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TARAD: Task-Aware Robot Affordance-Centric
Diffusion Policy Learned From
LILM-Generated Demonstrations

Site Hu

Abstract—In open-ended task settings, the ability of a robot to
execute diverse tasks accurately by following language instructions
is critical. Methods based on traditional imitation learning typically
depend on extensive expert demonstrations and often struggle to
generalize in the case of unseen scenarios or tasks. Recently, ap-
proaches leveraging large foundational models have demonstrated
improved generalization by enhancing task comprehension in novel
scenarios based on the intrinsic world knowledge embedded in
these models. However, these methods rely on predefined motion
primitives and lack a detailed understanding of the environment,
which is essential for successful execution. Herein we introduce
Task-Aware Robot Affordance-Centric Diffusion Policy (TARAD),
a novel framework for robot manipulation. TARAD leverages
large language models and vision-language models to perform
high-level planning from natural language instructions and extract
affordance information from the robot’s observations. A heuris-
tic motion planner is employed for low-level motion planning,
enabling zero-shot trajectory synthesis and the fully automatic
generation of a dataset with language labels and affordances. By
incorporating affordances into the observation space, our approach
integrates the intrinsic commonsense and reasoning capabilities of
foundation models into imitation learning, enabling the training
of an affordance-centric, multi-task three-dimensional (3D) diffu-
sion policy. Empirical evaluations in both the RLBench simulated
environments and real-world experiments with URSe demonstrate
that TARAD effectively combines the precise control of imitation
learning with the strong generalization capabilities of foundation
models, all without relying on expert demonstrations or predefined
motion primitives.

Index Terms—Al-enabled robotics,
demonstration, manipulation planning.

learning  from

I. INTRODUCTION

ENERAL-PURPOSE robot manipulation learning faces
the critical challenge of understanding natural language
instructions to execute a wide range of tasks accurately in
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Fig. 1. TARAD autonomously collects demonstrations by extracting
language-conditioned affordances from RGB-D images to train an affordance-
centric diffusion policy.

real-world settings while effectively generalizing across diverse
environments [1]. Conventional approaches based on imitation
learning typically require numerous expert demonstrations [2],
[3] and tend to overfit to specific tasks [4], thereby limiting their
practical applicability to unseen scenarios.

Recently, researchers have explored the use of affordances to
enhance robotic interaction in unstructured environments [5],
[6]. However, extending affordance learning from manually
annotated datasets to open-world settings with arbitrary natural
language instructions remains a challenge [7]. With the rapid ad-
vancement of large language models (LLMs) exhibiting strong
generalization capabilities [8], researchers are increasingly in-
tegrating foundation models trained on Internet-scale data into
robotic systems. Typically, these methods involve decomposing
natural language instructions into high-level plans using LLMs
and interpreting the environment via perception APIs or textual
scene descriptions, while relying on predefined motion primi-
tives for low-level control [9], [10], [11]. Unfortunately, such
approaches often fail to capture the fine-grained affordances
necessary for precise task execution, leading to task failures even
with correct high-level planning [ 12]. In recent studies, learning-
based policies have been combined with foundation models to
achieve both precise and generalized manipulation; however,
these methods still depend on expert demonstrations [1] or
predefined motion primitives [13].

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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To overcome these limitations, we propose TARAD (Task-
Aware Robot Affordance-centric Diffusion Policy), a novel
framework for robot manipulation. As shown in Fig. 1, TARAD
leverages LLMs for high-level planning from natural language
instructions and employs both LLMs and vision-language mod-
els (VLMs) to extract affordance information from robot ob-
servations. The extracted affordances are represented as point
clouds and voxel-based value maps [14] and are input into
a heuristic motion planner, which automatically generates a
dataset annotated with both affordance and language labels. By
integrating affordances into the observation space, our approach
embeds the intrinsic commonsense and reasoning capabilities
of foundation models within an imitation learning-based frame-
work, thereby training an affordance-centric, multi-task three-
dimensional (3D) diffusion policy.

