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ABSTRACT This paper presents the first outdoor field trials of deep joint source-channel coding (DeepJSCC)
for image transmission over a 5G system. DeepJSCC is a deep learning-based end-to-end method that
unifies source and channel coding to enable robust and low-latency image transmission, particularly in
low signal-to-noise power ratio (SNR) environments. Unlike conventional methods, DeepJSCC inherently
avoids the cliff effect and maintains stable image quality under harsh channel conditions. To evaluate its
feasibility of practical environments, we modified a commercial 5G base station (gNB) and user equipment
(UE) to support DeepJSCC signal transmission and reception. Extensive experiments were conducted under
indoor and outdoor settings, including line-of-sight (LoS) and non-line-of-sight (NLoS) conditions. A key
contribution of this study is the empirical verification that even a DeepJSCC model trained solely on an
additive white Gaussian noise (AWGN) channel can maintain stable reconstruction performance in real 5G
environments, demonstrating its generalization capability. Compared to baseline systems using JPEG2000
and LDPC, DeepJSCC achieved higher PSNR stability and was able to restore image content even when
conventional schemes completely failed. These findings suggest that DeepJSCC is a promising candidate
for next-generation visual communication over 5G infrastructure.

INDEX TERMS 5G mobile communication, data compression, deep learning, edge computing, image
communication.

I. INTRODUCTION

FIFTH-GENERATION cellular systems (5G) are widely
used. In recent years, Beyond 5G and 6G, which

are extensions of 5G, have been investigated. The targets
of the research are not only for mass users but also
for industrial networks [1], [2], [3]. Japan has considered
industrial 5G systems, termed local 5G to encourage the
digital transformation of mission-critical services, such as
smart factories and agriculture, robot control, and railways.
Industrial 5G aims to forward extreme large data from

surveillance cameras inside and outside factories, camera
sensors used for inspection devices, video streaming at
event sites, and disaster monitoring. The industrial 5G
system needs to be a leading candidate for high-speed
telecommunications, and it is also complied the typical 5G
specification such as 3GPP, whereas it may have a special
characteristic that a lot of resource blocks (RBs) are occupied
by a part of users who connect continuously to the 5G system
to transmit or receive video/image data. In other words,
a mobile operator must determine one policy to operate

c© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4894 VOLUME 6, 2025

HTTPS://ORCID.ORG/0000-0002-5766-3812
HTTPS://ORCID.ORG/0000-0002-2483-7652
HTTPS://ORCID.ORG/0000-0001-9486-5272
HTTPS://ORCID.ORG/0000-0001-9635-3182
HTTPS://ORCID.ORG/0000-0002-6945-7055
HTTPS://ORCID.ORG/0009-0007-1031-9364


the 5G system: the system limits the number of connected
users to ensure higher network quality, or the system
degrades the network quality to increase the number of
users.
At the same period of the development of 5G system,

the deep learning technologies have been extremely and
rapidly studied. In recent years around 2020s, semantic
communication (SC), also known as task-oriented communi-
cation, is emerging as a concept that exceeds the limitations
of bit-based communication [4], [5]. In the conventional
telecommunication network, the physical layer functions
only have to deal with bit information fairly because the
priority and quality are set for each application, at the media
access control (MAC) layer, transmission control protocol
(TCP) / Internet protocol (IP) layer and higher ones. Thus,
the quality of the PHY layer is determined by simply using
bit error rate (BER) in the almost cases. Meanwhile, the
SC systems adaptively change the types of encoding and
modulation formats based on the application, for example,
video, images and audio. Additionally, the requirements of
each application for the BER and latency differ. As one of
SC systems, deep learning-based joint source-channel coding
(DeepJSCC) methods have been widely studied and it is
comparable to Shannon’s capacity than two-stage encoding,
source coding such as JPEG2000 and BPG, and channel
coding such as LDPC [6], [7]. In addition, DeepJSCC avoids
the cliff effect, which rapidly degrades the image quality
when the signal-to-noise power ratio (SNR) falls below a
certain level, and it is used in the lower SNR region well.
For these reasons, we expect high-quality image transmission
using DeepJSCC over industrial 5G systems. DeepJSCC
is particularly beneficial for real-time image transmission
applications such as remote healthcare, autonomous driving,
and smart city surveillance. In remote healthcare, DeepJSCC
enables low-latency and robust transmission of medical
images, where traditional compression methods such as
JPEG2000 often fail under wireless conditions due to
error propagation. Similarly, in self-driving car networks,
DeepJSCC can improve real-time image transmission relia-
bility in varying SNR conditions. In the network system for
surveillance cameras, DeepJSCC provides an advantage in
transmitting semantically important features at lower bitrates
while maintaining object recognition accuracy. However,
despite the many advantages of the cooperation of DeepJSCC
and 5G, to the best of our knowledge, the Deep JSCC
operation has not been sufficiently reported under the actual
5G condition.
This paper presents a proof-of-concept (PoC) of

