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Abstract

Quantumchromodynamics (“QCD”) as a theory which describes the strong nuclear force
is a robust theory which has been able to describe myriad phenomena. However, study
of QCD is made difficult for perturbative approaches at finite temperatures by the non-
abelian nature of the gauge fields. Therefore, non-perturbative approaches to QCD such
as those offered by the framework of lattice quantum field theory has proven successful in
studying such finite temperature phenomena. Chiral symmetry, broken spontaneously at
low temperatures, is a phenomena which is essential to understanding the scale of hadronic
mass in the universe as well as properties of deconfined quark and gluon matter at very high
temperatures. The chiral crossover, the point of restoration for chiral symmetry, occurs at
high but finite temperatures and is ideal to be studied from the lattice.

To this end we simulate two flavor lattice QCD using Möbius Domain wall fermions
to investigate the symmetries of mesons associated with the spatial two-point correlation
function at high temperatures. The temperatures we consider in this investigation range
from T = 147MeV to T = 330MeV which cover the critical temperature Tc = 165MeV.
Our choice of the Möbius Domain wall fermions offers us an excellent chiral symmetry on
the lattice with an approximate violation of the Ginsparg-Wilson relation of 0.14MeV for a
lattice cut off of a− = 2.643GeV corresponding to a fine lattice.

From the two-point correlation function we extract the long range screening mass for
incremental values in the temperature; and using the difference in the screening masses as a
probe we investigate SU(2)L ×SU(2)R chiral symmetry, the axial U(1)A which is broken by
quantum anomaly, and additional emergent high temperature symmetry which exchanges
spin degrees of freedom. In addition to the screening mass difference we also explore the
temperature dependence of the screening mass itself and evaluate how the screening mass
approaches both the T = 0 meson spectrum, as well as, the leading order of the perturbative
predicition of twice the groundstate Matsubara mass 2πT .
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Chapter 1

Introduction

Quantum Chromodynamics(QCD) is a tremendously successful theory describing the multi-
tude of hadronic and mesonic phenomena which we have observed in the 20th century alone.
While the theory can be neatly written down in three terms, the analytical approaches to
the theory have encountered considerable difficulty owing to the non-abelian nature of the
gauge fields described by the SU(3) gauge theory, in addition to subtleties of the stronger in-
teractions which can be explored in effective theories. While this has meant difficulty for the
approach to pertubrative expansion of the propagator in QCD via Feynman diagram style
calculations, it has led to a very rich theoretical description by way of lattice calculations.

The lattice formalism which is now half a century old, has made great progress in both
analytical and numerical studies of strongly coupled theories like QCD; while there is still
much we do not fully understand in QCD we have been able to understand more of the subtle
phenomena in low temperature hadronic physics. As the perturbative apporach to QCD is
only accessible at extreme temperatures for finite but high temperatures, the lattice offers
an attractive set of tools to study the properties of mesons and hadrons non-pertubratively.

The range of temperatures for which the lattice can be connected back to the perturbative
phenomena and thus the range of temperatures at which the coupling becomes “weak” is
not clear even still. There are several effective theories such as non-relativistic quantum field
theory and its extension to QCD, non-relativistc quantumchromodynamics, which can be
applied at finite but very high temperatures. In the case of the latter, several predictions
from this perturbative framework have been made but the scale at which the physics is
relevant is still unclear despite studies done by several collaborations on the subject [1, 2].
We will explore this subject and discuss the the thermal behaviors of the meson at high
temperatures in later chapters.

Another essential question in QCD is that of chiral symmetry. Chiral symmetry is an
essential phenomena in hadron formation as it gives rise to the pion mass and the scale of
hadronic masses ∼ O(1GeV) when spontaneously broken. As this is a phenomena which is
known to be broken at low temperatures, it is understood that at high temperatures there
is a present chiral symmetry which must have broken spontaneously in the history of the
early universe. As chiral symmetry is exact in the case of massless quarks the breaking of
this symmetry does not result in a massless goldstone boson but a massive psuedo-goldstone
boson, the pion.

Due to this we expect that the lightest two quark flavors, the up and down quark,
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which are roughly degenerate, play a critical role in the phase transition. As it happens the
details of the critical phenomena depend on the symmetry of these quarks above the critical
temperature Tc [3].

The order parameter for the breaking of chiral symmetry, the chiral condensate, indicates
that in the massless limit of the up and down quarks the critical temperature is on the order
of 150− 200MeV. At these temperatures the vector like chiral symmetries SU(2)L×SU(2)R
are fully resotred and the chiral condensate vanishes.

Naively we expect that this is the extent of the restoration for chiral symmetry as there
are no additional broken symmetries. However, the U(1)A broken by quantum anomaly
which has been shown to have a relationship the chiral condensate [4, 5, 6, 7], may appear
if the topological exciations resulting from gluonic fluctuations become suppressed above Tc.
The roots for this will be discussed in the next chapter.

There is an ongoing interest in the exact point of restoration for U(1)A as this impacts
the universality of the phase transition. To this end, there is a large body of work which
has looked at the topological fluctuations as effectively described by instantons [8, 9, 10, 11],
in the cases of pure Yang-Mills, large Nc color degrees of freedom and QCD with heavy
quarks. In the context of these studies the instantonic effects persist at temperatures T ∼ Tc
and thus continue to drive susceptibility to the quantum anomaly keeping U(1)A broken.
However, in the case of Nc = 3 with light dynamical quarks, the size of these gluonic effects
are on the order of pion physics and thus subject to a larger correlation length, in such a
setting the topological fluctuations are not longer described by the instanton gas.

At very high temperatures the work done in [12] using the NRQCD3 approach predicted
a spin independent correction to the spatial screening mass of all meson states, in addition to
the leading order 2πT term. This seems to imply that all the meson states become degenerate
in the high temperature limit and may become more symmetric. This leading order term
which is well known as twice the groundstate of the Matsubara mass.

In addition to this there is a recent body of work which asserts the presence of emergent
symmetry structure at T ∼ 2Tc and above [13, 14, 15, 16, 17, 18, 19]. This approximate
symmetry called chiral-spin symmetry may actually be related to this perturbative prediction
as the high temperature mesons develop a spin independent symmetry which is analogous
to the heavy quark symmetry at T = 0 [20, 21]. This symmetry which emerges due to a
large Matsubara mass is only an approximate symmetry which may be enhanced by gluonic
effects making it emergent at temperatures around 2Tc.

It is important to stress, in contrast to the chiral symmetry mentioned previously, this
chiral-spin symmetry and other possibly emergent larger symmetry structure in high tem-
perature QCD is not a symmetry which is present in the original QCD Lagrangian but a
symmetry which may be seen from the free quark propagator in the large T limit.

In addition to looking at the analytical roots for these symmetries in QCD we will present
the results of lattice simulations of QCD using the Möbius Domain Wall fermions at high
temperatures to investigate the symmetries of the mesons. Previously this work has been
done by other collaborations using different lattice fermion operators, however, these fermion
formulations expliciltly broke the SU(2)L × SU(2)R chiral symmetry. Previous work done
with Wilson fermions worked with a remnant vector like SU(2)V symmetry; while work
done with the staggered fermions broke the chiral symmetry to U(1)′V × U(1)′A, a distinct
remnant symmetry from the quark number and anomalous U(1) symmetries present in the
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original QCD Lagrangian. Work done by JLQCD [22, 23, 24] showed that lattice artifact
are enhanced in the probes for U(1)A at high temperatures, making it difficult to distinguish
genuine breaking from discretization artifacts. This makes study of chiral symmetry using
a theoretically clean approach like the Möbius Domain Wall fermions attractive as we can
simplify our analysis procedures and avoid any additional artifacts which may be introduced
in the Wilson fermion and Staggered fermion formulations.

Due to the critical interest we have in both SU(2)L×SU(2)R and U(1)A chiral symmetries
it is our interest to study both symmetries at high temperatures near the critical point by
lattice simulation using Möbius Domain wall fermions. Due to the exact form of chiral sym-
metry maintained by the Möbius domain wall fermions we can achieve a more straightfoward
analysis thereby allowing us to better extract the physics of the chiral crossover.

Our particular interest in this region is characterizing the behaviors of the mesonic two
point correlation functions using the spatial screening mass differences as a probe of the chiral
symmetry. To this end we examine a series of latices associated with a range of temperatures
from T = 174 − 330MeV or [0.9 − 2.0]Tc where the Tc is estimated from the peak of chiral
susceptibility [6].

In this work, we will study the restoration of chiral symmetry surrounding the critical
temperature Tc, specifically we will focus on probes for SU(2)L × SU(2)R and U(1)A drawn
from the long range screening mass of the flavor isospin triplet two-point meson correlation
function. We are interested in both the temperature of restoration for the chiral symmetries
as well as their symmetry behaviors above Tc, in particular, how the meson masses approach
the perturbative leading order predicition of 2πT . Due to the preservation of a theoretically
clean chiral symmetry from the Möbius domain wall fermions, we expect that our probe for
chiral symmetries to be reliable through the range of temperatures in our study.

In addition to study of chiral symmetries at high temperatures, we will also investigate
the possibility of an emergent approximate isospin SU(2) symmetry due to the large thermal
mass in the range Tc−2Tc. Following the evidence presented in previous studies [15, 25, 26],
as well as, theoretical arguments which we will explore in detail later, there we expect to
find a threshold for which this symmetry becomes accessible at high temperatures.

In consideration of the points laid out above the organization of this thesis is as follows.
In Chapter 2 we will briefly revisit the core symmetries of the Lagrangian and explore the
relationship between the breaking of chiral symmetry and the chiral condensate, as well
as discuss briefly the relationship between the topological chrgae fluctuation and the axial
anomaly.

Following this we will then connect chiral symmetry to the lattice in Chapter 3 and
discuss how lattice discretization leads to doublers, how to eliminate these doubler effects
while also preserving a theoretically exact form of the chiral symmetry on the lattice.

In Chapter 4 we will discuss the finite temperature lattice, mesonic two point functions
and their high temperature thermal behaviors leading to the perturbative results from [12].

We will then cover the high temperature behaviors of the meson correlation functions,
the probes for symmetries from the spatial correlation functions and the emergent high
temperature symmetry SU(2) chiral-spin(SU(2)CS) in Chapter 5.

Finally we will present the results of the lattice simulations and highlight both the thermal
properties of the mesons as well as the change in symmetries with respect to temperature,
and an evaluation of errors in our calculation in Chapter 6.
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Chapter summarizes the previous chapters and discusses the lattice results in relationship
to the broader body of work in QCD.

The core of this work is already published under [27] and part of this was previously
presented at Lattice 2024 [28], in addition to this, related work on Nf = 2 + 1 QCD which
influenced this work was presented at Lattice 2023 [29]. See [5, 30, 31, 32, 33] for additional
work done by JLQCD on the chiral symmetry in finite temperature QCD.
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Chapter 2

Symmetries of Quantum
Chromodynamics

In order to discuss nonperturbative studies of quarks and their fundamental symmetries at
finite temperature we need to begin with the most low to the ground part of the description
of the interactions of fermions in quantum chromodynamics(QCD) and explore the necessity
of the lattice.

As the more complicated and subtle pieces of QCD stem from the fact that the entire
theory is not easily described perturbatively we can write out the theory quite neatly to
frame our broader discussion.

2.1 QCD in a nutshell

The Lagrangian for QCD is quite simple and is written in three terms:

L = iψ̄(x)D/ ψ(x) +mψ̄(x)ψ(x) +
1

2g2
tr[FµνF

µν ]. (2.1)

While the Lagrangian describing QCD is quite compact, the complexities of QCD run quite
deep and are not obvious from the form of the Lagragian on its own. The complexity
is actually connected to the many symmetries of the Lagrangian. One symmetry of the
Lagrangian that is the most difficult is actually the gauge symmetry of the “color” field.
The complexity of non-abelian fields lies in their ability for self interaction and in the case
of QCD the strength of their interactions.

2.1.1 Non-Abelian Gauge Theories and the fermion propagator

While there are some very important properties of the U(1) gauge theory which are relevant
to the fundamental symmetries of quarks in QCD, we will revisit these after a quick primer
in a leading reason for study of quark field theories on the lattice: the non-abelian gauge
field. As U(1) is a group constructed from straightforward continuous transformations, the
group elements simply commute. However, this can be generalized to incorporate non-trivial
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gauge transformations composed of generators for any group SU(N). The extension of the
gauge transformation is

Aµ → Aa
µ(x)T

a + ∂µθ
a(x)T a − igAa

µ(x)θ
b(x)[T a, T b], (2.2)

wherein T a is a generator for the Lie group SU(N).The procedure for writing the gauge
transformations are easily written down:

G(x) = e−igθa(x)Ta

. (2.3)

The generators obey the following commutation relation

[T a, T b] = ifabcT c, (2.4)

which exposes the structure constant fabc. As the generators no longer straightforwardly
commute the gauge transformations now obey the rules of a group and so can no longer
easily commute through terms in the Lagrangian. This has the consequence of making field
interactions much more complicated and allowing for self interactions between gauge fields.

The most obvious case for this is seen in the redescription of the field strength tensor
which now contains the commutator of the vector potential,

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], (2.5)

= (∂νA
c
µ − ∂µA

c
ν + gfabcAa

µA
b
ν)T

c. (2.6)

Due to the noncommutation of the generators again we can see that the field tensor now
gains an extra self-interaction term and an explicit field index. Due to the additional index
in the path action the gauge field action must now have an explicit trace over the index,

L = iψ̄(x)D/ ψ(x) +mψ̄(x)ψ(x) +
1

2g2
tr[FµνF

µν ]. (2.7)

While this form of the Lagrangian looks very much similar to the form of the U(1) gauge
theory with fermions, there is a critical difference: the SU(N) gauge fields and their self
interactions lead to a much more complicated beta function. The form of which looks like

β(g) = −
[
11

3
N − 2

3
Nf

]
g3

16π2
+O(g5), (2.8)

for QCD where N = 3 the coupling remains negative for any theory of fermions with less
than Nf = 16. This means that the low energy gauge coupling of QCD is incredibly strong
and weakens at high energies. In this case low energy perturbation theory which we can
perform for the U(1) theory breaks down and so cannot be used to investigate the behaviors
quarks and gauge fields. To proceed actually studying the low energy region of QCD < 1GeV
we require an alternative approach to the path integral not using perturbative techniques,
we therefore require a lattice formulation of QCD.
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2.2 Fermion Propagator and Chiral Symmetry

Independent of the gauge field symmetry of interacting fermions there is an additional global
set of symmetries inherent to the fermions which we will also now explore. The chiral and
flavor symmetries of the fermions are of importance to the study of QCD and specifically the
chiral symmetry is critically impacted by the reformulation of the continuum theory for the
lattice. To build our way to the lattice let us consider the most simplistic theory of fermions
which are noninteracting.

L = iψ̄∂/ ψ +mψ̄ψ (2.9)

Our goal overall is to understand chrial symmetry in the context of QCD, in the non-
interacting fermion Lagrangian we can already see the present chiral symmetry. Introducing
projectors

PL =
1− γ5

2
PR =

1 + γ5
2

(2.10)

Which have a range of properties inherited from the anticommutator for the gamma
matrices

{γµ, γν} = 2δµν . (2.11)

Specifically the fact that
γ5 = iγ0γ1γ2γ3, (2.12)

where γ5 anticommutes with all other gamma matrices. Based on this property and some
basic identities derived from the forms of the projectors we can introduce these into the
Lagrangian:

L = ψ̄(x)(PL + PR)iγµ∂µ(PL + PR)ψ(x) +mψ̄(x)(PL + PR)ψ(x)(PL + PR). (2.13)

Using the anticommuting property of the gamma matrices we can establish

PLγµ = γµPR, (2.14)

combined with the property that
PRPL = 0, (2.15)

the Lagrangian becomes

L = iψ̄(x)PL∂/ PRψ(x) + iψ̄(x)PR∂/ PLψ(x) +mψ̄(x)(P 2
L + P 2

R)ψ(x). (2.16)

When the projectors are applied to the fermions they sectorize into right propagating and
left propagating:

ψR(x) = PRψ(x) ψ̄R(x) = ψ̄(x)PL, (2.17)

ψL(x) = PLψ(x) ψ̄L(x) = ψ̄(x)PR. (2.18)

Thus the kinetic term in the Lagrangian separates into two independent chiral sectors, while
the mass term mixes the left and right chiral fermions.

L = iψ̄R∂/ ψR + iψ̄L∂/ ψL +m(ψ̄RψL + ψ̄LψR) (2.19)
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For the noninteracting fermion theory as in all the theories with fermions to follow the
chiral symmetry is exact in the massless limit; this limit known as the chiral limit can be
approximated in fermionic theories with multiple flavors as an approximate symmetry for
light fermions. To understand this better we will explore the continuous chiral transformation
applied to the unflavored fermions first.

