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ABSTRACT Recent advances in imitation learning have enabled robots to learn multiple tasks from large-
scale datasets. However, developing a model for multi-tasking humanoid control faces significant challenges.
Human kinematic data is available in open-source datasets for humanoid motion learning, but learning
policies from this data requires simulation due to the lack of actions. While dynamic data can accelerate
learning via supervision, datasets typically lack substantial amounts of such action labels, that are also
difficult to be directly used for training due to the unique structure of each human/humanoid systems. In this
study, we pre-trained a Generative Pre-trained Transformer (GPT) based model on expert policy-rollout
observations only (without actions) from a humanoid motion dataset. Upon fine-tuning on a smaller dataset
with both observations and action labels, we demonstrate that our GPT-based model can predict actions
to achieve human-like movements faster in training than training a GPT on the entire dataset from scratch
directly. Furthermore, performance evaluation based on motion generation across various behaviors showed

that our approach achieves efficient learning comparable to baselines.

INDEX TERMS GPT, humanoid, imitation learning, motion prediction, whole-body control.

I. INTRODUCTION

Humanoid whole body control is becoming an increas-
ingly interesting domain for enabling humanoids to be
platforms for testing powerful deep learning models such
as transformers for whole body control. However, for any
character or robot that operates in continuous domain,
reinforcement learning is time consuming and difficult for
multiple reasons; designing reward statement is usually task-
specific, character/robot specific and/or possibly simulator
specific, and the online interaction between the training
model and the simulator consumes time. Imitation learning
has come a long way, and many papers have shown the
efficacy of using motion capture data as reference data to
train humanoids to learn natural human-like movements [1],
[2], [3]. Including action data along with kinematic data
in training via supervision can significantly speed up the
learning by avoiding training against reward feedback and
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interacting online in a simulator. Although many datasets
provide copious amounts of kinematic data, few provide
action data. It is quite difficult to obtain action data for
humanoids due to limited practicality. For instance, neither
is it easy to obtain action data from motion capture nor from
whole-body teleoperation of humanoids due to embodiment
gap and system latency [4], [5], [6]. It is particularly difficult
to generalize motion for humanoids on a variety of tasks,
either due to the complex nature of the skeleton structure
and/or the task. Expressing a single controller that can
perform multiple movements is holy grail for whole-body
control of humanoids. Till now, there is limited research
focused on leveraging limited amounts of action data coupled
with kinematic data to learn a multi-tasking controller for
humanoids.

On the other hand, research is progressing on foundation
models that can be adapted to multiple tasks [7]. For instance,
in the field of natural language processing, a single model
can perform multiple tasks by self-supervised pre-training on
a large amount of textual data [8]. Similarly, in humanoid

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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control, if we can create a foundation model that can adapt
to multiple tasks, we can improve humanoid adaptability.

Small Dataset of
Observations and Actions

Large Dataset of
Observations
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FIGURE 1. Proposed approach overview: A GPT-based policy is trained for
motion generation. The policy generates physically plausible motions in
simulation through autoregressive prediction. The training process has
two stages: pre-training on a large dataset of observations only, followed
by fine-tuning on a small dataset containing both observations and
actions.

In this study, we explore the potential of using a
pre-trained motion foundation model, originally trained on
non-physics data, and fine-tuning it on a smaller physics-
based dataset. This approach allows us to avoid the extensive
training time typically required for large multi-task models
in an online simulator environment. Instead, we utilize a
substantial dataset comprised of observations and actions
derived from policy rollouts across multiple tasks. This
facilitates data-efficient imitation learning.

We hypothesize that by using a GPT-based motion pre-
trained model, we would only have to fine tune this model
on a smaller dataset, which we refer to as a Human Motion
Generator (HMG), to plan physically plausible trajectories
for humanoid motion, therefore significantly reducing the
training time and dataset size (Fig. 1).

