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Classification accuracy of pain 
intensity induced by leg blood 
flow restriction during walking 
using machine learning based on 
electroencephalography
Hirotatsu Imai1,2, Yuya Kanie1,2,3, Shusuke Yoshimoto2,4, Natsuki Yamamoto1,2, 
Masayuki Furuya1, Takahito Fujimori1 & Seiji Okada1

Pain assessment in clinical practice largely relies on patient-reported subjectivity. Although previous 
studies using fMRI and EEG have attempted objective pain evaluation, their focus has been limited to 
resting conditions. This study aimed to classify pain levels during movement using a wearable device 
with three forehead electrodes and advanced machine learning. Twenty-five healthy participants 
performed walking tasks under tourniquet-induced pain. It was confirmed that pain increased as 
walking time extended. Walking time was used as an index of pain stimulus intensity, and EEG data 
were collected to classify pain levels. Three machine learning algorithms—Random Forest, eXtreme 
Gradient Boosting (XGBoost), and Light Gradient Boosting Machine—were employed. XGBoost 
achieved the highest classification performance among them. Classification accuracy for 2-, 3-, 
and 5-class classifications was evaluated and compared with and without BrainRate (BR), a metric 
indicating changes in the frequency spectrum and reflecting relative shifts across all frequency bands. 
Without BR, accuracies were 0.82 for 2-class, 0.60 for 3-class, and 0.40 for 5-class classification. 
Including BR improved accuracies to 0.96, 0.75, and 0.47, respectively. These findings highlight the 
significant role of BR in improving pain classification accuracy and the potential of this system for 
objective pain assessment even during movement.

Keywords  Electroencephalography, Artificial intelligence, Movement-related pain, Tourniquet pain, Leg 
blood flow restriction, Frequency spectrum

Pain is an essential signal that alerts the body to potential injury or dysfunction, serving a protective role. 
However, when pain becomes persistent, it can shift from a protective response to a debilitating condition. 
Persistent pain, particularly chronic musculoskeletal pain, significantly reduces quality of life (QOL) and impairs 
activities of daily living (ADL). According to the World Health Organization (WHO), chronic musculoskeletal 
pain is widespread, affecting 27.5% of the global population1. Chronic musculoskeletal pain not only adversely 
influences health and QOL but also imposes a considerable strain on healthcare systems and the global economy. 
According to another report, musculoskeletal disorders contributed substantially to the global disease burden in 
2017, with an estimated 1.3 billion prevalent cases, 121,300 deaths, and 138.7 million disability-adjusted life years 
(DALYs) worldwide2. A large number of people suffer from musculoskeletal pain, whose widespread prevalence 
has led to increased healthcare costs, reduced workforce productivity, and a growing societal burden3.

Current pain assessment methods, such as the Visual Analogue Scale (VAS) and the Numerical Rating Scale 
(NRS), depend on patients’ subjective self-reports4. This dependence can result in inconsistencies in reported 
pain levels and communication gaps between patients and healthcare providers. Consequently, the need for 
objective, automated pain assessment methods has been increasingly recognized in recent years.
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Early efforts in automatic pain assessment focused on facial expression analysis, as exemplified by Prkachin, 
who proposed a structured method for decoding pain intensity from facial muscle activity5. Subsequent 
studies expanded to include physiological signals such as heart rate variability, skin conductance, and pupil 
diameter. For instance, Treister et al. demonstrated that combining multiple autonomic parameters improved 
the differentiation of heat pain intensities compared to using single modalities6.

With advances in wearable sensors and computational power, EEG-based methods have gained prominence. 
Studies have shown that brain activity, particularly oscillatory dynamics, reliably encodes both noxious 
stimulus intensity and perceived pain intensity7,8. Kächele et al. introduced a person-centered approach using 
physiological channels, such as ECG and EMG, for continuous pain intensity estimation, paving the way for 
individualized pain modeling9.

