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Abstract

We aimed to discuss the evolution of collectivity in Ti isotopes toward N = 40.
To this end, we studied the isotopes *°Ti and ®Ti by Coulomb excitation from
the ground 0% state to the first 2* excited state, in order to investigate the possible
magicity at N = 40. The neutron number N = 40 is a magic number for the harmonic
oscillator potential. In real nuclei, however, this shell closure is weakened due to
spin-orbit interactions, and the degree of magicity depends on the proton number.
In %8Ni (Z = 28, N = 40), where protons fill the f; /2 orbital, collectivity is reduced
compared to its neighbors and exhibiting the characteristics of a magic nucleus. As
proton number decreases along N = 40, collectivity increases from %®Ni to %°Fe
and giCm(), located in the center of the f;/, shell, large deformation appears. As
the proton number decreases further toward the next magic number Z = 20, it is
important to clarify whether magic-like behavior emerges. Some theoretical models
predict that such a magic-like nature may indeed appear. Other models suggest that
the collectivity would remain low even at Z = 20, since the shell gap responsible
for the reduced collectivity in %Ni is already diminished around Z = 24. This
contrast highlights the significance of studying nuclei near ®*Ca. Since experiments
on %9Ca, which lies far from the stability line, are challenging, this study focuses on
the neighboring Ti isotopes to investigate changes in the magicity of N = 40 in the
neutron-rich region through Coulomb excitation experiments of ®Ti and >3 Ti.

The experiment was performed at the RI Beam Factory at the RIKEN Nishina
Center. Coulomb excitation was performed by irradiating a gold ('°” Au) target with
high-intensity *°Ti and *3Ti beams obtained at the RI beamline BigRIPS. The final
state was identified by measuring the de-excitation gamma rays in coincidence with
the outgoing particles using the ZeroDegree Spectrometer. The gamma rays were
observed using the HiCARI array, consisting of 12 Ge detectors with 39 crystals,
including a gamma-ray tracking detector developed at RCNP. This detector uses
waveform analysis to accurately determine the incident position, enabling precise

determination of the reaction point of the gamma ray and high-resolution Doppler



shift correction. The reduced electric quadrupole transition probabilities B(E2)
were determined from the Coulomb excitation cross sections. The values were
found to be 12.6 (15) and 10.3 (18) [W.u.] for *°Ti and ®Ti, respectively. These
values serve as direct indicators of nuclear collectivity. Comparing these results
with shell model calculations, it is suggested that excitations beyond the shell gap

of N =40 are likely to occur in Ti isotopes, and that the magicity is weak.
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Chapter 1
Scientific Background

The structure of atomic nuclei is strongly influenced by the numbers of protons
and neutrons they contain, with certain "magic numbers" leading to particularly
stable configurations. These magic numbers manifest themselves in characteristic
excitation energies and reduced collectivity. In nuclei with the semi-magic neutron
number N = 40, the structure changes very sensitively with the proton number Z.
For example, %®Ni, which has 28 (magic number) protons, has a higher first 2* energy
than neighboring isotopes and exhibits magic-like characteristics. This behavior has
been accurately reproduced by several theoretical models. However, predictions
differ for nuclei below Z = 22, where experimental data are not yet available, so

there is a need to perform experiments to clarify the nuclear structure in this region.

1.1 Shell model and magic numbers

1.1.1 Magic numbers

It is well known that the structure of atomic nuclei plays a crucial role in their
stability. In particular, nucleons (protons and neutrons) tend to occupy discrete
energy levels, forming shell structures. A nucleus is especially stable when the
number of protons Z or neutrons N corresponds to fully filled shells; these numbers,
known as “magic numbers,” are 2, 8, 20, 28, 50, 82, or 126.*D  The enhanced
stability associated with these magic numbers is supported primarily by the following

measurements:

(i) Neutron or proton separation energy

(ii) Energy of the first 2* excited level in even-even nuclei

*DSome people claim “6” is also a magic number, but we won’t discuss it here.



(iii) Excitation level density

(iv) Number and abundance of stable isotopes

As an example, Fig. 1.1 shows even-even nuclei whose first 2* excitation energy,
E(2}), is higher than that of its surrounding nuclei. In fact, they are found to be
abundant where the proton or neutron numbers are magic numbers.

In stable nuclei, these features generally appear at fixed magic numbers (2, 8,
20--+) with few exceptions. However, as experimental techniques for short-lived
unstable nuclei have been developed, it was found that some conventional magic
numbers disappear in neutron-rich nuclei, such as ¥*Mg with N = 20!, This
observation led to the identification of new magic numbers, N = 16 and 34 (2.3]
showing that the traditional understanding of magic numbers is not universally valid.

These changes are interpreted as a gradual evolution of the nuclear shell structure
—that is, the arrangement and energy spacing of single-particle orbitals—as one
moves away from stability, which can alter the number of nucleons forming closed
shells 41,

We now briefly review the shell model, which successfully accounts for the

traditional magic numbers.

1.1.2 Shell model

The shell model is a theoretical framework in nuclear physics that describes the

structure of the nucleus by assuming that nucleons occupy discrete energy levels,

I I
Higher E(27%) Nuclei .

120}
100 |
80|

60|

40}

Atomic Number Z

20

P R RPN RPN RPN AR RN AR AR B
0 20 40 60 80 100 120 140 160
Neutron Number N

Figure 1.1: Nuclei whose first 2* excitation energy satisfies E(27) > 7/ VZ MeV in even-even nuclei
are represented by M. The reason is that the larger the Z, the smaller the E(2]) tends to be. We

multiply E(27) by VZ to compensate for the general trend and highlight the magic numbers. We can
see that there are many nuclei with high £(27) at the magic numbers 28, 50, 82, and 126.
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called shells, similar to electrons in atoms, and was described by Mayer and Jensen
in 1949 B-19 They were awarded the Nobel Prize in Physics in 1963 for their work
on the nuclear shell model.

In reality, nucleons interact strongly with each other through the nuclear force.
However, the shell model approximates these interactions by assuming that each
nucleon moves independently in an average potential created by all other nucleons.
This is known as the independent-particle approximation.

Each orbital can fill a specific number of nucleons, determined by its quantum
numbers, and when the maximum number of particles is filled into a “shell” con-
sisting of multiple orbitals with similar energy levels, it is called a “closed shell”.
The number of nucleons that form a closed shell, the total number corresponds to a
magic number, which represents particularly stable configurations.

So how is the number of nucleons that form a closed shell determined? It is
determined by the one-body potential mentioned earlier. In conclusion, it is known
that by adopting a Woods-Saxon type potential that incorporates the effect of spin-
orbit coupling interactions, it is possible to reproduce the actual magic numbers 2,
8, 20...

The reason why the shell structure with magic numbers emerges can be under-
stood by solving the Schrodinger equation for nucleons moving inside the nucleus.
First, the Schrodinger equation in three-dimensional space that depends only on the

central force potential V(r) is :

hZ
{—szwm}w(r) = Ey(r) (1.1)
V('r')A Harmonic Oscillator V('r')A Woods—Saxon
V(r)=3 Mo*r®-v, V(r)= 1+exp_ZV(r “R)/a}
0 / .- 0 .
0 RI r 0 RI r
| |
| |
| |
| |
| |
| |
| |
Vo ' Vo

Figure 1.2: Overview of harmonic oscillator and Woods-Saxon potentials.
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Now, if V(r) is a three-dimensional Woods-Saxon potential, then :

YO = e (¢~ R)ja) (1.2)

Here, R is the radius of the nucleus, and a is a diffuseness parameter. The shape of

this potential is shown on the right side of Figure 1.2.

The Woods-Saxon potential shown here best reproduces the experimental results,
but it cannot be solved analytically and requires numerical calculations using a
computer. However, the Woods—Saxon potential cannot be solved analytically and
requires numerical calculations. To illustrate the basic structure of single-particle
levels in a transparent way, we instead adopt a three-dimensional harmonic oscillator

potential,
1 2.2
V(r) = EMw r-—Vy (1.3)

which allows an analytical solution. Although this potential is only a rough ap-
proximation of the nuclear mean field, it is particularly useful for light nuclei where
surface effects are relatively small, and serves as a pedagogical model to explain
how magic numbers such as 2, 8, and 20 arise.

Substituting (1.3) into (1.1), expressing ¥ (r) as the product of the radial wave
function R,,(r) and the spherical harmonic function Y, (6, ¢), and separating each

into two equations and solving them, we obtain the energy eigenvalue E,;:*"
3
Ey=-Vo+ Ehw +{2(n-1)+}hw (1.4)

Here, n = 0,1, 2, ... is the harmonic oscillator quantum number, which counts
the number of radial nodes (sometimes referred to as a principal quantum number in
the harmonic oscillator case), and the orbital angular momentum quantum number
ist¢ =0,1,2,.... Bydefining N = 2n + ¢, N is always a non-negative integer.
Therefore, the energy levels appear at equal intervals of hiw.

Here, if N = 2 or greater, there are two or more possible combinations of n, €.
Using the conventional spectroscopic notation for ¢ (s, p, d, f, g, h, i, ...), the
combination for N = 0 is nf = 1s, and for N = 1 it is n{ = 1p, each of which has
only one possible configuration. In contrast, for N = 2 there are multiple possible
combinations, such as nf = 1d or nf = 2s.

How many nucleons can be filled into each level depends on the degeneracy of the

*DSee section 5.1.2 in the textbook [11].
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orbital characterized by ¢. For a given orbital angular momentum quantum number
¢, the magnetic quantum number m can take 2¢ + 1 values, corresponding to the
possible orientations of the orbital angular momentum. Including the two possible
spin states for each m, the maximum number of nucleons that can occupy a single
orbital with angular momentum ¢ is therefore 2(2¢ + 1).

Taking this into consideration, N = 0 has 2 nucleons in the 1s orbital, N = 1 has
6 nucleons in the 1p orbital, N = 2 has 12 nucleons in total in the 1d and 2s orbitals...
When nucleons are filled successively from the lowest level, once the numbers 2, 8,
20, --- are reached, the filling continues into the next shell. These numbers 2, 8, and
20 correspond to magic numbers. However, in this model, the number after 20 is
not 28 but 40. Although 40 is not generally considered a magic number, it plays a
special role in nuclear structure and is often referred to as a “semi-magic number”
in this study.

Next, to express “general” magic numbers such as 28 and 50, it is necessary to

introduce the spin-orbit coupling potential:
Vso=v(r)€-s (1.5)

Here, s denotes the intrinsic spin angular momentum of the nucleon, with magnitude
|s| = 1/2. The operator £ - s takes different expectation values depending on whether
s is parallel or antiparallel to £, leading to a positive or negative contribution to the

potential energy. The difference between these two cases can be expressed as

AVyo = %v(r)(% +1) (1.6)

Nhw
4 —_

Figure 1.3: In a model using a three-dimensional harmonic oscillator potential, the magic numbers
arising from the shell gaps are 2, 8, 20, 40, ...
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and the larger ¢, the wider it becomes. In addition, if we define the total angular
momentum j = £+, j = ¢ + 5. The plus sign in j = ¢ + s corresponds to the
case where £ and s are parallel, while the minus sign corresponds to the antiparallel
case. When ¢ = 0, it is always positive because there is no direction of £. The levels
separated by the spin direction are represented as nf;, and written as 1s1,2, 1p32,
Ipijs .... For levels with the same n¢, the larger j is the lower energy level. For
¢ = 3(f) and above, the energy level difference due to the difference in j becomes
large, and the magic numbers 28 and 50 are reproduced. In addition, the 1g9/, level
at N = 4 degenerates to 2p;,, at N = 3 due to the effect of the spin-orbit coupling
potential, and the shell gap at 40, which corresponded to a magic number in the

harmonic oscillator, is reduced and is no longer regarded as a magic number.

3s— - - 3542
- q"o/
—2d: =zzIl
= 2d5/2
4hw —197,2
+
1g—— ’
50
40 .
~——1992
_--" 2p1/2
—2p———zZ 7 L 1t5 00—
3hw e 2p3
—_—
AN 28
S — 17—
20
20
2hw 25— .- 1dg/2
+ | S 2512
o 1dg/2
8
8
- == —1p:
1hw — qp— _cz-- 1/2
T 1p3/2
2
2
Ohw ) [N 151/2
+
Harmonic Oscillator Shell Model
Nhw nl nlj

n

Figure 1.4: Magic numbers in the harmonic oscillator model and shell model (Woods-Saxon type
+ spin-orbit coupling potential). The magic numbers are the same for 2, 8, and 20 regardless of
whether or not there is a spin-orbit coupling potential, but the magic number 40 disappears because
the shell gap is narrowed by the effect of spin-orbit coupling. Instead, a new number 28 is created.
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1.1.3 Nuclear spin and parity

The total angular momentum (nuclear spin) I of a nucleus is defined as the vector

sum of the total angular momenta j; = £; + s; of all individual nucleons:

A
I=>j, (1.7)
i=1

where A is the number of nucleons in the nucleus. The magnitude I of I takes
integer values (in units of 72) when A is even, and half-integer values when A is odd.

The parity m of an entire atomic nucleus is determined by the product of the
parities associated with the single-particle orbitals occupied by the nucleons. Each
orbital contributes a parity that depends on the orbital angular momentum quantum
number £, given by 7 = (—1)¢, i.e., positive for even £ and negative for odd ¢.

It is also known that the ground state of a nucleus with an even number of
protons and neutrons (even-even nuclei) is always nuclear spin parity I* = 0F.
This is because the pairing interaction of the nuclear force favors configurations in
which two nucleons in the same orbital couple with opposite spins. As a result,
nucleons tend to form pairs that share the same orbital angular momentum and
parity. In contrast, Hund’s rules, which govern the electron configuration in atomic
structure, specify that the ground state corresponds to the configuration maximizing
the total angular momentum. This prescription is opposite to the nuclear case,
where repulsive electron—electron forces are replaced by attractive nucleon—nucleon

interactions.

1.2 Excited states of atomic nuclei

1.2.1 First 2" excitation level

The first excited state of even-even nuclei is almost always I™ = 2%, where 1
denotes the nuclear spin and n the parity, with a few exceptions. This is not simply
because nuclei are quadrupole deformed; rather, several mechanisms can lead to a
2% first excited state. In nuclei with quadrupole-deformed ground states, the lowest
excitation is typically the 2* member of a rotational band. For spherical nuclei,
the first 2* state often arises from quadrupole vibrational excitation. In semi-magic
nuclei, the first 2% state can be understood as a seniority-2 state, corresponding to
the excitation of two nucleons across a shell gap. Thus, the appearance of a 2*

first excited state is a common feature of even-even nuclei, but its underlying origin

15



depends on the nuclear structure.

1.2.2 27 level and magic numbers

The first 2* state (hereafter referred to as the 27 state) provides important informa-
tion about nuclear structure, particularly the degree of quadrupole collectivity and
the presence of shell closures (magic numbers). In nuclei whose proton or neutron
numbers correspond to magic numbers, the quadrupole deformation is nearly zero
and the nuclei are essentially spherical. As a result, the excitation energy of the
27 state generated by quadrupole collective motion is very high. In such cases, the
lowest excited level may be dominated by other types of excitation. Thus, the 27 state
serves as an indicator of how small the quadrupole collectivity is, and by examining
its energy, one can infer the degree of nuclear deformation and the presence of magic

numbers.

1.2.3 Quadrupole deformation and collectivity

So far, we have discussed that quadrupole-deformed nuclei make electric quadrupole
collective motion. Collective motion in nuclei arises when an excited level is formed
by the coherent superposition of many-nucleon configurations (protons in this case).
Collectivity refers to the number of nucleons involved in the excitation. As we will
formulate later, nuclei with a large deformation generally exhibit strong collectiv-
ity, meaning that many nucleons participate in the excitation. Conversely, if the
deformation is small, only a few nucleons are involved, and the excitation can be

considered essentially a single-particle excitation rather than a collective motion.

1.2.4 (Aside) Nuclei with first excited level other than 2*

Although it is not related to the content of this paper, for reference, we will
introduce an example of an even-even nucleus whose first excited level is other than
2* and the reason why.

In 160, an alpha cluster structure consisting of four « particles appears in the first
excited level, resulting in O* being the first excited state 121 In addition, in 2°8Pb, the
3~ produced by the octupole collective motion appears at a lower position, resulting

in the first excited state [13]

. When there are magic numbers of protons or neutrons
(or both), as in these nuclei, the quadrupolar collectivity is very small, so that 2*
is very high and a level other than 2* can be the lowest energy level. In fact, cases

where only one type of nucleon (protons or neutrons) has a magic number and the
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first excited state is not 2* are extremely rare. Examples include ">Ge and possibly

%8Ni. These nuclei are considered to exhibit a tendency of double magicity.

1.3 Indicators of quadrupole collectivity — B(E2)

1.3.1 Whatis B(E2)?

This value is called the Reduced Electric Quadrupole Transition Probability.
Because it is too long, in this thesis we use the commonly used symbol B(E2).
This value can be directly measured experimentally and can be used to evaluate the
number of nucleons involved in the collective excitation using the Weisskopf unit
described below, and is therefore considered to be the most accurate indicator for

evaluating collectivity.

1.3.2 Derivation of B(E2) from 2* — 07 transition lifetime

We denote the lifetime*! of the first 2* state as 7(2* — 0*). The inverse of
the lifetime is defined as the transition probability, written as 7(2* — 0%). These

relationships can be expressed as the following formula:

1
.ot +y _
T(E2;2% — 0") = T (1.8)

The reduced transition probability can be defined not only for decay, but also for
photonuclear absorption processes, where the nucleus is excited from 0* to 2* by
absorbing a gamma ray through an E2 transition. In such cases, it is more appropriate
to describe the process using the reduced transition probability B(E2;0* — 2%),
because the dependence on the photon field (e.g., the Ef, factor) is removed in the
definition of B(E2). The relation between the absorption and emission processes is

then given by
B(E2;0" — 2%) =5 x B(E2;2* — 0%). (1.9)

The reduced transition probability excluding the phase-space factor associated
with the gamma-ray energy E, is defined as B(E2;0* — 2%). Generalizing, the
relationship between the transition probability and the reduced transition probability

in the case of EA transition is *2)

sn(A+1)  (E,
R (20+ D)2 (hc

*“ﬂwmmmmmmbdwwnMﬂmmehﬂHﬁﬂsﬂﬂ:Tbgz

T(EA; 1 — If) =

2A+1
) B(EA; I — Iy) (1.10)
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From this, the relationship between B(E2;0* — 2%) and the lifetime 7(E2;2* —
0%) is

1 8m(2+1 E,\**1
- 7C+D (B Lot 52 (i
(B2 >0 2r{(2-2+ )12 \he) 5
24n (Ey\° 1
- () ZB(E2:0% — 2t 1.12
450h(hc) 55 —~2) (1.12)
24n ¢ (E,\° 1
= T (2] B(E2:0" —2* 1.13
450137(hc) 52 BEZ0T =20 (1.13)

Here, we used ¢? = fica, where « is the fine-structure constant (a ~ 1 /137).
Using 7ic = 197 MeV - fm and ¢ = 3.00 X 1023 fm, s™1, if we express E, in units
of E,/MeV and B(E2) in B(E2)/(e*fm*),

! _ 24m 300107 (Ey )’ LpE20t 524 (1.14)
7(E2;2* > 0%) 450 137 197] 5
= 247 x10° E5 B(E2;0" — 2*) [sec”'] (1.15)
4.04 x 10°

. 1(E2;2Y = 0%) = [ps] (1.16)

E3B(E2;0* — 2%)

1.3.3 Weisskopf unit

It is assumed that only one nucleon is moving inside the nucleus, and that the
angular momentum of that nucleon determines the spin of the entire nucleus (single
particle model). If this change in the state of motion of the nucleon causes the nucleus
to make an EA transition from j; to jr, the transition probability is approximately
proportional to R?!, where Ry is the nuclear radius. As a simple assumption, if we
consider the potential distribution acting on the nucleus to be a uniform distribution

inside radius Ry, the E2 transition of 0* — 2% can be written as :

9
By (E2;0" — 2*") = zo—ﬂRg (1.17)

Here, Ry is expressed as follows using the general nuclear radius formula,

R()ZTQXAI/3

(ro = 1.2 [fm])

(1.18)

*2)Please refer to the textbook [11] p124, equation (4.91), etc.
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then becomes,
Bw(E2;0" = 2%) = 0.297 x A*3 [*fm*] = 1 [W.u.] (1.19)

and this value is called the Weisskopf unit. The Weisskopf unit is sometimes used as
a unit of magnitude of a transition probability. For example, a transition probability
10 times the Weisskopf unit is expressed as “10 W.u.”. In this case, the Weisskopf
value was the transition intensity involving only one nucleon, which means that
approximately 10 nucleons are involved in the excitation.