The application of this approach in humanoid control for
multi-tasking is both novel and necessary, since existing
methods often require large amounts of task-specific data
to achieve generalization. By leveraging a foundation model
approach, we aim to improve data efficiency by enabling
knowledge transfer from a pre-trained model to a control
downstream task, therefore reducing the need for extensive
training with action labels. In this paper we:

1) propose a foundation model training approach for

humanoid control,

2) we compare the data efficiency of our proposed method

with baseline methods in our evaluations, and

3) perform a comprehensive evaluation between our

proposed model HMG and models trained from scratch
by comparing the performances based on motion pre-
diction metrics, trajectory generation lengths, empirical
analysis of humanoid motion.
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Il. RELATED WORK

A. USING PRE-TRAINED KNOWLEDGE

Generalization of human motion prediction is a difficult
problem due to several reasons, such as the varying skeletal
structure and idiosyncrasies in the human motion data.
To tackle this issue, in [9] a model is trained through a
curriculum and continual learning manner, such that a model
can be first trained on a diverse dataset to be robust and then
fine tuned to predict motion of new subjects. In [10], a two
stage training is implemented; a pre-training stage where
3-D motion is derived from noisy partial 2-D observation,
then a fine tuning stage where the model is fine-tuned
to solve downstream tasks such as 3-D pose estimation,
action recognition, and mesh recovery. There is a similar
implementation in [11], where initially the humanoid is
trained to walk in a fully observed condition (having access
to all sensory information from the humanoid and external
environmental information that is difficult to obtain) and then
this policy is distilled to another policy trained in a partially
observed condition. However, in these publications, models
were not trained on action data from physics simulation,
rather just on kinematic data. Moreover, these publications
have not investigated the change in data-efficiency in fine-
tuning pre-trained models. Pre-training a model and then
fine-tuning that model on downstream tasks is a common
practice adopted in NLP [12], [13], and in human motion
prediction for human-robot interaction. In this work, a GPT
is pre-trained on observation data, resulting in a generalized
representation of humanoid kinematics over a variety of of
behaviors, and later fine tuned on action data that can control
the humanoid in a physics simulator.

B. TRANSFORMER BASED MODELS FOR
HUMANOID/ROBOT CONTROL

Transformers have been shown to be powerful to generate
human motion [11], [14]. In [15], the researchers use
the idea of dual attention to capture spatial and temporal
dependencies of known data without relying on hidden
states in RNNs or temporal encodings like Discrete Cosine
Transformation. This model effectively generates poses that
are temporally coherent. MotionGPT fuses language and
motion to enhance performance of motion-related tasks
such as text-to-motion, motion generation, and motion in-
betweening [16]. In [17], the researchers also demonstrates
GPT’s capability to generate motion in a physics engine after
taking in one second long motion prompts. In this paper,
we train a GPT policy to control a humanoid, similar to what
was done in [17], but by employing a more data-efficient
training strategy.

C. PREDICTION MODELS FOR HUMANOID

Many papers have focused on optimizing human motion
prediction by using various deep learning techniques [18],
[19], [20]. Instead of using memory-based networks like
RNN or Transformers, a simple feed-forward network with
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FIGURE 2. Detailed Proposed Approach of HMG: On top is the pre-training phase where a GPT is trained on a large observation dataset
consisting of only observations; in the middle is the fine tuning phase, where the same GPT weights are used except the observation head
which is replaced with an untrained action head to output actions, and the pre-trained model is fine-tuned on a small dataset consisting of both
observations and actions; the bottom shows the inference of the resulting HMG. The GPT weights in gray depict that they are frozen, and the

GPT weights in other colors denote that they are trainable.

fully connected layers, layer normalization, and transpose
operations, can be used to generate human motion using
spatial and temporal information [21]. Similarly considering
the idea that human motion prediction depends on spatial
and temporal information, by using a scene image, the past
body poses of human, and the past 2-D locations as contexts,
future 3-D poses and 3-D locations can be predicted [22].
FrankMocap [23] proposes a modular approach where
regression is performed for face, hands, and body individually
and then integrated later to produce a whole body pose output.
In [24], researchers propose DLow, a sampling strategy to
obtain diverse set of samples from a trained generative model.
This sampling strategy serves to tackle two problems; lack
of diversity and inability to cover minor nodes in the data
distribution. Here, we use GPT for motion generation since it
is powerful for predicting long sequences of structured data
given a small context.