The Lagrangian in the chiral limit is actually invariant under chiral transformation of
the fermions in the following way

ψ(x) → eiαγ5ψ(x) (2.20)

ψ̄(x) → ψ̄(x)eiαγ5 (2.21)

When all fermions in the Lagrangian are transformed the kinetic term is again invariant
while the mass term mixes the chiral transformation,

L = iψ̄(x)∂/ ψ(x) +mψ̄e2iαγ5ψ. (2.22)

Complicating this further we can introduce flavor into the mix of chiral symmetry as well.
The flavor symmetry is a global symmetry between the different flavor states that a fermion
can occupy. In the case of quarks there are six known flavors, however, depending on the
energetic regime of the theory of interest this flavor structure can take on different symmetry
group representations.

2.2.1 Flavor and Chiral Symmetry

In the case of the flavored theory of fermions the spinor ψ is now a Nf entry vector while
the mass parameter m becomes an Nf × Nf diagonal matrix with entries corresponding to
the mass of each flavor. In the theory with Nf degenerate flavors the mass matrix is simply
m multiplied onto identity.

Flavor is a global transformation of the entire fermion action which has the following
structure:

Tr[F a, F b] =
1

2
δab, (2.23)

F a ∈ {F s, F n}, F s ≡ 1Nf×Nf
, F n ∈ {Generators of SU(Nf )}, n = 1, . . . , N2

f − 1.
(2.24)

The matrices F n are the generators of the SU(Nf ) symmetry group where the group structure
is dependent on the number of flavors of the theory. The group is split between the singlet
transformation F s and the non-singlet flavor mixing transformations in the rest of the group,
which we have written as F n.

Under this symmetry group the fermions transform with an additional Nf × Nf vector
symmetry which are divided into the flavor mixing and singlet transformations

ψ → eiθnF
n

ψ, ψ̄ → ψ̄e−iθnFn

, (2.25)

ψ → eiθ1ψ, ψ̄ → ψ̄e−iθ1. (2.26)
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One method of treating the simultaneous chrial and flavor transformations is to break these
into the set of vector and axial vector transformations:

ψ → eiθnγ5F
n

ψ, ψ̄ → ψ̄eiθnγ5F
n

SU(Nf )A, (2.27)

ψ → eiθnF
n

ψ, ψ̄ → ψ̄e−iθnFn
SU(Nf )V , (2.28)

as well as the corresponding singlet flavor transformations. However, these transformations
are not directly consistent with the projectors we previously considered; when applied simul-
taneously with the corresponding left and right handed projections the flavor transformations
applied to the fermions sectorize into a left and right handed SU(Nf ) symmetry:

SU(Nf )L × SU(Nf )R × U(1)V (2.29)

Although the previous flavor transformations were not constructed as chiral explicitly
the chiral symmetry of the overall theory is incorporated as a direct product with the flavor
mixing angle as the chiral transformation applies to each flavor individually. The previously
mentioned axial transformation, can also be applied as a separate transformation to the
Dirac spinors indicating that the total symmetry group for the fermions

SU(Nf )L × SU(Nf )R × U(1)V × U(1)A, (2.30)

which transform in the following way under the vector and chiral symmetry transformations:

ψL → eiθ
n
LF

n
Lψ, ψ̄ → ψ̄e−iθnLF

n
L , SU(Nf )L, (2.31)

ψR → eiθ
n
RFn

Rψ, ψ̄ → e−iθnRFn
R ψ̄, SU(Nf )R, (2.32)

ψ → eiγ5θψ, ψ̄ → ψ̄eiγ5θ, U(1)A, (2.33)

ψ → eiθψ, ψ̄ → ψ̄e−iθ, U(1)V . (2.34)

Where the flavor singlet transformations are omitted as we will be focusing on non-singlet
operators in the next chapters; in other works these are considered in probing susceptibility
to chiral symmetry such as [34]. In addition to the SU(Nf ) × SU(Nf ) symmetry we also
include the global vector and axial U(1)A transformations. Again, the relationship between
the right handed and left handed sectors of the SU(Nf )L × SU(Nf )R are one aspect of the
chiral symmetry present in the massless limit of the QCD lagrangian.

For Nf = 2 the non-singlet generators of flavor transformations become the set of Pauli
matrices and the total chiral symmetry can be written as

SU(2)L × SU(2)R × U(1)A × U(1)V . (2.35)

The corresponding vector-like chiral transformations are

ψL → eiθ
n
Lτ

n
L/2ψ, ψ̄ → ψ̄e−iθnLτ

n
L/2, SU(2)L, (2.36)

ψR → eiγ5θ
n
RτnR/2ψ, ψ̄ → ψ̄eiγ5θ

n
RτnL/2, SU(2)R, (2.37)

while the global U(1) symmetries remain unchanged. In referring to chiral symmetry typi-
cally U(1)V is omitted as this is a global symmetry associated with baryon number conser-
vation. It is worth noting that “chiral symmetry” refers to both the SU(2)L × SU(2)R and
U(1)A symmetries as both have connection to the chiral condensate.
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Specifically the SU(2)L×SU(2)R symmetry, while exact in the massless limit is actually
approximate for theories of QCD which consider light degenerate quarks such as Nf = 2. In
this theory the scale of QCD which is roughly ∼ 500MeV in comparison to the physical point
up and down quarks (∼ 2.2MeV and ∼ 4.7MeV respectively) constitutes an approximation
to the massless chiral limit in the study of light quark two and three point functions. As
such information about the chiral symmetry can be extracted from massive two and three
point correlation functions from a series of interpolators which have connections to these
underlying symmetries.

2.2.2 Spontaneous Breaking of Chiral Symmetry

SU(2)L × SU(2)R chiral symmetry of the quarks in QCD plays an important role at low
temperatures as it connects directly to the mass of the pion. While it is easiest to illustrate
this for Nf = 2, the arguments are generic and can incorporate Nf degenerate flavors. The
spontaneous breaking of chiral symmetry

SU(2)L × SU(2)R → SU(2)V , (2.38)

corrsponding to the set of transformations,

ψ → eiθnτ
n/2ψ, ψ̄ → ψ̄e−iθnτn/2, (2.39)

can be detected by an order parameter, the chiral condensate ⟨ψ̄ψ⟩. The association of the
chiral condensate with the breaking of the chiral symmetry largely relates the to the fact
that at low temperature the isospin symmetry of both the mesons and hadrons is described
by the SU(2) vectorlike symmetry alone, implying the spontaneous breaking of the axial
sector of isospin transformations.

As the symmetry is broken spontaneously we expect the presence of a massless Nambu-
Goldstone Boson and the presence of an order parameter to detect said broken symmetry.
As mentioned above the chrial condensate is such an order parameter which can detect the
breaking of the axial sector, consider applying a transformation in SU(2)L × SU(2)R

⟨ψ̄ψ⟩ → ⟨0|ψ̄e−iθaτa+iγ5ϕbτ
b

eiθaτ
a+iγ5ϕbτ

b

ψ|0⟩ , (2.40)

it is obvious that the vector symmetry associated with a SU(2)L×SU(2)R leaves the conden-
sate invariant. However, the axial vector symmetry transformation remains; thus when the
chiral condensate acquires a non-zero vacuum expectation value axial vector transformations
shift the value indicating broken SU(2)L × SU(2)R. At finite but high temperatures QCD
undergoes a chiral crossover wherein the VeV of the chiral condensate vanishes which would
allow the quarks to transform invariantly under the axial vector transformations thereby
“restoring” the full vector like chiral SU(2)L×SU(2)R. By itself the chiral condensate is one
piece of evidence for the spontaneous breaking of chiral symmetry, to fully understand when
chiral symmetry is broken we also need to look at the associated Nanbu-Goldstone bosons
which result from the SSB.

As the chiral symmetry is approximate for the light quarks the associated Nanbu-Goldstone
bosons are actually pseudo Nambu-Goldstone bosons with a mass which is related to the
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VeV of the chiral condensate. At energies below the chiral crossover we can construct an
effective action for the mesons and show that the SU(2)V isospin transforms between the
three states of the pion π0 and π±. Based on this effective action we can model all low energy
interactions using chiral perturbation theory; from chiral perturbation theory we can derive
the Gell-Mann-Oakes-Renner relation

m2
π = −2

mu +md

F 2
π

⟨ψ̄ψ⟩ , (2.41)

which gives us a more or less direct connection between the formation of the pseudo Nambu-
Goldstone bosons and the VeV of the chiral condensate. It is therefore, more evident that
the relationship between the formation of the pion states at low energies and the breaking
of chiral symmetry is intimately connected as the square of the mass of the pions is directly
proportional to the expectation of the chiral condensate.

The converse of the previous argument, the restoration of chiral symmetry, is not as
straightforward to show; evidence for resotration comes through the chiral condensate and
the phase diagram of QCD as well as analysis in the infinite temperature limit. The ability
to show this directly at high temperatures in finite temperature QCD is not easily done
analytically, analogous to the low energy effective theory from chiral perturbation theory.
The most effective means to study chiral symmetry restoration has been from the lattice, as
numerical studies of QCD have yielded direct evidence of the chiral crossover and estimations
of both the crossover temperature as well as behavior above the transition.

2.2.3 Axial Symmetry and the Quantum Anomaly

As with the chiral SU(2)L×SU(2)R the full symmetries of the Lagrangian in the chiral limit
need to be further qualified; in the case of the U(1)A symmetry, while the Lagrangian remains
invariant under transformation, the propagator and associated two and three point functions
all fail to retain the same gauge invariance under transformation by U(1). This is known
as the Adler-Bell-Jackiw anomaly [35, 36] which explicitly breaks U(1)A and was originally
shown in QED with chiral fermions. This anomaly which is a feature of the quantized theory
is actually linearly divergent for a single charged field propagating without a chiral partner
field. In addition to this Fujikawa showed that the axial transformation of the Lagrangian
modifies the measure of the propagator inducing an anomalous divergence in the axial vector
current:

∂µj
µ(x) =

1

32π2
ϵµνρσtr[FµνFρσ]. (2.42)

The quantum anomaly is a low energy effect and thus U(1)A is broken at a scale below
the cutoff of a given theory and thus appears at any energy scale. Additionally, this also
implies that the U(1)A is broken at all scales of QCD and thus makes study of the full chiral
symmetry for QCD impossible.

However, there is actually a link between the axial symmetry breaking effect and fluctu-
ation of topological charge QT , while the global topological charge is zero local fluctuations
of topological charge in the gauge field can be calculated from the topological density of the
gauge field

QT =

∫
d4x

1

32π2
ϵµνρσtr[FµνFρσ]. (2.43)

15



The resulting integer charge of QT is actually connected to the number left handed and right
handed zero modes in the Dirac operator by the Atiyah-Singer index theorem[37, 38],

QT = nL − nR. (2.44)

Meaning that the axial anomaly is connected to topological excitations in the gauge field,
in the context of QCD these are complex gluonic excitations. These topological gluonic
excitations have an effective description as instantons through the associated topological
charge and have been shown to break the U(1)A symmetry [39].

However, in the case of light dynamical quarks such as Nf = 2 the topological instanton
fluctuations may not play as strong a role and could be suppressed at high temperatures
reducing susceptibility to the anomaly and effectively “restoring” the U(1)A at high temper-
atures [40, 41, 4, 42, 43, 44] For the light quarks we expect the scale of topological excitations
> 1/T and as such the description of U(1)A remaining broken up to temperatures around
the chiral crossover, described by instanton excitations may not be accurate [8, 9, 10, 11].
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Chapter 3

Lattice and the Mobius Domain Wall
Fermion Operator

To this point we have considered field theories in both the continuum and in Lorentz invariant
space-time. As we have mentioned in chapter 2 the approach to studying field theories
in the continuum using perturbation theory has had tremendous success for sufficiently
weakly coupled theories such as QED and SU(2) electroweak. However, for QCD due to
the strong coupling and form of the coupling beta function we find that the low energy
interactions, which form the bulk of interactions, as well as, the formation of low energy
bound states such as those in the nucleons and mesons are unable to be calculated effectively
using perturbative methods. While chiral perturbation theory can form a low energy effective
theory describing the exchange of pions as the mediator of interactions, it is not sufficient to
study the properties of quarks and mesons. To directly study the properties of quarks and
mesons in QCD we need numerical and analytic methods which can study the low energy
regime non-perturbatively.

To these ends in this chapter we will cover a short reintroduction to the lattice(following
a sketch similar to Rothe [45]), lattice gauge theories and how to propagate chiral symmetry
to fermions placed on the lattice. Following this we will discuss the Mobius domain wall
fermion, an approximation of the Overlap fermion, which allows us a more or less exact
chiral symmetry which is theoretically clean.

3.1 Wick Rotation

In working on the lattice we must transition out of the Lorentz space-time into Euclidean
space-time, this not only allows us to simplify our expressions, but also gives us advantages in
our method of calculating VeVs more or less directly as expectation values from the spectrum
of thermal states in the Hilbert space. Moving forward we will be considering the QCD field
theory and lattice field theories in Wick rotated space time t → it. Which takes the path
integral to a form analogous to the partition function

⟨φ(x′)|φ(x)⟩ =
∫

D[φ]e−SE , (3.1)
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where the SE is the Euclidean path action:

SE =

∫
d4xL[φ(x), ∂µφ(x)]. (3.2)

Two additional major advantages to using the Wick rotated form of the propagator is the
additional use of thermal physics formal tools to analyze the behavior quantum fields, and
the biggest advantage: our ability to calculate field theory observably numerically.

One final note about the Euclidean field theory formulation, fundamentally field theories
live in a Lorentz invariant space time; studying a Euclidean field theory may not appear
at first to be consistent with the original “real” field theory, however, for the Euclidean
field theory we have the ability to recover the original field theory by means of analytic
continuation to the physical propagator. This is more easily said than done, as direct recovery
of the non-Euclidean field theories can be quite nontrivial, although they are accessible
mathematically.

3.2 Lattice Discretization

3.2.1 Toy Model for a Scalar Field Theory

Discretization of spacetime in the Euclidean field theory is actually quite straigthforward, by
taking all continuous positions to discrete steps scaled by a spacing parameter e.g x → na,
we can simply break the action integral into a sum over the space time dimensions written
thusly, ∫

d4x→ a4
∑
n

, (3.3)

with the corresponding form of the action

SE = a4
∑

L[ϕ(na), ∂µϕ(na)]. (3.4)

Where the covariant derivative is now taken to be a finite difference operator between sites,
in the case of a simple scalar field the continuum form of the Lagrangian

LE =
1

2
∂µϕ(x)∂µϕ(x) +m2ϕ2(x), (3.5)

the covariant derivatives become right-ward and left-ward acting as the derivatives mix sites
n + 1, n and n − 1 and following units contributes 1/a. The resulting Lagrangian after
discretization,

LE =
1

2
a2

∑
µ

1

a2
φ(na)

(
φ(na+ µ̂a) + φ(na− µ̂a)− 2φ(na)

)
+m2φ2(na), (3.6)

is simply a lattice form of the Klein-Gordon operator for the scalar field with a discrete
eigenvalue spectrum based on the discretization of the position y, x→ m,n. In moving from
(3.5) to (3.6) we assign a lattice unit to the scalar fields

φ(na) ≡ aϕ(na), (3.7)

18



the mass in the Klein-Gordon operator also has dimensions inverse length and so we will
make it unitless by defining

M ≡ am, (3.8)

making the action explicitly unitless. Now the lattice Klein-Gordon operator can be ex-
pressed explicitly as a matrix spanning the configuration space:

Km,n = −
∑
µ

[
δm+µ̂,n + δm−µ̂,n − 2δm,n

]
+M2δm,n. (3.9)

This form of the Klein-Gordon operator can be inverted by applying a discrete Fourier series
over the position space

K−1(k) =
∑
m,n

(
−

∑
µ

[
δm+µ̂,n + δm−µ̂,n − 2δm,n

]
+M2δm,n

)
eik(m−n), (3.10)

This yields the inverse Green’s function and also gives us the

K−1(k) = 4
∑
µ

sin2

[
akµ
2

]
+M2, (3.11)

where kµ now is written as a physical momentum as opposed to the previously unitless k.

