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ABSTRACT: The molecular photocatalyst fac-Re(2,2′-bipyridine)-
(CO)3Cl ([Re-Cl]) is well established and has been extensively
investigated for the highly active and selective conversion of CO2 to
CO. However, its reactivity in processes other than CO2 reduction
has rarely been explored. Herein, we report the application of [Re-
Cl] as a catalyst for the visible-light-driven carboxylation of an alkene
using CO2, with phenyl vinyl sulfone (1) serving as a model
substrate. The catalytic system successfully catalyzed the carbox-
ylation of 1 to its corresponding carboxylic acid, with complete
suppression of CO formation throughout the reaction. A turnover
number (TON) of up to 2600, along with excellent regioselectivity,
was achieved under optimized conditions. Control experiments
revealed the key role of each reaction component, while isotope
labeling with 13CO2 confirmed that the carboxyl group originated from CO2. Furthermore, mechanistic investigations suggested that
the Re-CO2 intermediate reacts directly with the alkene. These findings highlight the potential of Re-based molecular complexes for
broader reactivities and expand their applicability in sustainable synthetic transformations.
KEYWORDS: Re complex, photocatalysis, carboxylation, CO2, visible light

The development of novel catalytic systems for the efficient
utilization of CO2 as a C1 building block in the synthesis

of fuels and chemicals has attracted significant interest in
recent decades.1−3 In particular, visible-light-driven catalytic
CO2 reduction, which is regarded as a half-reaction of artificial
photosynthesis, has gained considerable attention, prompting
the extensive development of molecular catalysts.4−8 In this
context, the Re(I) tricarbonyl complex, fac-Re(2,2′-
bipyridine)(CO)3Cl ([Re-Cl]), has been thoroughly inves-
tigated since its photocatalytic activity was first reported by
Lehn et al. in 1983 (Figure 1a).9 The complex exhibits
excellent catalytic performance for the photoreduction of CO2
to CO and demonstrates high stability owing to its
substitution-inert coordination bonds. This intrinsic stability
facilitates structural modifications, enabling molecular tuning
and functionalization. Notably, the bipyridine moiety allows
the introduction of additional functional moieties, thereby
significantly enhancing photocatalytic performance.10−18 Lev-
eraging these features, Re complexes have been incorporated
into various materials to further improve performance for
photocatalytic CO2 reduction.19−26 These attributes make Re
complexes ideal platforms for developing photocatalytic CO2

reduction systems. Furthermore, extensive research has
focused on elucidating the underlying mechanisms, leading
to a comprehensive understanding of the catalytic system
associated with [Re-Cl] and its derivatives.27−44

In the proposed mechanism for photochemical CO2
reduction by [Re-Cl], one key intermediate is a Re-CO2
adduct ([Re-CO2]− in Figure 1b).36,44 In this species, CO2
is activated at the Re center and subsequently converted to CO
and water following protonation. Given this reactivity, we
hypothesize that, beyond serving as a substrate for CO
formation, the activated CO2 could also function as a reactive
species capable of coupling with organic molecules. In this
context, CO2 can act as a C1 building block for direct insertion
into organic substrates. Although transformations in which
CO2 activated on a metal complex undergoes direct insertion
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into organic molecules remain unexplored, such processes
would mark a significant advancement in sustainable chemistry.
Motivated by these considerations, we investigated the
catalytic potential26 of [Re-Cl] in visible-light-driven trans-
formations involving CO2 and organic molecules.

In this study, we introduce a Re-based molecular catalyst for
functionalizing an organic substrate with CO2 (Figure 1c).
This photocatalytic system produced the desired carboxylic
acid with a high turnover number (TON) of 2600. Control

experiments, including 13C isotope labeling, confirmed the
catalytic activity of [Re-Cl] in driving the organic trans-
formation reaction. Moreover, mechanistic studies revealed a
plausible catalytic cycle involving Re-CO2 active species.
Although photochemical carboxylation with CO2 has become
a highly active research area in recent years,45−68 particularly
involving iridium-53,57−62 and nickel-based63−68 catalytic
systems, our study introduces a distinct and intriguing
mechanism in which activated CO2 on the Re center serve
as a nucleophile to react with a substrate. This mechanism is in
sharp contrast to the reported systems, where the organic
substrate is first activated to act as a nucleophile toward CO2.
Notably, this study is the first to clearly demonstrate the
catalytic activity of a Re(I) diimine complex for the utilization
of CO2 as a substrate in a chemical reaction other than CO2
reduction.

