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First we take a right artinian ring R. Then every injective R-module E
is a direct sum of indecomposable modules. Further for every simple submodule
S of E, there exists a direct summand of E whose socle is equal to S. Let
Z@Sm be a decomposition of the socle of E. Then we have a decomposition

of E by indecomposatle modules E, such that E=2PE, and the socle of E, is
I

Sa.  We shall call the first property and the second propert the extending pro-
perty of simple module and of decomposition, respectively. These concepts
are dual to those of lifting properties mentioned 1n [71.

We shall study the above properties on direct sums oi completely indecom-
posable modules with certain condition over an arbitiary ring. We shall give
characterizations of those properties in terms of endomorphisms over direct
summands and show that quasi-injective modules and generalized uniserial
rings [15] are related to those properties. Our results are dual or similar to
those in [9] and are applied to the study of QF-2 rings in [8§].

1. Notations

Throughout this paper R is a ring with identity and every R-module is a
unitary right R-module. For an R-module M, we denote its socle and its
injective envelope by S(M) and E(M), respectively. For a submodule N of M,
we use the symbol N &, M to indicate that M is an essential extension of N.

In [9], the first author has studied direct sums of hollow modules by in-
troducing the lifting property of simple module and that of decomposition.
In order to deal with their dual properties, we must consider the dual condition
to (E-I) in [9]:

(M-I) Every monomorphism of an R-module into itself is isomorphic.
If a uniform R-module M satisfies (M-I), then Endg(M) s a local iing, namely
M 1s completely indecomposable. In particular, indecomposable quasi-injective

R-modules are completely indecomposable modules with (M-I). Artinian
R-modules clearly satisfy (M-I).
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For a set {M,}; of R-modules with (M-I), we define a partial order <* in
the set as follows: If M,~M,, we put My=M,. If there exists a monomor-
phism of M, to Mg, we define M,<*M,.

Let {N,}; be an independent set of submodules of an R-module M.
?@Na is said to be a locally direct summand of M [10] if for any finite subsei J

of I, DYP N, is a direct summand of M.
J

A set {M,}; which consists of completely indecomposable R-modules is
called a locally (resp. semi-) T-nilpotent .et if for any family of countable non-
isomorphisms {f; : M; =M, , |n>1} (resp.i, =i, for n#n’) and any x in M, ,
there exists an integer m depending on «x such that f; f; - f; (x)=0 ([5]).
It is known in [10] that {M,}, is locally semi-T-nilpotent if and only if, for
any independent set {Ng}; of submodules of MZZI@MIM ;EBN,B is a direct

summand of M if it is a locally direct summand of M.

For given R-modules M and M’ and submodules N M and N'C M’, we say
Homg(N, N’) is extended to Homg(M, M’) if every element in Homg(N, N') is
extended to one in Homg(M, M’). Similarly we say Autg(N) is extended to
Auty(M) provided every automorphism of N is extended to one of M.

Let M=2€BM¢. If N is a submodule of M such that N is contained

in i‘@Mwi for some finite subset {ay, -, a,} in I, we say N is finiiely contained
i=1
in the direct sum (with respect to the decomposition M= 1P M,) and we briefly
I

wiite it as f.c. module. Let x be a non-zero element in }/ and express it in

the direct sum as x=ux4 + - +&,, Where 0=x,, EM,,. Then we say x has the

length n for M=>®M,. In the expression of x it may happen that all annihi-
I

lators (0: xa,) are the same. If & is written in this form, we say x is a smooth
element for M=>PM,. We omit the word ‘for M=>PM,’ in the definition
I I

if no confusions arise. We denote the set of all smooth elements of M by
S(M=3PM,). We say a submodule of M is smooth if every non-zero elements
I

in it is smooth.
We can easily verify the following facts about smooth elements for
M=‘IL‘€BM¢.

1) Every element in (L;M.,)— {0} s smooth with the length 1.

2) Let {1,-,n} <1 and 0 +x,€ M, for i=1, «--,n. If f;: x;R—>x; ., Ris a
monomorphism for i=1, -+, n, then {2+fi(2)+ - +f,fo-1"fi(R)|2€Ex,R} is a
smooth submodule of M.

3) If x is a smooth element with the length n, so is every non-zero element
in xR.
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4) For 0=x in M, there exists r in R such that xr =0 is smooth.
5) If xR is a simple submodule of M, then it is smooth.

2. Extending property of submodule
First we shall consider the following special case.

Proposition 1. Ler {E,}; be a set of indecomposable injective R-modules and
E=2DE,. Then
I

1) Each E, 1s a uniform module satisfying (M-I).

2) Let {Ng} be an independent set of f.c. uniform modules of E. Then there
exists a set {Fg} ; of direct summands of E such that NgC ,Fg and 3D Fy is a locally
direct summand. ’

3) If x is a smooth clement of E, then there exists a direct summand F of E
such that F is indecomposable and xR F.

Proof. 1) is clear. 2) Since Nj is f.c., we can take Fg=E(Ng) in E for
each B. Then {Fg}, is a desired set. Similarly we can show 3).

In this section we shall study some properties in the above proposition on
a more general case, namely on direct sums of completely indecomposable
modules. For this purpose we introduce several properties.

Let M be an R-module and N a subouule of M. We say N is essentially
extended to a direct summand of M if there exists a direct summand of M which
contains N as an essential submodule. We say M bas the extending properiy of
simple (resp. uniform) module provided every simple (resp. uniform) submodule
of M is essentially extended to a direct summand of M. When M=2;65M¢,,

we say M has the extending property of cyclic smooth module for M=> P M, if
I

every cyclic smooth submodule of M is essentially extended to a direct sum-
mand of M. We also omit the word ‘for M=> @M, 1n the above. Similarly
I

we can define the extending property of smooth module, the extending property (f
f.c. uniform module and the extending property of uniform and smooth module, etc.

