaining the

persistent presence of oxides.

From Figure 3.14 we can see the strong presence of O2 molecules on unclean

surfaces and some presence in cleaned surfaces as well. This is attributed to adsorbed

oxygen molecules. As for organic contaminants, these can be traced by looking at
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C peaks, as shown in Figure 3.15. This Figure has an added curve for fully coated

samples, so the interference of the photoresist can be accounted for. Small peaks

can be observed for C, and, specially in the case of unclean samples, these can be

understood as organic contamination. The large peaks to the right, however, are

most likely indicating readings from the coated borders of the measurement areas,

but persistent resist contamination, as well as other kinds of organic contaminations,

cannot be ruled out.

(a) Plasma etching. (b) Chemical etching.

Figure 3.10: Ge XPS tracing: Curves showing Ge and GeO2 surface components

for a) plasma etched and b) chemically etched samples. We can see that while native

oxide peaks are dominant for unclean samples, Ge peaks are the main contribution

for every cleaning recipe. Nevertheless, small oxide contributions are present for

every case.

(a) Plasma etching. (b) Chemical etching.

Figure 3.11: Si XPS tracing: Curves showing Si and SiO2 surface components for

a) plasma etched and b) chemically etched samples. Contrary to the Ge case, the Si

peaks are dominant for unclean and clean samples. Small oxide contributions are,

however, also present for every case.
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Figure 3.12: Contaminants­to­Ge ratio Rn: n varies from 1 to 4, corresponding

to Recipe n. We can see that, while all cleaning recipes perform similarly, Recipes 3

and 4 are slightly more efficient.

(a) Si oxide to Si XPS peaks ratio. (b) SiC to Si XPS peaks ratio.

Figure 3.13: Contaminants­to­Si ratio Rn: n varies from 1 to 4, corresponding to

Recipe n. a) Recipes 2 and 3 are the most efficient. b) All recipes perform similarly,

except for Recipe 2 on RIE etched surfaces which is notably more efficient.
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(a) Plasma etching. (b) Chemical etching.

Figure 3.14: O2 XPS tracing: Adsorbed O2 molecules are present in every case.

(a) Plasma etching. (b) Chemical etching.

Figure 3.15: C XPS tracing: The persistent presence of C peaks is most likely due

to the XPS reading the resist on the borders of the measurement area. This explains

why the unclean samples have less pronounced C peaks, as those were measured

without any resist coating the sample at all. This interference in the reading makes it

difficult to separate contributions from actual organic contaminants from unintended

resist reading.
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Besides the cleaning efficiency of the recipes, how they chemically attack the

SiGe surface is also an important aspect to monitor, as increased roughness may

create leakage paths and promote uneven diffusion of ohmic metals. The roughness

is estimated from the Root Mean Square (RMS) of height measurements:

𝑦RMS = √ 1
𝑛

√(𝑦2
1 + 𝑦2

2 + ... + 𝑦2
𝑛), (3.10)

where 𝑦𝑖 is the difference between the height of a given site and the average height

of all sites. A smooth surface has similar heights at different points and so the RMS

is small when compared to a rough surface where each individual points have larger

variations amongst themselves.

Figure 3.16 shows the AFM analysis of an unetched surface (a), a Reactive Ion

etched surface (b), and a chemically etched surface (c). We can see the unetched

surface is the smoothest, with an Root Mean Square (RMS) of 0.385 nm. RIE is the

most damaging technique, with RMS = 1.04 nm, while chemical etching has RMS =

0.606 nm.

Figures 3.17 and 3.17 show the effect of each cleaning recipe on the wet etched

and plasma ethced samples’ surfaces, respectively. The RMS results are averaged

from measurements in different areas treated by the same recipes. The initial etching

method of choice seems not to have a dominant relevance in the process, as chemical

processes of cleaning, which are similar to the chemical etching process, smooth

out initial differences. Due to technical reasons, the area corresponding to Recipe 2

was unable to be measured. We can see, however, that the standard cleaning method

(Recipe 1), with 10% HF solution, creates a relatively rough surface, with average

RMS = 2.124 nm. Recipe 4, combining low concentration HF solution (2%) and

Hydrogen peroxide, provided the smoothest surface with average RMS = 0.553 nm.

Recipe 3 showed a very rough surface, with average RMS = 2.396 nm. This could

be attributed to the short time of the 2% HF dip (15s) and to the frequent transfer

between beakers in­between cycle steps, which could re­start the Ge oxide growth

process every turn.

In summary, cyclic 2% HF and 2% HF + Hydrogen peroxide recipes seem to be

the most efficient in removing oxides, but the Hydrogen peroxide approach helps

smoothing the final surface. Nearly all of the failed devices can be traced back

to interfacial defects; be them at the semiconductor­insulator interface, causing

gate leakage, or at the semiconductor­ohmic metal interface, compromising proper

diffusion. Rigorous surface treatment optimisation must be carried out to improve

yield and overall quality of the devices.

For Ge, in particular, the native GeO2 layer is inherently problematic. Unlike

SiO2, GeO2 is hygroscopic and thermally unstable. On the other hand, it easily

forms in laboratory conditions, with the possibility of creating irregular native oxide

patches on the exposed SiGe layer, potentially compromising ohmic metal diffusion.

Regarding the surface treatment pre­insulating layer deposition, a non­uniform Si

capping layer may leave exposed areas of the underlying SiGe layer, causing the

oxidation of Ge atoms. Experimental studies have shown interfacial GeO2 layers
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to severely degrade devices’ C­V characteristics, facilitating high gate leakage via

the abundant presence of interface traps [137]. The use of dilute HF solutions in

association with pulsed cycles of Alumina precursor and water in the ALD chamber

in order to completely remove the native oxide layer for GaAs has been reported

[138], which could be an option for SiGe heterostructures as well. HF solutions,

however, are etchant to SiO2, which could further compromise the interfacial states.