More recently, artificial intelligence (AI) and deep learning have enabled new possibilities for pain decoding. 
Wu et al. and Van Den Berg et al. leveraged deep neural networks to capture spatial-spectral-temporal EEG 
patterns for real-time pain assessment10,11. Transformer-based models have also been explored, such as the 
work by Lu et al., which employed multiscale deep learning for physiological signal-based pain classification12. 
Furthermore, multimodal approaches integrating EEG with surface EMG have been proposed to improve 
classification performance in chronic pain contexts, as shown by De et al.13.

Despite these advances, few studies have addressed the challenge of assessing pain during movement—a 
scenario frequently encountered in real-world and clinical settings. Many existing studies rely on experimental 
pain models under resting conditions, which limit their applicability to daily life or postoperative pain.

In this study, we introduced the HARU-2, a novel patch-type EEG, and utilized a wireless communication 
system for EEG signal collection in an attempt to detect and identify pain during movement. This device is 
lightweight, comfortable to wear, equipped with stretchable, flexible electrodes, and features high-precision 
analog circuitry, enabling the accurate measurement of EEG signals of 1µV or less14. This sensor is designed 
to be worn on the frontal region of the subject’s head, where there is minimal contact with hair. It provides 
reliable EEG signals with lower noise levels than those obtained from frontpolar electrodes of conventional 
EEG systems (Fpz, Fp1, and Fp2). These advances in EEG measurement technology, combined with AI-based 
analysis methods, have opened up new possibilities for assessing pain-related neural activity during movement. 
The aim of this study is to evaluate the classification accuracy (Acc) of wearable EEG combined with AI analysis 
in identifying the presence and intensity of pain during movement.

Materials and methods
Participants
In this experiment, 25 healthy subjects (22 males and 3 females, aged 33.2 ± 2.0 years) participated. The inclusion 
criteria required that participants report no pain at the time of the experiment, were not taking any medication 
(including analgesics), and had no history of developmental delays or cognitive impairments. All participants 
received a detailed explanation of this experimental protocol, which was approved by the Institutional Review 
Board of Osaka University Hospital (No. 22187). All research procedures were conducted in accordance with 
the relevant guidelines and regulations, including the Declaration of Helsinki. Written informed consent was 
obtained from all participants prior to their participation.

Experimental pain modalities
The tourniquet-induced pain model was used as the experimental pain stimulus, which was evoked by restricting 
leg blood flow during walking. While it has been reported that pain intensity from tourniquet application 
increases over time15, we conducted the following experiment to investigate whether this feature persists during 
walking. Each participant walked with an air tourniquet wrapped around both lower legs. To minimize noise 
during walking, participants were instructed to limit head and neck movements as much as possible during 
EEG measurements and to maintain a steady pace of 80 steps per minute. The walking task was performed on 
an indoor track approximately 15 m in circumference. Initially, they walked for 2 min at a tourniquet pressure 
of 0 mmHg (Task 0). Subsequently, they continued walking while the tourniquet pressure was increased and 
maintained at 200 to 250 mmHg to induce sufficient lower extremity ischemia. Painful walking was performed 
for a total of 8 min, divided into four 2-minute segments labeled as Tasks 1 through 4. Tourniquet pressure was 
checked after each task and adjusted to remain within the specified range (Fig. 1).

Pain rating
Pain intensity for each task was assessed using the NRS immediately after the completion of each task. The NRS 
ranges from 0 (no pain) to 10 (the worst imaginable pain).

Electroencephalography recording
Brain activity was recorded using a patch-type EEG device (HARU2; PGV, Tokyo, Japan) with three electrodes 
placed on the forehead (L: left, Z: center, R: right) and a reference electrode positioned on the mastoid behind 
the left ear. This device employs low-noise electrode materials16, and both the electrodes and electrode base are 
flexible, allowing for a secure and comfortable fit to the forehead. In addition, the wired connection between 
the electrodes and the EEG unit is minimized, and wireless signal transmission helps to reduce motion artifacts. 
EEG signals were sampled at 250 Hz. EEG data from the last minute of each 2-minute task’s second half (Tasks 
0–4) were analyzed and labeled as EEG0-4.

