

Title	fac-Re(2,2'-bipyridine)(CO) ₃ Cl Catalyzes Visible-Light-Driven Functionalization of an Organic Substrate with CO ₂
Author(s)	Lorwongkamol, Phurinat; Watanabe, Taito; Kitada, Masaki et al.
Citation	JACS Au. 2025, 5(9), p. 4170-4177
Version Type	VoR
URL	https://hdl.handle.net/11094/103264
rights	This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

fac-Re(2,2'-bipyridine)(CO)₃Cl Catalyzes Visible-Light-Driven Functionalization of an Organic Substrate with CO₂

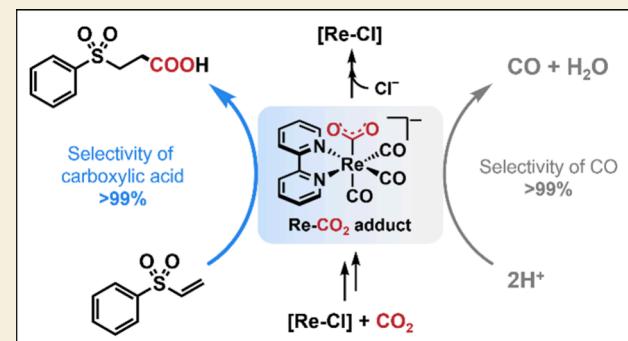
Published as part of JACS Au *special issue* "Advances in Small Molecule Activation Towards Sustainable Chemical Transformations".

Phurinat Lorwongkamol, Taito Watanabe, Masaki Kitada, Yuta Uetake, Yutaka Saga,* Tetsuya Kambe, Mio Kondo, and Shigeyuki Masaoka*

Cite This: *JACS Au* 2025, 5, 4170–4177

Read Online

ACCESS |


Metrics & More

Article Recommendations

Supporting Information

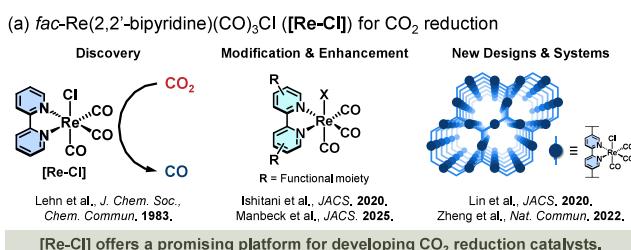
ABSTRACT: The molecular photocatalyst *fac*-Re(2,2'-bipyridine)(CO)₃Cl ([Re-Cl]) is well established and has been extensively investigated for the highly active and selective conversion of CO₂ to CO. However, its reactivity in processes other than CO₂ reduction has rarely been explored. Herein, we report the application of [Re-Cl] as a catalyst for the visible-light-driven carboxylation of an alkene using CO₂, with phenyl vinyl sulfone (**1**) serving as a model substrate. The catalytic system successfully catalyzed the carboxylation of **1** to its corresponding carboxylic acid, with complete suppression of CO formation throughout the reaction. A turnover number (TON) of up to 2600, along with excellent regioselectivity, was achieved under optimized conditions. Control experiments revealed the key role of each reaction component, while isotope labeling with ¹³CO₂ confirmed that the carboxyl group originated from CO₂. Furthermore, mechanistic investigations suggested that the Re-CO₂ intermediate reacts directly with the alkene. These findings highlight the potential of Re-based molecular complexes for broader reactivities and expand their applicability in sustainable synthetic transformations.

KEYWORDS: *Re complex, photocatalysis, carboxylation, CO₂, visible light*

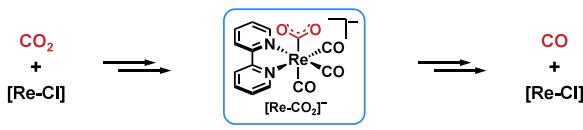
The development of novel catalytic systems for the efficient utilization of CO₂ as a C₁ building block in the synthesis of fuels and chemicals has attracted significant interest in recent decades.^{1–3} In particular, visible-light-driven catalytic CO₂ reduction, which is regarded as a half-reaction of artificial photosynthesis, has gained considerable attention, prompting the extensive development of molecular catalysts.^{4–8} In this context, the Re(I) tricarbonyl complex, *fac*-Re(2,2'-bipyridine)(CO)₃Cl ([Re-Cl]), has been thoroughly investigated since its photocatalytic activity was first reported by Lehn et al. in 1983 (Figure 1a).⁹ The complex exhibits excellent catalytic performance for the photoreduction of CO₂ to CO and demonstrates high stability owing to its substitution-inert coordination bonds. This intrinsic stability facilitates structural modifications, enabling molecular tuning and functionalization. Notably, the bipyridine moiety allows the introduction of additional functional moieties, thereby significantly enhancing photocatalytic performance.^{10–18} Leveraging these features, Re complexes have been incorporated into various materials to further improve performance for photocatalytic CO₂ reduction.^{19–26} These attributes make Re complexes ideal platforms for developing photocatalytic CO₂

reduction systems. Furthermore, extensive research has focused on elucidating the underlying mechanisms, leading to a comprehensive understanding of the catalytic system associated with [Re-Cl] and its derivatives.^{27–44}

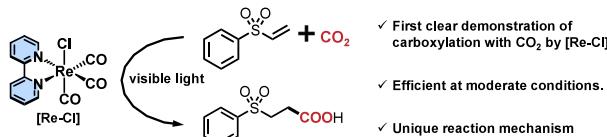
In the proposed mechanism for photochemical CO₂ reduction by [Re-Cl], one key intermediate is a Re-CO₂ adduct ([Re-CO₂][–] in Figure 1b).^{36,44} In this species, CO₂ is activated at the Re center and subsequently converted to CO and water following protonation. Given this reactivity, we hypothesize that, beyond serving as a substrate for CO formation, the activated CO₂ could also function as a reactive species capable of coupling with organic molecules. In this context, CO₂ can act as a C₁ building block for direct insertion into organic substrates. Although transformations in which CO₂ activated on a metal complex undergoes direct insertion