From this, it can be said that the magnitude of the reduced transition probability
B(EA) strongly depends on the number of nucleons involved in the excitation, i.e.,

the collectivity of the nucleus.

1.3.4 B(E2) and magic numbers

So far, we have stated that B(E2) can be used as an indicator of collectivity,
i.e., the number of nucleons involved in collective excitation. In addition, the
appendix A describes the relationship between B(E2) and the magnitude of the
quadrupole deformation. A characteristic of nuclei with magic numbers of nucleons
is that the energy of the 27 level is high. However, relying solely on the 27 energy
can be insufficient, because it does not directly quantify the number of nucleons
participating in collective motion. The reduced transition probability B(E2), on the
other hand, provides a direct measure of the collective participation of nucleons,
allowing a more accurate assessment of nuclear collectivity and its relationship to

magic numbers.
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1.4 Magicity of N = 40 around Ti (Z = 22)

The fact that %Ni has magical nucleus-like properties was theoretically predicted
in the 1980s U413 and confirmed experimentally (16-191 " n fact, the E (ZT) of
68Ni is higher than that of surrounding nuclei, and the B(E2) is smaller than that of
surrounding nuclei, suggesting the magic nature of N = 40. As mentioned in section
1.1.2, 40 is a magic number in the harmonic oscillator model. In addition, the next
orbital 1gg9/», when 40 protons or neutrons are filled, is clearly separated in energy
from the adjacent orbitals in spherical nuclei '%!. As a result, when N or Z is close
to a magic number, the nucleus tends toward sphericity, leading to subshell closure
when the other number is 40 191, In addition to °®Ni shown here, subshell closure
at proton number Z = 40 has been confirmed in °Zr 2%, It has been suggested
that shell closure may also occur in ®°Ca with proton magic number Z = 20, which
could potentially influence the properties of the surrounding Ti isotopes. However,
in the currently observed %Ti with N = 40, E (27) is not higher than the surrounding
nuclei, and no signs of this have been seen. However, the shell model calculations
described in the next section predict that E (21') will be lower even if N = 40 is a

magic number. This indicates that the energy of the first 2* state alone may not

27 3°Cul|*’Cu 53Cu§59Cué"0Cu§“Cué62Cu @1 Cu B@M °Cu: ’Cu:®Cu|®Cu|Cu

28 |°°Ni[**Ni 57Ni59Ni

27 #Co|*Co*Co ¥'Co *Co

LONEDNRE N o< Ni BON 65NN - 7Ni [Ni | “Ni

62CO 63C0 64CO GSCO GOCO 67C0 68C0

26 SFe BITIRUUSIRMTY “Fe : °Fe : ©'Fe : 2Fe : ©Fe : %Fe : ©Fe | °Fe | “Fe

25 >“Mn SMn:>*Mn:**Mn:*'Mn:*’Mn:**Mn:**Mn|**Mn[**Mn

24 2Cr 3Cr *Cr ey SICr:38Cr: ¥Cr: ®Cr:%'Cr: Cr:%Cr|*Cr|%Cr

23 SOV SIV 5 53 5 55 SGV 57V SSV 59V ()OV GIV 62V 63V 64V
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py R “Ti Ti § 1T | *Ti|>Ti|*®Ti|*Ti: “Ti:*Ti|%Ti|®Ti
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Figure 1.5: °Ti and *®Ti are located between N = 28 and 40. Filled nuclei are stable.
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clearly reflect the shell closure, and therefore the B(E2) value, which measures the
ease of quadrupole excitation, is also needed to assess whether N = 40 behaves as a

magic number.

1.5 Experimental B(E2) for Ti isotopes

1.5.1 Up to >°Ti

The B(E2) values have been measured up to *Ti 2!, The most neutron-rich Ti
isotope with known B(E2), >°Ti was measured at NSCL using Coulomb excitation
with a 17 Au target 1221,

1.5.2 At>8Ti

At 8T, there is model-dependent B(E2) experimental value. Suzuki et al. mea-
sured the deformation length & of “®Ti from the (p, p’) scattering cross section. (23]
Asaresult, 6, ,» = 0.83i§% [fm] was obtained. Obtained B(E2) from this value using

the formulas (H.1), (A.8), and (A.9), we get B(E2;0* — 2*) = 41635} [¢*fm?] =
6.3(37)[W.u.]. It should be noted that this B(E2) value is derived not only using
the nuclear radius formula (H.1) but also under the assumption that the neutron and
proton deformation lengths are equal, 6, = 6,,. For reference, in Coulomb excitation
experiments, the determination of B(E2) similarly requires the nuclear radius R,

which enters the conversion from the measured cross section to the B(E2) value.

1.6 Theoretical B(E2) values

Electric quadrupole transition probabilities, B(E2), can be calculated unambigu-

ously if the nuclear wave functions are known. Various theoretical frameworks,

—0g— 50

t— 0f7/2 -

Figure 1.6: Enlarged view of the shell model level near N = 40.
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including shell models (SM) and self-consistent QRPA models based on Skyrme
energy density functionals (EDFs), can provide such wave functions and thus enable
the evaluation of B(E2) values. In this work, we focus on the shell model as a
representative method, as it has been shown to reliably describe the structure of

nuclei near closed shells and allows a consistent calculation of B(E2) strengths.
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Figure 1.7: Observed energies of the first 2* level, E(2}) and B(E2), for the even-even nuclei Ca
(Z =20), Ti (Z =22),Cr (Z = 24), Fe (Z = 26), and Ni (Z = 28). At the magic number N = 28,
E(27) is high and B(E2) is low for all elements except Ca, but at N = 40, this characteristic is only
seen for Ni.
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1.6.1 Shell models (1) - GXPF1A

GXPF1A 2423 i5 a shell-model interaction defined for the “pf shell” (consisting
of four orbitals: 1p3/», 1py1/2, Ofs)p, and Of7/). In this framework, the model
specifies the single-particle energies and the effective interactions between nucleons
occupying these orbitals. Using these ingredients, the nuclear wave functions are
obtained by diagonalizing the Hamiltonian within the model space, and it reproduces
well nuclei in which the proton or neutron is close to the magic number 28. Unlike
A3DA-m described below, the Ogg/> orbital is not included in the calculation, so in
this model, the gap to the 0gg/, orbital is effectively treated as too large to allow

excitation, and N = 40 is therefore regarded as having magic properties.

1.6.2 Shell models (2) - A3DA-m

A3DA-m %91 is a modified A3DA ?7-281, The calculation is performed in a model
space that, in addition to the pf shell, incorporates the 0gg/> and 1ds/, orbitals. In
this model, the gap between the pf shell and the 0gg, orbital is small, and excitation
to the Ogg/, orbital occurs easily. Thus, N = 40 is generally not treated as a closed

shell in this model, although nuclei such as ®®Ni may still exhibit magic-like features.

1.6.3 Self-consistent QRPA models based on Skyrme EDF

We received theoretical results on Ti isotopes through private communications
with Dr. Yoshida and Dr. Washiyama. The calculations are based on the Skyrme
energy density functional SkM*, but employ two different frameworks. The first one,
referred to as QRPA (SkM*), is the deformed Skyrme-HFB plus QRPA approach,

r~ T T T 7T TT T | T r~r 11T rTrTTr T T T T
[ + : | : O Exp
3_T1, E(Bl) . ] _T1, B(E2 -~ QRPA (SKM%)| g4
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Figure 1.8: Two self-consistent QRPA models based on Skyrme EDF.
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which provides a microscopic description of low-lying excitation modes on top of
the mean field 2!, The second one, called 5SDCH (SkM*), is the five-dimensional
collective Hamiltonian formalism, where the collective potential is obtained from
constrained HFB calculations and the inertial functions from local QRPA with
the SkM* functional B%. A comparison between these theoretical models and

experimental data is shown in Fig. 1.8.

1.7 Purpose of this study

In recent decades, extensive studies of neutron-rich nuclei have revealed the
emergence of new magic numbers as well as the disappearance of conventional
ones. Such phenomena are closely linked to shell evolution and the mechanisms
that govern nuclear collectivity. Around neutron number N = 40, a striking contrast
is observed: while nuclei near ®Ni exhibit signatures of magicity, isotopes of Cr and
Fe show enhanced collectivity, indicating a breakdown of the N = 40 shell closure.
In the case of Ti isotopes, however, information on quadrupole collectivity has so
far been limited, as B(E2) values beyond N = 34 had not been measured.

The primary objective of this study is to measure the B(E2;0" — 2%) value of
8Ti with N = 36, which serves as a crucial probe of collectivity in this region.

By obtaining this result, we aim to address two key issues. The first is to examine
the “magicity” of the N = 40 shell gap in Ti isotopes; in this work, the magicity of
N =40 is defined as the extent to which excitations across the N = 40 shell gap are
suppressed. The second is to investigate how the tensor force modifies shell gaps
and thereby influences collectivity around N = 40.

To this end, we have measured the B(E2;0* — 2*) transition strength in 3Ti

and compared the results with shell-model calculations.
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1.8 Research method

1.8.1 Obtaining B(E2) for 50Ti / 38Ti

Currently, only the deformation length 6, ,» has been measured for BTj in a
(p, p’) experiment by H. Suzuki et al. 23, Although B(E2) can be evaluated
from this result, the conversion is model-dependent and involves a large uncertainty.
Therefore, we aim to obtain B(E2) using a method that is less model-dependent and

provides smaller errors than (p, p”). There are two possible methods for this:

* Measuring the lifetime 7

* Measuring the Coulomb excitation cross section 0¢oulex

1.8.2 Measurement of lifetime 7

From the relationship in equation (1.16), if E, is known, B(E2) can be obtained
most simply by measuring the lifetime 7. In the experiments conducted in this
study, it was in principle possible to measure the lifetime using the Doppler shift
attenuation method (DSAM) 311 but since the error is expected to be very large,
we decided to obtain B(E2) by measuring the Coulomb excitation cross section, as

described below.

1.8.3 Measurement of Coulomb excitation cross section o coulex

Coulomb excitation is the excitation of a nucleus by electromagnetic interactions
when it passes near a heavy target nucleus, although historically the excitation of
the target nucleus was also studied. In this work, we consider mainly the excitation
of the projectile nucleus. Typical target nuclei are those with large atomic numbers,
such as lead or gold, although lighter systems (e.g., oxygen) are sometimes used at
lower energies.

This process can be viewed as the inverse of gamma decay: while gamma
decay proceeds as 2* — 0* with the emission of real photons, Coulomb excitation
corresponds to the 0* — 2% transition induced by electromagnetic interactions.
Strictly speaking, this is not an exact inverse process, but through the concept of
virtual photons it can be regarded as the reverse reaction.

At this time, in the range of excitation energies ~ 10 MeV or less, a rough
approximation is ocouex ¢ B(E2). For details, see the appendix B.

In order to actually obtain B(E2) from o¢oyjex, One needs to estimate the number of

virtual photons generated in the Coulomb field. This can be done using the so-called

25



virtual photon method, or alternatively by performing a reaction calculation such as
the distorted wave Born approximation (DWBA). In this work, the latter approach is
adopted; B(E2) is extracted by comparing the measured Coulomb excitation cross
section with the results of DWBA calculations, as described later. Therefore, B(E2)

can be obtained by measuring o¢oylex in an experiment.

1.8.4 How do we measure the Coulomb excitation cross section o ¢oulex?

36T /38Ti are neutron-rich unstable nuclei, with 6 to 8 more neutrons than °Ti,
the most stable Ti isotope.

Therefore, °Ti / 38Ti do not exist in nature unless they are produced in a lab-
oratory. To do this, we first need to produce *°Ti / *3Ti using an accelerator. To
induce Coulomb excitation, a beam of °Ti / 33Ti must be irradiated onto a target
made of a nucleus with a sufficiently large atomic number. In this study, we decided
to use '°7 Au. The best way to confirm Coulomb excitation is to observe the gamma
rays emitted during de-excitation. To do this, gamma rays are counted by placing
gamma ray detectors around the '°7 Au target. The Coulomb excitation cross section
Ocoulex €an be obtained using the gamma ray count obtained in this way, the amount
of incident >°Ti / ®Ti beam, and the %7 Au target thickness. In the next chapter,
we describe the experimental principle for measuring the Coulomb excitation cross

section Ooylex Of 2°Ti / 38Ti.

Projectile Virtual % Deexcitation

Photon Gamma Ray

Target

Figure 1.9: Conceptual diagram of Coulomb excitation. The change in the strong electric field that
the incident particle experiences when passing near a target nucleus with a large Z is considered to
be the incidence of virtual photons (electromagnetic waves), and this reaction excites the incident
particle with virtual photons. The excited incident particle emits de-excited gamma rays after the
gamma decay lifetime has expired.
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Chapter 2

Experimental Principle and Setup

2.1 Overview of experiment

Beams of “°Ti and 3®Ti were generated using the Superconducting Ring Cyclotron
and BigRIPS beamline at the RIKEN RI Beam Factory. The *°Ti/*8Ti beams were
then directed onto a %7 Au target to induce Coulomb excitation. The de-excitation
gamma rays from the Coulomb excitation were observed with a Ge detector array

“HiCARI” and we measured the Coulomb excitation cross section.

2.2 Structure of this chapter

This chapter describes the method of generating unstable nuclear beams at the
RI Beam Factory, the BigRIPS/ZeroDegree beamline for particle identification of
the generated unstable nuclear beams and analysis of their trajectories and momen-

tum, and the HiCARI array for gamma ray detection, and describes the equipment,

Figure 2.1: A bird’s-eye view of the RIKEN RI Beam Factory. In the figure, the beam accelerated by
the SRC (Superconducting Ring Cyclotron) is used to generate RI beams at the BigRIPS beamline.
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measurement principle, and setup for each section.

2.3 Overview of the RI Beam Factory

The RI Beam Factory can produce RI (radioactive/unstable nuclei) beams by
using a group of accelerators, including the Superconducting Ring Cyclotron (SRC),
and the BigRIPS beamline 21, which generates unstable nuclei, purifies them, and
identifies particles. At present, this method is the most powerful way to generate
beams in the °Ti/®Ti vicinity. Figure 2.1 shows a bird’s-eye view of the RIBF
facility, and Figure 2.2 shows a schematic diagram of the beamline after the SRC
accelerator. In this study, a 1° Au target and a HiCARI array are installed at the F8

focal plane.

2.4 Unstable nucleus beam generation at the RI Beam Factory

RI beams are first generated by generating a primary beam using stable nuclei
as an ion source, and then irradiating the target at the FO focal plane to generate a
secondary beam through nuclear spallation and fission reactions. The primary beam
is accelerated to 345 MeV/u using RILAC (linear accelerator) and four cyclotrons
at RRC, fRC, IRC, and SRC.

In this study, "°Zn was used as the primary beam, and an attempt was made to
generate a “°Ti / >3Ti beam by a nuclear spallation reaction.

The secondary beam generated by the nuclear spallation reaction is a cocktail
beam containing many types of nuclides, which are separated/purified by utilizing

the curvature when passing through a magnetic field and the difference in energy

Primary
Target

Wedge
gder
>
[€«——— BigRIPS ———> [«—— ZeroDegree —>|

Figure 2.2: BigRIPS and ZeroDegree beamlines at the RIKEN RIBF facility. FO - F11 in the figure
are the names of the focal planes. The detectors installed at each focal plane are summarized in table
2.1.
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loss when passing through a material. Purification of the secondary beam is also

explained in this section.

2.4.1 Generation of unstable nuclear beams

A primary target (production target) for generating unstable nuclei is installed on
the FO focal plane. "Be is mainly used as the primary target. The original beam
particles of the primary beam are destroyed by spallation and fission reactions,
producing various nuclei with small mass numbers. In this study, a spallation
reaction using a "°Zn beam is used. The particles produced by the nuclear reaction
in the primary target include particles necessary for the beam, such as ®Ti in this
study. However, large amounts of other particles are also produced, which become
background sources during measurements. Therefore, it is necessary to remove as

many particles as possible other than the desired beam particles.

2.4.2 Purification of an unstable nuclear beam by a slit

The unstable nuclear beam generated at the primary target in the FO focal plane
is bent by a dipole magnet and transported to the F1-F3 focal planes. The particle
orbit, i.e., the orbit radius p when bent by the magnetic field B, is determined by the
particle’s velocity v, mass m, and charge g. The non-relativistic equation of motion

for the circular motion of a charged particle orbiting in a magnetic field is :

2

m’— = qvB @.1)
Jo,
Transforming this,
Bp =" 2.2)
q

can be written as follows.

In this case, the right-hand side is an index that represents the characteristics of
the beam particle’s "resistance to bending due to a magnetic field." For this reason,
Bp is called the "magnetic rigidity modulus." If the magnetic field does not fluctuate,
beam particles with the same Bp value will follow the same trajectory if the initial
conditions are the same.

In reality, the beam particle velocity needs to be treated relativistically, so the
momentum myv in the formula (2.2) is replaced with the momentum ymyv that takes

relativity into account, and using the atomic mass unit m,,, the elementary charge e,
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and the velocity of light ¢, m = m, A, g = Ze, and v = Sc,

_ Byem, A

B
P e Z

(2.3)

is obtained. Here, y = —=

If the beam particles have relatively uniform

velocities 8, Bp is roughly proportional to A/Z. Therefore, the trajectory that the
target particle should take is restricted to some extent by the value of A/Z that the
particle has. Therefore, by installing a slit in the beamline, it is possible to restrict
the Bp, i.e., A/Z, of the particles that can pass through it. This makes it possible
to remove beam particles with Bp values that deviate significantly, and increase the
purity of the secondary beam. Slits are installed in the focal planes of F1 - F3.
However, this method alone still leaves a large amount of other particles with similar

Bp values remaining.

2.4.3 Purification of unstable nuclear beams using a wedge-shaped damping plate

A wedge-shaped damping plate is also installed at the F1 focal plane. The wedge-
shaped damping plate is installed where the beamline is bent, and is made of an
aluminum plate that becomes thinner from the outside to the inside. The energy lost
by beam particles when passing through a material depends on the amount of charge
that the particle has, i.e., Z, so it can be used to select particles with different Z.
First, for simplicity, consider a damping plate with a constant thickness. The energy

loss when passing through a material is given by the Bethe-Bloch formula.

2m,c*p? )
1“(1(1 —ﬂ2>) F ] 24

This can be simplified as follows when the change in 8 (Af) is sufficiently small

dE  4n z? 2\
dx  mec? B2

dreg

compared to the absolute value of S.

2
IAE| o (%) (2.5)

Earlier, we restricted the A /Z of beam particles by Bp, but the damping plate changes
the kinetic energy depending only on Z. For this reason, even if a particle has the
same Bp before the F1 focal plane, if Z is different, Bp after passing through the
damping plate will have a different value. As a result, the difference in Bp becomes
larger at the next F2 slit, making it difficult to pass through. In this way, the beam
is purified by the slits and wedge-shaped damping plate in F1 - F3. Incidentally,
the reason why the damping plate is wedge-shaped rather than flat is that particles
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passing outside the beamline, i.e. particles with a large Bp, have a large velocity
B when A and Z are the same. By passing particles with a large § through the
thicker part and particles with a small S through the thinner part, the spread of
is reduced. Even if the beam is purified using the method described in this section
using a slit and a wedge-shaped damping plate, it is difficult to actually create a
completely pure beam of a single type of particle. In some cases, dozens of types
of particles may still be included. Therefore, in the next section, we will describe a
method to identify beam particles by measuring A/Z and Z for each beam particle

and analytically select beam particles.