Now, we are concerned with those properties on direct sums of completely
indecomposable R-modules. Therefore, from now on, we assume {M,}; is
a set of completely indecomposable R-modules and M=2>3DM,; whence each M,
has the exchange property [16]. !

We often take a subset F of S(M=21@M,) which satisfies the following
condition: !

(%) For any 0 x& M, there exists r in R such that xr&<F.

For example, S(M =269Mm) itself satisfies the condition (*). In the case

of S(M)< M, the set of all non-zero elements x in M such that xR is simple
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satisfies the condition (*).
Proposition 2. Let F be a subset of S(IM=> D M,) satisfying (%) and let
I

Be&I. If every cyclic submodule of M generat.d by an element in F N\ Mg is es-
seniially extended to a direct summand of M, then Mg is uniform.

Proof. Contrary to the assertion, assume that Mp is not uniform and take
non-zero elements x;, x, in M, such that xRN x,R=0. Since & satisfies (),
there exists 7 in R such that xy&<. By the assumption, we can take a direct
summand N of M such that x#RZ,N. Since N is a direct summand of M,
there exists a direct summand N'{@N which is isomorphic to some member in
{Mu}; by [1]. Inasmuch as N’ has the exchange property, we have

M= N'@;@M-y

for some JSI. Then we see from N'N Mg=0 that I—J={B8}. Letx,=y+=
where yeN’ and 2> ®My. Since x,&M,, y must be non-zero. Hence
J

there exists s€R such that 04 ys€x 7R since xRS ,N. Then x,s—ys&€ M,
and zs€> P M,, whence x,;5—ys=0. However x,RNx,R=0 shows ys=0, a
J

contradiction.

Corollary 3. Let & be as in Proposition 2. If every cyclic R-submodule of
M generated by an element in F is essentially extended to a direct summand of M,
then each M, is uniform.

Proposition 4. Let x€S(M=> D M,). If N is a direct summand of
I
M such that xR< ,N. then N is completely indecomposable.

Proof. We express x in M=>PM, as x=x,++-+=x, where 0Fx;&M,,
I

i=1, ---, 2. Since N{PM, there exists a direct summand N'{PN which is
isomorphic to some member in {M,}, by again [1]. It is sufficient to show
N’'=N. Since N’ has the exchange property,

M= N’@;@Mﬁ (%)

for some J 1. Since N'NxR =0, there exists 7 € {1, ---, n} which does not lie
in J. Without loss of generality we can assume i=1. Then I—J={1}. Now,
let N=N'@N" and assume N +0. We take 0%z in N”" and express it in (§)
as 3=y+p-+q where yeN', p€ M,P---PM, and qE%‘_,EBMy (K=J—1{2,-+,n}).

Since *RC N, we can easily take 7 in R such that O=2r&xR and yrexR.
Since 2r—yr&xR, z2r—yr=xt for some tR. Noting that xt=(p+q)r, xt<
M,B---DM, and preM,D---PM,,we see gr=0 and hence xt=pr. Since x
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is a smooth element with the length 7, so is x¢ if x¢ 40, Therefore the fact xt=
preM,®d---PM, implies xt=0, whence zr=yr. However N’ N”=0 says that
2r=0, a contradiction. Thus we must have N'=N.

Theorem 5. Let & be as in Proposition 2 and assume if i EY, xitx,€F
i=1

for each i,j, where x,cM;. Then the following condivions are equivalent:

1) Every cyclic submodule of M generated by an element in < i; essentially
extended tc a direct summand of M.

2) For any pair a and 3 in I, every cyclic submodule of M generated by an
element in F N\ (MyDMp) is essentially extended to a direct summard of MyDMj.

3) 1) Eahc M, is uniform.

ii) Fcr any pair o and B in I and any non-zero elements x,= M, and

% Mg such thal x,~+xgEF, there exisis a monomorphism g of either M, into Mg
or Mg into M, such that g(xe)=xg or g(xg)=2a.

Proof. In view of these conditions we may only show 1)&3)
1)=3). By Proposition 2, each M, is uniform. Let M, M, be two
members in {M,}; and let 0Fx,EM;, i=1, 2 such that x=x,+x,€F. By
1), there exists a direct summand M’ of M such that xRC ,M’. Then, by Pro-
position 4, M’ is a completely indecomposable and uniform module. Using
the exchange property of M’ and the fact xRCx, R®x,R, we have
M=M®>EM, or M=MS> BM,.

I-{Q1) I={2)
In the former case let yo: M=M'® > @ M,— M, be the projection. Then it
=)

is easy to see Yr(¥)=—x,. Since x;RC M, and x€F, —r| M, is a monomor-
phism of M, into M, satisfying —+r(x,)=x,. Similarly we have a monomor-
phism g of M, into M, with g(x,)=x, in the latter case.

3)=1). Let x&€¥. If x lies in some M,, then we have indeed xRC,
M DM. Thus assaume that the length 7 of x is not 1, and let x=x,+--+x,E
M,® - PM, where x; = M;. By 3), there exists either a monomorphism
hij: M;— M, or k;;: M;— M, satisfying h;;(x;)=x; or h;;(x;)=x; for each pair
Z,7in {1, -,n}. As a resualt we can take k= {1, -:-,n} and monomorphisms
hy;: My—>M; for all j ==k satisfying k,;(x,)=x;. We may assume k=1. We put

M{ = {z+hp(2)+ - +h,(2)|zEM} .