(a) Unetched (SiO2) surface. RMS = 0.385

nm.

(b) Reactive Ion Etched SiGe surface. RMS

= 1.04 nm.

(c) Chemically etched SiGe surface. RMS =

0.606 nm.

Figure 3.16: Pre­treatment AFM imaging: a) Unetched surface. b) Reactive Ion

etched surface. c) Chemically etched surface.
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(a) Recipe 1. RMS = 2.040 nm. (b) Recipe 3. RMS = 2.205 nm.

(c) Recipe 4. RMS = 0.575 nm.

Figure 3.17: Post­treatment AFM imaging for wet etched samples: a) Recipe 1.

b) Recipe 3. c) Recipe 4. Due to technical issues, the measurement area correspond­

ing to Recipe 2 could not be measured.
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(a) Recipe 1. RMS = 2.208 nm. (b) Recipe 3. RMS = 2.587 nm.

(c) Recipe 4. RMS = 0.531 nm.

Figure 3.18: Post­treatment AFM imaging for plasma samples: a) Recipe 1. b)

Recipe 3. c) Recipe 4. Due to technical issues, the measurement area corresponding

to Recipe 2 could not be measured.





4
Transport characterisation

4.1 Classical transport
Charge transport in a solid refers to how charge carriers move through a material

when an electric field or other driving forces are applied. Classical transport is

described by the Drude model, which considers charges move freely in between

scattering events. The average time between these collisions is called the relaxation

time 𝜏. When collisions do occur, the particles’ velocities are randomised. This

scattering process is caused either by phonons or by impurities in the material. In a

uniform electric field, the charges’ motion is described by

𝑚∗ 𝑑⟨v⟩
𝑑𝑡

= −𝑒E − 𝑚∗ ⟨v⟩
𝜏

, (4.1)

where 𝑚∗ is the effective mass and 𝑒 is the electronic charge. When the system

reaches a steady state, that is,
𝑑⟨v⟩
𝑑𝑡 = 0,

⟨v⟩ = − 𝑒𝜏
𝑚∗E. (4.2)

The current density is defined as the product of the carrier density and their average

velocity:

j = 𝑛𝑒v

= 𝑛𝑒 ( 𝑒𝜏
𝑚∗ )E

= 𝑛𝑒2𝜏
𝑚∗ E, (4.3)

where 𝑛 is carrier density. In a two­dimensional system, 𝑛 represents the 2D areal

density of carriers and 𝜎 has units of conductance (Ω−1), since the thickness is

effectively single­layered. From Ohm’s law, which establishes the relation between

current density and the applied electric field via the conductivity 𝜎, j = 𝜎E, we have
that

𝜎 = 𝑛𝑒2𝜏
𝑚∗ . (4.4)

75
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The resistivity of this system is given by

𝜌 = 1
𝜎

= 𝑚∗

𝑛𝑒2𝜏
. (4.5)

In the presence of a magnetic field, equation (4.1) must take into account a term

of the form ⟨v⟩ × B. This term mixes contributions from different directions in

the plane of motion, turning the conductivity into a tensor. Assuming the plane of

motion is the 𝑥 − 𝑦­plane, and the magnetic field is applied along the 𝑧­direction we
have

𝜎 = 𝑛𝑒2𝜏
𝑚∗

1
1 + (𝜔𝑐𝜏)2 [

1 −𝜔𝑐𝜏
𝜔𝑐𝜏 1

] , (4.6)

where

𝜔𝑐 = 𝑒𝐵
𝑚∗ (4.7)

is the cyclotron frequency. By inverting equation (4.6) we obtain the corresponding

resistivity tensor:

𝜌 = 𝑚∗

𝑛𝑒2𝜏
[

1 𝜔𝑐𝜏
−𝜔𝑐𝜏 1

] . (4.8)

The off­diagonal terms describe the classical Hall effect. When a magnetic field

is applied perpendicularly to the current plane, the Lorentz force deflects moving

charges, leading to a transverse Hall voltage 𝑉𝐻. These terms are

𝜌𝑥𝑦 = −𝜌𝑦𝑥 = 𝐵
𝑛𝑒

. (4.9)

In an experimental setting, we apply a current 𝐼 along, for example, the 𝑥­direction
and measure the voltage drop 𝑉𝐻 on the transversal direction. In a two­dimensional

system the current density is given by

𝑗𝑥 = 𝐼
𝑤

, (4.10)

where 𝑤 is the width of the current channel. The electric field built by charge

accumulation on the edges of the channel, along the 𝑦­direction, is given by:

𝐸𝑦 = 𝜌𝑦𝑥 𝑗𝑥 = 𝜌𝑦𝑥
𝐼
𝑤

. (4.11)

The Hall voltage 𝑉𝐻 is then

𝑉𝐻 = 𝐸𝑦 𝑤 = 𝜌𝑦𝑥
𝐼
𝑤

⋅ 𝑤 = 𝜌𝑦𝑥 𝐼. (4.12)

We can see that the Hall resistance (equivalent in a 2D system to the resistivity) is

then

𝑅𝑥𝑦 = 𝑉𝐻
𝐼

= 𝜌𝑦𝑥 = 𝑅𝐻𝐵, (4.13)
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where

𝑅𝐻 = 1
𝑛𝑒

(4.14)

is the Hall coefficient. The Hall resistivity increases linearly with 𝐵 and can be used

to measure 𝑛. The measurement of the Hall voltage thus reveals the carrier density
and type: the carrier density depends on the slope of the Hall resistance and its sign

depends on the carrier type (electrons or holes). The Hall mobility

𝜇 = 𝜎𝑅𝐻 = 𝑒𝜏
𝑚∗ (4.15)

can also be obtained, characterizing how freely carriers move in the material.