Our contributions can be summarized as follows:

® We introduce a novel language-guided data collection
framework for robust synthesis of trajectories without rely-
ing on predefined motion primitives and automatic gener-
ation of a dataset annotated with language and affordance
information.

e We integrate affordance information into a 3D diffusion
policy to achieve robust generalization across tasks and
environments.

e We evaluate TARAD on eight simulated tasks in RL-
Bench [15] and three real-world tasks, demonstrating that
TARAD effectively combines the precise control of imita-
tion learning with the strong generalization capabilities of
foundation models without the need for expert demonstra-
tions or predefined motion primitives.

II. RELATED WORKS
A. Robot Learning for Manipulation

Recent approaches to robot manipulation learning have pre-
dominantly relied on reinforcement learning [16] and imi-
tation learning [17] to derive effective policies from expert
demonstrations using images or point clouds as observation
spaces [17], [18]. Furthermore, diffusion models [19] have
recently been employed to handle multi-modal actions [20],
[21], [22], significantly enhancing policy adaptability and ro-
bustness. However, these methods are especially effective for
tasks similar to those encountered during training and struggle
to generalized to novel tasks [23]. In addition, these methods
often lack natural language understanding and generalization
abilities. Chen et al. [1] addressed this challenge by leveraging
VLMs to generate spatial value maps that guide action diffusion.
However, the acquisition of sufficient and diverse data for robot
learning remains a challenge. By contrast, our method leverages
LLMs as demonstration generators and integrates both LLMs
and VLMs for affordance extraction, effectively embedding the
strong generalization capabilities of foundation models into a
diffusion-based policy framework.

B. Affordance for Robotics

Affordance [24] refers to the action possibilities that an actor
can readily perceive [7]. In robotic systems, effective affordance
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extraction is crucial for enabling nuanced interactions with
unstructured environments [5], [6]. Affordances are typically
represented using images or point clouds. Action possibilities
are often represented as affordance maps, which quantify the
likelihood of executing specific actions at given locations [25].
Deep learning methods have been widely used to predict such
affordances [26], [27], and recent studies have begun to extract
affordance knowledge from large pre-trained models [7], [14].

C. Foundation Models for Robot Manipulation

Recent advances in LLMs [8] and VLMs [28], [29] have
enabled their use in robot manipulation, typically as high-level
planners for interpreting language and scene context. Low-level
control often depends on motion primitives [9], [10], [11],
limiting fine-grained affordance reasoning [12].

To improve spatial reasoning, recent work integrates visual
feedback [30] or spatial value maps [14]. CoPa [12] com-
bines spatial constraints from LLMs and VLM-based scene
understanding to locate grasp targets, but relies on predefined
grasp models and manually defined geometric assumptions.
ReKep [31] generates code from keypoint constraints but re-
quires accurate tracking and handcrafted solvers. Unlike these,
we use foundamation models to collect suboptimal data [20],
which is then distilled into an affordance-conditioned diffusion
policy.

Foundation models have also been used to synthesize demon-
strations. Gensim [32] and Gensim2 [33] generate simulated
tasks and execution code, but remain limited to simulation
and rely on complex prompts and predefined constraints. Ha
et al. [20] use LLMs to compose predefined 6-DoF explo-
ration primitives with a verify-and-retry loop, requiring days
of simulation to collect data for training image-conditioned
diffusion policies. Similarly, Jin et al. [13] use LLMs to sequence
predefined robot skills to obtain data for training. In contrast,
we extract voxel-level affordances using LLMs and VLMs,
enabling efficient demonstration synthesis via a simple heuris-
tic planner. Our affordance-conditioned diffusion policy shares
representations across data generation and learning, directly
distilling structured knowledge from foundation models. The
same pipeline runs on real robots with minimal modification,
eliminating the sim-to-real gap faced by prior works [13], [20].