D. DATASETS

There are many popular datasets for human motion capture
data available to the public [25], [26], [27], but not many
have simulation data consisting of control outputs coupled
with observational data. In this paper we use both the large
and small versions of the MoCapAct dataset [17], to train
and evaluate our proposed model HMG and other GPTs
for comparative evaluation. MoCapAct dataset is a dataset
available to the public that consists of several rollouts of states
and actions of the MuJoCo ball-joint humanoid played in the
MuJoCo simulator. There are two versions of this dataset,
a large one that has around 580 hours of motion data and a
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small one that has around 49 hours of motion data (roughly
one-tenth of the large dataset), and both contain the same
clips. In [17], a GPT policy was trained from scratch whereas
we show a more data-efficient approach to train a GPT via
pre-training and fine-tuning, while also obtaining similar,
if not, better motion generation capability.

lil. METHODOLOGY

The training methodology implemented and architecture are
shown in Fig. 2. The first step is to train the humanoid
motion foundation model. This serves as a pre-training
phase. The motion foundation model is a minGPT [28]
with model size 57M parameters. We used the same model
architecture, size and the relevant training hyperparameters
for motion completion from [17] since this model was
trained on the MoCapAct dataset. The motion foundation
model is trained only on the observations taken from the
large version of the MoCapAct dataset, i.e, the input and
output were observations. This dataset contains 100 rollouts
of each motion behavior. After the pre-training phase, this
foundation model is fine-tuned by loading the previously
obtained weights, and replacing the final linear feed-forward
layer with a new learnable layer suited to output actions.
Using both observations and actions taken from the small
version of the MoCapAct dataset the foundation model is
fine-tuned to realize the physics of the behaviors. This
smaller dataset contains 10 rollouts of each motion behavior.
The observation data is normalized between —1 to 1 in
both the training stages. The action range in fine-tuning
stage is between —1to 1. The fine-tuning method used
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in this work is basic and commonly implemented. Later
in the Experiment Section, we show in our evaluations
of fine-tuning our pre-trained model on different dataset
sizes and show that our proposed model surpasses models
trained from scratch quicker with significantly smaller dataset
size.

FIGURE 3. MuJoCo humanoid from dm_control package in MuJoCo
simulator.

The weights of the pre-trained model were updated using
cross-entropy loss during training, while Mean Square Error
(MSE) was used as an evaluation metric during validation.
The losses have a minor change during the fine-tuning
process where the losses are calculated between actions
but not observations. The cross entropy loss is defined below

N
Lee =) %ilog(n), ey
i=1

where 7; can be either generated observation §; or generated
action a; depending on whether the model is trained in
pre-training stage or fine-tuning stage, and t; denotes either
real observations s; or actions a;. N is the output size,
therefore if 7; is action then N is the number of actions and
if 7; is observation then N is the number of observations.
The observable quantities used in training the pre-trained
model and HMG is given in Table 1. The mode of control is
positional control and the output actions are joint positions.
Just like in [17], the simulator used in this work to test our
motion prediction policy is MuJoCo [29] and the humanoid
used in the experiments is a standard MuJoCo humanoid
from the dm_control package that has 56 DoF (Fig. 3).
The architecture, datasets, and hyperparameters used are
the same as those used in [17]. The GPT policy consists
of eight decoder layers and each layer has eight attention
heads. The learning rate for pre-training is 3 x 107°. It is
common practice in deep learning to fix a learning rate for
fine-tuning 10-100 times lower than that of the pre-training
learning rate to assure stability in training and avoid drastic
changes in the network features, hence the learning rate
used during fine-tuning was reduced to 3 x 1077 and was
empirically observed to work well. During inference, the
weights of the resulting policy are frozen. A motion prompt
of 32 steps of a particular expert behavior is provided to the
policy at the initial step and then the policy auto-regressively
generates the motion using the feedback from the
simulator.
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IV. EXPERIMENT

In our experiments, we compare and evaluate our proposed
HMG with Scratch-Small and Scratch-Large, where Small
and Large denotes the size of the dataset the models are
trained on.