4.2 Quantum transport
When magnetic fields becomes sufficiently strong, the classical description breaks

down and quantum effects become relevant. In 1930, Soviet Physicist Lev Landau

showed that electrons in a uniform magnetic field 𝐵 have quantized cyclotron

orbits with discrete energies levels; now known as Landau levels [139]. That

same year, Dutch physicists Wander Johannes de Haas and Pieter van Alphen, and

Soviet physicist Lev Shubnikov and de Haas discovered oscillatory magnetic effects

in Bismuth, which was explained by Landau’s theory. The de Haas­van Alphen

(dHvA) effect describes quantum oscillations in magnetisation, a thermodynamic

property [140, 141], while the Shubnikov­de Haas (SdH) effect accounts for quantum

oscillations in electrical resistance, a transport property [142]. Both these phenomena

are macroscopic quantum effects arising from Landau quantisation and are periodic

in 1/𝐵. They result from the oscillation of the density of states as Landau levels

sweep through the Fermi level 𝐸𝐹 and are successively depopulated.

4.2.1 Shubnikov-de Haas oscillations
The Hamiltonian for a two­dimensional system under a uniform magnetic field is

given by

𝐻 = 1
2𝑚∗ [p + 𝑒A(r, 𝑡)]2, (4.16)

where 𝑚∗ is the effective mass, 𝑒 is the particle’s charge and A(r, 𝑡) is the vector
potential. Under the Landau gauge, A = (0, 𝐵𝑥, 0), and the Hamiltonian becomes

𝐻 = 1
2𝑚∗ [𝑝2

𝑥 + (𝑝𝑦 + 𝑒𝐵𝑥)2]. (4.17)

We can see that in this gauge, [𝑝𝑦, 𝐻] = 0, so 𝑝𝑦 is a conserved quantity, making it

a good quantum number (𝑝𝑦 → 𝑘𝑦).

𝐻 = 𝑝2
𝑥

2𝑚∗ + 1
2

𝑚∗𝜔2
𝑐 (𝑥 +

ℏ𝑘𝑦

𝑒𝐵
)

2

. (4.18)
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where 𝜔𝑐 = 𝑒𝐵/𝑚∗ is the cyclotron frequency. This equation has the same form of

the harmonic oscillator Hamiltonian with a guiding center

𝑥0 = −
ℏ𝑘𝑦

𝑒𝐵
= −𝑘𝑦ℓ2

𝐵, (4.19)

where

ℓ𝐵 = √ ℏ
𝑒𝐵

(4.20)

is the magnetic length. The quantised energies of this system, the Landau levels, are

given by

𝐸𝑛 = ℏ𝜔𝑐 (𝑛 + 1
2

) . (4.21)

To account for finite sample dimensions, we now consider the spatial confinement of

the system. In the 𝑥­direction, the sample extends from 𝑥 = 0 to 𝑥 = 𝐿𝑥. Recalling

the the guiding centre given by equation (4.19), we impose that the centre of the

cyclotron orbit lies within the physical sample:

0 < −𝑘𝑦ℓ2
𝐵 < 𝐿𝑥 ⇒ −𝐿𝑥

ℓ2
𝐵

< 𝑘𝑦 < 0. (4.22)

In a finite geometry, the momentum 𝑘𝑦 is quantised due to periodic boundary condi­

tions in the 𝑦­direction:

𝑘𝑦 = 2𝜋
𝐿𝑦

𝑗, 𝑗 ∈ ℤ. (4.23)

The number of allowed 𝑘𝑦 values, that is, the degeneracy of each Landau level—is

given by the number of distinct guiding centres that fit within the sample:

𝐷 =
𝐿𝑥𝐿𝑦

2𝜋ℓ2
𝐵

= 𝑒𝐵
ℎ

𝐴, (4.24)

where 𝐴 = 𝐿𝑥𝐿𝑦 is the area of the sample. This shows how the Landau levels

are highly degenerate. Physically, the guiding centre of the cyclotron orbit can be

anywhere in the plane. For each 𝐸𝑛, one can choose any 𝑘𝑦, leading to a continuum

of states along 𝑦with the same energy. In a system of area𝐴, one finds approximately
𝐴 𝑒𝐵

ℎ states per Landau level (spin degeneracy neglected), meaning each level can

accommodate 𝑒𝐵
ℎ electrons per unit area. This large degeneracy reflects the fact that

the applied field ”assembles” the otherwise continuous 2D free­electron states into

discrete Landau levels, without changing the total density of states.