Received: May 27, 2025

Revised: August 16, 2025


Accepted: August 18, 2025

Published: August 25, 2025



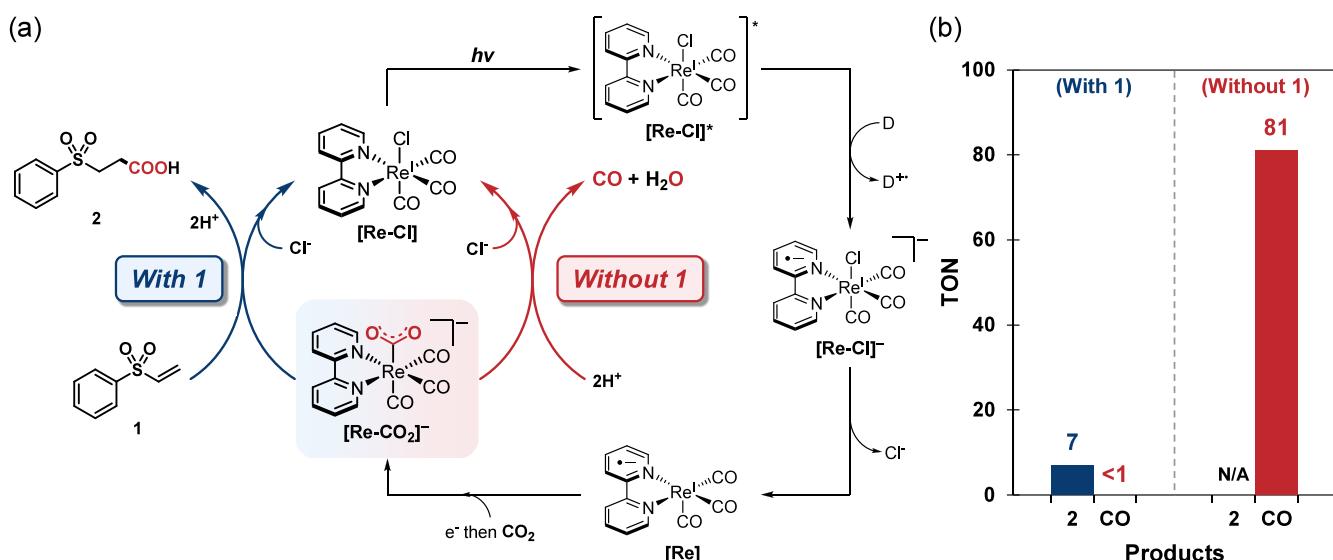
(b) Key intermediate: [Re-CO₂]⁻

Activated CO₂ on the [Re-CO₂]⁻ is expected to reveal unique reactivity.

(c) This work: [Re-Cl] catalyzed carboxylation with CO₂

Novel catalytic activity of [Re-Cl] opens a new avenue in CO₂ utilizations.

Figure 1. Overview of research on [Re-Cl]: (a) Discovery of its catalytic activity and recent achievements. (b) Key intermediate based on mechanistic studies. (c) This study.


into organic molecules remain unexplored, such processes would mark a significant advancement in sustainable chemistry. Motivated by these considerations, we investigated the catalytic potential²⁶ of [Re-Cl] in visible-light-driven transformations involving CO₂ and organic molecules.

In this study, we introduce a Re-based molecular catalyst for functionalizing an organic substrate with CO₂ (Figure 1c). This photocatalytic system produced the desired carboxylic acid with a high turnover number (TON) of 2600. Control

experiments, including ¹³C isotope labeling, confirmed the catalytic activity of [Re-Cl] in driving the organic transformation reaction. Moreover, mechanistic studies revealed a plausible catalytic cycle involving Re-CO₂ active species. Although photochemical carboxylation with CO₂ has become a highly active research area in recent years,^{45–68} particularly involving iridium-^{53,57–62} and nickel-based^{63–68} catalytic systems, our study introduces a distinct and intriguing mechanism in which activated CO₂ on the Re center serve as a nucleophile to react with a substrate. This mechanism is in sharp contrast to the reported systems, where the organic substrate is first activated to act as a nucleophile toward CO₂. Notably, this study is the first to clearly demonstrate the catalytic activity of a Re(I) diimine complex for the utilization of CO₂ as a substrate in a chemical reaction other than CO₂ reduction.

Figure 2a shows the proposed catalytic cycle for photochemical CO₂ reduction using [Re-Cl].^{29,31,32,36,37,39,40,42–44} Upon absorbing photon energy, [Re-Cl] forms an excited state ([Re-Cl]^{*}), which subsequently undergoes reductive quenching to generate the one-electron-reduced species, [Re-Cl]⁻. Following the dissociation of the Cl⁻ ligand, the S-coordinated intermediate [Re] receives one electron and coordinates to the carbon atom of CO₂, forming [Re-CO₂]⁻. Theoretical calculations have suggested the formation of [Re-CO₂]⁻, which is reported to be thermodynamically favorable.^{36,44} In the presence of a proton source, protonation of [Re-CO₂]⁻ leads to the release of CO and water. However, we hypothesize that this particular activated CO₂ in [Re-CO₂]⁻ may also attack organic substrates, resulting in a functionalization reaction to produce carboxylic acids.^{69–71} In either case, coordination to the Cl⁻ ligand regenerates [Re-Cl], thereby completing the catalytic cycle.

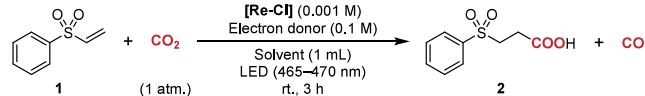

Based on our hypothesis, we conducted two distinct experiments involving CO₂ activation using [Re-Cl] as the catalyst. First, we investigated the photocatalytic reduction of CO₂ under visible-light irradiation. The reaction was performed in the presence of [Re-Cl] using a solvent mixture of *N,N*-dimethylacetamide (DMA) and triethanolamine

Figure 2. (a) Proposed mechanism based on our hypothesis for the visible-light-driven carboxylation of 1 with CO₂ catalyzed by [Re-Cl]. (b) Photocatalytic reactions for the production of 2 and CO. Reaction conditions: A 1 mL solution of DMA:TEOA (5:1 v/v) containing 1 (0.1 M or none), [Re-Cl] (1.0 mM), and an electron donor (0.1 M) was saturated with CO₂ for 15 min and then irradiated (465–470 nm) for 3 h.

(TEOA), with 1,3-dimethyl-2-phenyl-2,3-dihydro-1*H*-benzo-*d*]imidazole (BIH) as a sacrificial electron donor, and a blue LED ($\lambda = 465\text{--}470\text{ nm}$) as the light source, under a CO_2 atmosphere. Consequently, CO was formed with a TON of 81 after 3 h (Figure 2b and Table 1, entry 1), which is in line with

Table 1. Screening of Reaction Conditions^a

Entry	Solvent	Electron donor	TON of 2 ^b	TON of CO
1 ^c	DMA:TEOA (5:1 v/v)	BIH	-	81
2	DMA:TEOA (5:1 v/v)	BIH	7	<1
3	DMF:TEOA (5:1 v/v)	BIH	8	<1
4	MeCN	BIH	14	<1
5	DMSO	BIH	22	<1
6 ^d	DMSO	TEA	0	-
7 ^d	DMSO	Ascorbic acid	0	-

^aReaction conditions: A 1 mL solution containing **1** (0.1 M), [Re-Cl] (0.001 M), and an electron donor (0.1 M) was saturated with CO_2 (1 atm) for 15 min and then irradiated (465–470 nm) for 3 h.

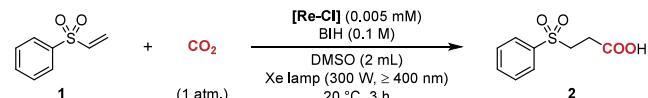
^bCalculated based on crude ^1H NMR using 1,2-dibromoethane as the internal standard. ^cReaction conducted without **1**. ^dReaction duration of 16 h.

previously reported results.^{9,10} In the second experiment, phenyl vinyl sulfone (**1**) was used as the model alkene substrate under the same reaction conditions. In this case, only trace amounts of CO were detected, indicating suppression of the CO_2 reduction pathway, and 3-(phenylsulfonyl)propanoic acid (**2**) was formed instead, with a TON of 7 (Figure 2b and Table 1, entry 2). These results demonstrate that [Re-Cl] exhibits catalytic activity for the carboxylation of organic molecules under visible-light irradiation.

