

Title	Regulation of Molecular Topologies via Supramolecular Strategies
Author(s)	Xiao, Chunlin
Citation	大阪大学, 2025, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/103244
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Chunlin Xiao)	
Title	Regulation of Molecular Topologies via Supramolecular Strategies (超分子戦略による分子トポロジーの制御)
<p>Abstract of Thesis</p> <p>Topology, originally developed as a branch of mathematics, deals with properties of objects that are preserved under continuous deformations such as stretching, twisting, or bending, without cutting or gluing. Two objects are considered topologically equivalent (or homeomorphic) if one can be smoothly transformed into the other through such continuous deformations. To deeper understand the properties of molecules with distinct topologies, paving the way for their further application, this thesis primarily focuses on developing novel strategies for tuning molecular topologies. Specifically, the catalyst-free photoreaction is applied as an important tool to regulate the topologies of polymer, macrocycle and rotaxane via the supramolecular strategies.</p> <p>First, efficient preparation of cyclic polymers is realized through the assistance of pseudo-polyrotaxane, in which intramolecular [2+2] photocycloaddition serves as the trigger. This method enables cyclization at concentrations up to 80 g/L, hundreds of times higher than those achievable by conventional approaches.</p> <p>Next, a methodology to tune the topology of macrocycles is developed. By stimuli-triggered and reversible intramolecular [2+2] photocycloaddition, a transformation between non-homeomorphic topologies (ring versus figure-eight ring) was achieved. The topology transformation is then applied to synthesize rotaxanes and tune the mechanical interlocked states in rotaxanes. With introducing rationally designed axle molecule, using the macrocycle that is capable of transforming to figure eight ring as wheel molecule, [2]rotaxane is successfully synthesized with quantitative conversion, and [3]rotaxane is also synthesized with high conversion (91%). Similar to the geometric isomers obtained in the transformation of macrocycle in the absence of axle molecules, chair-like and orthogonal rotaxanes are obtained. Additionally, the mechanical bond in chair-like rotaxanes can be unlocked and convert back to the pseudo-rotaxane under heating, with a quantitative conversion.</p> <p>In conclusion, this thesis has investigated the control of topology at a molecular level. These findings provide valuable insights into the rational design of complex molecular architectures and offer potential for broader applications in related fields.</p>	

論文審査の結果の要旨及び担当者

氏名 (Chunlin Xiao)		
論文審査担当者	(職)	氏名
	主査 教授	山口 浩靖
	副査 教授	橋爪 章仁
	副査 教授	高島 義徳

論文審査の結果の要旨

分子は多様な形状や空間（トポロジー）を有する。近年、結び目やカテナンのような、より複雑なトポロジーを有する分子の特性が注目されている。分子トポロジーは、構造的特長と機能的挙動を決定する上で重要な役割を果たしており、異なるトポロジー間を相互変換させ、その生成量を制御することは未だに難しい課題である。本論文では、この問題を解決するために超分子科学的戦略を採用し、分子トポロジーの精密制御を可能にすることを目的としている。Xiao 氏は線状高分子から環状高分子へのトポロジー変換、並びに環状分子と線状分子からなる超分子錯体におけるトポロジー変換について特筆すべき成果を挙げた。

まず、線状高分子から環状高分子へのトポロジー変換において、超分子科学的な錯体形成を利用する提案されている。ポリエチレングリコールの両末端にトリメトキシ桂皮酸を導入して得られたテレケリックポリマーは、水溶液中でヒドロキシプロピル- γ -シクロデキストリンと擬ポリオタキサンを形成する。ポリマーの末端基が当該シクロデキストリンの空洞よりも大きいため、ポリマー鎖はシクロデキストリンの空洞を貫通せず、U字型の構造（ポリマー鎖が途中で折りたたまれた構造）になって包接されたことがわかった。このU字型構造体形成により、同一のPEG鎖上の2つの末端基が近接することになる。近接したポリマー末端の桂皮酸ユニット間で[2+2]光環化付加反応が起こることで環状ポリマーが得られた。本システムでは、高濃度（最大 80 g/L）でも環状ポリマーが高い変換率（最大 70%）で得られることがわかった。一般的に、ポリマーの環化反応は分子間反応を抑制するために低濃度条件下で行われるが、本システムでは従来法よりも数百倍高い濃度で合成することができ、ポリマーの形態を線形から環状へ効率良く変換することが可能になった。

上記の環状ポリマー合成法では高分子両末端に光反応性基を導入することで環化を行った。この光反応の経験をもとに、本論文では、さらに環状分子の主鎖内に光応答性ユニットを2カ所設置し、環状化合物における大環状構造と8の字構造間の可逆的変換を行った。この変換を利用して擬オタキサンにおける高効率トポロジー変換を実現させている。光によって結合形成・解離が可能なスイッチング素子であるシアノスチルベンユニットを環状分子中に導入し、ここに紫外線を照射すると分子内[2+2]光環化付加反応が起り、8の字構造体が生成した。加熱により逆環化付加反応が誘起され、元の大環状構造体が定量的に再生した。環のサイズは紫外線照射により縮小し、逆反応時には拡大するため、劇的に変化する。この特性を活用することで、線状分子と環状分子からなる擬オタキサン形成を完全可逆的に高効率で実現させている。

上記のように、本博士論文では環状分子と線状高分子との包接錯体形成を利用して大環状化合物を効率良く合成することに成功し、さらに環状化合物の環サイズを化学的に変換可能なシステムを利用して高収率で擬オタキサンを得ることに成功している。

以上のことから、本論文は博士（理学）の学位論文として十分価値あるものと認める。