Machine learning was employed to evaluate the Acc of classifying pain levels during movement. Three 
different classification approaches were performed. In the first scheme, ‘No Pain’ and ‘Worst Pain’ classes were 
compared to determine whether brainwaves could determine the presence or absence of pain in participants. 
The second approach involved a three-level classification (‘No Pain’, ‘Medium Pain’, and ‘Worst Pain’) to assess 
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whether pain levels could be classified into distinct stages. The third approach aimed for a more detailed 
classification, dividing pain levels into five categories (‘No Pain’, ‘Mild Pain’, ‘Medium Pain’, ‘Severe Pain’, and 
‘Worst Pain’). A summary of the examined classification schemes is provided in Table 1.

Electroencephalography preprocessing
Filtering process
EEG preprocessing involved applying a band-pass filter (0.5–90  Hz) and a blink artifact filter using wavelet 
transformation17. Additionally, a threshold filter (400 µV) was applied to remove motion artifacts.

Frequency analysis
Cleaned EEG data were segmented into 2-second epochs using a Hamming window with 50% overlap. For each 
epoch, the frequency power spectrum was calculated using Fast Fourier Transform (FFT) for the following 
bands: Theta (4–8 Hz), Alpha (8–13 Hz, including Low Alpha [8–10 Hz], Middle Alpha [10–12 Hz], and High 
Alpha [12–13 Hz]), Beta (13–26 Hz, including Low Beta [13–18 Hz] and High Beta [18–26 Hz]), and Gamma 
(26–90 Hz).

A metric called BrainRate (BR)18 was also calculated. BR reflects the spectral center of gravity and indicates 
relative changes across the entire frequency band. BR was computed using the following Eq. (1):

	
BrainRate (BR) =

∑L

i=1 (freqi ∗ poweri)∑L

i=1 poweri

� (1)

In this formula, freqi denotes the center frequency of the i-th frequency bin, and poweri​ represents the 
spectral power at that frequency. L is the total number of bins spanning the 0.5–90 Hz frequency range. This 
measure provides a compact representation of the frequency distribution of EEG signals, where higher BrainRate 

Classification Descriptive classes Corresponding EEG data

2-class classification No Pain, Worst Pain EEG0, EEG4

3-class classification No Pain, Medium Pain, Worst Pain EEG0, EEG2, EEG4

5-class classification No Pain, Mild Pain, Medium Pain, Severe Pain, Worst Pain EEG0, EEG1, EEG2, EEG3, EEG4

Table 1.  Definition of classification schemes and class labels. This table outlines the three classification tasks 
and defines the descriptive class names used in the analysis, along with their corresponding source EEG data 
recorded during each experimental task.

 

Fig. 1.  Experimental Protocol of EEG measurements. Participants walked with air tourniquets wrapped 
around both lower legs. They first walked for 2 min with the tourniquet pressure set to 0 mmHg (Task 0). 
Afterward, they continued walking as the tourniquet pressure was gradually increased and maintained 
between 200 and 250 mmHg. They walked under these painful conditions for a total of 8 min, divided into 
four 2-minute segments (Tasks 1–4). The tourniquet pressure was checked after each segment and adjusted as 
needed to stay within the specified range. EEG recorded during the last minute of each task was analyzed.
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values indicate dominance of higher frequency activity, and lower values indicate stronger presence of lower 
frequencies.

Furthermore, the obtained feature values were standardized using Z-score normalization to correct individual 
differences. Each feature xi​ was centered in Eq. (2):

	
xiz = xi − xmean

xstd
� (2)

Here, xmean and xstd represent the mean and standard deviation of the features used for each subject and each 
task, respectively. For example, in the case of 3-class classification, EEG0, EEG2, and EEG4 are used; therefore, ​ 
xmean and xstd are calculated as the mean and standard deviation of the features from EEG0, EEG2, and EEG4 
for each subject. This centering process accounts for individual differences and facilitates comparisons across 
datasets. For each subject and task, the 1-second frequency power spectra obtained through the windowing 
process were summed and averaged to derive the feature values.