Taking k̃′µ = 2/a sin[akµ/2] the solution of the Green’s function can be written in a familiar
manner

G(x, y) = a2
∫ π/a

−π/a

d4kµ
2π4

eiakµ(x/a−y/a)∑
µ k̃

′
µ

2
+m2

(3.12)

The Green’s function derived from the discretized Klein-Gordon operator can be easily shown
to converge to the continuum form in the a → 0 limit as k̃′µ → kµ, while the unitless mass
contains a2. The relationship between the two point function and the Green’s function
contains a 1/a2:

⟨ϕ(x)ϕ(y)⟩ = lim
a→0

1

a2
G(x, y) (3.13)

indicating that the lattice form of the non-interacting scalar field theory does indeed describe
correct quantum field theory once we return to the continuum field theory.

3.2.2 Computational form of the Propagator

Now that we consider field theories which are no longer in the continuum, we must also
understand how this impacts the form of the propagator. In this case we can write out the
propagator for out toy model scalar field with some operator O:

ZO =
1

Z0

∫
D[φ(x)]e−SE [φ(x)]O[φ(x)]. (3.14)

Because the propagator is derived by taking a continuous limit over discrete steps through
the phase space or configuration space, when we impose the condition that position and
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momenta of the theory are no longer smooth the form of the propagator changes shifts from
an integral over the rigged hilbert space representing the infinite states accessible to the
field to something of a massive thermal ensemble in a finite but large configuration space.
Correspondingly, the path action which was previous also smooth becomes a discrete sum∫

d4x → a4
∑
n

, (3.15)∫
D[φ(x)] →

∑
Ω

, (3.16)

while the path action remains largely the same quantity up to an overall small error, the
form of the integral over the continuous set of states becomes a large set of thermal states
controlled by a Boltzmann weight. To this end the expectation value associated with the
operator listed above can now become a straightforward expectation value over a statistical
ensemble:

ZO =
1

Z0

∑
Ω

e−SE [φ]O[φ] =
1

N

∑
Ω′

O[φ] = ⟨O⟩Ω′ . (3.17)

Where Ω′ is the subset of states in the thermal ensemble which have a non vanishing weight
from the Boltzmann factor. Therefore a sufficiently large sample (N) of expectation values
in this set of states Ω′ can be expected to converge onto the result of the continuum solution
to the propagator up to an overall error if there are no artifacts introduced in discretization.

This approach to studying the field theory from the lattice perspective allows us to use
this sampling to study non-perturbative theories from using numerical methods. In addition
to this we can be assured that the theory remains healthy in the low energy infrared limit as
the theory is automatically regularized by the fact that the number of sites n is always finite.
While this does mean recovery of infrared results may be fraught in the taking the n → ∞
and a → 0 limits we can again expect that the lattice results, if free of artifacts, actually
give us solutions of the propagator. In the case of field theories like QCD which cannot be
perturbatively examined in the infrared limit due to the catastrophic increase in contributing
diagrams the lattice approach offers a siginficant advantage. Likewise the ultraviolet limit
of theories is well controlled on the lattice as the higher energy lattice, while very fine, is
still fixed to finite spacing between the sites; in such a case even if the lattice has millions of
sites the discrete set of states are still thermally regulated and thus well behaved.

3.2.3 Gauge Fields and Fermions on the Lattice

Now that we have had discussion of the changes to the propagator and seen how the path
action for a toy model is transformed by discretization, we will focus on the actual description
of QCD on the lattice1. To this end we introduce the lattice analogue to the continuous gauge
field: the gauge link,

Uµ(x) = eigaAµ(x), (3.18)

1For simplicity, when discussing the lattice spacetime coordinates we will continue using the form of the
continuous variables with understanding they are in fact discrete.
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ψ(x) ψ(x+ µ̂)

ψ(x+ µ̂+ ν̂)ψ(x+ ν̂)

Pµν(x)

Uµ(x)

Uν(x+ µ̂)

U †
µ(x+ ν̂)

U †
ν(x)

Figure 3.1: An example of the plaquette Pµν(x) with labelled links and fermion spinors
representing the relevant quantities in the lattice action.

which transforms in the following way

Uµ(x) → G(x)Uµ(x)G(x+ µ̂). (3.19)

Unlike the continuous form of the gauge field in which the generators formed the elements
of the Lie Algebra of SU(N) the links are the are truly the group elements of SU(N). This
means that constructing the analogous expression to mirror the action for the gauge fields
is directly constructed from the links themselves.

Because gauge links are directional and represent vector fields on the lattice they have a
few special properties, for a single sit there are up to d gauge links which radiate out of a
position all of which connect to the adjacent sites in their respective directions. This impacts
the gauge transformations above as the link must be transformed at the edges of the link
as the link lives between the sites. Due to the links having a directionality, the inverse is
equivalent to flipping the direction of the vector associated with the next site e.g.

U †
µ(x− µ̂) = U−µ(x). (3.20)

For this reason we can think of the gauge links “flowing” throughout the lattice from left to
right and from bottom to top.

For an abelian gauge theory the correspondence between the plaquette and the field
strength can be constructed by replacing the derivatives of the vector potentials with finite
differences akin to other lattice quantities. The plaquette is smallest unit of the gauge field
constructed on the lattice, and the gauge field strength tensor can be expressed from the
plaquette in the following way:

Pµν(x) = Uµ(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν(x) = eig
2Fµν(x), (3.21)

plainly seen from the expression of the link (3.18). While this is very easily shown in abelian
gauge theories, it is also quite straightfowardly shown in an SU(N) gauge theory. Based on
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the form of the plaquette we can apply a simple exponential expansion to recover the form
of the continuum gauge field action up to an overall error

SG =
2N

g2

∑
x

∑
P

1− 1

2N
tr

[
Pµν(x) + P †

µν(x)

2

]
. (3.22)

The gauge field action is written in the form of the SU(N) theory where the plaquette
Pµν(x) is now explicitly path ordered due to the non-commutative nature of the gauge fields
in SU(N).

3.2.4 Naive Fermion discretization and the doubling problem

We also can consider a discretization of the fermionic fields, recall that in chapter 2 the
fermions are also subject to gauge transformations, on the lattice the fermions retain the
typical form of their gauge symmetry

ψ(x) → G(x)ψ(x), (3.23)

ψ̄(x) → ψ̄(x)G†(x). (3.24)

Discretization of the spinors is not quite straightforward as the Lagrangian for the scalar
fields, and unlike the toy model we will consider fermions interacting with the gauge fields.
This simply means an inclusion of the gauge covariant derivative in the kinetic part of the
Dirac operator,

S =

∫
d4xψ̄(x)D/ (x)ψ(x) +mψ̄(x)ψ(x). (3.25)

Because the inclusion of gauge fields into the lattice action is somewhat more straightforward,
as shifting ∂µ → Dµ simply requires inserting a link variable; we will describe the doubling
problem in the lattice action containing the fermions using the simple non-interacting dirac
field equation.

Previously, in the case of the scalar field, discretization has been simply treating the fields
as restricted to the sites of the lattice with the continuous variable x→ na. The action was
then taken to a simple difference between the fields at neighboring sites. This is seen when
we consider that the point x has a difference in sign when approached from the left and right

Dµψ(x) =
1

2
[Uµ(x)ψ(x+ µ̂)− Uµ(x)ψ(x)− U †

µ(x− µ)ψ(x− µ̂) + Uµ(x)ψ(x)]. (3.26)

As with the case of the scalar field simply apply the difference between the x and its neigh-
bors, however, for the case of the dirac equation we require that the derivative term is
anti-hermitian, thus we introduce a sign difference between the difference from the right as
opposed to the difference from the left.

S = a4
∑
x

∑
µ

1

2a
ψ̄(x)γµUµ(x)ψ(x+ µ)− ψ̄(x)γµU

†
µ(x− µ)ψ(x− µ)] +mψ̄(x)ψ(x) (3.27)

The obvious rescaling choice for the fermions

ψ(x) ≡ 1

a3/2
ψ(x). (3.28)
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The associated unitless operator matrix which contains spinor indices along with the explicit
separation in the position index:

Kαβ(x, y) =
1

2

∑
µ

γαβµ [Uµ(x)δx+µ̂,y − δx−µ̂,yU
†
µ(y)] + δα,βδx,yM (3.29)

While this form of the dirac operator looks analogous to our scalar field toy model from
sec 3.2.1 and is seemingly innocuous, we must examine the associated two-point function.
We will ignore the link terms in the gauge covariant dirac operator as the leading order
free fermion behavior will show what our discretization has done to the fermions in our
propagator. Upon expanding this as a fourier series in the four momenta we can extract a
momentum term which converges to the linear dispersion as a→ 0.

Kαβ(p) =
∑
x,y

Kαβ(x, y)eip(x−y) (3.30)

=
∑
x,y

[
1

2

∑
µ

γαβµ [δx+µ̂,y − δx−µ̂,y] + δα,βδx,yM

]
eip(x−y) (3.31)

Kαβ(p) = a
∑
µ

iγµ
1

a
sin(pµa) +m (3.32)

In the argument of the sine function the unitless momentum is re-rescaled to correspond to
the physical momentum. Introducing

p̃µ =
1

a
sin(pµa), (3.33)

allows us to write the two point function directly as the Green’s function corresponds to the
two-point function with the square of our rescaled field units:

⟨ψ̄(x)ψ(y)⟩ = lim
a→0

(
1

a3/2

)2

K−1
α,β(x, y). (3.34)

If we consider the form of the two point function for the fermions in the continuum limit it
becomes very quickly obvious that the dirac operator, in being discretized, has introduced
several additional artifacts once placed on the lattice see fig. 3.2 for details,

⟨ψα(x)ψ̄β(y)⟩ = lim
a→0

∫ π/a

−π/a

d4pµ
(2π)4

[
∑

µ−iγµp̃2µ +m]αβ∑
µ p̃µ +m2

eipµ(x−y). (3.35)

The low momentum mode which we expect to form the ground state consistent with
the dispersion relation shown in 3.2(b), is contaminated by the presence of additional low
momenta which are present at the edges of the Brilluon zone. In the continuum limit, as said
above these states diverge as the edges of the Brilluon zone expand to an infinite limit; the
presence of the doublers in the Green’s function for our two point function are connected to
all of the four momenta for which the sine function is zero. Thus for a 4d theory we have the
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Figure 3.2: In 3.2(a) the re-scaled dispersion of the scalar field is plotted in the Brilluon zone

[−π/a, π/a]. As we can see from the graph, approximation of the field behavior for k̃′µ ≈ kµ is
localized around the origin, therefore as a→ 0 the approximation becomes exact consistent
with the argument from 3.2.1. While the plot in 3.2(b) has pµ ≈ p̃µ near the origin, there are
also two addition points which also have the same momentum located at ±π/a; this means
that we get couplings to momenta which diverge as we take the lattice spacing to zero. This
introduces erroneous phase shifted low momenta which break the continuum convergence for
the fermionic theory, these doublers scale with dimension as 2d.

one momentum which corresponds to the groundstate and fifteen additional artifact states
which do not exist in the continuum theory.

There is actually quite a deep reason that we find doublers in the theory of fermions on
the lattice, which is critically connected to the presence of the Adler Bell Jackiw anomaly
in QED [36, 35]. From chapter 2 we know that in the massless limit the Dirac operator has
the property

{D, γ5} = 0, (3.36)

and the fermions transform under a global axial symmetry

ψ → eiγ5θψ, (3.37)

ψ̄ → ψ̄eiγ5θ. (3.38)

We assume that this property also holds for the lattice as the lattice Dirac operator in the
massless limit does appear to share this property; however, this assumption, which may be
seen as natural, is incorrect because the lattice regularization assures that any symmetry like
the axial symmetry has a conserved current at all spacings. According to [46], the formation
of doublers arises from the tension between the presence of the anomaly, which appears a
low momentum, with the apparently anomaly free regularization of the lattice. The way
that this is occurs can be seen by breaking up the regions of the hypercubic momentum into
their axial charge sectors by restricting the range of integration in (3.35) to [π/2a,−π/2a]
and introducing δp̄µ

δp̄µ ≡ eip̄µ . (3.39)
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p̄µ is not a range of momentum like pµ or p̃µ but a choice in the pole momentum configuration
for edge states shown in the middle column of Tab.3.1. These pole coordinates induce a phase
in the overall integral which cannot converge upon taking the continuum limit, while the
pole at p̄µ = (0, 0, 0, 0) has no such phase and may converge to the continuum limit without
problem,

⟨ψα(x)ψ̄β(y)⟩ =
∑
p̄µ

ei
p̄µ
a
(x−y)

∫ π/2a

−π/2a

d4pµ
(2π)4

[
∑

µ−iδp̄µγµp̃µ +m]αβ∑
µ p̃µ +m2

eipµ(x−y). (3.40)

The phase factor associated with the spatial coordinates allows the two point function to
be written in terms of a local axial transformation based on the four momenta sector. The
product of the gamma matrix and the four momenta sector delta function can be expressed
as a similarity transformation of the gamma matrix by the tensor Tp̄µ which changes rank
based on the four momentum sector:

δp̄µγ
µ = Tp̄µγ

µT −1
p̄µ , (3.41)

transformations are listed in 3.1. Where the tensors Tp̄µ can actually be treated as a pseudo-
symmetry

Sα,β
F (x, y) = a3

∑
p̄µ

ei
p̄µ
a
xTp̄µ

[ ∫ π/2a

−π/2a

d4pµ
(2π)4

[
∑

µ−iγµp̃µ +m]αβ∑
µ p̃µ +m2

eipµ(x−y)

]
T −1
p̄µ e

−i
p̄µ
a
y, (3.42)

in fact, this same transformation

Vp̄µ(x) = ei
p̄µ
a
xTp̄µ , (3.43)

can also be applied to the original action which is invariant under such transformations. This
set of transformations correspond to the chiral transformation in 2.

In fact, these additional phases arise from the regularization of the lattice, as the lattice
regularizes the fermions in such a way as to assign cancellation of axial charge to each low
momentum state seen from the associated charge assignment column in Table 3.1. Based on
this, there is an even charge assignment with 8 states having -1 and another 8 having +1,
leading to the cancellation of the anomaly consistent with the lattice regularization condition
of preserving the axial current for any a. This is physically inconsistent, as the ABJ anomaly
is known to be broken by quantum fluctuations and actually has a divergent current.

3.3 Wilson-Fermions and extension of the Dirac oper-

ator on the Lattice

To have a physically consistent theory for fermions on the lattice the doublers need to be
eliminated to recover the proper anomaly in the continuum amongst other properties which
may also be eliminated by the lattice regularization condition. The famous Nielsen-Ninomiya
no-go theorem [47, 48, 49] actually lays out criteria for which a regulated theory produces
doublers; for the lattice, as the theory is already regularized in attempting to introduce chiral
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Tp̄µ Pole Coordinates(p̄µ) Chiral Charge Npole

1 for (0,0,0,0) +1 1
Tµ = γµγ5 states with (π, 0, 0, 0) -1 4
Tµν = γµγν states with (π, π, 0, 0) +1 6

Tµνλ = γµγνγλγ5 states with (π, π, π, 0) -1 4
Tµνλρ = γ5 for (π, π, π, π) +1 1

Table 3.1: The axial charge for various four momenta in the 4d theory of fermions on the
lattice.

symmetry consistent with (3.36) we get doublers. However, if we break the chiral symmetry
we can produce a lattice theory with fermions that eliminates the doublers. Beginning with
action already in momentum space

S =
∑
x,y

∫
d4p

(2π)4
ψ̄(−p)

(∑
µ

iγµ sin[p] +M

)
ψ(p)eip(x−y), (3.44)

the problem with the doublers is that the states which form the artifacts are degenerate with
the pole at (0, 0, 0, 0). Coupling the states with sin(p) = 0 but with non-zero momentum
configurations to the mass will raise the doubler states but leave the proper zero momentum
pole,

S =
∑
x,y

∫
d4p

(2π)4
ψ̄(−p)

(∑
µ

iγµ sin[p] +M + r
∑
µ

1− cos[p]

)
ψ(p)eip(x−y). (3.45)

This new term eliminates the doublers but breaks the chiral symmetry as the M → 0 limit
is no longer invariant under chiral transformation. Examining the Green’s function for the
fermions

SF (p) =
−iγµ sin[p] +M(p)

sin2[p] +M2(p)
where M(p) =M + r

∑
µ

1− cos[p], (3.46)

in the continuum limit a → 0 this converges to the continuum Green’s function properly.
This term modifying the mass is known as the Wilson term, and while it breaks the chiral
symmetry on the lattice, it does eliminate doublers while retaining the proper chiral sym-
metry in the continuum theory. With the Wilson term we can place the fermions on the
lattice, but we no longer have a full chiral theory on the lattice. The global chiral symmetry
is explicitly broken to

SU(Nf )V × U(1)V . (3.47)

Although the explicitly broken chiral symmetry of the Wilson fermions is correct below
the chiral crossover, for the purposes of studying chiral symmetry restoration and high
temperature phenomena related to emergent symmeteries from the lattice directly the Wilson
term is insufficient.
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3.3.1 Ginsparg-Wilson Fermions

In formulating a new Dirac like operator we would like to retain the lifting of the dou-
blers from the Wilson fermions while also avoiding explicitly breaking the chiral symmetry
outright. The resolution to this is to extend the Dirac operator in the fermion action to
incorporate the Wilson term while also maintaining the anticommutivity property of the
original covariant derivative operator (3.36) in the a → 0 and m → 0 limits. The core of
this extension will rely on the anticommutation relation

{D, γ5} = aDRγ5D (3.48)

R is included as a parameter and sometimes as an additional matrix for largely formal
reasons, but typically is set to 1 or 1/m0 depending on the context. This anticommuting
behavior follows our demand for a chirally symmetric theory as {D, γ5} → 0 as a → 0 and
m→ 0. While the lattice action is not chirally symmetric by construction we do have chiral
symmetry emerge not through choice of a particular operator but for all classes of operators
subject to the anticommutator.