Encouraged by these initial findings, we examined the optimal reaction conditions. Starting with the solvent investigation, a mixture of *N,N*-dimethylformamide (DMF) and TEOA, a well-known effective medium for photocatalytic CO_2 reduction using [Re-Cl],⁷² produced **2** with a TON comparable to that of DMA:TEOA (Table 1, entries 2 and 3). The use of acetonitrile (MeCN) increased the TON of **2** to 14 (Table 1, entry 4). The optimum solvent was found to be dimethyl sulfoxide (DMSO), which yielded a TON of 22 (Table 1, entry 5). Other common solvents, including DMF, DMA, methanol, tetrahydrofuran, and chloroform, were ineffective (Table S1, entries 5–9). Notably, CO was detected at trace levels in all solvent investigation experiments. Next, we screened various electron donors, including triethylamine (TEA), ascorbic acid, and other commonly used compounds. However, **2** was not produced in any of these cases (Table 1, entries 6 and 7; Table S1, entries 12–16).

To further enhance the TON of **2**, an optimization study was conducted. As shown by the reaction time profile (Figure S1), extending the reaction time beyond 3 h did not improve the TON of **2**. In contrast, doubling the solution volume resulted in a higher TON of 30, even without increasing the loading of [Re-Cl] (Table 2, entry 2). In addition, using a Xe lamp (300 W, $\geq 400\text{ nm}$) further increased the TON to 36 (Table 2, entry 3), possibly due to the higher absorption intensity of [Re-Cl] around the 400 nm region (Figure S17). Finally, the highest TON of 2600 was obtained by reducing the

Table 2. Optimization Study^a

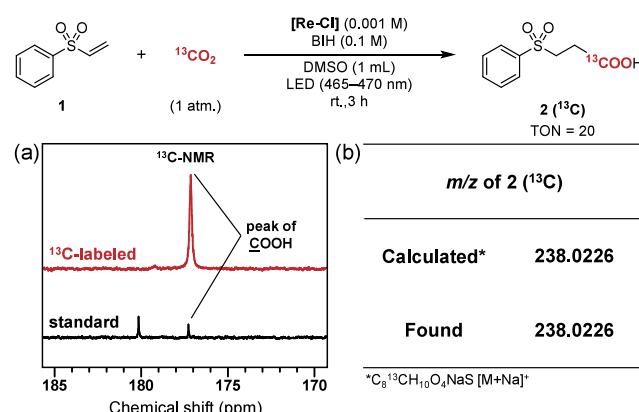

1	CO_2 (1 atm.)	$[\text{Re-Cl}]$ BIH (0.1 M) DMSO Visible light 3 h	2
Entry	Total volume	Irradiation	[Re-Cl] loading
1	1 mL	LED ^c	1 mM
2	2 mL	LED ^c	0.5 mM
3	2 mL	Xe lamp ^d	0.5 mM
4	2 mL	Xe lamp ^d	0.005 mM
			TON of 2 ^b
			22
			30
			36
			2600

^aStandard reaction conditions: A 1 mL DMSO solution containing **1** (0.1 M), [Re-Cl], and BIH (0.1 M) was saturated with CO_2 (1 atm) for 15 min and then irradiated (465–470 nm) for 3 h. ^bCalculated based on crude ^1H NMR using 1,2-dibromoethane as the internal standard. ^c465–470 nm. ^d300 W, $\geq 400\text{ nm}$; the temperature of the reaction vial was maintained at 20 $^\circ\text{C}$.

catalyst loading to 0.005 mM (Table 2, entry 4). Notably, **2** was the only regioisomer formed in all experiments, demonstrating excellent regioselectivity for the linear isomer under the optimized conditions (see Scheme S1 for details).

Several control experiments were performed to verify the necessity of each component in the carboxylation reaction. Significantly decreased yield was observed in the absence of [Re-Cl], and no product was formed in the absence of BIH, confirming that both the Re catalyst and sacrificial electron donor are critical components (Table 3, entries 1–3).

Table 3. Control Experiments^a

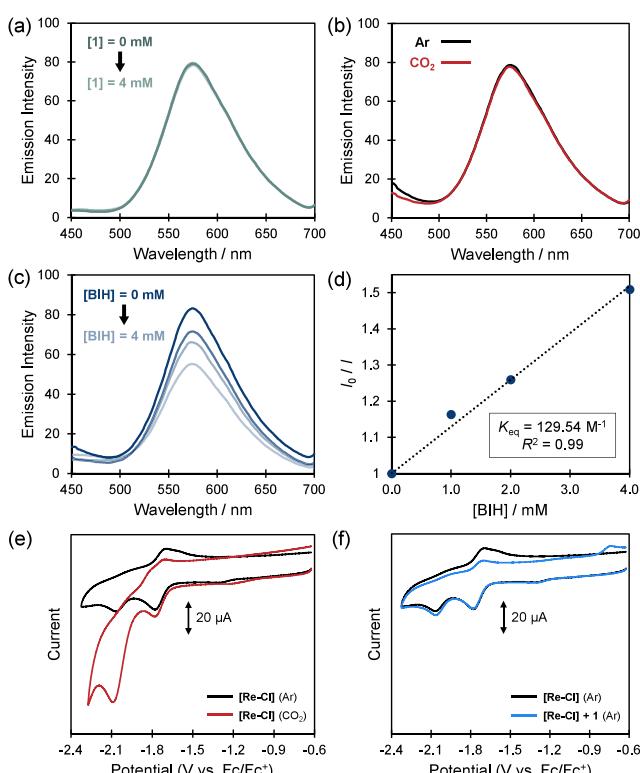


Entry	Catalyst	Electron donor	Irradiation	Gas	TON of 2 ^b
1	[Re-Cl]	BIH	Xe lamp	CO_2	2600
2	–	BIH	Xe lamp	CO_2	(8%) ^{c,d}
3	[Re-Cl]	–	Xe lamp	CO_2	0
4	[Re-Cl]	BIH	–	CO_2	0
5	[Re-Cl]	BIH	Xe lamp	Ar	0

^aReaction conditions: A 2 mL DMSO solution containing **1** (0.05 M), [Re-Cl] (0.005 mM), and BIH (0.1 M) was saturated with CO_2 (1 atm) for 15 min and then irradiated under a Xe lamp (300 W, $\geq 400\text{ nm}$, 20 $^\circ\text{C}$) for 3 h. ^bCalculated based on crude ^1H NMR using 1,2-dibromoethane as the internal standard. ^cThe yield is shown instead of TON. ^dFor the reason behind the obtained yield (8%), please see the SI (pp S12–S14).

Similarly, no reaction occurred without photoirradiation or a CO_2 atmosphere (Table 3, entries 4–5). Collectively, these results indicate that all the components are essential for successful carboxylation reactions (for details, see the SI, pp S12–S14).