III. METHOD

In this work, we propose a novel framework that generates
robot manipulation trajectories solely from natural language
task descriptions without relying on predefined motion primi-
tives. Our method automatically constructs a dataset annotated
with language labels and affordance information, and leverages
this dataset to train a affordance-centric diffusion policy with
strong generalization capabilities. As illustrated in Fig. 2, the
framework comprises two main phases: data generation and
policy training. During the data generation phase, natural lan-
guage instructions are decomposed into high-level task plans
using LLMs (Sec. III-A). Subsequently, we use both LLMs
and VLMs to extract the affordances (Sec. III-B), represented
by target-object point clouds and voxel value maps introduced
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Fig. 2.

Overview of our framework, which proceeds in two main phases: data generation and policy training. In the data generation phase, LLMs decompose

instructions into high-level task plans, while LLMs and VLMs jointly extract affordance based on high-level plans, represented as target object point clouds and
voxel value maps. A heuristic motion planner then translates these high-level plans into low-level executions, and successful trials are automatically filtered and
labeled for dataset collection. In the subsequent policy training phase, the affordance representations form the observation space for a multi-task vision-language

conditional diffusion model, enabling robust task generalization.

in [14]. Based on these affordances, high-level plans are trans-
lated into low-level motions using a heuristic motion planner.
Meanwhile, both LLMs and VLMs are leveraged to filter out
successful executions, which will be collected as labeled datasets
(Sec. III-C). In the policy training phase (Sec. I1I-D), affordance
representations serve as the observation space for a multi-task
vision-language conditional diffusion model, enabling robust
generalization across multiple tasks.

A. Task Decomposition

Given a natural language task description, we use the ad-
vanced large language model GPT-40 [8] to generate a structured
high-level task plan. The model decomposes instructions into a
sequence of sub-goals to capture semantic affordance and task
dependencies, thereby facilitating effective execution.

B. Affordance Extraction

Building on the high-level plan, our approach extracts affor-
dance information using both LLMs and VLMs. We follow the
prompting structure from [14], recursively call the perception
module using their own generated code. Affordance is repre-
sented as target object point clouds and the voxel value maps,
which consist of three components: (i) a spatial cost map m,. that
assigns lower costs near the target object and higher costs further
away, (ii) an end-effector orientation map m,. that specifies the
required end-effector orientation, and (iii) a gripper map m,, that
indicates the appropriate gripper actions.

Specifically, we employ GPT-40 to extract target object names
from the task description, utilize the open-vocabulary detector
GroundingDINO [28] to predict bounding boxes from RGB-D
observations, and then leverage the multi-modal capabilities of
GPT-4o0 to verify and refine the predicted bounding boxes and
enhance the recognition accuracy. Subsequently, we apply the
Segment Anything Model 2 [29] to obtain and track segmen-
tation masks for extracting the target object point clouds. An

LLM-generated script then computes the voxel value maps. The
entire voxel value maps calculation process is detailed in Alg.
1, adapted from [14].

C. Low-Level Motion Execution

Once the voxel value maps are obtained, a heuristic motion
planner converts the high-level plan into low-level motions.
A greedy search in the voxel space identifies a trajectory that
minimizes the cumulative spatial cost. At each point along the
trajectory, the corresponding end-effector orientations and the
gripper actions derived from the orientation and gripper maps are
integrated to construct a low-level motion plan. A visualization
of this process in a real-world environment is shown in Fig. 3.
After executing the plan, we use GPT-4o0 to evaluate whether
the task is successful. All successful trajectories, along with
the corresponding low-level motion commands, robot proprio-
ception data, target object point clouds, RGB-D observations,
linguistic task descriptions, and sub-goals, are automatically
stored to create an annotated dataset. This automated pipeline
ensures that the collected demonstrations are both physically
feasible and semantically aligned with the task descriptions.