The datasets used are the publicly available large and small
versions of MoCapAct dataset. These datasets contains noisy
observation and action data collected from expert policies.
The pre-trained model is trained on a large dataset of only
observations and then it is fine tuned on a smaller dataset
consisting of both observations and actions. The time taken
for pre-training is around 52 hours (2M steps), and the time
taken for fine-tuning is around 12 hours (400K steps), thus the
fine tuning phase takes almost a quarter of the time taken to
train the motion foundation model. Each model was assigned
to four NVIDIA A100 GPUs for training.

We trained and tested three models: our proposed model
HMG, Scratch-Large, and Scratch-Small, and performed
a comprehensive comparative evaluation between them.
The differences between these models in terms of training
configuration is given in Table 2. HMG is our proposed foun-
dation model fine-tuned on a motion prediction downstream
task. As previously stated, we chose two GPTs, namely
Scratch-Large and Scratch-Small, trained on the large and
small versions of the MoCapAct dataset respectively from
scratch, to compare their performances with the performance
of our model trained by using our proposed method on
motion completion. Motion completion can be defined as
the generation of motion based on a motion prompt input
of a given length. The length of motion prompt used in this
work is 32 steps that amounts to one second. The weights
for Scratch-Large are publicly available and Scratch-Small
was trained at our facility. We could see that although
our proposed model and Scratch-Large possess similar
capabilities, our model still slightly outperforms the latter.

The following subsections delineates the models’ evalua-
tions, where we see how data-efficient the various training
approaches are, and how well the models are capable
of generating behaviors via prediction lengths, empirical
differences in behaviors, and motion prediction metrics to
evaluate motion quality, motion similarity to the ground truth,
and motion diversity.

A. DATA EFFICIENCY

Fig. 4 compares the average episode lengths generated by
each model for different dataset sizes. Our proposed model
was fine-tuned on datasets of quarter, half, and full size of
the Small dataset. The performances were compared based
on episode lengths. We define an episode length as the
total length of an episode for the humanoid to complete the
task before episode termination (when it falls down) or the
maximum episode length (set to about 15 seconds). From
Fig. 4, we can see that HMG quickly generates higher average
prediction lengths on the validation datasets after being
trained on the Small dataset, compared to Scratch-Large

VOLUME 13, 2025
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TABLE 1. List of observables and actions taken from MoCapAct dataset.

Observables Description
Joint Pose joint angles of each DoF in radians
Velocimeter root velocity in Cartesian XYZ directions
Gyrometer root orientation in Cartesian XYZ directions Acti Descrinti
End Effector Pose end effector orientation .CUOHS ‘ — escriphion_ -
World Z Axis direction of Cartesian Z axis Joint Pose Joint anglt‘fSA of each DoF in radians
o . Control Mode position control mode
Actuator Activation | boolean values on whether actuators are active or not
Touch Sensors contact forces between humanoid and ground
Torque Sensors joint torque of each DoF
Body Height root height from ground
TABLE 2. Models used for evaluation.
Dataset Training
Model Large Dataset Small Dataset Pre-Trained Fine-Tuned Trained from scratch
HMG v/ (Pre-Training Only) | v/(Fine-Tuning Only) | v (2M steps) | v (400K steps) X
Scratch-Large v X X X v (2M steps)
Scratch-Small X v X X v (2M steps)

(which is trained on the Large dataset that is 10 times the
size of the Small dataset) which requires to be trained on
the Large dataset to generate an average prediction length
of 5.75 seconds. Additionally, the average generated episode
lengths of the HMG trained on quarter and half the size
of the Small dataset are lower than that of Scratch-Large
and higher than that of Scratch-Small. This shows that our
proposed model is significantly data-efficient in learning
motion prediction downstream task.
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FIGURE 4. Performance based on Dataset Sizes: The x-axis denotes the
dataset size given in fraction of the Large dataset and the y-axis denotes
the average episode length. The average episode length for Scratch-Large
(orange) is taken when it is trained on the Large dataset and for
Scratch-Small (green) it is the Small dataset.