Isotope labeling was employed to verify the original source of the carboxyl group. The reaction was conducted using $^{13}\text{CO}_2$, and the isolated product was analyzed using ^{13}C NMR and high-resolution mass spectrometry (HRMS). The ^{13}C NMR spectrum (Figure 3a) shows a prominent signal at 177.1 ppm, corresponding to the carbon atom of the $-\text{COOH}$ group. In addition, HRMS analysis revealed a species with an *m/z* value of 238.0226, which matches the calculated value for **2** (^{13}C) with a Na^+ ion ($[\text{M}+\text{Na}]^+$, *m/z* = 238.0226) (Figure


Figure 3. (a) ^{13}C NMR spectra (CD₃OD) showing the signal of the carboxyl carbon (177.1 ppm) for the isolated products from the isotope labeling experiment (red line) and the standard conditions (black line). (b) HRMS analysis of the product from the isotope labeling experiment.

3b). Thus, these results confirm that the carboxyl group originated from CO₂.

We conducted the following mechanistic studies to elucidate the reaction mechanism. First, emission-quenching experiments were performed. The emission intensity of $[\text{Re-Cl}]$ changed negligibly in the presence of either **1** or CO₂ (Figures 4a and b), whereas it decreased markedly in the presence of BIH (Figure 4c). The Stern–Volmer plot of I_0/I versus BIH concentration exhibits a linear correlation, yielding a K_{eq} value of 129.54 M⁻¹ (Figure 4d). These findings indicate that the excited state of $[\text{Re-Cl}]$ was quenched only by BIH in this system, supporting the reductive quenching of $[\text{Re-Cl}]^*$ to generate $[\text{Re-Cl}]^-$, as shown in Figure 2a.

Next, the electrochemical behavior of $[\text{Re-Cl}]$ was assessed using cyclic voltammetry (CV) in MeCN solution. The CV curve of $[\text{Re-Cl}]$ under an Ar atmosphere exhibits a reversible wave corresponding to the reduction of the 2,2'-bipyridine ligand and an irreversible wave corresponding to the reduction of Re(I) ions (Figure 4e, black line). We then performed CV measurements under a CO₂ atmosphere. Notably, a large irreversible current was observed after the two-electron reduction of $[\text{Re-Cl}]$ (Figure 4e, red line).²⁷ This result is consistent with the proposed mechanism in Figure 2a, where coordination between $[\text{Re-Cl}]$ and CO₂ follows the two-electron reduction, leading to the generation of $[\text{Re-CO}_2]^-$. In contrast, the presence of **1** under an Ar atmosphere did not affect the redox behavior of $[\text{Re-Cl}]$ (Figure 4f). Moreover, **1** exhibited a highly negative reduction potential (Figure S12). These results indicate that the two-electron reduced species of $[\text{Re-Cl}]$ can interact with CO₂, whereas neither an interaction between $[\text{Re-Cl}]$ and **1** nor the direct reduction of **1** occurs in this system.

The reaction mechanism was further investigated by examining the regioselectivity of the product (see Scheme S1 for details). Two possible pathways for the coupling of **1** with CO₂ were considered: (A) nucleophilic attack of a radical anion of **1**, generated via one-electron reduction, on CO₂; or (B) nucleophilic attack of an activated CO₂, which is coordinated to $[\text{Re-CO}_2]^-$, on **1**. In pathway A, the radical anion of **1** localizes the negative charge at the α -position to the phenylsulfonyl group, which is stabilized by resonance with the sulfonyl moiety, as evidenced by density functional theory (DFT) calculations (for details, see the SI, pp S20–S23).

Figure 4. (a) Emission quenching of $[\text{Re-Cl}]$ in the presence of **1**. (b) Emission quenching of $[\text{Re-Cl}]$ under a CO₂ atmosphere. (c) Emission quenching of $[\text{Re-Cl}]$ in the presence of BIH. Measurements were conducted using a DMSO solution of $[\text{Re-Cl}]$ (50 μM), with quencher concentrations of 1.0, 2.0, or 4.0 mM. The samples were degassed with a stream of Ar or CO₂ for 20 min prior to measurement. (d) Stern–Volmer plot of the emission quenching of $[\text{Re-Cl}]$ in the presence of BIH. (e) CV curves of $[\text{Re-Cl}]$ (0.5 mM) under an Ar atmosphere, and a CO₂ atmosphere. (f) CV curves of $[\text{Re-Cl}]$ (0.5 mM) in the absence and presence of **1** (0.5 mM). CV was performed in an acetonitrile solution containing 0.1 M tetrabutylammonium hexafluorophosphate at a scan rate of 100 mV s⁻¹ using glassy carbon as the working electrode, Ag/Ag⁺ as the reference electrode, and Pt wire as the counter electrode.

Nucleophilic attack from the carbanion on CO₂ would preferentially yield the branched isomer (Scheme S1, pathway A). In contrast, in pathway B, the activated CO₂ coordinated to $[\text{Re-CO}_2]^-$ nucleophilically attacks **1**, leading to the formation of the linear isomer (Scheme S1, pathway B). Our experimental investigations consistently showed that only the linear isomer **2** was formed in all cases. These observations support pathway B, in which the activated CO₂ species at the Re center reacts directly with the substrate (for investigations on other substrates, see the SI, pp S15–S16).

The results from the mechanistic studies corroborate the hypothesis shown in Figure 2a. In this mechanism, the two-electron reduced species of $[\text{Re-Cl}]$ interacts with CO₂ to form a Re-CO₂ adduct, which subsequently reacts with the substrate to produce the carboxylation product. X-ray absorption spectroscopy (XAS) experiments support the electron donation from the Re center to the coordinated CO₂, leading to the formation of a reduced CO₂ species (for details, see the SI, pp S24–S26). Notably, this mechanism differs significantly from conventional carboxylation systems,^{61,73–75} where the organic substrate is first activated before reacting as a nucleophile toward CO₂. Thus, our findings reveal a new

mode of CO_2 activation and open new avenues for CO_2 utilization.

In conclusion, this study provides the first clear demonstration of using a Re-based molecular catalyst for the functionalization of organic molecules with CO_2 . The $[\text{Re}-\text{Cl}]$ catalyst enabled visible-light-driven carboxylation of **1** with CO_2 , affording the corresponding carboxylic acid **2** with excellent regioselectivity. Notably, CO_2 reduction to CO was completely suppressed under identical conditions. Under the optimized conditions, the TON for **2** reached 2600. Control and isotope labeling experiments confirmed the reactivity of $[\text{Re}-\text{Cl}]$ in the carboxylation of **1** with CO_2 . Moreover, mechanistic studies supported the proposed catalytic cycle. Thus, this study opens a new avenue for the application of Re complexes in other organic transformations.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacsau.Sc00665>.