Figure 2a shows the proposed catalytic cycle for photo-
chemical CO2 reduction using [Re-Cl].29,31,32,36,37,39,40,42−44

Upon absorbing photon energy, [Re-Cl] forms an excited state
([Re-Cl]*), which subsequently undergoes reductive quench-
ing to generate the one-electron-reduced species, [Re-Cl]−.
Following the dissociation of the Cl− ligand, the 5-coordinated
intermediate [Re] receives one electron and coordinates to the
carbon atom of CO2, forming [Re-CO2]−. Theoretical
calculations have suggested the formation of [Re-CO2]−,
which is reported to be thermodynamically favorable.36,44 In
the presence of a proton source, protonation of [Re-CO2]−

leads to the release of CO and water. However, we hypothesize
that this particular activated CO2 in [Re-CO2]− may also
attack organic substrates, resulting in a functionalization
reaction to produce carboxylic acids.69−71 In either case,
coordination to the Cl− ligand regenerates [Re-Cl], thereby
completing the catalytic cycle.

Based on our hypothesis, we conducted two distinct
experiments involving CO2 activation using [Re-Cl] as the
catalyst. First, we investigated the photocatalytic reduction of
CO2 under visible-light irradiation. The reaction was
performed in the presence of [Re-Cl] using a solvent mixture
of N,N-dimethylacetamide (DMA) and triethanolamine

Figure 1. Overview of research on [Re-Cl]: (a) Discovery of its
catalytic activity and recent achievements. (b) Key intermediate based
on mechanistic studies. (c) This study.

Figure 2. (a) Proposed mechanism based on our hypothesis for the visible-light-driven carboxylation of 1 with CO2 catalyzed by [Re-Cl]. (b)
Photocatalytic reactions for the production of 2 and CO. Reaction conditions: A 1 mL solution of DMA:TEOA (5:1 v/v) containing 1 (0.1 M or
none), [Re-Cl] (1.0 mM), and an electron donor (0.1 M) was saturated with CO2 for 15 min and then irradiated (465−470 nm) for 3 h.
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(TEOA), with 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo-
[d]imidazole (BIH) as a sacrificial electron donor, and a blue
LED (λ = 465−470 nm) as the light source, under a CO2
atmosphere. Consequently, CO was formed with a TON of 81
after 3 h (Figure 2b and Table 1, entry 1), which is in line with

previously reported results.9,10 In the second experiment,
phenyl vinyl sulfone (1) was used as the model alkene
substrate under the same reaction conditions. In this case, only
trace amounts of CO were detected, indicating suppression of
the CO2 reduction pathway, and 3-(phenylsulfonyl)propanoic
acid (2) was formed instead, with a TON of 7 (Figure 2b and
Table 1, entry 2). These results demonstrate that [Re-Cl]
exhibits catalytic activity for the carboxylation of organic
molecules under visible-light irradiation.

Encouraged by these initial findings, we examined the
optimal reaction conditions. Starting with the solvent
investigation, a mixture of N,N-dimethylformamide (DMF)
and TEOA, a well-known effective medium for photocatalytic
CO2 reduction using [Re-Cl],72 produced 2 with a TON
comparable to that of DMA:TEOA (Table 1, entries 2 and 3).
The use of acetonitrile (MeCN) increased the TON of 2 to 14
(Table 1, entry 4). The optimum solvent was found to be
dimethyl sulfoxide (DMSO), which yielded a TON of 22
(Table 1, entry 5). Other common solvents, including DMF,
DMA, methanol, tetrahydrofuran, and chloroform, were
ineffective (Table S1, entries 5−9). Notably, CO was detected
at trace levels in all solvent investigation experiments. Next, we
screened various electron donors, including triethylamine
(TEA), ascorbic acid, and other commonly used compounds.
However, 2 was not produced in any of these cases (Table 1,
entries 6 and 7; Table S1, entries 12−16).

To further enhance the TON of 2, an optimization study
was conducted. As shown by the reaction time profile (Figure
S1), extending the reaction time beyond 3 h did not improve
the TON of 2. In contrast, doubling the solution volume
resulted in a higher TON of 30, even without increasing the
loading of [Re-Cl] (Table 2, entry 2). In addition, using a Xe
lamp (300 W, ≥400 nm) further increased the TON to 36
(Table 2, entry 3), possibly due to the higher absorption
intensity of [Re-Cl] around the 400 nm region (Figure S17).
Finally, the highest TON of 2600 was obtained by reducing the

catalyst loading to 0.005 mM (Table 2, entry 4). Notably, 2
was the only regioisomer formed in all experiments,
demonstrating excellent regioselectivity for the linear isomer
under the optimized conditions (see Scheme S1 for details).