There is an effective choice of the operator which has a limit that eliminates species dou-
bling in a certain regimes of masses, while also allowing convergence onto a chiral symmetry
in the continuum. This operator is called the Overlap operator[50, 51, 52] and is defined as:

Dov =
m0

a

(
1 +

DW (−m0)√
DW (−m0)†DW (−m0)

)
, (3.49)

where DW (−m0) is the Wilson-Dirac operator with negative mass :

DW (−m0) =
1

2
D/ +

1

2
aD2 − m0

a
. (3.50)

Crucially the Overlap operator requires that this form of the Wilson operator satisfy a few
properties, using the anticommutator for D we can show these required properties:

{D, γ5} = γ5D +Dγ5 = aD
γ5
m0

D (3.51)

Introducing the full form of the Overlap operator and dividing both sides by m0/a and using
X = DW (−m0):

2γ5 +
γ5X√
X†X

+
Xγ5√
X†X

=

(
1 +

X√
X†X

)(
γ5 +

γ5X√
X†X

)
2γ5 +

γ5X√
X†X

+
Xγ5√
X†X

= γ5 +
Xγ5 + γ5X√

X†X
+
Xγ5X

X†X

2γ5 = γ5 +
Xγ5X

X†X
(3.52)

To produce the equality in (3.52) we can show that X is subject to the condition γ5Xγ5 = X†.
The removal of doublers is now contingent on our choice of mass m0. For 0 < m0 < 2

doublers are eliminated while they return for m0 > 2. For m0 < 0 all fermions are massive
and we have no massless fermions which mean our chiral symmetry is unable to be recovered.
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There is an additional and important property that we can also see from the Ginsparg-
Wilson relation which impacts the form of chiral symmetry present on the lattice, if we look
again at (3.51) we can identify a quantity which anticommutes with the overlap operator

Dγ5(1−
1

2
aD) + γ5(1−

1

2
aD)D = {D, γ5(1−

1

2
aD)} = 0 (3.53)

Implying that the term γ5(1 − 1/2aD) is a modified form of the chiral symmetry, which is
exact on the lattice. For the lattice we would like to also check that the action is invariant
under the modified chiral symmetry transformations

ψ(x) → eiϕγ5(1−
1
2
aD)ψ(x) (3.54)

ψ̄(x) → ψ̄(x)eiϕγ5(1−
1
2
aD) (3.55)

In the limit m→ 0 if this modified transformation is a chiral symmetry, then transformation
of the fermions (3.54) and (3.55) should find no change to the action. The easiest way to
test this is by invoking δS = 0 by small variations in the chiral transformation of the Dirac
spinors.

δS =
∑
x

iϵψ̄

[
1− 1

2
aD

]
γ5Dψ + iϵψ̄Dγ5

[
1− 1

2
aD

]
ψ

= iϵ
∑
x

ψ̄[γ5D +Dγ5]ψ − ψ̄

(
1

2
aDγ5D +

1

2
aDγ5D

)
ψ

= iϵ
∑
x

ψ̄

[
{D, γ5} − aDγ5D

]
ψ

So our modified chiral transformation is indeed a symmetry of the action at m = 0 indicating
that our Ginsparg-Wilson relation does preserve a form of chiral symmetry on the lattice.

The Ginsparg-Wilson relation is quite generic and so there are a number of possible
operators we can produce that will preserve this modified form of chiral symmetry. The
Overlap operator is one possible choice of operators but it is actually derived from the form
of a 5D operator, which can be seen by writing down the alternate form of the overlap
operator:

Dov =
1 +m

2
+

1−m

2
γ5sgn(H). (3.56)

H is a more generic kernel operator which is constructed from a proportion of the 4D Wilson
operator DW (−M).

Using the Overlap operator we can do simulations of lattice QCD with an exact form of
chiral symmetry, and previous work done in the 1990s and 2000s made extensive use of the
Overlap operator in lattice studies. However, this does come with some trade offs as there
are some technical hurdles which make Hybrid Monte Carlo slower compared, with say, the
Wilson operator.

The key issue which slows simulation with the Overlap operator is inversion of the oper-
ator itself; therefore, it makes sense to introduce an approximation that simplifies inversion
and reduces the compute time while approximating the Ginsparg-Wilson relation.
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3.3.2 Domain Wall Fermions

For the free fermion field we will make an extension of the dimension for the theory to d = 5,
in the case of the the fifth dimension we will not be treating it as an entirely full degree of
freedom save for making some modifications to the dirac operator [53].

In the last section we considered the Ginsparg-Wilson relation, and saw that while it
preserves a form of chiral symmetry for fermions on the lattice, it is a non-local form which
depends explicitly on the Wilson-Dirac operator. As the Ginsparg-Wilson relation is defined
generically, we may be able to produce an operator which has a more conventional form of
the chiral symmetry. In the case of the domain wall we will actually impose the following
transformations on the fermions:

ψ(x, s) → eiθ
a(s)τa/2ψ(x, s), (3.57)

ψ̄(x, s) → ψ̄(x, s)e−iθa(s)τa/2, (3.58)

where s is the position along the fifth dimension. θ(s) is actually a piece wise defined function
which flips sign at the halfway point of the extension into the fifth dimension,

θ(s) =

{
θa (1 < s < Ns/2),

−θa (Ns/2 < s < Ns).
(3.59)

This is done to introduce a step function like behavior in the fermions mass which now
depends on the position along the fifth dimension. As the above transformations (3.58)
(3.57) appear to behave like the chiral transformations in the continuum, we can construct a
“quark” spinor q(x), which has both a right handed and left handed dirac fermion component

q(x) = PLψ(x, 0) + PRψ(x, Ls), (3.60)

the quark state is now an interpolated spinor which can be chirally transformed similar to
the dirac spinors in the continuum

qL(x) → eiθ
a
Lτ

a
L/2qL(x), (3.61)

q̄L(x) → q̄L(x)e
iθaLτ

a
L/2, (3.62)

qR(x) → eiθ
a
RτaR/2qR(x), (3.63)

q̄R(x) → q̄R(x)e
iθaRτaR/2 (3.64)

However, this would also appear to imply that we have four fermion fields between q(x) and
q̄(x), as the new quark field is composed of interpolated left and right handed spinors. The
remedy to this is in the form of the domain-wall fermion action, based on the form of the
quarks we get a left and right handed projection of the “mass” which is associated with the
boundary walls of the fifth dimensional extension

SDWF =
∑
x

m

[
ψ̄(x, 1)PRψ(x,Ns) + ψ̄(x,Ns)PLψ(x, 1)

]
+

∑
s

[∑
µ

ψ̄(x, s)(PL,µUµ(x)ψ(x+ µ̂, s) + ψ̄(x, s)PR,µU
†
µ(x− µ̂)ψ(x− µ̂, s)

]
+

∑
s

ψ̄(x, s)(1− M̂)ψ(x, s)− ψ̄(x, s)PLψ(x, s+ 1) + ψ̄(x, s)PRψ(x, s− 1),(3.65)
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it is important to note that the fifth dimension is not periodic like the other four dimensions;
in fact, the advantage of this is that due to the mass coupling in the first term the left
and right handed fermions live on the boundaries of the fifth dimensional bulk. With the
difference between the chiral q(x) and its mirror partner located on the boundary if we take
the limit Ns → ∞ the chiral symmetry of q(x) becomes an exact symmetry. However, in
practice we must fix to some finite extent sufficient to produce a “good” chiral symmetry
for the domain wall fermion operator. In fact, due to the finite extent of the fifth dimension
there is mixing between the forward and backward propagating vector like symmetries (3.58)
and (3.57) which creates a residual mass artifact which according to [22] is connected to the
reverse lattice derivative of the axial current Aa

µ:

△−
µA

a
µ = 2mP a + 2Ja

5 , (3.66)

where P a is the pseudo-scalar density drawn form the Ward-Takahashi identity. This is used
to extract the residual mass by taking the proportion of the expectation value between the
axial current in the fifth dimension Ja

5 and the aforementioned pseudoscalar density. In this
case we define this axial current at the midpoint Ns/2 of the total finite extent in 5D. There
is an additional form of mres which can be cast as invariant of the dependence directly on
the pion mass far from the source point which incorporates the domain wall operator:

mres =
⟨Tr[(D−1)†△D−1]⟩
⟨Tr[(D−1)†D−1]⟩ , (3.67)

D−1 is the massive domain wall operator which is the 4D effective overlap operator inverted

D−1 =
1

1−m
((DDW (m)−1)− 1). (3.68)

In the form above the denominator corresponds to the expectation values of the psuedoscalar
density while the numerator term has a defect from the Ginsparg-Wilson relation. In this
case the defect is fixed around the mid point coinciding with the point at which we have
fixed the axial current. Like the denominator this term simply corresponds to the Ja

5 current
term, and thus we have a state invariant form for the residual mass described by the 5D
domain wall operator itself.

While the fifth dimensional theory may seem scary, it is largely bypassed by extracting
the 4D theory from one boundary of the theory, typically we choose the right handed field
which is located on the boundary at the s = 1 endpoint. This choice also results in a positive
mass term which will also give use the correct behaviors for the fermions and allow us to
take the chiral limit of the theory.

3.3.3 Mobius Domain Wall Fermions

So now that we know the domain wall fermions can be used to produce a correct chiral
symmetry we would like to fit this back into the form of the overlap operator and examine
how this particular operator can simplify the necessary inversions of the overlap operator.
To do this we will rewrite the domain wall operator in a slightly more generalized form,
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beginning with the matrix form of the operator which is an Ls × Ls entry matrix

DDWF =



D −PL 0 . . . mPR

−PR D −PL 0 . . . 0

0 −PR D −PL
...

... 0
. . . D

. . .
...

...
...

. . . . . . . . . −PL

mPL 0 . . . 0 PR D


. (3.69)

The form of this matrix may be diagonalized by decomposition of a block diagonal form
which is derived by a series of matrix multiplications [54, 55]. In this case it can be be
made to correspond to a reduced 4D operator by Pauli-Villars subtraction resulting in the
Neuberger form of the 4D overlap operator:

Dov =
1 +m

2
+

1−m

2
γ5sgn(H) (3.70)

This is another subtlety of the overlap operator form, the sign function is hard to calculate
in and of itself as the form of the function changes with choice in the kernel H. Precise
knowledge in the form of the sign function is hard and there are many ways to approximate
the form of the behavior either through series expansions or directly through functional
approximation. In this work we depend on the latter choice by approximating sgn(H) ∼
tanh(LS tanh

−1(H)). Which will be made a bit more clear after showing the choice of kernel
related to the form of the generalized domain wall fermions, this choice of kernel will give us
what are call mobius domain wall fermions.

To arrive at the form of the mobius domain wall fermions we need to generalize the
domain wall operator a bit, based on the diagonal argument we will introduce an algebraic
expansion

D+ = as(1 + bsDW ), (3.71)

D− = as(1− csDW ), (3.72)

we can use the forms of these to produce an algebraic operator which comes in powers of the
fifth dimensional position s

Ds = (Ds
−)

−1Ds
+. (3.73)

In the case of the domain wall fermion cs = 0 uniformly, but to get a set of constants which
do not explicitly depend on the position in the fifth dimension we will again perform a de-
composition of the generalized domain wall fermion operator by multiplying first D−DGDW

2

D−DDW =



D1
+ D1

−P− 0 . . . −mD1
−P+

D2
+P+ D2

+ D2
−P− 0 . . . 0

0 D3
−P+ D3

+ D3
−P−

...
... 0

. . . D4
+

. . .
...

...
...

. . . . . . . . . DLs−1
− P−

−mDLs
− P− 0 . . . 0 DLs

− P+ DLs
+


. (3.74)

2For the chiral projection operator we relabel these to plus and minus to match signs on the operator D.
P+ = PR and P− = PL in the case of the generalized domain wall operator.
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Decomposition of this form of the generalized domain wall fermion to a transfer matrix
is somewhat technical, but can be done in the same manner as the standard domain wall
fermions. The form of the transfer matrix is noteworthy as this is where we explicitly make
the choice over the form of the kernel and the approximation of the step function:

T−1
s =

[
1 + γ5

1 + (bs + cs)DW

2 + (cs − bs)DW

]−1[
1 + γ5

1 + (bs + cs)DW

2 + (cs − bs)DW

]
. (3.75)

Here we can redefine the constants αsb = bs+ cs and c = bs− cs, these now allow us to define
the kernel in the transfer matrix,

T−1
s =

1 + αsH

1− αsH
. (3.76)

Making the choice to impose that the transfer matrix approximates the overlap operator
means choosing constants and expanding the transfer matrix as a product. We make a
straightforward choice of b = 2, c = 0 the kernel H → HM , for approximation of the sign
function by a hyperbolic tangent we consider direct multiplication of the transfer matrix as
a simple gemometric series

sgn(HM) =

1−
(

1−H
1+H

)Ls

1 +

(
1−H
1+H

)Ls
, (3.77)

in this case the approximation by tanh looks quite simple. However, there are competing
schemes for the approximation to the sign function in the Neuberger form of the Overlap
Operator such as optimal domain wall fermions [56], or Shamir’s approximation [57]. The
difference being the choices in coeffficients and assumptions of the form for expansion of the
transfer matrix, each offers different regimes of precision for capturing low eigenmodes in
the operator but at the cost of numerical intensity.

As with the previous section this defines the 5d version of the operator from which
there is an approximate form for which we can recover the 4d overlap operator so the form
of the new mobius domain wall fermion operator is identical to the form of (3.70) but now
sgn(H) → ϵ(H) where ϵ(H) is the approximated form of the sign function based on our choice
in the kernel and expansion of the transfer matrix. Stated again for the sake of completeness
the overlap operator for the mobius domain wall fermions is expressed as follows:

Dov =
1 +m

2
+

1−m

2
γ5 tanh[Ls tanh

−1(HM)], where HM =
γ5DW

2 + γ5DW

. (3.78)

In this form Ls is the full extent of the sites in the fifth dimension. As for the residual mass
originating from the form of the domain wall operator, the mobius domain wall operator
actually increases the suppression of the lattice artifact making the chiral symmetry a bit
more exact.

For sufficiently long extents in the fifth dimension the residual mass which weakens the
chiral symmetry is very mild and allows us to preserve a more or less exact chiral symmetry
on the lattice. This has a massive advantage as the methods for analysis is theoretically clean
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and so we can study symmetries of quarks through differences between partners correlation
functions related to chiral symmetry transformations. This was something we may have
done with the overlap operator alone, however, the benefit of approximation of the overlap
operator compared with the mildness of the symmetry breaking by way of the residual mass
offers us a more efficient numerical approach. There is also the added benefit of removing
additional artifacts which may appear based on the method of choice for eliminating doublers
on the lattice, which in the case of staggered fermions does in fact introduce an at this point
well known artifact in which the scalar meson channel converges to a forbidden decay channel
which has a mass of twice the pion. Due to the treatment of the symmetry in the mobius
domain wall formulation, we do not suffer from such an artifact giving us some ability to
study the low temperature behaviors of the scalar meson below the critical temperature for
chiral symmetry restoration.
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Chapter 4

Mesonic Correlation lengths in High
T QCD

As we cannot directly study quarks since they are confined within hadronic and mesonic
bound states looking at symmetries and properties of these bound states in QCD is dependent
on studying the properties of two and three point correlations functions. Hence we require
correlation functions as a well defined quantity to study generic properties of the fields
overall. In particular we will focus on the meson two point correlator to study the thermal
properties of mesons as well as their symmetries with respect to finite temperature QCD.