Data analysis and statistics
A subject-wise 5-fold cross-validation was used to evaluate the model’s performance. The participants were 
divided into five distinct groups: one group served as the test set, and the remaining four were used as the 
training set in each iteration. This process was repeated five times, ensuring that each group was used as the 
test dataset once. The performance metrics obtained from the five iterations were averaged to determine the 
final performance metrics of the model. Three machine learning algorithms—Random Forest (RF), eXtreme 
Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—were evaluated in this 
process. These three algorithms were selected because they are applied using the same preprocessing methods. 
This approach eliminates bias due to differences in preprocessing and ensures a fair comparison across the 
models. The algorithm with the highest classification accuracy was selected as the final model. Classification 
performance was evaluated using a confusion matrix, including the following Eqs. (3)-(5):

	
Accuracy (Acc) = T P + T N

T P + F N + T N + F P
� (3)

	
P recision = T P

T P + F P
� (4)

	
Recall = T P

T P + F N
� (5)

TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, respectively.

Statistical analysis
All data were analyzed using IBM SPSS statistics version 27.0 (IBM Corp., Armonk, NY), and are presented 
as means ± SDs. Statistical analyses were performed using one-way analysis of variance (ANOVA) to evaluate 
differences among groups. For post-hoc multiple comparisons, the Bonferroni correction was applied to identify 
significant differences between groups. A significance level of p < 0.05 was considered statistically significant.

Results
Pain rating
Participants’ self-reported pain intensity on the NRS were as follows; mean values for each task were 0 ± 0 for 
task 0, 4.2 ± 1.0 for task 1, 6.2 ± 1.1 for task 2, 7.8 ± 0.9 for task 3, and 9.0 ± 0.8 for task 4, which showed that their 
perception of pain increased over time (Fig. 2). Significant differences were observed between tasks (p < 0.05). 
These findings suggest that walking time could serve as an objective indicator of pain.

Frequency power spectrum
Figure 3  shows the frequency power spectra of preprocessed EEG data from a representative subject. Each 
graph represents the theta, alpha, beta, and gamma bands during a series of walking tasks extracted from three 
channels (ChZ, ChR, and ChL). Vertical dashed lines indicate task transitions.

Comparison of algorithms and model selection
The performance results of the three algorithms (RF, XGBoost, and LightGBM) are presented in Table 2. All 
performance metrics are reported as classification accuracy. While some algorithms occasionally matched or 
exceeded XGBoost’s accuracy for specific classes, XGBoost consistently delivered the highest overall performance 
and was therefore selected as the final model for this study.

Classification using frequency power spectrum
The results of the three types of classification using XGBoost are presented in Fig. 4. The figure presents the Acc 
of each classifier, with values of Acc = 0.82 for the 2-class classification, Acc = 0.60 for the 3-class classification, 
and Acc = 0.40 for the 5-class classification. Additionally, the figure shows the confusion matrix and provides the 
precision for each classification.
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Classification using frequency power spectrum with BR
The results of the three classifications using XGBoost, when power spectrum with BR was included, are presented 
in Fig.  5. The figure presents Acc of each classifier, with values of Acc = 0.96 for the 2-class classification, 
Acc = 0.75 for the 3-class classification, and Acc = 0.47 for the 5-class classification. Additionally, the figure shows 
the confusion matrix and provides the precision for each classification.