Then M!PM,D--OM,=M,PM,P---®M, and moreover it follows from
x,RC M, that xRC ,M,.

ReMARK. In the case where M has the essential socle and S={x=M|xR
is simple}, the above proposition is dual to [9, Theorem 2].

Corollary 6. If M has the extending property of cyclic smooth module for
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M= PM,, then it has also tke extending property of cyclic smeoth module for
any cther decomposition of M by completely indecompcsable modules.

Corollary 7. Let F be as mm Theorem 5 and assume that eoch M, satisfies
(M-I). Then the following conditions are equivalent:

1) Every cyclic submodule of M gererated by an .lement in F is essentially
extended to a direct summand of M.

2) i) For Mg {M.},, let {M} @ be the set of all M, {My};. . such
that M, BM,; has a smooth element with the length 2. Then the relation <* is
linear in {Mg} U {M} k) for any BE L.

i) For any pair M,<*M, and any x in F N\ (MoDM,) with the length 2,
say x=xq--xg, there exists a monomorphism f: M,— Mg satisfying f(xg)=uxg.

Corollary 8 (cf. [9, Corollary of Theorem 2]). Assume each M, satisfies the
condition (M-1). Then the following conditions are equivalent :

1) M has the extending property of simple module.

2) For any B in I, the relation <* is linear in the subset {M,} ) of all
M; in {M,}; such that S(M,)~S(Mz), and Homg(S(M,), S(Mg)) is extended
to Homp(M,, M) for any pair a, B in I.

Proof. We can assume S(M) <, M, whence this is immediate by Theorem 5.
We can obtain similarly to Theorem 5

Theorem 9. We assume each M, is uniform. Then the following conditions
are equivalent :

1) M has the extending property of uniform and smooth module.

2) For any pair a, B in I and ary movomorphism f of a submodule A, of
M, to My is extended to a monomorphism of M, 1o Mg or f~ is extended to one of
Mg tc M,.

Proof. If Uisauniform and smooth module, then there exists {a,, -**, a,}
cI for which U CMy D DM,, and every non-zero element in U has the
length #. Noting this fact, the proof is done by the same argument as in the
proof of Theorem 5.

Theorem 10. We assume each M, is uriform. Then the following conditions
are equivalent:

1) M has the extending property of f.c. uniform module.

2) For any pair a, B in 1, any homomorphism f of a submodule A, in M, to
Mg is extended to an elemeni in Homp(Ma, Mg) or f7' is extended to hne in
Homy (Mp, M,), provided ker f=0.

Proof. 1)=2). Using the same notations as in the proof of Theorem 5,
we have
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M = MIEB,Z(‘;,EBM‘” or M= M'EBI_E(}z)GBM.,
where {x+f(x)|xeM}c M {PM. Ifker f=+0, M'2Dker f. Hence, we have
the former decomposition. Let z: M— M, be the projection on this decomposi-
tion. Then —=|M, is an extension of f. If ker f=0, then the assertion
follows from Theorem 9. .,
2)=1). Let N be a f.c. uniform submodule in M, say NQEEBM,,,..

Let 7y: M— M, be the projection. Since NKker 7y, |[N=0 and N is uniform,
there exists 7 such that ker z,, | N=0. Hence, by 2) there exists j say 1 such
that N={x+4-fy(x)+ - +f,(x) |[*E 7 (N)} where f: M, — M, is an extension

of 7ay(7a |N)™. Put M'={y~+fiy)++f,(y)| yEM,}. Then 2 DM, =
M'®3) DM, and NC M.

Corollary 11. Let T be a completely indecomposable and uniform module.
Then T is quasi-mjective if and only if T@T has ihe extending property of uni-
form module and T satisfies (M-I).

Proof. This is clear from Theorem 10 and [4], [11].

Theorem 12. Assume each M, is uniform and for any pair a, B in I, every
monomorphism of M, to Mg is isomorphic. Then the following conditions are
equivalent:

1) M has the extending property of uniform module.

2) For any o in I and a submodule A, of M., every homomorphism of A, to

2 @D M; 15 extended to an element in HomR(Ma,, Z EBMB)
o)

Proof. For a1, 7, denotes the projection M= P M,—>M,.
I

1)=2). Let A, be a submodule of M, and f a homomorphism of 4, to
SVDM,. Putting N={x+f(x)|x=As}, N is uniform; whence we can easily
@)
take {a;, -+, at,} ©1 such that N N S(M:;EBM,,)Z {x+7a f2)+ - F7a (f(x)]
0x=A,} and all elements in N N S(M=> P M,) has the length n+1 (cf. the
I
proof 2)=>1) in Theorem 10). Put fi=>7,,f and f,=>)7sf where K=I—
i=1 K
{a, ay, -+, a,}. Then f=f,+f,. Since z,,fis monomorphic for all i=1, -++, n,
fican be extended to an element f{ in Homg(Ma, zn]EBMa,.) by Theorem 9
i=1
and the assumption that every monomorphism of M,; to M,, is isomorphic for
any pair a;, o in {ay, =+, a,}. On the other hand, msf is non-monomorphic
for all B€ K, and hence by the same argument as in the proof of Theorem 10,
f» can be also extended to an element f} in HomR(M,,, Z EBM,;) Thus f{4f3
is a desired extension of f.
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2)=1). Let N (%0) be a uniform submodule of M. Then there exist
{a, =+, a,} S1 for which NNS(M=2>3@M,)={mu+ " +mq,(x)|0FxEN}
I

and all elementsin N ﬂS(MzIZEBMw) have the length n. Take « in {a, -,
a,}. Then the mapping f: n“(N)el%)@Mﬂ given by f(m.(x)) =1§‘_,Mﬂ5(x) is
homomorphism and N = {x-+f(x)|xE74(N)}. Let f": M“_ZZ(.,)@ Mp be an
extension of f and put N'={y-+f(y)| yM,}. Then we can see N < ,N'<PM.