4.1 Finite Temperature on the lattice

On the lattice we have a few parameters which we can use to control the energy scale of
the physics of interest. As the renormalized coupling can be made a function of the lattice
spacing, we can set the scale of physics by making modifications to the lattice and thus
control the scale of energy for the physics. The coupling and the lattice spacing are inversely
proportional and thus as we attempt to increase the energy of our lattice theory we shrink the
lattice. Instead we would like to increase the energy scale of the physics without shrinking
the lattice spacing for which we introduce temporal compactification

T =
1

aNt

, (4.1)

where the energy scale of the lattice is described as temperature by varying either the lattice
spacing (through coupling or anisotropy), or directly by change the number of sites along the
temporal extension. As we would like to maintain a single coupling, and therefore a uniform
lattice spacing, we will consider lattices of different temporal extensions as our control on
the temperature.

For our path actions(and later correlators) this substitution is simply swapping∫ ∞

−∞
dt→

∫ β

0

dτ where β =
1

T
, (4.2)

with the introduction of temperature through the lattice anisotropy the Euclidean time
propagator now can be shown to directly correspond with the thermal partition function.
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From this perspective we can actually treat all of the field observables as statistical quantities
derived from the partition function, this does give us the critically important ability to
perform importance sampling via the monte carlo method. While we have many theoretical
tools to study field theories analytically strongly coupled theories like QCD have correlators
and vacuum expectation values which are difficult to do by hand. In contrast to this our
lattice treatment offers the the ability to derive observables and correlators from statistical
sampling which we can expect, for sampling with sufficient statistics, actually captures the
groundstate of observables in the field theory.

4.2 Mesonic Correlators

The primary quantity we will focus on will be the correlation function made from the quark
bilinear function

O(x) = q̄(x)γµ ⊗ F aq(x). (4.3)

Where the dirac spinor is rerepresented as a “quark” since we will be primarily looking at
QCD with degenerate up and down quarks. Recall the number of flavors also behaves as
an additional SU(N) global symmetry, and in the case of Nf = 2 where the flavors are
mass degenerate, the flavor generators F a becomes the Pauli matrices. The form of the
interpolator seen above actually can be rewritten generically in terms of four “channels”

Sa = q̄F aq, (4.4)

PSa = q̄γ5F
aq, (4.5)

V a
µ = q̄γµF

aq, (4.6)

Aa
µ = q̄γ5γµF

aq, (4.7)

The Sa and PSa operators are scalar operators and can be thought of as condensates, as
well as interpolators for particle. V a

µ and Aa
µ represent both represent currents as well as

particle interpolators. In addition to these we can consider a pair of tensor operators:

Xa
µν = q̄γ[µγν]F

aq (4.8)

T a
µν = q̄γ5γ[µγν]F

aq (4.9)

where the γ[µγν] ≡ γµγν−γνγµ. For isotropic lattices typically the set of operators S, PS, Vµ, Aµ

and Tµν are the full extent of available symmetry transformations. However, for a time com-
pacted lattice the axial transformation of Tµν does appear to behave as a unique operator
leading to an axial partner operator Xµν .

From the form of the interpolators we construct a correlation function which takes the
following form in the continuum limit

CΓ(z) =

∫ β

0

dt

∫ ∞

−∞
dy

∫ ∞

−∞
dx ⟨OΓ(x, y, z, t)OΓ(0, 0, 0, 0)⟩ . (4.10)

On the lattice the integrations become simple sums over the lattice extents in all but the
direction of interest

CΓ(z) = T
Nt∑
t

Nx∑
x

Ny∑
y

⟨OΓ(x, y, z, t)OΓ(0, 0, 0, 0)⟩ , (4.11)
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where OΓ is the quark interpolator with the γµ relabeled as Γ now considered an element of
the Clifford algebra.

4.2.1 Flavor Structure and Isospin J=1

In the case of Nf = 2 the flavor is exactly described by the generators of SU(2), however,
recall that in chapter 2 F a is a generic element of the set of generators. The set of generators
of flavor transformation can be categorized into the flavor singlet F s and the flavor mixing
generators F n. For the meson correlator the states belonging to the flavor singlet and
states belonging to the non-singlet transformations are distinct, and represent both different
particle spectra as well as different probes of symmetries.

Putting aside the particle spectrum for a moment, symmetries can be studied a number
of ways, one such procedure is to use the condensate operators associated with the singlet
and triplet scalar and psuedoscalar channels. While this has been explored in [34], there are
some ways in which this analysis does not offer an intuitive understanding in the changing
behavior of the mesons with respect to temperature.

For this reason we will consider looking at correlators associated with a single set of flavor
transformations, in particular we will focus on the J = 1 isospin flavor triplet. The choice to
use the isospin triplet is consistent with our desire to look at the channels which are related
by symmetry transformations, specifically the channels which are exact chiral partners. For
this reason we choose to look at the symmetries directly from the correlators themselves.

This means our quark bilinears are now described by:

Oa
Γ(x) = q̄(x)(

τa

2
⊗ Γ)q(x). (4.12)

In choosing the isospin triplet we may also compare our correlators to the particle spectrum
which includes the pion allowing a critical check on the health of our simulations at low
temperature.

Moving beyond Nf = 2, the SU(2) algebra describing the two degenerate lights quarks
has an approximate form of this same symmetry in the case of Nf = 2 + 1 and can be
split from more complex flavor structure including heavier partners following the same logic.
This is well described in the table in [12] along with analogous treatments in [58, 59] and
extensions to Nf = 2 + 1 + 1 in [25, 26].

4.3 Spatial Correlations

Because we are interested in the symmetries of quarks at finite temperature, and by extension
the mesons, we must consider the long range behaviors of the two point correlator with
respect to the spatial direction. There is an analogous treatment of the energetic spectrum
in the spatial correlator which measures the mass of the energetic region internal to the
mesons called the screening mass. Recall the form of the spatial correlator in the z-direction,
(4.11). Analogous to the masses which may be extracted from the temporal correlation
function at long time extensions, we expect that in the long range of the spatial correlator
the screening mass of the meson can be broken into a spectrum

C(z) = A0e
−M0z + A1e

−M1z + . . . , (4.13)
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on a lattice with periodic boundaries we expect that the correlator actually has a second
contribution from the far edge near to the source due to our periodic boundary conditions.
If we measure from the source to the midpoint of the spatial volume we expect that the
spatial correlator(for a sufficiently large spatial volume) has the form

C(z) = A0e
−M0z + A0e

−M0(Nz−z), (4.14)

around the midpoint we can then make make the approximation of a cosh like function

C(z) = A0e
−M0Nz/2 cosh[M0(z −Nz/2)]. (4.15)

To strengthen this approximation we can also fold the form of the correlator around the
midpoint as an additional statistical control on fluctuations in the correlator. As the mass
should match the meson screening mass around the midpoint we can better assess the long
range behaviors using the folded form of the correlator.

There are a few methods to extract the long-range screening mass corresponding the
energetic region which makes up the meson, two which we will use are the spatial effective
mass which may be determined by simple numerical methods and non-linear least squares
fits which may extract the mass term in (4.15).

4.4 Very High T correlation functions

At sufficiently high temperatures the correlation function is solvable through perturbation
theory by means of an effective theory of QCD in the non relativistic limit, aptly shortened
to NRQCD.

To sketch out NRQCD3 let us look at the momentum space form of the correlator (4.10),

Cq =

∫ β

0

dt

∫ ∞

−∞

d3x

(2π)3
eiq·x ⟨Oa

Γ(x, t)O
b
Γ(0, 0)⟩ (4.16)

In particular we can introduce discretization of the temporal momentum in the Euclidean
time direction through the Matsubara frequencies pn = 2πT (n + 1

2
). As the full correlation

function contains both fermionic and gauge field terms we will consider the lowest order
contribution to the correlator to be fermions in a background field at high temperature.
This is motivated by a simple redefinition of the free fermion propagator

S(q) = ⟨0|ψ̄(q)ψ(q)|0⟩ , (4.17)

to include flavor and dirac spinor transformations

Kab(q′)S(q) = δabδ(q
′ − q)f(q2). (4.18)

Where Kab(q′) is the associated propagator which contains information from the bilinear
operators

Kab(q′) = ⟨0|ψ̄Oa
Γq

′ψψ̄Ob
Γ(q

′)ψ|0⟩ . (4.19)

Meaning that the structure of the free field is simply modified by an algebraic term, and
therefore, information about the spatial correlators can be derived from solutions to the free
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fermion propagator. Thus the form of the propagator for our momentum space correlation
function, in dimensional regularization,

Cq[O
a, Ob] =

1

4
Tr[τaτ b]NcT

∞∑
n=−∞

∫ ∞

−∞

d3−2ϵp

(2π)3−2ϵ

Tr[(p/ + q/ )Γap/ Γb]

(p2n + p2)(p2n + (p+ q)2)
(4.20)

p represents the initial momentum of the quarks and q is the parameter associated with the
momentum change from the initial to final vertex point. In particular q is associated with a
momentum spectrum corresponding to the energies of interactions in the short (large q) or
long (small q) range.

Following the procedure discussed in the paper by Laine and Vepsäläinen [12], we can
do a non-relativistic treatment for the quarks in the energetic regime where the timelike
component of the momentum can be treated as a complete “mass” and the correlator can
be treated as a 2+1-d theory where the z-direction, the direction of polarization for the
correlator, can be treated as a timeike parameter which allows us to determine a spectrum
of excitation in the spatial correlators. This treatment of the timelike momentum of the mass
is well supported by the explicit dependence on temperature in the Matsubara frequencies;
implying that at sufficiently high temperatures even the light quarks are sufficently “massive”
to be expressed in a non-relatvistic perturbative framework.

Critically, in [12] the authors show that the lowest order in the expansion of this high
temperature correlator is 2πT the groundstate Matsubara frequency. The result, which is
spin independent, indicates that for sufficiently high temperatures the meson masses become
degenerate and appear to have a larger symmetry. This symmetry which we will cover later
may be the same symmetry studied in previous works [15, 18, 19, 25, 26].

Aside from this the authors of [12], discuss the additional correction to the mass of the
meson which is of O(g2T )

M = 2πT + Cg2T +O(g4T ), (4.21)

where C is a numerical constant derived from numerical solutions of the Bethe-Salpeter
approach to the “groundstate” of the correlator.

For Nf = 2 QCD on the lattice at very high temperatures we may be able to verify this
correction from below as we are both interested in these high temperature corrections while
also looking for signals of symmetry restoration. From the very high temperature analysis
of the correlators we know that the spin independent corrections (O(g2T ) terms) to the
screening mass has some evidence, demonstrated at T > 1GeV in [1] by Dalla Brida et al.
However, indications of this correction from below are difficult to detect as this quantity
requires a theoretically clean approach to the screening mass to detect any possible effects
from the coupling at lower temperatures. Previous work looking for evidence of the leading
order contribution to to the screening mass found it difficult to detect from below the chiral
transition point [2] and stated that T ∼ 1GeV were insufficient to capture the corrections.

38



Chapter 5

Mesonic Two-Point function and
Symmetries at High Temperature

As discussed in chapter 2, QCD is exactly invariant under SU(2)L×SU(2)R in the massless
limit as well as the axial symmetry transformation U(1)A. However, it is well known that the
symmetry U(1)A is, in general, broken by the axial anomaly which for finite temperatures
is strongly connected to the topological gluon fluctuations. There is evidence that at high
temperatures the topological gluon excitations are actually suppressed and we have effective
“restoration” of U(1)A. More recently, the question of interest is not whether the restoration
of U(1)A occurs but at what temperature as this impacts the nature of the chiral phase
transition.

5.1 The two-point correlator and probes for chiral sym-

metry

Due to the symmetry in the two point correlation function expressed in (5.3) and (5.4) we
can look at a number of different quantities to study the behavior of the lattice with respect
to temperature. Such quantities, which are ultimately connected to the correlation functions,
have their respective theoretical motivations and together give us a robust description of the
chiral crossover and high temperature lattice. Previous work has studied two quantities of
interest chiral susceptibilities and the proportions of correlation functions.

In the works [13, 15, 25, 26], the authors looked at chiral symmetry and the chiral spin
using a ratio between the differences of the correlation functions directly. The proportion
of the correlators has the advantage of being straightforward to analyze, however, this is
subject to noise in the far range of the correlators; in channels with larger screening masses
the correlators rapidly tend toward zero making proportions very sensitive to noise in several
of the channels.

Work by [34], and JLQCD [4, 5, 6, 7, 24, 30, 33] studied chiral symmetry from the suscep-
tibilities by way of the chiral condensate. The susceptibilities by themselves are quite a good
quantity to study, and can be related to the two point correlation function by integration of
both the spatial and temporal directions. Their connection to the chiral symmetries requires
some additional motivation but is quite straightforward for the SU(2)L×SU(2)R symmetry.
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The U(1)A sector has been shown to connect to the topological susceptibility and does ap-
pear to connect to the SU(2)L × SU(2)R sector by way of the connected susceptibility from
eigenvalue decomposition of the Overlap operator. Analysis of the axial U(1) susceptibility
does require calculation of the disconnected susceptibility, which also requires calculations
of the topological susceptibility

χdis
A (m) =

2

m2V
⟨Q2⟩ . (5.1)

5.1.1 Effective Mass and Screening Mass

In addition to these two previously studied quantities we can also study temperature, mass
dependence and chiral symmetry from the two point correlation function using an additional
quantity: the spatial screening mass. The screening mass is a quantity which can be extracted
from the correlation function by way of fit to the hyperbolic cosine ansatz from section 4.3.

The spatial screening mass is an analogous quantity to the mass which can be extracted
from the temporal correlation function. In the case of the screening mass we are not interested
in analyzing the spectrum of masses as this quantity can be used, like the other quantities
derived from the correlation function, to probe changes in the meson symmetries. To extract
the long range screening mass we need a method to check when we have reached the long
range “groundstate” mass. To determine this first we use the effective mass of the correlators
to extract the effective mass at each position using the neighboring site

C(z + 1)

C(z)
=

cosh[M0(z + 1−Nz/2)]

cosh[M0(z −Nz/2)]
. (5.2)

Using any numerical method we can use this proportion to extract both the mass and am-
plitude as a function of z/a. Due to the proportion of correlators, this quantity is subject to
massive fluctuations, in particular, whenever the correlator is very close to zero the effective
mass becomes unreliable due to extreme sensitivity to the small fluctuations in the correlator
near zero. In fig. 5.1(a) all six correlator channels are plotted for the lowest temperature in
the Nf = 2 study. The folded correlators for S, Ax and Xt either drop to zero or negative
for z/a = 8, z/a = 15 and z/a = 12 respectively; from the effective mass curves fig. 5.1(b),
5.1(e), and 5.1(g) we can see that this drop in value for the correlator typically coincides
with a massive increase in instability of the effective mass1.

5.2 Symmetries of the two-point correlator

To this end in looking at symmetries of QCD from the lattice we will use a quantity derived
from the spatial mesonic two point correlation function in z which has the following form in
the continuum,

CΓ(z) =

∫ β

0

dt

∫ ∞

−∞
dx

∫ ∞

−∞
dy ⟨Oa

Γ(x, y, z, t)O
b
Γ(0, 0, 0, 0)⟩ δab. (5.3)

1In some cases such as fig. 5.1(b) the fluctuations are so severe that Gnuplot will not plot the central
values and errors as the value(when not NaN due to overflow errors) is far outside the plot range.
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Figure 5.1: An example of am = 0.0050 correlators at T = 146MeV using the 36 × 18
ensemble along with the behavior of the associated effective masses.
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This quantity takes on a similar form to (4.11) on the lattice and is simply the form of (4.10)
which measures correlations for spatial separations. As such the form of the quark bilinear
is the same as the form of the isospin bilinear operator from 4.2.1:

Oa
Γ = q̄

(
Γ⊗ τa

2

)
q. (5.4)

The correlator has six channels consistent with the choices of Γ written in equations (4.4)-
(4.9) and summarized(along with their symmetry multiplets) in 5.1.

In chapter 2 we considered a generic chiral symmetry in the lagrangian, in the case of
the interpolator and correlations function only certain channels remain invariant while other
channels will mix under symmetry transformations. Thus under the standard SU(2)L ×
SU(2)R symmetry

q̄ → q̄ei(τ
aγ5θa−τbϕb), (5.5)

q → ei(τ
aγ5θa+τbϕb)q, (5.6)

only the vector like V and A channels of the correlator mix while the PS, S and tensor
channels all remain invariant. Therefore, the difference between the V and A correlators
serves as a probe of the SU(2)L × SU(2)R symmetry.