Several control experiments were performed to verify the
necessity of each component in the carboxylation reaction.
Significantly decreased yield was observed in the absence of
[Re-Cl], and no product was formed in the absence of BIH,
confirming that both the Re catalyst and sacrificial electron
donor are critical components (Table 3, entries 1−3).

Similarly, no reaction occurred without photoirradiation or a
CO2 atmosphere (Table 3, entries 4−5). Collectively, these
results indicate that all the components are essential for
successful carboxylation reactions (for details, see the SI, pp
S12−S14).

Isotope labeling was employed to verify the original source
of the carboxyl group. The reaction was conducted using
13CO2, and the isolated product was analyzed using 13C NMR
and high-resolution mass spectrometry (HRMS). The 13C
NMR spectrum (Figure 3a) shows a prominent signal at 177.1
ppm, corresponding to the carbon atom of the −COOH
group. In addition, HRMS analysis revealed a species with an
m/z value of 238.0226, which matches the calculated value for
2 (13C) with a Na+ ion ([M+Na]+, m/z = 238.0226) (Figure

Table 1. Screening of Reaction Conditionsa

Entry Solvent
Electron
donor

TON of
2b

TON of
CO

1c DMA:TEOA (5:1 v/v) BIH - 81
2 DMA:TEOA (5:1 v/v) BIH 7 <1
3 DMF:TEOA (5:1 v/v) BIH 8 <1
4 MeCN BIH 14 <1
5 DMSO BIH 22 <1
6d DMSO TEA 0 -
7d DMSO Ascorbic acid 0 -

aReaction conditions: A 1 mL solution containing 1 (0.1 M), [Re-Cl]
(0.001 M), and an electron donor (0.1 M) was saturated with CO2 (1
atm) for 15 min and then irradiated (465−470 nm) for 3 h.
bCalculated based on crude 1H NMR using 1,2-dibromoethane as the
internal standard. cReaction conducted without 1. dReaction duration
of 16 h.

Table 2. Optimization Studya

Entry Total volume Irradiation [Re-Cl] loading TON of 2b

1 1 mL LEDc 1 mM 22
2 2 mL LEDc 0.5 mM 30
3 2 mL Xe lampd 0.5 mM 36
4 2 mL Xe lampd 0.005 mM 2600

aStandard reaction conditions: A 1 mL DMSO solution containing 1
(0.1 M), [Re-Cl], and BIH (0.1 M) was saturated with CO2 (1 atm)
for 15 min and then irradiated (465−470 nm) for 3 h. bCalculated
based on crude 1H NMR using 1,2-dibromoethane as the internal
standard. c465−470 nm. d300 W, ≥400 nm; the temperature of the
reaction vial was maintained at 20 °C.

Table 3. Control Experimentsa

Entry Catalyst Electron donor Irradiation Gas TON of 2b

1 [Re-Cl] BIH Xe lamp CO2 2600
2 − BIH Xe lamp CO2 (8%)c,d

3 [Re-Cl] − Xe lamp CO2 0
4 [Re-Cl] BIH − CO2 0
5 [Re-Cl] BIH Xe lamp Ar 0

aReaction conditions: A 2 mL DMSO solution containing 1 (0.05
M), [Re-Cl] (0.005 mM), and BIH (0.1 M) was saturated with CO2
(1 atm) for 15 min and then irradiated under a Xe lamp (300 W,
≥400 nm, 20 °C) for 3 h. bCalculated based on crude 1H NMR using
1,2-dibromoethane as the internal standard. cThe yield is shown
instead of TON. dFor the reason behind the obtained yield (8%),
please see the SI (pp S12−S14).
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3b). Thus, these results confirm that the carboxyl group
originated from CO2.

We conducted the following mechanistic studies to elucidate
the reaction mechanism. First, emission-quenching experi-
ments were performed. The emission intensity of [Re-Cl]
changed negligibly in the presence of either 1 or CO2 (Figures
4a and b), whereas it decreased markedly in the presence of
BIH (Figure 4c). The Stern−Volmer plot of I0/I versus BIH
concentration exhibits a linear correlation, yielding a Keq value
of 129.54 M−1 (Figure 4d). These findings indicate that the
excited state of [Re-Cl] was quenched only by BIH in this
system, supporting the reductive quenching of [Re-Cl]* to
generate [Re-Cl]−, as shown in Figure 2a.