DeepJSCC in an industrial 5G system. We modify a
commercially available 5G base station (gNB) and its user
equipment (UE) to input and output DeepJSCC signals
and conduct a radio transmission experiment in outdoor
environment. This study extends the analysis in [8]. The
previous work demonstrated a wired cable connection, while
this article includes the results of wireless transmission.
The experimental results imply that the DeepJSCC has the

FIGURE 1. Encoder-Decoder model for DeepJSCC.

potential to perform well under wireless conditions. The
contributions of this paper are as follows:

• We present a simple DeepJSCC architecture consisting
of convolutional layers, GDN, and PReLU, which
achieves competitive PSNR performance compared
to conventional source-channel separation methods.
Although simulation results show limited advantage in
high-SNR regimes, we identify that DeepJSCC exhibits
remarkable robustness in low-SNR conditions based on
field trials.

• We conduct the 5G field experiments of DeepJSCC in
both indoor and outdoor environments. We describe the
system integration process, including modifications to
the 5G gNB and UE, and clarify how DeepJSCC signals
were directly injected into physical resource blocks.

• We verify that DeepJSCC can operate on actual 5G
infrastructure using commercial gNB and UE devices,
leveraging native functions such as channel estimation.
The system was validated in indoor, outdoor LoS, and
NLoS scenarios with real data transmission.

• We empirically demonstrate that a DeepJSCC model
trained solely on an AWGN channel remains effective
in practical 5G environments without retraining or
channel-specific adaptation.

The subsequent sections are structured as follows. Section II
describes the related work for DeepJSCC. Section III give a
detailed description of the interface design of the modified
5G system. As preliminary verification, the simulation results
are shown in Section IV. Sections V and VI reveal the
indoor/outdoor experimental results, respectively. According
to the results, we indicate the limitation in Section VII.
Section VIII is the conclusion.

II. RELATED WORK
A. DEEP JOINT SOURCE-CHANNEL CODING
(DEEPJSCC)
DeepJSCC is the neural network (NN) of a typical
encoder-decoder configuration. Figure 1 shows the basic
configuration of DeepJSCC. DeepJSCC encoder converts an
input image into latent vector and the decoder restores the
image. That is, DeepJSCC is one of latent representation
learning techniques based on autoencoder. The difference
compared with the conventional learning, is the image
is directly mapped on IQ baseband symbols. Thus, the
autoencoder plays the role of source and channel coding
and modulation. DeepJSCC, which was first proposed,
comprises a series of convolutional layers to achieve wireless
image transmission [6], [7]. In recent years, several types of
DeepJSCC have been proposed to extend from [6], [7] to
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FIGURE 2. DeepJSCC encoder/decoder structure. Conv2D: two-dimensional
convolutional layer, GDN: generalized divisive normalization, BN: batch normalization,
PReLU: parametric rectified linear unit, PN: power normalization, TransConv2D:
two-dimensional transposed convolutional layer.

video transmission [9], point cloud [10] and DeepJSCC with
encryption [11]. It is expected that DeepJSCC will continue
to be proposed to be integrated with various deep learning
applications.
Here, we introduce the fundamental layer structure and

basic concept of DeepJSCC for image transmission. Figure 2
shows the layered structure. The structure was adopted
from [6], [7] and we slightly modified it accordingly for
stabilization. The encoder of DeepJSCC contains a series of
two-dimensional convolutional layers (Conv2D), generalized
divisive normalization (GDN) or batch normalization layers
(BN), and parametric rectified linear unit (PReLU) layers as
activation layers. The notation H×W×F|S denotes the kernel
size with height H, width W, number of output channels F,
and stride size S. The encoder is represented as a function
f :{0, 1, . . . , 255}hin×win×3 → C

Nsym where hin and win are
the height and width of the input image. Nsym is the number
of IQ symbols as bellows,

Nsym = hinwinc

2
∏
si2

, (1)

where c denotes the number of output channels in the last
Conv2D. The compression rate is discretely adjusted using
c. si denotes the stride size at the i-th Conv2D layer. Nsym
contains a coefficient 1/2. This is because the encoder output
is divided into two parts and combined to derive IQ complex
symbols. The first and latter parts correspond to the In-phase-

FIGURE 3. Constellation distribution of DeepJSCC signal in the case of CIFAR-10
test dataset.

and Quadrature- symbol sequences, respectively. Since the
compression ratio is adjusted at the final layer of the encoder
and the first layer of the decoder, it does not significantly
increase the number of parameters in the DeepJSCC system.
For example, when comparing c = 8 and c = 16, the total
number of parameters in the encoder increases by only about
2%. Therefore, it does not have a significant impact on
processing latency and power consumption.
Upon dividing them into IQ sections, we combine the

I-symbol with the Q-symbol and create a complex baseband
signal. The output symbols z ∈ C