Semi­classically, electrons in a magnetic field trace closed circular orbits in

momentum space (k­space). The area enclosed by such an orbit is

𝐴𝑘 = 𝜋𝑘2
𝐹. (4.25)
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According to the Onsager quantisation condition, allowed orbits in k­space are

quantised via

𝐴𝑘 = 2𝜋𝑒𝐵
ℏ

(𝑛 + 𝛾), (4.26)

where 𝑛 ∈ ℕ0, and 𝛾 ≈ 1
2 for parabolic bands. At the Fermi level, electrons occupy

all states up to the largest 𝑘­space orbit:

𝐴𝐹 = 𝐴𝑘(𝐸𝐹) = 𝜋𝑘2
𝐹. (4.27)

Solving for the Fermi wavevector:

𝑘𝐹 = √𝐴𝐹
𝜋

. (4.28)

In a two­dimensional system, each quantum state in k­space occupies an area

Δ𝑘𝑥Δ𝑘𝑦 = (2𝜋)2

𝐴
, (4.29)

where 𝐴 is the real­space area of the sample. The number of available states within

a circular Fermi surface of radius 𝑘𝐹 is

𝑁 = 𝑔𝑠 ⋅ area in k­space
area per state

= 𝑔𝑠 ⋅ 𝜋𝑘2
𝐹

(2𝜋)2/𝐴

= 𝑔𝑠 ⋅ 𝐴 ⋅ 𝑘2
𝐹

4𝜋
, (4.30)

where 𝑔𝑠 = 2 accounts for spin degeneracy. Dividing by the area 𝐴, we obtain the
electron density:

𝑛 = 𝑁
𝐴

= 𝑔𝑠
4𝜋

𝑘2
𝐹 = 1

2𝜋
𝑘2

𝐹. (4.31)

Solving for 𝐴𝐹 = 𝜋𝑘2
𝐹, we find:

𝐴𝐹 = 2𝜋𝑛, (4.32)

which gives

𝑘𝐹 =
√

2𝜋𝑛. (4.33)

For a magnetic field value 𝐵𝑛 at which the 𝑛­th Landau level aligns exactly with
the Fermi energy, we have that

𝐸𝐹 = ℏ𝜔𝑐 (𝑛 + 1
2

) . (4.34)

Solving for 𝐵, we find:

1
𝐵𝑛

= 𝑒
ℏ

⋅ 1
𝑚∗𝐸𝐹

(𝑛 + 1
2

) , (4.35)
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which reveals that Landau level crossings are periodic in 1/𝐵. The spacing between
successive Landau level crossings in 1/𝐵 defines the period:

Δ ( 1
𝐵

) = 1
𝐵𝑛+1

− 1
𝐵𝑛

. (4.36)

Using the Onsager relation, we obtain that

𝐴𝑘 = 2𝜋𝑒𝐵𝑛
ℏ

⇒ Δ ( 1
𝐵

) = 2𝜋𝑒
ℏ𝐴𝑘

. (4.37)

Since at the energy crossing

𝐴𝑘 = 𝐴𝐹 = 2𝜋𝑛, (4.38)

we have that

Δ ( 1
𝐵

) = 𝑒
ℏ𝑛

. (4.39)

As 𝐵 varies, the Landau levels move through 𝐸𝐹, causing oscillations in occupancy.

At low 𝐵 (weak field), many Landau levels are occupied and overlap (smearing

out quantization). At high 𝐵, however, the Landau levels are well­separated if
ℏ𝜔𝑐 ≫ 𝑘𝐵𝑇 and ℏ𝜔𝑐 exceeds the level broadening Γ, which characterises the

disorder­induced linewidth or scattering­induced energy uncertainty of the Landau

levels.

4.2.2 The Lifshitz-Kosevich formula
In 1956, Soviet physicists Isaak Markovich Lifshitz and Alexei Kosevich performed

a rigorous analysis of the amplitude of quantum oscillations, taking temperature and

scattering into consideration [143]. The derivation of their formula, now known as

the Lifshitz­Kosevich formula, is based on calculations of the oscillatory part of the

grand potential of electrons in a magnetic field. From this oscillatory part quantities

like magnetisation and conductivity can be derived.

The grand canonical potential Ω(𝜇, 𝐵) of electrons can be written as a sum over

Landau level energies. At 𝑇 = 0,

Ω = − ∑
𝑛,𝜎

𝑓(𝐸𝑛 − 𝜇), (4.40)

(plus integrals for continuum parts), where 𝑓 is the energy occupancy (Heaviside step
at𝜇) and 𝜎 accounts for spin degeneracy. This sum can be evaluated using the Poisson

summation (Euler­MacLaurin) method by separating the smooth and oscillatory

contributions. The oscillatory contribution arises from the discrete Landau level

index and is roughly proportional to

cos(2𝜋 𝐸𝐹
ℏ𝜔𝑐

+ 𝜑). (4.41)
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The pre­factor decays with 𝑇 and with the Landau level broadening. The oscillation

amplitude Δ𝑋 of a given observable 𝑋 can then be generally written as the product

of three factors: a temperature damping factor 𝑅𝑇, a disorder (Dingle) damping

factor 𝑅𝐷, and an overall pre­factor related to the average magnitude of oscillation.

For the Shubnikov­de Haas oscillation amplitude in resistivity, we can write

Δ𝑋(𝐵) ∝ 𝑅𝑇 𝑅𝐷 cos(2𝜋𝐹
𝐵

+ 𝜑) , (4.42)

where 𝐹 is the oscillation frequency in 1/𝐵, and 𝜑 is a phase offset. The thermal

smearing factor 𝑅𝑇, and the impurity scattering factor 𝑅𝐷 are given by

𝑅𝑇 = 𝑋
sinh𝑋

, with 𝑋 ≡ 2𝜋2𝑘𝐵𝑇
ℏ𝜔𝑐

, (4.43)

and

𝑅𝐷 = exp( − 2𝜋2𝑘𝐵𝑇𝐷
ℏ𝜔𝑐

) , (4.44)

where 𝑇𝐷 is the Dingle temperature, which is related to the Landau level broadening

via the quantum lifetime 𝜏:

𝑘𝐵𝑇𝐷 = ℏ/(2𝜋𝜏). (4.45)

The Lifshitz–Kosevich formula for the oscillatory part of the longitudinal resistivity

Δ𝜌𝑥𝑥 is given by

Δ𝜌𝑥𝑥(𝐵) ∝ 𝜌0
𝑋

sinh𝑋
𝑒−𝑋𝐷 cos(2𝜋𝐹

𝐵
+ 𝜑) , (4.46)

where 𝜌0 is the zero­field conductivity. The regime where the Landau levels sep­

aration becomes significant requires that 𝜔𝑐𝜏 > 1. This means that electrons can
complete at least one cyclotron orbit before scattering. This is the condition for

observing pronounced quantum oscillations in transport.