D. Affordance-Centric Diffusion Policy Distillation

Using the automatically collected dataset enriched with lan-
guage labels and affordance information, we train a conditional
diffusion model [34] to learn a multi-task robot manipulation
policy. The diffusion model is designed to predict the noise
egp(ag, k, ¢) added at each diffusion time step k, and then itera-
tively denoise a random Gaussian noise vector into the desired
action via a reverse diffusion process. Specifically, we encode
the affordance represented by the downsampled point clouds
of the target objects into a compact 3D feature representation
using a lightweight MLP encoder (DP3) [21], and encode the
task instructions using the CLIP B/32 text encoder [35]. These
representations, together with the proprioception history, are
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“grasp the toy dog” I ) i back to initial position
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Subgoal 3:
move to 5cm on top of
the open drawer

Visualization of spatial cost maps and planned trajectories for ToyInDrawer task in real-world environment. The spatial cost maps guide grippers towards

target positions derived from the LLMs and VLMs with a heuristic motion planner. Meanwhile, the orientation and gripper maps determine the gripper’s rotation

and state along the planned trajectories.

PutRubbishinBin  SlideBlockToTarget PushButton

CloseDrawer

OpenDrawer PutltemInDrawer

Fig. 4. Seven tasks in simulation experiment. MultiTaskDrawer used in
our experiment is composed of OpenDrawer, CloseDrawer, and Putlte-
mInDrawer tasks.

concatenated to form a composite conditioning vector ¢, which s
incorporated via FiLM [36] during the denoising process. Here,
we use the task instruction rather than subgoals as condition to
avoid extra latency for monitoring subgoals.

Starting from a random Gaussian noise vector ax ~ N(0, I),
the denoising network ey is iteratively applied over K steps to
yield the final action ag. At each time step k, the reverse diffusion
update is computed as follows:

lfak

V1 — oy

Q-1 =

1
Jor <ak - eg(ak,k,c)> +orz (1)

where «ay, is the noise schedule parameter at time step k, ay =
Hle «a;, o, denotes the noise scale, z ~ N(0, I). This iterative
denoising process progressively refines the noisy action vector
until k£ = 0, resulting in the final action a.

The training objective is to minimize the mean squared error
between the true noise € added to the original data and the noise
predicted by the model. Formally, the loss function is defined
as:

£ = Eag e |lle = eolar, b, o)’ @)

During inference, the target object point cloud is extracted as
described in Sec. III-B and used as input to the diffusion policy.

Algorithm 1: Voxel Value Maps Calculation.

Input: Object point clouds P, subgoal sg;, map size S,,,
LLMs
Output: Spatial cost map m., end-effector orientation map
m,., gripper map m
I: Initialize m., mgy € RSm*SmxSm
2: Initialize m, € RSm*SmxSmx4
// Get target pose, gripper action and voxel radius
30 (2,9,2), (Tw, 2,7y, T2), Br, g, Bg <= LLMs(P, sg;)
4:  Get voxel coordinates (i, j, k) < (z,y, 2)
50 me(u,v,w) < /(u—13)2+ (v—7)2+ (w— k)2
me(i,7,k) <0 A Spatial cost map
6: my(u,v, w) < Rini;; mg(u,v,w) < GinieA Init maps
7: for (u,v,w) in
{(w,v,w) | |u =il |v—j|,|w—k| < 5,} do
8 my(u,v,w) < (ru, g, Ty, 7'2)
9: end for
10:  for (u,v,w) in
{(u,v,w) | |’LL - 7;|a |U _j‘7 |w - k‘ < Bg}do
11: mg(u,v,w) < ag4
12:  end for
13:  return (me, m,,my)

IV. EXPERIMENTS

In this section, the proposed system is evaluated in both
simulation and real-world environments. Our experiments aim
to address the following questions:

1) Can TARAD’s data collection method effectively gather

a dataset annotated with language labels and affordance
information solely from natural language instructions?