Nsym are normalized
based on the average power z/‖z‖ and transmitted to
the wireless channel. The decoder contains a series of
two-dimensional transposed convolutional (TransConv2D)
layers, BN or inverse GDN, and PReLU layers. Figure 3
shows the distribution of the encoder outputs as IQ symbols
when trained on the CIFAR-10 dataset. A Gaussian-like
distribution was obtained. In an AWGN channel with an
average power constraint, the ideal IQ symbol distribution
is Gaussian, and it can be observed that the encoder outputs
a comparable distribution. This indicates that DeepJSCC
automatically selects symbol mappings that asymptotically
approach the Shannon limit.
For deep learning techniques, this paper employed a

simple NN based on convolutional structure. However,
optimization should be performed depending on the specific
task. In such cases, neural architecture search (NAS) is sig-
nificant effective [12]. The related work on split computing
has proposed the use of NAS to optimize latency, which can
also be applied to DeepJSCC [13]. Furthermore, DeepJSCC
can be applied not only for image transmission but also for
image recognition [14] as semantic communication. In this
case, similar to split computing, the layers of an NN for
image recognition or object detection can be divided, and
the latent space can be transmitted as IQ signals. Moreover,
in 5G, channel estimation is performed using pilot signals.
Meanwhile, in scenarios where the channel dynamically
fluctuates, coordination between an adaptive equalizer and a
decoder of DeepJSCC is also necessary. Although we have
proposed the coordination method mainly for underwater
acoustic communication [15], similar approaches could be
considered for DeepJSCC in the future, e.g., 6G.
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B. DEEPJSCC’S IMPLEMENTATION
Unlike typical deep learning applications, processing time is
also an important factor and discussed in [6], which suggests
that the execution speed is comparable or faster to that of
JPEG and other formats. In addition, real-time performance
is an important indicator for use in video transmission.
We have proposed a self-attention-based DeepJSCC with
FPGA implementation, the encoder has successfully operated
at more than 30 FPS [16]. The processing time is the
important parameter to determine the layer structure. Owing
to a relatively uncomplicated layer structure, DeepJSCC is
operated in the required processing time.
More cellular communication-specific schemes have also

been widely studied, such as integrating equalization and
DeepJSCC decoders when orthogonal frequency division
multiplexing(OFDM) schemes are used [17], adaptively
tolerating channel gain and noise variations based on channel
state information (CSI) [18], and achieving one-to-many
communications [19]. Several studies on simulation analyses
are also reported. For employing DeepJSCC on cellular
system, DeepJSCC does not use bit-level information, mak-
ing it less compatible with upper layers that are controlled
based on bit-information data. In particular, retransmission
functions, which are closely related to the physical layer,
cannot be directly utilized. Thus, integrating DeepJSCC
with hybrid automatic repeat request (HARQ) has been
proposed [20].
For the experiment, to the best of our knowledge, only

software-defined radio-based indoor experiments have been
reported [21], [22]. In [21], the carrier frequency and system
bandwidth were 2.4 GHz, 300 kHz. In [22], 2 GHz and
364 kHz were adopted as well. These are experimental
results in a limited environment with a narrow bandwidth.
We studied DeepJSCC for cellular applications, particu-

larly 5G systems. In this paper, an interface that connects
external devices to a commercially supported 5G system
(gNB and UE) is implemented. The external device directly
transmits the IQ symbols to the gNB. The device then assigns
RBs to OFDM signals. When receiving IQ symbols, the gNB
assigns proper RBs based on indications from the external
device. We conducted experiments using a commercially
supported 5G gNB and UE to investigate the feasibility of
image transmission.

III. INTERFACE DESIGN
We modified a commercially available industrial 5G system
released in Japan to transmit and receive DeepJSCC signals.
The 5G system specifications are listed in Table 1. In Japan,
the frequency band ranges from 4.6 to 4.9 GHz. One frame
(= 10 ms) contains ten sub-frames. One sub-frame (= 1 ms)
includes two slots owing to the 30-kHz subcarrier spacing.
One slot is divided into 14 OFDM symbols (= 35.7 μs).
Finally, one resource block (RB) contains 12 subcarriers and
one slot. Considering the frequency guard band, there are
273 RBs per slot as a physical downlink shared channel
(PDSCH).

TABLE 1. 5G system parameters.

FIGURE 4. Physical layer structure. The base station was modified to
receive/transmit IQ data from/to an external device.