Likewise the axial U(1)A transformation,

q̄ → q̄eiγ5α, (5.7)

q → eiγ5αq, (5.8)

mix the PS and S channels as well as the tensor Xt and Tt channels respectively while the
vector channels V and A of the correlator remain invariant. This indicates that we actually
have two probes for U(1)A the S−PS and Tt−Xt differences; this redundancy is actually to
our benefit as S the channel is quite noisy for low temperatures (see figs. 5.1(a) and 5.1(b)
as well as the next chapter), therefore having the Tt−Xt pair offers us a more reliable probe
which can be used alongside the S − PS difference.

Γ Reference Name Abbr. Symmetry Correspondences
1 Scalar S

}
U(1)Aγ5 Psuedo Scalar PS

γ1, γ2 Vector V
}
SU(2)L × SU(2)Rγ1γ5, γ2γ5 Axial Vector A

}
SU(2)CSγ0γ3 Tensor Tt

}
U(1)Aγ0γ3γ5 Axial Tensor Xt

Table 5.1: List of quark bilinear operators we compute the two-point correlation functions
and the symmetries connecting them.

There is, in addition, to the previously described symmetries of the QCD Lagrangian
an emergent set of symmetries which may indicate a larger symmetry structure at high
temperatures. These potential larger effective symmetries are connected to the anti-periodic
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boundary condition on the quarks in the temporal direction due to the compactification for
finite temperatures. This emergent symmetry is analogous to the heavy quark symmetry [21,
20], an approximate symmetry which appears in the effective theory for charm and bottom
quarks. To examine this symmetry let us consider the form of the free quark propagator
with momenta p1, p2 perpendicular to the z-axis

⟨q(z)q̄(0)⟩ (p1, p2) = T
∑
p0

∫
dp3
(2π)

eip3z

iγ0p0 + iγ3p3 + iγ1p1 + iγ2p2 +m
,

= T
∑
p0

∫
dp3
(2π)

−(iγ0p0 + iγ3p3 + iγ1p1 + iγ2p2 −m)eip3z

p20 + p23 + p22 + p21 +m2
.

The perpendicular momenta can be treated as fixed parameters and thus the integration
along z has a pole at −ip3 = E(p0, p1, p2) where

E(p0, p1, p2) =
√
p20 + p21 + p22 +m2. (5.9)

The temporal component of the momentum is already parameterized and takes on discrete
values consistent with the description by the Matsubara mass

p0 = (n+ 1/2)2πT, (5.10)

which comes from the antiperiodic condition in the temporal direction. Using these proper-
ties the propagator takes on the form

⟨q(z)q̄(0)⟩ (p1, p2) = T
∑
p0

−(iγ0p0 − γ3E + iγ1p1 + iγ2p2 −m)

2E(p0, p1, p2)
e−Ez. (5.11)

At large separations and high temperatures the lowest Matsubara frequency dominates with
p0 = ±πT ; in particular we will consider taking the T → ∞ limit, which is sufficient to
satisfy the condition T ≫ p1, p2,m, where the lowest mass saturates the “energy” (5.9)
allowing us to expand in powers of 1/T :

⟨q(z)q̄(0)⟩ (p1, p2) = T

[
γ3

1 + isgn(p0)γ0γ3
2

e−πTz +O(1/T )

]
. (5.12)

This high temperature expansion is not unique and can also be done for p0 with fixed spatial
momentum p, the analogous term for the temporal correlation function is

⟨q(t)q̄(0)⟩ (p1, p2, p3) = −iT
[∑

p0

γ0p0
p20

e−ip0t +O(1/T )

]
. (5.13)

Both of these propagators transform invariantly under an effective SU(2) vectorlike symme-
try:

q → eiΣ
iξiq, (5.14)

q̄ → q̄γ0e
−iΣiξiγ0. (5.15)
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Where Σi has three components,

Σi =

 γk

−iγ5γk
γ5

 , k = 1, 2. (5.16)

Due to rotational invariance around the z-axis, the k = 1 and k = 2 components are identical
and so will be generically described using k. This SU(2) algebra is identified with the chiral-
spin SU(2)CS symmetry suggested in [16, 17, 18, 19, 61, 62].

While we have considered a free quark propagator, in QCD the gauge field contributions
to the propagator appear at next-to-leading order in the O(1/T ) term. Therefore, at suf-
ficiently high temperatures the SU(2)CS is an emergent symmetry for which we can find
the appropriate symmetry multiplet. Previous work identifying multiplets [15, 25, 26], has
shown that a triplet (Ax, Tt, Xt)

2 of mesonic correlators transforms consistent with (5.14)
and (5.15). For the SU(2)CS symmetry we an construct several multiplets which would
appear to transform under this isospin symmetry such as (Vy, PS, S). However, due to our
choice to fix the correlator around the z-axis these states, which have different spins in the
original four dimensions, now transform under the spin-one representation of SO(3). Due
to this additional rotational symmetry, we can distinguish various multiplets based on their
mass degeneracy associated iwth this rotation; in the case of the (Vy, PS, S) multiplet we
find that while these do transform under SO(3) Vy and PS, S transform differently under
SO(3) resulting in a weaker mass degeneracy. In the case of (Ax, Tt, Xt) all three channel
transform into one another in the same vector-like representation resulting in a triplet for
which the masses of the channels are degenerate.

Consistent with our discussion of the perturbative results from NRQCD in chapter 4
we find that our free quark propagator in the high temperature limit is consistent with the
expected meson screening mass result of 2πT in the free quark limit. Recall from 4.4 the
form of the result from [12]

M = 2πT + Cg2T. (5.17)

The next-to-leading order term is simply a one loop correction and like the leading order
term both are independent of choice in Γ. This and our effective high temperature form
of the free quark propagator show remarkable correspondence in producing a spin indepen-
dent correction. This behavior is analogous to the approximate heavy quark symmetry at
T = 0, because this symmetry for heavy quarkonia, as well as, heavy-light mesons shows a
similar insensitivity to spin; the reason for this is that spin and angular momentum terms
are inversely proportional to the quark mass. In the high temperature limit the ground-
state Matsubara mass proportional to T is quite large and operators such as (Vx, PS, S) or
(Ax, Tt, XT ) form SU(2)CS triplets.

In [15] the threshold for SU(2)CS emergence was estimated at T ∼ 1.8Tc, while [17, 16]
estimate temperatures between 2Tc − 3Tc. Using the screening mass difference approach it
is important to quantify the emergent behavior of SU(2)CS in the range of temperatures
Tc − 2Tc and to determine if there is any impact on the chiral phase transition. In addition
to this we would also like to quantify the behavior of the SU(2)L × SU(2)R and U(1)A

2There is a partner multiplet (Vx, Tt, Xt) which is simply the SU(2)L × SU(2)R chiral partner and does
not constitute a unique triplet.
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symmetries in the region from just below the chiral crossover into the high temperature
2Tc region to both understand the relationship between these two symmetries in the region
of the phase transition as well as assess their high temperature limits. Therefore, we have
sufficient motivation to study QCD in range of temperatures [0.9, 2.0]Tc for a range of masses
including the physical point as a way to understand the symmetry structure of QCD at high
temperatures.
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Chapter 6

Symmetries around Tc

6.1 Lattice Setup and Parameters

6.1.1 Lattice configurations

In studying the symmetries there are two distinct and separate numerical caluclations in-
volved, the first step is generation of the configurations; we generated configurations using
the Grid software [63], simulations of the lattice were done using hybrid Monte Carlo with
the Möbius Domain Wall fermion action [54, 55] and the tree level improved Symanzik im-
proved gauge action. The simulations were done for a fixed bare coupling β = 4.30 and fixed
lattice spacing of a = 0.0075fm [64, 65, 66]. In addition to the new configurations generated
for lower temperatures and various volumes, a few of the higher temperature configurations
used in previous studies [5, 24] were reused. All of the relevant lattice parameters for our
configurations are listed in Tab. 6.1.

Scale setting of the lattice was done by performing a Wilson flow using the reference flow
time t0 = (0.1539fm)2 in [67] to determine a lattice cutoff factor of a−1 = 2.463GeV . For
the ensembles above the lowest temperature, a lattice spatial extent of L = 32 corresponding
to 2.37fm was primarily used. At the lower two temperatures we also measured additional
volumes of L = 48 and L = 40 to study the finite volume systematics at and below the
critical temperature.

Because we consider finite temperature lattices with fixed coupling/lattice spacing we
varied temperature by changing the temporal extent of the lattices from 18 to 8 in steps of
2, corresponding to the range of temperatures 147MeV ≤ T ≤ 330MeV or 0.9Tc ≤ T ≤ 2Tc.
Where the value for the critical at the physical point Tc ∼ 165(3)MeV is estimated from
the peak of the disconnected susceptibility in [6], the uncertainty in the value of the critical
temperature is purely statistical.

For the full study we included the new and old configurations which used a variable range
of masses depending on the temperature; the bulk of our analysis focused on 4 masses, the
lightest of which am = 0.0010 corresponds to 2.6MeV, which is estimated to be 71% of the
physical quark mass amphys = 0.0014(2). While the target physics is the physical point as
part of a potential line of constant physics, the higher mass quarks are included in the study
to both study and assess errors in the symmetries of the lightest mass quarks, as well as to
understand how the symmetries and critical temperature may change with respect to the
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L3 × Lt L(fm) T [MeV] TL am m[MeV] # samples
483 × 18 3.6 147 2.7 0.00100 2.6 146

0.00250 6.6 40
0.00375 9.9 40
0.00500 13.2 83

363 × 18 2.7 147 2.0 0.00100 2.6 146
0.00250 6.6 121
0.00375 9.9 122
0.00500 13.2 131

403 × 16 3.0 165 2.5 0.00100 2.6 165
0.00250 6.6 95
0.00375 9.9 97
0.00500 13.2 95

323 × 16 2.4 165 2.0 0.00100 2.6 165
0.00250 6.6 116
0.00375 9.9 163
0.00500 13.2 143

323 × 14 2.4 189 2.3 0.00100 2.6 190
0.00250 6.6 177
0.00375 9.9 137
0.00500 13.2 133

483 × 12 3.6 220 4.0 0.00100 2.6 220
0.00250 6.6 97
0.00375 9.9 114
0.00500 13.2 116

403 × 12 3.0 220 3.3 0.00500 13.2 220
0.01000 26.4 244

323 × 12 2.4 220 2.7 0.00100 2.6 532
0.00250 6.6 534
0.00375 9.9 689
0.00500 13.2 544
0.01000 26.4 622

243 × 12 1.8 220 2.0 0.00100 2.6 373
0.00250 6.6 361
0.00375 9.9 331
0.00500 13.2 363
0.01000 26.4 365

323 × 10 2.4 264 3.2 0.00500 13.2 640
0.00800 21.1 237
0.01000 26.4 291
0.01500 39.6 121

323 × 8 2.4 330 4.0 0.00100 2.6 260
0.00500 13.2 317
0.01000 26.4 350
0.01500 39.6 306
0.02000 52.9 218
0.04000 105.7 164

Table 6.1: All lattice ensembles used in the Nf = 2 study for finite temperature, the number
of configurations are also listed. All lattices use the same Ls = 16.
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variation in the quark mass.

6.1.2 Configuration Measurement

The second step in our study following configuration generation is extraction of the relevant
correlators by inversion of the Möbius Domain wall fermion effective overlap operator from
chapter 3, equation (3.78)

Dov =
1 +m

2
+

1−m

2
γ5 tanh[Ls tanh

−1(HW )]. (6.1)

For the Nf = 2 lattice configurations all of the lattices have a Möbius domain wall fermion
operator with a length in the fifth dimension of Ls = 16. Correspondingly the residual
mass, a measure of the chiral symmetry breaking in the Dirac operator, is suppressed to
0.14(6)MeV.

As configurations of the lattice were saved every 10 steps during the simulation, we
chose to measure every fifth configuration(every 50th trajectory) to reduce autocorrelation.
The result of this is between 40-700 measurements listed in the sample number column of
Table 6.1. These lattice configurations were measured first using the IroIro++ package[65],
and later using Bridge++ [64] based on speed up and improvements in accuracy. For both
measurement softwares we applied a stout smearing [68] three times with the smoothing
parameter ρ = 0.1. In addition to this we did apply any source smearing, and considered
point-like source and sink operators.

6.1.3 Effective Mass and Extraction of Screening masses

Following measurements done by IroIro and Bridge, to obtain the screening masses from
the correlation functions we first generated a spatial effective mass by applying Newton’s
Method to the cosh ansatz form of the spatial correlator (4.15) using the proportion (5.2) of
neighboring sites.

As the effective mass alone is not a reliable quantity to determine the screening mass,
we employ an additional check by performing an uncorrelated nonlinear least squares fit
to the correlator using the same ansatz (4.15). The fit is restricted to the stable range of
the correlator and overlaid with the effective mass to compare the value of the fit to the
behaviors of the effective mass throughout the fit range. Stability in the correlator curve
was indicated by a combination of noise and stability of the central value point by point, the
converse to this, an unstable region in the correlator is indicated by either a sign flip in or
rapid drop to zero. If the central value of the fit is within 2σ for the effective mass values in
the range and the effective mass appears to plateau, then the fit is considered accurate and
we can trust that we have extracted the screening mass for the meson from the correlator.

For regions in which the correlator is stable we extracted screening masses for each of
of six channels. For the set of chiral symmetries SU(2)L × SU(2)R and U(1)A, we fit both
channels of the symmetry multiplet V − A, PS − S and Xt − Tt to the same range. As an
additional check on the screening mass behaviors we also performed several fits to verify that
our reported screening masses did not significantly depend on a narrow fitting range and the
systematic errors were well controlled compared with error from the statistical uncertainty.
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Figure 6.1: These are correlator plots for the two lowest temperatures in Nf = 2 QCD from
the lightest quark mass ensembles.

6.2 Numerical Results

In the course of analysis, the S channel correlator was found to be quite unstable, this insta-
bility reflects exceptional spikes in the thermal history from only a handful of configurations;
this problem is especially acute for the correlators measured on low temperature figures
6.1(a) and 6.1(b) are two examples of very noisy S channel behaviors. Consistent with our
fitting procedure from 6.1.3 the S channel values were omitted when the screening mass
flipped sign or could not be fit to a stable plateau for the same range as the PS channel.

Figures 6.3, 6.4, and 6.5 show the the effective mass curves with the screening mass
fits overlaid for the three lowest temperatures for the lighest quark mass am = 0.0010. In
addition to these plots we also have the Table 6.2 summarizing all of the extracted screening
masses for all lattices and masses in this study. To show the core behaviors around the
physical point only the lightest mass fits fits are shown.

In addition to the lower temperature plots we also have Figs. 6.6 and 6.7 for the physical
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Figure 6.2: These are correlator plots for the range of temperatures in Nf = 2 QCD from
the lightest quark mass ensembles.
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Figure 6.3: Fits compared with the effective screening mass from the T = 147MeV correlation
function in 6.2(a).

point mass. the 323 × 10 lattice corresponding to the temperature corresponding to T =
264MeV, did not include masses around the physical point and is included in analysis of the
symmetries for the am = 0.0050 lattices. Plots of the temperature dependence which are
shown for the lightest masses are included in the appendix.

For this study using the Möbius Domain wall fermions despite noise at low temperatures
seen in the correlators in figure 6.1 or figure 6.2, we have no problems determining the
plateaus of the effective mass during fit. This is in contrast to the the work done by HotQCD
in [2], where the authors reported a significant contamination of the groundstate plateaus
by excited states. The reason for this difference in determining a groundstate plateau in the
effective mass may be due to the fact that the Möbius domain wall fermions are theoretically
clean and do not encounter any operator mixing from the multiplets of the SU(2)L×SU(2)R
symmetry group; this is in addition to avoiding unphysical excitations which are introduced
by the taste degrees of freedom.

Figures 6.3-6.7 show the fit ranges and fit bands for which we extracted the screening
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masses presented in Tables 6.2 and 6.3. In the fit plots we show only have of the partner
pair for the symmetry multiplet as the fit ranges were determined by cross comparison of
the fit for the same range across both partners in the symmetry multiplet. In contrast to
this the S channel is shown to illustrate the noise present in fitting the correlator for all
temperatures in this study. In addition to this all plots shown are restricted z/a = [0, 16]
and Meff = [0, 2.5]GeV to allow direct comparisons of the screening mass and Matsubara
frequencies for all lattices.