At very high fields or in materials with large 𝑔, the Zeeman splitting of Landau
levels can be comparable to ℏ𝜔𝑐, leading to what is called Shubnikov­de Haas

beating: a change in the Shubnikov­de Haas oscillation frequency depending on the

difference between the Fermi surfaces for spin­up and spin­down. Analysing such

spin­split oscillations yields information on the g­factor and spin­orbit effects.

4.2.3 Quantum Hall effect
As for the transversal resistivity, at sufficiently highmagnetic fields, the system enters

the quantumHall regime, where the cyclotron frequency dominates the scattering rate:

𝜔𝑐𝜏 ≫ 1. In this regime, the Landau levels are well separated, and the longitudinal
resistivity 𝜌𝑥𝑥 drops to zero between oscillation minima. Simultaneously, the Hall

resistivity 𝜌𝑥𝑦 exhibits plateaus at quantised values. Each plateau corresponds to
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an integer number of completely filled Landau levels. In these regions, the Hall

resistivity is given by

𝜌𝑥𝑦 = ℎ
𝜈𝑒2 , (4.47)

where 𝜈 ∈ ℤ is the filling factor. The width of the Hall plateaus as a function of

magnetic field reflects the role of disorder. A certain degree of disorder is necessary

to localise electronic states between Landau levels, which stabilises the quantisation

and broadens the plateaus. In cleaner systems, plateaus may be narrower, as fewer

states are localised.

When the filling factor 𝜈 is an integer, the Fermi level lies in an energy gap

between Landau levels. All states at the Fermi energy are then localised and do not

contribute to longitudinal conduction, leading to

𝜌𝑥𝑥 → 0, (4.48)

and a quantised Hall conductivity

𝜎𝑥𝑦 = 𝜈𝑒2

ℎ
, (4.49)

which remains constant even as the magnetic field varies, resulting in flat plateaus in

𝜌𝑥𝑦(𝐵). As the magnetic field is swept, the next Landau level begins to populate and
delocalised states contribute to transport. This causes an increase in 𝜌𝑥𝑦 between

plateaus and a peak in 𝜌𝑥𝑥 due to enhanced longitudinal conduction. This alternating

pattern of plateaus and peaks gives rise to the characteristic quantum Hall staircase.

4.3 Measurements
In this section we present the measurement protocols and results obtained from

doped and undoped samples fabricated as described in Chapter 3, using the standard

fabrication recipe. In particular, we present results for transport measurements under

light­irradiation. The measurements were conducted in anOxford Instruments Heliox

cryogenic unit. The electric current applied between source and drain terminals of

the Hall bars was

𝐼 = 100nA, (4.50)

and a varying magnetic field was applied perpendicularly to it. Longitudinal and

transverse voltages were measured for positive and negative values of the magnetic

field, and the corresponding resistivities were computed. To suppress antisymmetric

contributions, the measured voltages were averaged as follows:

Δ𝑉𝑥𝛼 = Δ𝑉𝑥𝛼(𝐵 > 0, 𝐼) + Δ𝑉𝑥𝛼(𝐵 < 0, −𝐼)
2

, (4.51)

where 𝛼 ∈ 𝑥, 𝑦 corresponds to longitudinal (𝛼 = 𝑥) and transverse (𝛼 = 𝑦) voltages,
respectively. For the longitudinal resistivity, which reveals the Shubnikov–de Haas
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oscillations, a third­order polynomial fit is applied to the data in order to subtract

the smooth background from the purely oscillatory component. The resulting signal

can then be analysed using the Lifshitz–Kosevich theory:

Δ𝜌𝑥𝑥 = 𝜌𝑥𝑥 − 𝑃 (3)
fit (𝜌𝑥𝑥), (4.52)

where 𝑃 (3)
fit (𝜌𝑥𝑥) denotes the third­order polynomial fit to the dataset 𝜌𝑥𝑥. After this,

the independent variable is transformed from magnetic field 𝐵 to its reciprocal,

Δ𝜌𝑥𝑥(𝐵) → Δ𝜌𝑥𝑥(1/𝐵), (4.53)

in order to make the frequency dependence of the oscillations explicit. By repeating

the measurements at different temperatures, the damping effect on the oscillations

can be verified and fit to equation (4.46) to obtain the effective mass and quantum

time.

Sample A and sample C were measured under irradiation of LED light sources

with wavelengths 1.55𝜇m and 1.3𝜇m, respectively. Both configurations provide
photons with enough energy to bridge the band gap. In these experiments, the LED

was mounted on the same PCB as the samples. Sample B was used as a test for

the measurement protocol and was not irradiated. For this reason we begin the

measurements discussion with this sample. The experimental set­up has the LED

light source mounted on the same PCB as the sample, positioned over it, with an

approximate distance of 1.5 cm between them.