Detailed experimental procedures, screening of reaction conditions, study of reaction time course, characterization of the carboxylation products, further mechanistic studies (quenching experiment, CV, examining of product selectivity, theoretical calculation, X-ray absorption spectroscopy and UV-visible absorption spectrum) ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Authors

Yutaka Saga — *Division of Applied Chemistry, Graduate School of Engineering, The University of Osaka, Suita, Osaka 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), The University of Osaka, Suita, Osaka 565-0871, Japan; Email: ysaga@chem.eng.osaka-u.ac.jp*

Shigeyuki Masaoka — *Division of Applied Chemistry, Graduate School of Engineering, The University of Osaka, Suita, Osaka 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), The University of Osaka, Suita, Osaka 565-0871, Japan; [orcid.org/0000-0003-2678-2269](#); Email: masaoka@chem.eng.osaka-u.ac.jp*

Authors

Phurinat Lorwongkamol — *Division of Applied Chemistry, Graduate School of Engineering, The University of Osaka, Suita, Osaka 565-0871, Japan; [orcid.org/0009-0007-7086-9106](#)*

Taito Watanabe — *Division of Applied Chemistry, Graduate School of Engineering, The University of Osaka, Suita, Osaka 565-0871, Japan*

Masaki Kitada — *Department of Chemistry, School of Science, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8551, Japan*

Yuta Uetake — *Division of Applied Chemistry, Graduate School of Engineering, The University of Osaka, Suita, Osaka 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), The University of Osaka, Suita, Osaka 565-0871, Japan; [orcid.org/0000-0002-4742-8085](#)*

Tetsuya Kambe — *Division of Applied Chemistry, Graduate School of Engineering and Center for Future Innovation (CFi), Graduate School of Engineering, The University of Osaka, Suita, Osaka 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), The University of Osaka, Suita, Osaka 565-0871, Japan; [orcid.org/0000-0002-9216-2693](#)*

Mio Kondo — *Department of Chemistry, School of Science, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8551, Japan; [orcid.org/0000-0001-9627-2331](#)*

Complete contact information is available at: <https://pubs.acs.org/10.1021/jacsau.Sc00665>

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by KAKENHI grants [Grant Nos. 22K21348, 23H04903 (Green Catalysis Science), and 24H00464 (S.M.); 22K05095 and 24H01851 (Green Catalysis Science) (Y.U.); 22K06525 and 25K22528 (Y.S.); 23H02043, 25H01671 and 25K22275 (T.K.); 22K19086, 23H04628, 24H02212 (Chemical Structure Reprogramming (SReP)), and 25H00885 (M.Ko.); 23KJ1511 (T.W.); and 25KJ1266 (M.Ki.)] from the Japan Society for the Promotion of Science. This study was supported by the Japan Science and Technology Agency (JST) CREST [Grant No. JPMJCR20B6 (S.M.)] and JST FOREST [Grant Nos. JPMJFR221S (M.Ko.) and JPMJFR223I (T.K.)]. Funding was received from the Fujimori Science and Technology Foundation (Y.S.), Kato Foundation for Promotion of Science (KJ-3413) (T.K.), ENEOS Hydrogen Trust Fund (M.Ko.), and the Mitsubishi Foundation (M.Ko.). XAS experiments were performed at the BL9A beamline of KEK under the approval of the Photon Factory Program Advisory Committee (under proposal numbers 2022G006 and 2024G036).

■ REFERENCES

- (1) Behr, A. Carbon Dioxide as an Alternative C1 Synthetic Unit: Activation by Transition-Metal Complexes. *Angew. Chem., Int. Ed.* **1988**, *27*, 661–678.
- (2) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. *Nat. Commun.* **2015**, *6*, 5933.
- (3) Song, Q.-W.; Ma, R.; Liu, P.; Zhang, K.; He, L.-N. Recent progress in CO_2 conversion into organic chemicals by molecular catalysis. *Green Chem.* **2023**, *25*, 6538–6560.
- (4) Yamazaki, Y.; Takeda, H.; Ishitani, O. Photocatalytic reduction of CO_2 using metal complexes. *J. Photochem. Photobiol., C* **2015**, *25*, 106–137.
- (5) Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO_2 Reduction. *ACS Catal.* **2017**, *7*, 70–88.
- (6) Bizzarri, C. Homogeneous Systems Containing Earth-Abundant Metal Complexes for Photoactivated CO_2 Reduction: Recent Advances. *Eur. J. Org. Chem.* **2022**, *2022*, No. e202200185.
- (7) Ma, F.; Luo, Z.-M.; Wang, J.-W.; Aramburu-Trošelj, B. M.; Ouyang, G. Earth-abundant-metal complexes as photosensitizers in

molecular systems for light-driven CO_2 reduction. *Coord. Chem. Rev.* **2024**, *500*, 215529.

(8) Boutin, E.; Merakeb, L.; Ma, B.; Boudy, B.; Wang, M.; Bonin, J.; Anxolabéhère-Mallart, E.; Robert, M. Molecular catalysis of CO_2 reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. *Chem. Soc. Rev.* **2020**, *49*, 5772–5809.

(9) Hawecker, J.; Lehn, J.-M.; Ziessel, R. Efficient photochemical reduction of CO_2 to CO by visible light irradiation of systems containing $\text{Re}(\text{bipy})(\text{CO})_3\text{X}$ or $\text{Ru}(\text{bipy})_3^{2+}-\text{Co}^{2+}$ combinations as homogeneous catalysts. *J. Chem. Soc., Chem. Commun.* **1983**, 536–538.

(10) Cancelliere, A. M.; Puntoriero, F.; Serroni, S.; Campagna, S.; Tamaki, Y.; Saito, D.; Ishitani, O. Efficient trinuclear $\text{Ru}(\text{ii})-\text{Re}(\text{i})$ supramolecular photocatalysts for CO_2 reduction based on a new trichelating bridging ligand built around a central aromatic ring. *Chem. Sci.* **2020**, *11*, 1556–1563.

(11) Chen, K.-H.; Wang, N.; Yang, Z.-W.; Xia, S.-M.; He, L.-N. Tuning of Ionic Second Coordination Sphere in Evolved Rhenium Catalyst for Efficient Visible-Light-Driven CO_2 Reduction. *ChemSusChem* **2020**, *13*, 6284–6289.

(12) Qiu, L.-Q.; Chen, K.-H.; Yang, Z.-W.; He, L.-N. A rhenium catalyst with bifunctional pyrene groups boosts natural light-driven CO_2 reduction. *Green Chem.* **2020**, *22*, 8614–8622.

(13) Qiu, L.-Q.; Chen, K.-H.; Yang, Z.-W.; Ren, F.-Y.; He, L.-N. Prolonging the Triplet State Lifetimes of Rhenium Complexes with Imidazole-Pyridine Framework for Efficient CO_2 Photoreduction. *Chem.—Eur. J.* **2021**, *27*, 15536–15544.

(14) Koenig, J. D. B.; Piers, W. E.; Welch, G. C. Promoting photocatalytic CO_2 reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. *Chem. Sci.* **2022**, *13*, 1049–1059.

(15) Qiu, L.-Q.; Yang, Z.-W.; Yao, X.; Li, X.-Y.; He, L.-N. Highly Robust Rhenium(I) Bipyridyl Complexes Containing Dipyrromethene- BF_2 Chromophores for Visible Light-Driven CO_2 Reduction. *ChemSusChem* **2022**, *15*, No. e202200337.

(16) Ren, F.-Y.; Chen, K.; Qiu, L.-Q.; Chen, J.-M.; Daresbourg, D. J.; He, L.-N. Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO_2 Reduction in Aqueous Media. *Angew. Chem., Int. Ed.* **2022**, *61*, No. e202200751.