Discussion
This study is the first to report the use of leg blood flow restriction during walking as a model for quantitatively 
applying pain stimuli during movement. According to Pyati et al., intra-neural ischemia is the underlying 
mechanism of tourniquet-induced pain19. They also reported that prolonged tourniquet application increases the 
risk of intra-neural ischemia, with pain intensifying as the duration extends. In this study, it was demonstrated 
that pain associated with walking under tourniquet compression increased over time. This finding confirmed its 
utility as progressively increasing pain during movement. Pain intensity was categorized into five levels based 
on walking duration, and machine learning was applied to classify these levels. The classification Acc varied 
significantly depending on whether BR, which represents the center of gravity of the frequency spectrum, was 
included in the training data. BR contributed substantially to 2-class and 3-class classification, but in 5-class 
classification, performance did not significantly exceed the baseline accuracy (ChanceRate), even when BR was 
included.

Various instruments have been used to objectively assess pain. In a fMRI study, Wager, T. D. et al. investigated 
the neural signature elicited by thermal pain stimuli, identifying key brain regions such as the thalamus, posterior 
and anterior insula, secondary somatosensory cortex, anterior cingulate cortex, and central gray matter. The 
authors concluded that fMRI could be utilized to analyze brain activity patterns and objectively measure pain 
intensity without relying on self-reports. However, these techniques have certain limitations. Firstly, MRI 

Fig. 2.  Boxplots of NRS, an indicator of pain intensity during walking, across the five tasks. The self-reported 
pain intensity increased over time, with significant differences observed between each task (p < 0.05).
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systems are expensive and require large equipment, making them impractical for installation in smaller medical 
facilities. Secondly, they can only measure pain under controlled conditions, restricting their use for assessing 
pain in daily life.

In contrast, electroencephalography (EEG) is the most commonly used modality due to its affordability 
and non-invasive nature. However, traditional multi-electrode EEG systems with long wires also have limited 
applicability, as they are generally confined to specific environments. In recent years, several studies have utilized 
AI to classify pain objectively using EEG signals. For example, Nezam et al. used a 30-electrode EEG system 
to classify cold-induced pain into three or five levels, achieving 83% accuracy for three-level and 60% for five-
level classification20. Similarly, Modares-Haghighi et al. employed 29 electrodes and reported 92% accuracy for 
binary classification and 86% for five-level pain classification21. Wu et al. developed a model that learned spatial-
spectral-temporal features from EEG signals for subject-independent pain estimation10, while Van Den Berg et 

RF XGBoost Light GBM

2-class
Without BR 0.70 0.82 0.78

With BR 0.86 0.96 0.88

3-class
Without BR 0.46 0.60 0.64

With BR 0.56 0.75 0.78

5-class
Without BR 0.32 0.40 0.27

With BR 0.33 0.47 0.38

Table 2.  Performance comparison of algorithms (Acc). The performance of three algorithms (RF, XGBoost, 
and LightGBM) was compared for each classification task (2-class, 3-class, and 5-class). Each task was analyzed 
both with and without using BR as a feature. The performance values are the final model metrics, which 
were averaged from a subject-wise 5-fold cross-validation. While some algorithms occasionally matched 
or exceeded XGBoost’s accuracy for specific classes, XGBoost consistently delivered the highest overall 
performance and was therefore selected as the final model for this study. All values represent classification 
accuracy (Acc).

 

Fig. 3.  Frequency power spectra of the preprocessed EEG signal. The graph shows standardized features in 
the theta (4–8 Hz), alpha (8–13 Hz), beta (13–26 Hz), and gamma (26–90 Hz) frequency bands extracted from 
three EEG channels (ChZ, ChR, and ChL) during the walking task. The horizontal axis represents time, and the 
vertical axis represents the standardized values of each frequency band ( xiz = (xi − xmean)/xstd). Vertical 
dashed lines indicate the transition between tasks (task 0 to task 4).
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al. estimated perceptual thresholds in real-time based on EEG without requiring participant responses11. Lu et 
al. proposed a transformer-based model to classify pain using physiological signals12. De et al. combined EEG 
with surface electromyography (sEMG) in a multimodal framework to classify chronic low back pain into four 
severity levels13.