Figure 4 shows the modified structure of the 5G system.
In this implementation, IQ symbols generated by an external
device are directly written into the RBs of the gNB.
Consequently, higher-layer PHY functionalities, such as
HARQ, are bypassed and remain inactive for these externally
provided signals. It should be noted that this configuration is
not designed to maintain full compatibility with the standard
5G protocol stack, but is instead a purpose-built modification
intended for PoC experimentation.
The gNB and UE transmit and receive IQ symbols

from external devices. The external device encapsulates IQ
symbols in Ethernet frames and forwards them to gNB. The
gNB maps the IQ data to RBs and transmits them to the UE.
The UE receives the signal. The received signal is not directly
fed into the DeepJSCC decoder but is first passed through
the equalizer implemented in the UE. This equalizer is based
on a conventional zero forcing method using channel state
information. After that, the UE extracts the IQ symbols from
RBs. Subsequently, the IQ symbols were encapsulated into
Ethernet frames and forwarded to an external device. This
operation was repeated every 10 ms. Although other systems
can use the unused RBs, a dummy QPSK signal is inserted
in this modification. Figure 5 shows the RB assignments.
We allocated DeepJSCC signals from the 0th to 90th RBs.
Additionally, the 0th and 10th slots are used. Other RBs
can share with conventional 5G systems, as conventional
IQ signals can be allocated arbitrarily. However, additional
studies will be needed in the future regarding layers higher
than the PHY layer. The number of available OFDM symbols
PDSCH is 12, whereas one slot includes 14 OFDM symbols.
Thus, the maximum number of transmittable IQ symbols per
slot is 91 (RB/PDSCH) ×12 (subcarrier/RB) ×12 (PDSCH)
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FIGURE 5. Modified 5G frame structure for DeepJSCC. D: downlink, U: uplink,
S: special slot. 0-to-90 RBs and 0th & 10th slots are assigned for DeepJSCC.

= 13104 (IQ symbol). The DeepJSCC signal forwarded from
the external device to gNB is a quantized 16-bit signal. The
throughput required for the interface was 16 (bit) ×2 (IQ)
×13104 (IQ symbol) /10 (ms) � 5.24 Mbps. In other words,
a standard Ethernet cable can be used to transfer signals.

IV. PRELIMINARY VERIFICATION
This section describes the layer structure and learning
method we used prior to conducting experiments. Here, we
compare the DeepJSCC with the normal QAM signal with
JPEG2000 and LDPC by simulation.

A. DEEPJSCC SETUP
Figure 2 shows the layer structure. The dataset we used
was DIV2K which includes 800 and 100 full HD images
for training and validation [23]. In the training process,
we cropped four squared images from one full HD images
and resized it to 256 × 256 pixel. Finally, we obtained
3200 images for training. At first, the DeepJSCC was
trained 1000 epochs in CIFAR-10. After that, we trained
the DeepJSCC with 5000 epochs in the cropped DIV2K of
3200 images. In anticipation of field experiments under real
outdoor conditions, we trained the model using a simple
AWGN channel model to avoid overfitting to specific channel
characteristics and to prioritize generalization and robustness
across diverse environments. The training signal-to-noise
power ratio (SNR) was set to 6 dB or 13 dB. In addition,
the experiment in the next section also verify training SNR
= 20 dB. As to the reason for supporting these three types
of the training SNR, in our previous work we confirmed
the relationship between training SNRs and test SNRs on a
simulation basis [24]. As a result, we have confirmed that
a small number of training SNRs are sufficient to support
a wide-range test SNR, although we have only investigated
the AWGN channel. Therefore, we employ three types of
training SNRs in this paper. In the validation process, we
cropped the 100 validation images to square maximum size
and then resized to 256 × 256. Loss function and optimizer
were set to mean square error (MSE) and Adamax. c, which

is the number of output channels at the last layer of the
encoder in Fig. 2, adjusts the compression ratio. Thus, in
the validation process, the number of IQ symbols is 256 ×
256c/(4×4×2) = 2048c. In this paper, we set c = 4, 8, 16.

As a baseline method, we employed JPEG and JPEG2000
on the source coding and the LDPC on the channel coding,
respectively. The LDPC coding rate was set to 1/2 or 2/3.
Note that we assumed the block length of LDPC to DVB-S.2
not typical 5G. This is because the DVB-S.2 has the higher
error tolerance than the typical 5G. That is, this conditions
are slightly unfavorable for DeepJSCC. The block length
was 64800. In the DeepJSCC transmission, the number of
IQ symbols is fixed by c. Thus, to conduct fair evaluation,
while we changed the compression index γjp of JPEG and
JPEG2000, we sought the number of IQ symbols by each
image close to that of DeepJSCC IQ symbols as below,

γ ∗
jp = argmin

γjp

∥
∥
∥
∥
∥

Njp
(
γjp

)

2kr
− Nsym

∥
∥
∥
∥
∥
, (2)

where k is the modulation index, r is the coding rate. Njp(γ )

is the number of bits after source coding with compression
index γjp.