(17) Kuramochi, Y.; Suzuki, Y.; Asai, S.; Suzuki, T.; Iwama, H.; Asano, M. S.; Satake, A. Significance of the connecting position between $\text{Zn}(\text{ii})$ porphyrin and $\text{Re}(\text{i})$ bipyridine tricarbonyl complex units in dyads for room-temperature phosphorescence and photocatalytic CO_2 reduction: unexpected enhancement by triethanolamine in catalytic activity. *Chem. Sci.* **2023**, *14*, 8743–8765.

(18) Wang, Z.; Rotundo, L.; Ertem, M. Z.; Polyansky, D. E.; Manbeck, G. F. Efficient Self-Sensitized Photochemical CO_2 Reduction Using $[\text{Re}(\text{bipy}^{2+})(\text{CO})_3(\text{I})]^{2+}$ and $[\text{Re}(\text{bipy}^{2+})(\text{CO})_3(\text{CH}_3\text{CN})]^{3+}$ Photocatalysts with Pendent Ammonium Cations. *J. Am. Chem. Soc.* **2025**, *147*, 18796–18813.

(19) Feng, X.; Pi, Y.; Song, Y.; Brzezinski, C.; Xu, Z.; Li, Z.; Lin, W. Metal–Organic Frameworks Significantly Enhance Photocatalytic Hydrogen Evolution and CO_2 Reduction with Earth-Abundant Copper Photosensitizers. *J. Am. Chem. Soc.* **2020**, *142*, 690–695.

(20) Fu, Z.; Wang, X.; Gardner, A. M.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L.; Li, X.; Vogel, A.; Clowes, R.; Bilton, M.; Chen, L.; Sprick, R. S.; Cooper, A. I. A stable covalent organic framework for photocatalytic carbon dioxide reduction. *Chem. Sci.* **2020**, *11*, 543–550.

(21) Saito, D.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Photocatalysis of a Dinuclear $\text{Ru}(\text{II})-\text{Re}(\text{i})$ Complex for CO_2 Reduction on a Solid Surface. *J. Am. Chem. Soc.* **2020**, *142*, 19249–19258.

(22) Stanley, P. M.; Thomas, C.; Thyraug, E.; Urstoeger, A.; Schuster, M.; Hauer, J.; Rieger, B.; Warnan, J.; Fischer, R. A. Entrapped Molecular Photocatalyst and Photosensitizer in Metal–Organic Framework Nanoreactors for Enhanced Solar CO_2 Reduction. *ACS Catal.* **2021**, *11*, 871–882.

(23) Stanley, P. M.; Haimerl, J.; Thomas, C.; Urstoeger, A.; Schuster, M.; Shustova, N. B.; Casini, A.; Rieger, B.; Warnan, J.; Fischer, R. A. Host–Guest Interactions in a Metal–Organic Framework Isoreticular Series for Molecular Photocatalytic CO_2 Reduction. *Angew. Chem., Int. Ed.* **2021**, *60*, 17854–17860.

(24) Pan, Q.; Abdellah, M.; Cao, Y.; Lin, W.; Liu, Y.; Meng, J.; Zhou, Q.; Zhao, Q.; Yan, X.; Li, Z.; Cui, H.; Cao, H.; Fang, W.; Tanner, D. A.; Abdel-Hafez, M.; Zhou, Y.; Pullerits, T.; Canton, S. E.; Xu, H.; Zheng, K. Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst. *Nat. Commun.* **2022**, *13*, 845.

(25) Boonta, W.; Sangkhun, W.; Suppaso, C.; Chantanop, N.; Panchan, W.; Chainok, K.; Thamyonkit, P.; Sudyoadsuk, T.; Maeda, K.; Butburee, T.; Unruangsri, J. Rhenium(I) Complex-Containing Amphiphilic Metallopolymer Stabilizing CdS Quantum Dots for Synergistically Boosting Photoreduction of CO_2 . *ACS Catal.* **2023**, *13*, 12391–12402.

(26) Kitada, M.; Goo, Z. L.; Kosugi, K.; Saga, Y.; Yoshinari, N.; Kondo, M.; Masaoka, S. Accumulation of Re-complex-based Catalytic Centers in Metal–Organic Cages for Photochemical CO_2 Reduction/Insertion. *Chem. Lett.* **2023**, *52*, 512–515. Our previous study demonstrated the incorporation of $[\text{Re}-\text{Cl}]$ moieties into Zr-based metal–organic cages to improve their performance for photocatalytic CO_2 reduction. In this work, we also performed preliminary experiments on the reaction of phenyl vinyl sulfone and CO_2 . However, the random incorporation of Re complexes into the metal–organic cages resulted in a mixture of catalytic compounds, thus making it difficult to study the reaction in detail and concretely confirm the catalytic activity of the $[\text{Re}-\text{Cl}]$ moiety.

(27) Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. One- and two-electron pathways in the electrocatalytic reduction of CO_2 by $[\text{fac-Re}(\text{bipy})(\text{CO})_3\text{Cl}]$ ($\text{bipy} = 2,2'$ -bipyridine). *J. Chem. Soc., Chem. Commun.* **1985**, 1414–1416.

(28) Hawecker, J.; Lehn, J.-M.; Ziessel, R. Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by $(2,2'$ -Bipyridine)tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts. *Helv. Chim. Acta* **1986**, *69*, 1990–2012.

(29) Johnson, F. P. A.; George, M. W.; Hartl, F.; Turner, J. J. Electrocatalytic Reduction of CO_2 Using the Complexes $[\text{Re}(\text{bipy})(\text{CO})_3\text{L}]^n$ ($n = +1$, $\text{L} = \text{P}(\text{OEt})_3$, CH_3CN ; $n = 0$, $\text{L} = \text{Cl}^-$, Otf^- ; $\text{bipy} = 2,2'$ -Bipyridine; $\text{Otf}^- = \text{CF}_3\text{SO}_3^-$) as Catalyst Precursors: Infrared Spectroelectrochemical Investigation. *Organometallics* **1996**, *15*, 3374–3387.

(30) Hayashi, Y.; Kita, S.; Brunschwig, B. S.; Fujita, E. Involvement of a Binuclear Species with the $\text{Re}-\text{C}(\text{O})\text{O}-\text{Re}$ Moiety in CO_2 Reduction Catalyzed by Tricarbonyl Rhenium(I) Complexes with Diimine Ligands: Strikingly Slow Formation of the $\text{Re}-\text{Re}$ and $\text{Re}-\text{C}(\text{O})\text{O}-\text{Re}$ Species from $\text{Re}(\text{dmb})(\text{CO})_3\text{S}$ ($\text{dmb} = 4,4'$ -Dimethyl- $2,2'$ -bipyridine, $\text{S} = \text{Solvent}$). *J. Am. Chem. Soc.* **2003**, *125*, 11976–11987.

(31) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of an Efficient Photocatalytic System for CO_2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies. *J. Am. Chem. Soc.* **2008**, *130*, 2023–2031.

(32) Smieja, J. M.; Kubiak, C. P. $[\text{Re}(\text{bipy}-\text{tBu})(\text{CO})_3\text{Cl}]$ —improved Catalytic Activity for Reduction of Carbon Dioxide: IR-Spectroelectrochemical and Mechanistic Studies. *Inorg. Chem.* **2010**, *49*, 9283–9289.