2) Can TARAD?’s policy learning approach distill an effective

visuo-linguo-action policy from the collected dataset?

3) Does TARAD exhibit strong generalization to new object

instances, unseen scenes, and different views?

A. Experiment Setup

In the simulation, we utilize the RLBench environments [15],
which provide five cameras and oracle segmentation masks
for each object. We evaluate our system on three single-task
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TABLE I
SIMULATION RESULTS

Model PutRubbish SlideBlock Push MeatOff Open Close Putltem MultiTask
InBin ToTarget Button Grill Drawer Drawer InDrawer Drawer
Voxposer [14] 75.0 55.0 100.0 45.0 20.0 80.0 30.0 45.0
Act3D [37] 828 =255 71.1 £255 894 4+096 61.1 £255 6894192 656 +347 578 255 50.6+£ 420
3D Diffuser Actor [22] 90.6 £ 347 817+ 1.67 950+289 783 +441 844 +255 883 +1.67 822+09 789 £ 4.19
3D Diffusion Policy [21] 89.4 +£3.85 828 £096 950+ 333 61.7+6.01 728 £822 8224481 61.1 £751 66.1+£3855
Ours 889 £ 347 850289 9784192 733 +333 783 +£441 928+£536 739 x631 672347

(d) ToylnDrawer

(c) CloseDrawer

Fig. 5. Real-world experiment setup. Only one camera is used for each task.
SpongeInPlate: Grasp a sponge and place it in a plate. CloseDrawer: Close
one of three drawers. ToyInDrawer: Grasp a toy dog and place it into an open
drawer.

domains, four multi-task domains, and a composite multi-
task domain. In the simulation experiments, oracle masks
are used instead of VLMs to extract affordance information.
Fig. 4 illustrates the experimental setup in the simulation
environments.

We also validate TARAD on real-world manipulation tasks
using a URSe robotic arm equipped with a RealSense D435
camera for RGB-D image capture. The evaluation spans three
tasks, as illustrated in Fig. 5.

B. Simulation Experiment

In the simulated environment, we bypass the use of VLMs
by leveraging oracle masks to obtain affordance information.
We collected 30 demonstrations for each single-task and multi-
task domain, evenly distributed across all variants. For the
composite task MultiTaskDrawer, we uses all demos from
OpenDrawer, CloseDrawer, and PutltemInDrawer. Using
these automatically collected demonstrations, we trained our
language-conditioned, affordance-centric diffusion policy. We
compare our method with several baselines: a foundation-
model-based approach, Voxposer [14], and three imitation-
learning-based SOTA methods for RLBench: Act3D [37], the
enhanced language-conditioned variant of 3D Diffuser Ac-
tor [22] and 3D Diffusion Policy [21]. These imitation-learning-
based approaches rely on 30 expert demonstrations per task,

rather than using the automatically collected demonstration data
employed by TARAD.

For the foundation-model-based method, 20 episodes are
evaluated for each task. For the learning-based methods, we train
2000 epochs for each task with three random seeds, evaluated 20
episodes every 200 epochs, and then computed the average for
the top three success rates. Table I presents quantitative results,
which indicate that our method effectively collects datasets
annotated with language labels and affordance information and
distills a visuo-linguo-action policy with performance compa-
rable to SOTA methods relying on expert demonstrations.

Ablation Study: We evaluate the following ablative versions
of our framework: (i) SOTA imitation baselines (3D Diffuser
Actor [22] and 3D Diffusion Policy [21]) trained on the dataset
generated by TARAD:; (ii) the affordance-centric diffusion pol-
icy retrained on expert demonstrations automatically extracted
from RLBench [15]; and (iii) a language-free TARAD that con-
ditions only on proprioception and the affordance point clouds.