B. BEHAVIORAL DIFFERENCES
1) QUANTITATIVE ANALYSIS
Using the differences in episode lengths of motion predic-
tions, we were able to find the exact behaviors generated by
the models that outperformed the other models in terms of
episode lengths. We considered the minimum difference in
episode lengths of generated behaviors from the validation
dataset (which consists of 63 behaviors), between models to
be 6 seconds which we considered significant.

We compared the episode lengths generated by HMG,
Scratch-Large, and Scratch-Small. Our analysis showed
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that HMG produced more episodes with longer durations
than Scratch-Large (Table 3) and significantly longer
than Scratch-Small (Table 4). Additionally, the difference
in average episode lengths when HMG either outlasted
Scratch-Large or Scratch-Small was higher than when either
Scratch-Large or Scratch-Small outlasted HMG (Scratch-
Small did not outlast HMG in any motion as shown in
Table 4). These results demonstrate that our proposed model
has superior capability in predicting longer trajectories,
allowing the humanoid to survive longer in the simulation
environment.

2) QUALITATIVE ANALYSIS

We further looked into the exact behaviors that led to these
differences in prediction lengths, to observe empirically how
different the motion predictions were. Figs. 5 to 7 show the
comparison between the frames of the humanoid behaviors
generated by HMG, Scratch-Large, and Scratch-Small. When
the humanoid is red it denotes that the humanoid is given
the motion prompt, and when in bronze denotes that the
humanoid is under motion prediction. Fig. 5 shows a simple
locomotion behavior. Fig. 6 shows a humanoid behavior that
involves immediate change in direction and running. Fig. 7
shows a humanoid behavior that involves arm gestures while
standing.

There were differences between the models’ generations
of moderate speed cyclic movements like walking, fast cyclic
movements such as running, and non-cyclic movements
as well. Walking behaviors patterns were observed to
be similar, with the only difference being the generation
length, with HMG coming out on top. All the models
suffer when predicting running behaviors and the humanoid
falls quickly to the ground. We attribute this issue to the
flight phase in running which might make it more difficult
to predict the proper footstep planning. For non-cyclic
behaviors like arm gestures or side-stepping, HMG generates
movements that are not necessarily close to the ground
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TABLE 3. Motion Generation Durability (Between HMG and
Scratch-Large): We observed that HMG outperformed Scratch-Large in

9 out of 63 behaviors. The average of the episode lengths for these

9 behaviors were taken for both the models and the difference was
computed as shown in the table. The same was done for behaviors where
Scratch-Large outperformed HMG.

No. of generated motions that A Avg.
outlasted the other model Episode Length
Model (from validation dataset) (sec)
HMG 9 out of 63 8.630
Scratch-Large 5 out of 63 ‘ 8.082

TABLE 4. Motion generation durability (between HMG and
scratch-small): evaluation done in Table 3 was applied here as well.

No. of generated motions that A Avg.
outlasted the other model Episode Length
Model (from validation dataset) (sec)
HMG 15 out of 63 11.025
Scratch-Small ‘ 0 out of 63 ‘ N/A

truth, but helps it survive longer in the episode compared
to Scratch-Large and Scratch-Small. This indicates that our
proposed model has learned different representation that
abstract a better understanding of the relationship between
observations and actions, that in turn helps in understanding
the dynamics of the humanoid in the simulation environ-
ment to preserve the imitation and survival as much as
possible.

C. GENERATED TRAJECTORY LENGTH

In this subsection, we are going to cover the models’ capa-
bility for generating long sequences given a motion prompt.
The resulting episode lengths of generated trajectories of
behavior clips from the training and validation datasets were
recorded. The length of the motion prompts was 32 steps
long, which constitutes one second of motion from the expert
policy.