2.5 Particle Identification in BigRIPS / ZeroDegree

Particle identification in BigRIPS / ZeroDegree is performed using the Bp-AE-TOF
method. The Bp-AE-TOF method is a method for determining the type of beam
particle by measuring three physical quantities: Bp (magnetic rigidity), AE (energy
loss when passing through a material), TOF (Time Of Flight, i.e. the time it takes
to travel between two points). Particle identification can be determined using these

physical quantities in the following way.
* First, the particle velocity § is calculated from the TOF measurement.
* Z is determined by measuring AE and the relationship AE « (Z/8)>.
* A/Q is determined by measuring Bp and the relationship A/Q o« Bp/(By).

This determines the particle’s Z and A/Q. Note that in reality, 8 decreases slightly
due to energy loss when passing through a measuring device, but for now we will

ignore this effect.

2.5.1 Measurement of TOF and derivation of velocity 3 (1)

TOF is measured as the time difference between the emission timing of two
plastic scintillators installed on the beamline. The plastic scintillators are installed
at F3 and F7 in BigRIPS, and at F8 and F11 in ZeroDegree. The distance between
F3 and F7 is 46.566 m, and between F8 and F11 is 36.48 m. The relative velocity 8
to the velocity of light can be calculated using the usual velocity equation and the

velocity of light ¢ as follows:

L
" TOF - ¢

B (2.6)
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However, this method can only be used to measure between F3 and F7, and between
F8 and F11. To calculate g for a small range, such as F5 and F7, use the measured

value of Bp. The detailed method will be described in a later subsection (2.5.4).

2.5.2 Measurement of AL and derivation of atomic number Z

AE is measured using ion chambers called “MUSIC” installed at the F7 and
F11 focal planes. The ion chambers can directly measure the energy loss AE
when passing through the filled gas. By determining the appropriate proportionality
coefficient from the proportional relationship in equation (2.5), Z/ can be obtained,

so if B8 is known, Z can also be determined.

2.5.3 Measurement of Bp and derivation of mass-to-charge ratio A/Q

Bp is obtained from the magnetic field of a particle position detector called a
PPAC and a dipole magnet. PPACs are installed at the F3, F5, F7, F8, F9, F10, and
F11 focal planes, and two sets of "double PPACs" consisting of two PPACs stacked
on top of each other are installed at each focal plane. Only the F8 focal plane has
three sets, two sets installed upstream and one set installed downstream of the target.
The PPAC can measure the (x,y) coordinates through which the beam particle
passes. By analyzing multiple PPACs, the traveling direction (a, b) of the beam
particle can be obtained. The transport matrix can be obtained from these to obtain
Bp. The derivation methods include B measured by a nuclear magnetic resonance
(NMR) magnetic field measuring device and the central orbit p determined by the
beamline design. The Bp determined by this is called Bpg. The Bp of each beam

particle is
Bp = Bpo(1 - 9) 2.7)

Here, if we replace mv in equation (2.2) with momentum p, the relationship holds

even in relativity, so by substituting this into equation (2.7), we get

= po(1+9) (2.8)
e o= DoFP 2.9)
Po

The beam transport matrix is summarized in the appendix C. Returning to the
point, if we have the matrix elements and the measured x3, a3, x5, as pairs, we can
determine 35 for each beam particle using equation (C.1). If we measure ¢ for each

section using this method, we can obtain Bp for each beam particle using equation
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(2.7). Now, by transforming equation (2.3),

A 3 e
7 Bycm,

Bp (2.10)

S8 can be calculated from the TOF, so once Bp is determined, A/Z can be determined

because it is a constant.

2.5.4 Measurement of TOF and derivation of velocity S (2)

To obtain g for a small interval such as F5 - F7, the measured value of Bp can be
used. As an example, assume that the TOF measurement interval is F3 - F7, and we
want to obtain S for F3 - F5 and F5 - F7 in between. Let the subscripts 37, 35, and
57 represent the respective intervals. First, the sum of the TOFs for each interval is

the TOF for the entire interval. This can be expressed as an equation:

TOF;; = TOF;5 + TOFs; 2.11)
L L L

e L - R L (2.12)
B3¢ Bssc  Bsic

Also, if there is no change in the charge state due to detectors or wedge-shaped
damping plates in the beamline, or if no nuclear reactions occur, A/Q will not

change. From this, the right-hand side of equation (2.10) is constant. Therefore, we

obtain
B B
P35 - _ P57 2.13)
B35Y35 Bs1v¥57
B
. Bps1 _ B57Y57 (2.14)

" Bpss B35Y35

In other words, the ratio of Bp becomes the ratio of Sy. If the ratio of Bp is known
from measurements, vy is a function of 3, and if we have the measured values of
TOF37 and Lis and Ls7, B35 and Bs57 can be found by solving the simultaneous

equations.
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Table 2.1: A list of detectors and other equipment installed on the BigRIPS and ZeroDegree beam-

lines.

Focal plane

Contents (detector)

FO
F1
F2

F3
F4
F5

F6

F7

F8

F9
F10

F11

primary (generation) target

Wedge Degrader

Plastic scintillator (F3PLscint)
Double PPACx2 (F3DPPACI1, F3DPPAC2)

Double PPACx2 (F5DPPACI, FSDPPAC?2)
Wedge Degrader

Double PPACx2 (F7DPPACI1, F7DPPAC2)
Ion chamber MUSIC (F7IC)
Plastic scintillator (F7PLscint)

Double PPACXx3 (FSDPPAC1, FSDPPAC?2, F8extraDPPAC)
Plastic scintillator (F8PLscint)
Secondary (reaction) target and HiCARI array

Double PPACx2 (FODPPACI1, FODPPAC?2)
Double PPACX2 (F10DPPAC1, F10DPPAC?2)

Double PPACx2 (F11DPPACI, F11DPPAC?2)
Plastic scintillator (F11PLscint)
Ion chamber MUSIC (F11IC)
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2.6 BigRIPS / ZeroDegree detector configuration (beamline de-

tector)

First, let us explain the "Beamline Detector" installed in the BigRIPS / Ze-
roDegree beamline. These are used to identify particles for each event using the
Bp-AE-TOF method.

2.6.1 Plastic scintillator

They are installed in F3, F7, F8, and F11 mainly to obtain TOF. The area of the
scintillator is the same for all, 120 x 100 mm?. The thickness varies depending on
the experimental setup and installation location. In this experiment, only F8 uses a
1.0 mm thickness, while the others use a 0.2 mm thickness.

Two photomultiplier tubes are installed on both the left and right sides, and
the approximate particle passing position can be estimated from the detection time
difference between the left and right sides and the relationship between the emission
attenuation. The photomultiplier tube is set at a voltage of 1700 - 2000 V, and the
voltage is adjusted so that the pulse height is several hundred mV depending on the
size of the signal in the actual experiment. This is because when the signal is small,
the discriminator used to measure the luminescence time loses its time resolution
due to the walk effect and slew effect, so this is to prevent this. The final time when
the particle passes is determined as the average timing of the signals from the left

and right photomultiplier tubes.

2.6.2 PPAC

Parallel Plate Avalanche Counters (PPAC) 3! are a type of position-sensitive
detector. It can determine the positions x,y and the angles a, b in the x and y
directions. It is installed at the convergent foci F3, F7, F8, F11 and the divergent
foci F5, F9. The divergent foci use a size of 240 x 150mm? to cover a wide range.
The cathode output has two readouts, X1, X2, Y1, and Y2, in the x and y directions.
The cathode electrodes in each direction are connected by delay cables, and the
difference in the readout times of X1 and X2 (or Y1 and Y?2) is proportional to the
position. For example, in the x direction, if the readout times for X1 and X2 are Tx;

and Tx», then it is expressed as follows:

x = a(Tx1 — Tx2) + Xoffset (2.15)
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Here, a and x,ft are pre-calibrated with an alpha source. The anode output is not
used in principle. BigRIPS/ZeroDegree uses a "double PPAC" consisting of two
PPAC:s stacked on top of each other. The detection efficiency of a PPAC is about 90
%, but by using a double PPAC, the detection efficiency is improved to about 99 %.
Two sets of double PPACs are installed on each focal plane. The angles a, b can be

obtained by outputting x, y from the two double PPACs, respectively.

2.6.3 MUSIC

This ion chamber is called MUIti-Sampling Ionization Chamber [** and is used
to obtain dE /dx. It is installed at the F7 and F11 focal planes.
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Figure 2.3: Schematic diagram of PPAC. Figure from [33].
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Figure 2.4: Schematic diagram of MUSIC. Figure from [35].
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2.7 Principle of gamma-ray measurement

The purpose of this experiment is to measure the Coulomb excitation cross section
of Ti / 38Ti. Coulomb excitation is a process in which a particle with a relatively
large Z is excited by electromagnetic interaction when it passes nearby, and when
the nucleus to be observed is used as the beam, Z is the target. When using this

method, de-excitation gamma rays from >3Ti are emitted during flight.

2.7.1 Doppler shift

Gamma rays emitted from nuclei in flight undergo a Doppler shift when viewed
from the laboratory frame. If the energy actually emitted from the atomic nucleus is
Ey, then in the laboratory frame, if it is emitted forward in the direction of the beam,
it will have high energy, and if it is emitted backward, it will have low energy. If the
gamma ray energy in the laboratory frame is Ej,p, the gamma ray emission angle is

6,, and the velocity of the beam particle is 3, This can be written as follows:

Eiap _ Vl _:82

Ey 1 - pBcosd,

(2.16)

2.7.2 Doppler shift correction and measurement error

HiCARI is composed of Ge detectors, so the detector’s intrinsic energy resolution
is very good, at about a few keV. The measurement results of the energy resolution
and detection efficiency of the gamma-ray source are described in the following
section 2.10.

The energy resolution of the Doppler shift-corrected gamma-ray spectrum also
depends on the angular resolution of the gamma-ray interaction point. The angular
resolution is determined by the position resolution of the detector. From this, the

relative energy resolution

0p = — (2.17)

can be expressed as the angular resolution 6, the beam velocity resolution 6, and

the intrinsic resolution of the detector 4,

Of =65 +05+ 05 (2.18)
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These can be calculated as:

3 Bsin6,A0,
% = 1 - Bcosb, (2.19)
B (B —cosb,)AB
o = (1-B2)(1 - Bcosb,) (2:20)
1

\% E detection

The angular dependence of the energy resolution of in-beam gamma rays, taking

2.21)

Odetector

into account dg, dg, and dqey, is calculated for Nal and Ge detectors, and is shown in

Figure 2.5.
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Figure 2.5: Simulated energy resolution obtained after Doppler shift correction. Comparison of
resolution between DALI2 with Nal scintillator and Ge array. Ge arrays come in two types: Miniball,
a common Ge detector, and Tracking type, which has improved position resolution through waveform
analysis. Improved position resolution improves angular resolution ¢, so energy resolution after
Doppler correction improves.
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2.8 HiCARI (1) - Overview and each detector

2.8.1 HiCARI array/campaign overview

HiCARI (High-resolution Cluster Array at RIBF) (3] is a high-resolution gamma-
ray detector array consisting of 12 Ge detectors, which consist of one RCNP Quad 17!
(4 crystals), one LBNL P3 (3 crystals), six Miniball [33 (3 crystals), and four Clover
(4 crystals) [**1 owned by Korea IBS and China IMP. Of these, RCNP Quad and
LBNL P3 are tracking detectors [4°!, and can derive the gamma-ray interaction posi-
tion. In-beam gamma-ray nuclear spectroscopy experiments at RIBF have previously
used the DALI2 [ array, which uses Nal detectors. The HiCARI campaign exper-
iment, which began in 2020, is the first in-beam gamma-ray nuclear spectroscopy
experiment at RIBF to use a Ge detector array. Compared to Nal, Ge detectors
have a much higher energy resolution, so even for very weak gamma-ray peaks, the
separation accuracy (S/N ratio) against the background is high. This performance
more than compensates for the low detection efficiency, which is a weakness of Ge
detectors. In particular, the tracking detector has a high angular resolution used for

Doppler correction, which can further increase the S/N ratio.

o~
=4

Figure 2.6: A schematic of the HICARI array. The frame that supports the detectors was developed
based on that for the Miniball.
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2.8.2 Non-tracking detectors (Miniball, Clover)

The Miniball detector is a detector [4?! developed for REX (Radioactive ion beam
EXperiment) at ISOLDE, an online isotope separation facility at CERN, and has
three coaxial Ge crystals. The readout electrode of the crystal is divided into six
parts in the circumferential direction (the ¢ direction in the coaxial coordinate
system). The Clover detector is a detector [*3] originally developed to investigate
the polarization direction of gamma rays by Compton scattering direction analysis.
The Clover detector used in the HiCARI array is an improved version, with the
readout electrode divided into four parts. These non-tracking detectors have the
sensitive area of the crystal segmented by the electrode boundaries, so the gamma-
ray detection position is treated as the segment centroid. In addition, to improve
detection efficiency, a central electrode is used for energy measurement instead of
the divided outer electrodes, so that Compton scattering events in adjacent segments

are collected.

Figure 2.9: The crystal of the Miniball Figure 2.10: The crystal of the Clover de-
detector is divided into six parts in the tector is divided into four parts. The figure
circumferential direction. The figure is a is a modified version of that in [43].
modified version of the one in [42].
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2.8.3 Gamma-ray tracking detector (RCNP Quad, LBNL P3)

RCNP Quad and LBNL P3 are gamma-ray tracking detectors that can determine
the interaction position inside the crystal by waveform analysis. Originally, they
were developed to track Compton scattering that occurs multiple times within the
crystal, to distinguish whether it is a total energy absorption event or a background
event that deviates outside the detector after Compton scattering, and to reduce
the background ratio. In this study, the high resolution of the interaction position
can improve the accuracy of gamma-ray emission angle determination compared
to conventional Ge detectors. Finally, this leads to improved energy resolution
after Doppler shift correction. Next, we will explain the principle of interaction
position derivation in the gamma-ray tracking detector. As shown in Figure 2.13,
the Ge crystal of the detector has an outer electrode divided into six parts in the
circumferential and axial directions, for a total of 36 parts, and the signal from each
electrode is read out. When a gamma ray interacts at a certain point in the crystal, it

generates a number of electron-hole pairs proportional to the energy transferred at

Figure 2.11: Appearance of the RCNP Quad Figure 2.12: Appearance of the LBNL P3
detector. detector.

Figure 2.13: The crystals of RCNP Quad and LBNL P3 have the same design. The crystal’s readout
electrode is divided into 6 parts in the circumferential direction and 6 parts in the axial direction, for
a total of 36 parts. The figure is a modified version of [44].
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that location, and the electrons are attracted to the inner electrode and the holes to
the outer electrode according to the applied electric field. A finite amount of charge
is transferred to only one specific outer electrode corresponding to the interaction
position. At this point, the interaction position can be narrowed down to 1/36 of the
entire crystal depending on which electrode in the crystal it is adsorbed to.

Then, waveform analysis is performed to further improve the position resolution.
The radial position appears as the slope of the waveform due to the difference in
the moving velocity of electrons and holes. The circumferential and axial directions
appear in the waveform of adjacent electrodes, as shown in Figure 2.14.

The method for deriving the interaction position from the waveform is to prepare
a data set of interaction points and waveforms generated by simulation at every point
in the crystal, and perform chi-square fitting to the actual measured waveform to
find an interaction point that shows a similar waveform. The interaction position
is determined by taking a weighted average of several points with small chi-square

values.
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Figure 2.14: Difference in waveform depending on interaction point. In the schematic diagram of the
Ge crystal on the left, the waveform output of each electrode when interacting at positions @ and @
is shown on the right. The diagram of the waveform output of each electrode shows the electrode 3
where energy was actually applied and the adjacent electrodes (82 - 84, y2, y4, 62 - 64). When O,
the interaction position is closer to 83, so the waveform height that appears at 83 is larger. Similarly,
in the case of @, the wave height of 63 becomes higher.
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Using this method, it is possible to determine the position in three dimensions
with high accuracy within the Ge crystal. Regarding RCNP Quad, our measurements
[371 have shown that the x, y, and z directions can be determined with an accuracy
of less than 2 mm (FWHM).

2.8.4 Recovery of unreadable crystal segments

The non-tracking detectors Miniball and Clover contained crystals containing
some unreadable electrodes. As mentioned above, it is important to know which
electrode absorbed the hole in order to identify the range of the gamma-ray interac-
tion position by the electrode where the signal was induced and to use it for Doppler
shift correction.

Fortunately, all crystals contained only one unreadable electrode, so the amount
of energy deposition Ep by the missing electrode could be obtained using the value

E; of the other electrodes, and was obtained as follows:

Eg = Ecc — Z E; (2.22)

i#B
Here, Ecc is the amount of energy deposition by the central contact, which is
sensitive to the energy deposition of the entire crystal, unlike the outer electrodes,

which are divided into electrodes. In other words, if there are no broken crystals,
Ecc = Z E; (2.23)

should be true.

The unreadable electrodes of each detector are summarized in Table 2.2.
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Table 2.2: List of HICARI detectors. The number in parentheses next to the number of crystals is

the number of valid crystals excluding broken ones.

Name  ID Number of Installation Position Note
Crystals r (mm) 6 (deg) ¢ (deg)

Minball0 0O 3(2) 270 45 -120 Cry.#2 broken
Minballl 1 3(2) 270 45 -60 Cry.#0 broken
Minball2 2 3 280 30 180  Seg.#2 of Cry.#1 broken
Minball3 3 3 280 30 0 Seg.#4 of Cry.#1 broken
Minball4 4 3 275 45 120 Seg.#3 of Cry.#2 broken
Minball5 5 3 275 45 60 Seg.#4 of Cry.#2 broken
Clover0 6 4 300 75 -135  Seg.#3 of Cry.#3 broken
Cloverl 7 4 300 75 -45
Clover2 8 4 300 75 135  Seg.#2 of Cry.#2 broken
Clover3 9 4 270 75 45 Seg #2 of Cry.#3 broken

Quad 10 4(2) 195 75 180 Cry.#0,3 broken

P3 11 3 175 75 0

44



2.9 Data acquisition system

There are two data acquisition systems in this study.

e Beam line DAQ
* HiCARI DAQ

Beam line DAQ is the standard DAQ used at RIBF *>#%1 and was used to collect
data from the beamline detectors installed at BigRIPS and ZeroDegree. HiCARI
DAQ is the DAQ used to collect data from the Ge detectors that make up the
HiCARI array, and is a DAQ Y developed by the US gamma-ray tracking detector
GRETINA development group adjusted for the RIBF experiment. The HICARI DAQ
hardware and software were introduced for the first time to the RIBF experiment
for the HICARI collaboration campaign. The circuit uses a digitizer (GRETINA
Digitizer P!1) designed to acquire the waveform of the signal from the tracking
detector. This digitizer is equipped with a 14 bit 100 MHz flash ADC that digitizes
the pulse height per time, and an FPGA, which has an energy detection function
using a trapezoidal filter and a timing detection function. The digitizer is inserted
into a dedicated VME crate together with an IOC that controls the four digitizers.
The data flow is that the analog output signal from the detector is directly input
to the digitizer through a cable and A/D converted. Four digitizers are used per
crystal for tracking detectors that acquire waveforms (RCNP Quad and LBNL P3),
and one digitizer is used per crystal for non-tracking detectors that do not acquire
waveforms (Miniball, Clover). The digital signal from the digitizer is sent to the
analysis server 52! via an Ethernet cable from the IOC. The analysis server analyzes
the waveform online and derives the interaction position inside the crystal of the
tracking detector. The raw data sent from the digitizer and the interaction position
data obtained by online analysis are then both written to the hard disk. Triggers are
generated by processing the signals from both the Beam line DAQ and the HICARI
DAQ using GTO (General Trigger Operator), and distributed to each DAQ system
to be used as triggers.

In addition, timestamp information created by a timestamp generation module
named MyRIAD 331 is sent to each DAQ, making it possible to integrate the data
acquired independently by the two types of DAQ after the experiment.