Results are summarized in Table II. While the baselines
trained on expert demonstrations outperform those trained on
TARAD data, the latter still achieve comparable success rates,
indicating that the auto-generated trajectories are of sufficient
quality for policy learning. Without relying on expert demonstra-
tions, TARAD achieves performance comparable to 3D Diffuser
Actor and superior to 3D Diffusion Policy. Under identical auto-
generated datasets, TARAD significantly outperforms SOTA
baselines, confirming the effectiveness of its affordance-centric
diffusion policy. Removing language conditioning degrades
TARAD’s performance on multi-variant tasks, demonstrating
the utility of language instructions for multi-task generalization.
Despite that, this ablative version still outperforms language-
conditioned baselines trained on the same dataset, further high-
lighting the synergy between affordances and diffusion policies.
Interestingly, TARAD trained on expert demonstrations exhibits
a slight performance drop, which we attribute to a mismatch
between expert motions and the affordance-centric represen-
tation expected by the model. This suggests that the current
planner-and-filter pipeline produces data that are well aligned
with the proposed policy architecture.

C. Real-World Experiment

To validate TARAD in real-world settings, we deployed our
system on a URSe robotic arm. In this setup, GPT-40 is used
to extract target object names from task descriptions and verify
the bounding boxes predicted by the open-vocabulary detector
GroundingDINO [28]. Segment Anything 2 [29] is then em-
ployed to obtain and track the segmentation masks to extract the
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TABLE II
ABLATION STUDY
3D Diffuser Actor(TARAD Data) 81.7 + 4.41 722 =585 956 347 656+ 4.19 6224096 80.56 + 3.47 41.67 £2.89 62.2 + 4.81
3D Diffusion Policy(TARAD Data)  77.8 £ 347  66.1 +£585 944 + 536 51.1 £4.19 55.0 £ 5.00 744 + 6.94 46.1 £+ 2.55 58.3 + 441
Ours 88.9 + 347 850 +289 978 +£1.92 733 + 333 783 + 4.41 92.8 + 5.36 739 + 6.31 67.2 + 347
Ours(Expert Demo) 85.0 = 1.67 728 £347 939 +347 678 £255 728 +0.96 80.0 + 1.67 63.9 + 6.74 61.1 + 5.36
Ours(w/o Language Condition) - - - 62.8 + 8.55 68.3 £+ 2.89 87.2 + 7.52 61.7 + 5.77 55.6 + 5.09
TABLE III TABLE IV
REAL-WORLD RESULTS GENERALIZATION RESULTS
Sponge Close Toy In . App. Inst. Clutter View View
Model Inpplagte Drawer Drzwer Model  Task Base Change Change  Scene  Change-1  Change-2
3DP SpongelnPlate  83.3 83.3 66.7 333 80.0 26.7
Voxposer 76.7 70.0 46.7 emDrawer 733 700 633 267 66.7 67
3D Diffusion Policy(TARAD Data) 83.3 66.7 73.3
our SpongelnPlate  96.7 93.3 83.3 96.7 96.7 90.0
Ours 96.7 93.3 86.7 ItemInDrawer 867  83.3 90.0 83.3 90.0 70.0

target object point clouds, which are used to compute the spatial
cost map. By coupling VLMs with mask tracker, our method
enables high-frequency perception-action loops at about 1 Hz,
with 130 ms for RGB-D capture and point cloud computation,
110 ms for mask updates, and 650 ms for motion execution with
the URS5e. For the SpongelnPlate task, 30 demos are collected,
whereas for the CloseDrawer and ToyInDrawer tasks, 10 demos
are collected per drawer. We use Voxposer [14] and 3D Diffusion
Policy [21] as baselines. 3D Diffuser Actor [22] failed in our
real-world settings, likely due to its high sensitivity to image
inputs. Therefore, it has been omitted from the comparison for
clarity and fairness. We reproduce Voxposer in our tasks by
employing the same prompt templates from [14] and the same
detectors used in our method. For Voxposer, we evaluate 30
episodes per task. Our method is trained for 2000 epochs, and
evaluated over 30 episodes using the final checkpoint. For fair
comparison, the 3D Diffusion Policy is trained on the same
dataset using the same setup.