From Figs. 8 and 9, we can observe that the generated
episode lengths of HMG are similar or slightly longer to those
lengths generated by the Scratch-Large model, and signifi-
cantly longer than Scratch-Small before episode termination.
Scratch-Small fails to compete with the other models as it is
unable to generate longer episode lengths. This shows that
Scratch-Small lacks the ability to predict sequences greater
than 5 seconds in length, indicating that training a GPT model
on a small dataset for motion generation without pre-training
performs poorly. From these box plots, it is clear that HMG
slightly outperforms Scratch-Large in terms of generating
longer predictions, whereas Scratch-Small significantly lacks
similar capabilities.

D. MOTION PREDICTION METRICS

To further evaluate the motion prediction in terms of
motion quality, motion imitation, and generation diversity, the
standard metrics for motion prediction were chosen, namely;
Frechet Inception Distance (FID), Average Displacement
Error (ADE), Final Displacement Error (FDE), and Diversity
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(DIV). We chose these metrics as the standard based on
previous works that used these metrics to evaluate kinematic
motion prediction [16], [30], [31], [32]. We believe that
these metrics are appropriate here even for dynamics motion
prediction since the mode of control is positional (units
are homogeneous between kinematic and dynamic motion
prediction). First the metrics will be defined as below.

FID is one of the most important metrics to determine how
well the generated motion quality is. The idea behind FID
is to compare the distributions between the features from
the motion feature extractor based on the real and generated
trajectories. The common practice is to train another RNN as
amotion feature extractor on the relevant data and then extract
the features. Training another RNN in this case is redundant,
since the GPT is trained on reconstructing and predicting the
motion given the motion prompt, plus, the representation of
the features taken from the middle of the GPT network is
rich [33]. Hence, the pre-trained model which was trained on
observation data was used as the motion feature extractor to
calculate FID and DIV. Equation (2) shows how to calculate
FID

FID = [|jt, — jgll” + Tr(Z, + T — 2,29, ()

where, u,, g, X;, X are the means and co-variances of the
features from the real and generated data respectively. Tr is
the trace of the resulting matrix.

Understanding ADE is intuitively quite straightforward.
It is essentially the average of the differences in joint poses
across entire trajectories between the generated trajectories
and the ground truth

N T
1 s
ADE = ——— D i —Jiall, 3)

i=1 =1

where ji,t and j;, are the generated and real joint poses
respectively at time step ¢ and trajectory i.

FDE is the difference in joint poses at the last step of the
trajectory between the generated motion and ground truth

N
IR
FDE =+ > liir —Jirl, “)

i=1

where j,-,T and j; 7 are the generated and real joint poses
respectively at the final time step of the trajectory i. ADE and
FDE scores are in radians.

FID, ADE, and FDE help us understand the quality of the
motion produced and how close the generated motion is to
the ground truth.

Another important metric is the generation diversity
(DIV). This metric shows the variance in the generated
motions across all behaviors the model is trained on. It is
preferred if the variance is close to that of the real dataset.
DIV is calculated by creating two sets of n randomly
sampled motions from each generated data and calculating
the diversity between the two. Equation (5) calculates the

VOLUME 13, 2025
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FIGURE 5. Walking Randomly: Top - HMG again maintains balance throughout the prediction while also succeeds in walking in different
directions, Middle - Scratch-Large fails to change direction and falls early, Bottom - Scratch-Small also fails to change direction and falls early
but lasts slightly longer than Scratch-Large in this generation. Every tenth frame was recorded and the frame in orange indicates episode

termination.