6.2.1 Thermal dependence of the meson screening mass

Using the extracted screening masses, we plotted the temperature dependence of the meson
screening masses for all quark mass ensembles. Figure 6.8, shows the temperature depen-
dence of the screening mass for the lightest quark am = 0.0010(2.6MeV). As mentioned be-
fore in chapters 5 and 4 in the high temperature limit all of the channels appear to converge
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Figure 6.4: Fits compared with the effective screening mass from the T = 165MeV correlation
function in 6.2(b).
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Figure 6.5: Fits compared with the effective screening mass from the T = 189MeV correlation
function in 6.2(c).

to 2πT , twice the groundstate Matsubara mass, plotted as a solid grey line. In particular,
the heaviest channels Xt and Tt very rapidly converge to 2πT almost immediately following
the chiral phase transition, shown as a vertical grey band. At temperatures around or below
the critical temperature Tc ∼ 165(3)MeV, the aforementioned verical grey band, there is a
dramatic shift in the fluctuation of the screening mass which appears highly reduced above
the line of chiral phase transition. The Scalar channel screening mass, in particular, shows
significant fluctuation at Tc after which the screening mass rapidly converges to a value near
the Pseudoscalar channel for all higher temperatures.

At low temperatures T = 0 experimental values are plotted as reference lines for the
J = 1 meson spectrum, π±, ρ, a0, and a1. These are color coded in correspondence with
their associated meson interpolators channels. At 0.9Tc it is interesting to note that for
Nf = 2 the screening mass already show significant overlap with the T = 0 experimental
results; this indicates that chiral symmetry breaking through the chiral condensate is already
sufficiently large to form hadrons. In the T = 0 limit due to the susceptibility to the U(1)A
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anomaly, Xt and Tt transform similar to the vector channels A and V resulting in overlapping
intermediate states.

In [2], the authors studied Nf = 2+1 QCD at a range of temperatures from below Tc up
to approximately 1GeV using HISQ fermions. To make an effective comparison between their
extrapolation to the continuum theory and our results in Fig. 6.9 we normalized the screening
mass by 2πT and normalized the temperature by Tc, for Nf = 2 this is Tc ∼ 165MeV and for
Nf = 2 + 1 we used the estimated temperature of Tc ∼ 156MeV from [2]. While the critical
temperatures do differ due to the presence of the strange quark in the Nf = 2 + 1 results,
when normalized both curves show a remarkable consistency in the characteristics of the
curves at all temperatures. The key difference between our study an that of the Nf = 2+ 1
study by HotQCD is the S channel, for the HISQ fermions there is a well known lattice
artifact which allows the S channel meson to decay to two pions and so at T = 0 the HISQ
fermions approach 2π±(shown as a green shadown in 6.9). In contrast to this, the artifact
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Figure 6.6: Fits compared with the effective screening mass from the T = 220MeV correlation
function in 6.2(d).
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Figure 6.7: Fits compared with the effective screening mass from the T = 330MeV correlation
function in 6.2(e).

is not present for the Möbius Domain wall fermions and so this decay remains prohibited
as the isospin triplet S channel cannot decay into two PS mesons due to the exact isospin
symmetry.

At higher temperatures T > 1GeV, [69] reported that the PS and V channels reach ∼ 1%
of 2πT although, their result appears to deviate from the next-to-leading order contribution
from the perturbative QCD prediction, the one-loop correction to the meson mass is positive
and channel independent(for related results and further details see [1, 34, 70]).

6.2.2 Screening mass difference, symmetry and temperature

Using the extracted screening masses, in addition to looking at the temperature dependence
of the individual channels we also looked at the differences and how these changed with tem-
perature as well. In contrast to the plots of the screening mass with respect to temperature,
we plotted four masses of interest simultaneously to also look at how the mass difference,
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Figure 6.8: Temperature dependence in the screening masses for six meson channels corre-
sponding the lightest mass ensemble and largest volume lattices. The grey line shows 2πT ,
twice the groundstate Matsubara frequency. There are additional reference lines on the left
corresponding to the T = 0 experimental results of π±, ρ, a0 and a1. The grey vertical band
is the estimated temperature for the chiral crossover Tc = 165(3)MeV. The screening mass
values are horizontally offset to help readability, and are centered around the Xt, Tt channels.
Note, that the Xt and Tt channels rapidly converge onto 2πT following the chiral crossover.

and thus, the symmetry behavior changes with respect to mass.
In Fig.6.10 we plotted the difference between the V and A channels ∆mV−A, our probe

for the SU(2)L × SU(2)R chiral symmetry breaking, as a function of temperature. Con-
sistent with our plots for the screening masses, these plots are all for the largest spatial
lattices. The first significant feature of this plot is that the mass difference between V and
A rapidly vanishes at Tc and above; while the central value is not exactly zero at Tc look-
ing at |∆mV−A|/mA for am = 0.0010, an estimator for the scale of breaking, we find that
at T = 165MeV ∆mV−A/mA ∼ 2.8% and at the next highest temperature T = 190MeV
|∆mV−A|/mA ∼ 0%. The small scale of the breaking at Tc due to the 3% scale of breaking
is effectively restored and looking at Table 6.3 indicates that for all plotted lattices above
Tc we find all of them are restored within at most a standard deviation. This observation
is also aligned with evidence presented by other authors, in particular, the work by Dalla
Brida et al. [1] has shown rapid drop offs in order parameters which are additional probes
to chiral symmetry.

For the larger masses in this study, there is a similar behavior in the higher temperature
ranges indicating that at T ∼ 220MeV and above we see the same characteristic restoration
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Figure 6.9: The screening masses from figure 6.8 are now normalized by 2πT and the range of
temperatures are normalized by the temperature of the critical point. Using the normalized
screening masses we can directly compare the Nf = 2 screening masses with the continuum
extrapolated values from HotQCD collaboration [2] which simulated Nf = 2+ 1 QCD using
HISQ fermions, shown as shaded bands. Due to the normalization we can see the results
look consistent for all channels except the S channels due to the HISQ lattice artifact in the
low temperature limit.

signatures for chiral symmetry. However, at lower temperatures there is slow convergence to
zero for the two largest quark masses suggesting that the chiral crossover temperature shifts
upward.

For the “restoration” of the axial U(1)A symmetry we have two probes associated with
the difference between two multiplets contrsturcted from Xt and Tt, ∆mXt−Tt , as well as
the PS and S channels, ∆mPS−S. In terms of noise the difference between the tensors
(∆mXt−Tt) is preferable as the signal is much more stable and not contaminated with noise
from the S channel. These two screening mass differences are plotted in Figs. 6.11 and 6.12.
There is an analogous behavior in both plots to that of the chiral symmetry restoration,
while the error is significantly larger for both the ∆mXt−Tt ∆mPS−S upon reaching the
chiral crossover there is rapid vanishing of the mass difference indicating, again, symmetry
restoration. In the case of U(1)A there isn’t a true restoration of the symmetry as this is
broken by anomaly, however, the susceptbility to the topological instantons the driver of the
broken axial symmetry is suppressed and thus we get an effective restoration. The restoration
of U(1)A estimated from the screening mass difference is a bit larger as ∆mXt−Tt/mXt ∼
2(1)% and ∆mPS−S/mS ∼ 7(4)% at T = 190MeV. At the critical point T ∼ 165MeV this
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Figure 6.10: T versus ∆MV−A the screening mass difference for V and A: the probe for the
SU(2)L × SU(2)R chiral symmetry. The vertical grey band is again the estimated critical
temperature for the chiral phase transition in Nf = 2 QCD.

is significantly larger ∆mXt−Tt/mXt ∼ 32(36)%. Although the estimation of the breaking is
quite large, this is still consistent with zero within error for the screening mass difference in
both of our screening mass differences ∆mXt−Tt and ∆mPS−S. It is not clear if the symmetry
is restored at the critical point, however, from this estimate we can conclude that the axial
symmetry is restored around 1.15Tc which is consistent with our procedure for estimation of
the SU(2)L × SU(2)R restoration as previously discussed. At temperatures [1.15, 2.]Tc we
find suppression of the axial anomaly effect.

Our estimates contrast with recent work in Nf = 2 + 1 using Möbius Domain wall
fermions by Gavai et al. [34]; in their study using susceptibilities from singlet and triplet
isospin PS and S operators the authors find violation of the axial U(1)A symmetry above
the chiral crossover and reported broken axial symmetry up to T = 186MeV. However, their
lattice is quite coarse at a > 0.13fm which is coarser than a previous study by JLQCD
[22] a ∼ 0.1fm. In the case of the study by JLQCD, the authors found violation of the
Ginsparg-Wilson relation by low lying eignemodes in the Dirac operator which exceeded the
residual mass leading to an over estimation of the U1(1)A anomaly.

Due to our study of Nf = 2 QCD at fixed lattice spacing we are unable to make a
more precise determination of the exact temperature of restoration of the axial symmetry.
For the higher masses in the study we also cannot draw meaningful conclusions about the
behavior of the anomaly as we can see the see an analogous trend to the SU(2)L × SU(2)R
restoration with a milder temperature dependent trend below the chiral crossover. However,
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Figure 6.11: T versus ∆MX−T the screening mass difference between the temporal tensor
channels Xt and Tt: one of the probes for U(1)A symmetry. The vertical grey band is the
estimated critical temperature in Nf = 2 QCD.

to more precisely determine the temperature threshold for axial symmetry restoration, which
is important in determining the universality of the chiral phase transition, we would need
additional lattices with different spacings to achieve a more fine scale of resolution slightly
above Tc.

In addition to probes for SU(2)L×SU(2)R and U(1)A there is also a series mass difference
which serve as probes for the emergent SU(2)CS which was described in section 5.2. In figure
6.13, we plotted the screening mass difference between the A and Xt channels, ∆mA−Xt , one
probe for SU(2)CS. As the SU(2)CS symmetry is an approximate symmetry up to O(1/T )
we do not expect an exact zero for the screening mass difference within the temperature
range for such an emergent symmetry. We do, however, expect that our estimators for the
scale of the symmetry breaking should reach similar thresholds to the other symmetries. In
figure 6.13, consistent with the SU(2)L×SU(2)R and U(1)A we see a reduction in noise with
increasing temperature. However, there is a qualitative difference in the behavior of ∆mA−Xt ,
while the other symmetries of the mesons monotonically vanished, the probe for SU(2)CS

increases and then flips sign before decreasing. Although the plot of ∆mA−Xt appears to be
vanishing, in Fig. 6.14 we find a significant different at the highest temperature T = 330MeV.
In figure 6.14, we plot SU(2)L×SU(2)R(green pentagons), U(1)A (PS−S purple rhombuses,
Xt − Tt lower blue triangles) and SU(2)CS (upper yellow triangles); whereas the first three
set of points are consistent with zero to within ∼ 1MeV and represent less than ∼ 1% from
the proportion of the screening mass difference with respect to temperature, the quantity
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mA−Xt is on the order of ∼ 50MeV with separation from zero of roughly 4σ corresponding
to the small estimated error from the fit. Despite this large separation we can estimate that
the symmetry is still approximate as |∆mA−Xt |/T ∼ 0.17(3). This does conflict with the
observation of approximate emergence made in [15, 14] where evidence for SU(2)CS from
T ∼ 200MeV was presented. The approximate order of the symmetry may be consistent
within the temperature window estimated in [25], however, the “quality” of the approximate
symmetry exceeds the threshold for T ⪆ 326MeV which is estimated to be around 0.15 in
the article.

6.2.3 Systematics for finite volume and temperature

Beginning with the estimation of the systematic error in our study let us turn our attention
to finite volume effects for the three temperatures T = 147, 165 and 220MeV. All three
temperatures are plotted in Fig. 6.15, between the different lattice sizes we do not see
separation more than 2σ between screening masses from smallest to largest spatial extents.
Again, the S channel in Fig. 6.15(b), is the exception around the critical point as the smallest
lattice volume point was omitted by our fitting criteria.

As our study was done using a single fixed lattice spacing, we cannot numerically estimate
the discretization effects. Despite this, our choice of a relatively fine lattice compared with
other groups and our correspondence with the HotQCD result in the continuum does bolster

−2000

−1500

−1000

−500

0

500

1000

1500

2000

150 200 250 300
−2000

−1500

−1000

−500

0

500

1000

1500

2000

150 200 250 300

∆
M

P
S
−
S
[M

eV
]

T [MeV]

U(1)A Symmetry

am = 0.001
am = 0.0025
am = 0.00375
am = 0.005

∆
M

P
S
−
S
[M

eV
]

T [MeV]

U(1)A Symmetry

Figure 6.12: T versus ∆MPS−S the screening mass difference between the PS and S: another
one of the probes for U(1)A symmetry. The vertical grey band is the estimated critical
temperature in Nf = 2 QCD.
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quark mass dependence at T = 330MeV. Compared with the first three which probe
SU(2)L × SU(2)R and U(1)A respectively, and show consistency with zero to within er-
ror on the order of ∼ 1MeV(for all probes up to the heaviest quarks), ∆MA−Xt shows quite
a significant difference of between ∼ 40−50MeV. The associated chiral symmetry is approx-
imate at all masses, with |∆MA−X |/T ∼ 0.17(3) at 2.6MeV and appears to get better with
increased mass as the 39MeV ensemble is |∆MA−X |/T ∼ 0.11(4).
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Figure 6.15: Lattice aspect ratio TL versus screening mass (MΓ) at temperatures = 147, 165
and 220MeV. Volume dependent effects are not significant as the screening masses do not
deviate more than 2σ.

some confidence in our results. Due to our choice of fine lattice we also expect the O(a)
improvement due to the chiral symmetry of the Möbius Domain Wall fermion action.

It is also important to note that our range of up and down quark masses covers the
physical point, in addition to which, the lightest quarks sufficiently close to the chiral limit
are approximately physical with 71% of the mass of the physical up and down quarks.
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L3 × Lt T [MeV] am m[MeV] mS mPS mV mA mX mT

483 × 18 147 0.00100 2.6 113(34) 951(111) 1106(182) 1120(201) 1068(154)
0.00250 6.6 1097(288) 220(5) 1009(69) 1404(129) 1801(166) 1012(71)
0.00375 9.9 1387(337) 245(5) 854(74) 1145(155) 1279(223) 1164(97)
0.00500 13.2 135(7) 903(58) 1375(177) 1733(281) 1199(117)

363 × 18 147 0.00100 2.6 166(22) 812(85) 941(132) 1483(206) 1391(115)
0.00250 6.6 2605(533) 220(12) 767(53) 930(156) 1645(153) 1228(117)
0.00375 9.9 1586(333) 240(11) 886(77) 1046(181) 1635(107) 1216(52)
0.00500 13.2 1490(139) 288(6) 861(43) 1231(125) 1527(117) 1091(56)

403 × 16 165 0.00100 2.6 642(251) 149(46) 1109(165) 1141(185) 994(268) 1453(305)
0.00250 6.6 817(402) 245(18) 544(146) 536(201) 1499(196) 1161(146)
0.00375 9.9 301(16) 1003(90) 1400(158) 1156(305) 1364(171)
0.00500 13.2 273(20) 936(113) 1330(216) 1007(341) 721(95)

323 × 16 165 0.00100 2.6 233(49) 883(93) 890(84) 1485(256) 1633(222)
0.00250 6.6 362(53) 904(75) 978(133) 1268(431) 1212(176)
0.00375 9.9 1624(538) 309(14) 934(90) 1047(131) 1552(178) 966(152)
0.00500 13.2 444(187) 326(24) 932(84) 1106(159) 1679(207) 1216(89)

323 × 14 189 0.00100 2.6 381(40) 353(39) 998(40) 998(41) 1187(62) 1161(61)
0.00250 6.6 362(39) 1150(49) 1164(52) 1376(154) 1407(131)
0.00375 9.9 402(27) 964(33) 996(44) 1318(146) 1212(135)
0.00500 13.2 582(159) 413(29) 940(44) 1069(74) 1385(114) 1178(82)

483 × 12 220 0.00100 2.6 793(43) 792(43) 1306(37) 1306(37) 1377(39) 1378(39)
0.00250 6.6 913(21) 911(20) 1290(39) 1293(39) 1411(38) 1410(38)
0.00375 9.9 1033(192) 706(47) 1189(78) 1235(93) 1441(48) 1431(54)
0.00500 13.2 888(108) 752(109) 1234(33) 1236(35) 1378(58) 1316(48)

403 × 12 220 0.00500 13.2 1534(351) 502(51) 1327(32) 1298(28) 1291(116) 1425(38)
0.01000 26.4 1495(336) 696(35) 1222(24) 1275(32) 1302(106) 1444(99)

323 × 12 220 0.00100 2.6 712(61) 701(58) 1281(38) 1283(39) 1402(58) 1408(58)
0.00250 6.6 697(88) 797(85) 1235(22) 1234(23) 1294(46) 1307(51)
0.00375 9.9 615(158) 696(77) 1244(23) 1251(24) 1570(103) 1374(104)
0.00500 13.2 1350(360) 717(90) 1182(25) 1213(23) 1465(115) 1292(69)
0.01000 26.4 1254(226) 686(36) 1227(57) 1160(76) 1345(101) 1302(80)