(33) Agarwal, J.; Fujita, E.; Schaefer, H. F., III; Muckerman, J. T. Mechanisms for CO Production from CO_2 Using Reduced Rhenium Tricarbonyl Catalysts. *J. Am. Chem. Soc.* **2012**, *134*, 5180–5186.

(34) Benson, E. E.; Kubiak, C. P. Structural investigations into the deactivation pathway of the CO_2 reduction electrocatalyst $[\text{Re}(\text{bipy})(\text{CO})_3\text{Cl}]$. *Chem. Commun.* **2012**, *48*, 7374–7376.

(35) Smieja, J. M.; Benson, E. E.; Kumar, B.; Grice, K. A.; Seu, C. S.; Miller, A. J. M.; Mayer, J. M.; Kubiak, C. P. Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the

artificial photosynthesis of CO. *Proc. Natl. Acad. Sci. U.S.A.* **2012**, *109*, 15646–15650.

(36) Keith, J. A.; Grice, K. A.; Kubiak, C. P.; Carter, E. A. Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO₂ Reduction by *fac*-Re(bpy)(CO)₃Cl. *J. Am. Chem. Soc.* **2013**, *135*, 15823–15829.

(37) Sampson, M. D.; Froehlich, J. D.; Smieja, J. M.; Benson, E. E.; Sharp, I. D.; Kubiak, C. P. Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts. *Energy Environ. Sci.* **2013**, *6*, 3748–3755.

(38) Grice, K. A.; Kubiak, C. P. Chapter Five - Recent Studies of Rhenium and Manganese Bipyridine Carbonyl Catalysts for the Electrochemical Reduction of CO₂. In *Advances in Inorganic Chemistry*; Aresta, M., van Eldik, R., Eds.; Academic Press: 2014; pp 163–188.

(39) Kou, Y.; Nabetai, Y.; Masui, D.; Shimada, T.; Takagi, S.; Tachibana, H.; Inoue, H. Direct Detection of Key Reaction Intermediates in Photochemical CO₂ Reduction Sensitized by a Rhenium Bipyridine Complex. *J. Am. Chem. Soc.* **2014**, *136*, 6021–6030.

(40) Clark, M. L.; Cheung, P. L.; Lessio, M.; Carter, E. A.; Kubiak, C. P. Kinetic and Mechanistic Effects of Bipyridine (bpy) Substituent, Labile Ligand, and Brønsted Acid on Electrocatalytic CO₂ Reduction by Re(bpy) Complexes. *ACS Catal.* **2018**, *8*, 2021–2029.

(41) Kuramochi, Y.; Ishitani, O.; Ishida, H. Reaction mechanisms of catalytic photochemical CO₂ reduction using Re(I) and Ru(II) complexes. *Coord. Chem. Rev.* **2018**, *373*, 333–356.

(42) Kamogawa, K.; Shimoda, Y.; Miyata, K.; Onda, K.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Mechanistic study of photocatalytic CO₂ reduction using a Ru(ii)–Re(i) supramolecular photocatalyst. *Chem. Sci.* **2021**, *12*, 9682–9693.

(43) Kou, Y.; Nabetai, Y.; Nakazato, R.; Pratheesh, N. V.; Sato, T.; Nozawa, S.; Adachi, S.-i.; Tachibana, H.; Inoue, H. Mechanism of the photoreduction of carbon dioxide catalyzed by the benchmarking rhenium dimethylbipyridine complexes; *operando* measurements by XAFS and FT-IR. *J. Catal.* **2022**, *405*, 508–519.

(44) Kamogawa, K.; Kato, Y.; Tamaki, Y.; Noguchi, T.; Nozaki, K.; Nakagawa, T.; Ishitani, O. Overall reaction mechanism of photocatalytic CO₂ reduction on a Re(I)-complex catalyst unit of a Ru(II)–Re(I) supramolecular photocatalyst. *Chem. Sci.* **2024**, *15*, 2074–2088.

(45) Gui, Y.-Y.; Yan, S.-S.; Wang, W.; Chen, L.; Zhang, W.; Ye, J.-H.; Yu, D.-G. Exploring the applications of carbon dioxide radical anion in organic synthesis. *Sci. Bull.* **2023**, *68*, 3124–3128.

(46) Sun, G.-Q.; Liao, L.-L.; Ran, C.-K.; Ye, J.-H.; Yu, D.-G. Recent Advances in Electrochemical Carboxylation with CO₂. *Acc. Chem. Res.* **2024**, *57*, 2728–2745.

(47) Wang, Q.; Wang, Y.; Liu, M.; Chu, G.; Qiu, Y. Recent Advances in Photochemical/Electrochemical Carboxylation of Olefins with CO₂. *Chin. J. Chem.* **2024**, *42*, 2249–2266.

(48) Cao, G.-M.; Yan, S.-S.; Song, L.; Jiang, Y.-X.; Gao, T.-Y.; Chen, Z.; Zhang, W.; Ye, J.-H.; Yu, D.-G. Navigating the functionalization of unactivated alkenes via visible light photocatalysis. *Chem. Soc. Rev.* **2025**, *54*, 6726–6806.

(49) Jiang, H.-X.; Liu, Z.-T.; Xu, P.; Zhu, X. Synthetic application of oxalate salts for visible-light-induced radical transformations. *Chin. Chem. Lett.* **2025**, *11*1224.

(50) Malandain, A.; Molins, M.; Hauwelle, A.; Talbot, A.; Loreau, O.; D'Anfray, T.; Goutal, S.; Tournier, N.; Taran, F.; Caillé, F.; Audisio, D. Carbon Dioxide Radical Anion by Photoinduced Equilibration between Formate Salts and [¹¹C, ¹³C, ¹⁴C]CO₂: Application to Carbon Isotope Radiolabeling. *J. Am. Chem. Soc.* **2023**, *145*, 16760–16770.

(51) Yuan, T.; Wu, Z.; Zhai, S.; Wang, R.; Wu, S.; Cheng, J.; Zheng, M.; Wang, X. Photosynthetic Fixation of CO₂ in Alkenes by Heterogeneous Photoredox Catalysis with Visible Light. *Angew. Chem., Int. Ed.* **2023**, *62*, No. e202304861.

(52) Yue, J.-P.; Xu, J.-C.; Luo, H.-T.; Chen, X.-W.; Song, H.-X.; Deng, Y.; Yuan, L.; Ye, J.-H.; Yu, D.-G. Metallaphotoredox-enabled aminocarboxylation of alkenes with CO₂. *Nat. Catal.* **2023**, *6*, 959–968.

(53) Zhang, W.; Chen, Z.; Jiang, Y.-X.; Liao, L.-L.; Wang, W.; Ye, J.-H.; Yu, D.-G. Arylcarboxylation of unactivated alkenes with CO₂ via visible-light photoredox catalysis. *Nat. Commun.* **2023**, *14*, 3529.

(54) Dang, Y.; Han, J.; Chmiel, A. F.; Alektiar, S. N.; Mikhael, M.; Guzei, I. A.; Yeung, C. S.; Wickens, Z. K. Alkene Carboxy-Alkylation via CO₂^{•-}. *J. Am. Chem. Soc.* **2024**, *146*, 35035–35042.