B. SIMULATION – PSNR EVALUATION –
We conducted the numerical simulation using the DeepJSCC
model learned by the setup in Section IV-A. The channel
was set as AWGN and the PSNR was evaluated when the
SNR was varied. PSNR is introduced as the image quality
metric and is defined as

PSNR = 10 log10
R2
max

emse
, (3)

where Rmax is the maximum pixel value. In the common
case, Rmax = 255. emse is the MSE between the input and
output images. It is defined as,

emse = 1

hw

h∑

i=1

w∑

j=1

[
x(i, j) − x′(i, j)

]2
. (4)

where h and w are the height and width of the images.
x(i, j) and x′(i, j) are the pixels between the images to be
compared.
For the baseline, the number of JPEG images that were

not opened was also evaluated. Figures 6, 7, and 8 are
the results at c = 4, 8, 16, respectively. (a) is the mean
PSNR, (b) is the standard deviation of PSNR, and (c) is
the broken image rate (= number of broken images/total
number of images). All images are compressed by JPEG2000
in the case of the baseline. Overall, the mean PSNR of
baseline was better than that of DeepJSCC. In the lower SNR
region, a slight advantage for DeepJSCC appeared. Referring
to (b), the variance of PSNR was small in the case of
DeepJSCC. When considering a general autoencoder-based
image compression model, it may be vulnerable to localized
errors. Similar problems have been raised in split computing,
where introducing a Dropout layer between the encoder and
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FIGURE 6. Simulation results at c = 4.
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FIGURE 7. Simulation results at c = 8.
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FIGURE 8. Simulation results at c = 16.

decoder supports to widely distribute important information
across the latent space [25]. Similarly, in DeepJSCC, a
noise channel is placed between the encoder and decoder
during training process, making the model more resilient
to localized noise in the channel. From the PSNR results,
we observed that even when changing c, the standard
deviation remains largely unchanged. Additionally, as the
compression ratio decreases, the average PSNR remains
stable and increases consistently.
Another important consideration is that adaptive modula-

tion must operate properly when baseline is applied. Failure
to follow even the slightest variation in the SNR of the
channel causes cliff effects and possibly destroys the image.
In addition, DeepJSCC always achieves nearly optimal
PSNR without changing the encoder-decoder configuration.
These facts indicate that even if the image quality was
equivalent to the baseline, the advantages are sufficient.
Especially when channel variations are large, such as
in moving conditions, the probability of modulation and
coding scheme (MCS) selection failure increases even with
conventional adaptive modulation. In contrast, DeepJSCC
allows reception without modifying the model, thus enabling

images to be restored with more appropriate PSNR
quality.
It is also possible to optimize adaptive modulation using

artificial intelligence (AI)-based techniques. For example,
a method for MCS selection using reinforcement learning
has been proposed [26]. While this approach allows for
maintaining high PSNR with high accuracy, DeepJSCC has
the advantage of eliminating the need for adaptive modula-
tion itself. Meanwhile, when DeepJSCC signals coexist with
conventional modulated signals such as QAM signal, it is
necessary to incorporate a priority policy for DeepJSCC into
the RE allocation algorithm.

C. SIMULATION – PAPR EVALUATION –
We estimated the PAPR when using DeepJSCC. In our
simulation setting, there were 273 RBs, each containing
12 subcarriers, resulting in a total of 3276 resource elements
(REs). We calculated the PAPR for each OFDM symbol.
The following five signal types were compared: Random
QPSK signal (3276 REs), DeepJSCC signal (3276 REs),
DeepJSCC signal (1092 REs) combined with random QPSK
signal (2184 REs), white Gaussian noise treated as an OFDM

VOLUME 6, 2025 4899
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FIGURE 9. PAPR distribution.

symbol (3276 REs), and a time-domain DeepJSCC signal
called the single-carrier (SC) JSCC signal. Figure 9 shows
the empirical CDF of PAPR using the CIFAR-10 dataset in
the case of c = 8. According to (1), when 32 × 32 × 8/(2 ×
22 × 22) = 256 symbols are transmitted per image. See [6]
for details on the definition of the compression ratio. When
employing OFDM, the resulting PAPR was not substantially
different from that of the QPSK signal. On the other hand,
a higher PAPR was observed when the SC-JSCC signal was
used instead of OFDM. Thus, as in typical 5G systems,
techniques such as clipping are required to suppress PAPR.
Notably, Shao and Gündüz proposed a method for mitigating
the PAPR of JSCC signals in [27], and its effectiveness has
been demonstrated. In this paper, however, we did not apply
any clipping or similar methods, and evaluated the normal
JSCC signal.

V. INDOOR EXPERIMENT
This scenario simulates an industrial indoor channel setting
with strong multipath reflections, such as a factory or
a warehouse. The transmission power was intentionally
reduced to emphasize the effects of signal reflections. These
conditions are challenging for conventional coding schemes,
as multipath interference can cause signal degradation.
DeepJSCC is expected to be more robust under such
conditions due to its end-to-end optimization of source and
channel coding.

A. SETUP
Figure 10 shows the experimental setup. The experiment was
conducted in a typical classroom. First, on the gNB side, both
gNB and UE are placed on a desk with a height of 70 cm.
The number of antennas is one each for both gNB and UE
in a single-input-to-single-output (SISO) configuration. To
configure a low SNR environment, the transmission power of
the gNB was set to −2.0 dBm. The maximum and minimum
received power of the UE were the range of −70.0 dBm and
−75.0 dBm measured by received signal strength indicator
(RSSI).
The reason for conducting experiments around the lower

RSSI limit was not only to demonstrate the effectiveness of

FIGURE 10. Room condition for experiment.