As shown in Table III, our method remains effective in
real-world settings and significantly outperforms both baselines.
Voxposer struggles to capture object attributes and task-specific
interaction conditions, leading to poor performance on fine-
grained manipulation tasks in real-world environments. Simi-
larly, 3D Diffusion Policy lacks sufficient affordance details re-
quired for precise manipulation. By contrast, the policy distilled
by TARAD enables effective and reliable object interactions.

D. Generalization Evaluation

We evaluate the generalization capability of our method and
compare it with 3D Diffusion Policy [21] on two real-world
tasks: SpongelInPlate and ItemInDrawer, considering four types
of variations: appearance, instance, view, and scene changes.
The overall results are presented in Table I'V.

In the SpongelnPlate task, appearance variation is introduced
by modifying the colors of the sponge and plate, whereas
instance variation replaces the sponge with a toy dog. In the
ItemInDrawer task, appearance variation involves changing the
toy dog’s color, whereas instance variation replaces the toy dog
with a sponge.

_|

R

(a) pick up the striped sponge and
put it into blue plate.

(b) pick up the yellow sponge and
put it into pink plate.

(c) pick up the toy dog and
put it into dark blue plate.

Fig. 6. Appearance and instance generalization experiments. Despite varia-
tions such as changes in sponge and plate color or replacing the sponge with a toy
dog, our method effectively captures similar affordance point clouds based on the
given language instruction, ensuring robust execution of the affordance-centric
policy.

For view generalization, each policy is trained using data
collected from the red-circled camera and evaluated using the
cameras marked by the green and blue circles, referred to as
ViewChange-1 and ViewChange-2, respectively.

For scene generalization, both policies are trained in an envi-
ronment free of additional objects but tested in cluttered scenes
containing multiple visually similar distractors.

1) Appearance and Instance Generalization: During the
data collection phase, TARAD extracts affordance information
in the form of color-free target object point clouds and voxel
value maps. This representation enables effective generalization
across various appearances. For instance, in the SpongeInPlate
task, although TARAD can automatically collect demos featur-
ing sponges and plates of multiple colors, we train the diffusion
policy using only demos with a striped sponge and a blue plate.
Despite the limited training set, the policy generalizes to sponges
and plates of other colors with nearly unchanged success rates.
Furthermore, the use of downsampled affordance point clouds
minimizes the differences between objects of similar size but
varying shapes, thereby facilitating generalization to unseen
object instances. As shown in Fig. 6, although our policy is
trained with a sponge and a plate, it effectively captures similar
affordance point clouds based on the given language instruction,
ensuring robust execution of the affordance-centric policy.

2) Scene Generalization: TARAD leverages VLMs to detect
target objects from RGB-D observations and employs multi-
modal LLMs to verify the detection results. This process en-
ables the accurate extraction of affordance information even in
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Fig. 7.  Scene generalization experiments. The policy was trained in a simpli-
fied environment containing only a striped sponge and a blue plate and tested
in a cluttered scene with modified language instructions: “pick up the yellow
sponge and place it into the pink plate”. The VLMs identified multiple similar
objects in the cluttered environment, while the multimodal LLMs accurately
recognized the intended target objects (both labeled as box 0) based on the
updated instructions.

Fig. 8.  View generalization experiments. The policy is trained using demon-
strations from the camera in the red circle and tested with cameras in the
green and blue circles. Despite changes in viewpoint, the affordance point
clouds remain similar, enabling the affordance-centric policy to maintain stable
performance and reliably execute tasks.

novel or cluttered scenes containing multiple similar objects. As
illustrated in Fig. 7, training is performed on a scene with only
one striped sponge and one plate present on the desktop. During
testing, new task instruction (“pick up the yellow sponge into
the pink plate”) is provided in a cluttered scene with multiple
objects. In this case, VLMs detect several similar objects, and
multimodal LLMs successfully select the correct object, leading
to successful task execution. In contrast, the scene-level 3D Dif-
fusion Policy shows reasonable tolerance to minor appearance
and instance variations but exhibits a significant performance
decline in cluttered settings, owing to its limited fine-grained
affordance understanding.