Theorem 13 (cf. [9, Theorem 1]). Assume each M, is uniform. Then the
following conditions are equivalent.

1) For any independert family {Ng}; of direct summands of M which are
uniform, N :;‘@NB 1s a locally direct summand.

2)  Every monomorphism of M, to My is isomorphic for any pair o and B in 1

Proof. 1)=2). We assume f: M,—M; is monomorphic where a, BET
and a+B. Put M,={x+f(x)|x=M,}. Then M;NMg=0 and M DMs=
M,DMs, from which we see M.~M, and M/ is a direct summand of
M,DM,. Further M, N M,=0. Hence, by 1) M.BM,=M,PH Mg and hence
f is epimorphic.

2)=1). We note that if M,~Mj, for a0, then M, satisfies (M-I). To
show 1), we may show the following: If {IV,, --, N,} is an independent set of
direct summands of M which are uniform then N,P---@N, is also a direct
summand of M. If n=1, thisis clear. Assume #>1 and N,;P--PN,_, is a
direct summand of M. Since each NV, is a direct summand of M and is uniform,
it is isomorphic to some member in {M,}; by [1]. Since N,&B--DN,_, has
the exchange property, we have

M = N,B-- EBNHGB;]EBMy

for some JCI. Since N, has the exchange property, we have either M=N,D---

”

@Nk_l@NkH@-.-@N”_I@N”EB;EBMV for some k& or szll@Ni@J;})@Mv

for some o= J. We have done in the latter case. In the former case N,~N,.
Let my: N,@+--DN,_,PXPM,—M, be the projection. Noting N,EN,B--
J

DN, -1, we can easily see that there exists 0==x= N, and some p in J for which
7, | %R is monomorphic. Since xR ,N,, it follows that =, | N, is monomorphic.
Since N,~N,~M, for some « in J, =,| N, is isomorphic by 2). Thus M=N,,
Dker z,=N D+ @Nn@J_E‘p)@Mgo

Corollary 14. Assume each M, is uniform. Then the following conditions

are equivalent :
1) If N is in Theorem 13, then N is a direct summand of M.
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2) {M.}, is a locally semi-T-nilpotent set and 2) of Theorem 13 holds.
Proof. Use the same argument as in [9].

Theorem 15. Assume {Ma,}, is a locally semi-T-nilpotent set and every
monomorphism of M, to My is isomorphic for any pair a, B in I. Then the following
conditions are equivalent:

1) M has the extending property of submodule.

2) 1) Each M, uniform.

i) For any subset | of I and any submodule A of )P Mp,
Homy (4, 33 M) is extended to Homo(33® Mp, 31 Ma). 7

Proof. 1)=>2). By Corollary 3, each M, is uniform. Let J be a subset
and A4 a submodule of 2XPM,. Put P=3PM;, and Q=2 PM,. To show
J J I-J

Homg(A4, Q) is extended to Homg(P, Q), we may assume AC,P. Now, by
1), there exists a direct summand B of M such that {x-f(x)|xeA4}<,B.
Then BN Q=0 and BEQ <, M. Since B{DM, B is also a direct sum of com-
pletely indecomposable modules by [6], [12]. Hence we see M=B@Q by
Corollary 14. Let n: M=B®Q—Q be the projection. Then we see —x|P
is an extension of f.

2)=1). Let 4 (#0) be a submodule of M. By Zorn’s lemma, we can
take J <7 such that Aﬂ?_,_‘J@M,,:O and Aﬂ%}@My:#:O for any K 2I—].

Again we put P==3>®M, and Q=>PM,. Noting each M, is uniform, as is
I I-J
easily seen, ADQZ M. Let n and =’ be projections: M=>1@ M,— P and
I
M=23Y® M,— Q, respectively. Then we see n(4)<,P since n(4)PO=
I

ADOcS M. Since AN QO=0, the mapping f: »(A)—Q given by f(n(a))=r'(a)
is a homomorphism. Using 2), f is extended to a homomorphism f" of P to
0. Put A'={x+f(x)|x=P}. Then ACA'<GM. Moreover n(4)< P shows
A< A,

Theorem 16. Assume that i) each M, satisfies (M-1), ii) every monomor-
phism of M, to My is isomorphic for any pair a, B in I and iii) M has the extending
property of cyclic smooth module. Then every submodule of M which is isomorphic
to some member of {M,}, is a direct summand of M. Therefore the following con-
ditions are equivalent by [7, Lemma 2] (cf. [17]):

1) {M.}, is a locally semi-T-nilpotent set.

2) M has the exchange property.