Although these AI-based approaches have shown promising results, all of them were conducted under resting 
or controlled experimental conditions. To our knowledge, no previous study has evaluated pain classification 
during physical movement using EEG. Therefore, this study is the first to assess pain classification accuracy 
during movement using a compact, wearable EEG device. Our approach addressed challenges such as noise 
caused by the presence of cords and the loss of mobility. While our results showed lower Acc compared to 
previous studies conducted in the resting state, the Acc for 2-class and 3-class classifications was still high. This 
suggests that it is possible to objectively classify pain even under the challenging conditions of using only three 
frontal-region electrodes and performing measurements during movement, which is typically less favorable for 
EEG analysis.

In this study, the BR index, in addition to the frequency spectrum of each band, was included in the training 
data. For all classifications, incorporating BR significantly improved Acc compared to results obtained without 
it. Although there have been a few reports examining individual frequency bands7,22, no studies have specifically 
investigated BR, which quantifies the center of gravity of the frequency spectrum. The findings of this study 
suggest that BR is particularly sensitive to changes during pain stimulation.

This study has several limitations. First, the sample size was small, with only prospectively collected EEG 
data from 25 healthy subjects. To address this limitation, we employed a five-fold cross-validation method. This 
approach avoided the risk of data leakage between the training and test sets by dividing the dataset into five 

Fig. 4.  Evaluation of three types of classifications using XGBoost with frequency power spectrum as the 
training data. (a) Comparison of accuracy (Acc) for each class classification. (b − d) Confusion matrix for 
2-class, 3-class, and 5-class classification. The matrix shows the absolute counts of correctly and incorrectly 
classified instances, along with the precision percentages for each class.
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separate groups and ensuring that each participant’s data was assigned to only one group per fold and evaluated 
once as independent test data. This method was particularly suited to our limited dataset, as it allowed for 
reliable performance evaluation while reducing the potential for overfitting. Second, the primary focus of this 
study was to assess the feasibility of using a wearable EEG device to evaluate pain during movement, rather 
than to compare multiple machine learning models. Therefore, only three machine learning algorithms were 
evaluated in this study, and the optimal algorithm was selected from among them. There are, however, various 
other machine learning methods that could be considered. Exploring other algorithms may further enhance 
the robustness and versatility of the pain classification model. Finally, the level of pain perceived in response 
to a specific pain stimulus can vary between individuals. Even when the same level of pain is experienced, 
self-reported pain levels may differ due to variations in individual pain sensitivity, which is shaped by personal 
experiences. In the future, it will be essential to develop a more advanced system that accounts for individual 
differences in pain sensitivity to improve classification Acc.

Conclusion
A machine learning model was developed to objectively evaluate pain using equipment designed for real-world 
clinical settings. Previous research has been constrained by equipment limitations, with most studies focusing on 
brain activity recorded in the resting state. In contrast, our study utilized a low-noise wearable device to record 
brain activity and demonstrated that pain intensity can be accurately classified even during movement.

These findings suggest that EEG-based pain classification using compact and wearable sensors is feasible 
under dynamic conditions, opening the door to objective pain assessment in real-world environments such as 
rehabilitation settings and postoperative monitoring. Furthermore, the introduction of BrainRate as a spectral 
metric significantly improved classification accuracy, highlighting its potential as a novel biomarker for pain 

Fig. 5.  Evaluation of three types of classifications using XGBoost with frequency power spectrum and 
BrainRate as the training data. (a) Comparison of accuracy (Acc) for each class classification. (b − d) 
Confusion matrix for 2-class, 3-class, and 5-class classification. The matrix shows the absolute counts of 
correctly and incorrectly classified instances, along with the precision percentages for each class.
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intensity. Future studies with larger cohorts and diverse pain models are warranted to validate the generalizability 
and clinical utility of this approach.

Data availability
The datasets generated and/or analyzed during this study are available from the corresponding author upon 
reasonable request.
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