4.3.1 Sample B: Doped sample
The doped samples were the best­behaved ones, which further confirms the delicate

nature of processes involving insulating layers and top gates. Ordinarily, undoped

samples are preferred for quantum devices such as quantum dots, due to the possibility

of tuning transport properties via gate voltages. However, for the specific purpose of

using quantum dots as a platform for light­spin interaction in quantum repeaters, there

is a compelling reason to consider doped heterostructures. Metal gates are highly

absorbent to light and significantly reduce the transmittance of the device. While

the choice of metal and the thickness of the gate both affect optical transmittance, in

all cases the conversion efficiency is compromised.

From Figure 4.1 we can see the Shubnikov­de Haas oscillations and the quantum

Hall effect curves. The magnetic field was swept from 0 to 14T (absolute values).

From Figure 4.1a we can see the longitudinal resistivity starts to go to zero around

12 T, indicating a considerable degree of disorder in the system. Figure 4.1b shows

the filling factors of the Hall plateaus. At 14 T the lowest filling factor achieved is

𝜈 = 5.
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(a) Shubnikov­de Haas oscillations and quantum Hall effect.

(b) Quantum Hall plateaus with filling factors.

Figure 4.1: Shubnikov­de Haas oscillations and quantum Hall effect curves.
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(a) Shubnikov­de Haas oscillations as a function of the magnetic field reciprocal.

(b) Temperature damping of Shubnikov­de Haas oscillations. The temperatures range from

0.3 to 4.2K.

Figure 4.2: Shubnikov­de Haas oscillations analysis.
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Figure 4.3: Lifshitz­Kosevich fit:. It shows an effective mass of 0.15 0 and a

quantum lifetime of 0.08 ps, indicating a high number of scattering events.

Figure 4.2a shows the Shubnikov­de Haas oscillations as a function of the

magnetic field’s reciprocal 1/𝐵. Figure 4.2b shows the oscillations for different
temperatures, ranging from 0.3K to 4.2K. We can see that, as the temperature

increases the amplitude of the oscillations is damped. Using this data we can perform

a Lifshitz­Kosevich fit to extract the effective mass 𝑚∗ and the quantum lifetime 𝜏𝑞.

The effective mass was measured to be 0.15 𝑚0, in agreement with previous reports

[144]. The quantum lifetime 𝜏𝑞 is 0.08ps, indicating a high number of scattering

events.

4.3.2 Sample A: light irradiation (1.55 um)

Sample A was measured under light irradiation of an 1.55𝜇m LED light source.

Such LEDs are not designed for cryogenic operation and need higher voltages

than described on their data­sheet to achieve nominal currents and corresponding

emissions. This raises the temperature in the fridge, making it hard to keep stable

temperatures below 4.2K for long times. To avoid quenching from the electromagnet,

its electric current rate must be set at low values, increasing the total time of the

experiment. In our case, sweeping from 0 to 8T took approximately 90 minutes,

making the light irradiation at lower temperatures unfeasible.
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(a) Shubnikov­de Haas oscillations for different irradiation times.

(b) Shubnikov­de Haas oscillations in the dark after 1 and 2 hours rest. We can see

the curves are shifting back upwards.

(c) Shubnikov­de Haas oscillations in the dark after 8 hours rest. The curve is

beginning to approach the dark measurement values.

Figure 4.4: Doped sample Shubnikov­de Haas oscillations under light irradi­

ation: Different illumination regimes using a 1.55𝜇m LED.
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This sample was not gated, despite being nominally undoped, but it nevertheless

displayed Shubnikov­de Haas oscillation patterns, indicating an unintentional doping

in the growth process. Five irradiation regimes were used: dark, 10s, 100s, 10min,

and constant irradiation. The LED was operated for different amount of times, turned

off, and then the magnetic sweep would be initiated. For the constant irradiation

regime the LED was kept on during the full duration of the experiment. We can

see from Figure 4.4a that the effect of illumination was to shift the longitudinal

resistivity downwards, without dramatically changing the oscillation pattern. Figure

4.4b shows the persistence of the resistivity shift in dark measurements after 1, and

2 hours and Figure 4.4c after 8 hours rest, following the constant irradiation regime.

Figure 4.5 shows the charge carrier concentration and mobility as a function

of the irradiation time. We can see that after initial illumination both quantities

remain virtually constant. The initial improvement in mobility and charge carrier

concentration is most likely due to photo­ionisation of shallow donors or excitation

of carriers from traps. After a certain illumination dose, all optically active donors

or traps are ionised, saturating the system. Further illumination cannot then increase

carrier density, as there are nomore trap states available. Contrary to what is observed

for GaAs, after rest in the dark the resistivity starts to approach dark measurements

values again.

Figure 4.5: Charge carrier concentration and carrier mobility as a function

of irradiation time: After initial irradiation the transport characteristics are kept

virtually constant.
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4.3.3 Sample C: light irradiation (1.3 um)

The second transport characterisation under light irradiation experiment was done

with a gated, undoped sample. Gated samples showed relatively low tunabilities,

most likely due to gate leakage. The illumination was done with a 1.3𝜇mwavelength

LED light source. Figure 4.6 shows the Shubnikov­de Haas oscillations for dark,

100ms, 500ms, and 1000ms illumination regimes. We can see a small downward shift

of the resistance for non­zero illumination times, specially at low fields. Besides,

even at relatively high magnetic fields (14T), the oscillations still display small

amplitudes, not approaching zero resistance. This illustrates the poor conditions for

charge transport in the sample. Figure 4.7 shows the charge carrier concentration and

mobility as a function of top­gate voltage for different irradiation times. We can see

the limited tunability of the device from the small range of the vertical axes. Figure

4.4a shows the carrier concentration curve corresponding to dark measurement as

the lower bound of the curves, indicating a small amount of charge carriers were

photo­excited. The slight increase in the carrier concentration and slight decrease

in mobility upon illumination suggests the presence of photo­activated traps or

defects, which contribute free carriers, but also introduce additional scattering. The

system isn’t entirely free of residual impurities or interface traps, and the illumination

exposes hidden disorders that are not active in the dark.