Scratch-Small

FIGURE 6. Running Towards the Left: Top - HMG survives a little longer
than Scratch-Large and Scratch-Small but falls possibly due to the flight
phase or fast changes in foot placement, Middle - Scratch-Large falls
almost immediately from the start of the motion prediction, Bottom -
Scratch-Small similar to Scratch-Large falls almost immediately from the
start of the motion prediction. Every tenth frame was recorded and the
frame in orange indicates episode termination.

diversity score of a model

1 n
DIV = — > Ea(vi.v}) ©)

i=1

where v, v/ are feature vectors from two sampled sets from
the same generated models (expert policy, HMG, Scratch-
Large, Scratch-Small) respectively across all behaviors, 7 is
the number of samples in the set, and Eq is the Euclidean
distance. We set n to be 200. We require ADE and FDE to
be low so that the motion similarity is high, we require FID
to be low to ensure that the motion quality is as close to
that of ground truth, and we require DIV to be close to that
of the real data. From Table 5, we can see that the HMG
scores are in the desired range. However, DIV score for HMG
seems to deviate from the real data slightly more than the
DIV score for Scratch-Large. Scratch-Small deviates from
real data significantly more than the other two models (FID
and DIV is the highest among the three). Scratch-Small’s
imitation capability is also lower since the ADE and FDE
scores are higher than the other models’ scores.
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TABLE 5. Motion prediction scores: | indicates that lower score is desired
and — indicates that score closer to Real (ground truth data) is desired.

Model FID | ADE | | FDE| | DIV —
Real 0.000 N/A N/A 7.530
HMG 7.741 6.824 6.616 8.222

Scratch-Large 8.415 6.866 6.910 8.151
Scratch-Small | 290.726 7.271 7.250 17.935

V. DISCUSSION

In this study, we attempt to tackle a situation where we have
access to copious amounts of kinematic data and limited
access to dynamic data. This is to simulate the difficulty
in obtaining large amounts of action data from humanoids.
We hypothesize that by implementing the foundation model
training approach we can bring about the similar or slightly
better performances compared to the baselines. From Fig. 4
we concluded that by using a pre-trained model we can bring
about higher data and training efficiency. From Tables 3
and 4, we can see that the HMG can generate higher average
episode lengths than those generated by the baselines.
Figs. 5 to 7 are some of the motion predictions were
HMG outperforms the baseline models except for fast paced
movements like running where all the models fails to keep
the humanoid alive and keep the episode from terminating.
Figs. 8 and 9 show that HMG overall generates higher episode
lengths than the baselines. Overall our proposed approach
displays higher performance in control compared to the
baselines with a smaller set of action data.

A. KNOWLEDGE TRANSFER

We were interested to know how much of the knowl-
edge gained during pre-training phase was passed down
during fine-tuning. Each models’ weights except the input
embeddings and action heads were grouped together and
cosine similarities were calculated between one another and
themselves. A heat map was applied to this correlation
and it can be observed that there is a high correlation
between the pre-trained model and HMG, indicating that
pre-training serves as a useful prior in fine-tuning (Fig. 10).
For fine-tuning, there are other methods that have come up
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HMG

Scratch-Large

Scratch-Small

FIGURE 7. Gestures: Top - HMG's prediction does not match the ground truth but survives the entire duration of the episode, Middle -
Scratch-Large’s motion generation also does not accurately predict the gestures, loses balance after a while and falls, Bottom - Scratch-Small
loses balance quite quickly and falls. Every tenth frame was recorded and the frame in orange indicates episode termination.

16-

e e
e N b

Episode Length (seconds)

e N » o ®

HMG Scratch-Large Scratch-Small

FIGURE 8. Comparison of generated episode lengths on training dataset.
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FIGURE 9. Comparison of generated episode lengths on validation
dataset.

such as LoRA [34] and Neural Adapters [35], however the
current method itself yields results that are similar to that of
Scratch-Large. It is possible that by implementing a better
fine-tuning technique would not necessarily yield better
results.