Proof. Let N be a submodule of M which is isomorphic to some member
in {M,},. By iii) and Corollary 3, each M, is uniform and so is N. Let a€N
NS(M=2PM,). Then, by iii) and Proposition 4, there exists a direct sum-

I
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mand N’ of M such that xRS, ,N’ and N’ is completely indecomposable. Since
N’ has the exchange property,

M= N’EB;]EBMﬁ

for some JCI. Let n: M=N'@2)P Mz— N’ be the projection. Noting
J

*RS,N and xRC,N’, we can easily verify #|N is monomorphic and
NNXI®M=0. Here, using i) and ii) we see z|N is isomorphic. Thus we
J

have M=N @ > P M,.
J

3. Extending property of decomposition

Let M be an R-module and {Ng}, be an independent set of submodules of
M. We say 23PN, is extended to a decomposition of M if there exists a decompo-
I

sition M= NLPM' such that N, N for all B€]. For a submodule
T

N of M, we say M has the eatending property of decomposition of N if every de-
composition of IV is extended to a decomposition of M. Further we say M
has the extending property of direct sum of uniform modules if every direct sum
of uniform submodules of M is extended to a decomposition of M. Similarly
we can define the phrase of the extending property of direct sum of submodules.
When M =Z€BM¢, we say M has the extending property of direct sum of cyclic

smooth modules for M= > @D M, if every direct sum of cyclic smooth submodules
I
is extended to a decomposition of M. We also omit the word ‘for M=>PM,’
I

in the above if no confusions arise. We can also define the phrases of the ex-
tending property of direct sum of uniform and smooth modules and the extend-
ing property of direct sum of f.c. uniform modules, etc.

In this section we also assume {M,}; is a set of completely indecomposable

R-modules and put M :2 P M,.

Lemma 17. Let F be as in Proposition 2. If, for any {xg} ;S F such that
{xaR} ; is independent > PxgR is extended 0 a decomposition of M, then every
J

cyclic submodule of M generated by an element in F is essentially extended tc a
direct summand of M.

Proof. Let x&<. Since & satisfies the condition (*) in §2, we can
take {xg};SF such that x& {xg};, {xsR}, is independent and >} P xRS, M.
J

Therefore, using the assumption, we can easily see that xR is essentially extended
to a direct summand of M.

Theorem 18. We assume {M,}, is a locally semi-T-nilpotent set and each
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M, satisfies (M-1). Then, for a subset F of S (M=23 M,) satisfying the con-
I

ditions in Theorem 5, the following conditions are equivalent:
1) For any subset {xg}; of & such that {xzR}; is independent, 3D xR
1s extended to a decomposition of M. g
2) i) Each M, is uniform.
ity If F contains x with the length 2 expressed as x= x,-+x, where
x;,€M;, then there exists an isomorphism f: M,~M, with f(x,)=x,.
3) i) Every cyclic submod. le of M generated by an element in F is essentially
extended to a direct summand of M.
ii) Every monomorphism of M, to Mg is isomorphic for any pair «,
Binl.

Proof. 1)=2). By Corollary 3 and Lemma 17, each M, is uniform.
Let M, {M,},; and assume that there exists M;& {M,},_(; such that M,PM,
contains a smooth element with the length 2 and denote the set of all such M;
and M, by {M;}x. Then by Corollary 7, <* is linear in {M;}4. For each
ie K— {1}, we can choose y,€F N (M,PM,) with the length 2 since F satisfics
(¥). Let y,=z2;+x; where 3,€M, and x;,€M;. Further we take 0%y
MyN& for all yeJ=I—K. Then {y;}xU {xy};SF and {y;R}U {x,R}; is
independent. Since each M, is uniform, this shows ;EB yiREB;EBxyRQBM.

By 1), we have a decomposition M=> P F; P3P Fy such that y,RC,F; for
K J

all ieK and xyRC,Fy for all ye J. Then each F; and each Fy are completely
indecomposable by Proposition 4 and Lemma 17.

Now, noting y;RC F; for all i€ K we see from the choise of {M;} that,
for any i€K, F; is not isomorphic to any member of {M,};. Hence there
exists one to one mapping via isomorphism between the set {M;}x and {F}x by
Krull-Remak-Schmidt-Azumaya’s theorem [1]. Let z: Mz‘é@Mm—»Ml be

the projection. Since 7| y;R for all 7&K is monomorphic, we see from y,RC F;
that z|F; are monomorphic for all i€ K. Consequently M, is the largest
with the relation <*. As a result, we see that if x is an eléement in & with
the length 2, say x=ux,+x5, then Mu~M, and there exists an isomorphism
f: My~ M, satisfying f(x,)=xg by Corollary 7 and the condition (M-I).

2)=1). For any x€Y, xR is essentially extended to a direct sumand
of M by Theorem 5. Further if f is a monomorphism of M, to Mj, then there
exists an element in & N (M,PM;) with the length 2, whence M,~M; by ii)
and therefore f is isomorphic by (M-I). Now, let {xg}; be a subset of F such
that {xgR}, is independent. To show that ;EB%R can be extended to a de-

composition of M, we can assume > @ xRS, M. Let Ngbe a direct summand
J

of M such that xRS ,Np for all B J. Then {Ng}; is independent since
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{xsR}; is so and xgRC N, for all B in J. Therefore, by Corollary 14,
21D NP M, from which we have M=21P Nj.
J J

1), 2)=3). 1) follows from Lemma 17 and ii) follows from 2).

3)=1). Let {xg}; be a subset of F such that {xgR}; is independent. By
1), there exists a direct summand N of M such that xgRC ,Ng for all B in J.
Since {xgR}; is independent, so is {Ng};. Hence ZJ]EBN,; is a direct summand

of M by Corollary 14, from which we see that 2@ xR is extended to a decom-
position of M. 7

Corollary 19. We assume {M,}; 1s a locally semi-T-nilpotent set and each
M, satisfies (M-1). Then

1) M has the extending property of direct sum of cyclic smooth modules if
and only if it has the extending property of cyclic smooth module and every monomor-
phism of M, to My is isomorphic for any pair o, 8 in I.