45



2.10 HiCARI(2) — Energy calibration, resolution, and efficiency

2.10.1 Energy calibration

Energy calibration was performed by setting appropriate conversion functions
for all 12 detectors, 37 crystals, and 389 electrodes so that the raw energy values
obtained from the digitizer could be expressed in energy keV units.

Assuming that a linear function relationship exists between the value obtained
from the digitizer E,, and the energy value Eyey expressed in keV units after
calibration, taking into account the offset, we determined P, P; for each electrode,

where
EkeV = Pl . Eraw + P2 (224)

by using free parameters Py, P;.

The procedure is to first roughly align using a %°Co source. ®°Co emits two
types of gamma rays, 1332.5 keV and 1173.2 keV. When this is measured with a
Ge detector, two peaks appear, so we assume that the larger one is 1332.5 keV and
the smaller one is 1173.2 keV, and find P;, P, from the channel numbers of the
respective peak positions. Since both the variable and the number of samples are 2,
Py, P, are uniquely determined. However, it is not possible to evaluate the error at
all. Next, we look at the measurement data for °?Eu. Because "2Eu emits many
types of gamma rays, it is difficult to tell at first glance which peak corresponds to

which energy. Therefore, we perform a provisional calibration using Pj, P, found

GOOO T T 1T 7T T T T 7T T T T T T 1T 1T 7T 1000
0
Co

152
Eu

|
500 1000 1500 2000 500 1000 1500 2000
Energy (keV) Energy (keV)

5000 800

S
o
o
(=)

600

w
o
o
o

400

Counts / keV
Counts / keV

4N
o
o
o

200

1000

o

o \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

o
(=]

Figure 2.15: Measurement results for a %0Co source (left) and a 1>2Eu source (right). The horizontal
axis of both plots is calibrated and in units of energy (keV).
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with ®Co. This results in a peak close to the actual gamma-ray energy of '3’Eu,
making the correspondence between the peak and the energy clear. Of the gamma
rays emitted by !5Eu, eight types with high branching ratios were used for this
calibration work. These are summarized in Table 2.3.

The peak position was derived by fitting with a function. Assuming that the
background component is a straight line and the true peak shape is a Gaussian

function, fitting was performed with

1

y = Prexp _E(

)C—Pz
P

2
) + Pux + Ps (2.25)

In this equation, P, corresponds to the peak center position. The resolution o,

which will be described later, is Ps.

Table 2.3: Gamma-ray energy and branching ratio of '3>Eu used to derive the efficiency.

Energy (keV) I, (%)
121.782 28.58
244.697 7.583
344.279 26.5
778.904 12.942
964.079 14.605
1112.07 13.644
1408.01 21.005
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Figure 2.16: Measurement results (left) and simulation (right) of the '3?Eu source at crystal 1 of
Miniball 1. There is a missing segment and the resolution is poor. The simulation takes into account
the source energy, branching ratio, radioactivity, measurement time, the source position and detector
installation position, the material between the source and detector, and the resolution characteristics
of the detector.
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2.10.2 Energy resolution

Assuming that the resolution o of the Ge detector is a function of E,
op=AV1I+E-B (2.26)

we investigated the multiple peak widths obtained by measuring the '3*Eu source
for each crystal, fitted the energy dependence of the peak widths with the above
equation, and obtained A and B for all crystals.
2.10.3 Position resolution

The resolution of gamma-ray detection position o is approximately 2 mm at

RCNP Quad. B”l LBNL P3 is thought to have a similar resolution. Since the
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Figure 2.17: The fitting was performed using a Gaussian function + straight line, with the background
represented as a straight line (blue dotted line).
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Figure 2.18: An example of the energy dependence of energy resolution. Measured values (black
squares) and a curve (red solid line) fitting the measured values with the equation 2.26.
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detection position within a segment is unknown for Non-Tracking detectors, if the
position resolution is set to half the distance between neighboring segments, itis 11
mm for Miniball and 13 mm for Clover.

Taking these factors into consideration, the angular resolution oy can be calcu-

lated from the detector’s distance r from the target, as shown in Table 2.4.

Table 2.4: Angular resolutions of each detectors.

r[mm] oy [mm] oy [deg]

Miniball 275 11 2.3
Clover 300 13 2.5
RCNP Quad 195 2 0.6
LBNL P3 175 2 0.7

2.10.4 Detection efficiency

The detection efficiency was also obtained using the measurement data of '>?Euused
for calibration. The relevant measurement information is summarized in the table
below.

The number of gamma-ray emissions Nemited (E) can be calculated by multiplying
the total number of decays by the relative intensity 7, (E) for each gamma-ray energy
in table 2.3.

Nemitted (E) = Ndecay : Iy(E) (2.27)

The definition of detection efficiency here is "the efficiency with which a detector can
detect gamma rays emitted from a target position." This includes various factors such
as the detector’s intrinsic detection performance, the detector’s placement relative
to the target position, and the absorption of gamma rays by shielding. The detection

efficiency ¢ is defined as follows:

_ NDetected

- (2.28)
NEmitted

Since this depends on the gamma ray energy E, it is obtained for each energy of
the peak of °2Eu. Also, since the detector characteristics and the distance from the
target differ between tracking and non-tracking detectors, the efficiency was obtained

separately.
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Figure 2.19: Intrinsic energy resolution of each Ge crystal. These values were calculated from the
formula (2.26) for E = 1000 keV.

Table 2.5: Efficiency measurement summary

Run Source™D  Activity [Bq]*® Time [sec]™ Total Decay

152Eu 7

751 (09-7011) 6134(117) 2021.50 1.240(24) x 10

1525, 7

761 (09-7011) 6129(116) 1819.16 1.115(21) x 10

0Co 7

752 (09-7008) 21500(344) 1372.09 2.950(47) x 10
60

Co 7

759 (09-7008) 21458(343) 1331.94 2.858(46) x 10

*DThe number in parentheses in the lower row is the source management number within the RIKEN
Nishina Center.

*2)The radioactivity and precision of the source on a specific day can be obtained using [54].

*3)The start/end times in the upper row are visually confirmed as the time the DAQ Start/Stop
button was pressed, and the measurement times in the lower row are calculated from the timestamp
included in the measurement data. Note that there is no record of the end time of Run 761.
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2.11 HiCARI (3) - Simulation of radiation source measurement

2.11.1 Reproduction of the HiCARI array

The simulation was performed using “UCHiCARI”, which is based on the
Geant4 153! simulation package UCGretina °® developed by the GRETINA [44.57]
experimental group and is optimized for the HICARI experiment.

Survey markers were placed on the surfaces of the laboratory equipment, such
as the detectors and beam pipes that make up the HiCARI array installed in the
laboratory, and the marker position coordinates were obtained by photogrammetry.
The HiCARI array was reproduced in the simulation space by comparing it with the

detector drawing. The visualization of this is shown in Figure 2.20.

2.11.2 Correction of energy resolution and detection efficiency for each crystal

In section 2.10, the energy resolution and detection efficiency for each crystal
were obtained by measurements using a >>Eusource. In the simulation, to confirm
the more detailed energy dependence, a virtual gamma-ray source of 80 - 3000 keV
was placed at the target position in the beam pipe and a gamma-ray spectrum was
created. Adjustments were made for each crystal so that the energy resolution and

detection efficiency would reproduce the performance of the actual HICARI array.

2.11.3 Relative detection efficiency

In the simulation, adjustments were made to reproduce the detection efficiency

of the HiCARI array as much as possible, but to evaluate the difference and error

Figure 2.20: The HiCARI array and beam pipes reproduced in the simulation space. Only the crystals
in the HiCARI array are shown.
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in the detection efficiency with the actual HICARI array, the detection efficiency
of the entire non-tracking detector and the entire tracking detector are compared
between reality and simulation. Here, when the experimental value of the detection

efficiency is €eyp and the simulation value is €y, we determine the relative detection

efficiency &gin, that satisfies :
@exp = Csim * &sim (2.29)

For the entire non-tracking detector and the entire tracking detector, the relative de-
tection efficiency &g, was determined using the experimental values of the detection
efficiency at four points (779, 964, 1112, 1408 keV) obtained in the measurement of

152Eu

0.96(6) (2.30)
0.95(9) (2.31)

&sim (Non-Tracking)

&sim (Tracking)

The reason for selecting these four points is that they are important energy regions
for the experiments performed in this study, and also because the branching ratio of
the decay of 13?Eu is large, and a relatively large number of statistics can be obtained.

In addition, the efficiency curve of the simulation corrected by applying the

relative detection efficiency &g 1s shown in Figure 2.21 overlapped with the exper-

imental value.

—— —— 7
4 =8= Non—Tracking
r =9+ Tracking

Efficiency (%)

A
1500

0 500 1000
Energy (keV)

Figure 2.21: Circles and squares are experimental values with a *>Eusource, and the solid line is the
detection efficiency by simulation. The simulation is scaled with &g, to reproduce the experimental
value, and the error range is shown by the dotted and dashed lines.
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Chapter 3

Data Analysis (I)

3.1 List of acquired data and experimental conditions

In this study, data were acquired using four different experimental setups with
different beam settings and targets. These are summarized in table 3.1.

The nuclides listed as “‘secondary beam” in the table are those selected as the main
targets for measurement among the various nuclear fragment nuclides produced by
injecting the primary beam into the product target at the FO focal plane, and the
magnetic field is set so that these nuclides are aligned with the central trajectory
of the beamline. Additionally, the energy value is the energy at the center of the
secondary target estimated from measurements and derivation of energy loss. In

this thesis, only the experimental data with the Au target was used in the subsequent

analysis.
Table 3.1: List of experimental conditions.
Run No. Primary Beam Secondary Beam Target Time(hour)
005-018 7°Zn (345 MeV/u) °Ti (176 MeV/u) Be 11.7
021-037 7°Zn (345 MeV/u) °Ti (164 MeV/u)  Au 12.0
041-079 7°Zn (345MeV/u) 8Ti (170 MeV/u)  Au 29.6
085-121 79Zn (345 MeV/u) 3Ti (181 MeV/u) Be 27.8
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3.2 Analysis strategy

The experimental purpose of this study is to derive B(E2) for °Ti and >®Ti, but
we first derive the Coulomb excitation cross section required for obtaining B(E2).

To derive the Coulomb excitation cross section, three things are required:

* Number of incident beam particles
e Target Thickness

* Number of gamma rays emitted by Coulomb excitation

For the first item, to count the number of incident beam particles, particle identi-
fication is performed by analyzing the beamline detector to determine the number of
events that should be counted as the number of incident particles. At the same time,
in order to reduce uncertainty in the subsequent cross section derivation, events
that may contribute to the background are removed and only “events with good
properties” are carefully selected here.

For the second item, in this study, the target thickness was obtained from the
energy loss of the beam particles. Therefore, this is done simultaneously with the
analysis of the beamline detector.

For the third item, the number of gamma rays emitted by Coulomb excitation is
counted by analyzing the gamma rays detected by the HICARI array. To identify
the particle that originated the gamma rays and to correct the Doppler shift of the
gamma rays, the results are combined with information obtained from the beamline
detector.

Both the number of incident beam particles and that of gamma rays need to
be corrected for detection efficiency, etc., and this derivation will be performed
later. Once these values are gathered, the cross-sectional area can be obtained; the

derivation method will be described in section 5.8.
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Chapter 4

Data Analysis (II) - Beamline Detectors

4.1 Beamline detector analysis

In this chapter, we begin the analysis of the beamline detectors. Here, the
objective is to analyze the motion state of the beam particles from the detector,
identify the particles, and count the number of °Ti and ®Ti incident beams. At
the same time, it is also necessary to carefully select only "good condition" events
with high beam purity and high transmission rate at the final focal plane F11, and to
minimize the uncertainty of the yield in the subsequent gamma ray analysis. Finally,
we set cut conditions to leave only good condition events, and count the number of
beam particles that satisfy them. To achieve this, we will proceed with the analysis
according to the following procedure.

First, in section 4.2, we check the trigger conditions for data acquisition and derive
the total beam counts. Next, in section 4.3, we identify particles and select the 6T
and >8Ti beams. Then, in sections 4.4 - 4.6, we describe the “Good Condition” range
setting, the results of its application, and the “Good Condition” beam count. Finally,

in sections 4.8 - 4.11, we analyze the beam profile required for subsequent analysis.
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4.2 Data acquisition trigger and total beam counts

4.2.1 Trigger signal and data acquisition conditions

The trigger signal is managed by the GTO. The trigger signals input to the GTO

are as follows:

* DSF7 : F7 Plastic signal passed through a downscaler
* F7® F11 : Coincidence of F7 and F11 Plastic signals

* HiCARI : Signal from any detector in the HICARI array
* Clock : 1000 Hz oscillation signal

These trigger signals are used to generate data acquisition conditions. The data will

be collected when one of the following two conditions is met:

* F7 ® F11 ® HiCARI
* DSF7

This means that data is not acquired on all detected beam particles. The total beam

count is obtained by multiplying the DSF7 signal by the downscale factor (DSF).

4.2.2 Downscale factor

When the downscaler is set to a downscale factor of N, it generates a signal once
every N times. Let N be called DSF,;. However, in reality, the downscale factor
may not operate strictly as specified. The actual downscale factor that operates on
average across all measurements obtained from the acquired data can be calculated

by defining DSF s as follows:

N i
DSF, .. = F1®F11@HICARI @.1)

NF78F11@HICARI®DSF7

Here, N in the formula is the number of events that satisfy the subscript condition.

The DSF,es obtained in this way is summarized in Table 4.1.

Table 4.1: Derivation of the measured downscaling factor DSF .

197Au(56Ti,56Ti) 197Au(58Ti,58Ti)

DSFqet 20 20
NF79F1 19HICARI 19131921 69596930
NF79F119HICARI®DSF7 985836 3586759
DSFes 19.4068 19.4038
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4.2.3 Total beam counts at F7

Using DSF,es and the number of triggers for the DSF7 signal, Npsg7, the number
of times that F7 Plastic emitted a signal, i.e., the number of beam particles that passed

through the F7 focal plane, N7, can be calculated as follows:
Ng7 = Npsg7 - DSFies 4.2)

The resulting Ng7 is shown in Table 4.2. From now on, the value of DSFy,es will be

written as DSF with the subscript omitted.

Table 4.2: N7 is calculated from the number of DSF7 triggers Npsp7. The trigger rate calculated
from the measurement time in Table 3.1 is also shown in parentheses.

197Au(56Ti,56Ti) 197Au(58Ti,58Ti)
NDSF7 13505418 44349237
2.62097 x 108 8.60546 x 108
Nez (Caleulated) 664 cnisec) (8172 ent/sec)
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4.3 Particle Identification

As mentioned in Section 2.5, the BigRIPS / ZeroDegree detector group can be
used to apply the Bp-AE-TOF method to obtain the Z and A/Q for each beam parti-
cle. Figure 4.1 shows the particle identification results for BigRIPS and ZeroDegree
in measurements with the secondary beam center at “°Ti. In this figure, by using
only events inside the region obtained by applying restrictions to Z and A/Q, events

with identified incident and emitted particles can be obtained.

4.3.1 Background removal

For the background removal method of BigRiPS and ZeroDegree, we referred to
the reference [32].

In conclusion, the amount of background that can be removed by this method
is already sufficiently small, and the accuracy of particle separation is good, so the
results of only the background removal method using PPAC time sum analysis are

used in the subsequent analysis.
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Figure 4.1: Points are plotted by Z and A/Q for each particle in BigRIPS and ZeroDegree. The points

surrounded by the ellipse are the beam particles identified as °Ti. At ZeroDegree, downstream of
the secondary target, it can be seen that many types of particles are produced by nuclear reactions.
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4.3.2 TOF offset correction for A/Q calibration

In the previous section, we performed particle identification using BigRIPS
/ ZeroDegree, but before that, we actually performed TOF offset correction to
accurately derive A/Q.

TOF measurements have an offset that varies depending on the laboratory envi-
ronment, and analysis using measurements that deviate from the true TOF due to
this offset fluctuation affects the 8 and A/Q calculated from them. From equation
(2.10),

1
A/Q oc — (4.3)
By
and considering that 8 o« 1/TOF,
A/Q « TOF 4.4)

holds in the range of § <« 1.
From this, the fluctuations of TOF are propagated to A/Q with the same scale.
The TOF offset correction method was to first create a particle identification
diagram using a TOF offset value known empirically, check how far the A/Q peak
position is from the "correct" position, and then fine-tune the TOF offset value so
that the A/Q peak is at the "correct” position.

With this method, there is a risk of misidentifying and matching peaks from
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Figure 4.2: The variation of the optimized TOF offset value. The horizontal axis is the run number.
Beam switching was performed in Run 40 (changing the central orbit from *°Ti to 38Ti), so there is a
discontinuous change before and after. TOF measurements were performed at six locations: F3-F5,
F5-F7, F3-F7, F8-F9, F9-F11, and F8-F11, and corrections were performed for each. The offset
value shown here is for F3-F7.
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different nuclides, but if a mistake is made, the energy of the emitted gamma rays
will be different, so it will be possible to notice during subsequent analysis.

The experimental data was acquired in separate runs, which consisted of mea-
surement data for up to one hour, and the TOF offset value was determined for each

run. Figure 4.2 shows the fluctuations in the TOF offset value after correction.

4.3.3 Selection of specific particles and particle separation accuracy

For a specific particle, for example, °Ti, the points in the vicinity of (A/Q, Z) =
(2.55,22) in the particle identification diagram are *°Ti. To determine how far from
the center of these points we should include as 56Tj events, we create the Z-axis
projection of the points in the vicinity of A/Q = 2.55 and the A/Q-axis projection
of the points in the vicinity of Z = 22, as shown in Figure 4.1. The interval where
each is fitted with a Gaussian function and becomes 20 is treated as “°Ti. The peak
width is more than 50~ away from the neighboring nuclei for both A/Q and Z, so the
separation accuracy is sufficiently good, and the peaks of the neighboring nuclei are
small to begin with. Therefore, the intensity of mixing from the surrounding nuclei

is sufficiently weak that the background component can be neglected.
4.3.4 Particle-identified beam counts

Table 4.3: Counts of PI Beam

197Au(56Ti,56Ti) 197Au(58Ti,58Ti)
NpigDSF7 8942401 7139264
1.7354339 x 108 1.3852885 x 108
Ner (Caleulated) = 5330 icec) (1316 ent/sec)
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4.4 “Good Condition Beam” and acattering angle acceptance (1)

4.4.1 Unavailable beam particles

The number of beam particles is counted using the F7 plastic detector upstream
of the target, but it is necessary to consider beam particles that do not reach the F11
plastic detector at the most downstream. This is because particle identification is
cut off at the downstream ZeroDegree, and events that could not be identified due
to not reaching F11 are counted and treated as "events that did not react" regardless
of whether gamma rays are emitted or not. The probability that a beam particle can
reach the F11 plastic detector at the most downstream is called acceptance, and the
gamma ray yield to be analyzed later must be corrected by acceptance. The main

reasons for not reaching F11 are considered to be :

(i) Bad initial beam conditions (position, angle, momentum)

(ii) Large angle scattering at the target

Of these, we took measures against (i) and made the acceptance dependent only
on the scattering angle by carefully selecting and using only "beams with good
properties" that can always reach F11 in the range where the scattering angle at the

target can be considered to be almost 0.

4.4.2 “Good Condition Beam selection

The quality of the beam was determined by restricting the position coordinates
x, y*D on the target and the momentum & at F5-F7. The investigation of the beam
quality performed to determine this and the specific method for determining the
restriction range are described in the next section 4.5. Within this restriction range,
the transmission rate at the F11 focal plane is 99.6 % or more when the scattering

angle at the target can be considered to be almost 0.