B. EVALUATION ANALYSIS

In [17], box plots and histograms were used to evaluate their
model’s capability to generate motion. However, since it is
hard to tell how well the humanoid can actually imitate and
complete the ground truth motion prompts accurately, the
standard metrics such as FID was chosen to evaluate motion
quality, DIV for motion diversity, ADE and FDE for motion
imitation [16], [36], [37]. However, there are some limitations
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Heat Map of Cosine Similarity in Model Weights 1.0
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FIGURE 10. Model Weight Similarity: All of models’ weights except the
input embeddings and action heads were taken and cosine similarities
were calculated between one another and themselves. A heat map was
applied over this correlation and we can see that there is a high
correlation between the pre-trained model and HMG, indicating that
majority of the knowledge is preserved from pre-training.

to using ADE and FDE as evaluation metrics. Since we
cannot control the motion generation beyond the motion
prompt, it is not necessary that the generated motion correctly
imitates the ground truth. For instance, when considering the
gesture type movements in Fig.7 or other related behaviors,
the difference in ADE and FDE scores are low between the
models. This is because it is not just about the humanoid
surviving in the simulation, but also the accuracy of the
imitation. Nevertheless, since ADE and FDE are standard
metrics used for imitation in motion prediction, they were
still included in the evaluation. Despite this limitation, we still
used this metric to evaluate and observed that HMG manages
to stay closer to the ground truth than the other baselines.
Therefore, to understand the performance of our model on a
behavior level, from the motion prediction metric evaluation
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we can see that our model performs as well as the baseline
model and in some cases slightly better, thus there is no
loss in performance when implementing foundation model
approach.

From our evaluations, we could confirm that our pro-
posed method of fine-tuning a pre-trained model is more
data-efficient than training from scratch, and the imitation
performance between both the methods are quite similar with
our model slightly outperforming the other.

C. LIMITATIONS

There are a couple of limitations to this evaluation. Firstly,
there is no ablation study done on different pre-training
strategies to see what could enhance the knowledge transfer.
Furthermore, although Fig. 10 shows how much knowledge
was transferred from the pre-trained model to HMG, it would
be better to analyze the weights further on how exactly
the pre-training stage contributes to the downstream task
performance through attention patterns and other feature rep-
resentations. Finally, even though episode lengths and motion
prediction metrics such as FID, ADE, FDE, and DIV were
included in the evaluation, it is hard to understand whether
the proposed training approach preserves or improves the
physical realism. In the future, we would like to consider
including other metrics like joint torque smoothness and
center-of-mass stability in our evaluation.

We cannot control the generation of the motion by
conditioning, for instance, if the model generates a motion
given a prompt to stand, it may try to either continue to stand
or walk. Another limitation is that it uses fully observable
state space, whereas realistically we would prefer to only
use partially observable variables. Further, to claim that our
approach provides a good humanoid foundation model, it is
better to show how well the pre-trained model can adapt
to other downstream tasks. Since our focus is on making
the training the model in a data-efficient manner, we chose
not to expand in this direction in our experiments and
have designated it as future work. In terms of real world
application, if there are changes in the physics parameters
in the environment, it may be necessary to re-collect a fine-
tuning dataset. Perhaps by training the model using RL via
feedback and using domain randomization techniques, it may
help to mitigate this issue. We are curious to see if our
foundation model can be trained and fine-tuned on simulation
data obtained from other robots such as [38].

VI. CONCLUSION

We proposed a data-efficient approach for motion prediction
by pre-training a humanoid motion foundation model on
observation data and fine-tuning it on both observation and
action data for a motion prediction downstream task. The
proposed method’s performance was evaluated after training
from scratch based on several aspects, including training
efficiency, motion prediction metrics, generation lengths,
and empirical observations of various cyclic, non-cyclic,
and fast-paced behaviors. We observed that HMG quickly
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generates higher average prediction lengths on the validation
datasets after being trained on the Small dataset, compared to
Scratch-Large which is trained on the Large dataset, proving
it to be more data-efficient. We further show from the motion
prediction metric evaluation, FID, ADE, FDE, and DIV, that
our proposed model can generate more accurate and longer
motion trajectories of higher quality than the state of the
art. The main limitation of this approach is that we cannot
control the generation of motion by conditioning. To extend
this work, we are interested in modifying the input to include
conditioning to control the motion generation and further
implement our proposed approach to multiple humanoid data.
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