2) If M has the extending property of direct sum of cyclic smooth modules,
it has also the extending property of direct sum of cyclic smooth modules for any
other decomposiiion of M by completely indecomposable modules.

3) Let My, M,e{My}; and 0==x,=M;, i=1, 2. If x,+x, is smooth, then
Auty(x;R) is extended to Auty(M;) for i=1, 2.

Proof. If we take F=8 (M=3 P M,) in Theorem 18, 1) and 2) are
clear. !

3). By Theorem 18, there exists an isomorphism f of M, to M, with
fl)=x,. Let (& Autg(x,R). Then g(x,)+x, is also a smooth element and
hence, by again Theorem 18, there exists an isomorphism z of M, to M, with
h(g(x)))=x,. Then h7'f € Autg(M,) and h™f|x,R=g.

Corollary 20. We assume {Ma}, is a locally semi-T-nilpotent set and each
M, is uniform and satisfies (M-1). Then the following conditions are equivalent:

1) M has the extending property of decomposition of S(M).

2) For any pair o and B in I, if S(M,)~ S(Mjg), then Mo~My. And
End(S(My,)) is extended to Endyx(M,) for any o in I.

3) M has the extending property of simple module and every monomorphism
of M, to Mg is isomorphic for any pair a, B in 1.

Proof. We can assume M,2S(M), and hence take ¥ = {x&M |xR is
simple} in Theorem 18.

Theorem 21. Assume {M,}, is a lccally semi-T-nilpotent set and each M,
is uniform and satisfies (M-I). Then the following conditions are equivalent:
1) M has the extending property of direct sum cf uniform and smooth modules.
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2) For any pair a, B in I, any monomorphism of any submodule A, of M,
to My is extended to an isomorphism of M, to Mo,
3) i) M has the extending property of uniform and smooth module.
ii)  Every monomorphism of M, to My is isomorphic for any pair o, 3 in 1.

Proof. 1)=>1) of 3) is clear. Hence we have 1)« 2)=>3) by Theorems 9
and 18. 3)=>1) is shown by the same argument as in the proof of of 3)=1)
in Theorem 18.

Theorem 22. We assume each M, is uniform and satisfies (M-I). Then
the following conditions are equivalent:
1) M has the extending property of direct sum of f.c. uniform modules.
2) i) {M,}, is a locally semi-T-nilpotent set.
ii) Every monomorphism of M, to Mg is isomorphic for any pair a, 3
in 1.
iii) For any pair a, B in I and any submodule A, of M, Homy(As, M)
is extended to Homg(M ,, Mp).
3) 1) {M.}; is a locally semi-T-nilpotent set.
il) Every monomorphism of M, to Mg is isomorphic for amy pair o, B
nl.
iil) M has the extending property of c.f. uniform module.

Proof. 1)=2), 3). Clearly iii) of 3) holds and hence iii) of 2) follows
from Theorem 10. ii) of 2) follows from Theorem 13, whence to show the rest
that {M,}; is locally semi-T-nilpotent, we may show the following: Let
{M}ia S {My}; and {f;: M;—M,;,,|i>1} a family of non-monomorphisms.
Then, for any x in M,, there exists integer n (depending on x) such that
fuforre i) =0.

To verify this fact, put M{={x+f(x)|xM,} for i>1. Then M!BM,,,
=M;PM,;,, for all i>1 and moreover {M/|i>1} is independent. Since

M NM,;=0 for all i>1, we see EQEEBMﬁgeME}@Mi, whence by 1) we see
i=1 i=1

SYPM!=>YP M,;. This fact implies that if x in M, then there exists z such

i=1 i=1

that f, f,—1-+* fi(x)=0.
2) & 3) follows from Theorem 10.

3)=1) is shown by the same argument as in the proof of 3)=1) in
Theorem 18.

Similarly we obtain

Theorem 23. We assume each M, is uniform and satisfies (M-I). Then the
following conditions are equivalent:
1) M has the extending property of direct sum of uriform modules.
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2) i) {Mu}; is a locally semi-T-nilpotent set.
ii) Every monomorphism of M, to My is isomorphic for any pair o, B in I.
i) For any a in I and any submodule A, of M, HomR(A,,,, 21D Mp)
is extended to Hom(M., 3 M) T

3) 1) {My},isa locally semi-T-nilpotent set.
ii) Every monomorphism of M, to Mg is isomorphic for any pair a, 3
in I
1) M has the extending property of uniform module.

Proof. We can show this by the same argument as in the proof of Theorem
22 (use Theorem 12 instead of Theorerg 10).

Further we have the following theorem.

Theorem 24. The folowing conditions are equivalent:
1) M has the extending property of direct sum of submodule.
2) i) Each M, is uniform.
i)  Every monomorphism of M, to M is isomorphic for any pair a, B in I.
iil) {M,}, is a locally semi-T-nilpotent set.
iv) For any J 1 and any submodule ACEGBMS, Homg(4, Z]EBMQ,)
is extended to HomR(f_‘, D M, 2 D M,).

3) i) Ewvery monomorphzsm of M, to My is isomorphic for any pair o, B in I,
i) {Ma}; is a locally semi-T-nilpotent set.
iii) M has the extending property of submodule.

Proof. 1)=>2). iii) follows from Corollary 3. So, i) and ii) follow from
Corollary 14 and hence we know iv) by Theorem 15.

2)«3) follows from Theorem 15.