243 × 12 220 0.00100 2.6 747(84) 741(82) 1283(27) 1280(29) 1427(28) 1434(28)
0.00250 6.6 1637(334) 806(121) 1292(30) 1295(30) 1345(77) 1305(80)
0.00375 9.9 687(120) 785(53) 1333(32) 1335(33) 1392(32) 1398(32)
0.00500 13.2 2505(488) 736(134) 1219(31) 1245(36) 1327(66) 1469(55)
0.01000 26.4 770(153) 713(54) 1271(29) 1307(38) 1421(33) 1450(29)

323 × 10 264 0.00500 13.2 1319(35) 1266(26) 1566(18) 1566(18) 1666(32) 1631(26)
0.00800 21.1 1252(19) 1251(19) 1572(15) 1574(15) 1626(19) 1627(20)
0.01000 26.4 1525(121) 1117(94) 1560(19) 1581(27) 1630(49) 1654(28)
0.01500 39.6 1458(123) 1236(100) 1596(21) 1599(21) 1666(28) 1693(29)

323 × 8 330 0.00100 2.6 1810(11) 1809(11) 2026(9) 2026(9) 2083(13) 2083(13)
0.00500 13.2 1796(19) 1791(18) 2038(12) 2038(12) 2094(24) 2094(24)
0.01000 26.4 1783(15) 1781(15) 2033(8) 2033(8) 2082(9) 2082(9)
0.01500 39.6 1828(24) 1791(22) 2027(10) 2028(10) 2064(17) 2063(17)
0.02000 52.9 1807(15) 1796(14) 2013(18) 2014(18) 2069(15) 2066(15)
0.04000 105.7 1824(27) 1770(20) 2021(16) 2024(16) 2080(16) 2073(15)

Table 6.2: Meson screening masses in physical units [MeV] for various channels extracted
from combinations of fit and effective mass, using the cosh ansatz, associated with the
correlators. Empty data indicates omitted values due to poor fit or an unstable correlation
curve for the range of fit.
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L3 × Lt T [MeV] am m[MeV] mPS−S mV−A mX−T mA−X

483 × 18 147 0.00100 2.6 -155(120) 52(233) -8(196)
0.00250 6.6 -877(289) -395(119) 789(201) -398(158)
0.00375 9.9 -1141(335) -291(155) 115(274) -133(201)
0.00500 13.2 -472(179) 534(381) -361(297)

363 × 18 147 0.00100 2.6 -129(66) 92(290) -539(213)
0.00250 6.6 -2385(525) -163(139) 417(235) -710(169)
0.00375 9.9 -1346(331) -160(171) 419(127) -586(114)
0.00500 13.2 -1203(141) -370(127) 437(147) -296(144)

403 × 16 165 0.00100 2.6 -493(272) -32(75) -459(536) 148(377)
0.00250 6.6 -572(414) 8(121) 338(307) -963(184)
0.00375 9.9 -397(143) -208(447) 244(329)
0.00500 13.2 -394(279) 287(304) 323(439)

323 × 16 165 0.00100 2.6 -7(28) -149(464) -595(281)
0.00250 6.6 -74(151) 56(542) -290(445)
0.00375 9.9 -1315(539) -113(128) 586(247) -505(248)
0.00500 13.2 -118(194) -174(138) 463(221) -573(227)

323 × 14 189 0.00100 2.6 -28(14) 0(4) 26(16) -188(67)
0.00250 6.6 -14(16) -30(274) -213(159)
0.00375 9.9 -32(35) 107(265) -321(140)
0.00500 13.2 -169(159) -129(75) 207(144) -315(127)

483 × 12 220 0.00100 2.6 -2(1) -0(0) -1(0) -71(37)
0.00250 6.6 -2(1) -3(1) 0(1) -118(47)
0.00375 9.9 -327(206) -46(35) 10(57) -206(79)
0.00500 13.2 -136(196) -2(13) 62(86) -141(62)

403 × 12 220 0.00500 13.2 -1032(399) 14(18) -22(96) -141(98)
0.01000 26.4 -799(347) -48(20) -2(79) -87(79)

323 × 12 220 0.00100 2.6 -11(7) -2(2) -5(4) -119(80)
0.00250 6.6 100(102) 1(2) -13(32) -60(36)
0.00375 9.9 81(109) -6(2) 197(195) -320(98)
0.00500 13.2 -633(444) -31(17) 173(135) -252(112)
0.01000 26.4 -568(243) 67(79) 44(131) -185(124)

243 × 12 220 0.00100 2.6 -6(4) 4(4) -7(5) -148(38)
0.00250 6.6 -831(225) -3(2) 40(67) -48(97)
0.00375 9.9 98(74) -1(1) -6(6) -56(43)
0.00500 13.2 -1769(375) -26(15) -144(111) -81(78)
0.01000 26.4 -57(114) -36(23) -28(36) -115(45)

323 × 10 264 0.00500 13.2 -53(53) -1(1) 35(18) -100(28)
0.00800 21.1 -0(3) -1(1) -0(3) -53(20)
0.01000 26.4 -407(203) -21(26) -25(67) -49(69)
0.01500 39.6 -222(217) -3(1) -27(28) -67(30)

323 × 8 330 0.00100 2.6 -1(1) -0(0) -0(0) -57(11)
0.00500 13.2 -5(5) -0(0) 0(0) -56(26)
0.01000 26.4 -2(1) -0(0) 0(0) -49(10)
0.01500 39.6 -37(35) -1(0) 1(1) -37(13)
0.02000 52.9 -12(6) -2(0) 2(1) -54(12)
0.04000 105.7 -54(30) -4(2) 6(3) -55(11)

Table 6.3: Screening mass differences as the probes for various symmetries are listed in
physical units [MeV]. Because these values are dependent on the screening masses in Table
6.2, any omitted values cannot be used in the difference of screening mass and so are not
reported. 65



Chapter 7

Summary and Conclusion

Having simulated Nf = 2 QCD with Möbius domain wall fermions, in the previous chap-
ter we find that the probes for the chiral symmetry, the screening mass differences drawn
from the correlation function by combination effective mass and fit indicate we can easily
study the behaviors of chiral symmetry around the critical temperature Tc with a straight-
forward method of analysis. The roots of this which we have covered in chapter 3, are in
the approximation of the Overlap operator by way of the domain wall fermions for which
we choose specifically the form of the Möbius domain wall fermion kernel. This assured us a
theoretically exact form of the chiral symmetry for which the scale of breaking represented
by the residual mass was well under control with mres ∼ 0.14MeV. Due to this we expected
to find good agreement with high quality study done by HotQCD, as shown in chapter 6
we found excellent agreement between our ensembles for the am = 0.0010 quarks with their
continuum extrapolated result from [2]. In particular we find that our restoration behaviors
coincide for the SU(2)L × SU(2)R symmetry at the respective Tc values as their study was
done for Nf = 2+ 1 flavor structure. In the future we hope to have high quality Nf = 2+ 1
data which will allow an additional and direct comparison, although this work by JLQCD is
ongoing.

Along with the restoration of the vector like chiral symmetries we also found evidence of
suppression of topological instantonic effect at temperatures T > Tc supporting our initial
assertion that previous work which studied the instantonic gas, and showed T ∼ Tc has
significant instantonic effects driving U(1)A breaking, is not favored in the case of degenerate
light quarks. From our simulations data we do see quite a good signal for restoration of U(1)A
at T ∼ 190MeV T = 1.15Tc, which would indicate that the topological gluon fluctuations
are suppressed quite close to Tc if not at the critical temperature itself. Unfortunately this
work was not able to elucidate an exact point of transition and so some ambiguity remains
as to whether the restoration of U(1)A is coincident with the restoration of chiral symmetry.
However, based on the scale of breaking at Tc of ∼ 32(37)% versus the scale of the estimate
for the residual screening mass difference at T = 1.15Tc(189MeV) of ∼ 2(1)% and ∼ 7(4)%
it is possible that we do have restoration at Tc, which would be consonant with more recent
work [6, 4, 24].

For this study of Nf = 2 QCD we chose a range of [0.9Tc, 2.0Tc] to assess behaviors of
the quarks for several different finite temperature regimes. With resepect to the thermal
beahviors of the screening mass we find several interesting features; first of which, we find
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that as high as 0.9Tc we find the lightest quarks am = 0.0010, which represents ∼ 71%
of the physical point mass, are consistent with the T = 0 experimental values. Implying
the scale of the chiral symmetry breaking from the chiral condensate is rapid upon crossing
the chiral crossover. Additionally this indicates that chiral symmetry breaking effects are
quite strong even into the high temperature region below Tc. Our second key feature in the
screening mass thermal dependence, upon crossing the critical temperature the S, A, and
Xt channels reduce in mass and become degenerate with their SU(2)L × SU(2)R or U(1)A
partners PS,V and Tt. After which as we increase in temperature toward 2Tc the channels
begin to monotonically converge to twice the long range Matsubara groundstate mass 2πT .
This behavior is the most dramatically visible in the temporal tensor channels Xt and Tt, as
these immediately converge to 2πT upon crossing Tc. While the temperatures are too low
to check the leading order correction to the high temperature screening mass perturbative
result predicted from NRQCD3 [12], as the work done by Dalla Brida et al [1] showed these
corrections are accessible to lattice studies at very high temperatures ∼ O(100)GeV. In
fact, their observation is that even at such high temperatures the corrections from spin
dependent effects which appear at all temperatures from the O(g4T ) contribution to the
screening mass, are significant enough to maintain small deviations from the 2πT limit of
the screening masses. This would seem to contrast to the effect seen in the temporal tensor
channels, however, for the tensors such spin dependent corrections would be suppressed by
the scale of the screening mass for such heavy channels. This may actually make the the
tensors an excellent probe for the scale of separation from 2πT with lighter channels in
additional high temperature studies of the thermal properties of the spatial screening mass.

The effective theory framework in studying the high temperature limits of the free quark
propagator in QCD which we discussed in chapter 4 is effective in describing the thermal
properties of the screening mass, and shows that the first two terms of the screening mass
remain spin independent. Therefore, we would expect that at high temperatures we would
see an approximate symmetry arising from this degeneracy of the screening mass. To this end
in chapter 5 and 6 we discussed an analogous symmetry to the T = 0 heavy quark isospin
symmetry which applies to the high temperature limit the SU(2)CS. This approximate
symmetry arising from the leading order contribution to the screening mass was previously
observed at temperatures T ∼ 2Tc [15]. In our study of the same temperature range using
the screening masses as opposed to a proportion of the correlators, we found weak evidence
for the emergence of the approximate symmetry at T = 2Tc; following our argument from
the free quark correlator it is very likely such an approximate symmetry does exist, but likely
at higher temperatures than previous evidence suggested. Our estimation of the symmetry
difference in proportion to the scale of the thermal mass suggests that a −60MeV difference
between the A and Xt channels is ∼ 17% which makes the symmetry, at best, approximate.
However, from the arguments made in [25], we would expect a better quality of the symmetry
at T = 330MeV; this suggests that we could be just below the threshold for SU(2)CS. Our
work directly contrasts the claims made about the claims of SU(2)CS as part of a more
symmetric confined quark phase which sets in upon resotration of chiral symmetry. We might
instead make a more modest claim that this emergent symmetry is a consequence of scale
of spin dependent contributions to the screening mass being suppressed below O(100)GeV,
where such a term only contributes a few percent as per the argument made in [1].
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operator from the eigenmodes, Phys. Rev. D 93 (2016) 034507 [1510.07395].

[23] A. Tomiya, G. Cossu, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko et al., Evidence of
effective axial U(1) symmetry restoration at high temperature QCD, Phys. Rev. D 96
(2017) 034509 [1612.01908].

[24] JLQCD collaboration, Study of the axial U(1) anomaly at high temperature with
lattice chiral fermions, Phys. Rev. D 103 (2021) 074506 [2011.01499].

[25] T.-W. Chiu, Symmetries of meson correlators in high-temperature QCD with physical
(u/d,s,c) domain-wall quarks, Phys. Rev. D 107 (2023) 114501 [2302.06073].

[26] T.-W. Chiu, Symmetries of spatial correlators of light and heavy mesons in high
temperature lattice QCD, Phys. Rev. D 110 (2024) 014502 [2404.15932].

[27] JLQCD collaboration, Symmetry of screening masses of mesons in two-flavor lattice
QCD at high temperatures, Phys. Rev. D 111 (2025) 114506 [2501.12675].

[28] D. Ward, S. Aoki, Y. Aoki, H. Fukaya, S. Hashimoto, I. Kanamori et al., Study of
symmetries in finite temperature Nf = 2 QCD with Mobius Domain Wall Fermions,
PoS LATTICE2024 (2025) 346 [2412.06574].

69



[29] D. Ward, S. Aoki, Y. Aoki, H. Fukaya, S. Hashimoto, I. Kanamori et al., Study of
Chiral Symmetry and U(1)A using Spatial Correlators for Nf = 2 + 1 QCD at finite
temperature with Domain Wall Fermions, PoS LATTICE2023 (2024) 182
[2401.07514].

[30] JLQCD collaboration, Axial U(1) symmetry and mesonic correlators at high
temperature in Nf = 2 lattice QCD, PoS LATTICE2019 (2020) 178 [2001.07962].

[31] JLQCD collaboration, Axial U(1) symmetry near the pseudocritical temperature in
Nf = 2 + 1 lattice QCD with chiral fermions, PoS LATTICE2023 (2024) 185
[2401.14022].

[32] JLQCD collaboration, Characterizing Strongly Interacting Matter at Finite
Temperature: (2+1)-Flavor QCD with Möbius Domain Wall fermions, PoS
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domain-wall fermions, Phys. Rev. D 111 (2025) 034507 [2411.10217].

[35] S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426.

[36] J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60
(1969) 47.

[37] M.F. Atiyah and I.M. Singer, The Index of elliptic operators. 1, Annals Math. 87
(1968) 484.

[38] M.F. Atiyah and I.M. Singer, The Index of elliptic operators. 5., Annals Math. 93
(1971) 139.

[39] G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37
(1976) 8.

[40] T.D. Cohen, The High temperature phase of QCD and U(1)-A symmetry, Phys. Rev.
D 54 (1996) R1867 [hep-ph/9601216].

[41] T.D. Cohen, The Spectral density of the Dirac operator above T(c) rep, in APCTP
Workshop on Astro-Hadron Physics: Properties of Hadrons in Matter, pp. 100–114,
10, 1997 [nucl-th/9801061].

[42] A. Pelissetto and E. Vicari, Relevance of the axial anomaly at the finite-temperature
chiral transition in QCD, Phys. Rev. D 88 (2013) 105018 [1309.5446].

[43] T. Kanazawa and N. Yamamoto, Quasi-instantons in QCD with chiral symmetry
restoration, Phys. Rev. D 91 (2015) 105015 [1410.3614].

70



[44] T. Sato and N. Yamada, Linking U(2)× U(2) to O(4) model via decoupling, Phys.
Rev. D 91 (2015) 034025 [1412.8026].

[45] H.J. Rothe, Lattice Gauge Theories, WORLD SCIENTIFIC, 3rd ed. (2005),
10.1142/5674.

[46] L.H. Karsten and J. Smit, Lattice Fermions: Species Doubling, Chiral Invariance, and
the Triangle Anomaly, Nucl. Phys. B 183 (1981) 103.

[47] H.B. Nielsen and M. Ninomiya, No Go Theorem for Regularizing Chiral Fermions,
Phys. Lett. B 105 (1981) 219.

[48] H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 2. Intuitive
Topological Proof, Nucl. Phys. B 193 (1981) 173.

[49] H.B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by
Homotopy Theory, Nucl. Phys. B 185 (1981) 20.

[50] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B 417 (1998) 141
[hep-lat/9707022].

[51] H. Neuberger, More about exactly massless quarks on the lattice, Phys. Lett. B 427
(1998) 353 [hep-lat/9801031].

[52] H. Neuberger, A Practical implementation of the overlap Dirac operator, Phys. Rev.
Lett. 81 (1998) 4060 [hep-lat/9806025].

[53] D.B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett. B
288 (1992) 342 [hep-lat/9206013].

[54] R.C. Brower, H. Neff and K. Orginos, Mobius fermions, Nucl. Phys. B Proc. Suppl.
153 (2006) 191 [hep-lat/0511031].

[55] R.C. Brower, H. Neff and K. Orginos, The Möbius domain wall fermion algorithm,
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