3) View Generalization: Fig. 8 shows the view generaliza-
tion capability of TARAD. The policy is trained using demon-
strations collected from the camera in the red circle and tested
with cameras in the green and blue circles. Minor changes
in camera position result in nearly unchanged performance,
whereas significant viewpoint shifts lead to a slight decline in
performance. Nonetheless, TARAD remains capable of success-
fully completing tasks.

This robustness arises from our affordance-centric approach,
in which the policy utilizes affordance point clouds as the input,
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rather than RGB images or full-scene point clouds in 3D Dif-
fusion Policy. Because affordance point clouds focus solely on
task-relevant regions, variations in camera viewpoint introduce
minimal differences in the input, thereby ensuring consistent and
reliable policy execution even under viewpoint shifts.

V. DISCUSSION

We presented TARAD, a novel framework that generates
robot manipulation trajectories from natural language instruc-
tions and distills precise and generalizable diffusion policies.
Our experiments in both simulated and real-world environments
demonstrate promising performance; however, several limita-
tions warrant further investigation.

First, it relies on LLMs and VLMs to extract affordance
information, which requires reliable object detection. This de-
pendency poses challenges for tasks such as removing objects
from closed drawers. Moreover, the current detection capa-
bilities of VLMs are limited, and even when cross-validated
with multi-modal LLMs, these constraints can adversely affect
system performance.

Second, the actions generated by our method focus exclu-
sively on the end-effector pose, whereas the whole-arm motion
is derived via inverse kinematics. Consequently, although the
end-effector position can be accurately determined, an inverse
kinematics solution can lead to suboptimal or implausible full-
arm configurations.

Third, in the data generation stage, our voxel-based affor-
dance representation may be insufficient for tasks that require
extremely high precision. For instance, performing fine-grained
tasks such as opening a drawer with a small handle in real-world
scenarios has proven challenging because of the limitations of
the voxel value maps.

Finally, although our automatically generated dataset includes
text labels for all sub-tasks, we have not yet evaluated the robot’s
ability to reuse sub-skills for combinatorial generalization. The
integration of foundation models with learning-based policies
for robotic manipulation remains in its early stages. Our study
represents an initial exploration of this area. We believe that
addressing these limitations will be the key to further advancing
the state-of-the-art in robot manipulation.

VI. CONCLUSION

In this work, we introduce TARAD, a framework that
integrates LLMs and VLMs to enable zero-shot generation
of robotic manipulation trajectories from natural language
instructions for diffusion policy training. Our approach
highlights commonsense reasoning and the extensive world
knowledge embedded in LLMs to generate step-by-step
task plans. Subsequently, LLMs and VLMs extract object
affordances from RGB-D observations, effectively grounding
high-level task instructions in the physical world through
contextual understanding and spatial relationships.

By utilizing a heuristic motion planner to generate low-
level action plans with affordance as the input, TARAD elim-
inates the need for predefined motion primitives, thereby fa-
cilitating robust and flexible zero-shot trajectory generation.
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The integration of affordance information into a 3D dif-
fusion policy, in which affordance serves as the observa-
tion space, further enhances the generalization capabilities of
the system. Trained on a minimal set of automatically syn-
thesized demonstrations, our imitation learning-based policy
not only enables precise manipulation but also demonstrates
exceptional adaptability to unseen environments and novel ob-
ject instances.

Empirical evaluations in simulations and real-world environ-
ments have highlighted the effectiveness of combining imitation
learning with foundation models. This synergy allows TARAD
to distill complex multi-task vision-language policies without re-
lying on expert demonstrations or predefined motion primitives.
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