3)=1). Let {Ng}, be an independent set of submodules of M. By iii),
there exists N (@M such that Ny N for all B in J. Since NiK@M and
ii) holds, each N} is a direct sum of completely indecomposable R-modules by
[6], [12]. Hence ‘JV‘_,EBNﬁKEBM by Corollary 14. Hence ZJ]EBN,; is extended

to a decomposition of M.

4. Applications
We start with

Proposition 25. If M is a quasi-injective R-module, then M has the exiending
property of submodule. If we assume futher that M is a direct sum of completely
indecomposable modules, say M= Z@M o then M has the extending property of
direct sum of submodules.
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Proof. Let N be a submodule of M. Then E(M)=E(N)®K for some
K. Since M is quasi-injective, M=(E(N)N M)@(K N M) and then N< E(N)
NM. Next, since M is quasi-injective, M has the exchange property by [3].
Hence we see from [6], [12] that {A,}; is locally semi-T-nilpotent. For any
pair @, B in I, we show that every monomorphism f: M,—Mj is isomorphic.
Let p be an isomorphism of E(M,) to E(Mg) which is an extension of f. Since
MLP M, is quasi-injective, p ' (Mg) S M, by [11]. Hence MpC p(Ma)=f(M,)
and hence f is indeed isomorphic. Now, let {Ng}; be ar independent set of
submodales of M. Then, there exists a direct summand N} of M such that
N Nj for all B in J. Since {M,}, is locally semi-T-nilpotent and N ;<P M,
each N} is a direct sum of completely indecomposable modules. Consequently
we see from Corollary 14 that ;@Ng is a direct summand of IM; whence

1P Np is extended to a decomposition of M.
J

Theorem 26. Let {M,}, be a set of completely indecomposable R-modules
and put M=2 P M,. Then the following conditions are equivalent:
I

1) M is quasi-injective
2) MM has the extending property of direct sum of submodules.

Proof. 1)=>2). Since M is quasi-injective, M DM is also quasi-injective
by [4], [11]. Hence 2) holds by Proposition 25.
2)=>1) is easily seen from Theorem 24.

Corollary 27. Let T be a completely indecomposable R-module and con-
sider M= DM, where My~T forallain I; |I|>2. Then M is quasi-injective
< ‘

if and only if M has the extending property of direct sum of submodules.

Proof. If the cardinal |I|=c0, then M@ M ~M; whence the statement
follows from Theorem 26. If |I|< oo, then M is quasi-injective if and only

if T is quasi-injective. Hence in this case, the proof also follows from Theorem
26.

Theorem 28. Let {M,}, be a set of indecomposable quasi-injective R-modules
and M= P M,. Consider the following conditions:
I

1) M is quasi-injective.

2) For any pair a, B in I, if E(M,)~E(M,), then M ,~M,.

3) M has the extending property of direct sum of submodules.
Then we have 1)=>3)=>2), and in the case when M is non-singular, all conditions are
equivalent.

Proof. 1)=3) follows from Proposition 25.
3)=2). Let p be any isomorphism of E(M,) to E(Mg) for pair o, B in I.
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Then p~'(Mg)NM,=+0. Hence, there exists f: My—> My extended from

plp ™ (Mg)N M, and f is isomorphic by Theorem 22. Assuming M is non-

singular, we show 2)=>1). By [13], we see that 2} E(M,) is quasi-injective
I

and every non-zero homomorphism of E(M,) to E(Mpg) is isomorphic for any
pair a, B in I; so Homy(E(Ms,), E(Mg))=0 if E(M,)AE(Mg). Further if o,
B in I and f: E(M,)— E(M,) is isomorphic, then f(M,) C Mg. For, by 2),
there exists an isomorphism g: M,— M. Let p: E(M,)— E(Mg) be an ex-
tension of g. Since M, is quasi-injective, p~f(M,) S M, by [11]. This indeed
implies f(M,)SM,. Thus M is quasi-injective by [4] and [11].

Proposition 29. Let {M,} ; be a set of uniform and completely indecomposable
R-modules with (M-1) and the cardinal |I| =1, and put M=> B M,. We assume
I

E(M)~E(M,) for all a, B in I and M has the extending property of direct sum
of f.c. uniform modules. Then if either |I|<<oco or R is right Noethrian, M is
quasi-injective.

Proof. Let p be any isomorphism of E(M;) to E(M,) for 1,2 in I. Then
there exists an isomorphism f: M,— M, such that f=p on p™(M,N M,) (see
proof of Theorem 28). Let A& Homg(A, M,) for ACM,. Then fhis extended
to a homomorphism ¢: M;— M, by Theorem 22. Hence, f™'¢ is an extension
of & and so M, is quasi-injective. Further, since f~'p&Endi(E(M,)), M,=
flp ™ (p(M,)))=p(M,) by [11]. If |[I|<oo or R is Noetherian, E(M)=
ZI]EB E(M,). Hence, M is quasi-injective by [4] and [11].

Corollary 30. Let {M,}, and M be as above. We assume further each M,
is non-singular and M has the extending property of f.c. uniform modules. Then
if either |I|<<oo or R is right Notherian, >3@® M, is quasi-injective, where I' is

II

a subset of I such that for ccin I’ there exists p(a) +a in I with E(M,)~E(M,w)).

Proof. Since M, is non-singular, Homg(E(M,), E(Mg))=0 if E(M,)=>
E(Mg). Hence, we have the corollary by Proposition 29 and [4], [11].

Especially, when R is a Dedekind domain, we have

Theorem 31. Let R be a Dedekind domain and M an R-module. Then M
has the extending property of direct sum of uniform modules if and only if either

1) M is quasi-injective or

2) M=KO®E, where E is torsion and injective and K SQ=E(R).