Figure 4.6: Undoped sample Shubnikov­de Haas oscillations under light ir­

radiation: Gated samples showed low tunability due to gate leakage issues. The

irradiation was done with a 1.3𝜇m wavelength LED light source. The top­gate

voltage is ­1.5V.
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(a) Carrier concentration as a function of top­

gate voltage for different irradiation times.

(b) Mobility as a function of top­gate voltage

for different irradiation times.

Figure 4.7: Undoped sample’s transport characteristics under illumination

Figure 4.8: Charge carrier concentration as a function of irradiation time: No

saturation is observed, which can be attributed to the short irradiation time. The total

variation in the carrier density is, however, only ≈ 6.7%.

The overall behaviour of the samples with illumination suggests a low induced

photoconductivity in comparison to GaAs persistent photoconductivity, for example.

The contribution from traps, defects and other such mechanisms to the photo­induced

carriers must still be taken into account, but the small percentual change (around

6.7%) suggests Ge may not suffer from persistent photoconductivity.
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Conclusions

Germanium is a promising platform for photo­spin conversion in quantum dots. It

has long coherence times, high hole mobility and is compatible with current industry

Si­based infrastructure. As infrastructure goes, its band gap lies inside the bandwidth

employed by telecommunication infrastructure, making it a natural candidate for

a conversion platform between solid­state and photonic qubits. In particular, its

strong spin­orbit coupling in the valence band, its low hyperfine interaction, and the

possibility of nuclear spin­free isotopic engineering makes it an ideal medium for

manipularing spin information in hole states. In confined nanostructures such as

quantum dots, Ge quantum wells have the potential for precise photo­induced spin

state preparation via circularly polarised light, following protocols akin to the Vrijen­

Yablonovitch scheme, adapted for the holes. The quantum confinement also lifts the

heavy and light holes degeneracy, enabling selective transitions that enhance spin­

state purity. Ge is then positioned as a cornerstone in the development of scalable

quantum networks and optically addressable quantum information processing.

To achieve this potential, however, the preparation of pristine SiGe interfaces is

of utmost importance to realise high­quality devices with minimal defect densities,

and well­controlled carrier transport. Contamination, from organic residues, and

native oxides (notably GeO𝑥), can severely impact the electrical and structural

integrity of gate dielectrics and ohmic contacts. Ohmic metals are diffused via

annealing through the heterostructure and should, ideally, establish contact with the

quantum well. Diffusion cannot happen, however, across native oxide layers. The

required temperatures for such process to occur are usually much higher than the

allowed thermal budget (above 700∘C). A clean interface between semiconductor

and metal is then a crucial step in device fabrication. Usually, heterostructures are

covered with a thin SiO2 capping layer, which must be removed in order to deposit

ohmic metals. This removal exposes, however, the SiGe layer underneath it, which

promptly starts to oxidise at normal laboratory conditions. A successful annealing

relies then on the proper cleaning of this interface. Ideally, this cleaning process

should yield atomic­level smoothness and chemical passivation of the surface. Of

particular concern are GeO𝑥 species, which rapidly regrow in air, making it necessary

to minimise the exposure time of samples to atmosphere.

In the present work we evaluated four acid cleaning recipes based on different

concentrations of aqueous HF acid solution, as well as different dipping times:

91
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• Recipe 1: 10% HF (2 minutes)

• Recipe 2: 2% HF (2 minutes)

• Recipe 3: 2% HF (15s) → DIW rinse (The cycle is repeated 5 times)

• Recipe 4: 2% HF (2 minutes) + H2O2 (1 minute)

HF is corrosive to native oxides and a solvent to organic contaminants. It also,

however, affects the heterostructure atomic species, and so, effective cleaning must

be considered under the light of a trade­off with surface roughness. We observed

the standard 10% HF solution (recipe 1) to be, generally, very damaging to surface

smoothness, with a roughness given by an RMS value of 2.124 nm. On the other

hand, solutions with lower HF concentration (2%) combined with Hydrogen peroxide

provided a more gentle alternative, with RMS = 0.553 nm; closer to the unprocessed

sample’s roughness of RMS= 0.385 nm . Due to technical issues, Recipe 2, consisting

of a 2% HF solution, could not have its roughness measured. Surprisingly, the cyclic

cleaning (recipe 3), which employs low concentration HF (2%) and short dipping

times (15s repeated 5 times and alternating with DIW rinse) presented very rough

surfaces with RMS = 2.396 nm. This can be attributed to the short time of the acid

cleaning step and to the frequent exchange of beakers in­between cycle steps. Albeit

short, the exposure to air may kick­start the GeO2 regrowth and the successive, fast

steps in the cycle may contribute to roughing of the surface.

As a secondary effect of chemical cleaning, it must be also kept in mind that

the induced surface roughness strongly influences metal diffusion mechanisms.

Rough semiconductor surfaces have larger effective area and a richer topography

for metal particles to interact with. This can enhance interdiffusion and affect

the nature of interactions between phases: different inter­metallic compounds or

silicides/germanides may form preferentially at protrusions or pits, altering the

electrical properties of the contact. In essence, a rough interface fosters non­uniform

phase formation. Roughness is also connected to diffusion pathways. Smoother

interfaces force a more uniform, controlled intermixing, whereas rougher interfaces

often indicate uncontrolled, path­dependent diffusion.