*Dy, y on the target are determined by extrapolation from two double PPACs located at the upstream
F7 focal plane.
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4.5 Kinematical profile of beam particle

4.5.1 Transport efficiencyr

The condition for acquiring gamma-ray data is that both BR and ZD have °Ti
or 3Ti. In other words, even if the target is excited by Coulomb, events that do not
reach the F11 focal plane and cannot be correctly Pled by ZD are counted out. Here,
we consider the transmission efficiency 7, which is the efficiency with which nuclei
emitted from the target reach the F11 focal plane. First, we define the transmission
efficiency 7 as the number of nuclei emitted from the target N,,; and the number of
nuclei detected (by correct particle identification) by the ZeroDegree spectrometer
Nget, as follows:

o Net
Nout

4.5)

Here, the ZD detection efficiency 7 can be roughly decomposed into the following
three components. These are the transport efficiency &qqns, Which is the efficiency
by which an emitted particle passes through the ZeroDegree spectrometer to the end
and reaches the F11 focal plane; the non-reaction rate &qoreac, Which is the rate at
which a particle remains the same nuclide without undergoing a nuclear reaction
from the time it passes the target to the F11 focal plane; and the particle identification
efficiency epy, which is the efficiency by which the ZD detector operates without
problems and correctly identifies particles. The ZD detection efficiency 7 is given

by these products,

T = &trans * €noreac * €PI (4.6)

Here, the non-reaction rate &poreac 18 99 % or more, so it can be considered to be
approximately 1. &qans and epy can be distinguished only by whether or not the F11

focal plane has been reached, and can be expressed as

_ Nrni _ Nget
Etrans = 77 » €PI =

4.7)

If the settings of the beamline detector and magnetic field do not change during
the experiment, the transport efficiency is basically determined only by the state
of motion immediately after extraction. This is called eyans. The state of motion
immediately after extraction is given as (x,y, 6, Oy, 0), which we will denote as

Etrans (X, Y, Ox, 60y,06). Even if the state of motion immediately after extraction is

62



good, if a nuclear reaction occurs during the ZD spectrometer and the nuclide
changes to another species, it may deviate from the correct orbit and not be able to
reach F11. Therefore, the probability that the same nuclide will remain without a
nuclear reaction from just after the target to F11 is called €qoreac. In addition, even
if F11 is reached, PI may not be performed correctly due to problems on the ZD
detector side. Therefore, if epy is the percentage of correct PI when there are no

problems with particle transport, then 7 is:
T= Strans(X, ) O, Hy’ 5) * Enoreac * €PI (48)

We assume that &,0reac and epy have little dependence on the particle’s motion state,

and first consider &gans (X, y, Oy, 0y, 0).

4.5.2 Momentum acceptance &,s(9)

If we assume that &qans(X, y, 0y, 0y, 0) is independent of each variable, then we

can write it as the product of the transport efficiencies for each variable:
Euans (6, 3. 0. 0. 0) = £(x) - £(y) - £(6,) - £(0,) - £(6) (4.9)
Also, based on the beamline design and magnetic field settings, it should be
&rans (0,0,0,0,0) =1 (4.10)

If equations (4.9) and (4.10) hold, the component of the transport efficiency that

depends on the relative momentum 0, €ans(9), can be considered as
Etrans (0) = Etrans (0,0, 0,0, 0) (4.11)

To evaluate this, apply a gate so thatx =0, y =0, 6, =0, 8, = 0, and evaluate the
rate of transmission at F11 for each momentum 4.

For momentum §, we use the measurement value 0ps_p7 before the target. The
reason for this is that if we use the measurement value after the target, only events
that reach the F9 focal plane after passing the target will be selected, and it will be
impossible to evaluate the number of events that have been lost up to that point.

Figure4.3 (a) and (b) show the momentum ¢ distribution gated so thatx =0, y =
0, 6, =0, 6, = 0, and the &yans(6) obtained from it. In (b), the transmission
rate (i.e., &qans(0)) was calculated by dividing by the number of counts including

the F11 Plastic trigger signal in (a). The error was calculated assuming a binomial
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distribution, and a Laplace correction™!) was performed so that the calculation would
be correct even when the number of counts was small.  &yans () was fitted with
the following function, which smoothly connects both ends of the window function
with an error function (integral of a Gaussian function) to make it easier to handle

in later analysis:

£(x) :C{% 1 +erf (i/;(’f)] -%[1—erf(f/%g’*)]} (4.12)
L R
erf(x) = % /Oxe—’z dt  (—o0 < x < ) (4.13)

This function will be called the "smoothing window function."

As a result of the fitting, the parameter C, which represents the height scale,
should essentially be exactly 1, but in reality it is around 0.99. This is due to the
influence of not only &yans(8) but also €poreac ON the F11 attainment rate, and since
this is a component independent of ¢, it is scaled so that Py is 1 for subsequent

analysis. Therefore, £yans(6) is expressed in the form
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Figure 4.3: (a): Distribution of ¢ when gating forx =0, y =0, 6, =0, 6, = 0. (b): Measured
values of &gans(8) are shown as dots with error bars, and fitted with a smoothing window function
(4.12). (c): Applying &qans(6) to (a) to estimate the number of lost events. The dotted line shows
(a) scaled to 1/100. (d): The number of lost events obtained by applying &yans(6) to the ungated &
distribution. (a) - (d) all use measurements using a 58Ti beam.

*DOne of the correction methods for estimating the error for a binomial distribution with a small
sample size n. Let the number of successes k be k + 1, the number of samples n be n + 2, and by
adding 1 to both the number of successes and the number of failures, we can avoid k/n becoming 1

or 0, and make it possible to estimate the error.
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and each parameter is determined by fitting.
Figures 4.3 (c) and (d) show the number of events lost due to the spread of

momentum 6, calculated by multiplying (a) by &yans(0) defined in equation (4.14).

4.5.3 Position acceptance &yans(x), Eqans(y)

Next, we consider the acceptance of the particle for its position (x,y) on the
target. The F8 focal plane is the achromatic focus, and the target is only about
7 mm behind it, so we should mention in advance that the particle distribution is
concentrated near (x,y) = (0,0). The components of the transport efficiency that

depend on x, y, the position acceptance Euans(X), Etrans(y), are defined as

gtrans (x) = Strans (-x’ Oa 07 0’ O) (4 15)
Etrans (V) = Etrans(0,,0,0,0) (4.16)

similar to the momentum acceptance &yans(0).

4.5.4 Determining the “Good Condition” of x, y, ¢

Among the factors that determine &gqps, X, y, 0 are determined only by the
particle’s motion state upstream, regardless of scattering at the target. Therefore,
it is possible to select only events that are in “Good Condition” x, y, ¢ and make
Etrans (X) * Etrans (V) * Etrans (6) ~ 100%.

To achieve this, in this paper we define “Good Condition” as the case where the

following condition is satisfied using the parameters obtained by fitting with the
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Figure 4.4: (a): Distribution of x when gated so thaty =0, 6, =0, 8, =06 = 0. (b): Measured
values of &qqns(x) are shown as points with error bars and fitted with a smoothing window function
(4.12). (c): Distribution of y as in (a). (d): &yans(y) was found by fitting as in (b).
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equation (4.12):

Upx + 20y < X < URy —20g: AND
MLy +20Ly <y < ugy—20gy, AND “4.17)

MLs +20Ls < 6 < ps — 20Rs

Even if the beam is in “Good Condition”, the probability that it cannot reach F11
due to x, y, ¢ is at most 0.4 %. Also, when only “Good Condition” beams are used,

Etans 15 almost entirely determined by the remaining 6,, 6, so it can be expressed
as Eqans (O, Qy),
4.5.5 Emission angle acceptance &ans(6x), Eans(6y)

We also investigated the emission angle acceptance &gans(6yx), Ewans(6y). The

results are shown in Figure 4.5.
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Figure 4.5: Emission angle acceptance &uans(0x,6y), Etwans(fx), Ewrans(0y). The flat area in the
center is 98.4 %
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4.6 “Good Condition Beam” and scattering angle acceptance (2)

4.6.1 Scattering angle acceptance &5 (sca) in “Good Condition Beam™

When the incident beam particle is scattered at a large angle by the target, the
particle is not transported to the end due to reasons such as hitting the wall of
the beam pipe at the downstream ZeroDegree, and particle identification becomes
impossible. To know how often this occurs, we obtained the detection efficiency
of ZeroDegree with respect to the size of the scattering angle (6yc,), that is, the
scattering angle acceptance. There is also a method of using the emission angle (6yt)
acceptance for angular acceptance, which depends only on the beamline design, but
here we obtained the scattering angle acceptance for convenience in later analysis.
In this paper, the acceptance is obtained by using the DSF7 trigger, which indicates
the presence of the F7 Plastic signal at the end of BigRIPS, and the F11 trigger,
which indicates the F11 Plastic signal at the end of ZeroDegree, and calculating the
proportion of events with DSF7 triggers that include the F11 trigger. Three DPPACs
at the F8 focal plane are used to measure the scattering angle, and the angular range
covered by the FSDPPAC3 behind the target is sufficiently large compared to the
angular acceptance of ZeroDegree, so the scattering angle can be derived without
any problems even for particle events that do not reach F11. The scattering angle
acceptance varies depending on the beam and target conditions, so it was calculated
for each setup. As an example, the measurement of a gold target with a °Ti beam

is shown in Figure 4.6.
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Figure 4.6: Scattering angular acceptance &yans(Oscat)-
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4.6.2 ‘“Good Condition Beam’ counts

Table 4.4: Counts of G.C. Beam

197Au(56Ti,56Ti) 197Au(58Ti,58Ti)
NG.Cc.eDSF7 6868019 4980718
13.32863 x 107 9.66448 x 10’
Na.c. (Calculated) (4101 cnt/sec) (918 cnt/sec)

4.7 Summary of beam counts

Here is a summary of the beam counts we have calculated so far.

Table 4.5: Summary of Beam Counts.

197Au(56Ti,56Ti) 197Au(58Ti,58Ti)
2.62097 x 108 8.60546 x 108
(8064 cnt/sec) (8172 cnt/sec)

1.7354339 x 102 1.3852885 x 108
(5339 cnt/sec) (1316 cnt/sec)

Noc. (= Nown) 13.32863 x 107 9.66448 x 107
GC. beam/ (4101 cnt/sec) (918 cnt/sec)

N7

Npp

In the following analysis, we use only “Good Condition” events and define this

number Ng c. as the beam count Npeam.
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4.8 Additional analysis of beam profile (1) — Scattering angle

4.8.1 Analysis of position and angle of particle trajectory

In order to later analyze the Doppler shift of gamma rays and obtain the scattering
cross section, it is necessary to know the particle trajectory near the target. To achieve
this, in this experiment, as shown in Figure 4.7, three double PPACs were installed
in front of and behind the target to obtain particle tracks. By analyzing this, the

incidence angle 6;,, emission angle 6., and scattering angle 0., were derived for

each event.
FSD  F8D F8D
PPAC1 PPAC2 Target PPAC3

Figure 4.7: Schematic diagram of particle trajectory analysis using PPAC near the target. First, the
incident angle 6, is obtained by connecting the (x, y) coordinates obtained from the two upstream
units, FSDPPACI1 and FSDPPAC2. By extrapolating this, the particle position on the target can be
determined. Then, by connecting this with the (x, y) coordinates of FSDPPAC3 on the downstream
side, the particle emission angle 6, and scattering angle 6., can be obtained.

1] L A = = A A AR AR AR
X ity ]

8000 |

6000 |

Counts
qQ
]
]
[l
o
[AV]
[AV]
(o]

4000 |

2000

2 3 -3 -2 -1 0 1 2 3
Scattered Angle (deg)

Figure 4.8: Distribution of scattering angles in the x, y directions obtained in measurements without
a target.
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4.8.2 Evaluation of angular resolution

The angular resolution was evaluated using the measurement results when a beam
was emitted without a target. The scattering angle 6., obtained from the analysis
of the three PPACs should essentially be O if there was no scattering by a target, and
if it has a finite value, it comes from the measurement resolution. Based on this,
the spread of the scattering angle distribution without a target was evaluated as the
angular resolution. The spread of the scattering angle distribution in each of the x, y

directions is shown in Figure4.8.

4.8.3 (Additional information) Conversion of scattering angle to CM system

When calculating the differential scattering cross section, it is convenient for
subsequent analysis if the scattering angle 6., is the angle in the center of mass
system, which does not depend on the experimental environment. An example of
the correlation between the scattering angle in the laboratory system and the angle

in the center of mass system is shown in Figure 4.9.

T T T | | | Tttt Tr Tt TIr Tt T Tt T T T
180 -_ 197Au(5BTi’56Ti*)197Au
E,=170 MeV/u

E,=1047 keV
E 120 1 °Be(®®Ti,®®Ti*)°Be 7]
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g E=1047 keV
o
Q
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ol [ [, [T ) P R RPN RPN R R BN
0 60 120 180 0 2 4 6 8 10

6 scat,Lab (deg)

Figure 4.9: The relationship between the scattering angle 6sc,t 1ab in the laboratory system and the
scattering angle cqr,cm in the center of mass system. The left figure shows the case where a S8y
beam is hit on a gold target, and the right figure shows the case where it is hit on a Be target.
Differences due to the mass of the target can be seen.
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4.9 Additional analysis of beam profile (2) — Velocity S

The beam particle velocity S is obtained from TOF measurements. The particle
velocity distributions Bs7 and Bgg for F5-F7 (upstream of the target) and F8-F9
(downstream of the target) are shown in the upper part of Figure 4.10. These will

be used in the analysis of the Doppler shift correction of gamma rays later.

4.9.1 Evaluation of error of g

The measurement error (resolution) of 8 was calculated from the difference
between Bs;7 obtained from the TOF between F5-F7 and Bgg between F8-F9. In
measurements without a target, 857 and Sgg9 should be the same value, except for
the effect of slight energy loss due to passing through detector materials such as

plastic scintillators. These differences arise from measurement errors in 8 and
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Figure 4.10: Top: fBs7 and Bgo for a 3Ti beam and a gold target. Passing through the target and
beamline detector slows down the beam and broadens the distribution. Left: Correlation between Ss57
and g9 in a measurement without a target. Right: Distribution of 857 — Bg9 in the same measurement
without a target.
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energy fluctuations due to passage through the detector material. In other words,
the resolution of $ is smaller than the spread of the distribution of the differences.
As shown in the bottom right of Figure 4.10, the width o of the distribution of the
difference between Ss7 and Bg9 was 0.0006, which means that the resolution of S is

smaller than this.

4.9.2 Change in  near the target

What is important in the analysis is the velocity Bpefore and Bafier just before and
just after the target, and the velocity Beeneer at the center of the target, which is used
in the later analysis of Doppler correction. These are obtained by calculating the
energy loss at the beamline detector and target from Ss57 and Sg9 obtained from
measurements. Figure 4.11 shows the definition positions for 857 and Bgg, as well
as the detectors and targets located nearby. Bpefore, Safter aNd Beenter Were calculated
using the average values of Bs7 and Bso, 857 and Bgo, using the energy loss calculation
tool included in LISE** 8], These are summarized in Table 4.6.
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Figure 4.11: Since many detectors are inserted between the target and the 857 and Sg9 obtained in
the measurements, the velocity just before and just after the target (Bpefore, Bafter) must be found by
calculating the energy loss from S57 and Sgg.

Table 4.6: Measured values of Bs7 and Bgo, and calculated values of Bpefores Beenter> and Baier-
Setup ,857 Bbefore ﬁcenter Bafter B89

Au(COTi,® Ti) 0.5695 0.5546 0.5294 0.5024 0.5023
Au(®Ti,® Ti) 0.5701 0.5560 0.5337 0.5064 0.5060
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4.10 Additional analysis of beam profile (3) — Target thickness

Although the target thickness is not a “Beam Profile”, in this section we calculate
the target thickness from the change in 8 obtained in the previous section.

The target thickness can be obtained from the change in S up to this point. The
gold target used in this study has a nominal thickness of 1 mm, but by measuring the
velocity change of the beam particles, we were able to obtain a more accurate (finer
digits) thickness. In addition, tools such as calipers and micrometers can be used to
measure the thickness, but since gold is a soft metal and there is a risk of it being
deformed during measurement, we decided that this method was the best. As shown
in Figure 4.11, there are many detectors between S57 and g9 in addition to the target,
soitis necessary to verify the accuracy of the estimate of the energy loss due to them.
To do this, we first compared the Sg9 obtained by targetless measurement with the
B39 obtained by calculation, and confirmed the material thickness of the detector.
Since the detector with the greatest energy loss is the ion chamber (Music), the
density of the ion chamber was fine-tuned to make the calculated and measured Sgg
match. Then, for measurements with a target, the difference between the calculated
and measured Sg9 was calculated while changing the target thickness, to obtain the

gold target thickness:
digr(Imm Au) =959(11) (um) (4.18)

Here, the error in the target thickness is affected by the uncertainty resulting from
the error in the beam particle velocity S, so an error was added to take this into

account.
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4.11 Additional analysis of beam profile (4) — PI at ZeroDegree

To reduce the background of the gamma-ray spectrum to be analyzed later,
a particle discrimination cut is also performed in the ZeroDegree spectrometer
downstream of the target. The significance of this is that although previous analyses
have shown that the nuclear reactions in the target are negligible compared to the
total beam dose, they become a non-negligible background source in terms of their

proportion in gamma-ray emission events.

4.11.1 Why should we not include PI at ZeroDegree in ‘“Good Condition” ?

If the scattering angle distribution of Coulomb excitation events is significantly
larger than that of non-reaction events, when a cutoff condition is imposed using
a detector downstream of the target, Coulomb excitation events may be selectively
counted down due to the scattering angle dependence of the detection efficiency,
i.e., the scattering angle acceptance &(6yc,). This effect influences the final derived
cross-sectional area. Therefore, the cutoff conditions for background reduction

should only be used for the detector upstream of the target.

4.11.2 Cutting conditions at ZeroDegree

The cutoff condition for particle identification at ZeroDegree was decided to
prioritize capturing as many events as possible with certainty, and to acquire only
A/Q within the range of £30. Since particle identification is performed upstream,
any particles other than the target nuclei that arrive downstream are produced by
nuclear reactions in the target, and the possibility of contamination with nuclides
with similar A/Q values and the same Z is extremely low. Therefore, only A/Q was
cut. However, this cut may result in genuine events being overlooked (mostly due to

PPAC efficiency), and we will make a correction for this in the next section.

4.11.3 Particle identification efficiency after passing the target cp;

The particle identification efficiency €py is the probability that a particle is cor-
rectly identified by the ZeroDegree spectrometer under the condition that there is a
plastic signal at the F11 focal plane (= a particle has arrived). In other words, it is
the ratio of the number of events in which A/Q and Z are within a certain range in

the PI diagram at ZeroDegree to the number of counts of the F11 plastic signal. The
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analysis results of epy for 6Tj / 38Ti are as follows:

ep1(°°Ti)

ep1(°5Ti)

0.9030(79) (4.19)
0.9055(55) (4.20)
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Chapter 5

Data Analysis (II) - Gamma-ray Detector

5.1 Analysis of the gamma-ray detector

In this chapter, we begin the analysis of the gamma-ray detector. First, in section
5.2, we integrate the data from the beamline detector and remove the background
from the time difference with the F8 plastic scintillator. Next, in section 5.3, we
perform Doppler shift correction from the particle velocity and trajectory obtained
from the beamline detector and the gamma-ray detection position, and create a
gamma-ray spectrum. Then, in section 5.4, we calculate the gamma-ray yield and

cross section by comparing with simulations.

5.2 Time cut of gamma ray signal

As mentioned in Section 4.7, the data acquisition condition in this experiment is
when the signal from the Ge detector and the signals from the F7 and F11 plastic
detectors are measured simultaneously. However, data acquisition can occur by
coincidentally receiving environmental radiation in synchronization with the beam
particles. If there are many such events, they become a background source that
buries and makes invisible the real gamma rays from the beam particles, so it is
necessary to reduce them.

The left side of the figure 5.1 is a spectrum of gamma rays obtained with the Ge
detector without any correction or condition cut other than energy calibration. The
multiple peaks seen here are background from environmental radiation sources. If
they are real gamma rays from beam particles, the time difference of the Ge detector
based on the signal from the F8 plastic detector will always be constant, so by
selecting only the area around the peak of the time distribution shown in the figure

on the right, gamma rays from environmental radiation sources can be reduced. In
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this study, the time difference distribution was examined for each crystal in the Ge
detector, and the gamma-ray background was reduced by analyzing only events that
fell within the range of the peak +30-. This process cuts off some of the real gamma-
ray events. In addition, since the peak does not truly become a Gaussian function,
the probability that a real gamma-ray event falls inside the set time window, the time
cut efficiency &me, was estimated.