DeepJSCC in low-SNR region but also, at higher SNRs, it
is expected that the results are identical to those obtained in
simulations. In our previous work, we conducted verification
by wired-connecting the gNB and the UE and obtained
nearly same PSNR between experiment and simulation [8].
In addition, according to the specifications of the gNB
and UE used in our setup, certain modulation schemes are
recommended based on the RSSI level. For example, when
RSSI is −75 dBm, even with a direct cable connection
between the gNB and UE, 16QAM cannot be reliably
demodulated (resulting in a BER of approximately 0.5).
Similarly, when the RSSI drops to around −80 dBm, QPSK
demodulation also starts to become infeasible, indicating the
lower limit of reliable reception.

B. RESULTS
Figure 11 shows the measured CDF of PSNR calculated
from the restored images. While a PSNR degradation was
observed in DeepJSCC when the training SNR is 13 dB
and 20 dB, the PSNR was significantly improved when the
training SNR was 6 dB. In particular, the average PSNR
(around 0.5 on the vertical axis) was superior to the baseline
in most images. However, at c = 4, 8, when the CDF
approaches 1.0, the PSNR employed the baseline was better
than the DeepJSCC. In the c = 16 case, the baseline was
also better than the DeepJSCC over CDF = 0.8. On the other
hand, the number of plotted points (images) in the baseline
was lower than in DeepJSCC. This is because corrupted
images were not included in the plot.
Table 2 shows the results of all measurements. γμ and γσ

are the mean and standard deviation of PSNR, respectively.
BER is the bit error rate and Nimg is the number of corrupted
images. As the table shows, DeepJSCC (training SNR =
6 dB) has the best average PSNR and a relatively small
standard deviation. On the other hand, the baseline 16QAM
signal degraded the BER and corrupted all images. As for
the baseline QPSK signal, dozens of images were also
corrupted. These results indicate that DeepJSCC can be
applied predominantly in practical environments with lowwer
SNR and higher compression ratio compared to the baseline
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FIGURE 11. CDF in indoor experiment.

TABLE 2. Experimental results in indoor experiment.

FIGURE 12. Example image in indoor experiment in the 6-dB training SNR case.

FIGURE 13. Field condition for outdoor experiment.

method. Figure 12 shows an example of the transmitted
images. When c = 4, the distortion was observed, while the
images are relatively clear.

VI. OUTDOOR EXPERIMENT
A. SETUP
In our outdoor experiments, we evaluated DeepJSCC
under four different transmission scenarios to analyze its
performance across various wireless conditions. Figure 13
shows the experimental setup. We conducted experiments at

three locations, A, B, and C. The gNB was placed at a height
of 3.0 m and the UE was placed at a height of 65.7 cm. The
number of antennas was one each for both the gNB and the
UE in a SISO configuration. The details of each scenario
are as follows:

1) LOS ENVIRONMENT 1 (RSSI NEAR LOWER LIMIT) AT
LOCATION A

This scenario represents a long-range outdoor communica-
tion setup where the received signal strength indicator (RSSI)
is at the minimum level required for reliable reception.
Applications include surveillance cameras or drone-based
monitoring systems operating at the edge of coverage areas.
In such conditions, JPEG2000 and LDPC-based coding
are susceptible to packet loss, leading to significant image
degradation, whereas DeepJSCC is expected to maintain
better image quality by dynamically adapting to channel
variations. The distances between the gNB and the UE are
117.0 m. The transmission power of the gNB was set to
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FIGURE 14. CDF in outdoor experiment at point A (117 m).

FIGURE 15. Example image in outdoor experiment at point A (117 m) in the 6-dB training SNR case.

13.0 dBm. The maximum received power of the UE at this
point was −75.0 dBm measured by RSSI.

2) LOS ENVIRONMENT 2 (RSSI BELOW LOWER LIMIT) AT
LOCATION A

Similar to the previous outdoor LoS scenario but conducted
in an even weaker signal environment where the RSSI falls
below the reception threshold. This scenario is designed to
evaluate the resilience of DeepJSCC in extreme wireless
conditions where traditional methods typically fail. The
distances between the gNB and the UE are 123.0 m. The
gNB’s transmission power was set to 3 dBm. The received
power of the UE was below the lower RSSI measurement
limit (< −75 dBm). However, since the RSSI was −60 dBm
before the transmission power was attenuated by 20 dB, the
received power was estimated to be around −80 dBm.