Next, the electrochemical behavior of [Re-Cl] was assessed
using cyclic voltammetry (CV) in MeCN solution. The CV
curve of [Re-Cl] under an Ar atmosphere exhibits a reversible
wave corresponding to the reduction of the 2,2′-bipyridine
ligand and an irreversible wave corresponding to the reduction
of Re(I) ions (Figure 4e, black line). We then performed CV
measurements under a CO2 atmosphere. Notably, a large
irreversible current was observed after the two-electron
reduction of [Re-Cl] (Figure 4e, red line).27 This result is
consistent with the proposed mechanism in Figure 2a, where
coordination between [Re-Cl] and CO2 follows the two-
electron reduction, leading to the generation of [Re-CO2]−. In
contrast, the presence of 1 under an Ar atmosphere did not
affect the redox behavior of [Re-Cl] (Figure 4f). Moreover, 1
exhibited a highly negative reduction potential (Figure S12).
These results indicate that the two-electron reduced species of
[Re-Cl] can interact with CO2, whereas neither an interaction
between [Re-Cl] and 1 nor the direct reduction of 1 occurs in
this system.

The reaction mechanism was further investigated by
examining the regioselectivity of the product (see Scheme S1
for details). Two possible pathways for the coupling of 1 with
CO2 were considered: (A) nucleophilic attack of a radical
anion of 1, generated via one-electron reduction, on CO2; or
(B) nucleophilic attack of an activated CO2, which is
coordinated to [Re-CO2]−, on 1. In pathway A, the radical
anion of 1 localizes the negative charge at the α-position to the
phenylsulfonyl group, which is stabilized by resonance with the
sulfonyl moiety, as evidenced by density functional theory
(DFT) calculations (for details, see the SI, pp S20−S23).

Nucleophilic attack from the carbanion on CO2 would
preferentially yield the branched isomer (Scheme S1, pathway
A). In contrast, in pathway B, the activated CO2 coordinated to
[Re-CO2]− nucleophilically attacks 1, leading to the formation
of the linear isomer (Scheme S1, pathway B). Our
experimental investigations consistently showed that only the
linear isomer 2 was formed in all cases. These observations
support pathway B, in which the activated CO2 species at the
Re center reacts directly with the substrate (for investigations
on other substrates, see the SI, pp S15−S16).

The results from the mechanistic studies corroborate the
hypothesis shown in Figure 2a. In this mechanism, the two-
electron reduced species of [Re-Cl] interacts with CO2 to form
a Re-CO2 adduct, which subsequently reacts with the substrate
to produce the carboxylation product. X-ray absorption
spectroscopy (XAS) experiments support the electron
donation from the Re center to the coordinated CO2, leading
to the formation of a reduced CO2 species (for details, see the
SI, pp S24−S26). Notably, this mechanism differs significantly
from conventional carboxylation systems,61,73−75 where the
organic substrate is first activated before reacting as a
nucleophile toward CO2. Thus, our findings reveal a new

Figure 3. (a) 13C NMR spectra (CD3OD) showing the signal of the
carboxyl carbon (177.1 ppm) for the isolated products from the
isotope labeling experiment (red line) and the standard conditions
(black line). (b) HRMS analysis of the product from the isotope
labeling experiment.

Figure 4. (a) Emission quenching of [Re-Cl] in the presence of 1. (b)
Emission quenching of [Re-Cl] under a CO2 atmosphere. (c)
Emission quenching of [Re-Cl] in the presence of BIH. Measure-
ments were conducted using a DMSO solution of [Re-Cl] (50 μM),
with quencher concentrations of 1.0, 2.0, or 4.0 mM. The samples
were degassed with a stream of Ar or CO2 for 20 min prior to
measurement. (d) Stern−Volmer plot of the emission quenching of
[Re-Cl] in the presence of BIH. (e) CV curves of [Re-Cl] (0.5 mM)
under an Ar atmosphere, and a CO2 atmosphere. (f) CV curves of
[Re-Cl] (0.5 mM) in the absence and presence of 1 (0.5 mM). CV
was performed in an acetonitrile solution containing 0.1 M
tetrabutylammonium hexafluorophosphate at a scan rate of 100 mV
s−1 using glassy carbon as the working electrode, Ag/Ag+ as the
reference electrode, and Pt wire as the counter electrode.
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mode of CO2 activation and open new avenues for CO2
utilization.

In conclusion, this study provides the first clear demon-
stration of using a Re-based molecular catalyst for the
functionalization of organic molecules with CO2. The [Re-
Cl] catalyst enabled visible-light-driven carboxylation of 1 with
CO2, affording the corresponding carboxylic acid 2 with
excellent regioselectivity. Notably, CO2 reduction to CO was
completely suppressed under identical conditions. Under the
optimized conditions, the TON for 2 reached 2600. Control
and isotope labeling experiments confirmed the reactivity of
[Re-Cl] in the carboxylation of 1 with CO2. Moreover,
mechanistic studies supported the proposed catalytic cycle.
Thus, this study opens a new avenue for the application of Re
complexes in other organic transformations.
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