If M has the extending property of direct sum of uniform modules, then
M= ®M, with M, uniform, since R is Notherian. We shall complete the
I

proof by making use of elementary properties of abelian groups as follows:
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Lemma 32. Let K be an R-submodule of Q and {f;: K—E(P;)"} a set of
homomorphisms. We assume P;==P; if i =§ and for some a=+0 in K, f(a)=0 for
almo.t all i. Then {f;} 1s summable, i.e., for any x in K, fi(x)=0 for almost all
1, where P; is a non-zero prime ideal, E(P;)=E(R[P;) and E(P;)%:) is a direct sum
of I;-copies of E(P;) (cf. [14]).

Proof. We may asume a=1 and KDR. Then f,&Homg(K/R, E(P;)’)
for almost all . Hence, since K/R=>P(¢g-primary part of K/R), {f.} is sum-
mable. !

Lemma 33. Let K be as above and L an R-submodule of E(P). If
Homg(A4, L) is extended to Homg(K, L) for any submodule A in K, then L=E(P).

Proof. We may assume K2R. We assume L=E(P). Then L=p "R,
where E(P)=Up "R and p"€Q/R. Put A=p"RDB=p"R. Then the
natural epimorphism f: 4—A/B~L is in Homg(4, L). Let g&Homg(R, L)
be an extension of f. Then R=ker g+A4. Hence, Rp=(ker g)p+A4p=(ker g)p.
Since (ker g) N A=B, Ap=DB,, a contradiction. Hence, L=E(P).

The following lemma is similar to Theorem 22.

Lemma 34. Let T=> DT, be any decomposition of an R-module and let
I

each T, be uniform. If T has the extending property of divect sum of f.c. umiform
modules, then any element in Hompg(Aa, T) s extend.d to Homg(Ty, Ts) for any
pair a, B in I and for any submodule A, in T,.

Proof. Let f bein Homg(4,, T3). Put A(f)={a+f(a)|as A} and consider
an essential submodule A(f)PT,H >} DT, of T. Then there exists a de-
I~ (1,2)
comsition T=33PS, such that S,,2 7T, for a+1 and S,,2A4(f). Since Ty is
I
a direct summand of 7, Sy=T, fora 1. Thus, T=8,P > PT,andso | T,
)

I-{1
is an extension of f, where z: T—T; is the projection on the decomposition.

Proof of Theorem 31. We assume M has the extending property of direct
sum of uniform modules. Then M= PM,P> D M,, where M, (resp. Mp)
I, T,

is a torsion-free (resp. torsion) uniform submodule of M. We may assume
M,cO for all « in I,. First we assume |I;|>2. Take 0x in M, N M,,.
For any m=+0€R a homomorphism f: xmR—xR by setting f(xmr)=xr is ex-
tended to g: Ma —>M,, by Lemma 34. Hence, xR(1/m)C M, (1/m)=g(M, )<
M,,. Therefore, M,,=Q and so each My=Q for a in I,. Furthermore we
know Mg=E(P) for any B in I, by Lemmas 32 and 33. Hence, M is injective.
If |I,|=1 and M, =0, M is also injective as above. Next, assume |I,|=1
and M, Q. Then M is of the form 2). Finally, we assume M is torsion.
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Each Mg is a completely indecomposable with (M-I). Hence, M is quasi-
injective by Proposition 29, the fact: Homg(E(P), E(Q))=0 if P=Q and [3], [9].
Conversely, if M is quasi-injective, M has the extending property of direct sum
of submodules by Proposition 25. Let MzK@;@E(P)"P) as in 2). We

assume N=N,P DD N, be an essential submodule of M, where N, (resp. NNp)
Iz

is torsion-free (resp. torsion) and uniform. Let z and 7, be the projection of
M onto K and E(P)“P), respectively. Then z|N, is isomorphic. Put fp=
zp(m|N) ™' n(N))—E(P)Y?. Then {fp} is summable. Since E(P)"?) is
injective, we obtain an extension g,&Homg(K, E(P)P) of f,. Then {g,} is
also summable by Lemma 32. Put K'= {x—l-;gp(x) |x€K}S M. Then M=

K' ®XYPE(P)» and K'DN,, ;] @ E(P)» , D3NP N; (cf. The proof of
P Iz

Theorem 10). Hence, N, > )P N; is extended to a decomposition of M by
1
proposition 25. z

Theorem 35. Let R be a left perfect ring [2]. Then the following condi-
tions are equivalent.

1) Ewvery direct sum of completely indecomposable uniform R-module has the
extending property of simple module.

2) For every completely indecomposable submodules U, and U, of an in-
decomposalle injective module E, there exists an automorphism f of E such that
either f(U)C U, with f|S(E)=f or f(U)CU, with f|S(E)=f" for any
f<€End(S(E)).

Proof. 1)=2) is clear from Theorem 5. Since every uniform module is
embedded in an indecomposable injective module, 2)=>1) also follows from

Theorem 5.
We end this paper with the following theorem.

Theorem 36. Let R be a right and left ariinian ring. Then the following
canditions are equivalent:

1) R is a generalized uniserial ring [15].

2) Every right R-module, as well as every left R-module, has the extending
property of simtle module.

Proof. 1)=2). Every module M is a direct sum of uniserial modules by
[15]. Hence, we know 1)=>2) by Theorem 35.

2)=1). Let e be a primitive idempotent. Since eR/e4 is indecomposable
for every right ideal e4, S(eR/eA) is simple by 2). Hence, R is a right generalized
uniserial ring. By the same argument, we see R is also left uniserial.
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