3) NLOS ENVIRONMENT 1 (RSSI BELOW LOWER LIMIT)
AT LOCATION B

This scenario mimics urban environments where buildings
or other obstacles obstruct direct signal paths, causing
severe multipath fading and signal attenuation. The RSSI
in this scenario is below the minimum reception threshold.
Such conditions are typical in smart city infrastructure and
V2X (Vehicle-to-Everything) communications. DeepJSCC’s
ability to reconstruct images despite high interference and
signal degradation is assessed here. The gNB transmission
power was set to 23 dBm. The received power of the UE
fluctuated within the range between −70 and −75 dBm.
The shielding object was a concrete building with glass
walls.

4) NLOS ENVIRONMENT 2 (RSSI BELOW LOWER LIMIT)
AT LOCATION C

This scenario represents an extreme non-line-of-sight (NLoS)
environment where the received signal strength indicator
(RSSI) is well below the lower reception limit. In this
case, even when using QPSK signal, transmission errors
are inevitable, leading to complete failure of conventional
reception. The purpose of this experiment is to investigate
whether DeepJSCC can maintain any meaningful image
reconstruction under such severe conditions where traditional
source-channel separated coding schemes would fail com-
pletely. The gNB transmission power was set at 23 dBm
while the UE receive power was significantly below the
lower limit of the measurement. The shielding object was a
concrete building with no glass walls.

B. RESULTS
Figures 14–20 shows the CDF of the PSNR calculated from
the restored images at each measurement location. Table 3–6
shows the full measurement results for each location; as in
the case of Indoor, the characteristics were greatly improved
when the trained SNR was 6 dB. Since the experiment
was conducted near the lower RSSI measurement limit and
QPSK demodulation is almost impossible, it is expected that
the measurement conditions were similar or close to the
training SNR = 6 dB. The discrepancy between the training
SNR and the actual SNR causes performance degradation.
However, when comparing training SNR = 6 dB and 13 dB,
only about a 1.0 dB difference was observed. This indicates
that sufficient performance can be achieved even without
strictly estimating the channel SNR. On the other hand, when
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FIGURE 16. CDF in outdoor experiment at point A (123 m).

FIGURE 17. Example image in outdoor experiment at point A (123 m) in the 6-dB training SNR case.
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FIGURE 18. CDF in outdoor experiment at point B.

FIGURE 19. Example image in outdoor experiment at point B in the 6-dB training SNR case.

training SNR = 20 dB, the performance degrades by nearly
5.0 dB compared to training SNR = 6 dB. Because of low
noise level at SNR = 20 dB, the latent space could not
obtain noise resilience.

1) LOS ENVIRONMENT 1 (RSSI NEAR LOWER LIMIT) AT
LOCATION A

For location A (117 m), DeepJSCC showed bet-
ter characteristics at almost all points; for the
JPEG2000/QPSK/LDPC(2/3) combination, some images

showed higher PSNR than DeepJSCC. However, from
Table 3, the characteristics of DeepJSCC are superior when
comparing the mean and variance values of PSNR. Figure 15
shows an example of the transmitted images. We obtained
the clear images.

2) LOS ENVIRONMENT 2 (RSSI BELOW LOWER LIMIT) AT
LOCATION A

In the case of location A (123 m), the conditions were set
more severely, the baseline failed to recover most of the
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FIGURE 20. CDF in outdoor experiment at point C.

TABLE 3. Experimental results in outdoor experiment at point A (117 m).

TABLE 4. Experimental results in outdoor experiment at point A (123 m).

TABLE 5. Experimental results in outdoor experiment at point B.

images. However, in the case of JPEG/QPSK/LDPC(1/2) and
JPEG2000/QPSK/LDPC(1/2) with c = 8, the characteristics
that outperform DeepJSCC were confirmed despite the pres-
ence of corrupted images. Table 4 also shows that DeepJSCC
tends to be disadvantageous in the range where QPSK can be
demodulated adequately. However, even under this baseline-
dominated situation, DeepJSCC is still valuable from the
perspective of continuing to output stable PSNR images
without image corruption. Figure 17 shows an example of
the transmitted images. In this region, where the reception

sensitivity falls below the minimum RSSI which the UE can
measure, image distortion begun to become noticeable.

3) NLOS ENVIRONMENT 1 (RSSI BELOW LOWER LIMIT)
AT LOCATION B

For NLoS environments, the figure and table show that
DeepJSCC was able to stably restore the images, albeit at
a low PSNR, even under conditions where the baseline was
barely restored. These results suggest that DeepJSCC has
high utilization value. Figure 19 shows an example of the

4904 VOLUME 6, 2025



TABLE 6. Experimental results in outdoor experiment at point C.

FIGURE 21. Example image in outdoor experiment at point C in the 6-dB training SNR case.

transmitted images. Although unclear, the content of the
image can still be recognized.