As a method, the linear component when fitting with a Gaussian function +
straight line was assumed to be the background, and the component above it was
assumed to be the real peak component. The integral value in a sufficiently wide
range was set to 100 %, and the percentage of the integral value within the time
window was determined for each crystal. The time cut efficiency & of the whole

crystal used in the analysis obtained in this way is

Etime = 0.9651(72) (5.1)
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Figure 5.1: Left: Gamma-ray spectrum before time cutting. The multiple peaks seen here are emitted
from stationary radiation sources in the laboratory system, so they are all background sources. These
sources are thought to be experimental equipment that has been activated by beam irradiation, radon
contained in the air, etc. Incidentally, real gamma rays originating from beam particles change energy
due to Doppler shift, so they do not produce peaks unless Doppler correction, which will be described
later, is performed. Right: Trigger timing of the Ge detector based on the signal from the F8 plastic
detector. The peak around 1000 ns is gamma rays originating from beam particles, and the other
constant components are environmental background.
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5.3 Doppler correction of gamma rays

5.3.1 Policy

As shown in section 2.7.1, the relationship between the energy Ey of gamma rays

emitted from a nucleus in flight and the energy Ej,, actually detected by a detector

Eap  V1-p2

Ey 1-pBcosb,

installed in a laboratory is

(2.16)

As can be seen from this equation, in order to know E accurately, it is necessary to
know not only Ej,p, but also 8 and 6, accurately.

First, for 8, we use the velocity Ss7 between F5-F7 and the velocity g9 between
F8-F9, both of which were calculated from the analysis of TOF and Bp. 0, is the
angle of the gamma ray emission relative to the direction of the particle’s travel.
This can be derived by knowing the position where the gamma ray was detected by
the Ge detector and the direction of the particle’s travel. We will first explain the

derivation of S.

5.3.2 Velocity g

As mentioned in section 4.9, the velocity at the center of the target, Bcenter, can
be derived from Bs7 and Bg9. When performing rigorous Doppler correction, it is
even better to know the velocity at the time when the gamma rays are truly emitted,
BEmit- As shown in Figure 5.2, there is a change in velocity within the target. The
difference between the velocity immediately after entering the target (~ Bpefore) and
the velocity immediately before leaving the target (~ Bafier) 1S approximately 0.9 %.
The resulting energy difference after the Doppler shift is larger than the intrinsic

energy resolution of the Ge detector. However, since there is no way to know SBgmit,

»
’

Target

ﬁcenler D E

Figure 5.2: When gamma rays are emitted from a nucleus in flight, they slow down due to energy
loss in the target, and since 8 changes depending on the position within the target, the amount of
Doppler shift also depends on the position within the target.
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we assume that the nuclear reaction (Coulomb excitation reaction) occurs at the
target center in all events, and calculate the velocity at the target center Beenger fOr
each event. In section 4.9, we calculated the average value of Bcenter, but in the
analysis in this study, we derive Bcener for each event. However, since it is difficult
to calculate the energy loss for all events, we use the fact that the ratio of Bgg to
Beenter 1S almost constant in the range where the fluctuation of Sgg is not too large.

*D' Beenter for each event can be expressed as follows:

N 589;@

Bso

Beenter = Beenter X | 1 (5.2)

By using this, we only need to calculate the energy loss of Bcener Once at the

beginning.

5.3.3 Gamma ray emission angle 6,

According to the equation 2.16, the Doppler shift of gamma rays depends on the
angle 6, of the gamma rays. To obtain 6,, the angle between the particle emission

direction Ppy;. out and the gamma ray emission direction Py oy, that is:

P ar.,out * p out
cos 6, = Ak A (5.3)
Ppar.,outh,out

Of these, Ppr.ou is calculated by trajectory analysis using PPAC in the same way

as in Section 4.4.2 to derive the particle scattering angle. P, o is the vector

Figure 5.3: According to the equation 2.16, the Doppler shift of a gamma ray depends on the angle
of the gamma ray.

*DThe reason for using Bso instead of Bs7 is that it is affected by the velocity change associated with
momentum transfer due to nuclear reactions. For example, S changes significantly before and after
the reaction, especially in reactions where nucleons enter and leave, such as one-proton knockout
reactions. Since gamma ray emission always occurs after the reaction, it is appropriate to calculate
it from the downstream rate.
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Figure 5.4: Gamma-ray energies of ®Ti as a function of the emission angle 0,, shown before (left)
and after (right) Doppler-shift correction. The 1047 keV transition from 3Ti, which appears tilted
prior to the correction, becomes horizontal after the correction is applied. The background structure
observed near 1300 keV before the correction is attributed to the 1294 keV transition from '°In,
originating from the !'>In(n, y) reaction.

connecting the target center and the position where the gamma ray was detected by
the Ge detector. The detection position of the gamma ray is determined by different
methods for tracking detectors and non-tracking detectors. First, we will explain
the parts that are common to both tracking and non-tracking detectors. To know
the exact detection position, it is necessary to know the exact spatial arrangement
of the Ge crystals, which are the sensitive area of the Ge detector. To achieve this,
in this experiment, the detector arrangement was measured by photogrammetry.
The positions of the Ge crystals in the detector were compared with the drawings
of the detector, and by combining these, the arrangement of the Ge crystals in the
laboratory coordinate system was obtained. In the case of a tracking detector, the
position of the interaction point in the crystal and the energy imparted there can
be determined. Generally, gamma rays often undergo several Compton scatterings
before being photoelectrically absorbed, and there are often multiple interaction
points within a crystal, but the first interaction point is necessary to determine the
gamma ray emission direction. Empirically, it is known that the point where the
highest energy is deposited is often the first point, so this was adopted in this study.
On the other hand, with non-tracking detectors, the position of the interaction point
cannot be directly determined, but the Minball and Clover detectors used in this
experiment have divided outer electrodes, so it is possible to restrict the interaction
position within the crystal depending on which electrode the signal is obtained from.

In this analysis, the center of the area covered by the electrode that output the signal
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is considered to be the interaction point.

5.3.4 Doppler corrected spectrum
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Figure 5.5: Spectra obtained by time cutting and Doppler correction. The left is the measurement
result for Au(*®Ti,%® Ti), The right is the measurement result for Au(*®Ti,>® Ti).

Figure 5.5 shows the gamma-ray spectrum obtained by applying the time cut
described in Section 5.2 and Doppler correction. Sharp peaks can be seen near 1000
keV for both *°Ti and 3Ti. We will consider these to be gamma rays due to 2* — 0*
transitions in the subsequent analysis. The known levels of “°Ti and *3Ti and the

level scheme for gamma rays are shown in Figure 5.7.

5.3.5 Scattering angle acceptance correction

Each event is weighted by the inverse of the scattering angle acceptance obtained
in section 4.6.1, and the spectrum in Figure 5.5 is redrawn as shown in Figure 5.6.

Subsequent yield evaluations will be based on this spectrum.
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Figure 5.6: Spectra with scattering angle acceptance correction. Both have a thin peak around 1700
keV, but this is produced by a single event scattered at a large angle and multiplied by a very large
scattering angle acceptance correction coefficient, and is not a peak with any physical meaning.
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Figure 5.7: °Ti/>¥Ti level scheme.
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5.4 Evaluation of yield (1)

5.4.1 Method

When counting the yield of gamma rays emitted from stationary nuclei, it is
only necessary to correct the number of peaks in the spectrum with the detection
efficiency, but in in-beam nuclear spectroscopy experiments, there are more things

to consider. Specifically,

* Correction of detection efficiency taking into account the energy before Doppler
correction
* Dependence of reaction position (flight velocity) within the target

* Effect of gamma ray decay lifetime

and soon. Of course, it is possible to calculate these by hand, butitis complicated and
requires a lot of effort. Therefore, this time, we evaluated the yield by simulation.
In the simulation, we reproduced the environment during the experiment, such
as the structure of the HiCARI array and the energy distribution of the beam,
and reproduced the gamma ray spectrum. The unknown gamma ray energies and
lifetimes (within known error ranges) were randomly assigned to best reproduce
the experimental results. Finally, the yield was determined from the scale between
the gamma ray dose generated in the simulation and the experimental value. It is
also possible that the number of 2] — 05 ¢ transition gamma rays emitted and the
number of 03 ; — 27 transitions caused by Coulomb excitation may differ. This is
when the gamma ray is excited to an energy level higher than the 27 level, and then
a cascade decay occurs to emit 27 — 0;.5. gamma rays. This type of event is called
a feeding event. The existence of feeding affects the calculation of the cross section,

so it is necessary to estimate it correctly.
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5.5 Evaluation of yield (2) — Simulation

5.5.1 Reproduction of beam and target

In section 2.11, the HICARI array was reproduced in a simulation and the detector
performance was adjusted. Here, the beam is irradiated to the target in a simulation
to generate gamma rays. The velocity distribution of the beam particles generated in
the simulation {Bpefore.sim} ™" is calculated by using the velocity distribution {fs7}
of the beam between F5 and F7 to reproduce the actual beam velocity obtained in

section 4.9.2,

{Bbefore,sim} = {,857} - (:8_57 - ,Bbefore) (5.4)

is given. In addition, the velocity distribution of the particle after passing through
the target obtained by simulation, {Bafter sim }, 1S Obtained by adjusting the energy loss

at the target so that {80 sim} = {Bafter.sim} — (Bateer — Bg9), Which is approximately
the same as {fs9} obtained from the measurement. These are shown in Figure 5.8.

5.5.2 Uncertainty of energy and lifetime

The energy of the 2* level of “8Ti is currently listed in the NNDC 21! as 1047(4)

keV, with an error of +4 keV. If the energy fluctuates within this error range, the

Counts

||J| NN N A AV I R
055 056 057 058 059 049 050 051 052 0.53

Relative Velocity B

Figure 5.8: A comparison of the g9 i distribution (bottom right) reproduced by a simulation created
by inputting the distribution of measured values of Ss7 (left) and the Bg9 obtained by measurement
(top right, denoted as Bgo exp in the figure).

*DThe subscript “before” means “before” target injection. It conforms to the notation in section
4.9.2.
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peak position of the gamma-ray spectrum will fluctuate. In addition, although
there are no observed values at present, when the 2% level has a finite lifetime (~
few ps), gamma-ray emission will occur at a position slightly behind the location
where the Coulomb excitation reaction occurred. If the probability of the Coulomb
excitation reaction occurring within the target does not depend on the position, the
most expected position for gamma-ray emission will transition slightly behind the
center of the target. In other words, as shown in Figure 5.2, the average particle
velocity S when gamma-ray emission occurs is slower than the velocity Beeneer at the
target center, and the gamma-ray energy after the Doppler shift is lower. For this
reason, the peak shape of the gamma-ray spectrum can change due to fluctuations in
energy and lifetime. Here, since it is necessary to compare the gamma-ray spectrum
actually obtained with the simulation to obtain the gamma-ray yield, the energy and
lifetime in the simulation were adjusted to best reproduce the spectrum obtained by
measurement. Incidentally, there is a method called the Doppler shift method [3!]
that determines the lifetime from the difference in the Doppler-corrected peak shape,
but since it is expected that the error will be very large compared to the method of
calculation from the cross section described later, we decided not to include it in

this paper.

5.5.3 Angular distribution of gamma-ray emission

Just as the emission angles of the two gamma rays of 1173 keV and 1332 keV
emitted from the ®*°Co gamma-ray source are correlated, the direction of the gamma
rays emitted when the beam particles are de-excited has an angular distribution with
respect to the beam axis direction. The angular distribution for this experiment was

obtained in the appendix D. The result is shown in figure 5.9.

5.5.4 Creating a gamma-ray spectrum

After making these settings, we simulated gamma-ray detection. We created
many gamma-ray emission energies and lifetimes that were gradually changed near
the values in NNDC 211, Figure 5.10 shows the final result that best reproduced the
experimental values. In addition, from the level scheme of 3°Ti and *3Ti shown in
Figure 5.7, we also created a simulation for a transition (1161 /911 keV) that may

: + +
emit energy close to the gamma ray of 27 — Oy .
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Figure 5.9: Angular distribution W(6) calculated under the experimental setup conditions. 6 is the
angle with respect to the beam axis. The emission amount changes significantly between 0° and 90°
for both Au(°Ti,>° Ti) and Au(®®Ti,”® Ti).
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Figure 5.10: A simulated gamma-ray spectrum created to reproduce experimental data.
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5.6 Evaluation of yield (3) — Comparison of experimental data

and simulation

5.6.1 Fitting function

The gamma-ray spectrum created by simulation is used as a function to fit the

gamma-ray spectrum obtained from the experiment. The fitting function is:

fﬁt(x) =po- fmain(x, Tmain» Emain) +p1 fsub(x, Esub) + eXp(pz + P3X) (5.5)

Here, fmain (X, Tmain> Fmain) and faup (X, Esup) are functions that represent the gamma-
ray spectrum of the simulation created in section 5.5, where the subscript main
represents the peak due to the 2* — 07 transition, which is the focus of this study,
and sub represents the peak due to the (4*) — 2% transition, which may appear near
main. We have created a large number of models where the lifetime v and gamma

ray energy E are slightly changed near the values in NNDC 1211,

5.6.2 Fitting results and obtained parameters

The experimental data was fitted by simulation.
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-2t 2% E— Fit. Function |
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Bl ]
& 100F— | } 1t ]
8 11
2 *M{ ]l [ ] [ |
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i P “1 SR H##J,Jf HHWHW
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1000 1100 1200 1300 900 1000 1100 1200 1300
Energy (keV)

oLl
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Figure 5.11: The fitting result with the smallest chi-square for the ®Ti/>®Ti gamma-ray spectrum.

5.6.3 Determining the central value and error of parameters

The fitting parameters that best reproduce the gamma-ray spectrum vary depend-
ing on E, 7. Figure 5.12 shows the change in parameter py when the lifetime 7 is

changed. In this figure, E is selected for the parameter that produces the smallest y?

87



at each 7. Next, Figure 5.13 shows the lifetimes obtained from theoretical predic-
tions and past experimental values, as well as the range within +1 of the minimum
x* obtained by fitting. From this, the maximum possible range of lifetimes was set,
and the central value and error of py were determined by convolving pg included in

that range with its error.
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Figure 5.12: Change in fitting parameter p( obtained when changing the half-life 77/, of gamma-ray
emission in the simulation.

1 T
OA3DA-m - Coulex Exp
OGXPF1A --- (p,p') Exp

e szm+1
sepy |- S _
sery | RO SN o _
. ol ol ol
0 5 10 15

Half Life (ps)
Figure 5.13: For A3DA-m and GXPF1A, the B(E2) values were converted to half-lives using the

equation (1.16). The values obtained from Coulomb excitation measurements of S0Tj are from
NNDC 211, The values obtained from (p, p’) measurements of >®Ti were calculated in section 1.5.2.
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The parameter thus obtained is :

po(CTi) = 0.00669(47)
p1(°°Ti) 0.0045(35)
po(3Ti) 0.00440(34)
p1(3Ti) = 0.0099(33)

5.6.4 Tentative yield obtained from fitting results

(5.6)
(5.7)
(5.8)
(5.9

To estimate the number of gamma rays actually generated, N, exp, using the

number of gamma rays generated in the simulation, N, s, and the fitting parameter

ps, which represents the scale, we can use the following:

Ny,exp =ps X Ny,sim

(5.10)

Here, Ny im 18 107 for the main peak (pg) and 10 for the sub-peak (p;). The yield

obtained from this is a "tentative" value that has not been subjected to the various

corrections that will be made later, so the subscript "tmp" is added. Taking these

factors into account, the gamma-ray yield estimated from the fitting parameters is :

Ny expmp(C°Ti, Main) = 6.69(47) x 10*
Ny expmp(C°Ti, Sub ) = 0.45(35) x 10*
Ny expmp(CPTi, Main) = 4.40(34) x 10*
Ny expamp C3Ti, Sub ) = 0.99(33) x 10*
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5.7 Evaluation of yield (4) — Yield correction

From this point on, it is self-evident that this is the gamma-ray yield of experi-
mental data, so the subscript exp will be omitted, and Ny exp tmp Will be written as

ny’tmp.

5.7.1 Efficiency correction of Ge detector

In section 2.11.2, efficiency correction was performed for each Ge crystal, but
the error in the detection efficiency was reduced by further applying a correction
coefficient to the total value of the individual corrections and the actual overall
detection efficiency. The yield obtained from the fitting results was corrected using
the correction coeflicients.

The relative value £y, of the actual detection efficiency to the detection efficiency

in the simulation of the tracking detector, obtained in Section 2.11.3, was
Esim = 0.95(9) (2.31)

5.7.2 Time window cut correction

The data acquisition efficiency &ime after the time window cut, obtained in section
5.2, was
Etime = 0.9651(72) (5.1

5.7.3 Particle identification efficiency correction

As obtained in section 4.11.3, the particle identification efficiency correction py
at ZeroDegree is

ep1(°°Ti) = 0.9030(79) (4.19)
epr(°®Ti) = 0.9055(55) (4.20)

5.7.4 Corrected gamma-ray yield

To obtain the corrected gamma-ray yield N, using the &g, and &gme obtained so

far,

1 I 1

Esim €time €PI

y,tmp (5.15)
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The gamma-ray yield N, obtained in this way is

N, (°°Ti, Main)
N, (°°Ti, Sub )
N, (°*Ti, Main)
N, (°*Ti, Sub )
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8.08(96) x 10*
0.54(43) x 10*
5.30(65) x 10*
1.19(41) x 10*

(5.16)
(5.17)
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5.8 Cross section derivation (1) — Gamma ray emission cross

section

5.8.1 General cross section calculation

Generally, any reaction cross section ore,c can be written as follows, using the
number of particles Nypeam incident as a beam and the number of particles that react
Nreac:

Nreac My
Oreac = . (5.20)
TN beam ptardtarN A

In the equation, My, prar, and dy, are the molar mass, density, and thickness of the
target material, respectively. Therefore, the second fractional part on the right-hand

side is determined only by the target used, so it is set as a constant

Mtar
Cop= —4 (5.21)
o PrardiarNA

This value has the dimension of area, and its physical meaning is that there is one
target particle per area Cy,r. The thickness of the 1°7 Au target used in the experiment

was calculated in section 4.10,
dir = 959(11) [um] (4.18)

and the constants determined by the target material and Avogadro’s constant,

Mg = 196.97 [g/mol] (5.22)

par = 19.32 [g/cm?] (5.23)

Ny = 6.02214076 x 103 (5.24)
then,

Cur = 176.5(21) [b] (5.25)

can be expressed as follows. Using this, in the experiments using this target in this

study, the reaction cross section Oyeac 18

N reac

— Ctr (5.26)
Nbeam “

Oreac =

92



5.8.2 Number of incident beam particles Nycam

As obtained in Table 4.5, the number of beam particles used was

Npeam (C°Ti) = 13.329 x 107 (5.27)
Npeam (C8Ti) = 9.664 x 107 (5.28)

5.8.3 Gamma-ray emission cross section

In the formula (5.26) for the reaction cross section Oye,c, by replacing e, With
0y and Nie,c With N, by substituting (5.16) - (5.19), (5.27), (5.28), the gamma-ray

emission cross section is calculated as

oy (*°Ti,Main) = 107(13) [mb] (5.29)
oy(°Ti,Sub ) =  7(6) [mb] (5.30)
oy(*®Ti,Main) = 97(12) [mb] (5.31)
oy(®Ti,Sub ) = 22(7) [mb] (5.32)
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5.9 Cross section derivation (2) — Feeding correction

5.9.1 Effect of feeding on Coulomb excitation cross section measurements

In this thesis, we performed an experiment aimed at obtaining the Coulomb
excitation cross section to 0y ; — 27. However, what was actually measured was
the de-excitation gamma-ray emission cross section of 27 — Og ¢ . It should be noted
here that in the presence of “feeding” *!, which is the contribution from cascade
decay from higher excited levels, og+_2+ < 02+ 0+

As shown in the example in Figure 5.14, if there are three levels, 0%, 2*, and
4*, the gamma decay yield Yp+_,0+ of 2* — 0" is expressed as the sum of the
Coulomb excitation yields Yy+_,o+ and Yy+_,4+ because it contains a cascade decay
component. Therefore, in this case, to obtain Yy+_,,+ from the observable, we
calculate Y»+_,o+ — Y4+_,»+. The ratio of the level of interest that is created by feeding
rather than direct excitation from the ground state, such as 0 — 4% — 2% is called

the feeding ratio.