(55) Xu, J.-C.; Yue, J.-P.; Pan, M.; Chen, Y.-C.; Wang, W.; Zhou, X.; Zhang, W.; Ye, J.-H.; Yu, D.-G. Metallaphotoredox-catalyzed alkynylcarboxylation of alkenes with CO₂ and alkynes for expedient access to β -alkynyl acids. *Nat. Commun.* **2025**, *16*, 1850.

(56) Jiang, Y.-Y.; Chen, Z.; Jiang, Y.-X.; Zhu, W.-J.; Xu, J.-C.; Ye, J.-H.; Zhang, W.; Yu, D.-G. Visible-Light-Driven Thiolate-Catalyzed Carbo-Carboxylation of Alkenes with CO₂: Facile Synthesis of Oxindole-3-acetic Acid Derivatives. *Chin. J. Chem.* **2025**, *43*, 2341–2346.

(57) Yatham, V. R.; Shen, Y.; Martin, R. Catalytic Intermolecular Dicarbofunctionalization of Styrenes with CO₂ and Radical Precursors. *Angew. Chem., Int. Ed.* **2017**, *56*, 10915–10919.

(58) Wang, H.; Gao, Y.; Zhou, C.; Li, G. Visible-Light-Driven Reductive Carboxylation of Styrenes with CO₂ and Aryl Halides. *J. Am. Chem. Soc.* **2020**, *142*, 8122–8129.

(59) Wang, S.; Cheng, B.-Y.; Sršen, M.; König, B. Umpolung Difunctionalization of Carbonyls via Visible-Light Photoredox Catalytic Radical-Carbanion Relay. *J. Am. Chem. Soc.* **2020**, *142*, 7524–7531.

(60) Cao, G.-M.; Hu, X.-L.; Liao, L.-L.; Yan, S.-S.; Song, L.; Chrunga, J. J.; Gong, L.; Yu, D.-G. Visible-light photoredox-catalyzed umpolung carboxylation of carbonyl compounds with CO₂. *Nat. Commun.* **2021**, *12*, 3306.

(61) Song, L.; Wang, W.; Yue, J.-P.; Jiang, Y.-X.; Wei, M.-K.; Zhang, H.-P.; Yan, S.-S.; Liao, L.-L.; Yu, D.-G. Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO₂. *Nat. Catal.* **2022**, *5*, 832–838.

(62) Ghosh, P.; Maiti, S.; Malandain, A.; Raja, D.; Loreau, O.; Maity, B.; Roy, T. K.; Audisio, D.; Maiti, D. Taming CO₂^{•-} via Synergistic Triple Catalysis in Anti-Markovnikov Hydrocarboxylation of Alkenes. *J. Am. Chem. Soc.* **2024**, *146*, 30615–30625.

(63) Meng, Q.-Y.; Wang, S.; König, B. Carboxylation of Aromatic and Aliphatic Bromides and Triflates with CO₂ by Dual Visible-Light–Nickel Catalysis. *Angew. Chem., Int. Ed.* **2017**, *56*, 13426–13430.

(64) Meng, Q.-Y.; Wang, S.; Huff, G. S.; König, B. Ligand-Controlled Regioselective Hydrocarboxylation of Styrenes with CO₂ by Combining Visible Light and Nickel Catalysis. *J. Am. Chem. Soc.* **2018**, *140*, 3198–3201.

(65) Ishida, N.; Masuda, Y.; Imamura, Y.; Yamazaki, K.; Murakami, M. Carboxylation of Benzylidic and Aliphatic C–H Bonds with CO₂ Induced by Light/Ketone/Nickel. *J. Am. Chem. Soc.* **2019**, *141*, 19611–19615.

(66) Sahoo, B.; Bellotti, P.; Juliá-Hernández, F.; Meng, Q.-Y.; Crespi, S.; König, B.; Martin, R. Site-Selective, Remote sp³ C–H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis. *Chem.—Eur. J.* **2019**, *25*, 9001–9005.

(67) Fan, Z.; Chen, S.; Zou, S.; Xi, C. Direct C–C Bond Formation of Allylic Alcohols with CO₂ toward Carboxylic Acids by Photoredox/Nickel Dual Catalysis. *ACS Catal.* **2022**, *12*, 2781–2787.

(68) Davies, J.; Lyonnet, J. R.; Carvalho, B.; Sahoo, B.; Day, C. S.; Juliá-Hernández, F.; Duan, Y.; Velasco-Rubio, A.; Obst, M.; Norrby, P.-O.; Hopmann, K. H.; Martin, R. Kinetically-Controlled Ni-Catalyzed Direct Carboxylation of Unactivated Secondary Alkyl Bromides without Chain Walking. *J. Am. Chem. Soc.* **2024**, *146*, 1753–1759.

(69) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Radical Carboxylative Cyclizations and Carboxylations with CO₂. *Acc. Chem. Res.* **2021**, *54*, 2518–2531.

(70) Ju, T.; Zhou, Y.-Q.; Cao, K.-G.; Fu, Q.; Ye, J.-H.; Sun, G.-Q.; Liu, X.-F.; Chen, L.; Liao, L.-L.; Yu, D.-G. Dicarboxylation of alkenes,

allenes and (hetero)arenes with CO₂ via visible-light photoredox catalysis. *Nat. Catal.* **2021**, *4*, 304–311.

(71) Xu, P.; Wang, S.; Xu, H.; Liu, Y.-Q.; Li, R.-B.; Liu, W.-W.; Wang, X.-Y.; Zou, M.-L.; Zhou, Y.; Guo, D.; Zhu, X. Dicarboxylation of Alkenes with CO₂ and Formate via Photoredox Catalysis. *ACS Catal.* **2023**, *13*, 2149–2155.

(72) Morimoto, T.; Nakajima, T.; Sawa, S.; Nakanishi, R.; Imori, D.; Ishitani, O. CO₂ Capture by a Rhodium(I) Complex with the Aid of Triethanolamine. *J. Am. Chem. Soc.* **2013**, *135*, 16825–16828.

(73) Yeung, C. S. Photoredox Catalysis as a Strategy for CO₂ Incorporation: Direct Access to Carboxylic Acids from a Renewable Feedstock. *Angew. Chem., Int. Ed.* **2019**, *58*, 5492–5502.

(74) Pimparkar, S.; Dalvi, A. K.; Koodan, A.; Maiti, S.; Al-Thabaiti, S. A.; Mokhtar, M.; Dutta, A.; Lee, Y. R.; Maiti, D. Recent advances in the incorporation of CO₂ for C–H and C–C bond functionalization. *Green Chem.* **2021**, *23*, 9283–9317.

(75) Liu, J.; Wang, W.; Liao, L.-L.; Zhang, W.; Yue, J.-P.; Liu, Y.; Chen, X.-W.; Ye, J.-H.; Yu, D.-G. Photo-induced carboxylation of C(sp²)–S bonds in aryl thiols and derivatives with CO₂. *Nat. Commun.* **2024**, *15*, 10132. This reference and ref 61 represent exceptional reports on the CO₂ insertion reaction using activated CO₂ radical anions. However, even in these reports, the activation of CO₂ on the metal center and the subsequent reaction with substrates were not achieved.