4) NLOS ENVIRONMENT 2 (RSSI BELOW LOWER LIMIT)
AT LOCATION C

From Table 6, it appears that DeepJSCC has successfully
restored images, with an average PSNR of around 8 to
9 dB, while conventional methods have completely failed
to recover them. However, in PSNR calculation, when
a completely random image is output with pixel values
uniformly distributed in the range of 0 to 255, as derived
from (3), the PSNR is given by 10 log10(2552/(255/2)2) =
6 dB. This means that as the PSNR approaches 6 dB,
the restoration has effectively failed. In the actual image
examples in Fig. 21, the content of the original image
is completely unreadable. This suggests that, even when
using DeepJSCC, image reconstruction is almost entirely
unsuccessful in this case.

5) PROCESSING TIME

Regarding the processing time of the encoder and decoder,
we measured it using a high-end consumer GPU, the
NVIDIA GeForce RTX 4090. For a 256 × 256-pixel image,
the encoder required approximately 5 ms, and the decoder
took around 7 ms. In addition to this, transmission delay must
also be considered. For example, to transmit a 256 × 256-
pixel image with c = 8, a total of 16384 IQ symbols are
required. Assuming that all 273 RBs are utilized, and each
OFDM symbol accommodates 3276 REs, the transmission
can be completed in approximately 5 OFDM symbols. With
a subcarrier spacing of 30 kHz, the transmission delay is
approximately 166.5 μs. Even if the number of usable RBs
is limited to 10%, the additional transmission delay remains
under 2 ms. Therefore, the total end-to-end latency, including

encoding, transmission, and decoding, is confirmed to be
well below 20 ms.

VII. LIMITATION
For the implementation of DeepJSCC in cellular systems.
Since the input signal to the decoder is an IQ signal, it is
necessary to obtain the IQ signal from the receiver. In other
words, it is not easy to simply attach a DeepJSCC decoder
externally to a gNB. It is necessary to modify the gNB
such as our gNB. In addition, since progress in the deep
learning field is extremely rapid, it is necessary to be able
to change the layer structure flexibly. This also means that
it is difficult to implement hardware such as ASICs along
with DSPs in gNBs and UEs. That is, a GPU or CPU circuit
for DeepJSCC must be prepared and hardware circuits in
gNB and UE are modified to be able to input and extract
IQ signals. Not only is there concern that using a GPU
results in higher power consumption, but also timing jitter
due to software processing. FPGA is a promising solution
for addressing this issue. We have currently verified the use
of an FPGA and have confirmed operation at 30 FPS, which
is a typical video frame rate [16].

For the signal processing, although we indicated
DeepJSCC is extremely effective at low SNR, the IQ signal
generated by DeepJSCC cannot be obtained unless the bit
information for the 5G system to recognize the control
signal such as PDCCH/PUCCH and perform the equalization
process is obtained. That is, there is still a lower limit to the
SNR that can be received the DeepJSCC signal, so advanced
synchronization and equalization mechanism are needed to
further emphasize the performance of DeepJSCC.
In this study, the channel is assumed to be static. However,

future applications may require adaptation to high-mobility
scenarios with significant Doppler spread. If pilot-based
channel estimation is available and the channel is treated as
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quasi-static, DeepJSCC signals can be equalized accordingly.
On the other hand, in scenarios where channel estima-
tion must be performed concurrently with data decoding,
new DeepJSCC architectures are required, as the method
presented in this paper is unlikely to cope effectively with
highly time-varying channels.
Furthermore, this paper conducted the experiment using

SISO system. In the future, when extending to multiple-
input multiple-output (MIMO) technique, ghost imaging may
occur. Since DeepJSCC transmits the latent space output
by the encoder directly, interference between latent spaces
can appear as ghost images in the decoder. Therefore, when
implementing MIMO technique, the decoder design become
more important to suppress the ghost imaging.

VIII. CONCLUSION
This paper conducted the first indoor/outdoor field trials
of DeepJSCC in a 5G environment, revealing its practical
feasibility and robustness under diverse propagation condi-
tions, including both LoS and NLoS scenarios. Experimental
results demonstrated that DeepJSCC consistently enhanced
image transmission quality, particularly in low-SNR regions
where the baseline methods such as JPEG2000 and LDPC-
based coding with typical modulation formats frequently
failed. The system achieved higher average PSNR and no
image corruption compared to baseline methods, with a
notable ability to maintain stable performance across varying
compression ratios and channel conditions.
A significant insight from the experiments is that

DeepJSCC excels in scenarios with extremely low received
signal power, effectively mitigating the cliff effect observed
in baseline schemes. The successful integration of DeepJSCC
with a modified OFDM-based 5G framework highlights its
potential as a transformative approach for real-time, high-
quality image transmission.
Furthermore, we demonstrated that even a DeepJSCC

model trained solely on an AWGN channel maintains
stable performance in real-world 5G environments. This
result highlights the generalization ability of the model
without requiring adaptation to specific channel models. We
also estimated the end-to-end latency, including encoding,
transmission, and decoding, and confirmed that the total
processing time remains well below 20 ms, satisfying
the requirements for real-time applications such as drone
control. These findings reinforce the feasibility of deploying
DeepJSCC in practical wireless systems.
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