As for the recipes cleaning power, XPS analysis revealed broad Ge peaks, often

extending towards the GeO2 binding energy, indicating a persistent presence of

oxides. The ratio between the contaminants peaks and the elemental Ge peak showed

all recipes to have an approximately equal performance. The persistent presence

of Ge oxides can be attributed to the exposure to air while loading the samples in

the XPS machine’s chamber, something that can only be fully addressed by in­loci

cleaning. As for Si, Recipe 1 was successful in flattening the Si2 peaks, while

other recipes still kept visible, albeit small, peaks. When analysing the O binding

energy region we can verify that no recipe was able to fully eliminate the peaks,

indicating a lingering presence of adsorbed Oxygen molecules. As for organic

contaminants, the XPS reading was compromised by the photoresist coated border

with the measurement area, making it difficult to separate residual contributions in
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the actual measurement area from false­positives from the border. Recipe 4, showed

the best balance between cleaning and surface smoothing.

Devices fabricated with the standard recipe had a low yield. Their performance

was, in general, affected by high resistance contacts, and, more importantly gate

leakages and interfacial trap states. In quantum devices, especially spin­based

systems, uncontrolled interface states can act as charge fluctuators and magnetic

noise sources, degrading coherence. Surface traps and interfacial states at the

semiconductor­dielectric boundary are important in defining the electronic landscape

of devices, affecting performance. Such traps can originate from unsatisfied bonds,

local strain fluctuations, dislocations, or chemical inhomogeneities, acting as centres

for charge capture and emission. This increases noise and scattering.

From our devices, the doped samples showed the best overall behaviour. with

clearly defined Hall plateaus and Shubnikov­de Hass oscillations reaching zero

longitudinal resistivity for high magnetic fields. Such samples were analysed under

different temperatures, revealing, through Lifshitz­Kosevich fitting, an effective

hole mass of 0.15m0, in accordance with the expectation of hole effective mass

change in strained quantum wells [144].  For the undoped samples, one of them

was not top­gated, and Shubnikov­de Haas oscillations were still observed, most

likely due to unintentional p­doping during its growth. This sample’s transport

characteristics were observed under different illumination times from a 1.55𝜇m
wavelength LED light source. Since the LED is not designed to operate at cryogenic

temperatures, the applied voltage needed to obtain the nominal output was greatly

increased, making it difficult to maintain stable temperatures below 4.2K.After initial

illumination, both the carrier concentration and mobility were observed to increase,

remaining approximately constant for subsequent illumination. This indicates the

photo­excitation of trap states which were quickly saturated.

A third sample, undoped and gated, was illuminated with a 1.3𝜇m wavelength

LED light source. This particular sample had low gate tunability due to gate leakage.

Changes in carrier concentration were observed to be less than 10% and to return

to dark measurement values after rest in the dark. This behaviour is contrary to

what is observed in GaAs, for example, were carrier concentration can increase by

over 100% and persist after light sources have been turned off. Accounting for the

possible excitation of interfacial states, this suggests stable transport characteristics

under light irradiation and no persistent photo­conductivity.

In summary, this work reinforces the position of Ge as a compelling platform for

photo­spin conversion in quantum systems. However, fully realising this potential

depends on particular attention to the cleanliness and topology of interfaces. We

have shown that even aggressive HF­based cleaning protocols face challenges in

order to fully eliminate interfacial oxides, with residual GeO𝑥 species persisting

as confirmed by XPS. While the standard 10% HF cleaning solution is effective, it

introduces trade­offs with surface roughness, an often­overlooked parameter that

has a profound impact on metal diffusion dynamics during ohmic contact formation.

Device characterisation revealed that contact resistance and gate leakage remain

major limitations. These defects originate from structural and chemical imperfections.
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Illumination experiments on undoped Hall bars with poor gating demonstrated

that exposure to sub­band gap photons can still induce marked changes in carrier

density and mobility, suggesting trap photo­excitation mechanisms. In particular,

the observed saturation behaviour of transport properties following short exposure to

1.55 𝜇mphotons is indicative of mid­gap or band­tail states that are photo­ionised and

rapidly filled. These findings demonstrate the sensitivity of quantumwell transport to

interfacial disorder and underscore the importance of understanding photo­excitation

pathways, especially in optically addressable spin qubit architectures.

Ultimately, the interplay between interface cleanliness, surface topology, and

illumination­induced trap dynamics represents a delicate triad that governs the

performance of Ge/SiGe quantum devices. Advancing this platform toward scalable,

low­noise, and high­fidelity quantum operations will require continued refinement

of surface preparation techniques, development of low­leakage gate stacks, and

in­depth exploration of light­matter interactions at the defect level. This work offers

a step in that direction, providing experimental insight into the conditions necessary

for coherent and stable operation in future Ge­based spin­photonic quantum systems.

5.1 Future prospects
In what regards the future steps in this investigation, the metal diffusion under

different surface topography and compositional conditions must be evaluated, as

well as stoichiometric tests of ohmic metal layer thickness versus quantum well

depth.

The surface analysis employed in this work can be extended to other fabrication

steps, such as ALD insulating layer deposition, to evaluate interfacial conditions and

possible leakage paths and mechanisms.

Regarding the transport under light irradiation measurements the contributions

from traps/impurities versus quantum well charges to photo­induced transport must

be analysed and distinguished via a spectral dependence of transport characteristics.
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