5.9.2 Feeding ratio of nuclei near *°Ti / >3Ti

Let us estimate the feeding ratio of nuclei in the vicinity of °Ti / >Ti whose
excitation levels are well known. Here, we performed calculations for Cr and
62Ni. Assume that only E2 transitions due to Coulomb excitation up to 3.5 MeV are
considered, and multiple excitation does not occur. Details are given in the appendix
E.1. As aresult of the calculation, the feeding ratios of 54Cr and %2Ni were found to
be 2.4 % and 3.0 %.

- 4+

Yyo= Yoy
2+

Yo o= Yoo+ Yoy
7O+

Figure 5.14: The Coulomb excitation yields are Yy+_,2+, Yp+,4+, and the gamma ray yields are Y4+_,>+,
Y2+ _0+. Yo+ 0+ includes a feeding component from the 4+ level.

*DIn most literature on gamma ray metrology, the creation of the excited state of interest by a
transition from a higher state is referred to as "feed(ing)".
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5.9.3 Feeding ratio of >°Ti />8Ti

In >°Ti /38Ti, the spin and parity of many known levels have not been determined,
and there are only a few examples of measurements of transition strength between
levels, including the one performed in this study, so there is a lack of information
necessary to calculate the feeding rate. Here, we consider the Sub peak as a transition

that may feed into the 27 level.

5.9.4 The case when the sub peak fully feeds the main peak

As shown in the left figure, this is the case when the transition of the sub peak
feeds into the 2;’ level. In this case, to obtain the Coulomb excitation cross section
of 055 — 27, it is necessary to subtract the contribution due to feeding from
the gamma-ray emission cross section of 27 — 0y . Therefore, if the Coulomb

excitation cross section of Og.s. — 2T 1S Ofull-feed, it can be expressed as follows:
Ofull-feed = O'y(Main) - Gy(SUb) (5.33)

In this study, the sub peak coincides with the energy of the known gamma-ray
transition (47) — 27, so it is most natural to assume this is the case.

However, when calculating the feeding ratio assuming this case, >°Ti / 38Ti are
7.1 % and 22.5 %, respectively, and 3Ti in particular is too different from the
neighboring nuclei. This suggests the possibility of a sudden change in the excited
level structure, but if this is the case, it may be an unknown transition close to the

energy of (47) — 27, and it does not necessarily mean that it feeds to the 27 level.

5.9.5 The case when the sub peak does not feed the main peak

One possibility when the gamma ray of the sub-peak is an unknown transition is

that it is independent of the transition 2 — Oy ; and has no cascade relationship

—T Sub
Sub —T t—
Sub —*
Main Main —r— Main
v e v
Full Feed No Feed Partially Feed

Figure 5.15: Level schemes for Full feed, No feed and Partially feed cases. The schemes for No feed
and Partially feed are examples only and may vary in practice.
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with it. This is illustrated in the center of Figure 5.15.
In this case, the Coulomb excitation cross section of 0;.5. — 2;’, Ono-feed, 18

expressed as follows:
Uno_feed = O-fy(Main) (5.34)

5.9.6 The case when the sub peak partially feeds the main peak

Another possibility is that some of the gamma-ray transitions of the sub-peak
may feed into the 2} level. The level scheme in which this may occur is shown on the
right of Figure 5.15. Another possibility is that the sub-peak overlaps with multiple
peaks of close energy.

In this case, the Coulomb excitation cross section partial-feed Of Og_s. — 21“ can be

expressed as follows, using the Branching ratio B(0 £ B < 1):
Ovpartial-feed = Oy (Main) — Baoy (Sub) (5.35)

Here, there is no way to know the value of B. When B = 0 and B = 1, they
correspond to Oyo-feed aNd Oyl1-feed, respectively. Therefore, if we want to take all

possibilities into account, we set the error of B large and do the following:

Omax-err = 0y (Main) — Brax-err0y (Sub)

Bmax-err = 0.5+ 0.5 (5.36)

5.10 Cross section derivation (3) — Coulomb excitation cross sec-
tion
In the previous section, we introduced three methods for calculating the Coulomb

excitation cross section for different feeding rates. The results for each case are shown
in Table 5.1.

Table 5.1: Coulomb excitation cross sections derived each feeding ratios.

56Ti 58Ti
Ofull-feed [mb]  100(14)  75(14)
Ono-feed [mb] 107(13)  97(12)
Omax-err [Mb]  104(14) 86(17)

From here on, we will basically use omax-err» Which includes all feeding cases,

and set Ocoulex = Tmax-err-
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Chapter 6

Evaluating the analysis results

6.1 Derivation of B(E2) from o gyex (1)

6.1.1 Policy

In principle, B(E2) can be obtained from the Coulomb excitation cross section
using the relationship shown in formula (B.4), but it is not easy to calculate by hand,
especially the part to obtain the virtual photon number N,. Therefore, we use the

distorted wave Born approximation (DWBA) calculation code Fresco 7% 601,

6.1.2 DWBA

The distorted wave Born approximation (DWBA) is a method used in scattering
theory that is suitable for describing complex scattering systems. It is an improve-
ment over the simple Born approximation (plane wave Born approximation) to
handle cases where the target or scatterer has a strong potential. Details are given in
the appendix F. In the measurements using the gold target in this study, the velocity
of the incident nuclei is fast, so atomic nuclei may collide with each other. Thus,
although the contribution from Coulomb excitation is dominant, excitation from
inelastic scattering may also occur. Taking this into account, it should be noted
that the measured cross section is the sum of both Coulomb excitation and inelastic

scattering.
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6.2 DWBA calculation code ‘“Fresco”

6.2.1 Overview

By inputting the optical potential and nuclear reaction characteristics, the ex-
pected total cross section and differential scattering cross section for each scattering
angle can be calculated. Here, we aim to obtain the value of B(E2) by appropri-
ately providing characteristics related to B(E2) and adjusting them to reproduce the

Coulomb excitation cross section from the experimental results.

6.2.2 Input parameter values

For the Fresco calculations, we used the nuclear deformation length 6n and
the reduced matrix element M (E2) as variables to find a combination that would
reproduce the Coulomb excitation cross section from the experimental results. In ad-
dition, we appropriately input various necessary values, such as the optical potential

required for the calculation and the beam energy during the experiment.

6.2.3 Results

The cross sections of 2* excitation in Au(°°Ti,>® Ti) and Au(°3Ti,>® Ti) obtained
by setting 65 and M (E2) in the appropriate range are shown in figure 6.1. The
Coulomb excitation cross sections (see Table 5.1) obtained experimentally are su-

perimposed in the figure.

6y (fm)

..-.....r"::|....|":..’.|....:"|./...|;
15 20 25 30 35 15 20 25 30 35
M(E2) (e fm?)

Figure 6.1: The cross section calculated by Fresco is overlaid on the experimental cross section.
The experimental results are shown with a solid line representing the center value and a dashed line
representing the error range.
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6.3 Derivation of B(E2) from ooyjex (2)

6.3.1 Relationship between M (E2), B(E2) and 6y
In appendix A, )
B(E2;0" — 2%) = 83 (%ZeR(z)) (A.8)
0 =PpaRo (A.9)

In addition, the relationship between the reduced matrix elements (j ¢ || M EE) [lji) =
M (E2) and B(E2) for the 0" — 2* transition is: *!

B(E2;0" — 2%) = [M(E2)|? (6.1)

From these, the following relationship holds between ¢ and M (E2):

4r

Here, it should be noted that the deformation length ¢ is a quantity related by the
reduced electric quadrupole transition probability B(E2), which is a deformation
that is effective for electromagnetic interactions, that is, a deformation that focuses
only on the proton distribution. The input in Fresco is the deformation length oy
of the entire nucleus, including both protons and neutrons, and in this analysis, we
consider 6 = dn, which is actually almost equal for most nuclei.

This relation also includes the nuclear radius R. Here, R is the nuclear radius
when the atomic nucleus is considered to be a uniformly distributed sphere. R can
generally be described by the nuclear radius formula (H.2), but its uncertainty will

be discussed in the next section.

6.3.2 Estimation of nuclear radius R

In Fresco, the nucleus is treated as a uniformly charged sphere, and calculations
are performed using the nuclear radius R obtained by decomposing the input on.

Now, when using the relationship between dx and M (E2) in equation (6.2), an
accurate nuclear radius R is required.

In the appendix H, the nuclear radius R for “°Ti and *3Ti is estimated.

R(°®Ti) = 4.94(37) [fm] (H.14)

*DSee AppendixG.
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R(°®Ti) = 5.04(49) [fm] (H.15)

6.4 Derivation of B(E2) from o gyex (3)

6.4.1 Determining B(E2) using the nuclear radius R

The relationship between dx and M (E2) obtained by substituting the nuclear
radii (H.14) and (H.15) obtained in the analysis in section 6.3.2 into equation (6.2)
is shown in Figure 6.2, superimposed on the figure 6.1 obtained in section 6.2.3.
The experimental Coulomb excitation cross section and the range of (M (E2), 6x)
limited by the nuclear radius are shaded in black. From the black areas in this figure,
we obtain the following for each M (E2) values. Converting these to B(E2) using

equation (G.2), the values are summarized in Table 6.1.

Table 6.1: Obtained B(E2) values.

Bno—feed(Ez) T Bfull—feed(EZ) T Bmax—err(EZ) T
[e*fm*] [Wu] | [€*fm?*] [W.u] [e*fm?] [W.u.]
MTi | 822(88) 12.9(14) | 768 (93) 12.1(15) | 799 (93) 12.6 (15)
BTi | 779 (90) 11.7 (14) | 599 (96) 9.0 (15) | 688 (116) 10.3 (18)

6y (fm)

A .r"::|....|":..’.|....."'|./...|7
15 20 25 30 35 15 20 25 30 35
M(E2) (e fm?)

0‘0'|....|."....|.,

Figure 6.2: The experimental results and the limiting range due to the nuclear radius are superimposed
on the Fresco calculation results shown in Figure 6.1. As with the experimental results for the cross
section, the nuclear radius is also shown with a solid line representing the center value and a dashed
line representing the error range.
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Chapter 7

Discussion and conclusions

7.1 Comparison with previous experimental and theoretical B(E2)

T T " " S R B A B B
I E : ---©-- Existing Data (Model-Independent) ]
Ti, B(Ez) : ® Existing Data (Model-Dependent)
R0 ¢ i ---- ADA-m = ----- GXPF1A 5
H - -—--- A3DA-k @® This Work
I : -~ — - QRPA(SkMx) 5DCH(SkM*)
S CI 5 | 1
E - o : + :
8 10} R = S /,,+———*’ ? -
Qo NoEemtIIiocoT T ‘l;\ :
oLt l i l l l [ I l l

24 26 28 30 32 34 36 38 40 42 44
Neutron Number N

Figure 7.1: Experimental and theoretical B(E2) values for Ti isotopes. The experimental values
obtained in this work are shown as filled circles.

7.1.1 Comparison with previous experimental values

The B(E2) values obtained in this work are presented in Fig. 7.1 as filled circles,
together with the values obtained in previous works. For the case of “5Ti (N = 34),
the previous experimental value was obtained from Coulomb excitation at NSCL.
The present result lies close to the upper limit of the earlier measurement and is
consistent with it within the experimental uncertainties. For ¥Ti (N = 36), the
earlier value was deduced from (p, p’) scattering at RIKEN. In that experiment,
the deformation length 6 was measured rather than the B(E2) value itself, and the
B(E2) strength is converted to the B(E2) value using Eq. (A.9), assuming that the
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0 values are the same for protons and neutrons. The value obtained in the present
work is also located near the upper limit of the previous result and agrees with it
within the uncertainties. It should be emphasized that the uncertainties of the present
measurements are reduced to about half of those in earlier studies. In particular, the
error bar for N = 34 has been significantly reduced, clearly showing that its B(E2)
value is substantially larger than that of N = 32.

7.1.2 Comparison with shell model calculations

In Fig. 7.1, we show the results of the shell-model calculations with GXPF1A
and A3DA-m, as well as the results of the A3DA-k calculation. In order to examine
the effect of the tensor component on the N = 40 magicity, the A3DA-k calculation
is based on A3DA-m but excludes the tensor component. By excluding the tensor
component, the calculation keeps the energy difference between the vfs;> and vgg >
orbitals at N = 40 large, i.e., the shell gap at Ni (Z = 28) is maintained down to
Ca (Z = 20). Among these three shell-model calculations, A3DA-m shows the best
agreement with our experimental data.

As shown in Fig. 1.7, previously measured B(E2) values in Fe and Cr isotopes
were also well reproduced by A3DA-m. Although the A3DA-k calculations are not
shown in this figure, they generally underestimate these values due to the absence of
the tensor-force effect that reduces the shell gap. Our present results for Ti isotopes
thus follow the same systematic trend as A3DA-m, further confirming the robustness

of this model description.

7.1.3 Comparison with Self-consistent QRPA models based on Skyrme EDF

Both the QRPA (SkM*) and SDCH (SkM*) calculations deviate from the exper-
imental values obtained for °Ti and ®Ti in this work by more than approximately
twice the experimental uncertainties. Notably, the SDCH (SkM*) results tend to ap-
proach those of the A3DA-m calculation for N = 38, which highlights the potential
interest in obtaining additional experimental data for comparison with the SDCH
(SkM*) predictions.

7.2 Interpreting A3JDA-m agreement across three shell-model calculations

In this study, the experimental results were compared with three shell-model
calculations, namely GXPF1A, A3DA-m, and A3DA-k. It was found that A3DA-m

provides the best agreement, particularly for *®Ti. The essential features of these
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interactions can be summarized as follows:

* GXPFI1A: restricted to the pf-shell model space
* A3DA-m: extended model space including the pf-shell and the gg/» orbital
* A3DA-k: same model space as A3DA-m but without the tensor force

The calculated B(E2) values obtained from these three models begin to diverge
for nuclei beyond N ~ 36. In the following discussion, we focus on the evolution of
the N = 40 shell gap and the neutron excitations across this gap in order to interpret

these differences.

7.2.1 Evolution of the N = 40 shell gap

To investigate the evolution of the N = 40 shell gap, the effective single-particle
energies (ESPEs) obtained with the A3DA-m and A3DA-k interactions are shown
in Fig. 7.2. Since the GXPF1A interaction does not include orbitals above the gg/»
shell, the N = 40 shell gap is effectively treated as infinitely large in this framework.

A comparison between A3DA-m and A3DA-k reveals distinct behaviors in the
f5/, and gg, orbitals, which are strongly affected by the tensor force. In the A3DA-m
calculation, these two orbitals approach each other as the proton number Z decreases.
Notably, for Z < 24, where the py/, and fs/, orbitals invert, the N = 40 shell gap
shrinks rapidly. In contrast, the A3DA-k results exhibit a rather different trend. Here,
the separation between the f5/; and gg/» orbitals remains nearly unchanged, and the

p1/2 orbital does not show a marked change relative to the f5/,. Consequently, the

A3DA—m A3DA—-k
Ogg/e —— — —— .
Og _ Ogs/z Oge/z
9/8 —— -
Of gy, —.
1P1/2 . : N . 1P1/2 101%1/2 : : : . 1P1/2
—_ 5/2 —.,
0fs,2 1 . — —0f5)
Ipae = —— —— —— ——1ps; Pa/z T T ——1pgpe
0f7/2—.
— Ofq /o —.
R R B L R
20 22 24 26 28 20 22 24 26 28
Proton Number 7 Proton Number Z

Figure 7.2: The evolution of the neutron effective single-particle energies (ESPEs) as a function
of proton number is shown for the two A3DA models. In both cases, the values correspond to the
N = 40 isotones and are given relative to the 1py/, orbital.
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N = 40 shell gap does not shrink toward smaller Z, which is consistent with the
situation expected in the absence of the strong tensor-force effect that characterizes
A3DA-m.

7.2.2 Neutron excitations across N = 40 shell gap

Figure 7.3 shows the calculated expectation values of the neutron occupation
number in the gg/, orbital for Ti and Ni isotopes, obtained with both the A3DA-m
and A3DA-k interactions. Since the g9/, orbital is the first orbital located above the
N = 40 shell gap, these values can be interpreted as the number of neutrons excited
across the N = 40 gap.

For comparison, it should be noted that the GXPF1A interaction does not include
the go/, orbital in its model space. Consequently, if such an occupation number
were evaluated within GXPF1A, it would trivially remain zero.

In the case of A3DA-k, the results for Ti and Ni are nearly identical. For N < 40,
the occupation remains below one, indicating that excitations into the gg/, orbital
are suppressed by the N = 40 shell gap and that filling of this orbital does not begin
until the neutron number exceeds 40.

By contrast, the A3DA-m results show a clear difference between Ti and Ni.
While Ni exhibits nearly the same behavior as in A3DA-k, the Ti isotopes display a

rapid increase in gg/» occupation starting around N = 34, and the expectation value
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Figure 7.3: The evolution of the neutron 0gg,, orbital occupation numbers as a function of neutron
number is shown for the two A3DA models. In both calculations, Ni isotopes exhibit values below
unity for N < 40. In contrast, for Ti isotopes within the A3DA-m model, the occupation number
already exceeds unity at N = 36. For A3DA-k, however, the Ti isotopes follow nearly the same trend
as Ni, with the two curves essentially overlapping.
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already exceeds one at N = 36. This suggests that, in Ti isotopes, the hindrance of
excitations into the g9 /> orbital due to the N = 40 shell gap is significantly weakened,
allowing neutrons to exicite to this orbital more easily.

The agreement of the A3DA-m calculation with experimental data for >3 Ti further
supports this interpretation, suggesting that excitations across the N = 40 shell gap
are already active in this nucleus. In contrast to Ni isotopes, where the N = 40
shell gap effectively suppresses excitations into the gg/, orbital and thus exhibits a

magicity, Ti isotopes demonstrate a clear weakening of this nature.

7.3 Summary

In this thesis, the evolution of nuclear collectivity around N = 40 has been inves-
tigated through measurements of B(E2) in neutron-rich Ti isotopes. The aims were
(i) to examine whether the N = 40 shell gap in *3Ti acts to hinder nucleon excitations
across the gap into the g/, orbital and above, thereby reflecting a magic-like nature,
and (ii) to clarify the mechanism driving enhanced collectivity around ®*Cr. The
experiment was performed at the RIBF facility of RIKEN using intermediate-energy
Coulomb excitation on a gold target, which enabled extraction of B(E2) values with
significantly improved precision and reduced model dependence compared with
previous studies.

The new results for *°Ti and ®Ti yield B(E2;0* — 2*) values of 799(93)
and 688(116) e* fm*, (12.6(15) and 10.3(18) W.u.) respectively. These values
are consistent with previous studies but with uncertainties reduced by about half.
Together with the smaller value of 357(63) e2fm* (5.9(10) W.u.) known for *Ti, the
present measurements indicate a clear trend of increasing quadrupole collectivity
toward N = 40. These results provide clear experimental indications of the onset of
collectivity in this region, in agreement with theoretical predictions that incorporate
the effect of the tensor force.

Comparison with theoretical models shows that the A3DA-m shell-model cal-
culation, which includes the tensor force and the gg/, orbital, reproduces the data
best. In contrast, GXPF1A (restricted to the pf shell) and A3DA-k (without the
tensor force) fail to capture the observed trends. The results support the picture that
the tensor force reduces the N = 40 shell gap in Ti isotopes, allowing neutrons to
occupy the gg/, orbital already at N = 36. Thus, while %8Ni retains a clear N = 40
magicity, this is strongly weakened in >3Ti.

This interpretation is consistent with the enhanced collectivity observed in Fe

and Cr isotopes around N = 40. The tensor-force—driven reduction of the N = 40
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shell gap provides a unified explanation for the increasing quadrupole collectivity
observed in Ti, Cr, and Fe isotopes around N = 40. The present measurements
of Ti isotopes have helped clarify the underlying mechanism responsible for this
enhanced collectivity in Fe and Cr.

The present work highlights the importance of tensor-force effects in shell evo-
lution and establishes Ti isotopes as a key testing ground for the N = 40 region.
Future measurements of 2Ti, and ultimately of 60Ca, are crucial for testing whether
the N = 40 shell gap becomes very small as predicted by some models, or remains
sizable as suggested by others, thereby providing decisive insights into the interplay
between shell structure and collectivity.

In summary, precise new B(E2) values for 36.58Tj have been obtained, demon-
strating that the N = 40 shell closure weakens markedly toward lower Z. This finding
explains the onset of strong collectivity near **Cr and advances our understanding

of magic-number breaking in neutron-rich nuclei.
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Appendix A

Deformation quantities 3, and 6

The deformation parameter 3, for the quadrupole deformation is defined by
the coeflicient when expressing the shape of the nuclear surface as a linear sum
of spherical harmonic functions Y;,,(6, ¢). Written in a generalized form, this is

expressed as follows,

R(Q’ ¢) = RO

L+ QY (6, ¢)] (A1)
Im

using the nuclear radius Ry and the coefficient a/,. *1)' Tn the case of [ = 2,

R(6,¢) = Ro{1 +axY20(6, ¢) +axn[Y2(6,¢) +Y22(0,¢)]} (A.2)

can be expanded as follows,

a)y = Prcosy (A.3)
| .
ay = 6 Basiny (A4)
and, if y =0, a0 =8, a2 =0,s0:
R(0,¢) = Ro[1 + B2 Y20(0, ¢)] (A.5)

Also,

[5
Y20(6, ¢) = E(3cos29—1) (A.6)

*DSee textbook [61] p250, equation (31.9), etc.
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so the equation (A.5) is :
5 2
R(0) =Ro |1 ++/— B2(3cos“6—1) (A.7)
167

In addition, the relationship between B(E2) and the degree of deformation S is

expressed as follows: *

2
B(E2;0" — 2%) = ,82( Ze RZ) (A.8)

The deformation length ¢ is defined as follows:
6 = B2Ro (A.9)

It can be obtained by measuring the inelastic scattering cross section.

\

\
\\\\“‘u‘t‘
llilli,!/”

L ”’/’

Figure A.1: The deformation parameter 3, is varied from 0.0 to 0.4, and the deformation parameter
is drawn in three dimensions. Most of the deformed kernels have a deformation parameter of about
B2 = 0.2 -0.3, and the superdeformed kernels, whose major axis to minor axis ratio is 2:1, have a
deformation parameter of 5, ~ 0.6.

*DSee textbook [61] p252, equation (31.19), etc.
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Appendix B

Virtual photon number in Coulex

The Coulomb excitation cross section o~ of 0 — 2* can be written as follows by
substituting 74 = E2 from [62] :

1
o= [ 5B oFE dE, B.1)

Differentiating both sides of this with respect to the excitation energy E,, we get :

do 1
= — np(E,) 0B (E, B.2
B = e E) o (B (B.2)

In addition, the optical absorption cross section O'YEZ(EX) is given by [62] as follows:

O-EZ(E)C) =

(2n)3(2+1) (EX)“‘l dB(E2; E,) B3)

2022+ D12 \fie dE,

Therefore, by substituting this, and taking the coefficient that does not depend on E

as C, and integrating both sides with respect to E,, we get :
o = Cngy(E,) E2 B(E2; Ey) (B.4)

Here, O'VEZ(EX) is the optical absorption cross section. Also, when considering
the excitation cross section to a specific 2" excitation level where E, = E), it can be
replaced with B(E2; E,) — 0(Eyx — E¢) B(E2), from which we can say :

o o ngy(Ey) - E2 - B(E2) (B.5)

The number of virtual photons ng; generated by Coulomb excitation accompanied

109



by the E2 transition is given by equation (2.5.5¢) in [63]:

2 c\4
et = 2770 (€)
T \%
2 2\2 2.4 (B.6)
% % &y
x|2[1-L|k2+ef2-2 KK——(KZ—KZ)
[1-5) e - 5) komi- S (-4
FroT T b T
dw -]
% g
4 2 R
#‘8 E
4 7
S E
1= —f
]é ]
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Figure B.1: Energy dependence of the number of virtual photons (left) and its multiplication by the
square of the excitation energy E (right). It is almost constant in the range below E, ~ 10 MeV.
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Appendix C

Beam transport matrix

As an example, the beam transport matrix between the F3 and F5 focal planes

can be written as follows:

Xs (xlx)  (xla) (x[6) [ x3
as | =|(alx) (ala) (ald)|| a3 (C.D
035 0 0 1 035

The third-order square matrix in this equation is called the "first-order transport
matrix." The matrix elements (x|x), (x|a)... are determined by the materials such
as magnets and detectors installed in the beamline, and are constants unless the
experimental setup is changed.

As a very simplified example, if there were no material or magnetic field between
F3 and F5, the equation (C.1) would be:

Xs I 0 (x6)\[ x3
as |=10 1 0 as (C.2)
(535 0 0 1 535
When we solve this, then:
X5 = (x|5) . 535 + X5 (C.3)
as = aj (C.4)

What this means is that a particle that arrives at F3 at a finite angle will continue to
F5 without changing its angle, and the amount of displacement it experiences while

reaching F5 is proportional to ¢35, with the coefficient (x|9).
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Appendix D

Angular distribution of gamma rays

It is well known that the emission angles of two gamma rays, 1173 keV and 1332
keV, emitted from a °°Co gamma ray source are correlated. This is because the
direction of the angular momentum of the excited state has a non-isotropic distribu-
tion with respect to the quantization axis. In experiments using beams accelerated
by an accelerator, the quantization axis is aligned perpendicular to the beam direc-
tion. Therefore, the direction of the gamma rays emitted when the beam particles
excited by interaction with the target are de-excited may have an angular distribution
with respect to the beam axis direction. In general, the angular distribution W ()
of gamma-ray emission at an angle € with respect to the quantization axis can be

expressed as a linear sum of Legendre functions Py (cos ) (641,

W(o) = Z ay Py (cos 6) (D.1)
k

Here, a; is expressed by using the “Population parameter” P(m) as follows:

-1
ap = —(A1A-1]k0)
dr

XY (A A = plk O) |G mi A pljp mp)? P(my)  (D.2)
mispt
P(m) is the probability that the state with magnetic quantum number m is occupied,
and can be estimated by the semiclassical theory of Coulomb excitation 631,

In addition, (jj m j» my|j3 m3) in the formula is the Clebsch-Gordan coefficient.
m;, my are the magnetic quantum numbers of the initial and final states, respectively.
For the 2* — 0" transition, m; = —-2,-1,0, 1,2, and my = 0. j;, jr are the angular
momentum of the initial and final states, and similarly, j; = 2, j = 0. Also, u, k are

u =-m;, and k = 0,2,4, according to the Clebsch-Gordan coefficient convention.
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From this, in the case of 2% — 0% transition is:

W () aoPy(cos 0) + ar Pr(cos 6) + agP4(cos ) (D.3)

-1
—(212 -1|k0)
4

ak

X

2
D ()2 = mi 2 mylk O) 12 m; 2 = my|0 0)* P(my) (D.4)
mi=—2
The results of calculating P(m;) according to the experimental conditions are
summarized in Table D.1. Figure 5.9 shows W (6) calculated using these P(m;). The
UCHiCARI simulation code makes it possible to reproduce the angular distribution

of gamma rays emitted during the experiment by inputting the values of ag, a, a4.

Table D.1: Calculation results for P(m;). The 2* excitation energies are 1.129 MeV (°°Ti) and 1.047
MeV (°®Ti) according to NNDC 211, The calculation code used was [66].

Au(COTi,® Ti)  Au(®Ti,>® Ti)
164 MeV/u 170 MeV/u
m; = 0.46586057  0.47002961
m; =1 0.02867217  0.02531471
m;=0 001093452  0.00931136
m;=—-1 0.02867217  0.02531471
m; =-2 046586057  0.47002961
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Appendix E

A note on feeding ratio

E.1 Feeding ratio of nearby nuclei: */°%Tj

The number of events excited from 0* to 2* by Coulomb excitation is required to
obtain the Coulomb excitation cross section. The gamma-ray peak yield, obtained
above, is the number of gamma rays de-excited from 2* to 0*. This includes not
only events excited from 0* to 2* by Coulomb excitation, but also events excited to
higher levels by other excitation processes such as inelastic scattering, resulting in

the creation of the 2* state by cascade decay.

E.2 Example of when the Sub peak does not feed

E.2.1 Transition involving unknown levels

Although it is unlikely, we cannot deny the possibility that the gamma-ray transi-
tion of the sub-peak is not in a cascade relationship with the first 2* to 0* transition.
If this is the case, as shown in Figure 3, gamma-ray emission could be (i) a gamma-
ray emission associated with a transition from an unknown level to the ground level,
or (ii) a gamma-ray emission associated with a transition from an unknown level to

another unknown level.

E.2.2 Contamination of other nuclei

It is possible that these are gamma rays from other nuclei mixed into the beam,
but particle identification has determined that the contamination of other nuclei
is less than 1 %, and to reproduce the magnitude of the peak, a transition with a
huge transition probability of more than several hundred times that of *¥Ti would

be necessary, but since the level structures of nearby nuclei and the transition
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probabilities between levels are relatively similar, this is unlikely in reality.
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Appendix F

DWBA

The distorted wave Born approximation (DWBA) is a method used in scattering
theory that is suitable for describing complex scattering systems. It is an improve-
ment of the simple Born approximation (plane wave Born approximation) to handle
cases where the target or scatterer has a strong potential. In general, the scattering
differential cross section of the X(a, b)Y reaction can be written as follows, from
equation (31.1) in the textbook [61]:

do  MyxMyy kp

— o XY Bh 72 F.l
dQ ~ (2n72)2 kal | ED

Here, T is a value called the transition matrix element. M is the reduced mass,
and k is the wave number. In the case of the plane wave Born approximation, the

transition matrix element 7 is given by [61] (31.2):
T = / e koo |v|XyelkaT dr (F.2)

In PWBA, the wave distortion when two particles approach each other is ignored, and
the incident wave exp(ik, - r) and the outgoing wave exp(iky - r) are represented
only as plane waves. On the other hand, in DWBA, the transition matrix element 7
is calculated by using the waves distorted by the optical potential U(r), Yax (k,, 1)
and Yy (kp, r), based on equation (31.3) in the textbook [61] :

T= / wty (o, P (YIVIX)Wax (Ko 1) dr (E3)

Using this, the differential cross section for inelastic scattering, X(a, a")X’ reac-
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tion, can be written as follows, according to equation (31.16) in the textbook [61]:

2 2 2
dO' _ MaX ka’ ﬁl

dQ ~ (2ni2)2 k, 20+ 1

T (F.4)

dU
/ l//;,X, (RO ) Ylm*(g’ ¢)ax dr

If we consider excitation to 0* — 2*, since [ = 2, the product of 57 and R} in
equation (F.4) is the deformation length 5% from equation (A.9). From this, we can
see that the deformation length 6 can be obtained from measuring the cross section
of inelastic scattering.

In the case of pure Coulomb excitation, where the incident nucleus is slow enough

that it does not collide with the target nucleus, page 146 of the textbook [67] states:

do 1 M?v, 2

dQ = 2.+ D)(2Jo + 1) 4n20%,

(F.5)

BIe@ )| |

In the case of E2 transitions, /[y = 2, and in this case, although the notation is different,
(B]|0"||a) is equal to the reduced matrix element M (E2). From this, B(E2) can be
obtained from the relationship between the measurement of the Coulomb excitation
cross section and equation (6.2).

However, in the measurements using a gold target in this study, the velocity of
the incident nucleus is fast, so atomic nuclei may collide with each other. There-
fore, although the contribution from Coulomb excitation is dominant, excitation by
inelastic scattering may also occur. Taking this into consideration, it is important
to note that the measured cross section is the sum of both Coulomb excitation and

inelastic scattering.
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Appendix G

Reduced matrix elements M (E2)

In general, the reduced transition probability B(EL; j; — j) and the reduced

matrix elements (j||M EE) ||j:) have the following relationship:,
B(EL; j; i) = (25 + DG AIMP )2 G.1
(EL; ji = Jjr) = (2ji + DG M) (G.1)

Therefore, B(E2; 0" — 2%) is,

B(E2;0" — 2%) 2-0+ )7 mP) 1072
12 1M ]|0%) 2 (G.2)

IM(E2)[?

In this paper, we use M (E2) as an abbreviation for (2*| |M2(E) [|0F).
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Appendix H

Estimation of the nuclear radius R

H.1 Definition of nuclear radius R

Types of radii with different geometric sizes
» Radius of uniform density distribution Ry

* Half-maximum radius of the Fermi function distribution that incorporates the

"diffuseness"” of the nuclear surface Rg

2

* Mean squared charge radii < r~ >

2 s OIf

we assume that the atomic nuclei are truly uniformly distributed, the relationship

and others. Of these, the value measured experimentally is often < r

between Ry and < r2 > can be written as follows:

5
RU:\/§<r2> (H.1)

The nuclear radius required for Fresco calculations is Ry, which will be used in
subsequent calculations, so from this point on in this paper we will use R = Ry. In

addition, the radius of the nucleus can be determined by
* Charge distribution
* Nucleon (proton/neutron) distribution: point distribution of each nucleon

* (proton/neutron) nuclear matter distribution: includes effects due to the size of

the nucleon itself

and so on. Of these, charge distribution is the most widely measured, and the
measurement results are compiled in the database [®81. Figure H.1 plots a list of

nuclear radius data published in [68].
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In addition, because the density of the nucleus is saturated, the number of nucleons
is proportional to the volume, textbooks such as [11] state that the number of nucleons

A is used as
R~12xAlA (H.2)

In fact, in the left figure of Figure H.1, each measurement point appears to be on a

straight line. The equation obtained by fitting these points with a straight line is
R=1.103x A3 +0.640 = Ry(A) (H.3)

and the R obtained using this equation is defined as Ry(A).

H.2 Extension of the charge radius database to the neutron-rich

region

Equation (H.3) holds well for stable nuclei, but the more unstable the nuclei are
from the stable line, the more likely they are to deviate from Ry(A). Figure H.2
shows the charge radius data 98] near Ti plotted for each isotope, overlaid with
equation (H.3).

Now, let us evaluate the distance from the stability line and the deviation of the
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Figure H.1: Left: The experimental data for the mean square charge radius published in “The table of
experimental nuclear charge radii” was converted to a uniform density distribution radius using the
formula (H.1), and plotted with A'/3 as the horizontal axis. The relational equation (H.3) obtained
by fitting this distribution with a straight line is shown in the figure. Right: A list of the nuclides
used as data points in the figure on the left. There is no radius data for ®Ti, which is the focus of
this study.
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nuclear radius from Ry (A).
If the most stable number of neutrons in a certain isotope is Ny(Z), the distance
from the stability line can be expressed as the difference in the number of neutrons

from the stability line :

AN = N - Ny(2Z) (H.4)
Similarly, the deviation of the nuclear radius from R((A) is defined as :

AR = R — Ry(A) (H.5)

Here, to find Ng(Z), we use a method to find the isobar with the smallest mass
derived from the Weizsidcker-Bethe mass formula. The Weizséicker-Bethe mass for-
mula is a semi-empirical formula that reproduces the mass obtained by experiment,

and is expressed as follows:

Mc* = (NMy + ZMy)c? — a, A + a A + a 22 A3

(H.6)
+a,(N - Z)*’A7" +6

Here, the subscripted a has a specific value determined by experiment.
Next, to obtain the lightest (= most stable) isobar, the number of nucleons A is

kept constant and we calculate :

om
0z

=0 (H.7)

A=const

R=1.103%4'2+0.640
Y/ T R B
30 40 50 60
A

Figure H.2: Nuclear radius data near Ti. Looking at each isotope, the relationship in formula (H.3)
does not hold, and on the neutron-rich side the values tend to be smaller than those in formula (H.3).
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Of course, here A = Z + N. By substituting the numerical values, we obtain the

most stable number of protons Z when the number of nucleons is A, i.e.,

A

Z.(A) =
s(4) 2.00 +0.015A2/3

(H.8)

By calculating this relationship numerically using a computer, the most stable num-
ber of neutrons Ns(Z) can be obtained.

This can be used to calculate AN, and the distribution of AN correlated with AR
obtained from the nuclear radius database and the formula (H.3) is shown as small
black circles in Figure H.3.

If we approximate this distribution with a linear line and extrapolate to find R for
6Ti and *3Ti, and call this R (4Z), we get:

Ri(°°Ti) = 4.69(12) [fm] (H.9)
R (*¥Ti) = 4.70(15) [fm] (H.10)

H.3 Prediction using Ca nuclear material radii after N = 28

The nuclear radii of >Ti and >®Ti obtained in the previous subsection were both
predicted to be smaller than Ry. Here is an example of a prediction that can obtain a
nuclear radius larger than R using a different method. In a study of neutron skin in
Ca isotopes, it has been reported that the nuclear material radius increases sharply
after N = 28191, The results of this research are overlaid with the charge radius
database [°8! and the formula (H.3) in Figure H.4.

Figure H.3: The relationship between AN and AR in the range Z = 12 to 32 around the Ti isotope
Z =22
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The most stable neutron number N¢(Ca) of Ca calculated from formula (H.8)
is 23.7, but it has been shown that in the range of N < 28, including around that
number, both the nuclear material radius and the charge radius are almost constant
at R ~ 4.5 [fm].

Therefore, when N is larger than Ng(Ca), the measured value is smaller than R
(shown by the dashed line in the figure) obtained from formula (H.3). On the other
hand, in the range of N > 28, as is the subject of this paper, the nuclear material
radius increases rapidly, exceeding Rp at N = 31. Here, it is explained that N = 28 is
the neutron magic number, and this increase occurs as the nuclear structure changes
when there are more neutrons than that.

Ca and Ti are likely to show similar properties, with only a difference of two
protons Z. To quantify the behavior of the nuclear matter radius of Ca after N > 28,

fitting was performed with
R = po(N —29.5) + p; (H.11)

This is shown by the solid line in the figure. The reason for using (N — 29.5) is to
set the center of the four points as the reference position for the offset, so that the
error in pg can be correctly estimated.

We will use this tendency to predict the nuclear radii of >°Ti and *3Ti. For Ca, the
nuclear matter radius and the charge radius are roughly the same size in the range
of N < 28, so we assume the same for Ti. By coincidence, the nuclear radii for
Ti published in [68] are up to N = 28, so we extrapolated the unmeasured region

beyond N = 28 by assuming that it increases with the same slope as the fitted result

T T T T T T T T ]
49 O Nuclear Matter Radii -
[ X Charge Radii 1
agl R=1.103 4"3+0.640
"} — Fit in N=28to 31 g
A -
g L
S 46F -
s [ X X
45 Xxx,,-xoxéQé ]
L e ©
4.4 ]
43F =
! Lo ! !

18 20 22 24 26 28 30 32
N

Figure H.4: Ca nuclear matter radius
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for Ca. This is shown in Figure H.5. In addition, the nuclear radii of >Ti and >®Ti

obtained by this extrapolation are defined as R»,

R, (°°Ti) = 5.18(12) [fm] (H.12)
R, (°3Ti) = 5.38(15) [fm] (H.13)

Finally, we have predicted the nuclear radii R; and R, using two different methods.
Considering that both are possible, we determine the center value and error of the

nuclear radius to cover both error ranges.

R(°°Ti) = 4.94(37) [fm] (H.14)
R(°%Ti) = 5.04(49) [fm] (H.15)

This is used as the nuclear radius of °Ti and ®Ti in this paper for subsequent

calculations.
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Figure H.5: Radius of Ti nucleus
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